WO2023123827A1 - 一种轴向磁场电机转子、转子盘及成型方法 - Google Patents

一种轴向磁场电机转子、转子盘及成型方法 Download PDF

Info

Publication number
WO2023123827A1
WO2023123827A1 PCT/CN2022/093835 CN2022093835W WO2023123827A1 WO 2023123827 A1 WO2023123827 A1 WO 2023123827A1 CN 2022093835 W CN2022093835 W CN 2022093835W WO 2023123827 A1 WO2023123827 A1 WO 2023123827A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon steel
rotor
disk
block
blocks
Prior art date
Application number
PCT/CN2022/093835
Other languages
English (en)
French (fr)
Inventor
陈翾
韩军
于河波
Original Assignee
浙江盘毂动力科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111610274.9A external-priority patent/CN114268197A/zh
Priority claimed from CN202111634609.0A external-priority patent/CN114285199B/zh
Application filed by 浙江盘毂动力科技有限公司 filed Critical 浙江盘毂动力科技有限公司
Publication of WO2023123827A1 publication Critical patent/WO2023123827A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • H02K1/30Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets

Definitions

  • the invention relates to the field of axial magnetic field motors, in particular to a rotor of an axial magnetic field motor, a rotor disc and a forming method.
  • Axial field motors are widely used in electric vehicles, general industries and household appliances due to their small axial size, high torque density, high power density and high efficiency.
  • Existing axial field motors generally use silicon steel sheets as the lamination material of the rotor and stator. During the forming process of the rotor, silicon steel sheets are stamped and cut to form multiple sheets of different widths, and then the multiple sheets are sequentially cut according to the width. Laminate in a progressively larger manner to form multiple fan-shaped silicon steel blocks of the same shape, and finally arrange multiple silicon steel blocks on the rotor support in a circular interval, and the multi-layer sheets of each silicon steel block are along the diameter of the rotor support. aligned to obtain the rotor.
  • each silicon steel block requires multiple sheets of different widths to be laminated, which not only reduces the production efficiency, but also cannot ensure the consistency of each silicon steel block, and even causes eddy current loss, which reduces the reliability of the rotor.
  • the silicon steel block needs to be assembled with the rotor bracket one by one, which also affects the forming efficiency of the rotor, thus making it impossible to carry out industrialized mass production.
  • the present invention provides an axial field motor rotor, a rotor disc and a molding method with high production efficiency and product consistency, which is convenient for industrialized mass production.
  • the present invention provides a method for forming the rotor of an axial field motor, comprising the following steps: (a) rolling the strip-shaped silicon steel sheet after punching and shearing to form an annular silicon steel disk, wherein the silicon steel disk There are multiple sets of magnetic isolation slots arranged at intervals in the circumferential direction, and a silicon steel block is defined between two adjacent sets of magnetic isolation slots. The number of each set of magnetic isolation slots is two, and they are arranged opposite to the silicon steel plate in the axial direction.
  • a connecting rib connecting two adjacent silicon steel blocks is defined between the two magnetic isolation slots; (d) rotor brackets are clamped on both sides of the silicon steel plate in the axial direction, forming A rotor disk, wherein the rotor bracket is embedded in the magnetic isolation slot and exposes the axial end surface of the silicon steel block.
  • the strip-shaped silicon steel sheet after punching and shearing has a plurality of groups of slotted holes arranged at intervals along the length direction, and between adjacent two groups of the slotted parts is defined a
  • the number of each group of the slotted parts is two, and they are relatively arranged on both sides of the width direction of the strip-shaped silicon steel sheet.
  • the rib part that forms the connecting rib in rolling is
  • the rotor bracket includes an inner retaining ring, an outer retaining ring, and a plurality of blocks connected between the inner retaining ring and the outer retaining ring, and the plurality of retaining blocks are arranged at intervals along the circumferential direction, And an insertion hole is formed between two adjacent blocks, and in the step (d), the blocks are embedded in the magnetic isolation groove, so that the silicon steel block is inserted into the and the inner retaining ring is sleeved on the inner peripheral edge of the silicon steel disk, and the outer retaining ring is sleeved on the outer peripheral edge of the silicon steel disk.
  • step (c) sheathing a protective ring on the outer periphery of the silicon steel disk.
  • the step (a) further includes the following steps: (b) providing a fixing tool, which is fixed on the inner and outer periphery of the silicon steel plate, so as to shape the silicon steel plate and remove it.
  • the present invention also provides a rotor for an axial field motor, comprising: an annular silicon steel disk, the silicon steel disk has a plurality of sets of magnetic isolation slots arranged at intervals along the circumferential direction, and a magnetic isolation slot is defined between two adjacent sets of magnetic isolation slots.
  • the number of magnetic isolation grooves in each group is two, and they are relatively arranged on both sides of the silicon steel disk in the axial direction, and a connection between two adjacent silicon steel blocks is defined between the two magnetic isolation grooves of each group.
  • a connecting rib a connecting rib
  • a protective ring the protective ring is sleeved on the outer periphery of the silicon steel disk
  • two rotor brackets the two axial sides of the silicon steel disk are respectively clamped with rotor brackets to form a rotor disk, wherein the The rotor bracket is embedded in the magnetic isolation slot and exposes the axial end surface of the silicon steel block.
  • the rotor bracket includes an inner retaining ring, an outer retaining ring, and a plurality of blocks connected between the inner retaining ring and the outer retaining ring, and the plurality of retaining blocks are arranged at intervals in the circumferential direction , and an insertion hole is formed between two adjacent blocks, the blocks are embedded in the magnetic isolation groove, so that the silicon steel block is inserted into the insertion hole, and the The inner retaining ring is sleeved on the inner peripheral edge of the silicon steel disk, and the outer retaining ring is sleeved on the outer peripheral edge of the silicon steel disk.
  • the silicon steel block is trapezoidal, and the silicon steel block is formed by stacking multiple layers of block pieces with different sizes along the height direction of the trapezoid.
  • the block portion is arc-shaped
  • the trapezoidal bottom of the silicon steel block is an arc-shaped protrusion
  • the trapezoidal top of the silicon steel block is an arc-shaped groove
  • the rotor disk is sleeved outside the rotating shaft, so that the rotating shaft passes through the center of the rotor bracket and the silicon steel disk respectively, and is tied by fasteners Fix the rotor bracket and the silicon steel disc.
  • the present invention provides a method for forming a rotor disc of an axial field motor, which includes the following steps: (a) punching a strip-shaped silicon steel sheet, wherein the strip-shaped silicon steel sheet after punching has several A block part for rolling to form a silicon steel block, and several rib parts for rolling to form a connecting rib, and at least two rib parts are connected between any adjacent two block parts; (b) Rolling the strip-shaped silicon steel sheet after punching and shearing to form an annular silicon steel disk, wherein the silicon steel disk includes a plurality of silicon steel blocks arranged at intervals in the circumferential direction, and at least two connecting ribs are connected between any adjacent two silicon steel blocks, To divide the space between two adjacent silicon steel blocks into magnetic isolation grooves arranged on both sides of the silicon steel disk in the axial direction, and several storage holes between the two magnetic isolation grooves; (f) Rotor brackets are clamped on both axial sides of the silicon steel disc to form a rotor disc
  • the rotor bracket includes an inner retaining ring, an outer retaining ring, and a plurality of blocks connected between the inner retaining ring and the outer retaining ring, and the plurality of retaining blocks are arranged at intervals along the circumferential direction, And an insertion hole is formed between two adjacent blocks, and in the step (f), the blocks are embedded in the magnetic isolation groove, so that the silicon steel block is inserted into the and the inner retaining ring is sleeved on the inner peripheral edge of the silicon steel disk, and the outer retaining ring is sleeved on the outer peripheral edge of the silicon steel disk.
  • the number of the connecting ribs located between two adjacent silicon steel blocks is two, and the two connecting ribs are arranged at intervals along the axial direction of the silicon steel plate, and the silicon steel blocks The axial end face is protruding relative to the connecting rib.
  • step (e) sheathing a protective ring on the outer periphery of the silicon steel disk.
  • the step (b) further includes the following steps: (c) providing a fixing tool, which is fixed on the inner and outer periphery of the silicon steel plate, so as to shape the silicon steel plate and remove it.
  • the present invention also provides a rotor disk of an axial field motor, which includes an annular silicon steel disk, the silicon steel disk includes a plurality of silicon steel blocks arranged at intervals in the circumferential direction, and any two adjacent silicon steel blocks At least two connecting ribs are connected between the blocks, so as to divide the space between two adjacent silicon steel blocks into magnetic isolation grooves arranged on both sides of the silicon steel plate in the axial direction, and between the two magnetic isolation grooves.
  • a protective ring the protective ring is sleeved on the outer periphery of the silicon steel disk; two rotor brackets, the two axial sides of the silicon steel disk are clamped with rotor brackets to form a rotor disk, wherein The rotor bracket is embedded in the magnetic isolation slot and exposes the axial end surface of the silicon steel block.
  • the rotor bracket includes an inner retaining ring, an outer retaining ring, and a plurality of blocks connected between the inner retaining ring and the outer retaining ring, and the plurality of retaining blocks are arranged at intervals along the circumferential direction, And an insertion hole is formed between two adjacent clamping blocks, the clamping blocks are embedded in the magnetic isolation groove, so that the silicon steel block is inserted into the insertion hole, and the inner The retaining ring is sleeved on the inner peripheral edge of the silicon steel disc, and the outer retaining ring is sleeved on the outer peripheral edge of the silicon steel disc.
  • the silicon steel block is trapezoidal, and the silicon steel block is formed by stacking multiple layers of block pieces with different sizes along the height direction of the trapezoid.
  • the block portion is arc-shaped
  • the trapezoidal bottom of the silicon steel block is an arc-shaped protrusion
  • the trapezoidal top of the silicon steel block is an arc-shaped groove
  • the dimension of the magnetic isolation groove along the axial direction of the silicon steel disk is smaller than the dimension of the connecting rib along the axial direction of the silicon steel disk.
  • the punched and sheared strip-shaped silicon steel sheet is rolled to form an integral silicon steel disk, wherein the silicon steel disk includes a plurality of silicon steel blocks in a circumferential array, and is relatively
  • a connecting rib for connection is formed between two adjacent silicon steel blocks, and the magnetic isolation grooves are separated by the connecting rib and arranged on both axial sides of the silicon steel disk.
  • the insulation performance between layers of the silicon steel blocks is improved, eddy current loss is avoided, and the electromagnetic consistency of each silicon steel block is ensured.
  • the rotor brackets are directly clamped on both sides of the silicon steel disk in the axial direction. Compared with the prior art where a plurality of silicon steel blocks are placed on the brackets one by one, the rotor bracket can be effectively improved. Forming efficiency is improved, and the consistency of the position of each silicon steel block on the rotor disk is ensured, which is conducive to industrialized mass production.
  • Fig. 1 is the flow chart of the axial field motor rotor forming method of the present invention
  • Fig. 2 is the structural representation of the strip silicon steel sheet after punching and shearing described in Fig. 1;
  • Fig. 3 is the structural representation of silicon steel plate described in Fig. 1;
  • Fig. 4 is the schematic structural view of the combination of the silicon steel plate and the fixed tooling described in Fig. 1;
  • Fig. 5 is the structural representation of the combination of the silicon steel disc and the protective ring described in Fig. 1;
  • Fig. 6 is a structural schematic diagram of the combination of the silicon steel disc and the rotor bracket described in Fig. 1;
  • Fig. 7 is a structural schematic diagram of the combination of the rotor disk and the rotating shaft described in Fig. 1;
  • Fig. 8 is a flow chart of the method for forming a rotor disk of an axial field motor according to the present invention.
  • Fig. 9 is a schematic structural view of the strip-shaped silicon steel sheet after punching and shearing described in Fig. 8;
  • Fig. 10 is a structural schematic diagram of the silicon steel disc described in Fig. 8.
  • Fig. 11 is a structural schematic diagram of the combination of the silicon steel plate and the fixed tooling described in Fig. 8;
  • Fig. 12 is a schematic structural diagram of the combination of the silicon steel disc and the rotor bracket described in Fig. 8;
  • FIG. 13 is a schematic structural diagram of the combination of the rotor disc and the shaft in FIG. 8 .
  • the forming method of the rotor of the axial field motor comprises the following steps:
  • the strip-shaped silicon steel sheet 1000 after punching is rolled to form an integral silicon steel disk 100, wherein the silicon steel disk 100 includes a plurality of silicon steel blocks 110 in a circumferential array, and between two adjacent silicon steel blocks 110
  • the connecting ribs 120 for connection are formed between them, and the magnetic isolation grooves 130 are separated by the connecting ribs 120 and arranged on both axial sides of the silicon steel disk 100 .
  • the insulation performance between the layers of the silicon steel block 110 is improved, eddy current loss is avoided, and the electromagnetic consistency of each silicon steel block is ensured.
  • the rotor brackets 300 are clamped directly on both sides of the silicon steel disk 100 in the axial direction. Compared with the prior art where a plurality of silicon steel blocks are placed on the brackets one by one, the rotor can be effectively lifted. The forming efficiency of the disk is improved, and the consistency of the position of each silicon steel block 110 on the rotor disk is ensured, thereby facilitating industrialized mass production.
  • the step (a) includes: rolling the strip-shaped silicon steel sheet 1000 after punching and shearing to form an annular silicon steel disk 100, wherein the silicon steel disk 100 has a plurality of sets of magnetic isolation grooves 130 arranged at intervals along the circumferential direction, adjacent A silicon steel block 110 is defined between two groups of magnetic isolation grooves 130, and the number of each group of magnetic isolation grooves 130 is two, and they are relatively arranged on both sides of the axial direction of the silicon steel disk 100, and the two magnetic isolation grooves of each group A connecting rib 120 connecting two adjacent silicon steel blocks 110 is defined between the grooves 130 .
  • a plurality of silicon steel blocks 110 are arranged at intervals in the circumferential direction, and two adjacent silicon steel blocks 110 are connected to a connecting rib 120 .
