WO2023124177A1 - 折叠屏夹角的确定方法及其相关设备 - Google Patents

折叠屏夹角的确定方法及其相关设备 Download PDF

Info

Publication number
WO2023124177A1
WO2023124177A1 PCT/CN2022/116202 CN2022116202W WO2023124177A1 WO 2023124177 A1 WO2023124177 A1 WO 2023124177A1 CN 2022116202 W CN2022116202 W CN 2022116202W WO 2023124177 A1 WO2023124177 A1 WO 2023124177A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
folding screen
included angle
screen
angle
Prior art date
Application number
PCT/CN2022/116202
Other languages
English (en)
French (fr)
Inventor
张晓武
李丹洪
邸皓轩
陈政
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to US18/004,101 priority Critical patent/US20240125596A1/en
Priority to EP22830350.9A priority patent/EP4228230A4/en
Publication of WO2023124177A1 publication Critical patent/WO2023124177A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/0206Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings
    • H04M1/0241Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings using relative motion of the body parts to change the operational status of the telephone set, e.g. switching on/off, answering incoming call
    • H04M1/0243Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings using relative motion of the body parts to change the operational status of the telephone set, e.g. switching on/off, answering incoming call using the relative angle between housings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/22Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/0206Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings
    • H04M1/0208Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings characterized by the relative motions of the body parts
    • H04M1/0214Foldable telephones, i.e. with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
    • H04M1/0216Foldable in one direction, i.e. using a one degree of freedom hinge
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1615Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function
    • G06F1/1616Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function with folding flat displays, e.g. laptop computers or notebooks having a clamshell configuration, with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • G06F1/1652Details related to the display arrangement, including those related to the mounting of the display in the housing the display being flexible, e.g. mimicking a sheet of paper, or rollable
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1675Miscellaneous details related to the relative movement between the different enclosures or enclosure parts
    • G06F1/1677Miscellaneous details related to the relative movement between the different enclosures or enclosure parts for detecting open or closed state or particular intermediate positions assumed by movable parts of the enclosure, e.g. detection of display lid position with respect to main body in a laptop, detection of opening of the cover of battery compartment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • G06F1/1694Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675 the I/O peripheral being a single or a set of motion sensors for pointer control or gesture input obtained by sensing movements of the portable computer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/0206Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings
    • H04M1/0208Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings characterized by the relative motions of the body parts
    • H04M1/0214Foldable telephones, i.e. with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0266Details of the structure or mounting of specific components for a display module assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72448User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions
    • H04M1/72454User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions according to context-related or environment-related conditions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/16Indexing scheme relating to G06F1/16 - G06F1/18
    • G06F2200/161Indexing scheme relating to constructional details of the monitor
    • G06F2200/1614Image rotation following screen orientation, e.g. switching from landscape to portrait mode
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/16Indexing scheme relating to G06F1/16 - G06F1/18
    • G06F2200/163Indexing scheme relating to constructional details of the computer
    • G06F2200/1637Sensing arrangement for detection of housing movement or orientation, e.g. for controlling scrolling or cursor movement on the display of an handheld computer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0266Details of the structure or mounting of specific components for a display module assembly
    • H04M1/0268Details of the structure or mounting of specific components for a display module assembly including a flexible display panel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/12Details of telephonic subscriber devices including a sensor for measuring a physical value, e.g. temperature or motion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of terminal technologies, and in particular, to a method for determining an included angle of a folding screen and related equipment.
  • the unfolded state means that the included angle between the two display screens of the folding screen is 180°
  • the folded state means that the included angle between the two display screens of the folding screen is 0°.
  • the included angle between the two display screens of the folding screen refers to the included angle of the folding screen.
  • one way to determine the included angle of the folding screen is: by setting a Hall sensor in the folding screen to read the Hall signal, and then look up the angle corresponding to the Hall signal by looking up a table; another way to determine The way to fold the angle of the screen is to read the angle change by adding an encoder at the hinge of the folding screen.
  • the first method has low precision and is easily disturbed by the use environment, while the second method increases the structural complexity of the folding screen and is very easy to be damaged. Therefore, there is an urgent need for a method for determining the included angle of a folding screen with low hardware cost, simple structure, high recognition accuracy, and anti-interference.
  • the present application provides a method for determining the included angle of a folding screen and related equipment. Acceleration sensors and gyroscope sensors are arranged on both display screens of the folding screen to determine the angle of the folding screen.
  • a method for determining the included angle of a folding screen which is applied to an electronic device with a folding screen, and the folding screen includes two display screens, and each display screen includes an acceleration sensor and a gyroscope sensor; the method include:
  • the state of the folding screen at the time t is determined, and the state of the folding screen includes:
  • the foldable screen is perpendicular to the horizontal plane, the two display screens of the foldable screen are folded, bent, and unfolded, the angle at time t of the foldable screen is changed relative to the angle at time t-1, and the At least one item in which the angle at time t of the folding screen has not changed relative to the angle at time t-1;
  • the included angle corresponding to the folding screen at time t is determined.
  • the acceleration signals and angular velocity signals corresponding to each display screen are respectively read;
  • the state is detected, and according to the different states of the determined folding screen, two sets of acceleration signals and angular velocity signals are combined, or two sets of angular velocity signals are combined, and different algorithms are used to determine the angle of the folding screen.
  • the first preprocessing is performed on the initial acceleration signal at the time t, and the target value of the acceleration signal of gravity at the time t is determined, including:
  • the initial acceleration signal at the time t is subjected to coordinate system conversion and mean value filtering to obtain the measured value of the acceleration of gravity signal at the time t; according to the target value and the acceleration of gravity signal at the time t-1
  • the initial angular velocity signal at the -1 moment utilizes the time update equation to determine the predicted value of the gravitational acceleration signal at the t moment; according to the measured value of the gravitational acceleration signal at the t moment and the predicted value of the gravitational acceleration signal at the t moment, use A Kalman filter algorithm is used to determine the target value of the gravitational acceleration signal at the time t.
  • the coordinate values corresponding to the first acceleration signal and the coordinate values corresponding to the second acceleration signal can be transformed into the earth coordinate system, so that the gravitational acceleration signals and The linear acceleration signal of the motion is separated, so that the non-gravitational acceleration component (that is, the linear acceleration signal of the motion) can be filtered out through mean filtering, and only the corresponding gravitational acceleration component is retained.
  • the initial angular velocity signal at the time t is subjected to the second preprocessing to determine the intermediate angular velocity signal at the time t, including:
  • For each display screen perform low-pass filtering on the initial angular velocity signal at the time t to determine the intermediate angular velocity signal at the time t.
  • the state of the folding screen at time t is determined according to the target value of the gravitational acceleration signal at time t and the intermediate angular velocity signal at time t respectively corresponding to the two display screens, include:
  • screen vertical detection and screen opening and closing detection are used to screen the status of the folding screen, and it is judged that the folding screen is perpendicular to the horizontal plane, not perpendicular to the horizontal plane, and the gap between the two display screens of the folding screen Is it folded, unfolded, or bent. Subsequently, for the different states determined by the two detections, different methods are used to determine the included angle.
  • performing screen vertical detection on the folding screen to determine whether the folding screen is perpendicular to the horizontal plane includes:
  • the standard acceleration of gravity is used to indicate the acceleration of an object falling in a vacuum due to the gravity of the earth;
  • the folding screen is perpendicular to the horizontal plane
  • the folding screen is not perpendicular to the horizontal plane.
  • the target value of the gravitational acceleration signal corresponding to each display screen is almost equal to the standard gravitational acceleration. Therefore, the gravitational acceleration signal corresponding to the two display screens at time t can be determined Whether the target value of , the absolute value of the difference between the component on the y-axis and the standard gravitational acceleration is less than the first preset threshold value is used to determine whether the folding screen is perpendicular to the horizontal plane.
  • this condition is met, it means that the folding screen is perpendicular to the horizontal plane; when this condition is not met, it means that the folding screen is not perpendicular to the horizontal plane.
  • performing screen opening and closing detection on the folding screen to determine whether the two display screens of the folding screen are folded, unfolded or bent includes:
  • the folding screen is folded.
  • the y-axis of the device coordinate system corresponding to the two display screens is shared, while the directions of the x-axis and z-axis are respectively opposite.
  • the directions of the x-axis, y-axis and z-axis of the device coordinate system corresponding to the two display screens are respectively the same. Therefore, whether the difference between the absolute value of the component on the x-axis and the target value of the gravitational acceleration signal at time t corresponding to the two display screens is less than the second preset threshold can be used to determine whether the folding screen It is bent. When this condition is not met, the folding screen is bent. When this condition is met, the folding screen may be folded or unfolded.
  • determining the included angle corresponding to the folding screen at time t includes:
  • Angle is used to indicate the angle between the two display screens at time t Angle
  • LastAngle is used to indicate the angle between the two display screens at time t-1
  • DeltaAngle is used to indicate the angle change between the two display screens between time t-1 and time t;
  • the included angle is 0°
  • the included angle is 180°
  • the included angle corresponding to the folding screen at time t is determined.
  • the size of the included angle at time t can be determined based on the size of the included angle and the amount of angle change at the previous moment, or the size of the included angle can be directly determined according to the status of the folding screen;
  • the included angle of the folding screen may be indirectly determined according to the included angle between the projection vectors of the acceleration of gravity signal on the xoz plane.
  • the method further includes:
  • angle change detection is used to screen the state of the folding screen to determine whether the included angle of the folding screen has changed. If so, only the intermediate angular velocity signal can be used to determine the included angle of the folding screen.
  • performing angle change detection on the folding screen to determine whether the included angle of the folding screen at time t changes relative to the included angle at time t-1 includes:
  • the y-axis in the device coordinate system corresponding to the two display screens is shared, and the y-axis is parallel to the folding axis of the folding screen.
  • the fourth preset threshold is used to determine whether the included angle of the folding screen has changed. If this condition is met, it means that a change has occurred. If not This condition means that no change has occurred.
  • determining the included angle corresponding to the folding screen at time t includes:
  • the Kalman filter algorithm is used to determine the size of the included angle corresponding to the folding screen at time t.
  • the included angle calculated by the projection vector and the included angle calculated by the intermediate angular velocity signal can be fused again using the Kalman filter algorithm to obtain More accurate folding screen angle size.
  • the state of the folding screen further includes: at least one of stillness, slight movement and violent movement;
  • the method also includes:
  • Angle is used to indicate the angle between the two display screens at time t
  • LastAngle is used to indicate t
  • DeltaAngle is used to indicate the angle change between the two display screens between time t-1 and time t.
  • the movement of the folding screen also has a certain influence on the determination of the included angle, it is possible to select the method of summing the size of the included angle at the previous moment and the amount of angle change to determine the angle of the folding screen during vigorous exercise.
  • the size of the included angle In non-violent motion, select the included angle calculated by the projection vector provided above and the included angle calculated by the intermediate angular velocity signal, and then use the Kalman filter algorithm for fusion processing to finally obtain the included angle of the folding screen method to determine the size of the included angle of the folding screen.
  • performing motion level detection on the folding screen to determine the motion level of the folding screen includes:
  • the folding screen is static ;
  • the folding screen is in violent motion.
  • the modulus value of the initial acceleration signal and the target value of the gravitational acceleration signal corresponding to the two display screens can be used to refine the motion level of the folding screen, so that an appropriate included angle can be selected according to different motion levels Determine the method.
  • a device for determining an included angle of a folding screen including a module/unit for performing the first aspect or any one of the methods in the first aspect.
  • an electronic device including: one or more processors and a memory; the memory is coupled to the one or more processors, the memory is used to store computer program codes, and the computer program
  • the code includes computer instructions, and the one or more processors call the computer instructions to make the electronic device execute the first aspect or the method for determining the included angle of the folding screen according to any one of the first aspect.
  • a chip system is provided, the chip system is applied to an electronic device, and the chip system includes one or more processors, and the processor is used to call a computer instruction so that the electronic device executes the first aspect or any of the methods in the second aspect.
  • a computer-readable storage medium stores computer program code, and when the computer program code is run by an electronic device, the electronic device executes the first aspect or the second aspect. Either method in the aspect.
  • a computer program product includes: computer program code, when the computer program code is run by an electronic device, the electronic device is made to execute any one of the first aspect or the second aspect. a way.
  • the embodiment of the present application provides a method for determining the included angle of a folding screen and related equipment, by setting acceleration sensors and gyroscope sensors on the two display screens of the folding screen to respectively read the acceleration signals corresponding to each display screen and angular velocity signals; then, by detecting the state of the folding screen, according to the determined different states of the folding screen, combining two sets of acceleration signals and angular velocity signals, or combining two sets of angular velocity signals, using different algorithms to determine the angle of the folding screen size.
  • FIG. 1 is a schematic diagram of an application scenario applicable to an embodiment of the present application
  • Fig. 2 is a schematic flowchart of a method for determining the included angle of a folding screen provided by an embodiment of the present application
  • Fig. 3 is a schematic flow chart of a pretreatment provided by the embodiment of the present application.
  • Fig. 4 is a schematic flowchart of another method for determining the included angle of the folding screen provided by the embodiment of the present application.
  • Fig. 5 is a schematic flowchart of screen vertical detection and screen opening and closing detection provided by the embodiment of the present application.
  • Fig. 6 is a schematic diagram of several states of the folding screen provided by the embodiment of the present application.
  • Fig. 7 is a schematic flowchart of another method for determining the included angle of the folding screen provided by the embodiment of the present application.
  • FIG. 8 is a schematic flow diagram of an angle change detection provided by an embodiment of the present application.
  • Fig. 9 is a schematic flowchart of another method for determining the included angle of the folding screen provided by the embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a motion level detection provided by an embodiment of the present application.
  • Fig. 11 is a schematic diagram of a display interface of an electronic device provided by the implementation of the present application.
  • Fig. 12 is a schematic diagram of a display interface of another electronic device provided by the implementation of the present application.
  • FIG. 13 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Fig. 14 is a schematic structural diagram of a device for determining the included angle of a folding screen provided by an embodiment of the present application
  • Figure 15 is a schematic diagram of a chip suitable for this application.
  • a relationship means that there may be three kinds of relationships, for example, A and/or B means: A exists alone, A and B exist simultaneously, and B exists independently.
  • plural refers to two or more than two.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of this embodiment, unless otherwise specified, “plurality” means two or more.
  • FIG. 1 shows a schematic diagram of an application scenario provided by an embodiment of the present application.
  • an electronic device is used as an example for illustration.
  • the distance between the two display screens (the display screen La and the display screen Lb shown in FIG. 1 ) included in the folding screen The included angle is 180°, and the two display screens are located in the same plane.
  • the angle between the two display screens is 0°, and the backs of the two display screens (the side not used for display) ) are relatively attached together, and the folding method of the folding screen at this time can be called outward folding.
  • the angle between the two display screens is between 0° and 180°.
  • the axis k shown in FIG. 1 is the axis when the folding screen is bent.
  • a mobile phone with a folding screen can transition from an unfolded state to a bent state, and then switch to a folded state, or from a folded state to a bent state, and then switch to an unfolded state. This process is dynamic and reversible.
  • the folding method of the folding screen at this time can be called For inward folding.
  • the embodiment of the present application does not impose any limitation, and the method for determining the included angle provided by the embodiment of the present application can be applied to the folding screen folded outward or inward.
  • the number of display screens included in the folding screen is divided and named based on the axis of rotation around which the folding screen is folded.
  • the two display screens do not represent actual folding screens.
  • the panel structure of the screen For example, the folding screen can be spliced by two rigid panels and a hinge, and one of the two rigid panels can be called a display screen.
  • the folding screen is composed of a flexible panel and a rotating shaft, then the flexible panel takes the rotating shaft as a reference line, and half of the flexible panel can be called a display screen accordingly.
  • the specific structure of the folding screen can be set according to needs, which is not limited in this embodiment of the present application.
  • the angle determination method provided in the embodiment of the present application may also be applied to the size of the included angle between two adjacent display screens.
  • a way to determine the included angle of the folding screen is: install Hall sensors in both display screens of the folding screen, read the Hall signals through the Hall sensors, and then look up the Hall by looking up the table. The angle corresponding to the signal determines the angle between the two display screens. This method not only has low precision, but also is easily disturbed by the use environment.
  • Another way to determine the included angle of the folding screen is to add an encoder at the rotating shaft of the folding screen to read the angle change.
  • the encoder has high precision and anti-interference, this method requires adding a sensor at the rotating shaft of the folding screen. This increases the structural complexity of the folding screen and is not easy to manufacture. Even if a folding screen with this structure can be produced, the encoder at the rotating shaft is very easy to be damaged during multiple folding processes. Therefore, there is an urgent need for a method for determining the included angle of the folding screen with low hardware cost, simple structure, high recognition accuracy, and anti-interference.
  • the embodiment of the present application provides a method for determining the angle of the folding screen, by setting acceleration sensors and gyroscope sensors on the two display screens of the folding screen to read the acceleration corresponding to each display screen signal and angular velocity signal; then, by detecting the state of the folding screen, according to the different states of the determined folding screen, combine two sets of acceleration signals and angular velocity signals, or combine two sets of angular velocity signals, and use different algorithms to determine the folding screen. Angle size.
  • the method for determining the included angle of the folding screen provided in the embodiment of the present application is applied to an electronic device with a folding screen, and the folding screen of the electronic device includes multiple display screens, that is to say, the folding screen of the electronic device may include two display screens
  • the screen may also include 3 or more display screens, which is not limited in this embodiment of the present application.
  • each display screen may include at least one acceleration sensor and at least one gyroscope sensor.
  • each display screen may include one acceleration sensor and one gyro sensor, or may include two or more acceleration sensors and two or more gyro sensors.
  • the number of acceleration sensors and the number of gyroscope sensors in each display screen can be the same or different; the number of acceleration sensors included in different display screens can be the same or different, and the number of gyroscope sensors included in different display screens
  • the numbers may be the same or different, and may be specifically set according to needs, which is not limited in this embodiment of the present application.
  • the acceleration sensor in each display screen can detect the acceleration of each corresponding display screen in various directions (generally x-axis, y-axis and z-axis).
  • the gyro sensor in each display screen can detect the angular velocity of the respective corresponding display screen about three axes (ie, x-axis, y-axis and z-axis).
  • the x-axis, y-axis and z-axis refer to the three reference directions in the device coordinate system corresponding to the display screen itself
  • the device coordinate system refers to the coordinate system fixed in the display screen
  • the points on the display screen correspond to The coordinate system that the display rotates with. Since each display screen corresponds to a device coordinate system, when the relative positions between multiple display screens change, the x-axis, y-axis and z-axis directions indicated by each device coordinate system are not necessarily the same.
  • the display screen La includes a first acceleration sensor ACC1 and a first gyro sensor GYRO1
  • the display screen Lb includes a second acceleration sensor ACC2 and a second gyro sensor GYRO2 .
  • first acceleration sensor ACC1 and the second acceleration sensor ACC2 can be the same or different, and the first gyro sensor GYRO1 and the second gyro sensor GYRO2 can be the same or different, and can be set according to specific needs.
  • the application embodiment does not impose any limitation on this.
  • the device coordinate system corresponding to the display screen La refers to the coordinate system fixed in the display screen La, and the point on the display screen La rotates with the coordinate system of the display screen La;
  • the device coordinate system corresponding to the display screen Lb refers to the is a coordinate system fixed on the display screen Lb, and a point on the display screen Lb rotates with the coordinate system of the display screen Lb.
  • the direction indicated by the x-axis in the device coordinate system corresponding to the display screen Lb is parallel to the display surface of the display screen Lb and horizontally to the right, and the direction pointed by the y-axis is parallel to the display surface of the display screen Lb and vertically upward direction, the direction pointed by the z-axis is the direction perpendicular to the display surface of the display screen Lb and perpendicular to the paper surface outward.
  • the actual pointing directions of the three axes in the device coordinate system corresponding to the two display screens included in the folding screen are respectively the same.
  • the direction indicated by the y-axis in the device coordinate system corresponding to the display screen La has not changed, and is still parallel to the display surface of the display screen La and vertically upward, but the direction indicated by the x-axis becomes parallel to the display surface.
  • the direction indicated by the z-axis becomes the direction perpendicular to the display surface of the display screen La and vertical to the inside of the paper.
  • first acceleration sensor ACC1 and the first gyro sensor GYRO1 are mounted at the center of the back side (not shown) of the display screen La.
  • the second acceleration sensor ACC2 and the second gyro sensor GYRO2 are also mounted at the center of the back (side not shown) of the display screen Lb.
  • each acceleration sensor and each gyroscope sensor on the display screen can be set and changed according to needs, which is not limited in this embodiment of the present application.
  • the folding screen applicable to the embodiment of the present application has been briefly introduced above. In combination with FIGS. Taking one gyro sensor as an example, the method for determining the included angle of the folding screen provided in the embodiment of the present application is introduced in detail.
  • FIG. 2 shows a schematic flowchart of a method for determining an included angle of a folding screen provided by an embodiment of the present application.
  • the method 1 for determining the included angle of the folding screen includes the following S10 to S40.
  • the second initial acceleration signal at time t is acquired by the second acceleration sensor ACC2 in the display screen Lb, and the second initial angular velocity signal at time t is acquired by the second gyroscope sensor GYRO2.
  • time t is an integer greater than or equal to 1.
  • time t can be understood as the current time in the time series
  • time t+1 is the next time in the time series
  • time t-1 is the previous time in the time series.
  • the display screen La can obtain the first initial acceleration signal and the first initial angular velocity signal corresponding to the moment at each moment, and similarly, the display screen Lb can obtain the second initial acceleration signal corresponding to the moment at each moment.
  • the initial acceleration signal and the second initial angular velocity signal When t is different, the time indicated by the time t is different, and the signal corresponding to the time t is also different.
  • the acceleration signal measured by the acceleration sensor included in the display screen includes both the gravitational acceleration signal and the linearity of motion. Acceleration signal; when the display screen is in a static state, the acceleration sensor can accurately measure the three-axis component of the acceleration signal of the object in its own inherent device coordinate system. At this time, the acceleration signal only includes the gravitational acceleration signal, not including the motion Linear acceleration signal.
