WO2023124120A1 - 一种光模块 - Google Patents
一种光模块 Download PDFInfo
- Publication number
- WO2023124120A1 WO2023124120A1 PCT/CN2022/113313 CN2022113313W WO2023124120A1 WO 2023124120 A1 WO2023124120 A1 WO 2023124120A1 CN 2022113313 W CN2022113313 W CN 2022113313W WO 2023124120 A1 WO2023124120 A1 WO 2023124120A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chip
- circuit board
- optical module
- silicon
- laser
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 101
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 112
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 112
- 239000010703 silicon Substances 0.000 claims abstract description 112
- 239000013307 optical fiber Substances 0.000 claims description 44
- 230000017525 heat dissipation Effects 0.000 abstract description 42
- 238000009825 accumulation Methods 0.000 abstract description 7
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000009286 beneficial effect Effects 0.000 description 7
- 238000004891 communication Methods 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 239000011889 copper foil Substances 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000003292 glue Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4219—Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
- G02B6/4236—Fixing or mounting methods of the aligned elements
- G02B6/4245—Mounting of the opto-electronic elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
- G02B6/4214—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4219—Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
- G02B6/4236—Fixing or mounting methods of the aligned elements
- G02B6/4244—Mounting of the optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4266—Thermal aspects, temperature control or temperature monitoring
- G02B6/4268—Cooling
- G02B6/4269—Cooling with heat sinks or radiation fins
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4274—Electrical aspects
- G02B6/428—Electrical aspects containing printed circuit boards [PCB]
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4296—Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
Definitions
- the invention relates to the technical field of optoelectronic device packaging, in particular to an optical module.
- optical communication technology will be used in new business and application modes such as cloud computing, mobile Internet, and video.
- the optical module is a tool to realize the mutual conversion of photoelectric signals, and it is one of the key components in optical communication equipment.
- the use of silicon photonic chips to realize the photoelectric conversion function has become a mainstream solution adopted by high-speed optical modules.
- an optical module 90 in the prior art includes a circuit board (PCB) 91 .
- the electric drive chip 92 is arranged on the circuit board 91, and a groove is dug on one side of the circuit board 91 to accommodate the silicon photonics chip 93.
- the silicon photonics chip 93 and the circuit board 91 are arranged on the same layer and located on the heat sink 94 superior.
- the silicon photonics chip 93 is connected to an optical fiber assembly 95 at an end away from the circuit board 91 .
- the optical fiber assembly 95 is connected to an interface portion 96, and a plurality of light sources 97 are arranged on the heat sink 94 corresponding to the position of the silicon photonics chip 93, and the light sources 97 are located on one side of the optical fiber assembly 95, so that the light sources 97-
- the silicon photonics chip 93 loads the modulated signal-the output of the optical fiber assembly 95 .
- the heat of the light source 97 is relatively concentrated, and the requirements for heat dissipation materials are relatively high, and the heat sink 94 is usually used for heat dissipation.
- the silicon photonic chip 93 is connected to the circuit board 91 by a gold wire 98, and the silicon photonic chip 93 is a high-speed device, which is very sensitive to the connection length of the gold wire 98.
- a certain area is hollowed out on the board 91 to form grooves for placing the heat sink 94 , the silicon photonics chip 93 and the light source 97 .
- the purpose of the invention is to provide an optical module.
- the heat dissipation surface of the heat sink in the optical module and the electric drive chip on the circuit board are not on the same side, resulting in unsatisfactory heat dissipation technical problems, and digging grooves on the circuit board to place the heat sink, silicon optical chip and light source, resulting in poor utilization of the circuit board. High technical problems that lead to waste of resources.
- an optical module which includes a housing, a circuit board disposed in the housing, an electric drive chip, a silicon photonics chip, a laser, and a light guide device;
- the circuit board It includes a first surface and a second surface facing away from each other;
- the electric drive chip is arranged on the first surface of the circuit board and connected to the first surface of the circuit board;
- the silicon optical chip is arranged on the first surface of the circuit board on the first surface of the circuit board and connected to the first surface of the circuit board;
- the laser is arranged on the surface of the silicon photonic chip on the side away from the circuit board, and the laser emits light and will emit The light from the laser is transmitted to the silicon photonic chip;
- the light guide device guides the light emitted by the laser into the silicon photonic chip.
- the light guiding device includes a first reflective surface and a second reflective surface, the light emitted by the laser is irradiated to the first reflective surface, and is reflected to the second reflective surface after being reflected by the first reflective surface.
- the two reflective surfaces are reflected into the silicon photonics chip after being reflected by the second reflective surface.
- the light guiding device includes an isosceles right-angle prism, and the isosceles right-angle prism includes an inclined surface and two right-angle surfaces; the two right-angle surfaces constitute the first reflection surface and the second reflection surface respectively .
- the light guiding device is fixed to the outer sidewall of the silicon photonics chip through the slope of the rectangular isosceles prism.
- an input waveguide and an output waveguide are provided in the silicon photonics chip, and the light guiding device guides light into the silicon photonics chip through the input waveguide.
- the optical module further includes an optical fiber assembly disposed above the first surface of the circuit board and connected to the silicon optical chip.
- the lasers are uniformly distributed on one or both sides of the optical fiber assembly.
- the laser is arranged side by side with the silicon photonics chip, and the laser is located on a side of the silicon photonics chip opposite to the optical fiber assembly.
- the beneficial effect of the present invention is to provide an optical module, by arranging the laser and the silicon optical chip side by side on the same side of the circuit board, and the light guide device is arranged corresponding to the laser
- the emitted light is guided into the silicon photonics chip, so that the silicon photonics chip, laser and electric drive chip that generate heat are located on the same side surface of the circuit board, so that a heat dissipation component can be set on the same side of the circuit board, which is conducive to realizing Heat dissipation to avoid concentrated accumulation of heat inside the optical module;
- the laser is evenly distributed on one or both sides of the optical fiber assembly, which can increase the heat dissipation area to avoid heat concentration; and this structure does not need to dig grooves on the circuit board
- Placing heat sinks, silicon photonic chips and light source components improves the utilization rate of circuit boards and reduces production costs.