  • the connecting rib 120 divides the space between two adjacent silicon steel blocks 110 into two magnetic isolation grooves 130 that have the same shape and are located on both axial sides of the silicon steel plate 100 and opposite to each other.
  • the two opposing magnetic isolation slots 130 form a group of magnetic isolation slots 130 .
  • the silicon steel block 110 is trapezoidal, the top of the trapezoid corresponds to the inner periphery of the silicon steel disk 100 , the bottom of the trapezoid corresponds to the outer periphery of the silicon steel disk 100 , and the height direction of the trapezoid corresponds to the radial direction of the silicon steel disk 100 .
  • the connecting rib 120 is rectangular, and the magnetic isolation groove 130 is also rectangular, and the magnetic isolation groove 130 runs through the inner and outer peripheral edges of the silicon steel plate 100 .
  • the sum of the dimensions of the connecting rib 120 and the two magnetic isolation grooves 130 along the axial direction of the silicon steel disk 100 is equal to the dimension of the silicon steel block 110 along the axial direction of the silicon steel disk 100 .
  • the size of the connecting rib 120 will not only affect the size of the magnetic isolation slot 130, but also affect the connection performance between two adjacent silicon steel blocks.
  • the magnetic isolation slot 130 fits with the rotor bracket 300, and the size of the magnetic isolation slot 130 affects the fixing performance of the silicon steel disc 100 and the rotor bracket 300. Once the connection and fixing performance are not good, it will Affect the output torque of the motor, and even cause rotor eddy current loss.
  • the dimension of the magnetic isolation groove 130 along the axial direction of the silicon steel disk 100 is 3 times or more than the axial dimension of the connecting rib 120 along the silicon steel disk 100.
  • the silicon steel block 110, the connecting rib 120 and the magnetic isolation groove 130 are all rolled from the strip-shaped silicon steel sheet 1000 after punching and shearing, and the number and size of the silicon steel block 110 can be varied. It is selected according to design requirements, for example, the axial dimension of the silicon steel block 110 corresponds to the width of the silicon steel sheet 1000 . Among them, punching, shearing and rolling can be carried out at the same time, further improving the forming efficiency.
  • the strip-shaped silicon steel sheet 1000 after punching has a plurality of groups of slotted holes 1300 arranged at intervals along the length direction, and a boundary between two adjacent groups of slotted holes 1300 is defined.
  • the number of the slot parts 1300 in each group is two, and they are arranged on both sides of the width direction of the strip-shaped silicon steel sheet 1000, two in each group Rib portion 1200 for rolling to form connecting rib 120 is defined between the slot portions 1300 .
  • the two sides in the width direction of the strip-shaped silicon steel sheet 1000 correspond to the two sides in the axial direction of the silicon steel disk 100 after forming, so the multi-layer piece part 1100 of the silicon steel block 110 is formed by rolling, which is along the axial direction of the silicon steel disk 100.
  • the dimensions are consistent, only the dimension along the circumference of the silicon steel disk 100 (the width of the block portion 1100 ) is inconsistent.
  • the multi-layer block portion 1100 of the silicon steel block 110 is formed by rolling, and its width is along the radial direction of the silicon steel plate 100 and gradually increases from the inside to the outside.
  • the block part 1100 is arc-shaped, that is, the trapezoidal bottom of the silicon steel block 110 is an arc-shaped protrusion, and the trapezoidal top of the silicon steel block 110 is an arc-shaped groove.
  • the slots 1300 provided on both sides of the strip-shaped silicon steel sheet 1000 in the width direction form the magnetic isolation grooves 130 on both sides of the silicon steel plate 100 in the axial direction after rolling, and
  • the magnetic isolation groove 130 runs through the inner and outer peripheries of the silicon steel disk 100 .
  • the distances from the connecting ribs 120 to the two axial sides of the silicon steel plate 100 are also the same. That is, the distances between the punched ribs 1200 and both sides of the strip-shaped silicon steel sheet 1000 in the width direction are the same, as shown in FIG. 2 .
  • the magnetic isolation slot 130 is rectangular, and the slot hole 1300 constituting the cross section of the magnetic isolation slot 130 is also rectangular.
  • the connecting rib 120 is rectangular, and the multi-layer rib part 1200 rolled to form the connecting rib 120 is rectangular, and the width of each rib part 1200 is the same , so that the connecting rib 120 formed by rolling is rectangular.
  • the rib part 1200 is arc-shaped, the inner side of the connecting rib 120 is an arc-shaped groove, and the outer side of the connecting rib 120 is an arc-shaped protrusion, wherein the The inner side of the connecting rib 120 corresponds to the inner peripheral edge of the silicon steel plate 100 , and the outer side of the connecting rib 120 corresponds to the outer peripheral edge of the silicon steel plate 100 .
  • step (b) providing a fixing tool 400, which is fixed on the inner and outer peripheral edges of the silicon steel plate 100, so as to shape the silicon steel plate 100 and take Down.
  • the silicon steel plate 100 rolled and formed is shaped by the fixing tool 400 to prevent deformation of the silicon steel block 110 and the like, which will affect the consistency of the size of each silicon steel block 110 .
  • the fixing tool 400 includes an inner fixing ring 410 and an outer fixing ring 420, the inner fixing ring 410 is sleeved on the inner periphery of the silicon steel plate 100, and the outer fixing ring 420 sets It is provided on the outer periphery of the silicon steel disk 100 to characterize the silicon steel disk 100 .
  • the inner fixing ring 410 is annular
  • the outer fixing ring 420 includes two hoops, and the two hoops are placed on the outer periphery of the silicon steel disc 100 and locked by screws 430 , It is convenient and quick to install, and can effectively improve the shaping effect.
  • step (c) sleeve a protective ring 500 on the outer periphery of the silicon steel plate 100 .
  • the protective ring 500 can be wound from glass fiber and other materials.
  • the axial dimension of the silicon steel block 110 is larger than the axial dimension of the protective ring 500 along the silicon steel disk 100 , and the distances between the protective ring 500 and the axial sides of the silicon steel disk 100 are respectively Consistent, to reserve the installation position of the rotor bracket 300 on both sides of the guard ring 500, it can be seen that the guard ring 500 and the rotor bracket 300 can fill and seal the outer periphery of the silicon steel disk 100, reducing rotor rotation Wind resistance.
  • the protective ring 500 is located at the middle position in the axial direction of the silicon steel disk, and the dimension of the protective ring 500 along the axial direction of the silicon steel disk 100 is larger than that of the connecting rib 120 along the axial direction of the silicon steel disk 100. size, to further prevent rotor deformation.
  • the step (d) includes: clamping rotor brackets 300 on both axial sides of the silicon steel disk 100 to form a rotor disk, wherein the rotor brackets 300 are embedded in the magnetic isolation groove 130 and exposed The axial end surface of the silicon steel block 110 .
  • the rotor bracket 300 is clamped on both axial sides of the silicon steel disc 100 to support the silicon steel block 110, thereby ensuring the consistency of the dimensions of the multiple silicon steel blocks 110 and the output torque of the motor, effectively reducing the rotor eddy current loss.
  • the rotor bracket 300 includes an inner retaining ring 310, an outer retaining ring 320, and a plurality of blocks 330 connected between the inner retaining ring 310 and the outer retaining ring 320, and the plurality of retaining blocks 330 are arranged at intervals along the circumferential direction, and an insertion hole 340 is formed between two adjacent blocks 330 , and then in the step (d), the blocks 330 are embedded in the magnetic isolation groove 130 so that the silicon steel block 110 is inserted into the socket 340, and the inner retaining ring 310 is sleeved on the inner peripheral edge of the silicon steel plate 100, and the outer retaining ring 320 is sleeved on the silicon steel the outer periphery of the disc 100.
  • the shape of the clamping block 330 is consistent with that of the magnetic isolation slot 130 , both of which are rectangular, and the shape of the insertion hole 340 is consistent with that of the silicon steel block 110 , both of which are trapezoidal.
  • the outer end surface of the rotor bracket 300 formed by the inner retaining ring 310 , the outer retaining ring 320 and the block 300 is a plane.
  • the dimensions of the inner retaining ring 310 and the block 300 in the axial direction of the rotor support are consistent, while the dimensions of the outer retaining ring 320 in the axial direction of the rotor support are smaller.
  • the silicon steel Two outer retaining rings 320 and a protective ring 500 are sheathed on the outer periphery of the disk 100 , and the two outer retaining rings 320 are located on both sides of the protective ring 500 , and the three seal the outer peripheral edge of the silicon steel disk 100 .
  • a further step is included: sheathing the rotor disk on the rotating shaft 600 .
  • the rotating shaft 600 passes through the centers of the two rotor brackets 300 and the silicon steel disk 100 respectively, and fixes the two rotor brackets 300 and the silicon steel disk 100 by fastening.
  • the center of the inner retaining ring 310 is provided with a bracket through hole 311 for passing the rotating shaft 600
  • the inner retaining ring 310 is provided with an inner retaining ring installation hole through which fasteners pass.
  • the rotating shaft 600 includes a shaft body and a step body, the step body is integrally connected to the shaft body, and a step installation hole is opened on the step body, when the shaft body passes through two After the rotor bracket 300 and the silicon steel plate 100, a rotor bracket 300 close to the stepped body can be abutted and fixed on the stepped body, and then passed through the relative inner retaining ring installation hole and the step installation in sequence through fasteners The holes are used to fix the rotor disk on the rotating shaft 600 so that the two rotate together.
  • both axial ends of the silicon steel block 110 are exposed by the rotor brackets 300 on both sides, so the rotor disk of the present invention is suitable for use in a double-stator single-rotor motor.
  • the strip-shaped silicon steel sheet 1000 after punching and shearing is rolled to form an integral silicon steel disk 100, wherein the silicon steel disk 100 includes a plurality of silicon steel blocks 110 in a circumferential array, and two adjacent silicon steel blocks 110
  • the connecting ribs 120 for connection are formed between the silicon steel blocks 110
  • the magnetic isolation grooves 130 are separated by the connecting ribs 120 and arranged on both axial sides of the silicon steel disk 100 .
  • the insulation performance between the layers of the silicon steel block 110 is improved, eddy current loss is avoided, and the electromagnetic consistency of each silicon steel block is ensured.
  • the rotor brackets 300 are clamped directly on both sides of the silicon steel disk 100 in the axial direction. Compared with the prior art where a plurality of silicon steel blocks are placed on the brackets one by one, the rotor can be effectively lifted. The forming efficiency of the disk is improved, and the consistency of the position of each silicon steel block 110 on the rotor disk is ensured, thereby facilitating industrialized mass production.
  • the present invention provides an annular silicon steel disk 100, the silicon steel disk 100 has a plurality of sets of magnetic isolation grooves 130 arranged at intervals along the circumferential direction, and a circle is defined between adjacent two groups of magnetic isolation grooves 130.
  • the number of magnetic isolation grooves 130 in each group is two, and they are relatively arranged on both sides in the axial direction of the silicon steel plate 100, and a connection between two adjacent magnetic isolation grooves 130 is defined between each group.
  • the connecting rib 120 of the silicon steel block 110 is configured to the silicon steel block 110 .
  • a plurality of silicon steel blocks 110 are connected by connecting ribs 120 to form an integrated silicon steel plate 100.
  • it not only avoids the loss of silicon steel blocks 110, but also effectively improves the assembly of the silicon steel plate 100.
  • the mechanical reliability of the rotor disk is greatly enhanced.
  • the silicon steel block 110 is trapezoidal, the top of the trapezoid corresponds to the inner periphery of the silicon steel disk 100 , the bottom of the trapezoid corresponds to the outer periphery of the silicon steel disk 100 , and the height direction of the trapezoid corresponds to the radial direction of the silicon steel disk 100 .
  • the connecting rib 120 is rectangular, and the magnetic isolation groove 130 is also rectangular, and the magnetic isolation groove 130 runs through the inner and outer peripheral edges of the silicon steel plate 100 .
  • the sum of the dimensions of the connecting rib 120 and the two magnetic isolation grooves 130 along the axial direction of the silicon steel disk 100 is equal to the dimension of the silicon steel block 110 along the axial direction of the silicon steel disk 100 .
  • the distances between the connecting ribs 120 and the two axial sides of the silicon steel plate 100 are the same, that is, the connecting ribs 120 are connected to the axial middle position of the silicon steel block 110 so that the connected ribs 120
  • the separated two magnetic isolation slots 130 have the same shape.
  • the size of the connecting rib 120 will not only affect the size of the magnetic isolation slot 130, but also affect the connection performance between two adjacent silicon steel blocks.
  • the magnetic isolation slot 130 fits with the rotor bracket 300, and the size of the magnetic isolation slot 130 affects the fixing performance of the silicon steel disc 100 and the rotor bracket 300. Once the connection and fixing performance are not good, it will Affect the output torque of the motor, and even cause rotor eddy current loss.
  • the dimension of the magnetic isolation groove 130 along the axial direction of the silicon steel disk 100 is 3 times or more than the axial dimension of the connecting rib 120 along the silicon steel disk 100.
  • the silicon steel block 110 is trapezoidal, and the silicon steel block 110 is formed by stacking multiple layers of block parts 1100 of different sizes along the height direction of the trapezoid.
  • the block portion 1100 is arc-shaped, the trapezoidal bottom of the silicon steel block is arc-shaped convex to correspond to the outer periphery of the silicon steel plate, and the trapezoidal top of the silicon steel block is arc-shaped grooves to correspond to the silicon steel plate inner periphery.
  • the connecting rib 120 is formed by stacking multiple ribs 1200 of the same size along the radial direction of the silicon steel disk.
  • the rib part 1200 is arc-shaped, the inner side of the connecting rib 120 is an arc-shaped groove to correspond to the inner peripheral edge of the silicon steel plate, and the outer side of the connecting rib 120 is arc-shaped convex to correspond to the silicon steel plate the outer periphery.
  • the rib part 1200 is integrally connected to the two adjacent piece parts 1100 on the same layer, so that a rib is passed between the two adjacent piece parts 1100 on the same layer.
  • the slices 1200 are connected. Wherein the two adjacent block pieces 1100 of the same layer come from the two adjacent silicon steel blocks 110 respectively.
  • multiple silicon steel blocks 110 are connected by connecting ribs 120 to form an integral silicon steel plate 100.
  • it not only avoids the loss of silicon steel blocks 110, but also effectively
  • the forming efficiency of the assembly of the silicon steel disk 100 into a rotor disk is improved, and the position consistency of each silicon steel block 110 on the rotor disk is ensured, thereby greatly enhancing the mechanical reliability of the rotor disk.
  • the present invention also provides an axial field motor, comprising:
