WO2023123992A1 - 一种高负荷厌氧系统内高效撬装式三相分离器 - Google Patents

一种高负荷厌氧系统内高效撬装式三相分离器 Download PDF

Info

Publication number
WO2023123992A1
WO2023123992A1 PCT/CN2022/103752 CN2022103752W WO2023123992A1 WO 2023123992 A1 WO2023123992 A1 WO 2023123992A1 CN 2022103752 W CN2022103752 W CN 2022103752W WO 2023123992 A1 WO2023123992 A1 WO 2023123992A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverted
shaped plate
shaped
plate
phase separator
Prior art date
Application number
PCT/CN2022/103752
Other languages
English (en)
French (fr)
Inventor
宫建瑞
操沛沛
刘军
李春泉
王艳朋
韩珊珊
廖伟
Original Assignee
南京万德斯环保科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京万德斯环保科技股份有限公司 filed Critical 南京万德斯环保科技股份有限公司
Publication of WO2023123992A1 publication Critical patent/WO2023123992A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the invention relates to the field of anaerobic equipment, in particular to a high-efficiency skid-mounted three-phase separator system in a high-load anaerobic system.
  • the three-phase separator is used in anaerobic reactors such as UASB or IC for high-concentration sewage treatment.
  • anaerobic granular sludge can be formed in the reactor under normal circumstances, and anaerobic granular sludge not only has good settling performance, but also has high methane production activity.
  • the anaerobic reactor is equipped with a three-phase separator, the sludge in the reactor is not easy to lose, so the reactor can maintain a high biomass, and the average concentration can reach about 80g/L; at the same time, the biogas is gathered in the three-phase separator top, exits through the trachea. It is precisely because of the existence of the three-phase separator that it is possible to ensure that after the high-concentration organic wastewater is pretreated by the anaerobic reactor, a large amount of organic matter is removed and COD is greatly reduced
  • the three-phase separator has two functions at the same time: to collect the biogas produced in the reaction chamber and to effectively settle the suspended solids in the separator.
  • the working principle of the traditional three-phase separator is: the three-phase mixed flow containing a large number of bubbles in the reactor rises to the bottom of the separator, hits the reflector, the gas deflects upwards, separates from the solid-liquid phase and concentrates it in the gas chamber for discharge.
  • the solid-liquid mixture enters the separator and is separated in the sedimentation area, and the clarified liquid is discharged through the overflow weir.
  • the sludge that loses the stirring effect of air bubbles undergoes flocculation, sedimentation and concentration, then slides down the inclined wall and returns to the reaction zone through the sludge return port. Since the liquid in the sedimentation zone has no air bubbles, the specific gravity of the mixed liquid above the sludge return port is higher than that of the liquid in the reactor, so that the concentrated sludge can return to the reaction zone, thereby realizing the three-phase separation of solid, liquid and gas.
  • the three-phase separator should meet the following conditions:
  • the residence time of the sludge in the settler should be short to avoid gas production in the settling area
  • the surface load in the sedimentation area adopts a small value to make the sludge settle effectively
  • the existing three-phase separator generally has the contradiction between short residence time and low surface load, and it is difficult to balance the two, which eventually leads to unclear separation of mud and water in the three-phase separator, high concentration of suspended solids in the effluent, and it is difficult to meet the design requirements , and interfere with the subsequent biochemical treatment process.
  • an inverted V-shaped inclined plate is introduced in the sedimentation area of the traditional three-phase separator, which greatly reduces the three-phase separator. Increase the proportion of the anaerobic reaction zone and the fullness of the anaerobic sludge, thereby increasing the volume utilization of the anaerobic tank, increasing the anaerobic load, and reducing the volume of the reaction tank.
  • a skid-mounted inverted V-shaped three-phase separator is proposed to simplify the on-site installation process and shorten the construction period by skid-mounting the three-phase separator. , improve the installation quality.
  • the present invention provides a high-efficiency skid-mounted three-phase separator in a high-load anaerobic system, including a gas collection system and an inverted V-shaped sedimentation system; the inverted V-shaped sedimentation system is arranged above the gas collection system The gas collection system is used to separate the gas from the mud-water mixture; the inverted V-type sedimentation system is used to separate and precipitate the mud-water mixture to obtain sludge particles and clear liquid, the clear liquid is discharged, and the sludge particles return to the drain in the oxygen system.
  • the air collection system includes an upper air collection hood and a lower air collection hood;
  • the upper air collection hood includes a first inclined plate and a second inclined plate,
  • the lower air collection hood includes a second inverted V-shaped plate, and the second inverted V There is a biogas discharge port at the top corner of the template;
  • the second inverted V-shaped plate, the first inclined plate and the second inclined plate are all arranged along the direction in which the muddy water mixture flows, the first inclined plate and the second inclined plate are respectively located on both sides of the second inverted V-shaped plate, and about the second
  • the inverted V-shaped plate is symmetrical, the plate surface of the first inclined plate and the plate surface of the second inverted V-shaped plate form an acute angle, and at the apex of the acute angle, there is a gap between the first inclined plate and the second inverted V-shaped plate, so The gap mentioned above is the sludge return slot.
  • the inverted V-shaped sedimentation system includes a first frame with upper and lower ends open, one end of the frame is provided with a water inlet, which is the water inlet end of the first frame, and the other end of the first frame is the water outlet end, and the height of the water outlet end is lower than the height of the water inlet;