- FIG. 1 is a schematic diagram of a three-dimensional structure of an optical module in a common technology.
- FIG. 2 is a schematic cross-sectional structure diagram of an optical module in a common technology.
- FIG. 3 is a schematic diagram of the overall structure of the optical module provided in Embodiment 1 of the present application in an assembled state.
- FIG. 4 is a schematic cross-sectional view of a partial structure of the optical module provided by Embodiment 1 of the present application.
- FIG. 5 is a schematic diagram of the working principle of the silicon photonics chip provided in Embodiment 1 of the present application.
- FIG. 6 is a schematic diagram of heat dissipation of the optical module provided by Embodiment 1 of the present application.
- FIG. 7 is a schematic diagram of a partial structure of an optical module provided in Embodiment 2 of the present application.
- FIG. 8 is a schematic diagram of a partial structure of an optical module provided by Embodiment 3 of the present application.
- Figure 1 to Figure 2 optical module 90, circuit board 91, electric drive chip 92, silicon photonics chip 93, heat sink 94, optical fiber assembly 95, interface part 96, light source 97, gold wire 98;
- optical module 100 optical module 100, circuit board 1, electric drive chip 2, silicon photonics chip 3, light source component 4, optical fiber component 5, heat dissipation component 6, solder ball 7, housing 9, light guide device 10, the first A reflective surface 11, a second reflective surface 12, an inclined plane 13, an input waveguide 31, an output waveguide 32, a modulator 33, a wavelength division multiplexer 34, a laser 41, a lens 42, an optical isolator 43, a cooling plate 61, and fins 62 , the first surface 101 and the second surface 102 .
- connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be mechanically connected, or electrically connected, or can communicate with each other; it can be directly connected, or indirectly connected through an intermediary, and it can be the internal communication of two components or the interaction of two components relation. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
- a first feature being "on” or “under” a second feature may include direct contact between the first and second features, and may also include the first and second features Not in direct contact but through another characteristic contact between them.
- “above”, “above” and “above” the first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature.
- “Below”, “beneath” and “under” the first feature to the second feature include that the first feature is directly below and obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
- Embodiment 1 of the present application provides an optical module 100 .
- the optical module 100 is a tool for realizing mutual conversion of optical and electrical signals, and is one of the key components in optical communication equipment.
- the optical module 100 includes a housing 9 and a circuit board 1 , an electric driver chip 2 , a silicon photonics chip 3 , a light source component 4 , an optical fiber component 5 and a light guide device 10 disposed in the housing 9 .
- One end of the circuit board 1 has golden fingers, and the circuit board 1 is arranged in a longitudinal direction in the direction of connecting the electrical port of the optical module to the optical port.
- Circuit board 1 is also called printed board (PCB), its main material is copper clad laminate, and copper clad laminate (copper clad laminate) is composed of substrate, copper foil and adhesive.
- PCB printed board
- the substrate is an insulating laminate composed of polymer synthetic resin and reinforcing materials; the surface of the substrate is covered with a layer of pure copper foil with high conductivity and good weldability; the copper clad laminate with copper foil covering one side of the substrate is called single-sided Copper-clad laminates, copper-clad laminates covered with copper foil on both sides of the substrate are called double-sided copper-clad laminates; whether the copper foil can be firmly covered on the substrate is determined by the adhesive.
- the circuit board 1 includes a first surface 101 and a second surface 102 facing away from each other, and the silicon photonics chip 3 and the electric drive chip 2 are both connected to the circuit board. 1 on the first surface 101 of the circuit board 1 , the optical fiber assembly 5 is disposed on the first surface of the circuit board 1 .
- the first surface 101 is the upper surface of the circuit board 1
- the second surface 102 is the lower surface of the circuit board 1 .
- the electric driving chip 2 is arranged on the first surface 101 of one side of the circuit board 1 ; the silicon photonics chip 3 and the electric driving chip 2 are arranged side by side on the same side of the circuit board 1 .
- the light source assembly 4 is arranged on the side of the silicon photonics chip 3 facing away from the circuit board 1 , for emitting light without signal and transmitting it to the silicon photonics chip 3 . That is to say, the light source assembly 4 is disposed on the silicon photonics chip 3 .
- the optical fiber assembly 5 is optically coupled to the silicon photonics chip 3 .
- the optical fiber assembly 5 includes a plurality of optical fibers and optical connectors at the ends, and the optical fiber connectors are used for coupling and connection with the silicon optical chip 3 .
- the silicon photonics chip 3 is used to selectively pass the light emitted by the light source assembly 4 in combination with the electric drive chip 2 to form optical signals with data information, and these optical signals are transmitted to the optical fiber assembly 5 for transmission.
- the electric drive chip 2 is correspondingly arranged in the extension direction where the silicon optical chip 3 is connected to the optical fiber assembly 5 , and the optical fiber assembly 5 and the silicon optical One side of chip 3 is connected.
- the light guide device 10 is arranged corresponding to the light source assembly 4, and the light guide device 10 guides the light emitted by the light source assembly 4 into the silicon photonic chip 3, and the silicon photonic chip 3 is used for light processing. After processing, the light is transmitted to the fiber optic assembly 5 . As shown in FIG.
- the electric drive chip 2 , the silicon photonics chip 3 , and the optical fiber assembly 5 are arranged sequentially along the longitudinal direction of the optical module 100 (that is, the connection direction between the optical port and the electrical port). .
- the light guiding device 10 and the optical fiber assembly 5 are connected side by side to the same side of the silicon photonics chip 3 .
- the light source assembly 4 includes multiple lasers 41 , multiple lenses 42 , and multiple optical isolators 43 ; the light guiding device 10 is a turning prism.
- the laser 41 is the main heating element.
- the laser 41 , the lens 42 , and the optical isolator 43 are arranged on the silicon photonics chip 3
- the light guide device 10 is arranged on a side of the silicon photonics chip 3 .
- the plurality of lasers 41 are mounted on the silicon photonic chip 3 for emitting light;
- the lens 42, the laser 41 and the optical isolator 43 are correspondingly arranged on a straight line, and are mounted on the silicon photonic chip 3. 3 on.