  • An annular silicon steel disk 100 the silicon steel disk 100 has a plurality of sets of magnetic isolation grooves 130 arranged at intervals along the circumferential direction, a silicon steel block 110 is defined between two adjacent groups of magnetic isolation grooves 130, each group of magnetic isolation grooves 130 The number is two, and they are relatively arranged on both sides of the silicon steel plate 100 in the axial direction, and a connecting rib 120 connecting two adjacent silicon steel blocks 110 is defined between the two magnetic isolation grooves 130 in each group;
  • a protective ring 500, the protective ring 500 is sleeved on the outer periphery of the silicon steel plate 100;
  • Two rotor brackets 300, the two axial sides of the silicon steel disk 100 are respectively clamped with rotor brackets 300 to form a rotor disk, wherein the rotor brackets 300 are embedded in the magnetic isolation groove 130 and expose the silicon steel block 110 axial end face.
  • the rotor bracket 300 includes an inner retaining ring 310, an outer retaining ring 320, and a plurality of blocks 330 connected between the inner retaining ring 310 and the outer retaining ring 320, and the plurality of retaining blocks 330 are arranged at intervals along the circumferential direction, and an insertion hole 340 is formed between two adjacent blocks 330, and the blocks 330 are embedded in the magnetic isolation groove 130, so that the silicon steel block 110 is inserted into the connected to the insertion hole 340 , and the inner retaining ring 310 is sleeved on the inner peripheral edge of the silicon steel plate 100 , and the outer retaining ring 320 is sleeved on the outer peripheral edge of the silicon steel plate 100 .
  • the shape of the clamping block 330 is consistent with that of the magnetic isolation slot 130 , both of which are rectangular, and the shape of the insertion hole 340 is consistent with that of the silicon steel block 110 , both of which are trapezoidal.
  • the outer end surface of the rotor bracket 300 formed by the inner retaining ring 310 , the outer retaining ring 320 and the block 300 is a plane.
  • the dimensions of the inner retaining ring 310 and the block 300 in the axial direction of the rotor support are consistent, while the dimensions of the outer retaining ring 320 in the axial direction of the rotor support are smaller.
  • the silicon steel Two outer retaining rings 320 and a protective ring 500 are sheathed on the outer periphery of the disk 100 , and the two outer retaining rings 320 are located on both sides of the protective ring 500 , and the three seal the outer peripheral edge of the silicon steel disk 100 .
  • the silicon steel block 110 is trapezoidal, and the silicon steel block 110 is formed by stacking multiple layers of block parts 1100 of different sizes along the height direction of the trapezoid.
  • the block portion 1100 is arc-shaped, the trapezoidal bottom of the silicon steel block is an arc-shaped protrusion, and the trapezoidal top of the silicon steel block is an arc-shaped groove.
  • the axial field motor further includes a rotating shaft 600, and the rotor disk is sheathed outside the rotating shaft 600, so that the rotating shaft 600 passes through the rotor bracket 300 and the rotating shaft 600 respectively.
  • the center of the silicon steel disk 100 is connected, and the rotor support 300 and the silicon steel disk 100 are fixed by fasteners.
  • the forming method of the rotor disc of the axial field motor comprises the following steps:
  • the silicon steel disk 100 includes a plurality of silicon steel blocks 110 arranged at intervals in the circumferential direction, and any adjacent two silicon steel blocks 110 At least two connecting ribs 120 are connected between them, so as to divide the space between two adjacent silicon steel blocks 110 into magnetic isolation grooves 130 located on both axial sides of the silicon steel plate 100, and magnetic isolation grooves 130 located between the two adjacent silicon steel blocks 110.
  • the strip-shaped silicon steel sheet 1000 after punching is rolled to form an integral silicon steel disk 100, wherein the silicon steel disk 100 includes a plurality of silicon steel blocks 110 in a circumferential array, and between two adjacent silicon steel blocks 110 At least two connecting ribs 120 for connection are formed between them, and the magnetic isolation grooves 130 separated by the connecting ribs 120 and arranged on both sides of the silicon steel plate 100 in the axial direction, and the magnetic isolation grooves 130 located between the two magnetic isolation grooves Several receiving holes 140 between.
  • the silicon steel disk 100 includes a plurality of silicon steel blocks 110 in a circumferential array, and between two adjacent silicon steel blocks 110 At least two connecting ribs 120 for connection are formed between them, and the magnetic isolation grooves 130 separated by the connecting ribs 120 and arranged on both sides of the silicon steel plate 100 in the axial direction, and the magnetic isolation grooves 130 located between the two magnetic isolation grooves Several receiving holes 140 between.
  • the insulation performance between the layers of the silicon steel block 110 is improved, eddy current loss is avoided, and the electromagnetic consistency of each silicon steel block is ensured.
  • the rotor brackets 300 are directly clamped on both sides of the silicon steel disk 100 in the axial direction. Compared with the prior art where a plurality of silicon steel blocks are placed on the brackets one by one, the rotor can be effectively lifted. The forming efficiency of the disk is improved, and the consistency of the position of each silicon steel block 110 on the rotor disk is ensured, thereby facilitating industrialized mass production.
  • at least two ribs 1200 are connected between two adjacent block parts 1100, which enhances the connection performance between two adjacent block parts 1100 and prevents fracture during the rolling process. so as to achieve realizability.
  • Said step (a) includes: punching and shearing strip-shaped silicon steel sheet 1000, wherein the strip-shaped silicon steel sheet 1000 after punching has several piece parts 1100 for rolling to form silicon steel block 110, and several pieces for rolling The rib part 1200 of the connecting rib 120 is formed, and at least two rib parts 1200 are connected between any two adjacent block parts 1100 , as shown in FIG. 9 .
  • the two sides in the width direction of the strip-shaped silicon steel sheet 1000 correspond to the two sides in the axial direction of the silicon steel disk 100 after forming, so the multi-layer piece part 1100 of the silicon steel block 110 is formed by rolling, which is along the axial direction of the silicon steel disk 100.
  • the dimensions are consistent, only the dimension along the circumference of the silicon steel disk 100 (the width of the block portion 1100 ) is inconsistent.
  • the multi-layer block portion 1100 of the silicon steel block 110 is formed by rolling, and its width is along the radial direction of the silicon steel plate 100 and gradually increases from the inside to the outside.
  • the piece portion 1100 is arc-shaped, that is, the trapezoidal bottom of the silicon steel block 110 is arc-shaped, and the trapezoidal bottom corresponds to the outer periphery of the silicon steel plate 100, and the trapezoidal top of the silicon steel block 110 is curved. It is an arc-shaped groove, and the top of the trapezoid corresponds to the inner periphery of the silicon steel plate 100 .
  • the strip-shaped silicon steel sheet 1000 is punched six times with the first width to form five blocks of the first width
  • the sheet portion 1100 is then rolled at the same angular velocity by a rolling device, so that five block sheet portions 1100 of the first width are arranged in a circle, and at the same time, the strip-shaped silicon steel sheet 1000 is punched and cut 5 times with the second width , to form five pieces of the second width 1100, wherein the second width is greater than the first width, and then roll the pieces 1100 of the second width outside the first width piece 1100, so that the second width
  • the block parts 1100 correspond to the first width block parts 1100 one by one, and reciprocate in this way to form five trapezoidal silicon steel blocks 110 arranged at intervals around the circumference.
  • the slots 1300 opposite to each other in the width direction of the strip-shaped silicon steel sheet 1000 form the magnetic isolation grooves 130 on both axial sides of the silicon steel plate 100 after rolling.
  • the magnetic isolation groove 130 runs through the inner and outer peripheral edges of the silicon steel disk 100 .
  • the slotted portion 1300 and the nanopore portion 1400 located between the two adjacent block portions 1100 can be formed by punching once, which not only improves the forming efficiency, but also effectively avoids position deviation caused by multiple punching. shift, thereby affecting the consistency of the size of the formed silicon steel block 110.
  • the connecting rib 120 is rectangular, and the multi-layer rib part 1200 rolled to form the connecting rib 120 is rectangular, and the width of each rib part 1200 is the same,
  • the connecting rib 120 formed by rolling is rectangular.
  • the rib part 1200 is arc-shaped
  • the inner side of the connecting rib 120 is an arc-shaped groove
  • the outer side of the connecting rib 120 is an arc-shaped protrusion, wherein the The inner side of the connecting rib 120 corresponds to the inner peripheral edge of the silicon steel plate 100
  • the outer side of the connecting rib 120 corresponds to the outer peripheral edge of the silicon steel plate 100 .
  • the two opposite slots 1300 have the same shape and are rectangular, which correspond to the cross-sectional shape of the magnetic isolation slot 130 , so that the magnetic isolation slot 130 is also rectangular.
  • the receiving hole 1400 is also rectangular, which corresponds to the cross-sectional shape of the receiving hole 140 , so that the receiving hole 140 formed by rolling is also rectangular.
  • the size of the slot part 1300 and the nanohole part 1400 in the length direction of the strip-shaped silicon steel sheet 1000 is consistent, and the two ends of the length direction are flush, and the slot part 1300 and the nanohole
  • the size of the portion 1400 in the width direction of the strip-shaped silicon steel sheet 1000 may not be consistent.
  • the number of ribs 1200 between two adjacent pieces 1100 is two
  • the number of slots 1300 is two
  • the two connecting ribs 120 are along the
  • the silicon steel disk 100 is arranged at intervals in the axial direction, and the axial end surface of the silicon steel block 110 is protruded relative to the connecting rib 120, so as to form a magnetic isolation groove 130 in the axial direction of the silicon steel disk 100, wherein the The number of the nanohole part 1400 is one, and it is located between the two rib parts 1200 .
  • the three connecting ribs 120 are arranged at intervals along the axial direction of the silicon steel disc 100 , And the axial end surface of the silicon steel block 110 is protruded relative to the connecting rib 120 to form a magnetic isolation groove 130 in the axial direction of the silicon steel plate 100, wherein the number of the groove parts 1300 is two, so
  • the number of the nanoholes 1400 is two, that is, a nanohole 1400 is formed between two adjacent ribs 1200, and the two nanoholes 1400 are spaced along the width direction of the strip-shaped silicon steel sheet 1000. arrangement.
  • the step (b) includes: rolling the punched and sheared strip-shaped silicon steel sheet 1000 to form an annular silicon steel disk 100, wherein the silicon steel disk 100 includes a plurality of silicon steel blocks 110 arranged at intervals in the circumferential direction, and any adjacent two At least two connecting ribs 120 are connected between the silicon steel blocks 110, so as to divide the space between two adjacent silicon steel blocks 110 into magnetic isolation grooves 130 arranged on both axial sides of the silicon steel plate 100, and located at Several receiving holes 140 between the two magnetic isolation slots 130 .
  • a plurality of silicon steel blocks 110 are arranged at intervals in the circumferential direction, and two adjacent silicon steel blocks 110 are connected with at least two connecting ribs 120 , and the two connecting ribs 120 are along the axial direction of the silicon steel plate 100 Arranged at intervals, to separate the space between two adjacent silicon steel blocks 110 into two identical magnetic isolation slots 130 that are located on both sides of the silicon steel plate 110 in the axial direction and opposite to each other, and are located on the two sides.
  • a plurality of receiving holes 140 between the magnetic isolation slots 130 are arranged at intervals along the axial direction of the silicon steel disk 100 .
  • the silicon steel block 110 is trapezoidal, the top of the trapezoid corresponds to the inner periphery of the silicon steel disk 100 , the bottom of the trapezoid corresponds to the outer periphery of the silicon steel disk 100 , and the height direction of the trapezoid corresponds to the radial direction of the silicon steel disk 100 .
  • the connecting rib 120 is rectangular, the magnetic isolation groove 130 and the storage hole 140 are also rectangular, and the magnetic isolation groove 130 and the storage hole 140 run through the inner and outer periphery of the silicon steel plate 100 .
  • the sum of the dimensions of the connecting rib 120 , the two magnetic isolation grooves 130 , and the several receiving holes 140 along the axial direction of the silicon steel plate 110 is equal to that of the silicon steel block 110 along the direction of the silicon steel plate 110 .
  • the size of the connecting rib 120 will not only affect the formed size of the magnetic isolation groove 130 and the receiving hole 140, but also affect the connection performance between two adjacent silicon steel blocks.
  • the magnetic isolation slot 130 fits with the rotor bracket 300, and the size of the magnetic isolation slot 130 affects the fixing performance of the silicon steel disc 100 and the rotor bracket 300. Once the connection and fixing performance are not good, it will Affect the output torque of the motor, and even cause rotor eddy current loss.
  • the dimension of the receiving hole 140 along the axial direction of the silicon steel disc 110 is 4 times or more than the dimension of the connecting rib 120 along the axial direction of the silicon steel disc 110.
  • the dimension of the groove 130 along the axial direction of the silicon steel disk 110 is relatively small, which may be smaller than the dimension of the connecting rib 120 along the axial direction of the silicon steel disk 110, so as to ensure that the magnetic isolation groove 130 and the rotor bracket 300 In the case of good fixing performance, the connection performance between the connecting rib 120 and the silicon steel block 110 is also improved, thereby ensuring the output torque of the motor and effectively reducing the eddy current loss of the rotor.
  • the silicon steel block 110, the connecting rib 120, the magnetic isolation groove 130 and the receiving hole 140 are all rolled from the punched strip-shaped silicon steel sheet 1000, and the silicon steel block 110
  • the number and size of the silicon steel block 110 can be selected according to design requirements, for example, the axial dimension of the silicon steel block 110 corresponds to the width of the silicon steel sheet 1000 . Among them, punching, shearing and rolling can be carried out at the same time, further improving the forming efficiency.
  • step (c) providing a fixing tool 400, which is fixed on the inner and outer peripheral edges of the silicon steel plate 100, so as to shape the silicon steel plate 100 and take Down.
  • the silicon steel plate 100 rolled and formed is shaped by the fixing tool 400 to prevent deformation of the silicon steel block 110 and the like, which will affect the consistency of the size of each silicon steel block 110 .
  • the fixing tool 400 includes an inner fixing ring 410 and an outer fixing ring 420, the inner fixing ring 410 is sleeved on the inner periphery of the silicon steel plate 100, and the outer fixing ring 420 sets It is provided on the outer periphery of the silicon steel disk 100 to characterize the silicon steel disk 100 .
  • the inner fixing ring 410 is annular, and the outer fixing ring 420 includes two hoops. The two hoops are placed on the outer periphery of the silicon steel disc 100 and locked by screws 430. It is convenient and quick to install, and can effectively improve the shaping effect.