  • the display screen refers to the above-mentioned display screen La or display screen Lb
  • the acceleration sensor refers to the first acceleration sensor ACC1 or the second acceleration sensor ACC2.
  • acceleration of gravity refers to the acceleration of the display screen under the action of gravity
  • linear acceleration refers to the acceleration of the display screen under the action of non-gravity
  • the first preprocessing may include at least one of coordinate system conversion, mean filtering, time update equation, and Kalman filtering algorithm.
  • the coordinate system conversion is used to convert the coordinate values in the intrinsic device coordinate system of the display screen itself into the coordinate values in the earth coordinate system.
  • the earth coordinate system also known as the earth-fixed coordinate system, is a coordinate system that is fixed on the earth and rotates with the earth. The coordinate values of points on the ground are fixed in the ground-fixed coordinate system.
  • Mean filtering is used to remove noise in the signal for smoothing.
  • the mean value filtering is equivalent to removing the disordered linear acceleration signals included in the first initial acceleration signal and the second initial acceleration signal, and selecting a relatively stable signal from the first initial acceleration signal as the included first gravitational acceleration signal , select a relatively stable signal from the second initial acceleration signal as the included second gravitational acceleration signal.
  • the second pre-processing may include low-pass filtering.
  • Low-pass filtering is used to remove higher frequency noise.
  • first pretreatment and/or the second pretreatment may also include other steps, and the execution order of the steps included in the first pretreatment and/or the second pretreatment may also be adjusted as required.
  • the embodiments do not impose any limitation on this.
  • the first preprocessing includes coordinate system conversion, mean filtering, time update equation, and Kalman filtering algorithm
  • the second preprocessing includes low-pass filtering.
  • FIG. 3 uses FIG. 3 as an example for description.
  • Fig. 3 shows a schematic flowchart of a first preprocessing and a second preprocessing provided by the embodiment of the present application.
  • the first initial acceleration signal at time t acquired by the first acceleration sensor ACC1 in the display screen La is subjected to the first preprocessing process, which may include the following S21 To S23; as shown in (a) in FIG. 3 , the process of performing the second preprocessing on the first initial angular velocity signal at time t acquired by the first gyro sensor GYRO1 may include the following S24.
  • the first preprocessing and the second preprocessing when executed, they may be executed sequentially or simultaneously, and the specific execution order may be changed as required, which is not limited in this embodiment of the present application. The following is an example:
  • the coordinate value corresponding to the first initial acceleration signal obtained by the first acceleration sensor ACC1 is located in the inherent device coordinate system of the first acceleration sensor ACC1 itself, and the coordinate value corresponding to the second initial acceleration signal obtained by the second acceleration sensor ACC2 is located in The second acceleration sensor ACC2 is in its own inherent device coordinate system. Since the gravitational acceleration g is expressed as (0, 0, g) in the earth coordinate system, it is a constant value.
  • the coordinate values corresponding to the first acceleration signal and the coordinate values corresponding to the second acceleration signal can be transformed into the earth coordinate system, so that the gravitational acceleration signal and the linear acceleration of the motion can be respectively included
  • the signals are separated, so that the component of non-gravitational acceleration (ie, the linear acceleration signal of motion) can be filtered out through mean filtering, and only the corresponding component of gravitational acceleration can be retained. Without coordinate system conversion, the non-gravitational acceleration components cannot be filtered by mean filtering.
  • the first initial acceleration signal at time t can be subjected to coordinate rotation average processing, thus, the first linear acceleration signal (the first initial acceleration signal in the first initial acceleration signal) can be obtained Included linear acceleration signal) is preliminarily suppressed first combined acceleration signal to prevent the first linear acceleration signal from interfering with the determination of the subsequent included angle. That is to say, after the first initial acceleration signal at time t is processed by RIOT, the first resultant acceleration signal at time t is mainly composed of the first gravitational acceleration signal at time t. Therefore, the first acceleration signal at time t can be The resultant acceleration signal can be used as the measured value of the first gravitational acceleration signal at time t.
  • the coordinate values of the earth coordinate system need to be converted back to the coordinate values in the device coordinate system corresponding to the respective display screens, so as to perform subsequent included angle calculation.
  • the time update equation can be understood as a physical model.
  • the target value of the first gravity acceleration signal obtained by using the Kalman filter algorithm at the previous moment can be used to predict the corresponding first gravity at the next moment.
  • the predicted value of the acceleration signal For example, the predicted value of the first gravitational acceleration signal at time t can be predicted through the target value of the first gravitational acceleration signal corresponding to the display screen La at time t-1;
  • the target value of the first gravitational acceleration signal is predicted to predict the predicted value of the first gravitational acceleration signal at time t+1.
  • time update equation refers to:
  • X t is used to represent the predicted value of the first gravitational acceleration signal at time t;
  • g x, t , g y, t , g z, t are respectively the predicted values of the first gravitational acceleration signal at time t on the x-axis and y-axis , the component on the z axis;
  • g x, t-1 , g y, t-1 , g z, t-1 are respectively the target values of the first gravitational acceleration signal at the time t-1 in the x axis, y axis, z
  • the components on the axis; w x , w y , and w z are the angular velocities on the x-axis, y-axis, and z-axis respectively;
  • dt is the integral over time or the time interval from time t-1 to time t.
  • the Kalman filter algorithm determines the target value of the first gravitational acceleration signal at time t.
  • the Kalman filter algorithm includes the above-mentioned time update equation, and also includes a state update equation.
  • the Kalman filter algorithm is used to: the measured value of the first gravitational acceleration signal at time t determined by the acceleration sensor and the predicted value of the first gravitational acceleration signal at time t calculated by the time update equation are added to the weight and then compared plus, to obtain the target value of the first gravitational acceleration signal at time t.
  • the weight is the optimal value obtained after multiple iterations.
  • the determination process of the target value of the first gravitational acceleration signal at time t-1 can be as follows: according to the target value of the first gravitational acceleration signal at time t-2 and the first initial angular velocity signal at time t-2, using time Update the equation to determine the predicted value of the first gravitational acceleration signal at t-1 moment; then, according to the measured value of the first gravitational acceleration signal at t-1 moment and the predicted value of the gravitational acceleration signal at t-1 moment, use Kalman
  • the filtering algorithm determines the target value of the first gravitational acceleration signal at time t-1 required by S22. Wherein, the measured value of the first gravitational acceleration signal at time t-1 is obtained by performing coordinate system conversion and mean value filtering on the first initial acceleration signal at time t-1.
  • the determination process of the target value of the first gravitational acceleration signal at time t+1 can be: according to the target value of the first gravitational acceleration signal at time t calculated in S23 and the first initial acceleration signal at time t, using time Update the equation to determine the predicted value of the first gravitational acceleration signal at time t; then, according to the measured value of the first gravitational acceleration signal at time t and the predicted value of the gravitational acceleration signal at time t, use the Kalman filter algorithm to determine t+ The target value of the first gravitational acceleration signal at time 1.
  • the measured value of the first gravitational acceleration signal at time t+1 is obtained by performing coordinate system conversion and mean value filtering on the first initial acceleration signal at time t+1.
  • a first-order low-pass filter may be used to perform low-pass filtering on the first initial angular velocity signal, so as to reduce noise interference in the first initial angular velocity signal.
  • the first initial acceleration signal at time t is subjected to first preprocessing to determine the first gravitational acceleration signal at time t; the first initial angular velocity signal at time t is subjected to second preprocessing to determine the first initial acceleration signal at time t.
  • the process of the first intermediate angular velocity signal has been described in detail.
  • the first preprocessing is performed on the second initial acceleration signal at the t moment to determine the second gravitational acceleration signal at the t moment; the second initial angular velocity signal at the t moment is processed
  • the second preprocessing is to determine the second intermediate angular velocity signal at time t, the process of which is similar to the above, and will not be repeated here.
  • performing the first preprocessing on the first initial acceleration signal and the second initial acceleration signal, and performing the second preprocessing on the first initial angular velocity signal and the second initial angular velocity signal can effectively filter out the display screen La and the display screen From the irregular linear acceleration signal and noise in the angular velocity signal of Lb, the relatively accurate gravitational acceleration signal and angular velocity signal are extracted from them, which is beneficial to the subsequent determination of the included angle of the folding screen.
  • determining the state of the folding screen at time t may be realized by performing state detection on the folding screen.
  • the state detection may include at least one of screen vertical detection, screen opening and closing detection, and angle change detection.
  • the screen vertical detection is used to detect whether the folding screen is perpendicular to the horizontal plane.
  • the subsequent angle determination method can be adjusted according to the detection result;
  • the screen opening and closing detection is used to detect whether the folding screen is vertical.
  • angle change detection is used to determine the folding screen when the angle of the folding screen changes relative to the angle at the previous moment. The angle change between the two display screens of the screen;
  • the state detection may also include motion level detection.
  • Motion level detection is used to determine the overall motion of electronic devices suitable for folding screens.
  • it can be classified according to the range of motion of electronic devices, and different motion levels can be determined according to different ranges of motion. For example, it can be divided into stillness, light exercise and vigorous exercise, and then the included angle can be processed differently according to different exercise levels.
  • the state of the folding screen includes that the folding screen is perpendicular to the horizontal plane, the two display screens of the folding screen are folded, bent, unfolded, the angle of the folding screen at time t is changed relative to the angle at time t-1, At least one of the angles at time t of the folding screen relative to the angle at time t-1 does not change.
  • the two display screens of the folding screen are folded, bent, and unfolded.
  • the unchanged included angle at time -1 is used to indicate the relative state between the display screen La and the display screen Lb, while slight motion, violent motion, and stillness are all used to represent the overall state of the electronic device relative to the outside world.
  • the size of the included angle can be determined directly, or the size of the included angle can be determined by combining the first initial angular velocity signal and the second initial angular velocity signal measured by the two gyroscope sensors, or Combining the first intermediate angular velocity signal, the second intermediate angular velocity signal, the first gravitational acceleration signal and the second gravitational acceleration signal to determine the included angle.
  • different states of the folding screen can be used to determine the angle of the folding screen in different ways, so as to ensure that the method of determining the angle in each state is the most appropriate, and the obtained angle is the most accurate.
  • the method for determining the included angle of the folding screen is to read the acceleration signal and the angular velocity signal corresponding to each display screen by setting an acceleration sensor and a gyroscope sensor on both display screens of the folding screen; and then , by detecting the state of the folding screen, according to the determined different states of the folding screen, combining two sets of acceleration signals and angular velocity signals, or combining two sets of angular velocity signals, using different algorithms to determine the angle of the folding screen.
  • FIG. 4 shows a schematic flow chart of another method 2 for determining the included angle of a folding screen provided by an embodiment of the present application. As shown in FIG. 4 , the method 2 for determining the included angle of the folding screen includes the following steps S100 to S108.
  • the second initial acceleration signal at time t is acquired by the second acceleration sensor ACC2 in the display screen Lb, and the second initial angular velocity signal at time t is acquired by the second gyroscope sensor GYRO2.
  • t is an integer greater than or equal to 1.
  • the first preprocessing is performed on the second initial acceleration signal at time t to determine the target value of the second gravitational acceleration signal at time t; the second preprocessing is performed on the second initial angular velocity signal at time t to determine the second intermediate angular velocity signal.
  • the first preprocessing is performed on the first initial acceleration signal at time t and the second initial acceleration signal at time t
  • the second preprocessing method is performed on the first initial angular velocity signal and the second initial angular velocity signal, which is the same as the above-mentioned Fig. 3
  • the manner shown is the same, for details, reference may be made to the above description, and details are not repeated here.
  • S102 Perform screen vertical detection on the folding screen, and determine whether the two folding screens of the folding screen are perpendicular to the horizontal plane.
  • Angle is used to indicate the angle between the two display screens at time t
  • LastAngle is used to indicate the angle between the two display screens at time t-1
  • DeltaAngle is used to indicate the angle between time t-1 and time t. The amount of change in the included angle.
  • the angular velocity signal on the y-axis can be obtained only according to the gyroscope sensor to determine the angle change between the two display screens, and then combined with the above
  • the included angle of the folding screen at a moment is used to determine the corresponding included angle of the folding screen at a moment t.
  • the projection vector of the target value of the first gravitational acceleration signal corresponding to the display screen La on the xoz plane and the second gravity corresponding to the display screen Lb can be determined.
  • the xoz plane formed by the x-axis and the z-axis in the two device coordinate systems is on the same plane, and because the xoz plane is perpendicular to the y axis, the y-axis is in the same direction as the folding axis k of the folding screen, so the angle between the two display screens is the angle between the intersection lines of the two display screens and the xoz plane respectively.
  • the folding screen can be calculated indirectly by calculating the angle between the projection vector of the target value of the first gravitational acceleration signal on the xoz plane and the projection vector of the target value of the second gravitational acceleration signal on the xoz plane.
  • the size of the included angle is the angle between the projection vector of the target value of the first gravitational acceleration signal on the xoz plane and the projection vector of the target value of the second gravitational acceleration signal on the xoz plane.
  • FIG. 5 shows a schematic flowchart of screen vertical detection and screen opening and closing detection provided by the embodiment of the present application.
  • FIG. 6 shows schematic diagrams of several states of the folding screen.
  • the y-axis direction of the device coordinate system corresponding to the display screen La and the device coordinate system corresponding to the display screen Lb are the same. Whether the absolute value of the difference between the component ga_y on the above and the target value gb of the second gravitational acceleration signal gb on the y-axis, and the absolute value of the difference between the standard gravitational acceleration g is less than the first preset threshold value thresh1 is used to determine whether the folding screen is vertical on the horizontal plane.
  • the standard gravitational acceleration g refers to the acceleration of an object falling in a vacuum due to the gravitational force of the earth.
  • the target value ga of the first acceleration-of-gravity signal is almost equal to the standard acceleration-of-gravity g, and the target value ga of the first acceleration-of-gravity signal is all composed of the component ga_y on the y-axis.
  • the target value ga of the first acceleration-of-gravity signal The component ga_y on the y-axis is almost equal to the standard gravitational acceleration g, so the first preset threshold thresh1 can be set, and it can be judged by comparing whether the difference between the two is less than the first preset threshold thresh1 Whether the display screen La is vertical to the horizontal plane.
  • the display screen Lb is also placed vertically.
  • the target value gb of the second acceleration of gravity signal is almost equal to the standard acceleration of gravity g, and the target value gb of the second acceleration of gravity signal is all composed of the component gb_y of the target value of the second acceleration of gravity signal on the y-axis.
  • the component gb_y of the signal target value gb on the y-axis is almost equal to the magnitude of the standard gravitational acceleration g, thus, the first preset threshold value thresh1 can be set, and by comparing whether the difference between the two is smaller than the first preset The threshold thresh1 is used to judge whether the display screen Lb is vertical to the horizontal plane.
  • the condition for judging whether the folding screen is perpendicular to the horizontal plane can be set as follows: the absolute value of the difference between the component ga_y of the target value ga of the first gravitational acceleration signal on the y-axis and the standard gravitational acceleration g is less than the first preset threshold value thresh1 , and the absolute value of the difference between the target value gb of the second gravitational acceleration signal on the y-axis and the standard gravitational acceleration g is also smaller than the first preset threshold thresh1.
  • the angle between the two display screens may be 0, or, It may also be between 0° and 180°, and of course, it may also be 180°.
  • the angle change value DeltaAngle of the first gyro sensor GYRO1 and the second gyro sensor GYRO2 on the y-axis, and then summing the angle LastAngle at time t-1 and the angle change DeltaAngle, Thus, the angle Angle between the two display screens at time t is determined.
  • the angle change DeltaAngle can be determined according to the following formula (1):
  • w2_y in the formula (1) is used to indicate the angular velocity on the y-axis acquired by the second gyro sensor GYRO2
  • w1_y is used to indicate the angular velocity on the y-axis acquired by the first gyro sensor GYRO1
  • dt is used to indicate
  • the integral over time t is also referred to as the time interval from time t-1 to time t.
  • the angle Angle between the two display screens can be determined according to the following formula (2):
  • Angle is used to indicate the angle between the two display screens at time t
  • LastAngle is used to indicate the angle between the two display screens at time t-1
  • DeltaAngle is used to indicate the angle between time t-1 and time t. angle change.
  • the folding screen when the folding screen is not perpendicular to the horizontal plane, the folding screen may be inclined or placed parallel to the horizontal plane. Regardless of whether the folding screen is inclined or placed parallel to the horizontal plane, it is possible that the dual screens are unfolded, bent, or folded together. For this different situation, the screen opening and closing detection can be performed on the folding screen to judge the specific state of the two display screens when they are not perpendicular to the horizontal plane.
  • the device coordinate system corresponding to the display screen La and the display screen Lb correspond to The y-axis of the device coordinate system is shared, while the directions of the x-axis and z-axis are opposite.
  • the x-axis, y-axis and z-axis directions of the device coordinate system corresponding to the display screen La and the device coordinate system corresponding to the display screen Lb are respectively the same.
  • the component ga_x on the x-axis of the target value ga of the first gravitational acceleration signal and the target value of the second gravitational acceleration signal can be judged. Whether the difference between the absolute values of the component gb_x of gb on the x-axis is smaller than the second preset threshold thresh2 is used to determine whether the two screens of the folding screen are bent.
  • the difference between the absolute value of ga_x and the absolute value of gb_x is less than the second preset threshold thresh2, it means that the component ga_x of the target value ga of the first gravitational acceleration signal on the x-axis is different from the target value of the second gravitational acceleration signal
  • the gb_x component of gb on the x-axis has basically the same size, which means that the two display screens are not bent, and may be folded together or unfolded at this time, and further judgment is required.
  • the target value gb of the second gravitational acceleration signal at z is used to determine whether the two display screens of the folding screen are folded together or unfolded.
  • the absolute value of the difference between the component ga_z of the target value ga of the first gravitational acceleration signal on the z-axis and the component gb_z of the target value gb of the second gravitational acceleration signal on the z-axis can be set. Whether the value is smaller than the third preset threshold thresh3 is used to determine whether the two display screens are folded or unfolded.
  • the absolute value of the difference between the two is smaller than the third preset
  • the threshold value thresh3 it means that the two display screens are unfolded; otherwise, it means that the two display screens are folded.
  • the included angle between the two display screens corresponds to 180°; when it is judged that the folding screen is folded, the included angle between the two display screens corresponds to 0°.
  • the absolute value of the component ga_x is different from the target value of the second gravitational acceleration signal on the x-axis.
  • the difference between the absolute values of the component gb_x is greater than or equal to the second preset threshold value thresh2
  • the size of the component gb_x on the x-axis is different, which further indicates that there is a bend between the two display screens.
  • the process of determining the target values of the gravitational acceleration signals corresponding to the two display screens and the angle between the projection vectors on the xoz plane is: first determine the target value ga of the first gravitational acceleration signal on the xoz plane
  • the projection vector is the first vector ga'
  • the projection vector of the target value gb of the second gravitational acceleration signal on the xoz plane is determined to be the second vector gb'.
  • the included angle between the first vector ga' and the second vector gb' is determined by formula (4) as the first included angle VectorAngle.
  • the method for determining the included angle of the folding screen is to read the acceleration signal and the angular velocity signal corresponding to each display screen by setting an acceleration sensor and a gyroscope sensor on both display screens of the folding screen; and then , by performing screen vertical detection and screen opening and closing detection on the folding screen.
  • the angle change is determined according to the angular velocity signals obtained by the gyro sensors of the two display screens, and then determined by calculating the size of the included angle and the sum of the angle change at a moment on the folding screen.
  • the included angle of the folding screen at time t.
  • the folding screen When the folding screen is not perpendicular to the horizontal plane and is a double-screen folding, it can be determined that the included angle of the folding screen is 0°. When the folding screen is not perpendicular to the horizontal plane and is unfolded with two screens, it can be determined that the included angle of the folding screen is 180°.
  • the target values of the gravitational acceleration signals corresponding to the two display screens can be determined according to the acceleration signals and angular velocity signals of the two display screens, and then, by calculating the two The size of the included angle between the projection vectors of the target value of the acceleration of gravity signal on the xoz plane is used to determine the size of the included angle of the folding screen.
  • FIG. 7 is a schematic flow chart of another method 3 for determining the included angle of the folding screen provided by the embodiment of the present application. As shown in FIG. 7 , the method 3 for determining the included angle of the folding screen may further include the following S109 to S112 on the basis of including the above S100 to S107 .
  • S100 to S107 are the same as above, and will not be repeated here.
  • S109 to S112 will be introduced in detail below.
  • the included angle at the previous moment may be directly used to reduce the amount of calculation.
  • the angular velocity component w1_y on the y-axis of the first intermediate angular velocity signal obtained by the first gyro sensor GYRO1 and the second intermediate angular velocity signal obtained by the second gyro sensor GYRO2 on the y-axis can be used.
  • the angular velocity component w2_y above is used to determine the angle change DeltaAngle from time t-1 to time t.
  • the Kalman filter algorithm includes a time update equation and a state update equation.
  • the time update equation is:
  • the state update equation is:
  • u k-1 is the control amount of the system at time t-1
  • A is the state transition matrix
  • B is a control input matrix
  • H is a matrix
  • R is a measurement noise matrix
  • I is an identity matrix, for example, I can be 1.
  • FIG. 8 shows a flow chart of angle change detection provided by an embodiment of the present application.
  • the difference DeltaGyro_y between the angular velocity component w2_y of the second intermediate angular velocity signal on the y-axis and the angular velocity component w1_y of the first intermediate angular velocity signal on the y-axis can be determined first, and then by judging the first intermediate angular velocity signal in Whether the difference between the angular velocity component on the y-axis and the angular velocity component of the second intermediate angular velocity signal on the y-axis, DeltaGyro_y, is greater than the fourth preset threshold thresh4 is used to determine whether the included angle corresponding to the folding screen at time t is relative to that at time t-1 Whether the included angle changes.
  • the difference DeltaGyro_y is less than or equal to the fourth preset threshold thresh4, it means that the angle between the two display screens has not changed, or the change is relatively small and can be ignored.
  • the included angle size of is used as the included angle size corresponding to the current moment.
  • the difference DeltaGyro_y is greater than the fourth preset threshold thresh4, it means that the angle between the two display screens has changed, then the angular velocity component w2_y on the y-axis of the second intermediate angular velocity signal and the first intermediate angular velocity signal on y
  • the included angle calculated based on the angular velocity difference of the gyroscope sensor is usually inaccurate by using S109 to S111 alone. Therefore, the calculation result can be combined with the included angle determined by S107, and the Kalman filter algorithm can be used to obtain Determine the target value for the included angle. It should be understood that by combining the two methods, the accuracy of the determined included angle can be improved.
  • the embodiment of the present application also provides a schematic flowchart of another method 4 for determining the included angle of the folding screen.
  • the method 4 for determining the included angle of the folding screen provided by the embodiment of the present application may further include the following steps S113 to S116.
  • S100 to S112 are the same as above, and will not be repeated here.
  • S113 to S116 are described in detail below.