- the electric drive chip 2 is used to drive the silicon photonics chip 3 to work.
- the light guiding device 10 is arranged correspondingly to the optical isolator 43, and is mounted on the side wall of the silicon photonic chip 3; wherein, the laser 41, the lens 42, the optical isolator 43, the The light guiding devices 10 are respectively arranged in one-to-one correspondence to form a plurality of light path channels.
- the lens 42 is installed on the top surface of the silicon photonics chip 3; each lens 42 is arranged opposite to the light-emitting surface of a corresponding laser 41, and the central axis of the lens 42 is on the same line as the center line of the light source of the laser 41 above; the optical isolator 43 is installed on the top surface of the silicon photonics chip 3;
- the light guide device 10 includes a first reflective surface 11 and a second reflective surface 12, the light emitted by the laser 41 is irradiated to the first reflective surface 11, and is reflected by the first reflective surface 11 to The second reflective surface 12 is reflected into the silicon photonics chip 3 after being reflected by the second reflective surface 12 . Therefore, a beam of light emitted by the laser 41 passes through a lens 42 , an optical isolator 43 , and a light guide device 10 in sequence, reflects to the sidewall of the silicon photonic chip 3 and enters the silicon photonic chip 3 to form an optical channel.
- the light guiding device 10 may also be an optical fiber or other components.
- FIG. 5 it is a schematic diagram of the working principle of the silicon photonic chip 3 in this embodiment.
- the silicon photonic chip 3 includes an optical waveguide, a modulator, a splitter, a detector, a wavelength division multiplexer, and a wavelength division multiplexer. Access, circuits, heating (resistance), circuit pads, etc.
- Figure 5 shows a simplified structure.
- the optical waveguide includes an input waveguide 31 and an output waveguide 32 located on the same side. A beam of light enters from the input waveguide 31 and is transmitted in the waveguide (indicated by lines in the figure). After passing through the modulator 33, the waveguide The demultiplexer 34 outputs the light beam with the signal from the output waveguide 32.
- the light guiding device 10 is an isosceles rectangular prism.
- the isosceles right-angle prism includes an inclined surface 13 and two right-angle surfaces; the two right-angle surfaces constitute the first reflective surface 11 and the second reflective surface 12 respectively.
- a part of the slope 13 is fixedly connected with the side wall surface of the silicon photonics chip 3 .
- the light guide device 10 can be fixed on the silicon photonics chip 3 by means of glue.
- the first reflective surface 11 and the second reflective surface 12 are used to reflect light.
- Both the light incident surface and the light exit surface of the light guide device 10 are part of the inclined surface 13; wherein, the light converged by the lens 42 enters the light guide device through the inclined surface 13 (light incident surface) After 10, total reflection occurs sequentially on the first reflective surface 11 and the second reflective surface 12, and then reflected to the side wall surface of the silicon photonics chip 3, and emitted through the inclined surface 13 (light-emitting surface) into the corresponding input waveguide.
- the multiple optical paths formed by the light source assembly 4 are located on the same side of the optical fiber assembly 5 . This is beneficial to disperse the heat generated by the light source assembly 4, avoid heat concentration, and facilitate heat dissipation.
- the optical module 100 may be an optical module with eight channels. That is, the eight optical paths formed by the light source assembly 4 use two or four lasers 41, and finally transmit from eight bundles of optical fibers. In practical applications, the number of optical channels can be adjusted to more or fewer channels according to actual needs, depending on the needs, which is not limited in this application.
- the silicon photonics chip 3 is arranged side by side with the electric drive chip 2 .
- the concentration of heat sources can be avoided by increasing the distance between the silicon photonic chip 3 and the electric drive chip 2, for example, there is a gap between the silicon photonic chip 3 and the electric drive chip 2, and the distance between the gap
- the ratio of the width to the width of the electric driving chip 3 is 0.5-2. This adjusts the heat distribution.
- the lasers 41 are evenly distributed on the same side of the optical fiber assembly 5 , so as to avoid concentration of heat generated by the lasers 41 .
- the laser 41 and the silicon photonics chip 3 are arranged side by side on the same side of the circuit board 1, and the light guide device 10 is arranged corresponding to the laser 41 to emit light from the laser 41. Import the silicon photonics chip 3, so that the silicon photonics chip 3 and the laser 41 that generate heat are located on the same side surface of the circuit board 1 as the electric drive chip 2, so that heat can be dissipated on the same side of the circuit board, which is beneficial to realize the optical module Internal heat dissipation to avoid concentrated accumulation of heat inside the optical module.
- the distance of the laser 41 on the edge of the silicon photonic chip 3 near the end of the optical fiber assembly 5 is smaller than the distance of the laser 41 on the edge of the silicon photonic chip 3 near the end of the electric drive chip 2 . That is to say, the position of the laser 41 on the silicon photonics chip 3 is closer to the optical fiber assembly 5 (or the light guide device 10 ) than the electric driving chip 2 . In this way, the distance between the laser 41 and the electric drive chip 2 can also be increased to avoid concentration of heat sources.
- the silicon photonics chip 3 and the circuit board 1 are electrically connected through solder balls 7, which is also suitable for the existing soldering process and realizes mass production.
- the housing 9 is a box, and the circuit board 1, the electric drive chip 2, the silicon photonics chip 3 and the light source assembly 4 are located in the box. , protected by the housing 9 .
- a heat dissipation pad or heat conduction glue can be added in the housing 9 to fix and dissipate heat from components such as the circuit board 1 , the electric drive chip 2 , the silicon photonics chip 3 , and the laser 41 .
- the optical module 100 further includes a heat dissipation component 6 , and the heat dissipation component 6 is thermally connected to the outer surface of the housing 9 .
- the heat dissipation assembly 6 includes a heat dissipation plate 61 and more than two fins 62; the heat dissipation plate 61 is thermally connected to the outer surface of the housing 9; more than two fins 62 protrude from the heat dissipation plate 61 away from the The surface on one side of the housing 9.
