WO2023123626A1 - 光刺激响应配位聚合物及其制备和应用 - Google Patents

光刺激响应配位聚合物及其制备和应用 Download PDF

Info

Publication number
WO2023123626A1
WO2023123626A1 PCT/CN2022/076363 CN2022076363W WO2023123626A1 WO 2023123626 A1 WO2023123626 A1 WO 2023123626A1 CN 2022076363 W CN2022076363 W CN 2022076363W WO 2023123626 A1 WO2023123626 A1 WO 2023123626A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordination polymer
preparation
light
stimuli
responsive
Prior art date
Application number
PCT/CN2022/076363
Other languages
English (en)
French (fr)
Inventor
郎建平
杨战永
倪春燕
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to US18/026,820 priority Critical patent/US11976087B2/en
Publication of WO2023123626A1 publication Critical patent/WO2023123626A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/06Zinc compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/008Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for characterised by the actuating element
    • F03G7/016Photosensitive actuators, e.g. using the principle of Crookes radiometer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/029Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for characterised by the material or the manufacturing process, e.g. the assembly
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2487/00Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds

Definitions

  • the invention belongs to the technical field of light stimulus response materials, and in particular relates to a light stimulus response coordination polymer and its preparation and application.
  • Stimuli-responsive materials are a class of smart materials that can reconfigure their physical/chemical properties with changes in the external environment. They have been studied for their potential applications in intelligent robots, biomedicine, bionics, and molecular machines. readers' attention. Currently, various types of environmental stimulus-responsive materials have been reported. Through rational design, these materials can respond to a variety of external physical/chemical stimulus signals, such as heat, electric field, magnetic field, humidity, light, etc.
  • photoresponsive materials are uniquely attractive for energy conversion due to their external triggering in a non-damaging, non-contact manner.
  • These ideal bulk properties also endow it with great advantages in practical applications such as optical drives.
  • the field of light-driven materials has developed rapidly, mainly focusing on the external deformation of materials caused by photochemical reactions or photothermal effects, including bending, spiraling, shrinking/stretching, swimming and other behaviors (see: Guo J, Fan J, Liu X, Zhao Z, Tang B, Angew. Chem. Int. Ed, 2020, 59, 8828-8832.).
  • These photoresponsive molecules mainly include diarylethene, anthracene, Schiff base and azobenzene derivatives.
  • the design and synthesis strategy of most photoactuators is to achieve fast and reversible light-driven deformation behavior by embedding photoresponsive molecular fragments into liquid crystal polymer networks, gels, and molecular crystals as photoswitching units (see: Wang H, Chen P, WuZ, Zhao J, Sun J, Lu R, Angew. Chem. Int. Ed, 2017, 56, 9463-9467.).
  • the photo-mechanical behavior due to the anisotropy of photoactuators is closely related to crystallinity, free volume and molecular orientation. Therefore, the "bottom-up" design and synthesis of a class of photo-mechanical energy conversion materials with a hierarchical structure is still a great challenge.
  • coordination polymer is a new type of crystalline material formed by the self-assembly of inorganic metal ions/metal clusters and organic bridging ligands through coordination bonds. It is precisely because of the adjustability and periodicity of the CP structure that it provides a good solution for the "bottom-up" design and synthesis of CP optically driven materials. That is to say, photoresponsive molecular fragments can be embedded into highly ordered and specially arranged CP frameworks, and photosensitive molecules undergo chemical reactions under light radiation to generate photoinduced stress, thereby driving mechanical deformation of materials (see: Shi YX , Zhang WH, Abrahams BF, Braunstein P, Lang JP, Angew. Chem. Int.
  • the photoinduced stress generated during the chemical reaction of photosensitive molecules in the CP framework is generally at the molecular level, which cannot cause the CP material to undergo significant deformation at the macro scale.
  • a suitable method is selected to amplify this photoinduced stress to The mechanical behavior of light at the macroscale is also a very challenging work.
  • the present invention aims to solve the above problems, and provides a light-stimuli-responsive coordination polymer and its preparation and application.
  • the preparation method of the coordination polymer is simple, the reaction conditions are mild, and the photoconversion rate is fast.
  • the prepared photoactuator can Quickly complete multiple actions.