  • the motion level of the folding screen is used to indicate the motion range of the electronic device to which the folding screen is applied, wherein the motion level may include at least one of stillness, slight motion, and violent motion.
  • Stillness may indicate that the motion range of the electronic device is 0 or the motion range is smaller than the first preset range; slight motion may indicate that the electronic device's motion range is greater than the second preset range but less than the third preset range; violent motion may indicate that the electronic device is in motion
  • the magnitude is greater than the fourth preset magnitude.
  • the first preset amplitude is less than or equal to the second preset amplitude
  • the second preset amplitude is less than the third preset amplitude
  • the third preset amplitude is less than or equal to the fourth preset amplitude.
  • folding screen is stationary here means that the folding screen is stationary relative to the outside world, for example, a mobile phone is placed on a table, but the two display screens included in the mobile phone may move relative to each other.
  • S112 is correspondingly updated to: according to the measured value of the included angle corresponding to the folding screen at time t and the predicted value of the included angle corresponding to time t, use the Kalman filter algorithm after the parameters in the measurement noise matrix R are reduced to determine the folding screen
  • the target value of the included angle corresponding to time t, FuseAngle is the size of the included angle Angle corresponding to the folding screen at time t.
  • S112 is correspondingly updated to: according to the measured value of the included angle corresponding to the folding screen at time t and the predicted value of the included angle corresponding to time t, use the Kalman filter algorithm after the parameters in the measurement noise matrix R are increased to determine the folding screen
  • the target value of the included angle corresponding to time t, FuseAngle is the size of the included angle Angle corresponding to the folding screen at time t.
  • the measurement noise matrix is used to indicate the degree of confidence in the measured values of the gravitational acceleration signal.
  • the noise of the measured value of the gravitational acceleration signal is larger, it means that the trust in the measured value of the gravitational acceleration signal needs to be reduced; confidence in the measured value. Therefore, when the folding screen is detected to be stationary, the measured value of the determined gravitational acceleration signal is more reliable, so the parameters in the measurement noise matrix R can be adjusted smaller; when the folding screen is detected to be slightly moving, the determination The confidence of the measured value of the gravitational acceleration signal decreases, so the parameters in the measurement noise matrix R can be adjusted larger. Among them, for the two different situations of static and slight motion, the same parameter in the measurement noise matrix R is adjusted. However, when the folding screen is detected to be in violent motion, the measured value of the acceleration of gravity signal is no longer trustworthy. At this time, it can be determined only by using the angular velocity signal measured by the gyroscope sensor.
  • FIG. 10 shows a schematic flow chart of motion level detection.
  • the modulus value of the first initial acceleration signal acquired by the first acceleration sensor ACC1 at time t and the modulus value of the second initial acceleration signal acquired by the second acceleration sensor ACC2 at time t are determined first.
  • the modulus value of the first initial acceleration at time t can be determined according to the following formula (6):
  • norm1 is the modulus value of the first initial acceleration signal at time t
  • acc1_X is the component on the x-axis of the first initial acceleration signal at time t
  • acc1_Y is the component on the y-axis of the first initial acceleration signal at time t
  • acc1_Z is the component of the first initial acceleration signal on the z-axis at time t.
  • the modulus value of the second initial acceleration at time t can be determined according to the following formula (7):
  • norm2 is the modulus value of the second initial acceleration signal at time t
  • acc2_X is the component on the x-axis of the second initial acceleration signal at time t
  • acc2_Y is the component on the y-axis of the second initial acceleration signal at time t
  • acc2_Z is the component on the z-axis of the second initial acceleration signal at time t.
  • the modulus value of the first initial acceleration signal at time t and the constant (the first reference value, also referred to as the absolute value of the target value of the first acceleration of gravity signal at time t)
  • the constant (the second reference value, also referred to as the target value of the second gravitational acceleration signal Whether the difference between the absolute value of ) is smaller than the fifth preset threshold thresh5, and thus it is judged whether the folding screen is still.
  • the first initial acceleration signal at time t includes both a gravitational acceleration signal and a linear acceleration signal, it can better reflect the movement state of the folding screen in three-dimensional space, so the modulus value of the first initial acceleration signal at time t is used to judge more accurately.
  • the first initial acceleration is basically composed of gravitational acceleration
  • the initial accelerations corresponding to the two display screens are basically constituted by the acceleration of gravity
  • the folding screen is static.
  • S109 to S112 can be used to determine the target value of the angle, FuseAngle.
  • the parameters in the measurement noise matrix R of the Kalman filter algorithm are further adjusted.
  • the folding screen is non-stationary, and further steps are required at this time. Determine whether the folding screen is moving slightly or violently.
  • the modulus value of the second initial acceleration by determining the difference between the modulus value of the first initial acceleration and the constant of the target value of the first gravitational acceleration at time t, the modulus value of the second initial acceleration and Whether the difference between the constants of the target value of the second acceleration of gravity is smaller than n times the fifth preset threshold thresh5 is used to determine whether the folding screen is moving slightly or violently.
  • n is a value greater than 1, and the size of n may be adjusted as required, which is not limited in this embodiment of the present application.
  • n can be set to 4. That is to say, when the difference between the modulus value of the first initial acceleration and the constant of the target value of the first gravitational acceleration, the difference between the modulus value of the second initial acceleration and the constant of the target value of the second gravitational acceleration When they are all less than 4 times the fifth preset threshold thresh5, it is considered that although the folding screen is moving, the range of motion is relatively small, and the error of the determined included angle is relatively small.
  • S109 to S112 can be used to determine the target value of the included angle FuseAngle , on this basis, the accuracy can be improved by further adjusting the parameters in the measurement noise matrix R of the Kalman filter algorithm.
  • multiple steps of the method for determining the included angle of the folding screen shown in S100 to S116 above can be selected and executed according to different needs, so as to consider the folding screen in multiple directions and achieve more accurate determination of the folding screen angle.
  • the purpose of the angle size is not limited to:
  • FIG. 11 and FIG. 12 are schematic diagrams of display interfaces of two electronic devices provided by the embodiments of the present application.
  • the display interface can display the display effect that the display interface changes with the change of the included angle.
  • the included angle of the folding screen can be determined by using the method for determining the included angle of the folding screen provided in the embodiment of the present application.
  • the degree of opening and closing of the flowers in the displayed live wallpaper can vary with the size of the included angle of the foldable screen.
  • the method for determining the included angle of the folding screen provided by the embodiment of the present application accurately and in real time determines the included angle of the folding screen, and then dynamically presents the degree of opening and closing of the flowers according to the different included angles. For example, as shown in (a) in Figure 11, when it is determined that the angle Angle of the folding screen gradually becomes smaller, the flower can shrink from the blooming state to a bud; as shown in (b) in Figure 11, when the folding screen is determined When the Angle gradually becomes larger, the flowers bloom slowly again, from buds to blooming flowers.
  • the method for determining the included angle of the folding screen provided by the embodiment of the present application can be used to accurately determine the state of the mobile phone and identify the user's usage. Get used to it, and change the display effect according to the status of the phone. For example, as shown in (a) in Figure 12, when the mobile phone is in the bent state, the chat history in the display interface is displayed on the display screen La, the virtual keyboard is displayed on the display screen Lb, and the arrangement direction of the text and the axis k parallel.
  • the method provided by the embodiment of the present application when the method provided by the embodiment of the present application is used to determine the size of the included angle in real time, on the one hand, no complex devices are added, and the structure of the applicable electronic equipment is not changed, and the hardware cost is relatively low; on the other hand, due to The method provided in the embodiment of the present application refines and classifies the states of the folding screen, and selects the most appropriate algorithm for determining the included angle for each state, so that the recognition accuracy is high, and the accuracy of the determined included angle is also higher. In turn, the display effect on the folding screen that changes with the change of the included angle is also better.
  • Fig. 13 shows a schematic structural diagram of an electronic device applicable to this application.
  • the electronic device 100 may be used to implement the methods described in the foregoing method embodiments.
  • the electronic device 100 may be a mobile phone, a smart screen, a tablet computer, a wearable electronic device, a vehicle electronic device, an augmented reality (augmented reality, AR) device, a virtual reality (virtual reality, VR) device, a notebook computer, a super mobile personal computer ( ultra-mobile personal computer (UMPC), netbook, personal digital assistant (personal digital assistant, PDA), projector, etc.
  • augmented reality augmented reality
  • VR virtual reality
  • a notebook computer a super mobile personal computer ( ultra-mobile personal computer (UMPC), netbook, personal digital assistant (personal digital assistant, PDA), projector, etc.
  • UMPC ultra-mobile personal computer
  • PDA personal digital assistant
  • the electronic device 100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (universal serial bus, USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, and an antenna 2 , mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, earphone jack 170D, sensor module 180, button 190, motor 191, indicator 192, camera 193, display screen 194, and A subscriber identification module (subscriber identification module, SIM) card interface 195 and the like.
  • SIM subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, an ambient light sensor 180L, bone conduction sensor 180M, etc.
  • Processor 110 may include one or more processing units.
  • the processor 110 may include at least one of the following processing units: an application processor (application processor, AP), a modem processor, a graphics processing unit (graphics processing unit, GPU), an image signal processor (image signal processor) , ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, neural network processor (neural-network processing unit, NPU).
  • an application processor application processor, AP
  • modem processor graphics processing unit
  • graphics processing unit graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller video codec
  • digital signal processor digital signal processor
  • DSP digital signal processor
  • baseband processor baseband processor
  • neural network processor neural-network processing unit
  • the controller can generate an operation control signal according to the instruction opcode and timing signal, and complete the control of fetching and executing the instruction.
  • a memory may also be provided in the processor 110 for storing instructions and data.
  • the memory in processor 110 is a cache memory.
  • the memory may hold instructions or data that the processor 110 has just used or recycled. If the processor 110 needs to use the instruction or data again, it can be called directly from the memory. Repeated access is avoided, and the waiting time of the processor 110 is reduced, thereby improving the efficiency of the system.
  • connection relationship between the modules shown in FIG. 13 is only a schematic illustration, and does not constitute a limitation on the connection relationship between the modules of the electronic device 100 .
  • each module of the electronic device 100 may also adopt a combination of various connection modes in the foregoing embodiments.
  • the wireless communication function of the electronic device 100 may be realized by components such as the antenna 1 , the antenna 2 , the mobile communication module 150 , the wireless communication module 160 , a modem processor, and a baseband processor.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in electronic device 100 may be used to cover single or multiple communication frequency bands. Different antennas can also be multiplexed to improve the utilization of the antennas.
  • Antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna may be used in conjunction with a tuning switch.
  • the electronic device 100 can realize the display function through the GPU, the display screen 194 and the application processor.
  • the GPU is a microprocessor for image processing, and is connected to the display screen 194 and the application processor. GPUs are used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or change display information.
  • Display 194 may be used to display images or video.
  • the electronic device 100 can realize the shooting function through the ISP, the camera 193 , the video codec, the GPU, the display screen 194 , and the application processor.
  • the ISP is used for processing the data fed back by the camera 193 .
  • the light is transmitted to the photosensitive element of the camera through the lens, and the light signal is converted into an electrical signal, and the photosensitive element of the camera transmits the electrical signal to the ISP for processing, and converts it into an image visible to the naked eye.
  • ISP can optimize the algorithm of image noise, brightness and color, and ISP can also optimize parameters such as exposure and color temperature of the shooting scene.
  • the ISP may be located in the camera 193 .
  • Camera 193 is used to capture still images or video.
  • the object generates an optical image through the lens and projects it to the photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the light signal into an electrical signal, and then transmits the electrical signal to the ISP to convert it into a digital image signal.
  • the ISP outputs the digital image signal to the DSP for processing.
  • DSP converts digital image signals into standard red green blue (red green blue, RGB), YUV and other image signals.
  • the electronic device 100 may include 1 or N cameras 193 , where N is a positive integer greater than 1.
  • Digital signal processors are used to process digital signals. In addition to digital image signals, they can also process other digital signals. For example, when the electronic device 100 selects a frequency point, the digital signal processor is used to perform Fourier transform on the energy of the frequency point.
  • Video codecs are used to compress or decompress digital video.
  • the electronic device 100 may support one or more video codecs.
  • the electronic device 100 can play or record videos in various encoding formats, for example: moving picture experts group (moving picture experts group, MPEG) 1, MPEG2, MPEG3 and MPEG4.
  • the gyro sensor 180B can be used to determine the motion posture of the electronic device 100 .
  • the angular velocity of the electronic device 100 around three axes may be determined by the gyro sensor 180B.
  • the gyro sensor 180B can be used for image stabilization. For example, when the shutter is pressed, the gyro sensor 180B detects the shaking angle of the electronic device 100, calculates the distance that the lens module needs to compensate according to the angle, and allows the lens to counteract the shaking of the electronic device 100 through reverse movement to achieve anti-shake.
  • the gyro sensor 180B can also be used in scenarios such as navigation and somatosensory games.
  • the gyroscope sensor 180B may be used to collect angular velocity signals, and the angular velocity signals may be used to represent changes in the pose of the electronic device during the shooting process.
  • the acceleration sensor 180E can detect the acceleration of the electronic device 100 in various directions (generally x-axis, y-axis and z-axis). The magnitude and direction of gravity can be detected when the electronic device 100 is stationary. The acceleration sensor 180E can also be used to identify the posture of the electronic device 100 as an input parameter for application programs such as horizontal and vertical screen switching and pedometer.
  • the acceleration sensor 180E can be used to collect acceleration signals, and the acceleration signals can be used to represent the speed change of the electronic device during the shooting process.
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the electronic device 100 .
  • the electronic device 100 may include more or fewer components than shown in the figure, or combine certain components, or separate certain components, or arrange different components.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • the device embodiment of the present application will be described in detail below with reference to FIG. 14 . It should be understood that the devices in the embodiments of the present application can execute the various methods in the foregoing embodiments of the present application, that is, the specific working processes of the following various products can refer to the corresponding processes in the foregoing method embodiments.
  • FIG. 14 is a schematic structural diagram of an apparatus 200 for determining an included angle of a folding screen provided in an embodiment of the present application.
  • the device 200 for determining the included angle of the folding screen includes an acquisition module 210 and a processing module 220 .
  • the obtaining module 210 is used to obtain the initial acceleration signal at time t and the initial angular velocity signal at time t corresponding to the two displays.
  • the processing module 220 is configured to: for each display screen, perform first preprocessing on the initial acceleration signal at time t, determine the target value of the acceleration of gravity signal at time t, and perform second preprocessing on the initial angular velocity signal at time t, Determine the intermediate angular velocity signal at time t;
  • the state of the folding screen at time t is determined.
  • the state of the folding screen includes: the folding screen is perpendicular to the horizontal plane, and the two The display screen is folded, bent, unfolded, the included angle of the folding screen at time t changes relative to the included angle at t-1 time, and the included angle of the folding screen at time t relative to the included angle at t-1 time does not change At least one of the .
  • the processing module 220 is further configured to: determine the included angle corresponding to the folding screen at time t according to the state of the folding screen at time t.
  • processing module 220 is also used to:
  • coordinate system conversion and mean value filtering are performed on the initial acceleration signal at time t to obtain the measured value of the gravitational acceleration signal at time t; according to the target value of the gravitational acceleration signal at time t-1 and the For the initial angular velocity signal, use the time update equation to determine the predicted value of the gravitational acceleration signal at time t; according to the measured value of the gravitational acceleration signal at time t and the predicted value of the gravitational acceleration signal at time t, use the Kalman filter algorithm to determine the time t The target value of the gravitational acceleration signal.
  • the processing module 220 is further configured to: perform low-pass filtering on the initial angular velocity signal at time t for each display screen, and determine the intermediate angular velocity signal at time t.
  • the processing module 220 is also used to: perform screen vertical detection on the folding screen to determine whether the folding screen is perpendicular to the horizontal plane; if not, perform screen opening and closing detection on the folding screen to determine whether the folding screen is vertical Whether a display is folded, unfolded, or bent.
  • the processing module 220 is also configured to: determine the target value of the gravitational acceleration signal corresponding to the two display screens at time t, and the absolute value of the difference between the component on the y-axis and the standard gravitational acceleration , whether they are all less than the first preset threshold, the standard acceleration of gravity is used to indicate the acceleration of the object falling in vacuum due to the gravity of the earth; if yes, the folding screen is perpendicular to the horizontal plane; if not, the folding screen is not perpendicular to the horizontal plane.
  • the processing module 220 is also configured to: determine the target value of the gravitational acceleration signal at time t corresponding to the two display screens, the difference between the absolute values of the components on the x-axis, whether is less than the second preset threshold; if no, the folding screen is bent; if so, determine the absolute value of the difference between the components of the gravitational acceleration signal at time t corresponding to the two display screens on the z-axis , is less than the third preset threshold; if yes, the folding screen is unfolded; if not, the folding screen is folded.
  • Angle is used to indicate The angle between the two display screens at
  • the processing module 220 is also used to: detect the angle change of the folding screen, and determine whether the included angle of the folding screen at time t is changed relative to the included angle at time t-1;
  • the angular velocity components of the intermediate angular velocity signals on the y-axis at time t respectively corresponding to the two display screens determine the angular variation between the two display screens from time t-1 to time t; according to the angle corresponding to the folding screen time t-1
  • the predicted value of the included angle corresponding to the folding screen at time t is determined based on the angle change amount between time t-1 and time t of the folding screen.
  • the processing module 220 is also configured to: determine whether the difference between the angular velocity components on the y-axis of the intermediate angular velocity signals corresponding to the two display screens at time t is greater than the fourth preset Threshold; if no, the included angle of the folding screen at time t has not changed relative to the included angle of t-1 time, and if yes, the included angle of the folding screen at time t has changed relative to the included angle of t-1 time.
  • the processing module 220 is further configured to: use the included angle corresponding to the folding screen at time t determined according to the first included angle as the measured value of the included angle corresponding to the folding screen at time t;
  • the predicted value of the included angle corresponding to time t and the measured value of the included angle corresponding to time t of the folding screen use the Kalman filter algorithm to determine the size of the included angle corresponding to time t of the folding screen.
  • the processing module 220 is further configured to: perform motion level detection on the folding screen, and determine the motion level of the folding screen, where the motion level includes at least one of stillness, slight motion, and violent motion;
  • the processing module 220 is also configured to: for each display screen, determine the modulus value of the initial acceleration signal acquired by the acceleration sensor at time t; for each display screen, determine the modulus value of the initial acceleration signal at time t Whether the difference between the modulus value and the reference value is less than the fifth preset threshold value, the reference value is a constant corresponding to the target value of the gravitational acceleration signal at time t of each display screen; If the difference between the modulus value of the initial acceleration signal and the reference value is smaller than the fifth preset threshold value, the folding screen is static; otherwise, judge the difference between the modulus value of the initial acceleration signal at time t determined by the two display screens and Whether the difference between the reference values is less than n times the fifth preset threshold, where n is a value greater than 1; if yes, the folding screen is in slight motion; if not, the folding screen is in violent motion.
  • the device 200 for determining the included angle of the folding screen is embodied in the form of functional modules.
  • the term “module” here may be implemented in the form of software and/or hardware, which is not specifically limited.
  • a “module” may be a software program, a hardware circuit or a combination of both to realize the above functions.
  • the hardware circuitry may include application specific integrated circuits (ASICs), electronic circuits, processors (such as shared processors, dedicated processors, or group processors) for executing one or more software or firmware programs. etc.) and memory, incorporating logic, and/or other suitable components to support the described functionality.
  • ASICs application specific integrated circuits
  • processors such as shared processors, dedicated processors, or group processors for executing one or more software or firmware programs. etc.
  • memory incorporating logic, and/or other suitable components to support the described functionality.
  • the units of each example described in the embodiments of the present application can be realized by electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are executed by hardware or software depends on the specific application and design constraints of the technical solution. Skilled artisans may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores computer instructions; when the computer-readable storage medium is run on the device for determining the included angle of the folding screen, the folding The device 200 for determining the included angle of the screen implements the method for determining the included angle of the folded screen shown above.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server, or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may be a data storage device including one or more servers, data centers, etc. that can be integrated with the medium.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, or a magnetic tape), an optical medium, or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) and the like.
  • the embodiment of the present application also provides a computer program product containing computer instructions.
  • the device 200 for determining the included angle of the folding screen can execute the aforementioned folding screen clipping method. How to determine the angle.
  • FIG. 15 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • the chip shown in FIG. 15 may be a general-purpose processor or a special-purpose processor.
  • the chip includes a processor 301 .
  • the processor 301 is used to support the device 200 for determining the included angle of the folding screen to implement the technical solution shown above.
  • the chip further includes a transceiver 302, and the transceiver 302 is used to accept the control of the processor 301, and is used to support the device 200 for determining the included angle of the folding screen to implement the technical solution shown above.
  • the chip shown in FIG. 15 may further include: a storage medium 303 .
  • the chip shown in Figure 15 can be implemented using the following circuits or devices: one or more field programmable gate arrays (field programmable gate array, FPGA), programmable logic device (programmable logic device, PLD) , controllers, state machines, gate logic, discrete hardware components, any other suitable circuitry, or any combination of circuitry capable of performing the various functions described throughout this application.
  • field programmable gate array field programmable gate array, FPGA
  • programmable logic device programmable logic device
  • controllers state machines, gate logic, discrete hardware components, any other suitable circuitry, or any combination of circuitry capable of performing the various functions described throughout this application.
  • the electronic equipment, the device for determining the included angle of the folding screen 200, the computer storage medium, the computer program product, and the chip provided by the above-mentioned embodiments of the present application are all used to implement the method provided above. Therefore, the beneficial effects that it can achieve can refer to The beneficial effects corresponding to the methods provided above will not be repeated here.
  • sequence numbers of the above processes do not mean the order of execution, and the execution order of each process should be determined by its functions and internal logic, and should not constitute any limitation on the implementation process of the embodiment of the present application.
  • presetting and predefining can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate related information in devices (for example, including electronic devices) , the present application does not limit its specific implementation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mathematical Physics (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Gyroscopes (AREA)