  • the following steps are further included between the step (b) and the step (c): (d) placing a torque transmission rod 700 in the receiving hole 140 , refer to FIG. 12 .
  • the torque transmission rod can be made of the same material as the silicon steel disc or parts made of insulating material to support the silicon steel disc 100 so as to prevent the silicon steel disc 100 from being deformed during subsequent high-speed rotation.
  • the receiving hole 140 may not place the torque transmission rod.
  • step (e) sleeve a protective ring 500 on the outer periphery of the silicon steel plate 100 .
  • the protective ring 500 can be wound from glass fiber and other materials.
  • the axial dimension of the silicon steel block 110 is larger than the axial dimension of the protective ring 500 along the silicon steel disk 100 , and the distances from the protective ring 500 to both sides of the silicon steel disk 100 in the axial direction are Consistent, to reserve the installation position of the rotor bracket 300 on both sides of the guard ring 500, it can be seen that the guard ring 500 and the rotor bracket 300 can fill and seal the outer periphery of the silicon steel disk 100, reducing rotor rotation Wind resistance.
  • the protection ring 500 is located in the middle position of the silicon steel disk in the axial direction, and the dimension of the protection ring 500 along the axial direction of the silicon steel disk 100 is larger than that of the connecting rib 120 along the silicon steel disk 100.
  • the protection ring 500 can cover the receiving hole 140 to further prevent the deformation of the rotor.
  • the step (f) includes: clamping rotor brackets 300 on both axial sides of the silicon steel disk 100 to form a rotor disk, wherein the rotor brackets 300 are embedded in the magnetic isolation groove 130 and exposed The axial end surface of the silicon steel block 110 .
  • the rotor bracket 300 is clamped on both axial sides of the silicon steel disc 100 to support the silicon steel block 110, thereby ensuring the consistency of the dimensions of the multiple silicon steel blocks 110 and the output torque of the motor, effectively reducing the rotor eddy current loss.
  • the rotor bracket 300 includes an inner retaining ring 310, an outer retaining ring 320, and a plurality of blocks 330 connected between the inner retaining ring 310 and the outer retaining ring 320, the plurality of retaining blocks 330 are arranged at intervals along the circumferential direction, and an insertion hole 340 is formed between two adjacent blocks 330, and then in the step (f), the blocks 330 are embedded in the magnetic isolation groove 130 so that the silicon steel block 110 is inserted into the socket 340, and the inner retaining ring 310 is sleeved on the inner peripheral edge of the silicon steel plate 100, and the outer retaining ring 320 is sleeved on the silicon steel the outer periphery of the disc 100.
  • the shape of the clamping block 330 is consistent with that of the magnetic isolation slot 130 , both of which are rectangular, and the shape of the insertion hole 340 is consistent with that of the silicon steel block 110 , both of which are trapezoidal.
  • the outer end surface of the rotor bracket 300 formed by the inner retaining ring 310 , the outer retaining ring 320 and the block 300 is a plane.
  • the dimensions of the inner retaining ring 310 and the block 300 in the axial direction of the rotor support are consistent, while the dimensions of the outer retaining ring 320 in the axial direction of the rotor support are smaller.
  • the silicon steel Two outer retaining rings 320 and a protective ring 200 are sheathed on the outer periphery of the disk 100 , and the two outer retaining rings 320 are located on both sides of the protective ring 200 , and the three seal the outer peripheral edge of the silicon steel disk 100 .
  • the length of the torque transmission rod 700 can be longer than the length of the receiving hole 140, but the outer end surface of the torque transmission rod 700 is flush with the outer periphery of the silicon steel plate 100, so that the subsequent The protective ring 500 is disposed on the outer periphery of the silicon steel plate 100 .
  • the inner end surface of the torque transmission rod 700 protrudes inwardly from the inner peripheral edge of the silicon steel disk 100 , and is fixed on the rotor bracket 300 with the subsequent fitting.
  • the inner retaining ring 310 is provided with an inner cavity 312 for accommodating the torque transmission rod 700 , when the two rotor brackets 300 are clamped on the silicon steel disc 100 , the inner cavities on the two rotor brackets 300 312 are in one-to-one correspondence, and the corresponding two inner cavities 312 wrap the part of the torque transmission rod 700 protruding from the inner peripheral edge of the silicon steel disk 100 to fix the torque transmission rod 700 .
  • a further step is included: sheathing the rotor disk on the rotating shaft 600 .
  • the rotating shaft 600 passes through the centers of the two rotor brackets 300 and the silicon steel disk 100 respectively, and the two rotor brackets 300 and the silicon steel disk 100 are fixed by fasteners.
  • the center of the inner retaining ring 310 is provided with a bracket through hole 311 for the passage of the rotating shaft 600
  • the inner retaining ring 310 is provided with an inner retaining ring installation hole through which fasteners pass.
  • the rotating shaft 600 includes a shaft body and a step body, the step body is integrally connected to the shaft body, and a step installation hole is opened on the step body, when the shaft body passes through two After the rotor bracket 300 and the silicon steel plate 100, a rotor bracket 300 close to the stepped body can be abutted and fixed on the stepped body, and then passed through the relative inner retaining ring installation hole and the step installation in sequence through fasteners The holes are used to fix the rotor disk on the rotating shaft 600 so that the two rotate together.
  • both axial ends of the silicon steel block 110 are exposed by the rotor brackets 300 on both sides, so the rotor disk of the present invention is suitable for use in a double-stator single-rotor motor.
  • the strip-shaped silicon steel sheet 1000 after punching and shearing is rolled to form an integral silicon steel disk 100, wherein the silicon steel disk 100 includes a plurality of silicon steel blocks 110 in a circumferential array, and two adjacent silicon steel blocks 110 At least two connecting ribs 120 for connection are formed between the silicon steel blocks 110, and the magnetic isolation grooves 130 separated by the connecting ribs 120 and arranged on both axial sides of the silicon steel plate 100, and located between the two Several receiving holes 140 between the above-mentioned magnetic isolation slots.
  • it Compared with the method of forming multiple silicon steel blocks by stacking sheets of different widths one by one in the prior art, it not only improves the production efficiency of the silicon steel plate, but also ensures the size consistency of each silicon steel block.
  • the insulation performance between the layers of the silicon steel block 110 is improved, eddy current loss is avoided, and the electromagnetic consistency of each silicon steel block is ensured.
  • the rotor brackets 300 are directly clamped on both sides of the silicon steel disk 100 in the axial direction. Compared with the prior art where a plurality of silicon steel blocks are placed on the brackets one by one, the rotor can be effectively lifted. The forming efficiency of the disk is improved, and the consistency of the position of each silicon steel block 110 on the rotor disk is ensured, thereby facilitating industrialized mass production.
  • at least two ribs 1200 are connected between two adjacent block parts 1100, which enhances the connection performance between two adjacent block parts 1100 and prevents fracture during the rolling process. so as to achieve realizability.
  • the present invention also provides an annular silicon steel plate 100, said silicon steel plate 100 comprises a plurality of silicon steel blocks 110 arranged at intervals in the circumferential direction, and at least two connections are connected between any adjacent two silicon steel blocks 110 Ribs 120 to divide the space between two adjacent silicon steel blocks 110 into magnetic isolation grooves 130 arranged on both sides of the silicon steel plate 100 in the axial direction, and several magnetic isolation grooves 130 between the two described magnetic isolation grooves 130. 140 storage holes.
  • a plurality of silicon steel blocks 110 are connected by connecting ribs 120 to form an integrated silicon steel plate 100.
  • it not only avoids the loss of silicon steel blocks 110, but also effectively improves the assembly of the silicon steel plate 100.
  • the mechanical reliability of the rotor disk is greatly enhanced.
  • the silicon steel block 110 is trapezoidal, the top of the trapezoid corresponds to the inner periphery of the silicon steel disk 100 , the bottom of the trapezoid corresponds to the outer periphery of the silicon steel disk 100 , and the height direction of the trapezoid corresponds to the radial direction of the silicon steel disk 100 .
  • the connecting rib 120 is rectangular, the magnetic isolation groove 130 and the storage hole 140 are also rectangular, and the magnetic isolation groove 130 and the storage hole 140 run through the inner and outer periphery of the silicon steel plate 100 .
  • the size of the connecting rib 120 will not only affect the formed size of the magnetic isolation groove 130 and the receiving hole 140, but also affect the connection performance between two adjacent silicon steel blocks.
  • the magnetic isolation slot 130 fits with the rotor bracket 300, and the size of the magnetic isolation slot 130 affects the fixing performance of the silicon steel disc 100 and the rotor bracket 300. Once the connection and fixing performance are not good, it will Affect the output torque of the motor, and even cause rotor eddy current loss.
  • the dimension of the receiving hole 140 along the axial direction of the silicon steel disc 110 is 4 times or more than the dimension of the connecting rib 120 along the axial direction of the silicon steel disc 110.
  • the dimension of the groove 130 along the axial direction of the silicon steel disk 110 is relatively small, which may be smaller than the dimension of the connecting rib 120 along the axial direction of the silicon steel disk 110, so as to ensure that the magnetic isolation groove 130 and the rotor bracket 300 In the case of good fixing performance, the connection performance between the connecting rib 120 and the silicon steel block 110 is also improved, thereby ensuring the output torque of the motor and effectively reducing the eddy current loss of the rotor.
  • the dimension of the magnetic isolation groove 130 along the axial direction of the silicon steel disk is smaller than the dimension of the receiving hole 140 along the axial direction of the rotor disk. size.
  • the silicon steel block 110 is trapezoidal, and the silicon steel block 110 is formed by stacking multiple layers of block parts 1100 of different sizes along the height direction of the trapezoid.
  • the block portion 1100 is arc-shaped, the trapezoidal bottom of the silicon steel block is arc-shaped convex to correspond to the outer periphery of the silicon steel plate, and the trapezoidal top of the silicon steel block is arc-shaped grooves to correspond to the silicon steel plate inner periphery.
  • the connecting rib 120 is formed by stacking multiple rib pieces 1200 of the same size along the radial direction of the silicon steel disk.
  • the rib part 1200 is arc-shaped
  • the inner side of the connecting rib 120 is an arc-shaped groove to correspond to the inner peripheral edge of the silicon steel plate
  • the outer side of the connecting rib 120 is arc-shaped convex to correspond to the silicon steel plate the outer periphery.
  • the rib part 1200 is integrally connected to the two adjacent piece parts 1100 on the same layer, so that a rib is passed between the two adjacent piece parts 1100 on the same layer.
  • the slices 1200 are connected. Wherein the two adjacent block pieces 1100 of the same layer come from the two adjacent silicon steel blocks 110 respectively.
  • a torque transmission rod is disposed in the receiving hole 140 .
  • multiple silicon steel blocks 110 are connected by connecting ribs 120 to form an integral silicon steel plate 100.
  • it not only avoids the loss of silicon steel blocks 110, but also effectively
  • the forming efficiency of the assembly of the silicon steel disk 100 into a rotor disk is improved, and the position consistency of each silicon steel block 110 on the rotor disk is ensured, thereby greatly enhancing the mechanical reliability of the rotor disk.
  • the present invention also provides a rotor disk of an axial field motor, including:
  • An annular silicon steel plate 100 the silicon steel plate 100 includes a plurality of silicon steel blocks 110 arranged at intervals in the circumferential direction, at least two connecting ribs 120 are connected between any adjacent two silicon steel blocks 110, so that the adjacent two The space between the silicon steel blocks 110 is divided into magnetic isolation grooves 130 arranged on both sides of the silicon steel plate 100 in the axial direction, and several receiving holes 140 located between the two magnetic isolation grooves 130;
  • a protective ring 500, the protective ring 500 is sleeved on the outer periphery of the silicon steel plate 100;
  • Two rotor brackets 300, the two axial sides of the silicon steel disk 100 are respectively clamped with rotor brackets 300 to form a rotor disk, wherein the rotor brackets 300 are embedded in the magnetic isolation groove 130 and expose the silicon steel block 110 axial end face.
  • the rotor bracket 300 includes an inner retaining ring 310, an outer retaining ring 320, and a plurality of blocks 330 connected between the inner retaining ring 310 and the outer retaining ring 320, the plurality of retaining blocks 330 are arranged at intervals along the circumferential direction, and an insertion hole 340 is formed between two adjacent blocks 330, and the blocks 330 are embedded in the magnetic isolation groove 130, so that the silicon steel block 110 is inserted into the connected to the insertion hole 340 , and the inner retaining ring 310 is sleeved on the inner peripheral edge of the silicon steel plate 100 , and the outer retaining ring 320 is sleeved on the outer peripheral edge of the silicon steel plate 100 .
  • the shape of the clamping block 330 is consistent with that of the magnetic isolation slot 130 , both of which are rectangular, and the shape of the insertion hole 340 is consistent with that of the silicon steel block 110 , both of which are trapezoidal.
  • the outer end surface of the rotor bracket 300 formed by the inner retaining ring 310 , the outer retaining ring 320 and the block 300 is a plane.
  • the dimensions of the inner retaining ring 310 and the block 300 in the axial direction of the rotor support are consistent, while the dimensions of the outer retaining ring 320 in the axial direction of the rotor support are smaller.
  • the silicon steel Two outer retaining rings 320 and a protective ring 200 are sheathed on the outer periphery of the disk 100 , and the two outer retaining rings 320 are located on both sides of the protective ring 200 , and the three seal the outer peripheral edge of the silicon steel disk 100 .
  • the silicon steel block 110 is trapezoidal, and the silicon steel block 110 is formed by stacking multiple layers of block parts 1100 of different sizes along the height direction of the trapezoid.
  • the block portion 1100 is arc-shaped, the trapezoidal bottom of the silicon steel block is an arc-shaped protrusion, and the trapezoidal top of the silicon steel block is an arc-shaped groove.
  • the dimension of the magnetic isolation groove 130 along the axial direction of the silicon steel disk 110 is smaller than the dimension of the connecting rib 120 along the axial direction of the silicon steel disk 110 .
  • the axial field motor further includes a rotating shaft 600, and the rotor disk is sheathed outside the rotating shaft 600, so that the rotating shaft 600 passes through the rotor bracket 300 and the rotating shaft 600 respectively.
  • the center of the silicon steel disk 100 is connected, and the rotor support 300 and the silicon steel disk 100 are fixed by fasteners.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Synchronous Machinery (AREA)