  • the first frame is divided into water inlet and distribution area, inverted V-shaped sedimentation area and outlet water distribution area in turn.
  • the muddy water mixture enters from the water inlet of the first frame, reaches the water inlet and distribution area for buffering, and then reaches the inverted V-shaped sedimentation area for muddy water Separation, and then reach the outlet water distribution area for buffering, the separated clear liquid overflows at the outlet, and the separated sludge particles return to the anaerobic system.
  • an overflow weir is also set in the outlet water distribution area.
  • the inverted V-shaped precipitation area is provided with a first inverted V-shaped plate and an inverted V-shaped plate support; the inverted V-shaped plate support is used to support the first inverted V-shaped plate, and the first inverted V-shaped plate is The flow direction of the muddy water mixture is set, the first inverted V-shaped plate is arranged in parallel from bottom to top in multiple layers, and the two ends of the V-shaped plate are respectively located on the two V-shaped plate supports.
  • the V-shaped plate support includes a rectangular frame and supporting columns arranged in parallel in the rectangular frame; the rectangular frame is vertically arranged in the first frame, and the plane where the rectangular frame is located is perpendicular to the flow direction of the mud-water mixture;
  • the rectangular frame is fixedly connected to the first frame, and the supporting columns in the rectangular frame are arranged vertically, and there are symmetrical grooves on the adjacent supporting columns, which are used to clamp the two connecting plates of the first inverted V-shaped plate In the groove; and there are multiple grooves on the support column, and are used to support the first multi-layer inverted V-shaped plate.
  • a plurality of support columns are arranged in the rectangular frame for supporting multiple rows of first inverted V-shaped plates, and each row of first inverted V-shaped plates is arranged along the flow direction of the mud-water mixture.
  • first inverted V-shaped plates between every two inverted V-shaped plate supports, and a plurality of inverted V-shaped plate supports and multiple rows of first inverted V-shaped plates are arranged in parallel in the inverted V-shaped precipitation area.
  • the inverted V-shaped plate support adjacent to the water distribution area is an end inverted V-shaped plate support, and the width of the support column of the end inverted V-shaped plate support is greater than the width of the support plates of other inverted V-shaped plate supports.
  • a biogas discharge port is provided at least under each inverted V-shaped plate support.
  • the gas collection system of the present invention is used to separate the gas from the mud-water mixture, and the mud-water mixture enters the inverted V-shaped sedimentation system for natural settlement to form sludge particles and clear liquid, which are collected and discharged through the drainage system, and the sludge particles pass through
  • the sludge return slot of the gas gathering system re-enters the anaerobic reaction zone. Separation of sludge, sewage and waste gas is achieved through the inverted V-shaped sedimentation plate, and the effluent is guaranteed to be clear.
  • the present invention has the following beneficial effects:
  • the present invention provides a high-efficiency skid-mounted three-phase separator system in a high-load anaerobic system.
  • the present invention adopts the gas collecting hood and the inverted V-shaped plate to realize the separation of gas and muddy water in sequence, intersecting the traditional three-phase separator technology,
  • the anaerobic mud-water separation effect is greatly improved, and the technical problem of incomplete mud-water separation of anaerobic biogas slurry is overcome.
  • Figure 1 is an overall schematic diagram of the present invention.
  • Fig. 2 is a sectional view of an inverted V-shaped precipitation zone of the present invention.
  • Fig. 3 is a structural diagram of an inverted V-shaped plate bracket.
  • Inverted V-shaped sedimentation system 21. First frame; 22. Water inlet; 23. Water collection tank; 24. Inlet water distribution area; 25. Inverted V-shaped sedimentation area; 26. Outlet water distribution area; 27. Overflow weir ;
  • the first inverted V-shaped plate 251.
  • the inverted V-shaped plate support.
  • a high-efficiency skid-mounted three-phase separator in a high-load anaerobic system of the present invention includes a gas collection system 1 and an inverted V-shaped sedimentation system 2 .
  • the inverted V-shaped sedimentation system 2 is arranged above the gas collection system 1 .
  • the gas collection system 1 is used to separate gas from mud-water mixture.
  • the gas is biogas, and the separated gas is collected by the biogas discharge system and finally enters the gas collection box.
  • the inverted V-type sedimentation system 2 is used to separate and settle the mud-water mixture to obtain sludge particles and clear liquid.
  • the clear liquid is discharged through the drainage system, and the sludge particles are returned to the anaerobic system.
  • the gas collection system 1 includes an upper gas collection hood and a lower gas collection hood; the upper gas collection hood includes a first slant plate 11 and a second slant plate 12, the lower gas collection hood includes a second inverted V-shaped plate 13, and the second inverted
  • the top corner of the V-shaped plate 13 is provided with a biogas discharge port 14; it is connected to the biogas discharge system through the biogas discharge port 14, and the diameter of the biogas discharge port 14 is not less than 200mm.
  • the second inverted V-shaped plate 13, the first inclined plate 11 and the second inclined plate 12 are all arranged along the direction that the muddy water mixture flows, and the first inclined plate 11 and the second inclined plate 12 are respectively positioned at two sides of the second inverted V-shaped plate 13. side, the plate surface of the first slant plate 11 and the plate surface of the second inverted V-shaped plate 13 form an acute angle, the included angle is 55° ⁇ 60°, and at the apex of the acute angle, the first slanted plate 11 and the second inverted V-shaped There is a gap between the plates 13, and the gap is the sludge return slot 15; the sludge return slot 15 is larger than 200mm.