- the optical module 100 only has a heat dissipation assembly 6 on the housing 9, so that the heat can be dissipated on the same side of the circuit board 1 as much as possible, so as to avoid heat dissipation on the upper and lower surfaces of the circuit board 1 and cause the circuit board 1 to dissipate heat. If the temperature is too high, avoid that the temperature of the photoelectric device is too high to work.
- the heat dissipation assembly 6 is a heat dissipation fin provided on the housing 9 , of course, there may be no heat dissipation assembly 6 .
- the heat sink 8 in this embodiment can also be integrally formed with the housing 9 .
- the housing 9 can also be divided into two parts, the upper housing and the lower housing.
- the heat dissipation assembly 6 is a heat sink provided on the upper housing.
- the heat generated by the laser 41 is conducted to the heat sink 8 and then to the upper housing through the heat sink 8.
- the body dissipates heat through the heat dissipation assembly 6.
- the electric driver chip 2 can be thermally connected to the casing 9 through a heat dissipation pad or heat dissipation glue, and the heat generated by the driver chip 2 is also conducted to the upper casing through the heat dissipation pad and dissipated through the heat dissipation assembly 6 .
- Embodiment 2 contains most of the technical features of Embodiment 1. The difference is that, as shown in FIG. Chip 3 has a rectangular shape. And the light guiding device 10 is arranged on the adjacent side where the silicon photonic chip 3 is connected to the optical fiber assembly 5, instead of the electric drive chip 2, the silicon photonic chip 3, and the optical fiber in Embodiment 1. The components 5 are sequentially arranged along the longitudinal direction of the optical module 100 , and the light guiding device 10 and the optical fiber component 5 are connected side by side to the same side of the silicon optical chip 3 . The light guiding device 10 is arranged on the adjacent side of the silicon photonic chip 3 connected to the optical fiber assembly 5, so that the side space of the silicon photonic chip 3 can be used to compress the extension direction of the optical fiber assembly 5. length, so that the overall length in the extending direction of the optical fiber assembly 5 can be reduced.
- Embodiment 2 of the present application lies in that the arrangement directions of the light guide device 10 and the light source components 4 disposed on the silicon photonics chip 3 are different.
- the lasers 41 are evenly distributed on the same side of the optical fiber assembly 5 , so as to avoid concentration of heat generated by the lasers 41 .
- the laser 41 and the silicon photonics chip 3 are arranged side by side on the same side of the circuit board 1, and the light guide device 10 is set corresponding to the laser 41 to emit light from the laser 41.
- the light is guided into the silicon photonics chip 3, so that the silicon photonics chip 3 and the laser 41 that generate heat are located on the same side surface of the circuit board 1 as the electric drive chip 2, so that heat can be dissipated on the same side of the circuit board, which is conducive to realizing
- the internal heat dissipation of the optical module avoids the concentrated accumulation of heat inside the optical module.