Abstract

本发明提供了一种轴向磁场电机转子、转子盘及成型方法,其中转子成型方法包括:(a)卷制冲剪后的带状硅钢片,形成一环形硅钢盘,其中所述硅钢盘具有沿周向间隔排列的多组隔磁槽,相邻的两组隔磁槽之间界定了一硅钢块,每组隔磁槽的数量为两个,且相对设置于所述硅钢盘轴向的两侧,每组的两所述隔磁槽之间界定了一连接相邻两所述硅钢块的连接筋;(d)在所述硅钢盘轴向的两侧分别夹装转子支架,形成一转子盘,其中所述转子支架内嵌于所述隔磁槽内,并暴露所述硅钢块的轴向端面。提升硅钢盘的制作效率和可靠性,并保证各硅钢块尺寸、电磁以及在转子盘上位置的一致性,进而利于开展工业化批量生产。

Description

一种轴向磁场电机转子、转子盘及成型方法 技术领域
本发明涉及轴向磁场电机领域,尤其涉及一种轴向磁场电机转子、转子盘及成型方法。
背景技术
轴向磁场电机以轴向尺寸小、高转矩密度、高功率密度和高效率等优点,被广泛应用于电动汽车、通用工业和家用电器等领域。现有的轴向磁场电机一般采用硅钢片作为转子和定子的叠片材料,在转子的成型过程中,通过硅钢片冲压切割形成多个不同宽度的片材,然后依次将多个片材按照宽度渐大的方式进行叠合,以形成多个形状一致的扇形硅钢块,最后将多个硅钢块呈环形间隔排列于转子支架上,并且每个硅钢块的多层片材沿着转子支架的径向排列,以获得转子。
由上述可知,每个硅钢块需要多个不同宽度的片材进行叠合,不仅制作效率低,而且无法保证每个硅钢块的一致性,甚至造成涡流损耗,降低了转子可靠性。另外硅钢块还需逐个与转子支架进行拼合,同样影响了转子的成型效率,进而无法开展工业化批量生产。
发明内容
为了解决上述问题,本发明提供了一种生产效率高,且保持产品一致性的轴向磁场电机转子、转子盘及成型方法,其便于开展工业化批量生产。
根据本发明的一个目的,本发明提供一种轴向磁场电机转子的成型方法,包括以下步骤:(a)卷制冲剪后的带状硅钢片,形成一环形硅钢盘,其中所述硅钢盘具有沿周向间隔排列的多组隔磁槽,相邻的两组隔磁槽之间界定了一硅钢块,每组隔磁槽的数量为两个,且相对设置于所述硅钢盘轴向的两侧,每组的两所述隔磁槽之间界定了一连接相邻两所述硅钢块的连接筋;(d)在所述硅钢盘轴向的两侧分别夹装转子支架,形成一转子盘,其中所述转子支架内嵌于所述隔磁槽内,并暴露所述硅钢块的轴向端面。
作为优选的技术方案,冲剪后的所述带状硅钢片,其具有沿长度方向间隔排列的多组槽孔部,相邻两组所述槽孔部之间界定了用于卷制形成硅钢块的块片部,每组所述槽孔部的数量为两个,且相对设置于所述带状硅钢片宽度方向的两侧,每组的两个所述槽孔部之间界定了用于卷制形成连接筋的筋片部。
作为优选的技术方案,所述转子支架包括一内挡圈、一外挡圈,以及连接所述内挡圈和外挡圈之间的多个卡块,多个卡块沿周向间隔排列,并且相邻的两个所述卡块之间形成一插孔,进而在所述步骤(d)中,所述卡块内嵌于所述隔磁槽内,以使所述硅钢块插接于所述插孔内,并且所述内挡圈套设于所述硅钢盘的内周缘,所述外挡圈套设于所述硅钢盘的外周缘。
作为优选的技术方案,所述步骤(a)至所述步骤(d)之间进一步包括以下步骤:(c)套设一防护环于所述硅钢盘的外周缘。
作为优选的技术方案,所述步骤(a)之后进一步包括以下步骤:(b)提供一固定工装,固定于所述硅钢盘内外周缘,以对所述硅钢盘进行定型并取下。
本发明还提供了一种轴向磁场电机转子,包括:一环形硅钢盘,所述硅钢盘具有沿周向间隔排列的多组隔磁槽,相邻的两组隔磁槽之间界定了一硅钢块,每组隔磁槽的数量为两个,且相对设置于所述硅钢盘轴向的两侧,每组的两所述隔磁槽之间界定了一连接相邻两所述硅钢块的连接筋;一防护环,所述防护环套设于所述硅钢盘的外周缘;两转子支架,所述硅钢盘轴向的两侧分别夹装转子支架以形成一转子盘,其中所述转子支架内嵌于所述隔磁槽内,并暴露所述硅钢块的轴向端面。
作为优选的技术方案,,所述转子支架包括一内挡圈、一外挡圈,以及连接所述内挡圈和外挡圈之间的多个卡块,多个卡块沿周向间隔排列,并且相邻的两个所述卡块之间形成一插孔,所述卡块内嵌于所述隔磁槽内,以使所述硅钢块插接于所述插孔内,并且所述内挡圈套 设于所述硅钢盘的内周缘,所述外挡圈套设于所述硅钢盘的外周缘。
作为优选的技术方案,所述硅钢块呈梯形,所述硅钢块由多层不同尺寸的块片部沿梯形高度方向堆叠而成。
作为优选的技术方案,所述块片部呈弧形,所述硅钢块梯形底部呈弧形凸起,所述硅钢块梯形顶部呈弧形凹槽。
作为优选的技术方案,还包括一转轴,所述转子盘套设于所述转轴外,以使所述转轴分别穿设所述转子支架和所述硅钢盘的中心,并通过紧固件拉结固定所述转子支架和所述硅钢盘。
根据本发明的另一个目的,本发明提供还一种轴向磁场电机的转子盘的成型方法,包括以下步骤:(a)冲剪带状硅钢片,其中冲剪后的带状硅钢片具有若干个用于卷制形成硅钢块的块片部,及若干个用于卷制形成连接筋的筋片部,任意相邻的两所述块片部之间连接至少两筋片部;(b)卷制冲剪后的带状硅钢片,形成一环形硅钢盘,其中所述硅钢盘包括多个周向间隔排列的硅钢块,任意相邻的两所述硅钢块之间连接至少两连接筋,以将相邻的两所述硅钢块之间的空间分割为分设在所述硅钢盘轴向两侧的隔磁槽,及位于两所述隔磁槽之间的若干个收纳孔;(f)在所述硅钢盘轴向的两侧分别夹装转子支架,形成一转子盘,其中所述转子支架内嵌于所述隔磁槽内,并暴露所述硅钢块的轴向端面。
作为优选的技术方案,所述转子支架包括一内挡圈、一外挡圈,以及连接所述内挡圈和外挡圈之间的多个卡块,多个卡块沿周向间隔排列,并且相邻的两个所述卡块之间形成一插孔,进而在所述步骤(f)中,所述卡块内嵌于所述隔磁槽内,以使所述硅钢块插接于所述插孔内,并且所述内挡圈套设于所述硅钢盘的内周缘,所述外挡圈套设于所述硅钢盘的外周缘。
作为优选的技术方案,位于相邻两所述硅钢块之间的所述连接筋的数量为两个,两个所述连接筋沿着所述硅钢盘轴向间隔设置,并且所述硅钢块的轴向端面相对所述连接筋被突出设置。
作为优选的技术方案,所述步骤(b)至所述步骤(f)之间进一步包括以下步骤:(e)套设一防护环于所述硅钢盘的外周缘。
作为优选的技术方案,所述步骤(b)之后进一步包括以下步骤:(c)提供一固定工装,固定于所述硅钢盘内外周缘,以对所述硅钢盘进行定型并取下。
根据本发明的一个目的,本发明还提供一种轴向磁场电机的转子盘,包括一环形硅钢盘,所述硅钢盘包括多个周向间隔排列的硅钢块,任意相邻的两所述硅钢块之间连接至少两连接筋,以将相邻的两所述硅钢块之间的空间分割为分设在所述硅钢盘轴向两侧的隔磁槽,及位于两所述隔磁槽之间的若干个收纳孔;一防护环,所述防护环套设于所述硅钢盘的外周缘;两转子支架,所述硅钢盘轴向的两侧分别夹装转子支架以形成一转子盘,其中所述转子支架内嵌于所述隔磁槽内,并暴露所述硅钢块的轴向端面。
作为优选的技术方案,所述转子支架包括一内挡圈、一外挡圈,以及连接所述内挡圈和外挡圈之间的多个卡块,多个卡块沿周向间隔排列,并且相邻的两个所述卡块之间形成一插孔,所述卡块内嵌于所述隔磁槽内,以使所述硅钢块插接于所述插孔内,并且所述内挡圈套设于所述硅钢盘的内周缘,所述外挡圈套设于所述硅钢盘的外周缘。
作为优选的技术方案,所述硅钢块呈梯形,所述硅钢块由多层不同尺寸的块片部沿梯形高度方向堆叠而成。
作为优选的技术方案,所述块片部呈弧形,所述硅钢块梯形底部呈弧形凸起,所述硅钢块梯形顶部呈弧形凹槽。
作为优选的技术方案,所述隔磁槽沿所述硅钢盘轴向上的尺寸,其小于所述连接筋沿所述硅钢盘轴向上的尺寸。
与现有技术相比,本技术方案具有以下优点:卷制冲剪后的带状硅钢片以形成一整体的 硅钢盘,其中所述硅钢盘包括多个圆周阵列的所述硅钢块,并且相邻的两个所述硅钢块之间形成用于连接的连接筋,以及被所述连接筋隔开且分设在所述硅钢盘轴向两侧的所述隔磁槽。相对于现有技术中通过不同宽度片材逐一堆叠形成多个硅钢块的方式来说,不仅提升硅钢盘的制作效率,并保证各硅钢块尺寸一致性。再者相对于现有技术中采用焊接切割方式来成型硅钢块来说,提升了所述硅钢块层间的绝缘性能,避免造成涡流损耗,从而保证各硅钢块电磁的一致性。另外在所述步骤(d)中,直接在所述硅钢盘轴向的两侧分别夹装转子支架,相对于现有技术中逐一将多个硅钢块放置于支架上来说,有效提升转子盘的成型效率,并保证各硅钢块在转子盘上位置的一致性,进而利于开展工业化批量生产。
附图说明
图1为本发明所述轴向磁场电机转子成型方法的流程图;
图2为图1中所述冲剪后的带状硅钢片的结构示意图;
图3为图1中所述硅钢盘的结构示意图;
图4为图1中所述硅钢盘与固定工装组合的结构示意图;
图5为图1中所述硅钢盘与所述防护环组合的结构示意图;
图6为图1中所述硅钢盘与转子支架组合的结构示意图;
图7为图1中所述转子盘与转轴组合的结构示意图;
图8为本发明所述轴向磁场电机的转子盘成型方法的流程图;
图9为图8中所述冲剪后的带状硅钢片的结构示意图;
图10为图8中所述硅钢盘的结构示意图;
图11为图8中所述硅钢盘与固定工装组合的结构示意图;
图12为图8中所述硅钢盘与转子支架组合的结构示意图;
图13为图8中所述转子盘与转轴组合的结构示意图。
具体实施方式
如图1至图3、图6所示,所述轴向磁场电机转子的成型方法,包括以下步骤:
(a)卷制冲剪后的带状硅钢片1000,形成一环形硅钢盘100,其中所述硅钢盘100具有沿周向间隔排列的多组隔磁槽130,相邻的两组隔磁槽130之间界定了一硅钢块110,每组隔磁槽130的数量为两个,且相对设置于所述硅钢盘100轴向的两侧,每组的两所述隔磁槽130之间界定了一连接相邻两所述硅钢块110的连接筋120;
(d)在所述硅钢盘100轴向的两侧分别夹装转子支架300,形成一转子盘,其中所述转子支架300内嵌于所述隔磁槽130内,并暴露所述硅钢块110的轴向端面。
卷制冲剪后的带状硅钢片1000以形成一整体的硅钢盘100,其中所述硅钢盘100包括多个圆周阵列的所述硅钢块110,并且相邻的两个所述硅钢块110之间形成用于连接的连接筋120,以及被所述连接筋120隔开且分设在所述硅钢盘100轴向两侧的所述隔磁槽130。相对于现有技术中通过不同宽度片材逐一堆叠形成多个硅钢块的方式来说,不仅提升硅钢盘的制作效率,并保证各硅钢块尺寸一致性。再者相对于现有技术中采用焊接切割方式来成型硅钢块来说,提升了所述硅钢块110层间的绝缘性能,避免造成涡流损耗,从而保证各硅钢块电磁的一致性。另外在所述步骤(d)中,直接在所述硅钢盘100轴向的两侧分别夹装转子支架300,相对于现有技术中逐一将多个硅钢块放置于支架上来说,有效提升转子盘的成型效率,并保证各硅钢块110在转子盘上位置的一致性,进而利于开展工业化批量生产。
所述步骤(a)包括:卷制冲剪后的带状硅钢片1000,形成一环形硅钢盘100,其中所述硅钢盘100具有沿周向间隔排列的多组隔磁槽130,相邻的两组隔磁槽130之间界定了一硅钢块110,每组隔磁槽130的数量为两个,且相对设置于所述硅钢盘100轴向的两侧,每组的两所述隔磁槽130之间界定了一连接相邻两所述硅钢块110的连接筋120。
参考图3,多个所述硅钢块110沿周向间隔设置,相邻的两所述硅钢块110连接一所述 连接筋120。所述连接筋120将相邻的两个所述硅钢块110之间的空间,分隔为两个形状相同,且分设于所述硅钢盘100轴向两侧且相对的所述隔磁槽130,该相对的两所述隔磁槽130就形成了一组所述隔磁槽130。
具体地,所述硅钢块110呈梯形,梯形的顶部对应硅钢盘100的内周缘,梯形的底部对应硅钢盘100的外周缘,梯形的高度方向对应硅钢盘100的径向。所述连接筋120呈长方形,所述隔磁槽130也呈长方形,并且所述隔磁槽130贯穿所述硅钢盘100的内外周缘。其中所述连接筋120、两所述隔磁槽130分别沿所述硅钢盘100轴向上的尺寸之和,其等于所述硅钢块110沿所述硅钢盘100轴向上的尺寸。
更具体地,所述连接筋120的尺寸,不仅会影响所述隔磁槽130的尺寸,还会影响相邻的两所述硅钢块之间的连接性能。另外所述隔磁槽130与所述转子支架300嵌合,所述隔磁槽130的尺寸影响了所述硅钢盘100与所述转子支架300的固定性能,一旦连接和固定性能不佳,会影响电机的输出扭矩,甚至造成转子涡流损耗。在一个优选实施例中,所述隔磁槽130沿所述硅钢盘100轴向上的尺寸,其为连接筋120沿所述硅钢盘100轴向尺寸的3倍或以上,在保证所述隔磁槽130与所述转子支架300固定性能佳的情况下,还提升了所述连接筋120与所述硅钢块110的连接性能,从而保证电机的输出扭矩,有效减少转子涡流损耗。
所述硅钢块110、所述连接筋120和所述隔磁槽130,均是由冲剪后的所述带状硅钢片1000卷制而成,并且所述硅钢块110的数量及尺寸等可根据设计需要进行选定,例如所述硅钢块110的轴向尺寸对应所述硅钢片1000的宽度等。其中冲剪和卷制可同时进行,进一步成型效率。
如图2和图3所示,冲剪后的所述带状硅钢片1000,其具有沿长度方向间隔排列的多组槽孔部1300,相邻两组所述槽孔部1300之间界定了用于卷制形成硅钢块110的块片部1100,每组所述槽孔部1300的数量为两个,且相对设置于所述带状硅钢片1000宽度方向的两侧,每组的两个所述槽孔部1300之间界定了用于卷制形成连接筋120的筋片部1200。
其中所述带状硅钢片1000宽度方向的两侧,对应成型后硅钢盘100轴向的两侧,因此卷制形成硅钢块110的多层块片部1100,其沿硅钢盘100轴向上的尺寸一致,仅只有沿硅钢盘100周向的尺寸(块片部1100宽度)不一致。具体地,卷制形成硅钢块110的多层块片部1100,其宽度沿着硅钢盘100的径向,并从内至外逐渐增大。另外在成型的所述硅钢块110中,块片部1100呈弧形,即所述硅钢块110梯形底部呈弧形凸起,所述硅钢块110梯形顶部呈弧形凹槽。
以5个所述硅钢块110为例来介绍所述硅钢盘100的卷制方法,先在所述带状硅钢片1000以第一宽度冲剪6组槽孔部1300,以形成5个第一宽度的块片部1100,然后藉由一卷制设备以相同角速度卷制,以使5个第一宽度的块片部1100呈圆周排列,同时在所述带状硅钢片1000以第二宽度冲剪5组槽孔部1300,以形成5个第二宽度的块片部1100,其中第二宽度大于第一宽度,然后卷制第二宽度的块片部1100于第一宽度块片部1100外侧,以使第二宽度的块片部1100与第一宽度块片部1100一对应,如此往复,以形成5个圆周间隔排列且呈梯形的硅钢块110。
同理开设在所述带状硅钢片1000宽度方向两侧的所述槽孔部1300,其在卷制后就形成了分设在所述硅钢盘100轴向两侧所述隔磁槽130,并且所述隔磁槽130贯穿所述硅钢盘100的内外周缘。
由于相对的两所述隔磁槽130形状一致,因此所述连接筋120分别至所述硅钢盘100轴向两侧的距离也相一致。即冲剪后的所述筋片部1200分别至所述带状硅钢片1000宽度方向两侧的距离一致,参考图2。具体地,所述隔磁槽130呈长方形,构成所述隔磁槽130横截面的所述槽孔部1300也呈长方形。
继续参考图2和图3,所述连接筋120呈长方形,卷制形成所述连接筋120的多层所述 筋片部1200均呈长方形,并且每一所述筋片部1200的宽度尺寸一致,以使卷制形成的所述连接筋120呈长方形。在卷制形成的所述连接筋120中,所述筋片部1200呈弧形,所述连接筋120的内侧呈弧形凹槽,所述连接筋120的外侧呈弧形凸起,其中所述连接筋120的内侧对应所述硅钢盘100的内周缘,所述连接筋120的外侧对应所述硅钢盘100的外周缘。