  • the second slant plate 12 is arranged symmetrically with the first slant plate 11 on the other side of the second inverted V-shaped plate 13, and the overlapping projection of the first slanted plate 11, the second slanted plate 12 and the second inverted V-shaped plate 13 is greater than 200mm .
  • the inverted V-shaped sedimentation system 2 includes a first frame 21 with upper and lower ends open, one end of the frame is provided with a water inlet 22, which is the water inlet end of the first frame 21, and the other end of the first frame 21 is a water outlet end. The height of the end is lower than that of the water inlet end; a water collecting tank 23 is also arranged at the water outlet end.
  • the first frame 21 is successively divided into an inlet water distribution area 24, an inverted V-shaped sedimentation area 25, and an outlet water distribution area 26.
  • the muddy water mixture enters from the water inlet 22 of the frame, reaches the water inlet water distribution area 24 for buffering, and further separates the residual A small amount of gas, and the remaining small amount of gas continues to rise and is collected by the biogas discharge system, and then reaches the inverted V-shaped sedimentation area 25 for mud-water separation, and then reaches the outlet water distribution area 26 for buffering, and an overflow weir 27 is also set in the outlet water distribution area 26 to separate out
  • the clear liquid overflows at the water outlet and reaches the sump 23, and the separated sludge particles are returned to the anaerobic system.
  • the sump 23 is connected to the drainage system and discharged through the drainage system.
  • the drainage system is a U-shaped water-sealed pipe with a diameter of not less than 150mm.
  • the second inverted V-shaped plate 13 , the first inclined plate 11 and the second inclined plate 12 are located in the first frame 21 and located below the inverted V-shaped sedimentation area 25 .
  • the two ends of the second inverted V-shaped plate 13, the first slanted plate 11 and the second slanted plate 12 are respectively fixed on the first frame 21, and one long side of the first slanted plate 11 and the second slanted plate 12 is also fixed respectively.
  • On the first frame 21 the other long side of the first inclined plate 11 and the second inclined plate 12 and the plate surface of the second inverted V-shaped plate 13 form a sludge return slot 15 .
  • the inverted V-shaped precipitation area 25 is provided with a first inverted V-shaped plate 251 and an inverted V-shaped plate support 252; the included angle of the first inverted V-shaped plate 251 is 60°.
  • the inverted V-shaped plate support 252 is used to support the first inverted V-shaped plate 251.
  • the first inverted V-shaped plate 251 is arranged along the flow direction of the mud-water mixture, and the first inverted V-shaped plate is arranged in parallel from bottom to top in multiple layers. , the distance between each layer is equal, and the two ends of the first inverted V-shaped plate are respectively located on the two inverted V-shaped plate brackets 252 .
  • the inverted V-shaped plate support 252 includes a rectangular frame and supporting columns arranged in parallel in the rectangular frame.
  • the rectangular frame is vertically arranged in the first frame 21, and the plane where the rectangular frame is located is perpendicular to the direction in which the mud-water mixture flows,
  • the rectangular frame is fixedly connected with the first frame 21, and the support columns in the rectangular frame are all arranged vertically, and the adjacent support columns are symmetrically provided with grooves for connecting the two connecting plates of the first inverted V-shaped plate 251 Snap into the groove. And there are multiple grooves on the support column, and they are used to support the multi-layer first inverted V-shaped plate 251 .
  • the interlayer distance of the first inverted V-shaped plate 251 is 50-100 mm.
  • a plurality of supporting columns are arranged in the rectangular frame for supporting multiple rows of first inverted V-shaped plates 251, and each row of first inverted V-shaped plates 251 is arranged along the flow direction of the muddy water mixture.
  • the distance between the first inverted V-shaped plates 251 in each row forms a sludge sedimentation channel between the inclined plates, and the width of the sludge sedimentation channel between the inclined plates is 20-50 mm.
  • first inverted V-shaped plates 251 Between every two inverted V-shaped plate supports 252 is a row of first inverted V-shaped plates 251, and the inverted V-shaped precipitation area 25 is provided with a plurality of inverted V-shaped plate supports 252 and multiple rows of first inverted V-shaped plates 251 in parallel.
  • a biogas discharge port 14 On the second inverted V-shaped plate 13 , a biogas discharge port 14 is provided at a corresponding position below each inverted V-shaped plate support 252 . Prevent biogas from accumulating under the first inverted V-shaped plate 251 .
  • a first inverted V-shaped plate is placed in every two oppositely arranged grooves.
  • the V-shaped plate 251 forms a first inverted V-shaped plate 251 structure with multiple columns, multiple rows and multiple layers.
  • the inverted V-shaped plate support 252 adjacent to the water distribution area 26 is an end inverted V-shaped plate support, and the width of the support column of the end inverted V-shaped plate support is greater than the width of the support plates of other inverted V-shaped plate supports 252 .
  • the width of the support column of the end inverted V-shaped plate support is greater than the width of the support plates of other inverted V-shaped plate supports 252 .
  • the three-phase separator of the present invention has an inclination angle of 1° with the horizontal plane, so as to facilitate the exhausting of the settling area.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