- Embodiment 3 contains most of the technical features of Embodiment 1. The difference is that, as shown in FIG. 8 , in Embodiment 3, in order to avoid heat source concentration, the laser 41 is evenly distributed on the optical fiber assembly 5 on both sides rather than one side. In Embodiment 3, the plurality of light paths formed by the light source assembly 4 are evenly distributed on both sides of the optical fiber assembly 5, and correspondingly, the light guide device 10 corresponding to the light source assembly 4 is also distributed on the Both sides of the fiber optic assembly 5. In this embodiment, heat generating elements can be further dispersedly arranged on the same side of the circuit board 1 to avoid heat concentration and increase the number of optical channels.
- the silicon photonic chip 3 and the electric drive chip 2 are arranged side by side on the same side of the circuit board 1, and the light source assembly 4 is arranged on the silicon photonic chip 3.
- the laser 41 is arranged side by side with the silicon photonic chip 3 , and the laser 41 is located on the side of the silicon photonic chip 3 opposite to the optical fiber assembly 5 , That is, the laser 41 is located on the side of the silicon photonics chip 3 corresponding to the optical fiber assembly 5 .
- the beneficial effect of the present invention is to provide an optical module, by arranging the laser and the silicon optical chip side by side on the same side of the circuit board, and the light guide device is arranged corresponding to the laser
- the emitted light is guided into the silicon photonics chip, so that the silicon photonics chip, laser and electric drive chip that generate heat are located on the same side surface of the circuit board, so that a heat dissipation component can be set on the same side of the circuit board, which is conducive to realizing Heat dissipation to avoid concentrated accumulation of heat inside the optical module;
- the laser is evenly distributed on one or both sides of the optical fiber assembly, which can increase the heat dissipation area to avoid heat concentration; and this structure does not need to dig grooves on the circuit board
- Placing heat sinks, silicon photonic chips and light source components improves the utilization rate of circuit boards and reduces production costs.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Couplings Of Light Guides (AREA)
- Semiconductor Lasers (AREA)
Abstract
本申请公开了一种光模块。该光模块包括壳体和设于所述壳体内的电路板、电驱动芯片、硅光芯片、激光器以及导光装置;所述电驱动芯片及所述硅光芯片连接至所述电路板的第一表面;所述激光器设置于所述硅光芯片远离所述电路板一侧的表面,所述激光器发出光并将发出的光传输至所述硅光芯片,所述导光装置将所述激光器发出的光导入所述硅光芯片。本发明通过将产生热量的硅光芯片、光源组件与电驱动芯片位于电路板的同一侧表面,这样可在电路板的同一侧位置设置散热组件,有利于实现光模块内部散热,避免光模块内部热量集中堆积;而且不用在电路板上挖设凹槽放置热沉,硅光芯片及光源组件,提高了电路板利用率,减少了制作成本。
Description
本发明涉及光电子器件封装技术领域,尤其涉及一种光模块。
在云计算、移动互联网、视频等新型业务和应用模式,均会用到光通信技术。而在光通信中,光模块是实现光电信号相互转换的工具,是光通信设备中的关键器件之一。其中,采用硅光芯片实现光电转换功能已经成为高速光模块采用的一种主流方案。
如图1、图2所示,现有技术中的光模块90包括电路板(PCB)91。电驱动芯片92设在电路板91上,在电路板91的一侧挖设凹槽容置硅光芯片93,所述硅光芯片93与所述电路板91设置在同一层且位于热沉94上。所述硅光芯片93在背离所述电路板91的一端与光纤组件95连接。光纤组件95连接一接口部96,在所述热沉94上对应所述硅光芯片93的位置设有多个光源97,所述光源97位于所述光纤组件95的一侧,实现光源97-硅光芯片93加载调制信号-光纤组件95输出。一般而言,光源97的热量比较集中,对散热材料要求比较高,通常采用热沉94进行散热。所述硅光芯片93采用金线98连接至所述电路板91上,而硅光芯片93属于高速器件,对金线98连接长度非常敏感,要求金线98尽量短,所以一般都是在电路板91上挖空一定区域形成凹槽放置热沉94、硅光芯片93和光源97。但是在电路板91上挖出凹槽一方面导致电路板91的材料浪费,另一方面热沉94散热面和电路板91上电驱动芯片92不在同一面,容易导致散热效果不理想,从而造成光模块内部产生的热量不能及时散出,最终将严重影响光模块的工作性能。