Abstract

本申请提供一种折叠屏夹角的确定方法及其相关设备,涉及终端技术领域,其中,该方法包括:针对每个显示屏,利用加速度传感器获取t时刻的初始加速度信号,利用陀螺仪传感器获取t时刻的初始角速度信号;针对每个显示屏,对t时刻的初始加速度信号进行第一预处理,确定t时刻的重力加速度信号的目标值,以及对t时刻的初始角速度信号进行第二预处理,确定t时刻的中间角速度信号;根据两个显示屏分别对应的t时刻的重力加速度信号和t时刻的中间角速度信号,对折叠屏进行状态检测,确定折叠屏t时刻的状态;根据折叠屏t时刻的状态,确定折叠屏t时刻对应的夹角大小。

Description

折叠屏夹角的确定方法及其相关设备
本申请要求于2021年12月28日提交国家知识产权局、申请号为202111633647.4、申请名称为“折叠屏夹角的确定方法及其相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端技术领域,具体地,涉及一种折叠屏夹角的确定方法及其相关设备。
背景技术
随着电子技术的发展,具有折叠屏的电子设备越来越多。为了提高折叠屏从展开状态切换成折叠状态,或者从折叠状态切换至展开状态时的显示效果,需要实时地确定折叠屏两个显示屏之间的夹角大小,以对显示画面或视频进行适应性调整。其中,展开状态指的是折叠屏的两个显示屏之间的夹角大小为180°,折叠状态指的是折叠屏的两个显示屏之间的夹角大小为0°。折叠屏的两个显示屏之间的夹角指的就是折叠屏夹角。
现有技术中,一种确定折叠屏夹角的方式是:通过在折叠屏中设置霍尔传感器来读取霍尔信号,再通过查表来查找获取霍尔信号对应的角度;另一种确定折叠屏夹角的方式是:通过在折叠屏转轴处增加编码器来读取角度变化。然而,第一种方式精度低,且容易受到使用环境的干扰,而第二种方式又增加了折叠屏的结构复杂度,非常容易被损坏。因此,亟待一种硬件成本低、结构简单、识别精度高、又能抗干扰的折叠屏夹角的确定方法。
发明内容
本申请提供了一种折叠屏夹角的确定方法及其相关设备,通过在折叠屏的两个显示屏上均设置加速度传感器和陀螺仪传感器,来确定折叠屏的角度大小。
第一方面,提供了一种折叠屏夹角的确定方法,应用于具有折叠屏的电子设备中,所述折叠屏包括两个显示屏,每个显示屏包括加速度传感器和陀螺仪传感器;该方法包括:
针对所述每个显示屏,利用所述加速度传感器获取t时刻的初始加速度信号,利用所述陀螺仪传感器获取t时刻的初始角速度信号;
针对所述每个显示屏,对所述t时刻的初始加速度信号进行第一预处理,确定t时刻的重力加速度信号的目标值,以及对所述t时刻的初始角速度信号进行第二预处理,确定t时刻的中间角速度信号;
根据所述两个显示屏分别对应的所述t时刻的重力加速度信号的目标值和所述t时刻的中间角速度信号,确定所述折叠屏t时刻的状态,所述折叠屏的状态包括:所述折叠屏垂直于水平面、所述折叠屏的两个显示屏是折叠的、弯折的、展开的、所述折叠屏t时刻的夹角相对于t-1时刻的夹角发生改变、所述折叠屏t时刻的夹角相对于t-1时刻的夹角未变中的至少一项;
根据所述折叠屏t时刻的状态,确定所述折叠屏t时刻对应的夹角大小。
在本申请的实施例中,通过在折叠屏的两个显示屏上均设置加速度传感器和陀螺仪传感器,来分别读取每个显示屏对应的加速度信号和角速度信号;然后,通过对折叠屏的状态进行检测,根据确定的折叠屏的不同状态,结合两组加速度信号和角速度信号,或者结合两组角速度信号,利用不同的算法来确定折叠屏的角度大小。
在一种可能的实现方式中,针对所述每个显示屏,对所述t时刻的初始加速度信号进行第一预处理,确定t时刻的重力加速度信号的目标值,包括:
针对所述每个显示屏,对所述t时刻的初始加速度信号进行坐标系转换和均值滤波,得到t时刻的重力加速度信号的测量值;根据t-1时刻的重力加速度信号的目标值和t-1时刻的初始角速度信号,利用时间更新方程,确定t时刻的重力加速度信号的预测值;根据所述t时刻的重力加速度信号的测量值和所述t时刻的重力加速度信号的预测值,利用卡尔曼滤波算法,确定所述t时刻的重力加速度信号的目标值。
在该实现方式中,可以将第一加速度信号对应的坐标值以及第二加速度信号对应的坐标值进行坐标系转换,转换至地球坐标系中,由此,可以将其各自包括的重力加速度信号和运动的线性加速度信号进行分离,进而可以便于后续通过均值滤波将非重力加速度的分量(即运动的线性加速度信号)滤除掉,仅保留对应的重力加速度分量。
在一种可能的实现方式中,针对每个显示屏,对所述t时刻的初始角速度信号进行第二预处理,确定t时刻的中间角速度信号,包括:
针对每个显示屏,对所述t时刻的初始角速度信号进行低通滤波,确定所述t时刻的中间角速度信号。
在该实现方式中,通过低通滤波,去除初始角速度信号中频率较高的噪声。
在一种可能的实现方式中,根据所述两个显示屏分别对应的所述t时刻的重力加速度信号的目标值和所述t时刻的中间角速度信号,确定所述折叠屏t时刻的状态,包括:
对所述折叠屏进行屏幕垂直检测,判断所述折叠屏是否垂直于水平面;若否,则对所述折叠屏进行屏幕开合检测,判断所述折叠屏的两个显示屏是折叠的、展开的、还是弯折的。
在该实现方式中,利用屏幕垂直检测和屏幕开合检测,来对折叠屏的状态进行筛查,判断折叠屏是垂直于水平面的,非垂直于水平面的,折叠屏的两个显示屏之间是折叠的、展开的、还是弯折的。后续针对这两种检测确定出的不同状态,利用不同的方式确定夹角。
在一种可能的实现方式中,对所述折叠屏进行屏幕垂直检测,判断所述折叠屏是否垂直于水平面,包括:
确定所述两个显示屏分别对应的所述t时刻的重力加速度信号的目标值,在y轴上的分量与标准重力加速度的差值的绝对值,是否均小于第一预设阈值,所述标准重力加速度用于指示物体受地球引力作用在真空中下落的加速度;
若是,则所述折叠屏垂直于水平面;
若否,则所述折叠屏非垂直于水平面。
在该实现方式中,当折叠屏垂直于水平面时,每个显示屏对应的重力加速度信号 的目标值几乎等于标准重力加速度,因此,可以通过确定两个显示屏分别对应的t时刻的重力加速度信号的目标值,在y轴上的分量与标准重力加速度的差值的绝对值,是否均小于第一预设阈值,来判断折叠屏是否是垂直于水平面的。当满足这个条件时,说明折叠屏是垂直于水平面的;不满足这个条件时,说明折叠屏不是垂直于水平面的。
在一种可能的实现方式中,对所述折叠屏进行屏幕开合检测,判断所述折叠屏的两个显示屏是折叠的、展开的还是弯折的,包括:
确定所述两个显示屏分别对应的所述t时刻的重力加速度信号的目标值,在x轴上的分量的绝对值之间的差值,是否小于第二预设阈值;
若否,则所述折叠屏是弯折的;
若是,则确定所述两个显示屏分别对应的所述t时刻的重力加速度信号,在z轴上的分量之间的差值的绝对值,是否小于第三预设阈值;
若是,则所述折叠屏是展开的;
若否,则所述折叠屏是折叠的。
在该实现方式中,当两个显示屏是折叠的时,两个显示屏对应的设备坐标系的y轴共用,而x轴和z轴方向均分别相反。当两个显示屏是展开时,两个显示屏对应的设备坐标系的x轴、y轴和z轴方向均分别相同。因此,可以通过确定两个显示屏分别对应的t时刻的重力加速度信号的目标值,在x轴上的分量的绝对值之间的差值,是否小于第二预设阈值,来判断折叠屏是否是弯折的,当不满足这个条件时,折叠屏是弯折的,当满足这个条件时,折叠屏则有可能是折叠的还是展开的。
此时,可以进一步通过确定两个显示屏分别对应的t时刻的重力加速度信号,在z轴上的分量之间的差值的绝对值,是否小于第三预设阈值;来判断折叠是折叠的还是展开的,当满足这个条件时,折叠屏是展开的,当不满足这个条件时,折叠屏是折叠的。
在一种可能的实现方式中,根据所述折叠屏t时刻的状态,确定所述折叠屏t时刻对应的夹角大小,包括:
若所述折叠屏是垂直于水平面的,则根据Angle=LastAngle+DeltaAngle,确定所述两个显示屏之间的夹角;其中,Angle用于指示t时刻所述两个显示屏之间的夹角,LastAngle用于指示t-1时刻所述两个显示屏之间的夹角,DeltaAngle用于指示t-1时刻到t时刻之间,所述两个显示屏之间的角度变化量;
若所述折叠屏是折叠的,则夹角为0°;
若所述折叠屏是展开的,则夹角为180°;
若所述折叠屏是弯折的,则根据所述两个显示屏分别对应的所述t时刻的重力加速度信号的目标值,确定两个所述t时刻的重力加速度信号在xoz平面上的投影向量之间的第一夹角;
根据所述第一夹角,确定所述折叠屏t时刻对应的夹角大小。
在该实现方式中,根据折叠屏的状态,可以基于上一时刻的夹角大小和角度变化量来确定t时刻的夹角大小,或者,根据折叠屏的状态,可以直接确定夹角的大小;或者,根据折叠屏的状态,可以根据重力加速度信号在xoz平面上的投影向量之间的夹角,来间接确定折叠屏的夹角大小。
在一种可能的实现方式中,所述方法还包括:
对所述折叠屏进行角度变化检测,判断所述折叠屏t时刻的夹角相对于t-1时刻的夹角是否改变;
若改变,则利用所述两个显示屏分别对应的所述t时刻的中间角速度信号在y轴上的角速度分量,确定所述两个显示屏t-1时刻到t时刻之间的角度变化量;
根据折叠屏t-1时刻对应的夹角和所述折叠屏t-1时刻到t时刻之间的角度变化量,确定所述折叠屏t时刻对应的夹角的预测值。
在该实现方式中,利用角度变化检测,来对折叠屏的状态进行筛查,判断折叠屏的夹角是否改变,若改变,则可以仅利用中间角速度信号来确定折叠屏的夹角大小。
在一种可能的实现方式中,对所述折叠屏进行角度变化检测,判断所述折叠屏t时刻的夹角相对于t-1时刻的夹角是否改变,包括:
确定所述两个显示屏分别对应的所述t时刻的中间角速度信号,在y轴上的角速度分量之间的差值,是否大于第四预设阈值;
若否,则所述折叠屏t时刻的夹角相对于t-1时刻的夹角没有改变;
若是,则所述折叠屏t时刻的夹角相对于t-1时刻的夹角发生了改变。
应理解,两个显示屏各自对应的设备坐标系中的y轴共用,y轴与折叠屏折叠的轴线方向平行。
在该实现方式中,当两个显示屏之间的夹角发生改变时,两个显示屏分别获取的中间角速度在y轴上的分量不同,由此,可以通过确定两个显示屏分别对应的t时刻的中间角速度信号在y轴上的角速度分量之间的差值,是否大于第四预设阈值,来判断折叠屏夹角是否改变,若满足这个条件,则说明发生了改变,若不满足这个条件,则说明没发生改变。
在一种可能的实现方式中,根据所述折叠屏t时刻的状态,确定所述折叠屏t时刻对应的夹角大小,包括:
将根据所述第一夹角确定出的所述折叠屏t时刻对应的夹角,作为所述折叠屏t时刻对应的夹角的测量值;
根据所述折叠屏t时刻对应的夹角的预测值和所述折叠屏t时刻对应的夹角的测量值,利用所述卡尔曼滤波算法,确定所述折叠屏t时刻对应的夹角大小。
在该实现方式中,为了提高确定的夹角的准确率,可以将通过投影向量计算得到的夹角大小和通过中间角速度信号计算得到的夹角大小,再次利用卡尔曼滤波算法进行融合处理,得到更准确的折叠屏的夹角大小。
在一种可能的实现方式中,所述折叠屏的状态还包括:静止、轻微运动和剧烈运动中的至少一项;
所述方法还包括:
对所述折叠屏进行运动等级检测,判断所述折叠屏是静止、轻微运动还是剧烈运动;
若静止,则减小所述卡尔曼滤波算法的测量噪声矩阵R中的参数;
根据所述折叠屏t时刻对应的夹角的预测值和所述夹角的测量值,利用测量噪声矩阵中的参数减小后的所述卡尔曼滤波算法,确定所述折叠屏t时刻对应的夹角的目 标值;
若轻微运动,则增大所述卡尔曼滤波算法的所述测量噪声矩阵中的参数;
根据所述折叠屏t时刻对应的夹角的预测值和所述夹角的测量值,利用测量噪声矩阵中的参数增大后的所述卡尔曼滤波算法,确定所述折叠屏t时刻对应的夹角的目标值;
若剧烈运动,则根据Angle=LastAngle+DeltaAngle,确定所述折叠屏t时刻对应的夹角大小;其中,Angle用于指示t时刻所述两个显示屏之间的夹角,LastAngle用于指示t-1时刻所述两个显示屏之间的夹角,DeltaAngle用于指示t-1时刻到t时刻之间,所述两个显示屏之间的角度变化量。
在该实现方式中,由于折叠屏的运动情况对夹角的确定也有一定影响,由此,可以在剧烈运动时,选择上一个时刻夹角大小和角度变化量求和的方法,来确定折叠屏的夹角大小。而在非剧烈运动时,选择上述提供的通过投影向量计算得到的夹角大小和通过中间角速度信号计算得到的夹角大小,再利用卡尔曼滤波算法进行融合处理,最终得到折叠屏的夹角大小的方法,来确定折叠屏的夹角大小。
在一种可能的实现方式中,对所述折叠屏进行运动等级检测,判断所述折叠屏的运动等级,包括:
针对所述每个显示屏,确定所述加速度传感器获取t时刻的初始加速度信号的模值;
针对所述每个显示屏,确定所述t时刻的初始加速度信号的模值与参考值之间的差值,是否小于第五预设阈值,所述参考值为所述每个显示屏t时刻的重力加速度信号的目标值对应的常量;
若所述两个显示屏分别确定的所述t时刻的初始加速度信号的模值与所述参考值之间的差值,均小于所述第五预设阈值,则所述折叠屏是静止的;
否则,判断所述两个显示屏分别确定的所述t时刻的初始加速度信号的模值与所述参考值之间的差值,是否均小于n倍的第五预设阈值,n为大于1的数值;
若是,则所述折叠屏是轻微运动的;
若否,则所述折叠屏是剧烈运动的。
在该实现方式中,可以利用两个显示屏分别对应的初始加速度信号的模值和重力加速度信号的目标值的大小,来细化折叠屏的运动等级,从而根据不同运动等级选择合适的夹角确定方法。
第二方面,提供了一种折叠屏夹角的确定装置,包括用于执行第一方面或第一方面中任一种方法的模块/单元。
第三方面,提供了一种电子设备,包括:一个或多个处理器和存储器;所述存储器与所述一个或多个处理器耦合,所述存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,所述一个或多个处理器调用所述计算机指令以使得所述电子设备执行第一方面或第一方面中任一种的折叠屏夹角的确定方法。
第四方面,提供了一种芯片系统,所述芯片系统应用于电子设备,所述芯片系统包括一个或多个处理器,所述处理器用于调用计算机指令以使得所述电子设备执行第一方面或第二方面中的任一种方法。
第五方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计 算机程序代码,当所述计算机程序代码被电子设备运行时,使得该电子设备执行第一方面或第二方面中的任一种方法。
第六方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被电子设备运行时,使得该电子设备执行第一方面或第二方面中的任一种方法。
本申请实施例提供一种折叠屏夹角的确定方法及其相关设备,通过在折叠屏的两个显示屏上均设置加速度传感器和陀螺仪传感器,来分别读取每个显示屏对应的加速度信号和角速度信号;然后,通过对折叠屏的状态进行检测,根据确定的折叠屏的不同状态,结合两组加速度信号和角速度信号,或者结合两组角速度信号,利用不同的算法来确定折叠屏的角度大小。
附图说明
图1是一种适用于本申请实施例的应用场景的示意图;
图2是本申请实施例提供的一种折叠屏夹角的确定方法的流程示意图;
图3是本申请实施例提供的一种预处理的流程示意图;
图4是本申请实施例提供的另一种折叠屏夹角的确定方法的流程示意图;
图5是本申请实施例提供的一种屏幕垂直检测和屏幕开合检测的流程示意图;
图6是本申请实施例提供的折叠屏的几种状态示意图;
图7是本申请实施例提供的又一种折叠屏夹角的确定方法的流程示意图;
图8是本申请实施例提供的一种角度变化检测的流程示意图;
图9是本申请实施例提供的又一种折叠屏夹角的确定方法的流程示意图;
图10是本申请实施例提供的一种运动等级检测的流程示意图;
图11是本申请实施提供的一种电子设备的显示界面的示意图;
图12是本申请实施提供的另一种电子设备的显示界面的示意图;
图13是本申请实施例提供的一种电子设备的结构示意图;
图14是本申请实施例提供的一种折叠屏夹角的确定装置的结构示意图;
图15是一种适用于本申请的芯片的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请实施例的描述中,“多个”是指两个或多于两个。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
图1示出了本申请实施例提供的一种应用场景的示意图,在一个示例中,以电子设备为手机进行举例说明。
如图1中的(a)所示,该具有折叠屏的手机处于展开状态时,折叠屏所包括的两 个显示屏(如图1中所示的显示屏La和显示屏Lb)之间的夹角为180°,该两个显示屏位于同一平面中。如图1中的(b)所示,该具有折叠屏的手机处于折叠状态时,两个显示屏之间的夹角为0°,且两个显示屏的背面(未用于显示的一侧)相对贴合在一起,此时该折叠屏的折叠方式可以称为外折。当该具有折叠屏的手机处于弯折状态时,该两个显示屏之间的夹角处于0°至180°之间。其中,图1中所示的轴线k,为折叠屏弯折时的轴线。
应理解,具有折叠屏的手机可以从展开状态过渡到弯折状态,再切换至折叠状态,也可以从折叠状态过渡到弯折状态,再切换至展开状态,该过程是动态的、可逆的。
应理解,当两个显示屏之间的夹角为0°,且两个显示屏的显示面(用于显示的一侧)相对贴合在一起时,此时该折叠屏的折叠方式可以称为内折。对此,本申请实施例不进行任何限制,外折或内折的折叠屏都可以适用本申请实施例提供的夹角确定方法。
还应理解,该折叠屏包括的显示屏的数量是以折叠屏折叠时所绕的转轴为基准线,进行显示屏的划分和命名的,此处,该两个显示屏并不代表实际的折叠屏的面板结构。例如,该折叠屏可以由两个硬性面板以及转轴拼接而成,则该两个硬性面板中的一个硬性面板可称为一个显示屏。或者,该折叠屏由一个柔性面板和转轴组成,则该一个柔性面板以转轴为基准线,一半柔性面板可对应称为一个显示屏。此处,折叠屏的具体结构可以根据需要进行设置,本申请实施例对此不进行任何限制。
此外,当折叠屏包括多个显示屏时,相邻两个显示屏之间的夹角的大小,也可以适用本申请实施例提供的夹角确定方法。
应理解,上述为对应用场景的举例说明,并不对本申请的应用场景作任何限定。
结合上述应用场景,随着电子技术的发展,具有折叠屏的电子设备越来越多。为了提高折叠屏从展开状态切换成折叠状态,或者,从折叠状态切换至展开状态时的显示效果,需要实时地确定折叠屏包括的两个显示屏之间的夹角大小,也即折叠屏夹角的大小,以对显示画面进行适应性调整。
在现有技术中,一种确定折叠屏夹角的方式为:在折叠屏的两个显示屏内均设置霍尔传感器,通过霍尔传感器读取霍尔信号,再通过查表来查找霍尔信号对应的角度,由此确定两个显示屏之间的夹角大小。该方式不但精度低,而且容易受到使用环境的干扰。
另一种确定折叠屏夹角的方式为:在折叠屏的转轴处增加编码器来读取角度变化,虽然该编码器精度高、抗干扰,但是由于该方式需要在折叠屏转轴处增加传感器,增加了折叠屏的结构复杂度,不容易生产制造。即使可以生产出该种结构的折叠屏,在多次折叠过程中,处于转轴处的编码器也非常容易被损坏。由此,亟待一种硬件成本低、结构简单、识别精度高,又能抗干扰的确定折叠屏夹角的方法。
有鉴于此,本申请实施例提供了一种折叠屏夹角的确定方法,通过在折叠屏的两个显示屏上均设置加速度传感器和陀螺仪传感器,来分别读取每个显示屏对应的加速度信号和角速度信号;然后,通过对折叠屏的状态进行检测,根据确定的折叠屏的不同状态,结合两组加速度信号和角速度信号,或者结合两组角速度信号,利用不同的算法来确定折叠屏的角度大小。
下面结合说明书附图,对本申请实施例提供的折叠屏夹角的确定方法所适用的折叠屏进行简单介绍。
本申请实施例提供的折叠屏夹角的确定方法应用于具有折叠屏的电子设备中,该电子设备的折叠屏包括多个显示屏,也就是说,该电子设备的折叠屏可以包括2个显示屏,也可以包括3个或更多个显示屏,对此,本申请实施例不进行任何限制。
针对多个显示屏中的每个显示屏,该每个显示屏可以包括至少1个加速度传感器和至少1个陀螺仪传感器。
应理解,每个显示屏可以包括1个加速度传感器和1个陀螺仪传感器,也可以包括2个或更多个加速度传感器,2个或更多个陀螺仪传感器。每个显示屏中加速度传感器的个数和陀螺仪传感器的个数可以相同,也可以不同;不同显示屏包括的加速度传感器的个数可以相同,也可以不同,不同显示屏包括的陀螺仪传感器的个数可以相同,也可以不同,具体可以根据需要进行设置,本申请实施例对此不进行任何限制。
应理解,每个显示屏中的加速度传感器可检测各自对应的显示屏在各个方向上(一般为x轴、y轴和z轴)加速度大小。每个显示屏中的陀螺仪传感器可检测各自对应的显示屏围绕三个轴(即,x轴、y轴和z轴)的角速度。其中,该x轴、y轴和z轴指的是显示屏自身对应的设备坐标系中的三个基准方向,设备坐标系指的是固定在显示屏中的坐标系,显示屏上的点与显示屏一起旋转的坐标系。基于每个显示屏对应一个设备坐标系,当多个显示屏之间的相对位置变化时,每个设备坐标系所指的x轴、y轴和z轴方向不一定相同。
例如,结合图1,显示屏La中包括第一加速度传感器ACC1和第一陀螺仪传感器GYRO1,显示屏Lb中包括第二加速度传感器ACC2和第二陀螺仪传感器GYRO2。
其中,第一加速度传感器ACC1和第二加速度传感器ACC2可以相同,也可以不相同,第一陀螺仪传感器GYRO1和第二陀螺仪传感器GYRO2可以相同,也可以不相同,具体可以根据需要进行设置,本申请实施例对此不进行任何限制。
此处,显示屏La对应的设备坐标系指的是固定在显示屏La中的坐标系,显示屏La上的点与显示屏La一起旋转的坐标系;显示屏Lb对应的设备坐标系指的是固定在显示屏Lb中的坐标系,显示屏Lb上的点与显示屏Lb一起旋转的坐标系。
如图1中的(a)所示,若显示屏La对应的设备坐标系中的x轴所指示的方向为平行于显示屏La的显示面且水平向右的方向,y轴指向的方向为平行于显示屏La的显示面且垂直向上的方向,z轴指向的方向为垂直于显示屏La的显示面且垂直纸面向外的方向。
显示屏Lb对应的设备坐标系中的x轴所指示的方向为平行于显示屏Lb的显示面且水平向右的方向,y轴指向的方向为平行于显示屏Lb的显示面且垂直向上的方向,z轴指向的方向为垂直于显示屏Lb的显示面且垂直纸面向外的方向。