本发明的一种高负荷厌氧系统内高效撬装式三相分离器,包括集气系统和倒V型沉淀系统。倒V型沉淀系统设置在集气系统上方。所述集气系统用于将气体与泥水混合液分离。所述的气体为沼气,分离出的气体被沼气排放系统收集并最终进入集气箱。倒V型沉淀系统用于对泥水混合液分离进行沉淀,得到污泥颗粒和清液,清液通过排水系统排出,污泥颗粒回流到厌氧系统中。

Description

一种高负荷厌氧系统内高效撬装式三相分离器 技术领域
本发明涉及厌氧装备领域,特别是涉及一种高负荷厌氧系统内高效撬装式三相分离器系统。
背景技术
三相分离器用于高浓度的污水处理UASB或IC等厌氧反应器中。在处理各种有机废水时,反应器内一般情况下均能形成厌氧颗粒污泥,而厌氧颗粒污泥不仅具有良好的沉降性能,而且有较高的产甲烷活性。由于厌氧反应器设有三相分离器,使得反应器内的污泥不易流失,所以反应器内能维持很高的生物量,平均浓度能达到80g/L左右;同时沼气聚集于三相分离器顶部,通过气管排出。正是由于三相分离器的存在,才能保障高浓度有机废水经过厌氧反应器预处理后,有机物得到大量去除,COD大幅度下降
三相分离器同时具有两个功能:收集反应室产生的沼气和使分离器内的悬浮物有效沉降。传统三相分离器其工作原理是:反应器内含有大量的气泡的三相混合流上升至分离器底部,碰到反射板,气体折流而上,与固液相分离集中到气室排放。固液混合液进入分离器,在沉淀区分离,澄清液通过溢流堰排出。失去气泡搅动作用的污泥发生絮凝、沉降和浓缩,然后沿斜壁下滑,通过污泥回流口返回反应区。由于沉淀区内液体无气泡,污泥回流口以上的混合液比重大于反应器内液体比重,使浓缩后的污泥能够返回反应区,由此实现固液气的三相分离。
三相分离器要实现良好的分离效果,应该满足以下条件:
①、水和污泥的混合物进入沉淀区之前,气泡必须分离;
②、污泥在沉淀器中的停留时间要短,避免在沉淀区中产气;
③、沉淀区内表面负荷采用较小值,使污泥有效沉降;
综上所述,现有的三相分离器普遍存在停留时间短与低表面负荷的矛盾,两者难以兼顾,最终造成三相分离器泥水分离不清,出水悬浮物浓度高,难以达到设计要求,且对后续生化处理过程存在干扰。
为克服传统三相分离器的不足,借鉴内置式沉淀池和侧向流斜板沉淀池的特点,在传统三相分离器的沉淀区域引入倒V型斜板,大幅度减小三相分离器的体积,提高厌氧反应区的占比和厌氧污泥的充满度,从而提高厌氧池的容积利用率,提高厌氧负荷,减 小反应池的容积。
同时由于三相分离器结构复杂,现场施工难度高,容易造成安装质量低,因此提出撬装式倒V型三相分离器,通过三相分离器的撬装化简化现场安装工序,缩短施工周期,提高安装质量。
发明内容
为解决现有技术不足,本发明提供了一种高负荷厌氧系统内高效撬装式三相分离器,包括集气系统和倒V型沉淀系统;倒V型沉淀系统设置在集气系统上方;所述集气系统用于将气体与泥水混合液分离;倒V型沉淀系统用于对泥水混合液分离进行沉淀,得到污泥颗粒和清液,清液被排出,污泥颗粒回流到厌氧系统中。
进一步的,所述集气系统包括上集气罩和下集气罩;上集气罩包括第一斜板和第二斜板,下集气罩包括第二倒V型板,第二倒V型板的顶角处设置有沼气排放口;
第二倒V型板、第一斜板和第二斜板均沿泥水混合物流动的方向设置,第一斜板和第二斜板分别位于第二倒V型板的两侧,且关于第二倒V型板对称,第一斜板的板面与第二倒V型板的板面呈锐角,且在锐角的顶点处,第一斜板与第二倒V型板之间存在间隙,所述的间隙为污泥回流缝。
进一步的,所述倒V型沉淀系统包括上下两端开口的第一框架,所述框架的一端开设有进水口,为第一框架进水端,第一框架另一端为出水端,出水端的高度低于进水端高度;