所述步骤(a)至所述步骤(c)之间进一步包括以下步骤:(b)提供一固定工装400,固定于所述硅钢盘100内外周缘,以对所述硅钢盘100进行定型并取下。通过所述固定工装400对卷制成型的所述硅钢盘100进行定型,防止所述硅钢块110等变形,而影响各硅钢块110尺寸的一致性。
如图4所示,所述固定工装400包括一内固定环410和外固定环420,所述内固定环410套设于所述硅钢盘100的内周缘即可,所述外固定环420套设于所述硅钢盘100外周缘,以对所述硅钢盘100进行定性。继续参考图4,所述内固定环410呈环形,所述外固定环420包括两个抱箍,两个所述抱箍箍在所述硅钢盘100的外周缘,并通过螺钉430锁紧,安装方便快捷,并有效提升定型效果。
所述步骤(a)至所述步骤(d)之间进一步包括以下步骤:(c)套设一防护环500于所述硅钢盘100的外周缘。通过在所述硅钢盘100外周缘套设所述防护环500,克服转子旋离心力产生的变形。所述防护环500可由玻璃纤维等材质缠绕而成。
如图5所示,所述硅钢块110的轴向尺寸大于所述防护环500沿硅钢盘100轴向上的尺寸,并且所述防护环500分别至所述硅钢盘100轴向两侧的距离一致,以在所述防护环500的两侧预留所述转子支架300的安装位置,可见所述防护环500和所述转子支架300能够填充封闭所述硅钢盘100的外周缘,减少转子旋转风阻。具体地,所述防护环500位于所述硅钢盘轴向的中间位置,并且所述防护环500沿硅钢盘100轴向上的尺寸,其大于所述连接筋120沿硅钢盘100轴向上的尺寸,进一步防止转子变形。
所述步骤(d)包括:在所述硅钢盘100轴向的两侧分别夹装转子支架300,形成一转子盘,其中所述转子支架300内嵌于所述隔磁槽130内,并暴露所述硅钢块110的轴向端面。通过在所述硅钢盘100轴向两侧夹装所述转子支架300,以支撑所述硅钢块110,从而保证多个所述硅钢块110尺寸的一致性,以及电机输出扭矩,有效减少转子涡流损耗。
如图6所示,所述转子支架300包括一内挡圈310、一外挡圈320,以及连接所述内挡圈310和外挡圈320之间的多个卡块330,多个卡块330沿周向间隔排列,并且相邻的两个所述卡块330之间形成一插孔340,进而在所述步骤(d)中,所述卡块330内嵌于所述隔磁槽130内,以使所述硅钢块110插接于所述插孔340内,并且所述内挡圈310套设于所述硅钢盘100的内周缘,所述外挡圈320套设于所述硅钢盘100的外周缘。
其中所述卡块330与所述隔磁槽130的形状相一致,两者均呈长方形,所述插孔340与所述硅钢块110的形状相一致,两者均呈梯形。另外所述内挡圈310、所述外挡圈320和所述卡块300形成的所述转子支架300外端面,其为一平面,当所述硅钢块110插接于所述插孔340内后,所述硅钢块110的轴向端面与所述转子支架300的外端面齐平。
具体地,所述内挡圈310和所述卡块300沿转子支架轴向上的尺寸一致,而所述外挡圈320沿转子支架轴向上的尺寸较小,参考图6,所述硅钢盘100的外周缘套设两外挡圈320和一防护环500,并且两个所述外挡圈320位于所述防护环500的两侧,三者封闭所述硅钢盘100的外周缘。
在所述步骤(d)之后进一步包括一下步骤:将转子盘套设于转轴600上。如图7所示,所述转轴600分别穿设两所述转子支架300和所述硅钢盘100的中心,并通过紧固件拉结固定两所述转子支架300和所述硅钢盘100。继续参考图6,所述内挡圈310中心开设有一用于转轴600通过的支架通孔311,并且所述内挡圈310上开设有紧固件穿过的内挡圈安装孔。
更具体,所述转轴600包括一轴体和一台阶体,所述台阶体一体连接于所述轴体上,所 述台阶体上开设有台阶安装孔,当所述轴体穿设两所述转子支架300和所述硅钢盘100后,一靠近所述台阶体的转子支架300可抵接固定于所述台阶体上,并通过紧固件依次穿过相对的内挡圈安装孔和台阶安装孔,以将转子盘固定于转轴600上,以使两者一起转动。
如图6和图7所示,所述硅钢块110轴向两端面均被两侧的所述转子支架300暴露,因此本发明的所述转子盘,适用于双定子单转子电机使用。
综上所述,卷制冲剪后的带状硅钢片1000以形成一整体的硅钢盘100,其中所述硅钢盘100包括多个圆周阵列的所述硅钢块110,并且相邻的两个所述硅钢块110之间形成用于连接的连接筋120,以及被所述连接筋120隔开且分设在所述硅钢盘100轴向两侧的所述隔磁槽130。相对于现有技术中通过不同宽度片材逐一堆叠形成多个硅钢块的方式来说,不仅提升硅钢盘的制作效率,并保证各硅钢块尺寸一致性。再者相对于现有技术中采用焊接切割方式来成型硅钢块来说,提升了所述硅钢块110层间的绝缘性能,避免造成涡流损耗,从而保证各硅钢块电磁的一致性。另外在所述步骤(d)中,直接在所述硅钢盘100轴向的两侧分别夹装转子支架300,相对于现有技术中逐一将多个硅钢块放置于支架上来说,有效提升转子盘的成型效率,并保证各硅钢块110在转子盘上位置的一致性,进而利于开展工业化批量生产。
如图3所示,本发明提供了一种环形硅钢盘100,所述硅钢盘100具有沿周向间隔排列的多组隔磁槽130,相邻的两组隔磁槽130之间界定了一硅钢块110,每组隔磁槽130的数量为两个,且相对设置于所述硅钢盘100轴向的两侧,每组的两所述隔磁槽130之间界定了一连接相邻两所述硅钢块110的连接筋120。
多个所述硅钢块110通过连接筋120连接,并形成一整体的硅钢盘100,相对现有技术独立成型多个硅钢块110来说,不仅避免硅钢块110丢失,还有效提升硅钢盘100装配为转子盘的成型效率,以及保证各硅钢块110在转子盘上的位置一致性,从而大幅增强转子盘的机械可靠性。
所述硅钢块110呈梯形,梯形的顶部对应硅钢盘100的内周缘,梯形的底部对应硅钢盘100的外周缘,梯形的高度方向对应硅钢盘100的径向。所述连接筋120呈长方形,所述隔磁槽130也呈长方形,并且所述隔磁槽130贯穿所述硅钢盘100的内外周缘。其中所述连接筋120、两所述隔磁槽130分别沿所述硅钢盘100轴向上的尺寸之和,其等于所述硅钢块110沿所述硅钢盘100轴向上的尺寸。
参考图3,所述连接筋120分别至所述硅钢盘100轴向两侧的距离一致,即所述连接筋120连接于所述硅钢块110的轴向的中间位置,以使被连接筋120分隔的两所述隔磁槽130形状一致。
所述连接筋120的尺寸,不仅会影响所述隔磁槽130的尺寸,还会影响相邻的两所述硅钢块之间的连接性能。另外所述隔磁槽130与所述转子支架300嵌合,所述隔磁槽130的尺寸影响了所述硅钢盘100与所述转子支架300的固定性能,一旦连接和固定性能不佳,会影响电机的输出扭矩,甚至造成转子涡流损耗。在一个优选实施例中,所述隔磁槽130沿所述硅钢盘100轴向上的尺寸,其为连接筋120沿所述硅钢盘100轴向尺寸的3倍或以上,在保证所述隔磁槽130与所述转子支架300固定性能佳的情况下,还提升了所述连接筋120与所述硅钢块110的连接性能,从而保证电机的输出扭矩,有效减少转子涡流损耗。
如图3所示,所述硅钢块110呈梯形,所述硅钢块110由多层不同尺寸的块片部1100沿梯形高度方向堆叠而成。所述块片部1100呈弧形,所述硅钢块梯形底部呈弧形凸起,以对应所述硅钢盘的外周缘,所述硅钢块梯形顶部呈弧形凹槽,以对应所述硅钢盘的内周缘。
如图3所示,所述连接筋120由多层相同尺寸的筋片部1200沿硅钢盘径向堆叠而成。所述筋片部1200呈弧形,所述连接筋120内侧呈弧形凹槽,以对应所述硅钢盘的内周缘,所述连接筋120外侧呈弧形凸起,以对应所述硅钢盘的外周缘。继续参考图3,所述筋片部1200一体连接位于同一层且相邻的两所述块片部1100,以使同层且相邻的两所述块片部 1100之间通过一所述筋片部1200连接。其中同层且相邻的两所述块片部1100分别来自不同且相邻的两所述硅钢块110。
综上所述,多个所述硅钢块110通过连接筋120连接,并形成一整体的硅钢盘100,相对现有技术独立成型多个硅钢块110来说,不仅避免硅钢块110丢失,还有效提升硅钢盘100装配为转子盘的成型效率,以及保证各硅钢块110在转子盘上的位置一致性,从而大幅增强转子盘的机械可靠性。
如图3、图5和图6所示,本发明还提供了一种轴向磁场电机,包括:
一环形硅钢盘100,所述硅钢盘100具有沿周向间隔排列的多组隔磁槽130,相邻的两组隔磁槽130之间界定了一硅钢块110,每组隔磁槽130的数量为两个,且相对设置于所述硅钢盘100轴向的两侧,每组的两所述隔磁槽130之间界定了一连接相邻两所述硅钢块110的连接筋120;
一防护环500,所述防护环500套设于所述硅钢盘100的外周缘;
两转子支架300,所述硅钢盘100轴向的两侧分别夹装转子支架300以形成一转子盘,其中所述转子支架300内嵌于所述隔磁槽130内,并暴露所述硅钢块110的轴向端面。
如图6所示,所述转子支架300包括一内挡圈310、一外挡圈320,以及连接所述内挡圈310和外挡圈320之间的多个卡块330,多个卡块330沿周向间隔排列,并且相邻的两个所述卡块330之间形成一插孔340,所述卡块330内嵌于所述隔磁槽130内,以使所述硅钢块110插接于所述插孔340内,并且所述内挡圈310套设于所述硅钢盘100的内周缘,所述外挡圈320套设于所述硅钢盘100的外周缘。
其中所述卡块330与所述隔磁槽130的形状相一致,两者均呈长方形,所述插孔340与所述硅钢块110的形状相一致,两者均呈梯形。另外所述内挡圈310、所述外挡圈320和所述卡块300形成的所述转子支架300外端面,其为一平面,当所述硅钢块110插接于所述插孔340内后,所述硅钢块110的轴向端面与所述转子支架300的外端面齐平。具体地,所述内挡圈310和所述卡块300沿转子支架轴向上的尺寸一致,而所述外挡圈320沿转子支架轴向上的尺寸较小,参考图6,所述硅钢盘100的外周缘套设两外挡圈320和一防护环500,并且两个所述外挡圈320位于所述防护环500的两侧,三者封闭所述硅钢盘100的外周缘。
如图3所示,所述硅钢块110呈梯形,所述硅钢块110由多层不同尺寸的块片部1100沿梯形高度方向堆叠而成。所述块片部1100呈弧形,所述硅钢块梯形底部呈弧形凸起,所述硅钢块梯形顶部呈弧形凹槽。
如图6和图7所示,所述轴向磁场电机还包括一转轴600,所述转子盘套设于所述转轴600外,以使所述转轴600分别穿设所述转子支架300和所述硅钢盘100的中心,并通过紧固件拉结固定所述转子支架300和所述硅钢盘100。
如图8至图10、图12所示,所述轴向磁场电机的转子盘的成型方法,包括以下步骤:
(a)冲剪带状硅钢片1000,其中冲剪后的带状硅钢片1000具有若干个用于卷制形成硅钢块110的块片部1100,及若干个用于卷制形成连接筋120的筋片部1200,任意相邻的两所述块片部1100之间连接至少两筋片部1200;
(b)卷制冲剪后的带状硅钢片1000,形成一环形硅钢盘100,其中所述硅钢盘100包括多个周向间隔排列的硅钢块110,任意相邻的两所述硅钢块110之间连接至少两连接筋120,以将相邻的两所述硅钢块110之间的空间分割为分设在所述硅钢盘100轴向两侧的隔磁槽130,及位于两所述隔磁槽130之间的若干个收纳孔140;
(f)在所述硅钢盘100轴向的两侧分别夹装转子支架300,形成一转子盘,其中所述转子支架300内嵌于所述隔磁槽130内,并暴露所述硅钢块110的轴向端面。
卷制冲剪后的带状硅钢片1000以形成一整体的硅钢盘100,其中所述硅钢盘100包括多个圆周阵列的所述硅钢块110,并且相邻的两个所述硅钢块110之间形成用于连接的至少两 连接筋120,以及被所述连接筋120隔开且分设在所述硅钢盘100轴向两侧的所述隔磁槽130,以及位于两所述隔磁槽之间的若干个收纳孔140。相对于现有技术中通过不同宽度片材逐一堆叠形成多个硅钢块的方式来说,不仅提升硅钢盘的制作效率,并保证各硅钢块尺寸一致性。再者相对于现有技术中采用焊接切割方式来成型硅钢块来说,提升了所述硅钢块110层间的绝缘性能,避免造成涡流损耗,从而保证各硅钢块电磁的一致性。另外在所述步骤(f)中,直接在所述硅钢盘100轴向的两侧分别夹装转子支架300,相对于现有技术中逐一将多个硅钢块放置于支架上来说,有效提升转子盘的成型效率,并保证各硅钢块110在转子盘上位置的一致性,进而利于开展工业化批量生产。进一步地,相邻的两所述块片部1100之间连接至少两筋片部1200,增强了相邻两所述块片部1100之间的连接性能,防止在卷制过程中出现断裂现象,进而达到可实现性。
所述步骤(a)包括:冲剪带状硅钢片1000,其中冲剪后的带状硅钢片1000具有若干个用于卷制形成硅钢块110的块片部1100,及若干个用于卷制形成连接筋120的筋片部1200,任意相邻的两所述块片部1100之间连接至少两筋片部1200,参考图9。
其中所述带状硅钢片1000宽度方向的两侧,对应成型后硅钢盘100轴向的两侧,因此卷制形成硅钢块110的多层块片部1100,其沿硅钢盘100轴向上的尺寸一致,仅只有沿硅钢盘100周向的尺寸(块片部1100宽度)不一致。具体地,卷制形成硅钢块110的多层块片部1100,其宽度沿着硅钢盘100的径向,并从内至外逐渐增大。另外在成型的所述硅钢块110中,块片部1100呈弧形,即所述硅钢块110梯形底部呈弧形凸起,梯形底部对应硅钢盘100的外周缘,所述硅钢块110梯形顶部呈弧形凹槽,梯形顶部对应硅钢盘100内周缘。
以5个所述磁钢块110为例来介绍所述硅钢盘100的卷制方法,先在所述带状硅钢片1000以第一宽度冲剪6次,以形成5个第一宽度的块片部1100,然后藉由一卷制设备以相同角速度卷制,以使5个第一宽度的块片部1100呈圆周排列,同时在所述带状硅钢片1000以第二宽度冲剪5次,以形成5个第二宽度的块片部1100,其中第二宽度大于第一宽度,然后卷制第二宽度的块片部1100于第一宽度块片部1100外侧,以使第二宽度的块片部1100与第一宽度块片部1100一对应,如此往复,以形成5个圆周间隔排列且呈梯形的硅钢块110。
同理开设在所述带状硅钢片1000宽度方向两侧且相对的所述槽孔部1300,其在卷制后就形成了分设在所述硅钢盘100轴向两侧所述隔磁槽130,并且所述隔磁槽130贯穿所述硅钢盘100的内外周缘。
以及开设在两个相对所述槽孔部1300之间纳孔部1400,其在卷制后就形成位于两个相对隔磁槽130之间的收纳孔140,并且所述收纳孔140贯穿所述硅钢盘100的内外周缘。作为优选的,位于相邻的两所述块片部1100之间的槽孔部1300和纳孔部1400,可一次冲剪形成,不仅提升成型效率,还有效避免多次冲剪造成的位置偏移,进而影响成型硅钢块110尺寸的一致性。
参考图9和图10,所述连接筋120呈长方形,卷制形成所述连接筋120的多层所述筋片部1200均呈长方形,并且每一所述筋片部1200的宽度尺寸一致,以使卷制形成的所述连接筋120呈长方形。在卷制形成的所述连接筋120中,所述筋片部1200呈弧形,所述连接筋120的内侧呈弧形凹槽,所述连接筋120的外侧呈弧形凸起,其中所述连接筋120的内侧对应所述硅钢盘100的内周缘,所述连接筋120的外侧对应所述硅钢盘100的外周缘。
继续参考图9,两个相对的所述槽孔部1300形状一致,均呈长方形,其对应所述隔磁槽130的横截面形状,以使制形成的所述隔磁槽130也呈长方形。所述纳孔部1400也呈长方形,其对应所述收纳孔140的横截面形状,以使卷制形成的收纳孔140也呈长方形。其中所述槽孔部1300和所述纳孔部1400在所述带状硅钢片1000长度方向上的尺寸一致,并且长度方向的两端齐平,而所述槽孔部1300和所述纳孔部1400在所述带状硅钢片1000宽度方向上的尺寸可不一致。