发明的目的在于,提供一种光模块,通过将热沉散热面和电路板上电驱动芯片设置在同一面,便于将热量都传输至主散热面进行散热,避免光模块内部热量集中堆积,解决目前光模块内热沉散热面和电路板上电驱动芯片不在同一面导致的散热效果不理想的技术问题以及在电路板上挖设凹槽放置热沉、硅光芯片及光源造成电路板利用率不高而导致资源浪费的技术问题。
为了实现上述目的,本发明其中一实施例中提供一种光模块,包括壳体和设于所述壳体内的电路板、电驱动芯片、硅光芯片、激光器以及导光装置;所述电路板包括彼此相背离的第一表面和第二表面;所述电驱动芯片设置于所述电路板的第一表面上,并连接至所述电路板的第一表面;所述硅光芯片设置于所述电路板的第一表面上,并连接至所述电路板的第一表面;所述激光器设置于所述硅光芯片上远离所述电路板一侧的表面,所述激光器发出光并将发出的光传输至所述硅光芯片;所述导光装置将所述激光器发出的光导入所述硅光芯片。
进一步地,所述导光装置包括第一反射面和第二反射面,所述激光器发出的光照射至所述第一反射面,并经所述第一反射面的反射后反射至所述第二反射面,经由所述第二反射面的反射后反射至所述硅光芯片中。
进一步地,所述导光装置包括等腰直角棱镜,所述等腰直角棱镜包括一斜面及两个直角面;所述两个直角面分别构成所述第一反射面和所述第二反射面。
进一步地,所述导光装置通过所述等腰直角棱镜的所述斜面固定至所述硅光芯片的外侧壁。
进一步地,所述硅光芯片内设有输入波导与输出波导,所述导光装置通过所述输入波导将光导入到所述硅光芯片中。
进一步地,所述光模块还包括光纤组件,设于所述电路板的第一表面上方,连接至所述硅光芯片。
进一步地,所述激光器均匀分布于所述光纤组件的一侧或两侧。
进一步地,所述激光器与所述硅光芯片并排设置,所述激光器位于所述硅光芯片的与所述光纤组件相对的一侧。
进一步地,所述硅光芯片与所述电驱动芯片之间存在间隙,且该间隙的宽度与所述电驱动芯片的宽度的比值为0.5-2。
进一步地,所述导光装置为至少两个,分布于所述光纤组件的两侧。
本发明的有益效果在于,提供一种光模块,通过将所述激光器与所述硅光芯片并排设于所述电路板的同一侧,而且所述导光装置对应所述激光器设置将所述激光器发出的光导入所述硅光芯片,从而产生热量的硅光芯片、激光器与电驱动芯片位于电路板的同一侧表面,这样可在电路板的同一侧位置设置散热组件,有利于实现光模块内部散热,避免光模块内部热量集中堆积;同时设置所述激光器均匀分布于所述光纤组件的一侧或两侧,可增大散热面积避免热量集中;而且此结构不用在电路板上挖设凹槽放置热沉,硅光芯片及光源组件,提高了电路板利用率,减少了制作成本。
下面结合附图,通过对本申请的具体实施方式详细描述,呈现本申请的技术方案及其它有益效果。
图1为常用技术中的光模块的立体结构示意图。
图2为常用技术中的光模块的截面结构示意图。
图3为本申请实施例1提供的光模块在装配状态下的整体结构示意图。
图4为本申请实施例1提供的光模块的部分结构截面示意图。
图5为本申请实施例1提供的硅光芯片的工作原理示意图。
图6为本申请实施例1提供的光模块的散热原理图。
图7为本申请实施例2提供的光模块的部分结构示意图。
图8为本申请实施例3提供的光模块的部分结构示意图。
图中部件标识如下:
图1至图2:光模块90,电路板91,电驱动芯片92,硅光芯片93,热沉94,光纤组件95,接口部96,光源97,金线98;
图3至图8:光模块100,电路板1,电驱动芯片2,硅光芯片3,光源组件4,光纤组件5,散热组件6,焊锡球7,壳体9,导光装置10,第一反射面11,第二反射面12,斜面13,输入波导31,输出波导32,调制器33,波分复用器34,激光器41,透镜42,光隔离器43,散热板61,翅片62,第一表面101,第二表面102。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
实施例1
具体的,请参阅图3,本申请实施例1提供一种光模块100。在光通信中,光模块100是实现光电信号相互转换的工具,是光通信设备中的关键器件之一。
请参阅图3,该光模块100包括壳体9以及设置在壳体9内的电路板1、电驱动芯片2、硅光芯片3、光源组件4、光纤组件5以及导光装置10。所述电路板1的一端有金手指,电路板1在光模块电口至光口连线方向呈纵长排列。电路板1也称印制板(PCB),其主要材料是覆铜板,而覆铜板(敷铜板)是由基板、铜箔和粘合剂构成的。基板是由高分子合成树脂和增强材料组成的绝缘层板;在基板的表面覆盖着一层导电率较高、焊接性良好的纯铜箔;铜箔覆盖在基板一面的覆铜板称为单面覆铜板,基板的两面均覆盖铜箔的覆铜板称双面覆铜板;铜箔能否牢固地覆在基板上,则由粘合剂来完成。
具体的,请一并参考图4,所述电路板1包括彼此相背离的第一表面101和第二表面102,所述硅光芯片3与所述电驱动芯片2均连接至所述电路板1的第一表面101,所述光纤组件5设于所述电路板1的第一表面。本实施例中第一表面101为所述电路板1的上表面,第二表面102为所述电路板1的下表面。所述电驱动芯片2设于所述电路板1的一侧的第一表面101上;所述硅光芯片3与所述电驱动芯片2并排设于所述电路板1的同一侧。光源组件4设于所述硅光芯片3上背离所述电路板1的一侧,用于发出不携带信号的光并传输至所述硅光芯片3。也就是说,光源组件4设于硅光芯片3上。所述光纤组件5与所述硅光芯片3光耦合连接。所述光纤组件5包括多根光纤和端部的光学连接头,光纤连接头用于与硅光芯片3耦合连接。所述硅光芯片3用于结合所述电驱动芯片2将所述光源组件4发出的光选择性通过从而形成具有数据信息的光信号,这些光信号传输至所述光纤组件5内进行传输。
如图3所示,在所述光模块100中,所述电驱动芯片2对应设置在所述硅光芯片3连接所述光纤组件5的延伸方向上,所述光纤组件5与所述硅光芯片3的一侧连接。所述导光装置10与所述光源组件4对应设置,所述导光装置10将所述光源组件4发出的光导入所述硅光芯片3中,所述硅光芯片3用于对光进行处理后将光传输至光纤组件5中。如图3所示,设置所述电驱动芯片2、所述硅光芯片3、所述光纤组件5依次沿所述光模块100的纵长方向(也就是光口和电口连接方向)排布。其中所述导光装置10与所述光纤组件5并排连接至所述硅光芯片3的同一侧。
请参阅图3、图4,本实施例中,所述光源组件4包括多个激光器41、多个透镜42、多个光隔离器43;所述导光装置10为转折棱镜。其中激光器41为主要的发热元件。所述激光器41、所述透镜42、所述光隔离器43设于所述硅光芯片3上,所述导光装置10设于硅光芯片3的侧边。具体的,所述多个激光器41贴装在所述硅光芯片3上,用于发出光线;透镜42、激光器41及光隔离器43对应设置在一条直线上,贴装在所述硅光芯片3上。所述电驱动芯片2用于驱动硅光芯片3工作。所述导光装置10与所述光隔离器43对应设置,贴装在所述硅光芯片3的侧壁上;其中,所述激光器41、所述透镜42、所述光隔离器43、所述导光装置10分别一一对应设置,形成多个光路通道。
更具体的,所述透镜42安装至所述硅光芯片3顶面;每一透镜42与相应一个激光器41的发光面相对设置,透镜42的中轴线与所述激光器41光源中心线在同一直线上;所述光隔离器43安装至所述硅光芯片3顶面;每一光隔离器43包括一透光面,与一透镜42相对设置。
所述导光装置10包括第一反射面11和第二反射面12,所述激光器41发出的光照射至所述第一反射面11,并经所述第一反射面11的反射后反射至所述第二反射面12,经由所述第二反射面12的反射后反射至所述硅光芯片3中。从而激光器41发出的一束光线依次穿过一透镜42、一光隔离件43、一导光装置10,反射至所述硅光芯片3的侧壁并进入硅光芯片3形成一个光路通道。另外,导光装置10也可以是光纤或其它元件。
如图5所示,为本实施例中硅光芯片3的工作原理示意图,硅光芯片3包含光波导,调制器,分路器,探测器,波分复用器,波分解复用器,出入口,电路,加热(电阻),电路焊盘等。如图5是简化的结构,光波导包括位于同一侧的输入波导31以及输出波导32,一束光从输入波导31进入,在波导(图中用线条表示)内传输,经过调制器33、波分复用器34,再从输出波导32输出带有信号的光束。