第一框架内依次划分为进水配水区、倒V型沉淀区和出水配水区,泥水混合液从第一框架的进水口进入,到达进水配水区缓冲,再到达倒V型沉淀区进行泥水分离,再到达出水配水区缓冲,分离出的清液在出水端溢流出,分离出的污泥颗粒返回厌氧系统内。
进一步的,出水配水区还设置有溢流堰。
进一步的,所述倒V型沉淀区设置有第一倒V型板和倒V型板支架;倒V型板支架用于对第一倒V型板起支撑作用,第一倒V型板沿泥水混合液流动的方向设置,第一倒V型板从下到上平行设置多层,V型板的两端分别位于两个V形板支架上。
进一步的,所述V形板支架包括矩形框架、以及矩形框架中平行设置的支撑柱;矩形框架竖直设置在第一框架中,且矩形框架所在平面与泥水混合液流动的方向垂直;
矩形框架与第一框架固定连接,矩形框架中的支撑柱均沿竖直设置,相临的支撑柱上对称的开设有凹槽,用于将第一倒V型板的两个连接板卡接在凹槽中;且支撑柱上的 凹槽为多个,且于支撑多层第一倒V型板。
进一步的,矩形框架中设置多根支撑柱,用于支撑多行第一倒V型板,每行第一倒V型板均是沿泥水混合液流动方向设置。
进一步的,每两个倒V型板支架之间为一列第一倒V型板,倒V型沉淀区平行设置有多个倒V型板支架和多列第一倒V型板。
进一步的,与出水配水区相临的倒V型板支架为末端倒V型板支架,所述末端倒V型板支架的支撑柱的宽度大于其它倒V型板支架的支撑板的宽度。
进一步的,至少在每个倒V型板支架下方均设置有沼气排放口。
本发明的集气系统用于将气体与泥水混合液分离,泥水混合液进入倒V型沉淀系统进行自然沉降,形成污泥颗粒和清液,清液通过排水系统进行收集排出,污泥颗粒通过集气系统的污泥回流缝重新进入厌氧反应区。通过倒V型沉淀板实现污泥、污水和废气的分离,并且保障出水清澈。
与现有技术相比,本发明具有以下有益效果:
(1)本发明提供了一种高负荷厌氧系统内高效撬装式三相分离器系统。
(2)厌氧出水水质好且运行稳定。
(3)本发明采用集气罩和倒V型板依次实现气和泥水的分离,相交传统三相分离器工艺,
大大提高了厌氧的泥水分离效果,克服了厌氧沼液泥水分离不彻底的技术难题。
(4)工艺简单、集成化高且易操作,具有良好的推广前景。
附图说明
图1是本发明总体示意图。
图2是本发明倒V型沉淀区剖面图。
图3是倒V型板支架结构图。
其中,1、集气系统;11、第一斜板;12、第二斜板12;13、第二倒V型板、14、沼气排放口、15、污泥回流缝;
2、倒V型沉淀系统;21、第一框架;22、进水口,23、集水槽;24、进水配水区;25、倒V型沉淀区;26、出水配水区;27、溢流堰;
251、第一倒V型板;252、倒V型板支架。
具体实施方式
以下通过实施例并结合附图对本发明所述一种高负荷厌氧系统内高效撬装式三相分离器进一步说明。
本发明的一种高负荷厌氧系统内高效撬装式三相分离器,包括集气系统1和倒V型沉淀系统2。倒V型沉淀系统2设置在集气系统1上方。所述集气系统1用于将气体与泥水混合液分离。所述的气体为沼气,分离出的气体被沼气排放系统收集并最终进入集气箱。倒V型沉淀系统2用于对泥水混合液分离进行沉淀,得到污泥颗粒和清液,清液通过排水系统排出,污泥颗粒回流到厌氧系统中。
所述集气系统1包括上集气罩和下集气罩;上集气罩包括第一斜板11和第二斜板12,下集气罩包括第二倒V型板13,第二倒V型板13的顶角处设置有沼气排放口14;通过沼气排放口14与沼气排放系统连接,沼气排放口14的直径不小于200mm,