  • the photostimulus-responsive coordination polymer is a bright yellow block crystal, its chemical formula is [Zn(tkpvb)(Fb) 2 ] n1 , and its crystallographic parameters are:
  • Fb represents p-fluorobenzoate
  • tkpvb represents 1,2,4,5-tetrakis((E)-2-(4-pyridyl)vinyl)benzene
  • n1 3000-60000.
  • the chemical structures of fluorobenzoate and 1,2,4,5-tetrakis((E)-2-(4-pyridyl)vinyl)benzene are shown in formulas (I) and (II) respectively:
  • the second aspect of the present invention provides a method for preparing the above-mentioned photostimuli-responsive coordination polymer, which is characterized in that it includes the following steps:
  • the molar ratio of zinc nitrate hexahydrate, p-fluorobenzoic acid or its water-soluble salt to 1,2,4,5-tetrakis((E)-2-(4-pyridyl)vinyl)benzene is 1 -2.5:1-2.5:1-2.5, preferably 1:1:1.
  • reaction temperature is 120-125° C.
  • reaction time is 5-12 hours; preferably, the reaction temperature is 120° C., and the reaction time is 6 hours.
  • volume ratio of N,N'-dimethylformamide and water in the mixed solvent is 1:1-4, preferably, the volume ratio is 2:3.
  • the pH value is adjusted to 5-6 by hydrochloric acid
  • the concentration of hydrochloric acid may be 0.1M, preferably, the pH value is adjusted to 5.
  • the coordination polymer photo-stimuli response coordination polymer (CP1) of the present invention can undergo a chemical reaction under the irradiation of a light source with a wavelength of 365nm, and the rotation of the aromatic ring occurs inside the crystal, and new and different crystals can be obtained through the single crystal-single crystal method.
  • Coordination polymer [Zn(poly-bpbpvpcb)(Fb) 2 ] n2 (CP2), where poly-bpbpvpcb represents poly-1,3-bis(4-pyridyl)-(2,5-bis(2- (4-pyridyl)-vinyl)phenyl)cyclobutane, n3 3000-60000.
  • the third aspect of the present invention provides a composite film, which is characterized by comprising the light-stimuli-responsive coordination polymer according to claim 1 .
  • the thickness of the composite film is 70-90 ⁇ m.
  • the preparation method of above-mentioned composite film comprises the following steps:
  • the solvent is selected from one or more of ethanol, acetonitrile, diethyl ether and water, preferably ethanol.
  • the drying temperature is 60-80°C.
  • the substrate is selected from one or more of PVA (polyvinyl alcohol), chitosan, polyvinylidene fluoride and polypropylene.
  • PVA polyvinyl alcohol
  • chitosan polyvinylidene fluoride
  • polypropylene polypropylene
  • the substrate is a 10wt% PVA aqueous solution
  • the mass ratio of the photostimuli-responsive coordination polymer to the PVA aqueous solution is 0.1-0.9:11; in the step S3, drying is used to remove water in the PVA aqueous solution.
  • the solvent is removed by drying at 60-80°C.
  • the fourth aspect of the present invention provides an optical drive, which is made of the composite film as claimed in claim 5 .
  • the composite film can be made into the photo-actuator by cutting, folding, and multiple fixed connections, and its shape is two-dimensional or three-dimensional.
  • the fifth aspect of the present invention provides the application of the above-mentioned photo-stimuli-responsive coordination polymer or the above-mentioned composite film in light-induced actuation.
  • 365nm light is used for irradiation.
  • the present invention has prepared a new coordination polymer, which can undergo [2+2] cycloaddition reaction under the irradiation of 365nm wavelength light, and obtain a kind of isomer compound;
  • the preparation method of the bit polymer is simple, the reaction conditions are mild, and the photoconversion rate is fast.
  • the means of light stimulation response in the present invention are non-contact type and damage type, and the volume control accuracy is high, and the whole control process does not involve any chemical reagents, which is safe and reliable.
  • the photoactuator prepared by using the photo-stimuli-responsive coordination polymer of the present invention can complete various behaviors according to specific shapes under the irradiation of ultraviolet light with a wavelength of 365nm.