另外,所述导光装置10为等腰直角棱镜。所述等腰直角棱镜包括一斜面13及两个直角面;所述两个直角面分别构成所述第一反射面11和所述第二反射面12。斜面13的一部分与硅光芯片3的侧壁表面固定连接。例如,可以通过胶粘的方式将导光装置10固定在硅光芯片3上。所述第一反射面11和所述第二反射面12用于反射光线。所述导光装置10的入光面及出光面皆为所述斜面13的一部分;其中,由所述透镜42汇聚的光透过所述斜面13(入光面)射入所述导光装置10后,依次在所述第一反射面11和所述第二反射面12发生全反射,进而反射至所述硅光芯片3的侧壁表面,并透过所述斜面13(出光面)射出进入对应的输入波导。
本实施例中,所述光源组件4形成的多个光路通道均位于所述光纤组件5的同一侧。这样有利于所述光源组件4产生的热量分散,避免热量集中,有利于散热。
光模块100可以是八个通道的光模块。也就是光源组件4形成的八个光路通道,使用2个或4个激光器41,最后从8束光纤传出。实际应用中,光路通道的数量可根据实际需求调整为更多或更少通道,视需求而定,本申请不做限定。
所述硅光芯片3与所述电驱动芯片2并列设置。另外,可以通过增大所述硅光芯片3与所述电驱动芯片2的间距避免热源集中,例如,在所述硅光芯片3与所述电驱动芯片2之间存在间隙,且该间隙的宽度与所述电驱动芯片3的宽度的比值为0.5-2。这样来调整热量分布。
为了避免热源集中,将所述激光器41均匀分布于所述光纤组件5的同一侧,这样可避免激光器41产热集中。本申请实施例通过将所述激光器41与所述硅光芯片3并排设于所述电路板1的同一侧,而且所述导光装置10对应所述激光器41设置将所述激光器41发出的光导入所述硅光芯片3,从而产生热量的硅光芯片3、激光器41与电驱动芯片2位于电路板1的同一侧表面,这样可在电路板的同一侧位置进行散热,有利于实现光模块内部散热,避免光模块内部热量集中堆积。
所述激光器41在所述硅光芯片3上靠近光纤组件5一端的边缘处的距离,小于所述激光器41在所述硅光芯片3上靠近电驱动芯片2一端的边缘处的距离。也就是说,激光器41在硅光芯片3上的位置相对于电驱动芯片2更靠近光纤组件5(或导光装置10)。这样也可增大所述激光器41与所述电驱动芯片2的间距来避免热源集中。
请参阅图4、图6,为了减少成本,所述硅光芯片3与所述电路板1通过焊锡球7实现电性连接,这样也可适合现有锡焊工艺,实现大批量生产。
请参阅图6,本实施例中,所述壳体9为一盒体,所述电路板1、所述电驱动芯片2、所述硅光芯片3以及所述光源组件4位于所述盒体内,被所述壳体9保护。所述壳体9内可以加散热垫或者导热胶用以对电路板1、所述电驱动芯片2、所述硅光芯片3、所述激光器41等原件进行固定和散热。
本实施例中,所述光模块100还包括散热组件6,所述散热组件6导热连接于所述壳体9的外表面。所述散热组件6包括散热板61以及两个以上翅片62;所述散热板61导热连接于所述壳体9的外表面;两个以上翅片62突出于所述散热板61远离所述壳体9一侧的表面。尤其是所述光模块100只有在壳体9上面有散热组件6,因此尽量实现热量在所述电路板1的同一侧散热,避免在所述电路板1的上下表面均散热导致电路板1的温度过高,避免是光电器件等温度过高而无法工作。其中所述散热组件6是设置在壳体9上的散热片,当然也可以没有散热组件6。本实施例所述热沉8也可以与壳体9一体成型。壳体9也可是分为上壳体和下壳体两部分的,散热组件6是设置在上壳体上的散热片,激光器41产生的热量传导至热沉8然后通过热沉8传导至上壳体,通过散热组件6将热量散发出去。电驱动芯片2可以通过散热垫或散热胶与壳体9导热连接,驱动芯片2产生的热量通过散热垫也传导至上壳体并通过散热组件6散发出去。
实施例2
在实施例2中包含了实施例1的大部分技术特征,其区别在于,如图7所示,实施例2中设置所述光纤组件5与所述硅光芯片3的一侧连接,硅光芯片3为一个长方形形状。且所述导光装置10设置在所述硅光芯片3连接所述光纤组件5相邻的一侧,而不是实施例1中所述电驱动芯片2、所述硅光芯片3、所述光纤组件5依次沿所述光模块100的纵长方向排布,且所述导光装置10与所述光纤组件5并排连接至所述硅光芯片3的同一侧。所述导光装置10设置在所述硅光芯片3连接所述光纤组件5相邻的一侧,这样可利用所述硅光芯片3的侧部空间,压缩所述光纤组件5的延伸方向的长度,从而可减少在光纤组件5的延伸方向上的整体长度。
本申请实施例2与实施例1的差异仅在于所述导光装置10以及设于所述硅光芯片3上的光源组件4的排布方向不同。为了避免热源集中,也是将所述激光器41均匀分布于所述光纤组件5的同一侧,这样可避免激光器41产热集中。本申请实施例2也是通过将所述激光器41与所述硅光芯片3并排设于所述电路板1的同一侧,而且所述导光装置10对应所述激光器41设置将所述激光器41发出的光导入所述硅光芯片3,从而产生热量的硅光芯片3、激光器41与电驱动芯片2位于电路板1的同一侧表面,这样可在电路板的同一侧位置进行散热,有利于实现光模块内部散热,避免光模块内部热量集中堆积。
实施例3
在实施例3中包含了实施例1的大部分技术特征,其区别在于,如图8所示,在实施例3中,为了避免热源集中,将所述激光器41均匀分布于所述光纤组件5的两侧而不是一侧。在实施例3中,所述光源组件4形成的多个光路通道均匀分布于所述光纤组件5的两侧,相应的,与所述光源组件4对应设置的导光装置10也是分布于所述光纤组件5的两侧。本实施例能够进一步在所述电路板1的同一侧位置分散设置产热元件,避免热量集中,并且能够增加光路通道的数量。
请参阅图8,本实施例也是通过将所述硅光芯片3与所述电驱动芯片2并排设于所述电路板1的同一侧,而且所述光源组件4设于所述硅光芯片3背离所述电路板1的一侧,从而产生热量的硅光芯片3、光源组件4与电驱动芯片2位于电路板1的同一侧,这样可在电路板1的同一侧设置散热组件6,有利于实现光模块内部散热,避免光模块内部热量集中堆积;而且此结构不用在电路板1上挖设凹槽放置热沉、硅光芯片3及光源组件4,提高了电路板1的利用率,减少了制作成本。
可理解的是,在图3、图8中,所述激光器41与所述硅光芯片3并排设置,所述激光器41位于所述硅光芯片3的与所述光纤组件5相对的一侧,即所述激光器41位于所述硅光芯片3对应设有所述光纤组件5的一侧。
本发明的有益效果在于,提供一种光模块,通过将所述激光器与所述硅光芯片并排设于所述电路板的同一侧,而且所述导光装置对应所述激光器设置将所述激光器发出的光导入所述硅光芯片,从而产生热量的硅光芯片、激光器与电驱动芯片位于电路板的同一侧表面,这样可在电路板的同一侧位置设置散热组件,有利于实现光模块内部散热,避免光模块内部热量集中堆积;同时设置所述激光器均匀分布于所述光纤组件的一侧或两侧,可增大散热面积避免热量集中;而且此结构不用在电路板上挖设凹槽放置热沉,硅光芯片及光源组件,提高了电路板利用率,减少了制作成本。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例所提供的一种光模块进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。
Claims (10)
- 一种光模块,其特征在于,包括:壳体和设于所述壳体内的电路板,包括彼此相背离的第一表面和第二表面;电驱动芯片,所述电驱动芯片设置于所述电路板的第一表面上,并连接至所述电路板的第一表面;硅光芯片,设置于所述电路板的第一表面上,并连接至所述电路板的第一表面;激光器,设置于所述硅光芯片上远离所述电路板一侧的表面,所述激光器发出光并将发出的光传输至所述硅光芯片;导光装置,所述导光装置将所述激光器发出的光导入所述硅光芯片。
- 根据权利要求1所述的光模块,其特征在于,所述导光装置包括第一反射面和第二反射面,所述激光器发出的光照射至所述第一反射面,并经所述第一反射面的反射后反射至所述第二反射面,经由所述第二反射面的反射后反射至所述硅光芯片。
- 根据权利要求2所述的光模块,其特征在于,所述导光装置包括等腰直角棱镜,所述等腰直角棱镜包括一斜面及两个直角面;所述两个直角面分别构成所述第一反射面和所述第二反射面。