第二倒V型板13、第一斜板11和第二斜板12均沿泥水混合物流动的方向设置,第一斜板11和第二斜板12分别位于第二倒V型板13的两侧,第一斜板11的板面与第二倒V型板13的板面呈锐角,55°~60°夹角,且在锐角的顶点处,第一斜板11与第二倒V型板13之间存在间隙,所述的间隙为污泥回流缝15;污泥回流缝15大于200mm。
第二斜板12在第二倒V型板13的另一侧与第一斜板11对称设置,第一斜板11、第二斜板12与第二倒V型板13重叠投影量大于200mm。
所述倒V型沉淀系统2包括上下两端开口的第一框架21,所述框架的一端开设有进水口22,为第一框架21进水端,第一框架21另一端为出水端,出水端的高度低于进水端高度;在出水端还设置有集水槽23。
第一框架21内依次划分为进水配水区24、倒V型沉淀区25和出水配水区26,泥水混合液从框架的进水口22进入,到达进水配水区24缓冲,进一步分离出残余的少量气体,残余的少量气体继续上升被沼气排放系统收集,再到达倒V型沉淀区25进行泥水分离,再到达出水配水区26缓冲,在出水配水区26还设置有溢流堰27,分离出的清液在出水端溢流出到达集水槽23,分离出的污泥颗粒返回厌氧系统内。集水槽23与排水系统连接,通过排水系统排出,所述排水系统为U型水封管道,管径不小于150mm。
第二倒V型板13、第一斜板11和第二斜板12位于第一框架21中,且位于倒V型沉淀区25的下方。第二倒V型板13、第一斜板11和第二斜板12的两端分别固定在第一框架21上,且第一斜板11和第二斜板12的一条长边也分别固定在第一框架21上,第一斜板11和第二斜板12的另一条长边与第二倒V型板13的板面形成污泥回流缝15。
所述倒V型沉淀区25设置有第一倒V型板251和倒V型板支架252;第一倒V型板251夹角为60°。
倒V型板支架252用于对第一倒V型板251起支撑作用,第一倒V型板251沿泥水混合液流动的方向设置,第一倒V型板从下到上平行设置多层,每层之间距离相等,第一倒V型板的两端分别位于两个倒V型板支架252上。
所述倒V型板支架252包括矩形框架、以及矩形框架中平行设置的支撑柱。
矩形框架竖直设置在第一框架21中,且矩形框架所在平面与泥水混合液流动的方向垂直,
矩形框架与第一框架21固定连接,矩形框架中的支撑柱均沿竖直设置,相临的支撑柱上对称的开设有凹槽,用于将第一倒V型板251的两个连接板卡接在凹槽中。且支撑柱上的凹槽为多个,且于支撑多层第一倒V型板251。第一倒V型板251的层间距离为50~100mm。
矩形框架中设置多根支撑柱,用于支撑多行第一倒V型板251,每行第一倒V型板251均沿泥水混合液流动方向设置。每行第一倒V型板251的间距形成斜板间污泥沉淀通道,斜板间污泥沉淀通道宽度为20-50mm。
每两个倒V型板支架252之间为一列第一倒V型板251,倒V型沉淀区25平行设置有多个倒V型板支架252和多列第一倒V型板251,在第二倒V型板13上,每个倒V型板支架252下方对应位置,均设置有沼气排放口14。防止沼气在在第一倒V型板251下方聚集。
所以,通过设置多个倒V型板支架252、倒V型板支架252中设置多个支撑柱、以及支撑柱上设置多个凹槽,每两个相对设置的凹槽中放置一个第一倒V型板251,则形成多列多行多层的第一倒V型板251结构。
与出水配水区26相临的倒V型板支架252为末端倒V型板支架,所述末端倒V型板支架的支撑柱的宽度大于其它倒V型板支架252的支撑板的宽度。以便在出水配水区26产生较急的水流。
安装过程中本发明的三相分离器与水平面成1°倾角,以便于沉淀区进行排气。