  • Fig. 1 is a schematic diagram of the synthesis of the compound [Zn(tkpvb)(Fb) 2 ] n1 in Example 1.
  • Fig. 2 is a one-dimensional stacking diagram of the compound [Zn(tkpvb)(Fb) 2 ] n1 in Example 1.
  • Fig. 3 is a powder X-ray diffraction pattern of the compound [Zn(tkpvb)(Fb) 2 ] n1 in Example 1.
  • Fig. 4 is the thermogravimetric analysis diagram of the compound [Zn(tkpvb)(Fb) 2 ] n1 in Example 1.
  • Fig. 5 is a schematic diagram of chemical reaction of compound [Zn(tkpvb)(Fb) 2 ] n1 into [Zn(poly-bpbpvpcb)(Fb) 2 ] n2 in Example 2.
  • Fig. 6 is a single crystal morphology diagram of [Zn(tkpvb)(Fb) 2 ] n1 (a) and [Zn(poly-bpbpvpcb)(Fb) 2 ] n1 (b) in Example 2.
  • Fig. 7 is a two-dimensional structure diagram of the compound [Zn(poly-bpbpvpcb)(Fb) 2 ] n2 (CP2) in Example 2.
  • Fig. 8 is a powder X-ray diffraction pattern of the compound [Zn(poly-bpbpvpcb)(Fb) 2 ] n2 (CP2) in Example 2.
  • Fig. 9 is a thermogravimetric analysis diagram of the compound [Zn(poly-bpbpvpcb)(Fb) 2 ] n2 (CP2) in Example 2.
  • Fig. 10 is a mold diagram of a Teflon mold (left) and a loaded composite film (right) in Example 3.
  • Fig. 11 is the SEM (upper left) and EDS mapping (other) figure of composite membrane in the embodiment three.
  • Fig. 12 is a powder X-ray diffraction pattern of the composite film O-PVA in Example 3.
  • FIG. 13 is a schematic diagram of the photo-mechanical behavior of the photo-actuator 1 in Embodiments 4 (a-c), 5 (d-f) and 6 (g-h).
  • Zinc nitrate hexahydrate (297mg, 0.1mmol), 1,2,4,5-tetrakis((E)-2-(4-pyridyl)vinyl)benzene (490mg, 0.1mmol) and p-fluorobenzoic acid ( 280mg, 0.1mmol) of the mixture was added to a 25mL thick-walled pressure-resistant bottle, and then 10mL of a mixed solvent of N,N'-dimethylformamide and deionized water with a volume ratio of 2:3 was added, adjusted with 0.1M hydrochloric acid The pH of the system is about 5.
  • the structure of the compound was characterized by single crystal X-ray diffraction, powder X-ray diffraction and thermal analysis. Its crystallographic parameters are shown in Table 1, and the powder X-ray diffraction diagram and thermal analysis diagram are shown in accompanying drawings 3 and 4.
  • the product was subjected to single crystal X-ray diffraction test. Its crystallographic parameters are shown in Table 2, and the powder single crystal morphology, two-dimensional structure diagram, X-ray diffraction diagram and thermal analysis diagram are shown in Figures 6-9.
  • Embodiment three the preparation of composite membrane 0-PVA
  • the composite film was subjected to scanning electron microscopy (SEM), energy dispersive imaging (EDS mapping) X-ray and powder diffraction. Scanning Electron Microscope (SEM), Energy Dispersive Imaging (EDS mapping) X-ray and powder diffraction patterns are shown in Figures 11 and 12.
  • Embodiment 4 Preparation and Mechanical Behavior Research of Optical Actuator 1
  • Embodiment 5 Preparation and Mechanical Behavior Research of Optical Actuator 2
  • the film material is photoactuator 2 (2-PVA). Then, in the flat state, irradiate with 365nm wavelength light from 5cm above it and record the process with a high-speed camera (1200 frames per second), the "finger” begins to bend, and can grasp the heavy object below (see attached Figure 13).
  • Embodiment 6 Research on the Mechanical Behavior of Optical Actuator 3-PVA
  • the invention discloses a preparation method of a coordination polymer and three kinds of light-induced actuators prepared as raw materials.
  • the present invention synthesized a photosensitive coordination polymer [Zn(tkpvb)(Fb) 2 ] n1 (CP1) by hydrothermally synthesizing at a lower temperature (120°C).