在一个实施例中,当位于相邻两块片部1100之间所述筋片部1200的数量为两个时,所述槽孔部1300的数量为两个,两个所述连接筋120沿着所述硅钢盘100轴向间隔设置,并且所述硅钢块110的轴向端面相对所述连接筋120被突出设置,以在所述硅钢盘100的轴向形成隔磁槽130,其中所述纳孔部1400的数量为一个,且位于两所述筋片部1200之间。
在另一个实施例中,当位于相邻两块片部1100之间所述筋片部1200的数量为三个时,三个所述连接筋120沿着所述硅钢盘100轴向间隔设置,并且所述硅钢块110的轴向端面相对所述连接筋120被突出设置,以在所述硅钢盘100的轴向形成隔磁槽130,其中所述槽孔部1300的数量为两个,所述纳孔部1400的数量为两个,即相邻的两所述筋片部1200之间形成一纳孔部1400,并且两个所述纳孔部1400沿着带状硅钢片1000宽度方向间隔排列。
所述步骤(b)包括:卷制冲剪后的带状硅钢片1000,形成一环形硅钢盘100,其中所述硅钢盘100包括多个周向间隔排列的硅钢块110,任意相邻的两所述硅钢块110之间连接至少两连接筋120,以将相邻的两所述硅钢块110之间的空间分割为分设在所述硅钢盘100轴向两侧的隔磁槽130,及位于两所述隔磁槽130之间的若干个收纳孔140。
参考图10,多个所述硅钢块110沿周向间隔设置,相邻的两所述硅钢块110连接至少两所述连接筋120,两所述连接筋120沿着所述硅钢盘100轴向间隔排列,以将相邻的两所述硅钢块110之间的空间,分隔为两个相同,且分设于所述硅钢盘110轴向两侧且相对的所述隔磁槽130,以及位于两所述隔磁槽130之间的若干收纳孔140,并且多个收纳孔140沿着硅钢盘100轴向间隔排列。
具体地,所述硅钢块110呈梯形,梯形的顶部对应硅钢盘100的内周缘,梯形的底部对应硅钢盘100的外周缘,梯形的高度方向对应硅钢盘100的径向。所述连接筋120呈长方形,所述隔磁槽130和所述收纳孔140也呈长方形,并且所述隔磁槽130和所述收纳孔140贯穿所述硅钢盘100的内外周缘。其中所述连接筋120、两所述隔磁槽130、若干个所述收纳孔140分别沿所述硅钢盘110轴向上的尺寸之和,其等于所述硅钢块110沿所述硅钢盘110轴向上的尺寸。
更具体地,所述连接筋120的尺寸,不仅会影响所述隔磁槽130和所述收纳孔140成型的尺寸,还会影响相邻的两所述硅钢块之间的连接性能。另外所述隔磁槽130与所述转子支架300嵌合,所述隔磁槽130的尺寸影响了所述硅钢盘100与所述转子支架300的固定性能,一旦连接和固定性能不佳,会影响电机的输出扭矩,甚至造成转子涡流损耗。在一个优选实施例中,所述收纳孔140沿所述硅钢盘110轴向上的尺寸,其为连接筋120沿所述硅钢盘110轴向尺寸的4倍或以上,此时所述隔磁槽130沿所述硅钢盘110轴向上的尺寸较小,其可小于所述连接筋120沿所述硅钢盘110轴向上的尺寸,在保证所述隔磁槽130与所述转子支架300固定性能佳的情况下,还提升了所述连接筋120与所述硅钢块110的连接性能,从而保证电机的输出扭矩,有效减少转子涡流损耗。
所述硅钢块110、所述连接筋120、所述隔磁槽130和所述收纳孔140,均是由冲剪后的所述带状硅钢片1000卷制而成,并且所述硅钢块110的数量及尺寸等可根据设计需要进行选定,例如所述硅钢块110的轴向尺寸对应所述硅钢片1000的宽度等。其中冲剪和卷制可同时进行,进一步成型效率。
所述步骤(b)至所述步骤(e)之间进一步包括以下步骤:(c)提供一固定工装400,固定于所述硅钢盘100内外周缘,以对所述硅钢盘100进行定型并取下。通过所述固定工装400对卷制成型的所述硅钢盘100进行定型,防止所述硅钢块110等变形,而影响各硅钢块110尺寸的一致性。
如图11所示,所述固定工装400包括一内固定环410和外固定环420,所述内固定环410套设于所述硅钢盘100的内周缘即可,所述外固定环420套设于所述硅钢盘100外周缘,以对所述硅钢盘100进行定性。继续参考图11,所述内固定环410呈环形,所述外固定环 420包括两个抱箍,两个所述抱箍箍在所述硅钢盘100的外周缘,并通过螺钉430锁紧,安装方便快捷,并有效提升定型效果。
所述步骤(b)至所述步骤(c)之间进一步包括以下步骤:(d)在所述收纳孔140内放置转矩传输棒700,参考图12。所述转矩传输棒可采用与硅钢盘相同材料或者绝缘材料制成的零件,用于支撑所述硅钢盘100,以防止所述硅钢盘100在后续高速旋转发生变形。当然所述收纳孔140也可不放置转矩传输棒。
所述步骤(b)至所述步骤(f)之间进一步包括以下步骤:(e)套设一防护环500于所述硅钢盘100的外周缘。通过在所述硅钢盘100外周缘套设所述防护环500,克服转子旋离心力产生的变形。所述防护环500可由玻璃纤维等材质缠绕而成。
如图13所示,所述硅钢块110的轴向尺寸大于所述防护环500沿硅钢盘100轴向上的尺寸,并且所述防护环500分别至所述硅钢盘100轴向两侧的距离一致,以在所述防护环500的两侧预留所述转子支架300的安装位置,可见所述防护环500和所述转子支架300能够填充封闭所述硅钢盘100的外周缘,减少转子旋转风阻。
参考图10和图13,所述防护环500位于所述硅钢盘轴向的中间位置,并且所述防护环500沿硅钢盘100轴向上的尺寸,其大于所述连接筋120沿硅钢盘100轴向上的尺寸,当所述连接筋120的数量为两个时,所述防护环500可遮挡所述收纳孔140,进一步防止转子变形。
所述步骤(f)包括:在所述硅钢盘100轴向的两侧分别夹装转子支架300,形成一转子盘,其中所述转子支架300内嵌于所述隔磁槽130内,并暴露所述硅钢块110的轴向端面。通过在所述硅钢盘100轴向两侧夹装所述转子支架300,以支撑所述硅钢块110,从而保证多个所述硅钢块110尺寸的一致性,以及电机输出扭矩,有效减少转子涡流损耗。
如图12所示,所述转子支架300包括一内挡圈310、一外挡圈320,以及连接所述内挡圈310和外挡圈320之间的多个卡块330,多个卡块330沿周向间隔排列,并且相邻的两个所述卡块330之间形成一插孔340,进而在所述步骤(f)中,所述卡块330内嵌于所述隔磁槽130内,以使所述硅钢块110插接于所述插孔340内,并且所述内挡圈310套设于所述硅钢盘100的内周缘,所述外挡圈320套设于所述硅钢盘100的外周缘。
其中所述卡块330与所述隔磁槽130的形状相一致,两者均呈长方形,所述插孔340与所述硅钢块110的形状相一致,两者均呈梯形。另外所述内挡圈310、所述外挡圈320和所述卡块300形成的所述转子支架300外端面,其为一平面,当所述硅钢块110插接于所述插孔340内后,所述硅钢块100的轴向端面与所述转子支架300的外端面齐平。具体地,所述内挡圈310和所述卡块300沿转子支架轴向上的尺寸一致,而所述外挡圈320沿转子支架轴向上的尺寸较小,参考图6,所述硅钢盘100的外周缘套设两外挡圈320和一防护环200,并且两个所述外挡圈320位于所述防护环200的两侧,三者封闭所述硅钢盘100的外周缘。
如图12所示,所述转矩传输棒700的长度可长于所述收纳孔140的长度,但是所述转矩传输棒700的外端面与所述硅钢盘100外周缘齐平,以在后续所述硅钢盘100外周缘外套设所述防护环500。而所述转矩传输棒700的内端面向内突出于所述硅钢盘100的内周缘,与后续的所述嵌合固定于所述转子支架300上。
所述内挡圈310上开设有容纳所述转矩传输棒700的内腔312,当两个所述转子支架300夹装所述硅钢盘100上,两个所述转子支架300上的内腔312一一对应,对应的两个所述内腔312包裹所述转矩传输棒700突出于所述硅钢盘100的内周缘的部分,以对所述转矩传输棒700进行固定。
在所述步骤(f)之后进一步包括一下步骤:将转子盘套设于转轴600上。如图13所示,所述转轴600分别穿设两所述转子支架300和所述硅钢盘100的中心,并通过紧固件拉结固定两所述转子支架300和所述硅钢盘100。继续参考图6,所述内挡圈310中心开设有一用 于转轴600通过的支架通孔311,并且所述内挡圈310上开设有紧固件穿过的内挡圈安装孔。
更具体,所述转轴600包括一轴体和一台阶体,所述台阶体一体连接于所述轴体上,所述台阶体上开设有台阶安装孔,当所述轴体穿设两所述转子支架300和所述硅钢盘100后,一靠近所述台阶体的转子支架300可抵接固定于所述台阶体上,并通过紧固件依次穿过相对的内挡圈安装孔和台阶安装孔,以将转子盘固定于转轴600上,以使两者一起转动。
如图12和图13所示,所述硅钢块110轴向两端面均被两侧的所述转子支架300暴露,因此本发明的所述转子盘,适用于双定子单转子电机使用。
综上所述,卷制冲剪后的带状硅钢片1000以形成一整体的硅钢盘100,其中所述硅钢盘100包括多个圆周阵列的所述硅钢块110,并且相邻的两个所述硅钢块110之间形成用于连接的至少两连接筋120,以及被所述连接筋120隔开且分设在所述硅钢盘100轴向两侧的所述隔磁槽130,以及位于两所述隔磁槽之间的若干个收纳孔140。相对于现有技术中通过不同宽度片材逐一堆叠形成多个硅钢块的方式来说,不仅提升硅钢盘的制作效率,并保证各硅钢块尺寸一致性。再者相对于现有技术中采用焊接切割方式来成型硅钢块来说,提升了所述硅钢块110层间的绝缘性能,避免造成涡流损耗,从而保证各硅钢块电磁的一致性。另外在所述步骤(f)中,直接在所述硅钢盘100轴向的两侧分别夹装转子支架300,相对于现有技术中逐一将多个硅钢块放置于支架上来说,有效提升转子盘的成型效率,并保证各硅钢块110在转子盘上位置的一致性,进而利于开展工业化批量生产。进一步地,相邻的两所述块片部1100之间连接至少两筋片部1200,增强了相邻两所述块片部1100之间的连接性能,防止在卷制过程中出现断裂现象,进而达到可实现性。
如图10所示,本发明还提供了一环形硅钢盘100,所述硅钢盘100包括多个周向间隔排列的硅钢块110,任意相邻的两所述硅钢块110之间连接至少两连接筋120,以将相邻的两所述硅钢块110之间的空间分割为分设在所述硅钢盘100轴向两侧的隔磁槽130,及位于两所述隔磁槽130之间的若干个收纳孔140。
多个所述硅钢块110通过连接筋120连接,并形成一整体的硅钢盘100,相对现有技术独立成型多个硅钢块110来说,不仅避免硅钢块110丢失,还有效提升硅钢盘100装配为转子盘的成型效率,以及保证各硅钢块110在转子盘上的位置一致性,从而大幅增强转子盘的机械可靠性。
所述硅钢块110呈梯形,梯形的顶部对应硅钢盘100的内周缘,梯形的底部对应硅钢盘100的外周缘,梯形的高度方向对应硅钢盘100的径向。所述连接筋120呈长方形,所述隔磁槽130和所述收纳孔140也呈长方形,并且所述隔磁槽130和所述收纳孔140贯穿所述硅钢盘100的内外周缘。
所述连接筋120的尺寸,不仅会影响所述隔磁槽130和所述收纳孔140成型的尺寸,还会影响相邻的两所述硅钢块之间的连接性能。另外所述隔磁槽130与所述转子支架300嵌合,所述隔磁槽130的尺寸影响了所述硅钢盘100与所述转子支架300的固定性能,一旦连接和固定性能不佳,会影响电机的输出扭矩,甚至造成转子涡流损耗。
在一个优选实施例中,所述收纳孔140沿所述硅钢盘110轴向上的尺寸,其为连接筋120沿所述硅钢盘110轴向尺寸的4倍或以上,此时所述隔磁槽130沿所述硅钢盘110轴向上的尺寸较小,其可小于所述连接筋120沿所述硅钢盘110轴向上的尺寸,在保证所述隔磁槽130与所述转子支架300固定性能佳的情况下,还提升了所述连接筋120与所述硅钢块110的连接性能,从而保证电机的输出扭矩,有效减少转子涡流损耗。
在另一个优选实施例中,当所述连接筋120的数量为两个时,所述隔磁槽130沿硅钢盘轴向上的尺寸,其小于所述收纳孔140沿转子盘轴向上的尺寸。
如图10所示,所述硅钢块110呈梯形,所述硅钢块110由多层不同尺寸的块片部1100沿梯形高度方向堆叠而成。所述块片部1100呈弧形,所述硅钢块梯形底部呈弧形凸起,以对 应所述硅钢盘的外周缘,所述硅钢块梯形顶部呈弧形凹槽,以对应所述硅钢盘的内周缘。
如图10所示,所述连接筋120由多层相同尺寸的筋片部1200沿硅钢盘径向堆叠而成。所述筋片部1200呈弧形,所述连接筋120内侧呈弧形凹槽,以对应所述硅钢盘的内周缘,所述连接筋120外侧呈弧形凸起,以对应所述硅钢盘的外周缘。
继续参考图10,所述筋片部1200一体连接位于同一层且相邻的两所述块片部1100,以使同层且相邻的两所述块片部1100之间通过一所述筋片部1200连接。其中同层且相邻的两所述块片部1100分别来自不同且相邻的两所述硅钢块110。所述收纳孔140内设置有转矩传输棒。
综上所述,多个所述硅钢块110通过连接筋120连接,并形成一整体的硅钢盘100,相对现有技术独立成型多个硅钢块110来说,不仅避免硅钢块110丢失,还有效提升硅钢盘100装配为转子盘的成型效率,以及保证各硅钢块110在转子盘上的位置一致性,从而大幅增强转子盘的机械可靠性。
如图10和图12所示,本发明还提供了一种轴向磁场电机的转子盘,包括:
一环形硅钢盘100,所述硅钢盘100包括多个周向间隔排列的硅钢块110,任意相邻的两所述硅钢块110之间连接至少两连接筋120,以将相邻的两所述硅钢块110之间的空间分割为分设在所述硅钢盘100轴向两侧的隔磁槽130,及位于两所述隔磁槽130之间的若干个收纳孔140;
一防护环500,所述防护环500套设于所述硅钢盘100的外周缘;
两转子支架300,所述硅钢盘100轴向的两侧分别夹装转子支架300以形成一转子盘,其中所述转子支架300内嵌于所述隔磁槽130内,并暴露所述硅钢块110的轴向端面。
如图12所示,所述转子支架300包括一内挡圈310、一外挡圈320,以及连接所述内挡圈310和外挡圈320之间的多个卡块330,多个卡块330沿周向间隔排列,并且相邻的两个所述卡块330之间形成一插孔340,所述卡块330内嵌于所述隔磁槽130内,以使所述硅钢块110插接于所述插孔340内,并且所述内挡圈310套设于所述硅钢盘100的内周缘,所述外挡圈320套设于所述硅钢盘100的外周缘。
其中所述卡块330与所述隔磁槽130的形状相一致,两者均呈长方形,所述插孔340与所述硅钢块110的形状相一致,两者均呈梯形。另外所述内挡圈310、所述外挡圈320和所述卡块300形成的所述转子支架300外端面,其为一平面,当所述硅钢块110插接于所述插孔340内后,所述硅钢块100的轴向端面与所述转子支架300的外端面齐平。具体地,所述内挡圈310和所述卡块300沿转子支架轴向上的尺寸一致,而所述外挡圈320沿转子支架轴向上的尺寸较小,参考图6,所述硅钢盘100的外周缘套设两外挡圈320和一防护环200,并且两个所述外挡圈320位于所述防护环200的两侧,三者封闭所述硅钢盘100的外周缘。
如图9和图10所示,所述硅钢块110呈梯形,所述硅钢块110由多层不同尺寸的块片部1100沿梯形高度方向堆叠而成。所述块片部1100呈弧形,所述硅钢块梯形底部呈弧形凸起,所述硅钢块梯形顶部呈弧形凹槽。
如图10所示,所述隔磁槽130沿所述硅钢盘110轴向上的尺寸,其小于所述连接筋120沿所述硅钢盘110轴向上的尺寸。
如图12和图13所示,所述轴向磁场电机还包括一转轴600,所述转子盘套设于所述转轴600外,以使所述转轴600分别穿设所述转子支架300和所述硅钢盘100的中心,并通过紧固件拉结固定所述转子支架300和所述硅钢盘100。