Claims (10)

  1. 一种高负荷厌氧系统内高效撬装式三相分离器,其特征在于,包括集气系统和倒V型沉淀系统;
    倒V型沉淀系统设置在集气系统上方;
    所述集气系统用于将气体与泥水混合液分离;
    倒V型沉淀系统用于对泥水混合液分离进行沉淀,得到污泥颗粒和清液,清液被排出,污泥颗粒回流到厌氧系统中。
  2. 根据权利要求1所述一种高负荷厌氧系统内高效撬装式三相分离器,其特征在于,所述集气系统包括上集气罩和下集气罩;
    上集气罩包括第一斜板和第二斜板,下集气罩包括第二倒V型板,第二倒V型板的顶角处设置有沼气排放口;
    第二倒V型板、第一斜板和第二斜板均沿泥水混合物流动的方向设置,第一斜板和第二斜板分别位于第二倒V型板的两侧,且关于第二倒V型板对称,第一斜板的板面与第二倒V型板的板面呈锐角,且在锐角的顶点处,第一斜板与第二倒V型板之间存在间隙,所述的间隙为污泥回流缝。
  3. 根据权利要求1或2所述一种高负荷厌氧系统内高效撬装式三相分离器,其特征在于,所述倒V型沉淀系统包括上下两端开口的第一框架,所述框架的一端开设有进水口,为第一框架进水端,第一框架另一端为出水端,出水端的高度低于进水端高度;
    第一框架内依次划分为进水配水区、倒V型沉淀区和出水配水区,泥水混合液从第一框架的进水口进入,到达进水配水区缓冲,再到达倒V型沉淀区进行泥水分离,再到达出水配水区缓冲,分离出的清液在出水端溢流出,分离出的污泥颗粒返回厌氧系统内。
  4. 根据权利要求3所述一种高负荷厌氧系统内高效撬装式三相分离器,其特征在于,出水配水区还设置有溢流堰。
  5. 根据权利要求3所述一种高负荷厌氧系统内高效撬装式三相分离器,其特征在于,所述倒V型沉淀区设置有第一倒V型板和倒V型板支架;
    倒V型板支架用于对第一倒V型板起支撑作用,第一倒V型板沿泥水混合液流动的方向设置,第一倒V型板从下到上平行设置多层,第一V型板的两端分别位于两个倒V形板支架上。
  6. 根据权利要求5所述一种高负荷厌氧系统内高效撬装式三相分离器,其特征在于,所述倒V形板支架包括矩形框架、以及矩形框架中平行设置的支撑柱; 矩形框架竖直设置在第一框架中,且矩形框架所在平面与泥水混合液流动的方向垂直,
    矩形框架与第一框架固定连接,矩形框架中的支撑柱均沿竖直设置,相临的支撑柱上对称的开设有凹槽,用于将第一倒V型板的两个连接板卡接在凹槽中;
    且支撑柱上的凹槽为多个,且于支撑多层第一倒V型板。
  7. 根据权利要求6所述一种高负荷厌氧系统内高效撬装式三相分离器,其特征在于,矩形框架中设置多根支撑柱,用于支撑多行第一倒V型板,每行第一倒V型板均是沿泥水混合液流动方向设置。
  8. 根据权利要求6或7所述一种高负荷厌氧系统内高效撬装式三相分离器,其特征在于,每两个倒V型板支架之间为一列第一倒V型板,倒V型沉淀区平行设置有多个倒V型板支架和多列第一倒V型板。
  9. 根据权利要求8所述一种高负荷厌氧系统内高效撬装式三相分离器,其特征在于,与出水配水区相临的倒V型板支架为末端倒V型板支架,所述末端倒V型板支架的支撑柱的宽度大于其它倒V型板支架的支撑板的宽度。
  10. 根据权利要求2-9所述一种高负荷厌氧系统内高效撬装式三相分离器,其特征在于,至少在每个倒V型板支架下方均设置有沼气排放口。
PCT/CN2022/103752 2021-12-31 2022-07-04 一种高负荷厌氧系统内高效撬装式三相分离器 WO2023123992A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111656130.7A CN114275890A (zh) 2021-12-31 2021-12-31 一种高负荷厌氧系统内高效撬装式三相分离器
CN202111656130.7 2021-12-31

Publications (1)

Publication Number Publication Date
WO2023123992A1 true WO2023123992A1 (zh) 2023-07-06

Family

ID=80878726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103752 WO2023123992A1 (zh) 2021-12-31 2022-07-04 一种高负荷厌氧系统内高效撬装式三相分离器

Country Status (2)

Country Link
CN (1) CN114275890A (zh)
WO (1) WO2023123992A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114275890A (zh) * 2021-12-31 2022-04-05 南京万德斯环保科技股份有限公司 一种高负荷厌氧系统内高效撬装式三相分离器