  • a [2+2] cycloaddition reaction occurs under the irradiation of , and a certain amount of photogenetic force is generated in the process.
  • the photogenetic force is amplified by preparing a composite film, and then a series of photodrivers are prepared using CP1 as a raw material.
  • the preparation method described in the present invention is simple, the reaction conditions are mild, and the light conversion rate is fast.
  • the mechanical behavior of photoactuators can be precisely controlled.
  • the photo-driven actuator responds quickly, can complete a variety of mechanical behaviors, and the regulation process is simple and easy to operate.
  • the regulation process does not involve the participation of chemical reagents, which is in line with the concept of green chemistry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明属于光刺激响应材料技术领域,具体涉及一种光刺激响应配位聚合物及其制备和应用。该配位聚合物为亮黄色块状晶体,化学式为[Zn(tkpvb)(Fb) 2] n1,其中,Fb表示对氟苯甲酸根,tkpvb表示1,2,4,5-四((E)-2-(4-吡啶基)乙烯基)苯,n=3000-60000;晶体学参数为:(1)晶系:单斜晶系;(2)空间群:C2/c;(3) a=28.577(3)Å,b=7.4084(6)Å,c=22.612(3)Å,β=126.771(2)°,V=3834.8(7)Å3; (4)Z=4;(5)F(000)=1720,R1=0.0440,wR2=0.1042,GOF=1.047。本发明光刺激响应配位聚合物的制备方法简单,反应条件温和,且光转化速率快;其光刺激响应的手段为非接触型和损伤型,体积调控精准度高,且整个调控过程无任何化学试剂参与,安全可靠;制备的光致驱动器,能够在365nm波长紫外光照射下,根据具体形状完成多种行为。

Description

光刺激响应配位聚合物及其制备和应用 技术领域
本发明属于光刺激响应材料技术领域,具体涉及一种光刺激响应配位聚合物及其制备和应用。
背景技术
刺激响应型材料是一类能随外界环境改变而重构自身物理/化学性质的智能材料,因其在智能机器人、生物医学、仿生学和分子机器等方面具有很大的潜在应用而备受研究者们的关注。目前,已有多种类型的环境刺激响应型材料报道。通过合理设计,这些材料可以响应多种外界的物理/化学刺激信号,诸如热、电场、磁场、湿度、光等。
作为刺激响应型材料的一个分支,光响应材料由于其以非损伤、非接触的方式从外部触发,因而在能量转换方面具有独特的吸引力。这些理想的本体特性也赋予其在光驱动器等实际应用中具有很大优势。近年来,光驱动材料领域得到了快速发展,主要集中于光化学反应或光热效应所引起的材料外部的形变,包括弯曲、螺旋、收缩/拉伸、游泳等行为(参见:Guo J,Fan J,Liu X,Zhao Z,Tang B,Angew.Chem.Int.Ed,2020,59,8828-8832.)。这些光响应型分子主要包括二芳基乙烯、蒽、席夫碱和偶氮苯类衍生物。这些分子在光/热刺激下发生可逆形变。因而,多数光驱动器的设计合成策略是通过将光响应分子片段嵌入到液晶聚合物网络、凝胶以及分子晶体当中作为光开关单元来实现快速、可逆的光驱动形变行为(参见:Wang H,Chen P,WuZ,Zhao J,Sun J,Lu R,Angew.Chem.Int.Ed,2017,56,9463-9467.)。然而,由于光驱动器各向异性的光—机械行为与结晶度、自由体积和分子取向密切相关。因此,“自下而上”设计合成一类具有层次结构的光—机械能转换材料仍然存在很大挑战。