由于该具有折叠屏的手机处于展开状态时,此时,折叠屏所包括的两个显示屏各自对应的设备坐标系中的三个轴实际指向方向分别相同。
如图1中的(b)所示,当该具有折叠屏的手机处于折叠状态,且是外折时,显示屏Lb对应的设备坐标系中的三个轴的指向方向没变,但是,显示屏La对应的设备坐标系中的三个轴的实际指向方向却随着显示屏La的旋转而发生了改变。
比如,显示屏La对应的设备坐标系中的y轴所指示的方向没变,还是为平行于显示 屏La的显示面且垂直向上的方向,但是,x轴所指示的方向变为平行于显示屏La的显示面且水平向左的方向,z轴所指示的方向变为垂直于显示屏La的显示面且垂直纸面向里的方向。
应理解,上述仅为一种示例,当显示屏La和显示屏Lb之间的相对位置发生不同的变化时,显示屏La和显示屏Lb各自对应的设备坐标系中的三个轴的实际指向方向将会发生不同的改变。
此外,示例性的,第一加速度传感器ACC1和第一陀螺仪传感器GYRO1贴装在显示屏La的背面(未显示的一侧)的中心位置处。第二加速度传感器ACC2和第二陀螺仪传感器GYRO2也贴装在显示屏Lb的背面(未显示的一侧)的中心位置处。
应理解,各个加速度传感器和各个陀螺仪传感器在显示屏中的具体位置可以根据需要进行设置和更改,本申请实施例对此不进行任何限制。
上面对本申请实施例所适用的折叠屏进行了简单介绍,下面结合图1至图10,以折叠屏包括两个显示屏(显示屏La和显示屏Lb),每个显示屏包括1个加速度传感器和1个陀螺仪传感器为例,对本申请实施例提供的折叠屏夹角的确定方法进行详细介绍。
图2示出了本申请实施例提供的一种折叠屏夹角的确定方法的流程示意图。如图2所示,该折叠屏夹角的确定方法1包括以下S10至S40。
S10、利用显示屏La中的第一加速度传感器ACC1获取t时刻的第一初始加速度信号,以及利用第一陀螺仪传感器GYRO1获取t时刻的第一初始角速度信号。
同时,利用显示屏Lb中的第二加速度传感器ACC2获取t时刻的第二初始加速度信号,以及利用第二陀螺仪传感器GYRO2获取t时刻的第二初始角速度信号。
其中,t为大于或等于1的整数。此时,t时刻可以理解为时间序列中的当前时刻,t+1时刻为时间序列中的下一时刻,t-1时刻为时间序列中的上一时刻。
应理解,显示屏La在每个时刻都可以获取到该时刻对应的第一初始加速度信号和第一初始角速度信号,同理,显示屏Lb在每个时刻都可以获取到该时刻对应的第二初始加速度信号和第二初始角速度信号。当t不同时,t时刻所指示的时刻不同,t时刻对应的信号也不同。
应理解,当安装有加速度传感器的显示屏处于运动状态时,例如,从桌面滑出掉到了地上,该显示屏中包括的加速度传感器测量得到的加速度信号既包括重力加速度信号,又包括运动的线性加速度信号;而当显示屏处于静止状态时,该加速度传感器可以准确测量出物体的加速度信号在自身固有的设备坐标系中的三轴分量,此时加速度信号仅包括重力加速度信号,不包括运动的线性加速度信号。其中,该显示屏指的是上述显示屏La或显示屏Lb,该加速度传感器指的是第一加速度传感器ACC1或第二加速度传感器ACC2。
应理解,重力加速度指的是显示屏在受重力作用下所具有的加速度,线性加速度指的是显示屏在受非重力作用下具有的加速度。
S20、对t时刻的第一初始加速度信号进行第一预处理,确定t时刻的第一重力加速度信号;对t时刻的第一初始角速度信号进行第二预处理,确定t时刻的第一中间角速度信号。
对t时刻的第二初始加速度信号进行第一预处理,确定t时刻的第二重力加速度信号; 对t时刻的第二初始角速度信号进行第二预处理,确定t时刻的第二中间角速度信号。
可选地,第一预处理可以包括坐标系转换、均值滤波、时间更新方程、卡尔曼滤波算法中的至少一项。
其中,坐标系转换用于将显示屏自身固有的设备坐标系中的坐标值转换为地球坐标系中的坐标值。地球坐标系也称地固坐标系,是固定在地球上与地球一起旋转的坐标系。地面上点的坐标值在地固坐标系中是固定不变的。
均值滤波用于去除信号中的噪声,进行平滑处理。此处,均值滤波相当于将第一初始加速度信号和第二初始加速度信号包括的杂乱无章的线性加速度信号去除,从第一初始加速度信号中筛选出相对稳定的信号作为所包括的第一重力加速度信号,从第二初始加速度信号中筛选出相对稳定的信号作为所包括的第二重力加速度信号。
可选地,第二预处理可以包括低通滤波。低通滤波用于去除频率较高的噪声。
应理解,第一预处理和/或第二预处理均还可以包括其他步骤,第一预处理和/或第二预处理所包括的多个步骤的执行顺序也可以根据需要进行调整,本申请实施例对此不进行任何限制。
示例性的,第一预处理包括坐标系转换、均值滤波、时间更新方程、卡尔曼滤波算法,第二预处理包括低通滤波。下面以图3为例进行说明。
图3示出了本申请实施例提供的一种第一预处理和第二预处理的流程示意图。
如图3中的(a)所示,以显示屏La为例,对显示屏La中第一加速度传感器ACC1获取的t时刻的第一初始加速度信号进行第一预处理的过程,可以包括以下S21至S23;如图3中的(a)所示,对第一陀螺仪传感器GYRO1获取的t时刻的第一初始角速度信号进行第二预处理的过程,可以包括以下S24。其中,第一预处理与第二预处理在执行时,可以先后依次执行也可以同时执行,具体执行顺序可以根据需要进行更改,本申请实施例对此不进行任何限制。下面作为一种示例:
S21、如图3中的(a)所示,对t时刻的第一初始加速度信号进行坐标系转换和均值滤波,得到t时刻的第一合加速度信号。将该t时刻的第一合加速度信号作为t时刻的第一重力加速度信号的测量值。
应理解,第一加速度传感器ACC1获取的第一初始加速度信号对应的坐标值位于第一加速度传感器ACC1自身固有的设备坐标系中,第二加速度传感器ACC2获取的第二初始加速度信号对应的坐标值位于第二加速度传感器ACC2自身固有的设备坐标系中。由于重力加速度g在地球坐标系下的表达为(0,0,g),是一个恒定的值。因此,可以将第一加速度信号对应的坐标值以及第二加速度信号对应的坐标值进行坐标系转换,转换至地球坐标系中,由此,可以将其各自包括的重力加速度信号和运动的线性加速度信号进行分离,进而可以便于后续通过均值滤波将非重力加速度的分量(即运动的线性加速度信号)滤除掉,仅保留对应的重力加速度分量。若不进行坐标系转换,则无法通过均值滤波滤除非重力加速度的分量。
可选地,可以根据旋转不变性(rotational invariant orientation tracker,RIOT)对t时刻的第一初始加速度信号进行坐标旋转平均处理,由此,可以得到第一线性加速度信号(第一初始加速度信号中所包括的线性加速度信号)被初步抑制的第一合加速度信号,防止第一线性加速度信号对后续夹角的确定造成干扰。也就是说,t时刻的第一初始加速度信号 在经过RIOT处理之后,得到的t时刻的第一合加速度信号已经主要由t时刻的第一重力加速度信号组成,因此,可以将该t时刻的第一合加速度信号可以作为t时刻的第一重力加速度信号的测量值。
应理解,进行均值滤波之后,需将地球坐标系的坐标值又转换回各自显示屏对应的设备坐标系中的坐标值,以便于进行后续夹角计算。
S22、如图3中的(a)所示,根据t-1时刻的第一重力加速度信号的目标值和t-1时刻的第一初始角速度信号,利用时间更新方程,确定t时刻的第一重力加速度信号的预测值。
其中,时间更新方程可以理解为一个物理模型,利用该物理模型进行预测,可以通过上一时刻利用卡尔曼滤波算法得到的第一重力加速度信号的目标值,预测出下一时刻对应的第一重力加速度信号的预测值。例如,可以通过显示屏La在t-1时刻对应的第一重力加速度信号的目标值,预测出t时刻的第一重力加速度信号的预测值;同理,还可以通过显示屏La在t时刻对应的第一重力加速度信号的目标值,预测出t+1时刻的第一重力加速度信号的预测值。
其中,该时间更新方程指的是:
Figure PCTCN2022116202-appb-000001
X t用于表示t时刻的第一重力加速度信号的预测值;g x,t、g y,t、g z,t分别为t时刻的第一重力加速度信号的预测值在x轴、y轴、z轴上的分量;g x,t-1、g y,t-1、g z,t-1分别为t-1时刻的第一重力加速度信号的目标值在x轴、y轴、z轴上的分量;w x、w y、w z分别为x轴、y轴、z轴上的角速度;dt为对时间的积分或者为t-1时刻至t时刻的时间间隔。
应理解,根据t-1时刻对应的第一重力加速度信号的目标值,可确定出上述g x,t-1、g y, t-1、g z,t-1、w x、w y、w z
S23、如图3中的(a)所示,根据t时刻的第一合加速度信号(t时刻的第一重力加速度信号的测量值),以及t时刻的第一重力加速度信号的预测值,利用卡尔曼滤波算法,确定t时刻的第一重力加速度信号的目标值。
应理解,卡尔曼滤波算法包括上述时间更新方程,还包括状态更新方程。卡尔曼滤波算法用于:将通过加速度传感器确定的t时刻的第一重力加速度信号的测量值,和通过时间更新方程计算得到的t时刻的第一重力加速度信号的预测值,增加权重后进行相加,得到t时刻的第一重力加速度信号的目标值。该权重为多次迭代后得到的最优值。
同理,t-1时刻的第一重力加速度信号的目标值的确定过程可以为:根据t-2时刻的第一重力加速度信号的目标值和t-2时刻的第一初始角速度信号,利用时间更新方程,确定的t-1时刻的第一重力加速度信号的预测值;然后,根据t-1时刻的第一重力加速度的测量值和t-1时刻的重力加速度信号的预测值,利用卡尔曼滤波算法,确定出S22需要的t-1时刻的第一重力加速度信号的目标值。其中,t-1时刻的第一重力加速度信号的测量值是通过t-1时刻的第一初始加速度信号进行坐标系转换和均值滤波得到的。
同理,t+1时刻的第一重力加速度信号的目标值的确定过程可以为:根据S23计算得到的t时刻的第一重力加速度信号的目标值和t时刻的第一初始加速度信号,利用时间更 新方程,确定t时刻的第一重力加速度信号的预测值;然后,根据t时刻的第一重力加速度信号的测量值和t时刻的重力加速度信号的预测值,利用卡尔曼滤波算法,确定t+1时刻的第一重力加速度信号的目标值。其中,t+1时刻的第一重力加速度信号的测量值是通过t+1时刻的第一初始加速度信号进行坐标系转换和均值滤波得到的。
应理解,上述仅为两种示例,其他时刻的重力加速度信号的确定过程都与上述过程类似,具体可以参考上述描述,在此不再赘述。
S24、如图3中的(b)所示,对第一初始角速度信号进行低通滤波,确定第一中间角速度信号。
例如,可以采用一阶低通滤波器对第一初始角速度信号进行低通滤波,以减少第一初始角速度信号中的噪声干扰。
结合上述S21至S24,对t时刻的第一初始加速度信号进行第一预处理,确定t时刻的第一重力加速度信号;对t时刻的第一初始角速度信号进行第二预处理,确定t时刻的第一中间角速度信号的过程进行了详细描述,同理,对t时刻的第二初始加速度信号进行第一预处理,确定t时刻的第二重力加速度信号;对t时刻的第二初始角速度信号进行第二预处理,确定t时刻的第二中间角速度信号,其过程与上述类似,在此不再赘述。
还应理解,对第一初始加速度信号和第二初始加速度信号进行第一预处理,对第一初始角速度信号和第二初始角速度信号进行第二预处理,能够有效滤除显示屏La和显示屏Lb无规则的线性加速度信号以及角速度信号中的噪声,从中提取出各自较为准确的重力加速度信号和角速度信号,有利于后续进行折叠屏夹角的确定。
S30、根据t时刻的第一重力加速度信号的目标值、t时刻的第一中间角速度信号、t时刻的第二重力加速度信号的目标值、t时刻的第二中间角速度信号,确定折叠屏t时刻的状态。
其中,确定折叠屏t时刻的状态,可以通过对折叠屏进行状态检测来实现。该状态检测可以包括屏幕垂直检测、屏幕开合检测、角度变化检测中的至少一项。
应理解,屏幕垂直检测用于检测折叠屏是否垂直于水平面,当显示屏是垂直于水平面放置时,根据该检测结果可以调整后续的角度确定方法;屏幕开合检测用于检测折叠屏的两个显示屏是折叠的、弯折的还是展开的,针对不同状态利用不同方式确定对应的夹角大小;角度变化检测用于在折叠屏夹角相对于上一时刻的夹角发生变化时,确定折叠屏的两个显示屏之间的角度变化量;
可选地,该状态检测还可以包括运动等级检测。
运动等级检测用于确定折叠屏适用的电子设备的整体运动情况,当然,为了确定电子设备的运动情况,可以按照电子设备的运动幅度来进行等级划分,根据不同运动幅度来确定不同的运动等级,例如,划分为静止、轻微运动和剧烈运动,然后,根据不同的运动等级可以对夹角进行不同的处理。
S40、根据折叠屏t时刻的状态,确定t时刻折叠屏对应的夹角大小。
其中,折叠屏的状态包括折叠屏垂直于水平面、折叠屏的两个显示屏是折叠的、弯折的、展开的、折叠屏t时刻的夹角相对于t-1时刻的夹角发生改变、折叠屏t时刻的夹角相对于t-1时刻的夹角未变中的至少一项。
应理解,折叠屏的两个显示屏是折叠的、弯折的、展开的、折叠屏t时刻的夹角相对 于t-1时刻的夹角发生改变、折叠屏t时刻的夹角相对于t-1时刻的夹角未变均用于表示显示屏La和显示屏Lb之间的相对状态,而轻微运动、剧烈运动、静止均用于表示电子设备整体上相对于外界的状态。
应理解,根据折叠屏t时刻的状态,可以直接确定出夹角大小,或者可以结合两个陀螺仪传感器测得的第一初始角速度信号和第二初始角速度信号确定夹角大小,或者,还可以结合第一中间角速度信号、第二中间角速度信号、第一重力加速度信号和第二重力加速度信号确定夹角大小。总之,折叠屏的状态不同,对应可以使用不同方式来确定折叠屏的夹角大小,以保证每种状态下确定夹角的方式都是最合适的,得到的夹角大小都是最准确的。
本申请实施例提供的折叠屏夹角的确定方法,通过在折叠屏的两个显示屏上均设置加速度传感器和陀螺仪传感器,来分别读取每个显示屏对应的加速度信号和角速度信号;然后,通过对折叠屏的状态进行检测,根据确定的折叠屏的不同状态,结合两组加速度信号和角速度信号,或者结合两组角速度信号,利用不同的算法来确定折叠屏的角度大小。
图4示出了本申请实施例提供的另一种折叠屏夹角的确定方法2的流程示意图。如图4所示,该折叠屏夹角的确定方法2包括以下S100至S108。
S100、利用显示屏La中的第一加速度传感器ACC1获取t时刻的第一初始加速度信号,以及利用第一陀螺仪传感器GYRO1获取t时刻的第一初始角速度信号。
利用显示屏Lb中的第二加速度传感器ACC2获取t时刻的第二初始加速度信号,以及利用第二陀螺仪传感器GYRO2获取t时刻的第二初始角速度信号。
其中,t为大于或等于1的整数。
S101、对t时刻的第一初始加速度信号进行第一预处理,确定t时刻的第一重力加速度信号的目标值;对t时刻的第一初始角速度信号进行第二预处理,确定t时刻的第一中间角速度信号。
对t时刻的第二初始加速度信号进行第一预处理,确定t时刻的第二重力加速度信号的目标值;对t时刻的第二初始角速度信号进行第二预处理,确定第二中间角速度信号。
其中,对t时刻的第一初始加速度信号和t时刻的第二初始加速度信号进行第一预处理,对第一初始角速度信号和第二初始角速度信号进行第二预处理的方式,与上述图3所示的方式相同,具体可以参考上述描述,在此不再赘述。
S102、对折叠屏进行屏幕垂直检测,判断折叠屏的两个折叠屏是否垂直于水平面。
S103、若显示屏是垂直于水平面的,则根据Angle=LastAngle+DeltaAngle,确定两个显示屏之间的夹角。
其中,Angle用于指示t时刻两个显示屏之间的夹角大小,LastAngle用于指示t-1时刻两个显示屏之间的夹角大小,DeltaAngle用于指示t-1时刻到t时刻之间夹角的变化量。
应理解,当两个显示屏垂直于水平面,且两个显示屏之间的夹角发生变化时,由于重力向量在x轴上和z轴上的分量都非常小,分量主要体现在与轴线k方向一致的y轴上,使用其他方式进行计算反而不准确,因此,可以仅根据陀螺仪传感器获取y轴上的角速度信号来确定两个显示屏之间的夹角变化量,然后,再结合上一时刻折叠屏的夹角大小来确 定t时刻折叠屏对应的夹角大小。
S104、若折叠屏不是垂直于水平面的,则需要对折叠屏进行屏幕开合检测,判断折叠屏的两个显示屏之间是折叠的、展开的、还是弯折的。
S105、若折叠屏的两个显示屏是双屏折叠的,则可以直接确定两个显示屏之间的夹角为0°,即Angle=0。
S106、若折叠屏的两个显示屏是双屏展开的,则可以直接确定两个显示屏之间的夹角为180°,即Angle=180。
S107、若折叠屏的两个显示屏之间是弯折的,则可以确定显示屏La对应的第一重力加速度信号的目标值在xoz平面上的投影向量,以及显示屏Lb对应的第二重力加速度信号的目标值在xoz平面上的投影向量。
然后,确定第一重力加速度信号的目标值在xoz平面上的投影向量与第二重力加速度信号的目标值在xoz平面上的投影向量之间的夹角VectorAngle大小。
应理解,虽然显示屏La和显示屏Lb各自对应的设备坐标系不同,但是,两个设备坐标系中x轴和z轴组成的xoz平面是处于同一平面的,又因为xoz平面是垂直于y轴的,y轴与折叠屏弯折的轴线k方向相同,所以,两个显示屏之间的夹角即为两个显示屏分别与xoz平面的相交线之间的夹角。由此,可以通过计算第一重力加速度信号的目标值在xoz平面上的投影向量与第二重力加速度信号的目标值在xoz平面上的投影向量之间的夹角大小,来间接计算出折叠屏的夹角大小。
S108、根据Angle=180-VectorAngle,确定两个显示屏之间的夹角大小。
应理解,利用第一重力加速度信号的目标值在xoz平面上的投影向量和第二重力加速度信号的目标值在xoz平面上的投影向量确定的夹角VectorAngle,与显示屏之间的夹角是互补的,因此,在已知VectorAngle的情况下,可以根据Angle=180-VectorAngle,确定出两个显示屏之间的夹角。
图5示出了本申请实施例提供的屏幕垂直检测和屏幕开合检测的流程示意图。图6示意出了折叠屏的几种状态示意图。
结合图5和图6所示,显示屏La对应的设备坐标系和显示屏Lb对应的设备坐标系的y轴方向相同,基于此,可以通过判断第一重力加速度信号的目标值ga在y轴上的分量ga_y、第二重力加速度信号的目标值gb在y轴上的分量gb_y,分别与标准重力加速度g的差值的绝对值是否均小于第一预设阈值thresh1,来判断折叠屏是否垂直于水平面。
其中,标准重力加速度g指的是物体受地球引力作用在真空中下落的加速度。
结合图6中的(a)所示,应理解,当折叠屏垂直于水平面时,显示屏La是竖直放置的。此时,第一重力加速度信号的目标值ga几乎等于标准重力加速度g,第一重力加速度信号的目标值ga又全部由y轴上的分量ga_y组成,因此,第一重力加速度信号的目标值ga在y轴上的分量ga_y与标准重力加速度g的大小几乎相等,由此,可以设定第一预设阈值thresh1,通过比较两者之间的差值是否小于第一预设阈值thresh1,来判断显示屏La是否垂直于水平面。
同理,当折叠屏垂直于水平面时,显示屏Lb也是竖直放置的。第二重力加速度信号的目标值gb几乎等于标准重力加速度g,第二重力加速度信号的目标值gb全部由第二重 力加速度信号的目标值在y轴上的分量gb_y组成,因此,第二重力加速度信号的目标值gb在y轴上的分量gb_y与标准重力加速度g的大小几乎相等,由此,可以设定第一预设阈值thresh1,通过比较两者之间的差值是否小于第一预设阈值thresh1来判断显示屏Lb是否垂直于水平面。
那么,判断折叠屏是否垂直于水平面的条件可以设定为:第一重力加速度信号的目标值ga在y轴上的分量ga_y与标准重力加速度g的差值的绝对值小于第一预设阈值thresh1,且第二重力加速度信号的目标值gb在y轴上的分量gb_y与标准重力加速度g的差值的绝对值也小于第一预设阈值thresh1。满足这个条件时,才能说明显示屏La和显示屏Lb都是竖直放置的,进而说明折叠屏是垂直于水平面的;不满足这个条件时,说明折叠屏不是垂直于水平面的。
结合图6中的(a)所示,当折叠屏垂直于水平面时,虽然显示屏La和显示屏Lb均是垂直于水平面的,但是两个显示屏之间夹角大小可能为0,或者,也可能在0°~180°之间,当然,也有可能为180°。在此情况下,可以通过确定第一陀螺仪传感器GYRO1和第二陀螺仪传感器GYRO2在y轴上的角度变化值DeltaAngle,再将t-1时刻的夹角LastAngle与角度变化量DeltaAngle进行求和,由此来确定t时刻两个显示屏之间的夹角Angle。
可选地,作为一种可实现的方式,当折叠屏垂直于水平面时,夹角变化量DeltaAngle可以根据以下公式(1)进行确定:
DeltaAngle=(w2_y-w1_y)×dt   (1)
其中,公式(1)中的w2_y用于指示第二陀螺仪传感器GYRO2获取的y轴上的角速度大小,w1_y用于指示第一陀螺仪传感器GYRO1获取的y轴上的角速度大小,dt用于指示对时间t的积分或者称为t-1时刻至t时刻的时间间隔。
接下来,两个显示屏的夹角Angle可以根据以下公式(2)进行确定:
Angle=LastAngle+DeltaAngle     (2)
其中,Angle用于指示t时刻两个显示屏之间的夹角,LastAngle指示t-1时刻下两个显示屏之间的夹角,DeltaAngle用于指示t-1时刻到t时刻之间的夹角变化量。
结合图6中的(b)至(d)所示,当折叠屏不是垂直于水平面时,折叠屏可能是倾斜的或者是平行于水平面放置的。而无论折叠屏是倾斜的或者是平行于水平面放置的,又均有可能是双屏展开的、弯折的、或者是折叠在一起的。针对该不同情况,可以对折叠屏进行屏幕开合检测,判断两个显示屏在非垂直于水平面时的具体状态。
如图6中的(b)所示,在折叠屏非垂直于水平面的情况下,当显示屏La和显示屏Lb是折叠在一起时,显示屏La对应的设备坐标系和显示屏Lb对应的设备坐标系的y轴共用,而x轴和z轴方向均分别相反。当显示屏La和显示屏Lb是展开时,显示屏La对应的设备坐标系和显示屏Lb对应的设备坐标系的x轴、y轴和z轴方向均分别相同。