Claims (20)

  1. 一种轴向磁场电机转子的成型方法,其特征在于,包括以下步骤:(a)卷制冲剪后的带状硅钢片(1000),形成一环形硅钢盘(100),其中所述硅钢盘(100)具有沿周向间隔排列的多组隔磁槽(130),相邻的两组隔磁槽(130)之间界定了一硅钢块(110),每组隔磁槽(130)的数量为两个,且相对设置于所述硅钢盘(100)轴向的两侧,每组的两所述隔磁槽(130)之间界定了一连接相邻两所述硅钢块(110)的连接筋(120);(d)在所述硅钢盘(100)轴向的两侧分别夹装转子支架(300),形成一转子盘,其中所述转子支架(300)内嵌于所述隔磁槽(130)内,并暴露所述硅钢块(110)的轴向端面。
  2. 如权利要求1所述的轴向磁场电机转子的成型方法,其特征在于,冲剪后的所述带状硅钢片(1000),其具有沿长度方向间隔排列的多组槽孔部(1300),相邻两组所述槽孔部(1300)之间界定了用于卷制形成硅钢块(110)的块片部(1100),每组所述槽孔部(1300)的数量为两个,且相对设置于所述带状硅钢片(1000)宽度方向的两侧,每组的两个所述槽孔部(1300)之间界定了用于卷制形成连接筋(120)的筋片部(1200)。
  3. 如权利要求1所述的轴向磁场电机转子的成型方法,其特征在于,所述转子支架(300)包括一内挡圈(310)、一外挡圈(320),以及连接所述内挡圈(310)和外挡圈(320)之间的多个卡块(330),多个卡块(330)沿周向间隔排列,并且相邻的两个所述卡块(330)之间形成一插孔(340),进而在所述步骤(d)中,所述卡块(330)内嵌于所述隔磁槽(130)内,以使所述硅钢块(110)插接于所述插孔(340)内,并且所述内挡圈(310)套设于所述硅钢盘(100)的内周缘,所述外挡圈(320)套设于所述硅钢盘(100)的外周缘。
  4. 如权利要求1所述的轴向磁场电机转子的成型方法,其特征在于,所述步骤(a)至所述步骤(d)之间进一步包括:(c)套设一防护环(500)于所述硅钢盘(100)的外周缘。
  5. 如权利要求1至4任一所述的轴向磁场电机转子的成型方法,其特征在于,所述步骤
    (a)之后进一步包括以下步骤:(b)提供一固定工装(400),固定于所述硅钢盘(100)内外周缘,以对所述硅钢盘(100)进行定型并取下。
  6. 一种轴向磁场电机转子,其特征在于,包括:一环形硅钢盘(100),所述硅钢盘(100)具有沿周向间隔排列的多组隔磁槽(130),相邻的两组隔磁槽(130)之间界定了一硅钢块(110),每组隔磁槽(130)的数量为两个,且相对设置于所述硅钢盘(100)轴向的两侧,每组的两所述隔磁槽(130)之间界定了一连接相邻两所述硅钢块(110)的连接筋(120);一防护环(500),所述防护环(500)套设于所述硅钢盘(100)的外周缘;两转子支架(300),所述硅钢盘(100)轴向的两侧分别夹装转子支架(300)以形成一转子盘,其中所述转子支 架(300)内嵌于所述隔磁槽(130)内,并暴露所述硅钢块(110)的轴向端面。
  7. 如权利要求6所述的轴向磁场电机转子,其特征在于,所述转子支架(300)包括一内挡圈(310)、一外挡圈(320),以及连接所述内挡圈(310)和外挡圈(320)之间的多个卡块(330),多个卡块(330)沿周向间隔排列,并且相邻的两个所述卡块(330)之间形成一插孔(340),所述卡块(330)内嵌于所述隔磁槽(130)内,以使所述硅钢块(110)插接于所述插孔(340)内,并且所述内挡圈(310)套设于所述硅钢盘(100)的内周缘,所述外挡圈(320)套设于所述硅钢盘(100)的外周缘。
  8. 如权利要求6所述的轴向磁场电机转子,其特征在于,所述硅钢块(110)呈梯形,所述硅钢块(110)由多层不同尺寸的块片部(1100)沿梯形高度方向堆叠而成。
  9. 如权利要求8所述的轴向磁场电机转子,其特征在于,所述块片部(1100)呈弧形,所述硅钢块梯形底部呈弧形凸起,所述硅钢块梯形顶部呈弧形凹槽。
  10. 如权利要求6所述的轴向磁场电机转子,其特征在于,还包括一转轴(600),所述转子盘套设于所述转轴(600)外,以使所述转轴(600)分别穿设所述转子支架(300)和所述硅钢盘(100)的中心,并通过紧固件拉结固定所述转子支架(300)和所述硅钢盘(100)。
  11. 一种轴向磁场电机转子盘的成型方法,其特征在于,包括以下步骤:(a)冲剪带状硅钢片(1000),其中冲剪后的带状硅钢片(1000)具有若干个用于卷制形成硅钢块(110)的块片部(1100),及若干个用于卷制形成连接筋(120)的筋片部(1200),任意相邻的两所述块片部(1100)之间连接至少两筋片部(1200);(b)卷制冲剪后的带状硅钢片(1000),形成一环形硅钢盘(100),其中所述硅钢盘(100)包括多个周向间隔排列的硅钢块(110),任意相邻的两所述硅钢块(110)之间连接至少两连接筋(120),以将相邻的两所述硅钢块(110)之间的空间分割为分设在所述硅钢盘(100)轴向两侧的隔磁槽(130),及位于两所述隔磁槽(130)之间的若干个收纳孔(140);(f)在所述硅钢盘(100)轴向的两侧分别夹装转子支架(300),形成一转子盘,其中所述转子支架(300)内嵌于所述隔磁槽(130)内,并暴露所述硅钢块(110)的轴向端面。
  12. 如权利要求11所述的轴向磁场电机转子盘的成型方法,其特征在于,所述转子支架(300)包括一内挡圈(310)、一外挡圈(320),以及连接所述内挡圈(310)和外挡圈(320)之间的多个卡块(330),多个卡块(330)沿周向间隔排列,并且相邻的两个所述卡块(330)之间形成一插孔(340),进而在所述步骤(f)中,所述卡块(330)内嵌于所述隔磁槽(130)内,以使所述硅钢块(110)插接于所述插孔(340)内,并且所述内挡圈(310)套设于所述硅钢盘(100)的内周缘,所述外挡圈(320)套设于所述硅钢盘(100)的外周缘。
  13. 如权利要求11所述的轴向磁场电机转子盘的成型方法,其特征在于,位于相邻两所述硅钢块(110)之间的所述连接筋(120)的数量为两个,两个所述连接筋(120)沿着所述硅钢盘(100)轴向间隔设置,并且所述硅钢块(110)的轴向端面相对所述连接筋(120)被突出设置。
  14. 如权利要求11所述的轴向磁场电机转子盘的成型方法,其特征在于,所述步骤(b)至所述步骤(f)之间进一步包括:(e)套设一防护环(500)于所述硅钢盘(100)的外周缘。
  15. 如权利要求11至14任一项所述的轴向磁场电机转子盘的成型方法,其特征在于,所述步骤(b)之后进一步包括以下步骤:(c)提供一固定工装(400),固定于所述硅钢盘(100)内外周缘,以对所述硅钢盘(100)进行定型并取下。
  16. 一种轴向磁场电机转子盘,其特征在于,包括:一环形硅钢盘(100),所述硅钢盘(100)包括多个周向间隔排列的硅钢块(110),任意相邻的两所述硅钢块(110)之间连接至少两连接筋(120),以将相邻的两所述硅钢块(110)之间的空间分割为分设在所述硅钢盘(100)轴向两侧的隔磁槽(130),及位于两所述隔磁槽(130)之间的若干个收纳孔(140);一防护环(500),所述防护环(500)套设于所述硅钢盘(100)的外周缘;两转子支架(300),所述硅钢盘(100)轴向的两侧分别夹装转子支架(300)以形成一转子盘,其中所述转子支架(300)内嵌于所述隔磁槽(130)内,并暴露所述硅钢块(110)的轴向端面。
  17. 如权利要求16所述的轴向磁场电机转子盘,其特征在于,所述转子支架(300)包括一内挡圈(310)、一外挡圈(320),以及连接所述内挡圈(310)和外挡圈(320)之间的多个卡块(330),多个卡块(330)沿周向间隔排列,并且相邻的两个所述卡块(330)之间形成一插孔(340),所述卡块(330)内嵌于所述隔磁槽(130)内,以使所述硅钢块(110)插接于所述插孔(340)内,并且所述内挡圈(310)套设于所述硅钢盘(100)的内周缘,所述外挡圈(320)套设于所述硅钢盘(100)的外周缘。
  18. 如权利要求16所述的轴向磁场电机转子盘,其特征在于,所述硅钢块(110)呈梯形,所述硅钢块(110)由多层不同尺寸的块片部(1100)沿梯形高度方向堆叠而成。
  19. 如权利要求18所述的轴向磁场电机转子盘,其特征在于,所述块片部(1100)呈弧形,所述硅钢块梯形底部呈弧形凸起,所述硅钢块梯形顶部呈弧形凹槽。
  20. 如权利要求16所述的轴向磁场电机转子盘,其特征在于,所述隔磁槽(130)沿所述硅钢盘(110)轴向上的尺寸,其小于所述连接筋(120)沿所述硅钢盘(110)轴向上的尺寸。
PCT/CN2022/093835 2021-12-27 2022-05-19 一种轴向磁场电机转子、转子盘及成型方法 WO2023123827A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111634609.0 2021-12-27
CN202111610274.9 2021-12-27
CN202111610274.9A CN114268197A (zh) 2021-12-27 2021-12-27 一种轴向磁通电机的转子盘及成型方法
CN202111634609.0A CN114285199B (zh) 2021-12-27 一种磁阻式轴向磁通电机转子及成型方法

Publications (1)

Publication Number Publication Date
WO2023123827A1 true WO2023123827A1 (zh) 2023-07-06

Family

ID=86997314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093835 WO2023123827A1 (zh) 2021-12-27 2022-05-19 一种轴向磁场电机转子、转子盘及成型方法

Country Status (1)

Country Link
WO (1) WO2023123827A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102301566A (zh) * 2009-01-30 2011-12-28 本田技研工业株式会社 轴向间隙型电机及其转子的制造方法
CN113612358A (zh) * 2021-08-05 2021-11-05 浙江盘毂动力科技有限公司 一种盘式电机转子的成型方法
CN113676005A (zh) * 2021-08-31 2021-11-19 浙江盘毂动力科技有限公司 一种轴向开关磁阻电机转子硅钢块的成型方法
CN114268197A (zh) * 2021-12-27 2022-04-01 浙江盘毂动力科技有限公司 一种轴向磁通电机的转子盘及成型方法
CN114285199A (zh) * 2021-12-27 2022-04-05 浙江盘毂动力科技有限公司 一种磁阻式轴向磁通电机转子及成型方法
CN216530762U (zh) * 2021-12-27 2022-05-13 浙江盘毂动力科技有限公司 一种轴向磁通电机转子的硅钢盘

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102301566A (zh) * 2009-01-30 2011-12-28 本田技研工业株式会社 轴向间隙型电机及其转子的制造方法
CN113612358A (zh) * 2021-08-05 2021-11-05 浙江盘毂动力科技有限公司 一种盘式电机转子的成型方法
CN113676005A (zh) * 2021-08-31 2021-11-19 浙江盘毂动力科技有限公司 一种轴向开关磁阻电机转子硅钢块的成型方法
CN114268197A (zh) * 2021-12-27 2022-04-01 浙江盘毂动力科技有限公司 一种轴向磁通电机的转子盘及成型方法
CN114285199A (zh) * 2021-12-27 2022-04-05 浙江盘毂动力科技有限公司 一种磁阻式轴向磁通电机转子及成型方法
CN216530762U (zh) * 2021-12-27 2022-05-13 浙江盘毂动力科技有限公司 一种轴向磁通电机转子的硅钢盘

Similar Documents

Publication Publication Date Title
JP5324673B2 (ja) 分割式コアを有する電動機の回転子及びその製造方法
WO2017141361A1 (ja) 回転電機及び回転電機の製造方法
JPH11341717A (ja) 電動機の固定子とその製造方法
US9806589B2 (en) Basket-type rotor production method and basket-type rotor
KR19990023654A (ko) 회전 층판의 적층으로 형성되는 코어와 이 코어를 구비한 전기모터 및 코어 제조 방법
JP6350107B2 (ja) ステータのインシュレータ及びこれを用いた回転電機用ステータ、並びに、回転電機用ステータの製造方法
JP2004153913A (ja) 永久磁石モータの回転子
EP2136453B1 (en) Rotating electrical machine
JP6080654B2 (ja) 回転電機の回転子、回転電機、回転子の積層コアの製造方法
CN114268197A (zh) 一种轴向磁通电机的转子盘及成型方法
JP2013158156A (ja) コアブロック、固定子、回転電機およびコアブロックの製造方法
JP7435171B2 (ja) ステータ、モータ、及びステータの製造方法
WO2023123827A1 (zh) 一种轴向磁场电机转子、转子盘及成型方法
US11316393B2 (en) Magnetic sheet for rotor with a non-through shaft, method of obtaining such a sheet and associated rotor
JP2017208986A (ja) 回転電機用積層鉄芯の製造方法
CN216530762U (zh) 一种轴向磁通电机转子的硅钢盘
JP2012023805A (ja) 電動機の固定子とその製造方法
JP3964306B2 (ja) 電動機の固定子積層鉄心の製造方法
WO2023213031A1 (zh) 一种转子盘及其制造设备和制造方法
CN114285199B (zh) 一种磁阻式轴向磁通电机转子及成型方法
CN216599162U (zh) 一种带连接筋的硅钢盘
CN114285199A (zh) 一种磁阻式轴向磁通电机转子及成型方法
TW201907645A (zh) 軸向間隙型旋轉電機
WO2020057529A1 (zh) 一种定子铁芯、电机定子以及电机
US20130270960A1 (en) Electric machine stationary assembly and methods of assembling the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913122

Country of ref document: EP

Kind code of ref document: A1