众所周知,配位聚合物(Coordination Polymer CP)是一类由无机金属离子/金 属簇和有机桥连配体通过配位键自组装形成的新型晶态材料。正是由于CP结构的可调节性以及周期性为“自下而上”设计合成CP光驱动材料提供了很好的解决途径。也就是说,可将光响应型分子片段嵌入到高度有序且特殊排布的CP骨架中,在光辐射下光敏分子发生化学反应,产生光生应力,从而驱动材料发生机械形变(参见:Shi YX,Zhang WH,Abrahams BF,Braunstein P,Lang JP,Angew.Chem.Int.Ed,2019,58,9453-9458.)。除此之外,在CP骨架中光敏分子发生化学反应时产生的光生应力一般都是分子级别的,无法使得CP材料在宏观尺度发生明显形变,选择一种合适的方法将这种光生应力放大到宏观尺度的光之机械行为也是一种非常具有挑战性的工作。
因此,设计合成一种新型的、高灵敏度的固态光刺激-响应材料,在光致动电子微器件与仿生材料方面具有十分重要的意义。
发明内容
本发明旨在解决上述问题,提供了一种光刺激响应配位聚合物及其制备和应用,该配位聚合物制备方法简单,反应条件温和,且光转化速率快,制备的光致驱动器能够快速完成多种行为。
按照本发明的技术方案,所述光刺激响应配位聚合物为亮黄色块状晶体,其化学式为[Zn(tkpvb)(Fb) 2] n1,晶体学参数为:
(1)晶系:单斜晶系;
(2)空间群:C2/c;
(3)
Figure PCTCN2022076363-appb-000001
β=126.771(2)°,
Figure PCTCN2022076363-appb-000002
(4)Z=4;
(5)F(000)=1720,R 1=0.0440,wR 2=0.1042,GOF=1.047;
其中,Fb表示对氟苯甲酸根,tkpvb表示1,2,4,5-四((E)-2-(4-吡啶基)乙烯基)苯,n1=3000-60000。氟苯甲酸根与1,2,4,5-四((E)-2-(4-吡啶基)乙烯基)苯的化学结构分别如式(I)、(II)所示:
Figure PCTCN2022076363-appb-000003
具体的,所述光刺激响应配位聚合物的晶体学参数还包括:D c=1.445/g·cm –3,μ=0.704(Mo-Kα)/mm –1;总衍射点数:19493,独立衍射点数:4392;
本发明的第二方面提供了上述光刺激响应配位聚合物的制备方法,其特征在于,包括以下步骤:
将六水合硝酸锌、对氟苯甲酸或其水溶盐和1,2,4,5-四((E)-2-(4-吡啶基)乙烯基)苯溶于N,N’-二甲基甲酰胺和水的混合溶剂中,调节pH值为5-6,反应得到所述光刺激响应配位聚合物。
进一步的,所述六水合硝酸锌、对氟苯甲酸或其水溶盐和1,2,4,5-四((E)-2-(4-吡啶基)乙烯基)苯的摩尔比为1-2.5:1-2.5:1-2.5,优选为1:1:1。
进一步的,所述反应的温度为120-125℃,时间为5-12h;优选的,反应温度为120℃,反应时间为6h。
进一步的,所述混合溶剂中N,N’-二甲基甲酰胺和水的体积比为1:1-4,优选的,体积比为2:3。
进一步的,通过盐酸调节pH值至5-6,盐酸的浓度可以为0.1M,优选的,调节pH值为5。
本发明配位聚合物光刺激响应配位聚合物(CP1)可在365nm波长的光源照射下发生化学反应,晶体内部发生芳香环的转动,通过单晶-单晶的方式够得到新的不同的配位聚合物[Zn(poly-bpbpvpcb)(Fb) 2] n2(CP2),其中,poly-bpbpvpcb代表聚-1,3-双(4-吡啶基)-(2,5-双(2-(4-吡啶基)-乙烯基)苯基)环丁烷,n3=3000-60000。
本发明的第三方面提供了一种复合膜,其特征在于,包括权利要求1所述的光刺激响应配位聚合物。
进一步的,所述复合膜的厚度为70-90μm。
上述复合膜的制备方法,包括以下步骤:
S1:将所述光刺激响应配位聚合物研磨并分散在溶剂中,干燥;