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002219486A (ja) * 2001-01-25 2002-08-06 Mitsubishi Kakoki Kaisha Ltd 上向流嫌気性処理装置
WO2005095288A1 (en) * 2004-04-02 2005-10-13 Biothane Systems International B.V. Three-phase separator for an upflow sludge bed reactor
US20080277328A1 (en) * 2007-05-07 2008-11-13 Zhao Joe R H Up-flow Multi-stage Anaerobic Reactor (UMAR)
CN101423292A (zh) * 2008-11-20 2009-05-06 浙江大学 处理高浓度印染废水的厌氧生物反应器及其方法
CN101597561A (zh) * 2009-06-13 2009-12-09 江南大学 一种沼气提升式强化厌氧反应器及其应用
CN203976474U (zh) * 2014-06-30 2014-12-03 重庆市艳阳环保工程有限公司 一种涡流旋混厌氧反应器
CN205099459U (zh) * 2015-11-03 2016-03-23 浙江环耀环境建设有限公司 一种高效三相分离器
CN211688554U (zh) * 2020-02-06 2020-10-16 徐锋 三相分离器及污水处理装置
CN212198936U (zh) * 2020-04-13 2020-12-22 徐锋 三相分离器
CN213231667U (zh) * 2020-09-12 2021-05-18 袁杨春 三相分离器及污水处理装置
CN114275890A (zh) * 2021-12-31 2022-04-05 南京万德斯环保科技股份有限公司 一种高负荷厌氧系统内高效撬装式三相分离器
CN216777998U (zh) * 2022-01-06 2022-06-21 南京万德斯环保科技股份有限公司 一种撬装式高效泥水分离设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102491511B (zh) * 2011-12-09 2013-01-23 四川四通欧美环境工程有限公司 一种高效厌氧生物反应器
CN103182202B (zh) * 2011-12-30 2015-02-04 厦门飞华环保器材有限公司 V型管沉淀池装置
CN203187460U (zh) * 2013-03-14 2013-09-11 北京德源通环保科技有限公司 一种厌氧-好氧复合的污水处理装置
CN109160604A (zh) * 2018-10-25 2019-01-08 青岛理工大学 一种复合式三相分离器
CN212712919U (zh) * 2020-06-16 2021-03-16 上海禾元环保集团有限公司 一种uasb厌氧池斜板沉淀系统
CN213823566U (zh) * 2020-10-19 2021-07-30 上海兴全电力技术有限公司 一种具有自清洗功能的水平异形管固液分离器
CN214808641U (zh) * 2021-01-12 2021-11-23 广州市市政工程设计研究总院有限公司 一种二次沉淀池

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002219486A (ja) * 2001-01-25 2002-08-06 Mitsubishi Kakoki Kaisha Ltd 上向流嫌気性処理装置
WO2005095288A1 (en) * 2004-04-02 2005-10-13 Biothane Systems International B.V. Three-phase separator for an upflow sludge bed reactor
US20080277328A1 (en) * 2007-05-07 2008-11-13 Zhao Joe R H Up-flow Multi-stage Anaerobic Reactor (UMAR)
CN101423292A (zh) * 2008-11-20 2009-05-06 浙江大学 处理高浓度印染废水的厌氧生物反应器及其方法
CN101597561A (zh) * 2009-06-13 2009-12-09 江南大学 一种沼气提升式强化厌氧反应器及其应用
CN203976474U (zh) * 2014-06-30 2014-12-03 重庆市艳阳环保工程有限公司 一种涡流旋混厌氧反应器
CN205099459U (zh) * 2015-11-03 2016-03-23 浙江环耀环境建设有限公司 一种高效三相分离器
CN211688554U (zh) * 2020-02-06 2020-10-16 徐锋 三相分离器及污水处理装置
CN212198936U (zh) * 2020-04-13 2020-12-22 徐锋 三相分离器
CN213231667U (zh) * 2020-09-12 2021-05-18 袁杨春 三相分离器及污水处理装置
CN114275890A (zh) * 2021-12-31 2022-04-05 南京万德斯环保科技股份有限公司 一种高负荷厌氧系统内高效撬装式三相分离器
CN216777998U (zh) * 2022-01-06 2022-06-21 南京万德斯环保科技股份有限公司 一种撬装式高效泥水分离设备

Also Published As

Publication number Publication date
CN114275890A (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
CN109761449A (zh) 一种基于uasb的新型厌氧反应器及处理系统
WO2023123992A1 (zh) 一种高负荷厌氧系统内高效撬装式三相分离器
CN205241342U (zh) 一种环流式厌氧反应器
CN102471109B (zh) 具有多相分离装置的用于厌氧净化废水的反应器
CN201132800Y (zh) 高效搅拌升流式厌氧固体反应器
CN110526395A (zh) 用于废水处理系统的旋流厌氧反应器
CN201777929U (zh) 一种内循环式升流式厌氧污泥床反应器
CN204111411U (zh) 一种固-液-气三相分离器
CN201024124Y (zh) 高效厌氧生物反应器
CN107973399B (zh) 一种高效三相分离系统
CN206680256U (zh) 一种新型uasb厌氧反应器
CN102139956A (zh) 一种高效厌氧生物反应器的三相分离器
CN216777998U (zh) 一种撬装式高效泥水分离设备
CN103408134B (zh) 一种厌氧污泥床反应器及其处理有机废水的方法
CN205874007U (zh) 一种折流式复合厌氧反应器
CN101613153B (zh) 一种立式厌氧处理罐一体化三相分离装置
CN201634671U (zh) 厌氧发酵装置的四项分离器
CN207827962U (zh) 一种三相分离单元、三相分离模块及模块化三相分离器
CN209890342U (zh) 一种用于水处理的三相分离器
CN209721701U (zh) 一种新型厌氧反应器
CN103319018A (zh) 一种高效分步式三相分离器系统
CN201458822U (zh) 立式厌氧处理罐一体化三相分离装置
CN203486964U (zh) 一种厌氧污泥床反应器
CN203781912U (zh) 废水处理过程中的气固液三相分离装置
CN206467032U (zh) 三相分离装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913281

Country of ref document: EP

Kind code of ref document: A1