基于此,如图5所示,无论折叠屏是倾斜的或者是平行于水平面的,可以通过判断第一重力加速度信号的目标值ga在x轴上的分量ga_x、第二重力加速度信号的目标值gb在x轴上的分量gb_x,两者绝对值之间的差值是否小于第二预设阈值thresh2,来判断折叠屏的两个屏是否是弯折的。
当ga_x的绝对值与gb_x的绝对值之间的差值小于第二预设阈值thresh2时,说明第一重力加速度信号的目标值ga在x轴上的分量ga_x与第二重力加速度信号的目标值gb在x 轴上的分量gb_x的大小基本相同,这样,说明两个显示屏之间不是弯折的,此时可能是折叠在一起的或者是展开的,需要进一步进行判断。
例如,若已判断出折叠屏非垂直于水平面且非弯折,此时,可以根据第一重力加速度信号的目标值ga在z轴上的分量ga_z、第二重力加速度信号的目标值gb在z轴上的分量gb_z,两者之间的差值的绝对值是否均小于第三预设阈值thresh3,来判断折叠屏的两个显示屏是折叠在一起的还是展开的。
应理解,如图6中的(c)所示,在折叠屏非垂直于水平面且非弯折的情况下,两个显示屏在展开时,基于z轴共用,第一重力加速度信号的目标值ga在z轴上的分量ga_z,与第二重力加速度信号的目标值gb在z轴上的分量gb_z大小相等,方向相同;而两个显示屏在折叠时,基于z轴方向相反,第一重力加速度信号的目标值ga在z轴上的分量ga_z与第二重力加速度信号的目标值gb在z轴上的分量gb_z大小相等,方向相反。
由此,可以设定第一重力加速度信号的目标值ga在z轴上的分量ga_z,与第二重力加速度信号的目标值gb在z轴上的分量gb_z,两者之间的差值的绝对值是否小于第三预设阈值thresh3,来判断两个显示屏之间是折叠的还是展开的。
当第一重力加速度信号的目标值ga在z轴上的分量ga_z,与第二重力加速度信号的目标值gb在z轴上的分量gb_z,两者之间的差值的绝对值小于第三预设阈值thresh3时,则说明两个显示屏之间是展开的,否则,则说明两个显示屏之间是折叠的。当判断出折叠屏是展开时,两个显示屏之间的夹角对应为180°;当判断出折叠屏是折叠时,两个显示屏之间的夹角对应为0°。
除此之外,在折叠屏非垂直于水平面的情况下,当第一重力加速度信号的目标值在x轴上的分量ga_x的绝对值,与第二重力加速度信号的目标值在x轴上的分量gb_x的绝对值之间的差值,大于或等于第二预设阈值thresh2时,说明第一重力加速度信号的目标值ga在x轴上的分量ga_x与第二重力加速度信号的目标值gb在x轴上的分量gb_x的大小不相同,进而说明两个显示屏之间是弯折的。
当两个显示屏之间是弯折的情况时,结合图6中的(d)所示,基于两个显示屏的坐标系的y轴是共用的,xoz平面也是相同的,在确定两个显示屏之间的夹角时,可以先确定两个显示屏分别对应的重力加速度信号的目标值在xoz平面上的投影向量,然后,计算两个投影向量之间的夹角,再进而根据两个投影向量之间的夹角来确定折叠屏的夹角。
应理解,确定两个显示屏分别对应的重力加速度信号的目标值,在xoz平面上的投影向量之间的夹角的过程为:先确定第一重力加速度信号的目标值ga在xoz平面上的投影向量为第一向量ga',确定第二重力加速度信号的目标值gb在xoz平面上的投影向量为第二向量gb'。
再根据以下公式(3)
Figure PCTCN2022116202-appb-000002
推导出公式(4):
Figure PCTCN2022116202-appb-000003
然后,利用公式(4)确定第一向量ga'和第二向量gb'之间的夹角为第一夹角VectorAngle。
最后,再根据公式(5):
Angle=180-VectorAngle    (5)
确定两个显示屏之间的夹角Angle的大小。
本申请实施例提供的折叠屏夹角的确定方法,通过在折叠屏的两个显示屏上均设置加速度传感器和陀螺仪传感器,来分别读取每个显示屏对应的加速度信号和角速度信号;然后,通过对折叠屏进行屏幕垂直检测和屏幕开合检测。当折叠屏垂直于水平面时,则根据两个显示屏的陀螺仪传感器获取的角速度信号确定夹角变化量,再通过计算折叠屏上一时刻的夹角大小和夹角变化量之和,来确定t时刻折叠屏的夹角大小。当折叠屏非垂直于水平面且是双屏折叠时,可确定折叠屏的夹角为0°。当折叠屏非垂直于水平面且是双屏展开时,可确定折叠屏的夹角为180°。当折叠屏非垂直于水平面且是双屏弯折时,可根据两个显示屏的加速度信号和角速度信号,确定出两个显示屏分别对应的重力加速度信号的目标值,然后,通过计算两个重力加速度信号的目标值在xoz平面上的投影向量之间的夹角大小,来确定折叠屏的夹角大小。
图7为本申请实施例提供的另一种折叠屏夹角的确定方法3的流程示意图。如图7所示,该折叠屏夹角的确定方法3在包括以上S100至S107的基础上,还可以包括以下S109至S112。
针对S100至S107的描述与上述相同,在此不再赘述。以下对S109至S112进行详细介绍。
S108、对折叠屏进行角度变化检测,判断折叠屏t时刻对应的夹角相对于t-1时刻对应的夹角是否改变。
S109、若角度没有变化,则说明两个显示屏t时刻对应的夹角与t-1时刻对应的夹角大小相同。也就是说,Angle=LastAngle,LastAngle用于表示t-1时刻的夹角大小。
应理解,当判断出角度没有变化时,可以直接延用上一时刻的夹角大小,减小计算量。
S110、若角度发生了变化,则可以利用第一陀螺仪传感器GYRO1获取的第一中间角速度信号在y轴上的角速度分量w1_y,以及第二陀螺仪传感器GYRO2获取的第二中间角速度信号在y轴上的角速度分量w2_y,来确定出t-1时刻到t时刻的角度变化量DeltaAngle。
S111、再根据Angle=LastAngle+DeltaAngle,确定两个显示屏之间的夹角,求得的夹角大小可以作为夹角的预测值。
S112、将上述S107中根据投影向量计算得到的夹角作为折叠屏t时刻对应的夹角的测量值,根据折叠屏t时刻对应的夹角的测量值以及上述S111计算得到t时刻对应的夹角的预测值,利用卡尔曼滤波算法,确定折叠屏t时刻对应的夹角的目标值FuseAngle。折叠屏t时刻对应的夹角的目标值FuseAngle为t时刻折叠屏对应的夹角Angle大小。
其中,卡尔曼滤波算法包括时间更新方程和状态更新方程。
时间更新方程为:
Figure PCTCN2022116202-appb-000004
Figure PCTCN2022116202-appb-000005
状态更新方程为:
Figure PCTCN2022116202-appb-000006
Figure PCTCN2022116202-appb-000007
Figure PCTCN2022116202-appb-000008
此处,
Figure PCTCN2022116202-appb-000009
为折叠屏t时刻对应的夹角的预测值,z k为折叠屏t时刻对应的夹角的测量值,P k-1为折叠屏t-1时刻对应的误差协方差,
Figure PCTCN2022116202-appb-000010
为折叠屏t时刻对应的误差协方差,Q为过程噪声;k k为卡尔曼增益,
Figure PCTCN2022116202-appb-000011
为折叠屏t时刻对应的夹角的目标值(也即FuseAngle),
Figure PCTCN2022116202-appb-000012
为折叠屏t-1时刻对应的夹角的目标值,P k为更新后的t时刻对应的误差协方差;u k-1为t-1时刻对系统的控制量,A为状态转移矩阵,B为控制输入矩阵,H为矩阵,R为测量噪声矩阵,I为单位矩阵,例如,I可以为1。
下面结合图8,对S109至S112的过程详细解释。图8示出了本申请实施例提供的一种角度变化检测的流程图。
如图8所示,可以先确定第二中间角速度信号在y轴上的角速度分量w2_y和第一中间角速度信号在y轴上的角速度分量w1_y的差值DeltaGyro_y,再通过判断第一中间角速度信号在y轴上的角速度分量与第二中间角速度信号在y轴上的角速度分量的差值DeltaGyro_y,是否大于第四预设阈值thresh4,来判断折叠屏t时刻对应的夹角相对于t-1时刻的夹角是否改变。
若差值DeltaGyro_y小于或等于第四预设阈值thresh4,说明两个显示屏之间的夹角没有发生改变,或者发生的变化比较小,可以忽略不计,由此,可以将上一时刻折叠屏对应的夹角大小作为当前时刻所对应的夹角大小。
若差值DeltaGyro_y大于第四预设阈值thresh4,说明两个显示屏之间的夹角发生了改变,则可以根据第二中间角速度信号在y轴上的角速度分量w2_y和第一中间角速度信号在y轴上的角速度分量w1_y的差值DeltaGyro_y,利用上述公式(1):DeltaAngle=(w2_y-w1_y)×dt,计算得到折叠屏t-1时刻到t时刻的角度变化量DeltaAngle。然后,再结合折叠屏t-1时刻的夹角大小,利用Angle=LastAngle+DeltaAngle,计算得到折叠屏t时刻对应的夹角Angle的大小。
但是,通常单独利用S109至S111,根据陀螺仪传感器的角速度差计算求得的夹角大小并不准确,因此,可以将其计算结果与S107确定的夹角大小进行结合,利用卡尔曼滤波算法,确定夹角的目标值。应理解,通过结合两种方法,可以提高确定出的夹角大小的准确率。
可选地,在上述基础上,本申请实施例还提供了又一种折叠屏夹角的确定方法4的流 程示意图。如图9所示,在上述方法3的基础上,本申请实施例提供的折叠屏夹角的确定方法4还可以包括以下S113至S116。
针对S100至S112的描述与上述相同,在此不再赘述。以下对S113至S116进行详细介绍。
S113、对折叠屏进行运动等级检测,判断所述折叠屏是静止、轻微运动还是剧烈运动;
其中,折叠屏的运动等级用于指示折叠屏所适用的电子设备的运动幅度,其中,该运动等级可以包括静止、轻微运动、剧烈运动中的至少一项。
静止可以指示电子设备的运动幅度为0或者运动幅度小于第一预设幅度;轻微运动可以指示电子设备运动幅度大于第二预设幅度,而小于第三预设幅度;剧烈运动可以指示电子设备运动幅度大于第四预设幅度。其中,第一预设大幅度小于或等于第二预设幅度,第二预设幅度小于第三预设幅度,第三预设幅度小于或等于第四预设幅度。
应理解,此处所谓的折叠屏处于静止指的是折叠屏相对于外界是静止的,比如手机放置在桌面上,但是手机包括的两个显示屏之间可以是相对运动的。
应理解,上述几种运动等级仅为示例,可以根据需要对运动等级进行划分和修改,本申请实施例对此不进行任何限制。
S114、当折叠屏是静止时,则减小上述S112中,所涉及的卡尔曼滤波算法的测量噪声矩阵R中的参数。
然后,S112相应更新为:根据折叠屏t时刻对应的夹角的测量值以及t时刻对应的夹角的预测值,利用测量噪声矩阵R中的参数减小后的卡尔曼滤波算法,确定折叠屏t时刻对应的夹角的目标值FuseAngle。折叠屏t时刻对应的夹角的目标值FuseAngle为t时刻折叠屏对应的夹角Angle大小。
S115、当折叠屏是轻微运动时,增大卡尔曼滤波算法的测量噪声矩阵R中的参数。
然后,S112相应更新为:根据折叠屏t时刻对应的夹角的测量值以及t时刻对应的夹角的预测值,利用测量噪声矩阵R中的参数增大后的卡尔曼滤波算法,确定折叠屏t时刻对应的夹角的目标值FuseAngle。折叠屏t时刻对应的夹角的目标值FuseAngle为t时刻折叠屏对应的夹角Angle大小。
S116、当折叠屏是剧烈运动时,利用DeltaAngle=(w2_y-w1_y)×dt确定角度变化量DeltaAngle,再根据Angle=LastAngle+DeltaAngle,计算得到t时刻折叠屏对应的夹角大小。
应理解,测量噪声矩阵用于指示对重力加速度信号的测量值的信任程度。当重力加速度信号的测量值的噪声越大时,说明需要降低对重力加速度信号的测量值的信任;当重力加速度信号的测量值的噪声越小时,说明其值得信任,可以增大对重力加速度信号的测量值的信任。由此,当检测到折叠屏是静止时,确定的重力加速度信号的测量值比较可信,因此可以将测量噪声矩阵R中的参数调小一些;当检测到折叠屏是轻微运动时,对确定的重力加速度信号的测量值的信任降低,因此可以将测量噪声矩阵R中的参数调大一些。其中,针对静止和轻微运动两种不同的情况,调整的是测量噪声矩阵R中的同一参数。而当检测折叠屏是剧烈运动时,重力加速度信号的测量值不再值得信任,此时,可以仅利用陀螺仪传感器测得的角速度信号来确定。
应理解,此处通过对折叠屏的运动等级进行划分,根据不同运动等级,对夹角的确定方法进行不同的调整。例如,当折叠屏的运动不剧烈时,为了让上述S112确定出的夹角 的目标值更为准确,可以根据不同运动情况对卡尔曼滤波算法的R中参数进行修正,提高利用卡尔曼滤波算法确定出的夹角的目标值的准确率。而当折叠屏运动剧烈时,利用卡尔曼滤波算法计算得到的结果反而不够准确,并且计算量非常大,由此,可仅利用陀螺仪传感器的角速度来确定夹角大小,减小计算量。
可选地,作为一种可实现的示例,图10示出了一种运动等级检测的流程示意图。
如图10所示,先确定第一加速度传感器ACC1获取的t时刻的第一初始加速度信号的模值和第二加速度传感器ACC2获取的t时刻的第二初始加速度信号的模值。
例如,t时刻的第一初始加速度的模值可以根据以下公式(6)进行确定:
Figure PCTCN2022116202-appb-000013
其中,norm1为t时刻的第一初始加速度信号的模值,acc1_X为t时刻的第一初始加速度信号在x轴上的分量,acc1_Y为t时刻的第一初始加速度信号在y轴上的分量,acc1_Z为t时刻的第一初始加速度信号在z轴上的分量。
t时刻的第二初始加速度的模值可以根据以下公式(7)进行确定:
Figure PCTCN2022116202-appb-000014
其中,norm2为t时刻的第二初始加速度信号的模值,acc2_X为t时刻的第二初始加速度信号在x轴上的分量,acc2_Y为t时刻的第二初始加速度信号在y轴上的分量,acc2_Z为t时刻的第二初始加速度信号在z轴上的分量。
然后,通过确定t时刻的第一初始加速度信号的模值与t时刻的第一重力加速度信号的目标值的常量(第一参考值,也可称为第一重力加速度信号的目标值的绝对值)之间的差值,t时刻的第二初始加速度信号的模值与t时刻的第二重力加速度信号的目标值的常量(第二参考值,也可称为第二重力加速度信号的目标值的绝对值)之间的差值,是否均小于第五预设阈值thresh5,由此来判断折叠屏是否静止。
应理解,由于t时刻的第一初始加速度信号既包括重力加速度信号,又包括线性加速度信号,更能反应折叠屏在三维空间的运动状态,所以,利用t时刻的第一初始加速度信号的模值来进行判断更为准确。
当t时刻的第一初始加速度对应的模值与t时刻的重力加速度信号的目标值的常量,两者之间的差值非常小时,说明第一初始加速度基本由重力加速度构成,所以此时是静止的,基于此,当两个显示屏对应的初始加速度均基本由重力加速度构成时,即可说明折叠屏是静止的。此时,折叠屏在相对于外界静止情况下,两个显示屏之间的夹角发生改变时,可以利用S109至S112来确定夹角的目标值FuseAngle。在此基础上,为了提高准确率,进一步对卡尔曼滤波算法的测量噪声矩阵R中的参数进行调整。
若两个显示屏分别对应的初始加速度的模值与重力加速度信号的目标值的常量之间的差值,不是均小于第五预设阈值thresh5,则说明折叠屏是非静止的,此时需要进一步判断折叠屏是轻微运动的还是剧烈运动的。
可选地,作为一种可能实现的方式,可以通过确定t时刻下,第一初始加速度的模值与第一重力加速度的目标值的常量之间的差值,第二初始加速度的模值与第二重力加速度的目标值的常量之间的差值,是否均小于n倍的第五预设阈值thresh5,判断折叠屏是轻微运动还是剧烈运动。
应理解,n为大于1的数值,该n的大小可以根据需要进行调整,本申请实施例对此不进行任何限制。
例如,n可以设定为4。也就是说,当第一初始加速度的模值与第一重力加速度的目标值的常量之间的差值,第二初始加速度的模值与第二重力加速度的目标值的常量之间的差值均小于4倍的第五预设阈值thresh5时,认为折叠屏虽然是运动的,但运动幅度比较小,确定出的夹角大小误差比较小,可以利用S109至S112来确定夹角的目标值FuseAngle,在此基础上,可以进一步通过对卡尔曼滤波算法的测量噪声矩阵R中的参数进行调整,来提高准确率。
当第一初始加速度的模值与第一重力加速度的目标值的常量之间的差值,第二初始加速度的模值与第二重力加速度的目标值的常量之间的差值非均小于4倍的第五预设阈值thresh5时,则认为折叠屏是剧烈运动的,卡尔曼滤波算法已不适用,可以换为根据利用DeltaAngle=(w2_y-w1_y)×dt确定角度变化量DeltaAngle,再根据Angle=LastAngle+DeltaAngle,计算得到t时刻折叠屏对应的夹角大小。
在本申请实施例中,可以根据不同需求,选择执行上述S100至S116所示的折叠屏夹角的确定方法的多个步骤,以对折叠屏进行多方位的考量,实现更为准确的确定夹角大小的目的。
图11和图12是本申请实施例提供的两种电子设备的显示界面的示意图。该显示界面可以展示显示界面随夹角变化而变化的显示效果,此处折叠屏的夹角可以利用本申请实施例提供的折叠屏夹角的确定方法进行确定。
示例性的,如图11所示,具有折叠屏的手机在屏幕开合时,显示的动态壁纸中的花朵的开合程度,可以跟随折叠屏的夹角的大小而变化,由此,可利用本申请实施例提供的折叠屏夹角确定方法精准、实时地确定折叠屏的夹角大小,再根据夹角大小的不同,动态的呈现花朵的开合程度。例如,如图11中的(a)所示,当确定出折叠屏夹角Angle逐渐变小时,花朵可以从绽开状态收缩为花苞;如图11中的(b)所示,当确定出折叠屏夹角Angle逐渐变大时,花朵又慢慢绽放,从花苞变成绽开的花朵。
示例性的,如图12所示,当用户在使用具有折叠屏的手机的过程中,可以利用本申请实施例提供的折叠屏夹角确定方法来准确判断手机所处的状态,识别用户的使用习惯,并依据手机的状态来变换显示效果。例如,如图12中的(a)所示,当手机处于弯折状态时,显示界面中的聊天记录显示在显示屏La中,虚拟键盘显示在显示屏Lb中,文字的排列方向与轴线k平行。如图12中的(b)所示,当手机处于展开状态时,显示界面中的聊天记录同时显示在显示屏La和显示屏Lb的上半部分,虚拟键盘同时显示在显示屏La和显示屏Lb的下半部分。文字的排列方向与轴线k垂直。
应理解,当利用本申请实施例提供的方法实时地确定夹角的大小时,一方面,未增加复杂的器件,也未改变适用的电子设备的结构,硬件成本较低;另一方面,由于本申请实施例提供的方法对折叠屏的状态进行了细化分类,针对每种状态相应选择最为合适的确定夹角的算法,从而识别精度高,确定出的夹角的准确性也更高,进而使得随夹角变化而变化的折叠屏上的显示效果也更好。
上文结合图1至图12详细描述了本申请实施例提供的折叠屏夹角的确定方法以及相关的显示界面和效果图;下面将结合图13至图15详细描述本申请实施例提供的电子设备、装置和芯片。应理解,本申请实施例中的电子设备、装置和芯片可以执行前述本申请实施例的各种折叠屏夹角的确定方法,即以下各种产品的具体工作过程,可以参考前述方法实施例中的对应过程。
图13示出了一种适用于本申请的电子设备的结构示意图。电子设备100可以用于实现上述方法实施例中描述的方法。
电子设备100可以是手机、智慧屏、平板电脑、可穿戴电子设备、车载电子设备、增强现实(augmented reality,AR)设备、虚拟现实(virtual reality,VR)设备、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本、个人数字助理(personal digital assistant,PDA)、投影仪等等,本申请实施例对电子设备100的具体类型不作任何限制。
电子设备100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
处理器110可以包括一个或多个处理单元。例如,处理器110可以包括以下处理单元中的至少一个:应用处理器(application processor,AP)、调制解调处理器、图形处理器(graphics processing unit,GPU)、图像信号处理器(image signal processor,ISP)、控制器、视频编解码器、数字信号处理器(digital signal processor,DSP)、基带处理器、神经网络处理器(neural-network processing unit,NPU)。其中,不同的处理单元可以是独立的器件,也可以是集成的器件。
控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
图13所示的各模块间的连接关系只是示意性说明,并不构成对电子设备100的各模块间的连接关系的限定。可选地,电子设备100的各模块也可以采用上述实施例中多种连接方式的组合。
电子设备100的无线通信功能可以通过天线1、天线2、移动通信模块150、无线通信模块160、调制解调处理器以及基带处理器等器件实现。
天线1和天线2用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
电子设备100可以通过GPU、显示屏194以及应用处理器实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194可以用于显示图像或视频。
电子设备100可以通过ISP、摄像头193、视频编解码器、GPU、显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP可以对图像的噪点、亮度和色彩进行算法优化,ISP还可以优化拍摄场景的曝光和色温等参数。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的红绿蓝(red green blue,RGB),YUV等格式的图像信号。在一些实施例中,电子设备100可以包括1个或N个摄像头193,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当电子设备100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。电子设备100可以支持一种或多种视频编解码器。这样,电子设备100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1、MPEG2、MPEG3和MPEG4。