- 根据权利要求3所述的光模块,其特征在于,所述导光装置通过所述等腰直角棱镜的所述斜面固定至所述硅光芯片的外侧壁。
- 根据权利要求1所述的光模块,其特征在于,所述硅光芯片内设有输入波导与输出波导,所述导光装置通过所述输入波导将光导入到所述硅光芯片中。
- 根据权利要求1所述的光模块,其特征在于,还包括光纤组件,设于所述电路板的第一表面上方,光耦合连接至所述硅光芯片。
- 根据权利要求6所述的光模块,其特征在于,所述激光器均匀分布于所述光纤组件的一侧或两侧。
- 根据权利要求6所述的光模块,其特征在于,所述激光器与所述硅光芯片并排设置,所述激光器位于所述硅光芯片的与所述光纤组件相对的一侧。
- 根据权利要求1所述的光模块,其特征在于,所述硅光芯片与所述电驱动芯片之间存在间隙,且该间隙的宽度与所述电驱动芯片的宽度的比值为0.5-2。
- 根据权利要求6所述的光模块,其特征在于,所述导光装置为至少两个,分布于所述光纤组件的两侧。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111654269.8 | 2021-12-30 | ||
CN202111654269.8A CN116413868A (zh) | 2021-12-30 | 2021-12-30 | 一种光模块 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023124120A1 true WO2023124120A1 (zh) | 2023-07-06 |
Family
ID=86997395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/113313 WO2023124120A1 (zh) | 2021-12-30 | 2022-08-18 | 一种光模块 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116413868A (zh) |
WO (1) | WO2023124120A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170031117A1 (en) * | 2015-07-01 | 2017-02-02 | Inphi Corporation | Photonic transceiving device package structure |
CN109725392A (zh) * | 2019-02-19 | 2019-05-07 | 武汉电信器件有限公司 | 一种光发射组件和光接收组件 |
CN210401753U (zh) * | 2019-08-13 | 2020-04-24 | 苏州旭创科技有限公司 | 光收发组件和光模块 |
CN112332214A (zh) * | 2019-08-02 | 2021-02-05 | 苏州旭创科技有限公司 | 一种可调谐激光器及光模块 |
CN213302585U (zh) * | 2020-09-04 | 2021-05-28 | 青岛海信宽带多媒体技术有限公司 | 一种光模块 |
CN112904497A (zh) * | 2021-01-14 | 2021-06-04 | 众瑞速联(武汉)科技有限公司 | 一种基于pwb的硅光集成模块 |
-
2021
- 2021-12-30 CN CN202111654269.8A patent/CN116413868A/zh active Pending
-
2022
- 2022-08-18 WO PCT/CN2022/113313 patent/WO2023124120A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170031117A1 (en) * | 2015-07-01 | 2017-02-02 | Inphi Corporation | Photonic transceiving device package structure |
CN109725392A (zh) * | 2019-02-19 | 2019-05-07 | 武汉电信器件有限公司 | 一种光发射组件和光接收组件 |
CN112332214A (zh) * | 2019-08-02 | 2021-02-05 | 苏州旭创科技有限公司 | 一种可调谐激光器及光模块 |
CN210401753U (zh) * | 2019-08-13 | 2020-04-24 | 苏州旭创科技有限公司 | 光收发组件和光模块 |
CN213302585U (zh) * | 2020-09-04 | 2021-05-28 | 青岛海信宽带多媒体技术有限公司 | 一种光模块 |
CN112904497A (zh) * | 2021-01-14 | 2021-06-04 | 众瑞速联(武汉)科技有限公司 | 一种基于pwb的硅光集成模块 |
Also Published As
Publication number | Publication date |
---|---|
CN116413868A (zh) | 2023-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111338039B (zh) | 一种光模块 | |
CN110471148B (zh) | 一种光模块 | |
CN110542957B (zh) | 一种光模块 | |
CN214795314U (zh) | 一种光模块 | |
US9285555B2 (en) | Optical circuit board | |
CN214795313U (zh) | 一种光模块 | |
US9217835B2 (en) | Photoelectric conversion module and transmission apparatus using the same | |
CN111061022B (zh) | 一种光模块 | |
WO2020125784A1 (zh) | 一种光模块 | |
CN113009646B (zh) | 一种光模块 | |
CN113009648B (zh) | 一种光模块 | |
CN112965190A (zh) | 一种光模块 | |
CN111694112A (zh) | 一种光模块 | |
US6879423B2 (en) | Printed circuit board assembly with multi-channel block-type optical devices packaged therein | |
WO2021139200A1 (zh) | 一种光模块 | |
CN111948762A (zh) | 一种光模块 | |
CN113885143A (zh) | 一种光模块 | |
CN116413866A (zh) | 一种光模块 | |
CN113759479B (zh) | 一种光模块 | |
JP2012141471A (ja) | 光インターコネクションモジュール | |
JPWO2009001822A1 (ja) | 光モジュール | |
CN113093349B (zh) | 一种光模块 | |
WO2023124120A1 (zh) | 一种光模块 | |
JP2012013726A (ja) | 光インターコネクションモジュールおよびそれを用いた光電気混載回路ボード | |
CN113009647B (zh) | 一种光模块 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22913405 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11202404101U Country of ref document: SG |