陀螺仪传感器180B可以用于确定电子设备100的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定电子设备100围绕三个轴(即,x轴、y轴和z轴)的角速度。陀螺仪传感器180B可以用于拍摄防抖。例如,当快门被按下时,陀螺仪传感器180B检测电子设备100抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消电子设备100的抖动,实现防抖。陀螺仪传感器180B还可以用于导航和体感游戏等场景。
示例性地,在本申请的实施例中陀螺仪传感器180B可以用于采集角速度信号,角速度信号可以用于表示电子设备在拍摄过程中的位姿变化。
加速度传感器180E可检测电子设备100在各个方向上(一般为x轴、y轴和z轴)加速度的大小。当电子设备100静止时可检测出重力的大小及方向。加速度传感器180E 还可以用于识别电子设备100的姿态,作为横竖屏切换和计步器等应用程序的输入参数。
示例性的,在本申请的实施例中加速度传感器180E可以用于采集加速度信号,加速度信号可以用于表示电子设备在拍摄过程中的速度变化。
可以理解的是,本申请实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
下面将结合图14详细描述本申请的装置实施例。应理解,本申请实施例中的装置可以执行前述本申请实施例的各种方法,即以下各种产品的具体工作过程,可以参考前述方法实施例中的对应过程。
图14是本申请实施例提供的一种折叠屏夹角的确定装置200的结构示意图。该折叠屏夹角的确定装置200包括获取模块210与处理模块220。
其中,获取模块210用于获取两个显示分别对应的t时刻的初始加速度信号和t时刻的初始角速度信号。
处理模块220用于:针对每个显示屏,对t时刻的初始加速度信号进行第一预处理,确定t时刻的重力加速度信号的目标值,以及对t时刻的初始角速度信号进行第二预处理,确定t时刻的中间角速度信号;
根据两个显示屏分别对应的t时刻的重力加速度信号的目标值和t时刻的中间角速度信号,确定折叠屏t时刻的状态,折叠屏的状态包括:折叠屏垂直于水平面、折叠屏的两个显示屏是折叠的、弯折的、展开的、折叠屏t时刻的夹角相对于t-1时刻的夹角发生改变、折叠屏t时刻的夹角相对于t-1时刻的夹角未变中的至少一项。
处理模块220还用于:根据折叠屏t时刻的状态,确定折叠屏t时刻对应的夹角大小。
可选地,作为一个实施例,处理模块220还用于:
针对每个显示屏,对t时刻的初始加速度信号进行坐标系转换和均值滤波,得到t时刻的重力加速度信号的测量值;根据t-1时刻的重力加速度信号的目标值和t-1时刻的初始角速度信号,利用时间更新方程,确定t时刻的重力加速度信号的预测值;根据t时刻的重力加速度信号的测量值和t时刻的重力加速度信号的预测值,利用卡尔曼滤波算法,确定t时刻的重力加速度信号的目标值。
可选地,作为一个实施例,处理模块220还用于:针对每个显示屏,对t时刻的初始角速度信号进行低通滤波,确定t时刻的中间角速度信号。
可选地,作为一个实施例,处理模块220还用于:对折叠屏进行屏幕垂直检测,判断折叠屏是否垂直于水平面;若否,则对折叠屏进行屏幕开合检测,判断折叠屏的两个显示屏是折叠的、展开的、还是弯折的。
可选地,作为一个实施例,处理模块220还用于:确定两个显示屏分别对应的t时刻的重力加速度信号的目标值,在y轴上的分量与标准重力加速度的差值的绝对值,是否均小于第一预设阈值,标准重力加速度用于指示物体受地球引力作用在真空中下 落的加速度;若是,则折叠屏垂直于水平面;若否,则折叠屏非垂直于水平面。
可选地,作为一个实施例,处理模块220还用于:确定两个显示屏分别对应的t时刻的重力加速度信号的目标值,在x轴上的分量的绝对值之间的差值,是否小于第二预设阈值;若否,则折叠屏是弯折的;若是,则确定两个显示屏分别对应的t时刻的重力加速度信号,在z轴上的分量之间的差值的绝对值,是否小于第三预设阈值;若是,则折叠屏是展开的;若否,则折叠屏是折叠的。
可选地,作为一个实施例,处理模块220还用于:若折叠屏是垂直于水平面的,则根据Angle=LastAngle+DeltaAngle,确定两个显示屏之间的夹角;其中,Angle用于指示t时刻两个显示屏之间的夹角,LastAngle用于指示t-1时刻所述两个显示屏之间的夹角,DeltaAngle用于指示t-1时刻到t时刻之间,两个显示屏之间的角度变化量;若折叠屏是折叠的,则夹角为0°;若折叠屏是展开的,则夹角为180°;若折叠屏是弯折的,则根据两个显示屏分别对应的t时刻的重力加速度信号的目标值,确定两个t时刻的重力加速度信号在xoz平面上的投影向量之间的第一夹角;根据第一夹角,确定折叠屏t时刻对应的夹角大小。
可选地,作为一个实施例,处理模块220还用于:对折叠屏进行角度变化检测,判断折叠屏t时刻的夹角相对于t-1时刻的夹角是否改变;若改变,则利用两个显示屏分别对应的t时刻的中间角速度信号在y轴上的角速度分量,确定两个显示屏t-1时刻到t时刻之间的角度变化量;根据折叠屏t-1时刻对应的夹角和折叠屏t-1时刻到t时刻之间的角度变化量,确定折叠屏t时刻对应的夹角的预测值。
可选地,作为一个实施例,处理模块220还用于:确定两个显示屏分别对应的t时刻的中间角速度信号,在y轴上的角速度分量之间的差值,是否大于第四预设阈值;若否,则折叠屏t时刻的夹角相对于t-1时刻的夹角没有改变,若是,则折叠屏t时刻的夹角相对于t-1时刻的夹角发生了改变。
可选地,作为一个实施例,处理模块220还用于:将根据第一夹角确定出的折叠屏t时刻对应的夹角,作为折叠屏t时刻对应的夹角的测量值;根据折叠屏t时刻对应的夹角的预测值和折叠屏t时刻对应的夹角的测量值,利用卡尔曼滤波算法,确定折叠屏t时刻对应的夹角大小。
可选地,作为一个实施例,处理模块220还用于:对折叠屏进行运动等级检测,判断折叠屏的运动等级,运动等级包括静止、轻微运动、剧烈运动中的至少一项;
若静止,则减小卡尔曼滤波算法的测量噪声矩阵R中的参数;根据折叠屏t时刻对应的夹角的预测值和夹角的测量值,利用测量噪声矩阵中的参数减小后的卡尔曼滤波算法,确定折叠屏t时刻对应的夹角的目标值;若轻微运动,则增大卡尔曼滤波算法的测量噪声矩阵中的参数;根据折叠屏t时刻对应的夹角的预测值和夹角的测量值,利用测量噪声矩阵中的参数增大后的卡尔曼滤波算法,确定折叠屏t时刻对应的夹角的目标值;若剧烈运动,则根据Angle=LastAngle+DeltaAngle,确定折叠屏t时刻对应的夹角大小;其中,Angle用于指示t时刻两个显示屏之间的夹角,LastAngle用于指示t-1时刻两个显示屏之间的夹角,DeltaAngle用于指示t-1时刻到t时刻之间,两个显示屏之间的角度变化量。
可选地,作为一个实施例,处理模块220还用于:针对每个显示屏,确定加速度 传感器获取t时刻的初始加速度信号的模值;针对每个显示屏,确定t时刻的初始加速度信号的模值与参考值之间的差值,是否小于第五预设阈值,参考值为每个显示屏t时刻的重力加速度信号的目标值对应的常量;若两个显示屏分别确定的t时刻的初始加速度信号的模值与参考值之间的差值,均小于第五预设阈值,则折叠屏是静止的;否则,判断两个显示屏分别确定的t时刻的初始加速度信号的模值与参考值之间的差值,是否均小于n倍的第五预设阈值,n为大于1的数值;若是,则折叠屏是轻微运动的;若否,则折叠屏是剧烈运动的。
需要说明的是,上述折叠屏夹角的确定装置200以功能模块的形式体现。这里的术语“模块”可以通过软件和/或硬件形式实现,对此不作具体限定。
例如,“模块”可以是实现上述功能的软件程序、硬件电路或二者结合。所述硬件电路可能包括应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。
因此,在本申请的实施例中描述的各示例的单元,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令;当所述计算机可读存储介质在折叠屏夹角的确定装置上运行时,使得该折叠屏夹角的确定装置200执行前述所示的折叠屏夹角的确定方法。
所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例还提供了一种包含计算机指令的计算机程序产品,当其在折叠屏夹角的确定装置200上运行时,使得折叠屏夹角的确定装置200可以执行前述所示的折叠屏夹角的确定方法。
图15为本申请实施例提供的一种芯片的结构示意图。图15所示的芯片可以为通用处理器,也可以为专用处理器。该芯片包括处理器301。其中,处理器301用于支持折叠屏夹角的确定装置200执行前述所示的技术方案。
可选的,该芯片还包括收发器302,收发器302用于接受处理器301的控制,用于支持折叠屏夹角的确定装置200执行前述所示的技术方案。
可选的,图15所示的芯片还可以包括:存储介质303。
需要说明的是,图15所示的芯片可以使用下述电路或者器件来实现:一个或多个 现场可编程门阵列(field programmable gate array,FPGA)、可编程逻辑器件(programmable logic device,PLD)、控制器、状态机、门逻辑、分立硬件部件、任何其他适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
上述本申请实施例提供的电子设备、折叠屏夹角的确定装置200、计算机存储介质、计算机程序产品、芯片均用于执行上文所提供的方法,因此,其所能达到的有益效果可参考上文所提供的方法对应的有益效果,在此不再赘述。
应理解,上述只是为了帮助本领域技术人员更好地理解本申请实施例,而非要限制本申请实施例的范围。本领域技术人员根据所给出的上述示例,显然可以进行各种等价的修改或变化,例如,上述检测方法的各个实施例中某些步骤可以是不必须的,或者可以新加入某些步骤等。或者上述任意两种或者任意多种实施例的组合。这样的修改、变化或者组合后的方案也落入本申请实施例的范围内。
还应理解,上文对本申请实施例的描述着重于强调各个实施例之间的不同之处,未提到的相同或相似之处可以互相参考,为了简洁,这里不再赘述。
还应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,本申请实施例中,“预先设定”、“预先定义”可以通过在设备(例如,包括电子设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
还应理解,本申请实施例中的方式、情况、类别以及实施例的划分仅是为了描述的方便,不应构成特别的限定,各种方式、类别、情况以及实施例中的特征在不矛盾的情况下可以相结合。
还应理解,在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种折叠屏夹角的确定方法,其特征在于,应用于具有折叠屏的电子设备中,所述折叠屏包括两个显示屏,每个显示屏包括加速度传感器和陀螺仪传感器;
    所述折叠屏夹角的确定方法包括:
    针对所述每个显示屏,利用所述加速度传感器获取t时刻的初始加速度信号,利用所述陀螺仪传感器获取t时刻的初始角速度信号;
    针对所述每个显示屏,对所述t时刻的初始加速度信号进行第一预处理,确定t时刻的重力加速度信号的目标值,以及对所述t时刻的初始角速度信号进行第二预处理,确定t时刻的中间角速度信号;
    根据所述两个显示屏分别对应的所述t时刻的重力加速度信号的目标值和所述t时刻的中间角速度信号,确定所述折叠屏t时刻的状态,所述折叠屏的状态包括:所述折叠屏垂直于水平面、所述折叠屏的两个显示屏是折叠的、弯折的、展开的、所述折叠屏t时刻的夹角相对于t-1时刻的夹角发生改变、所述折叠屏t时刻的夹角相对于t-1时刻的夹角未变中的至少一项;
    根据所述折叠屏t时刻的状态,确定所述折叠屏t时刻对应的夹角大小。
  2. 根据权利要求1所述的折叠屏夹角的确定方法,其特征在于,针对所述每个显示屏,对所述t时刻的初始加速度信号进行第一预处理,确定t时刻的重力加速度信号的目标值,包括:
    针对所述每个显示屏,对所述t时刻的初始加速度信号进行坐标系转换和均值滤波,得到t时刻的重力加速度信号的测量值;
    根据t-1时刻的重力加速度信号的目标值和t-1时刻的初始角速度信号,利用时间更新方程,确定t时刻的重力加速度信号的预测值;
    根据所述t时刻的重力加速度信号的测量值和所述t时刻的重力加速度信号的预测值,利用卡尔曼滤波算法,确定所述t时刻的重力加速度信号的目标值。
  3. 根据权利要求1或2所述的折叠屏夹角的确定方法,其特征在于,针对每个显示屏,对所述t时刻的初始角速度信号进行第二预处理,确定t时刻的中间角速度信号,包括:
    针对每个显示屏,对所述t时刻的初始角速度信号进行低通滤波,确定所述t时刻的中间角速度信号。
  4. 根据权利要求1至3中任一项所述的折叠屏夹角的确定方法,其特征在于,根据所述两个显示屏分别对应的所述t时刻的重力加速度信号的目标值和所述t时刻的中间角速度信号,确定所述折叠屏t时刻的状态,包括:
    对所述折叠屏进行屏幕垂直检测,判断所述折叠屏是否垂直于水平面;
    若否,则对所述折叠屏进行屏幕开合检测,判断所述折叠屏的两个显示屏是折叠的、展开的、还是弯折的。
  5. 根据权利要求4所述的折叠屏夹角的确定方法,其特征在于,对所述折叠屏进行屏幕垂直检测,判断所述折叠屏是否垂直于水平面,包括:
    确定所述两个显示屏分别对应的所述t时刻的重力加速度信号的目标值,在y轴 上的分量与标准重力加速度的差值的绝对值,是否均小于第一预设阈值,所述标准重力加速度用于指示物体受地球引力作用在真空中下落的加速度;
    若是,则所述折叠屏垂直于水平面;
    若否,则所述折叠屏非垂直于水平面。
  6. 根据权利要求4或5所述的折叠屏夹角的确定方法,其特征在于,对所述折叠屏进行屏幕开合检测,判断所述折叠屏的两个显示屏是折叠的、展开的还是弯折的,包括:
    确定所述两个显示屏分别对应的所述t时刻的重力加速度信号的目标值,在x轴上的分量的绝对值之间的差值,是否小于第二预设阈值;
    若否,则所述折叠屏是弯折的;
    若是,则确定所述两个显示屏分别对应的所述t时刻的重力加速度信号,在z轴上的分量之间的差值的绝对值,是否小于第三预设阈值;
    若是,则所述折叠屏是展开的;
    若否,则所述折叠屏是折叠的。
  7. 根据权利要求4至6中任一项所述的折叠屏夹角的确定方法,其特征在于,根据所述折叠屏t时刻的状态,确定所述折叠屏t时刻对应的夹角大小,包括:
    若所述折叠屏是垂直于水平面的,则根据Angle=LastAngle+DeltaAngle,确定所述两个显示屏之间的夹角;其中,Angle用于指示t时刻所述两个显示屏之间的夹角,LastAngle用于指示t-1时刻所述两个显示屏之间的夹角,DeltaAngle用于指示t-1时刻到t时刻之间,所述两个显示屏之间的角度变化量;
    若所述折叠屏是折叠的,则夹角为0°;
    若所述折叠屏是展开的,则夹角为180°;
    若所述折叠屏是弯折的,则根据所述两个显示屏分别对应的所述t时刻的重力加速度信号的目标值,确定两个所述t时刻的重力加速度信号在xoz平面上的投影向量之间的第一夹角;
    根据所述第一夹角,确定所述折叠屏t时刻对应的夹角大小。
  8. 根据权利要求7所述的折叠屏夹角的确定方法,其特征在于,所述方法还包括:
    对所述折叠屏进行角度变化检测,判断所述折叠屏t时刻的夹角相对于t-1时刻的夹角是否改变;
    若改变,则利用所述两个显示屏分别对应的所述t时刻的中间角速度信号在y轴上的角速度分量,确定所述两个显示屏t-1时刻到t时刻之间的角度变化量;
    根据折叠屏t-1时刻对应的夹角和所述折叠屏t-1时刻到t时刻之间的角度变化量,确定所述折叠屏t时刻对应的夹角的预测值。
  9. 根据权利要求8所述的折叠屏夹角的确定方法,其特征在于,对所述折叠屏进行角度变化检测,判断所述折叠屏t时刻的夹角相对于t-1时刻的夹角是否改变,包括:
    确定所述两个显示屏分别对应的所述t时刻的中间角速度信号,在y轴上的角速度分量之间的差值,是否大于第四预设阈值;
    若否,则所述折叠屏t时刻的夹角相对于t-1时刻的夹角没有改变;
    若是,则所述折叠屏t时刻的夹角相对于t-1时刻的夹角发生了改变。
  10. 根据权利要求8或9所述的折叠屏夹角的确定方法,其特征在于,根据所述折叠屏t时刻的状态,确定所述折叠屏t时刻对应的夹角大小,包括:
    将根据所述第一夹角确定出的所述折叠屏t时刻对应的夹角,作为所述折叠屏t时刻对应的夹角的测量值;
    根据所述折叠屏t时刻对应的夹角的预测值和所述折叠屏t时刻对应的夹角的测量值,利用卡尔曼滤波算法,确定所述折叠屏t时刻对应的夹角大小。
  11. 根据权利要求10所述的折叠屏夹角的确定方法,其特征在于,所述折叠屏的状态还包括:静止、轻微运动和剧烈运动中的至少一项;
    所述方法还包括:
    对所述折叠屏进行运动等级检测,判断所述折叠屏是静止、轻微运动还是剧烈运动;
    若静止,则减小所述卡尔曼滤波算法的测量噪声矩阵R中的参数;
    根据所述折叠屏t时刻对应的夹角的预测值和所述夹角的测量值,利用测量噪声矩阵中的参数减小后的所述卡尔曼滤波算法,确定所述折叠屏t时刻对应的夹角的目标值;
    若轻微运动,则增大所述卡尔曼滤波算法的所述测量噪声矩阵中的参数;
    根据所述折叠屏t时刻对应的夹角的预测值和所述夹角的测量值,利用测量噪声矩阵中的参数增大后的所述卡尔曼滤波算法,确定所述折叠屏t时刻对应的夹角的目标值;
    若剧烈运动,则根据Angle=LastAngle+DeltaAngle,确定所述折叠屏t时刻对应的夹角大小;其中,Angle用于指示t时刻所述两个显示屏之间的夹角,LastAngle用于指示t-1时刻所述两个显示屏之间的夹角,DeltaAngle用于指示t-1时刻到t时刻之间,所述两个显示屏之间的角度变化量。
  12. 根据权利要求11所述的折叠屏夹角的确定方法,其特征在于,对所述折叠屏进行运动等级检测,判断所述折叠屏的运动等级,包括:
    针对所述每个显示屏,确定所述加速度传感器获取t时刻的初始加速度信号的模值;
    针对所述每个显示屏,确定所述t时刻的初始加速度信号的模值与参考值之间的差值,是否小于第五预设阈值,所述参考值为所述每个显示屏t时刻的重力加速度信号的目标值对应的常量;
    若所述两个显示屏分别确定的所述t时刻的初始加速度信号的模值与所述参考值之间的差值,均小于所述第五预设阈值,则所述折叠屏是静止的;
    否则,判断所述两个显示屏分别确定的所述t时刻的初始加速度信号的模值与所述参考值之间的差值,是否均小于n倍的第五预设阈值,n为大于1的数值;
    若是,则所述折叠屏是轻微运动的;
    若否,则所述折叠屏是剧烈运动的。
  13. 一种电子设备,其特征在于,包括:
    一个或多个处理器和存储器;
    所述存储器与所述一个或多个处理器耦合,所述存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,所述一个或多个处理器调用所述计算机指令以 使得所述电子设备执行如权利要求1至12中任一项所述的折叠屏夹角的确定方法。
  14. 一种芯片系统,其特征在于,所述芯片系统应用于电子设备,所述芯片系统包括一个或多个处理器,所述处理器用于调用计算机指令以使得所述电子设备执行如权利要求1至12中任一项所述的折叠屏夹角的确定方法。
  15. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储了计算机程序,当所述计算机程序被处理器执行时,使得处理器执行权利要求1至12中任一项所述的折叠屏夹角的确定方法。
  16. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码被处理器执行时,使得处理器执行权利要求1至12中任一项所述的折叠屏夹角的确定方法。
PCT/CN2022/116202 2021-12-28 2022-08-31 折叠屏夹角的确定方法及其相关设备 WO2023124177A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/004,101 US20240125596A1 (en) 2021-12-28 2022-08-31 Method for Determining Foldable Screen Included Angle and Associated Devices of Method
EP22830350.9A EP4228230A4 (en) 2021-12-28 2022-08-31 METHOD FOR DETERMINING A FOLDABLE SCREEN TIP ANGLE AND ITS ASSOCIATED DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111633647.4 2021-12-28
CN202111633647.4A CN116366750B (zh) 2021-12-28 2021-12-28 折叠屏夹角的确定方法及其相关设备

Publications (1)

Publication Number Publication Date
WO2023124177A1 true WO2023124177A1 (zh) 2023-07-06

Family

ID=85462134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116202 WO2023124177A1 (zh) 2021-12-28 2022-08-31 折叠屏夹角的确定方法及其相关设备

Country Status (4)

Country Link
US (1) US20240125596A1 (zh)
EP (1) EP4228230A4 (zh)
CN (1) CN116366750B (zh)
WO (1) WO2023124177A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116592756B (zh) * 2023-07-17 2023-10-20 荣耀终端有限公司 折叠屏夹角的检测方法及电子设备
CN117630414B (zh) * 2024-01-25 2024-05-24 荣耀终端有限公司 加速度传感器校准方法、折叠式电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536004A (zh) * 2019-07-23 2019-12-03 华为技术有限公司 多传感器应用于具有柔性屏幕的电子设备的方法及电子设备
WO2021128245A1 (en) * 2019-12-27 2021-07-01 Intel Corporation Hinge angle detection
US20210348911A1 (en) * 2020-05-05 2021-11-11 Stmicroelectronics S.R.L. Electronic apparatus control method performed through lid angle calculation, electronic apparatus thereof and software product

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102079348B1 (ko) * 2012-07-30 2020-04-07 삼성전자주식회사 플렉서블 장치 및 그 동작 제어 방법
IT201700057066A1 (it) * 2017-05-25 2018-11-25 St Microelectronics Srl Sistema di elaborazione implementante un algoritmo per la fusione di dati da sensori inerziali, e metodo
CN109302508A (zh) * 2017-07-25 2019-02-01 中兴通讯股份有限公司 一种确定双屏相对位置的方法、显示控制的方法及终端
CN110012154A (zh) * 2019-02-22 2019-07-12 华为技术有限公司 一种具有折叠屏的电子设备的控制方法及电子设备
CN110545354A (zh) * 2019-07-18 2019-12-06 华为技术有限公司 一种具有折叠屏的电子设备的控制方法及电子设备
CN113542453A (zh) * 2020-03-31 2021-10-22 北京小米移动软件有限公司 一种折叠屏终端设备、其状态检测方法和电子设备
CN113495598A (zh) * 2020-04-08 2021-10-12 罗伯特·博世有限公司 用于折叠设备的数据处理装置和数据处理方法
CN113534974A (zh) * 2020-04-14 2021-10-22 北京小米移动软件有限公司 方向检测方法及装置、存储介质
CN113703519A (zh) * 2020-05-21 2021-11-26 北京小米移动软件有限公司 折叠屏姿态确定方法、装置及存储介质
CN111766918B (zh) * 2020-06-05 2023-03-24 北京小米移动软件有限公司 折叠屏姿态检测方法和装置、电子设备以及计算机可读存储介质
CN112099574A (zh) * 2020-09-23 2020-12-18 北京小米移动软件有限公司 显示屏状态的确定方法、装置、电子设备和存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536004A (zh) * 2019-07-23 2019-12-03 华为技术有限公司 多传感器应用于具有柔性屏幕的电子设备的方法及电子设备
WO2021128245A1 (en) * 2019-12-27 2021-07-01 Intel Corporation Hinge angle detection
US20210348911A1 (en) * 2020-05-05 2021-11-11 Stmicroelectronics S.R.L. Electronic apparatus control method performed through lid angle calculation, electronic apparatus thereof and software product

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4228230A4

Also Published As

Publication number Publication date
CN116366750A (zh) 2023-06-30
US20240125596A1 (en) 2024-04-18
CN116366750B (zh) 2024-04-16
EP4228230A4 (en) 2024-02-07
EP4228230A1 (en) 2023-08-16

Similar Documents

Publication Publication Date Title
WO2023124177A1 (zh) 折叠屏夹角的确定方法及其相关设备
CN108596976B (zh) 相机姿态追踪过程的重定位方法、装置、设备及存储介质
CN110784651B (zh) 一种防抖方法及电子设备
CN113115439B (zh) 定位方法及相关设备
CN109462745B (zh) 一种白平衡处理方法及移动终端
WO2017039907A1 (en) Point-to-point distance measurements in 3d camera images
WO2020259544A1 (zh) 一种确定校准参数的方法及电子设备
WO2024001506A1 (zh) 显示方法与电子设备
CN111145192A (zh) 图像处理方法及电子设备
US20230209193A1 (en) Image stabilization method and electronic device therefor
JP6862564B2 (ja) 画像合成のための方法、装置および不揮発性コンピュータ可読媒体
CN115701125B (zh) 图像防抖方法与电子设备
CN108230372B (zh) 一种图像处理方法、终端及计算机可读存储介质
CN111031265B (zh) 一种fsr确定方法及电子设备
CN110673694A (zh) 一种应用打开方法和电子设备
US20230141559A1 (en) Method for providing image and electronic device supporting the same
US20230022444A1 (en) Electronic device generating image and method for operating the same
CN111836226B (zh) 数据传输控制方法、装置及存储介质
CN111179628B (zh) 自动驾驶车辆的定位方法、装置、电子设备及存储介质
CN110807411B (zh) 一种月亮识别方法及电子设备
CN114172596A (zh) 信道噪声检测方法及相关装置
CN111563838A (zh) 图像处理方法及电子设备
CN113311380B (zh) 校准方法、装置以及存储介质
CN114339607B (zh) 测距方法、装置及存储介质
US20240179399A1 (en) Electronic device for cropping subject within image frames and method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18004101

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022830350

Country of ref document: EP

Effective date: 20230105