S2:加入基底,搅拌得到均匀粘稠液;
S3:将所述均匀粘稠液倒入模具中,干燥,剥离得到所述复合膜。
进一步的,所述溶剂选自乙醇、乙腈、乙醚和水的一种或多种,优选为乙醇。
进一步的,所述步骤S1和S3中,干燥的温度均为60-80℃。
进一步的,所述基底选自PVA(聚乙烯醇)、壳聚糖、聚偏二氟乙烯和聚丙烯中的一种或多种。
优选为,基底为10wt%PVA水溶液,光刺激响应配位聚合物与PVA水溶液的质量比为0.1-0.9:11;所述步骤S3中,干燥以去除PVA水溶液中的水。
进一步的,所述步骤S3中,采用60-80℃烘干去除溶剂。
本发明的第四方面提供了一种光致驱动器,其特征在于,由权利要求5所述的复合膜制得。
具体的,可以通过裁减、折叠、多条固定连接的方式,将复合膜制成所述光致驱动器,其形状为二维或三维。
本发明的第五方面提供了上述光刺激响应配位聚合物或上述复合膜在光致驱动中的应用。
进一步的,采用365nm光进行照射。
本发明的技术方案相比现有技术具有以下优点:
1、本发明制备得到了一种新的配位聚合物,该化合物在365nm波长光的照射下能发生[2+2]环加成反应,并得到一种同分异构体化合物;该配位聚合物的制备方法简单,反应条件温和,且光转化速率快。
2、本发明中光刺激响应的手段为非接触型和损伤型,体积调控精准度高,且整个调控过程无任何化学试剂参与,安全可靠。
3、利用本发明光刺激响应配位聚合物制备的光致驱动器,能够在365nm波长紫外光照射下,根据具体形状完成多种行为。
附图说明
图1为实施例一中化合物[Zn(tkpvb)(Fb) 2] n1的合成示意图。
图2为实施例一中化合物[Zn(tkpvb)(Fb) 2] n1的一维堆积图。
图3为实施例一中化合物[Zn(tkpvb)(Fb) 2] n1的粉末X-射线衍射图。
图4为实施例一中化合物[Zn(tkpvb)(Fb) 2] n1的热重分析图。
图5为实施例二中化合物[Zn(tkpvb)(Fb) 2] n1发生化学反应转变为[Zn(poly-bpbpvpcb)(Fb) 2] n2的示意图。
图6为实施例二中[Zn(tkpvb)(Fb) 2] n1(a)与[Zn(poly-bpbpvpcb)(Fb) 2] n1(b)的单晶形貌图。
图7为实施例二中化合物[Zn(poly-bpbpvpcb)(Fb) 2] n2(CP2)的二维结构图。
图8为实施例二中化合物[Zn(poly-bpbpvpcb)(Fb) 2] n2(CP2)的粉末X-射线衍射图。
图9为实施例二中化合物[Zn(poly-bpbpvpcb)(Fb) 2] n2(CP2)的热重分析图。
图10为实施例三中特氟龙模具(左)与负载复合膜(右)的模具图。
图11为实施例三中复合膜的SEM(左上)和EDS mapping(其他)图。
图12为实施例三中复合膜0-PVA的粉末X-射线衍射图。
图13为为实施例四(a-c)、五(d-f)和六(g-h)中光致驱动器1的光致机械行为示意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例一:配位聚合物[Zn(tkpvb)(Fb) 2] n1的制备
将六水合硝酸锌(297mg,0.1mmol)、1,2,4,5-四((E)-2-(4-吡啶基)乙烯基)苯(490mg,0.1mmol)和对氟苯甲酸(280mg,0.1mmol)的混合物加入25mL的厚壁耐压瓶中,再加入10mL体积比为2:3的N,N’-二甲基甲酰胺和去离子水的混合溶剂,用0.1M盐酸调节体系的pH为5左右。拧紧瓶盖,超声分散10分钟,置于程序升温至120℃的烘箱中加热8小时,自然冷却至室温,得到亮黄色块状晶体[Zn(tkpvb)(Fb) 2] n1(CP1)。用乙醇洗涤后收集晶体,置于60℃烘箱干燥,产率:472.8mg(65%,基于1,2,4,5-四((E)-2-(4-吡啶基)乙烯基)苯计算)。
元素分析(%):C 48H 34F 2N 4O 4Zn;理论值:C 69.11,H 4.11,N 6.72;实测值:C 69.88,H 4.20,N 6.75。
红外光谱(溴化钾压片法):3045(w),1610(w),1504(w),1409(w),1362(s),1219(m),1151(s),1025(w),857(m),780(m),629(m),620(s),536(s)cm -1
用单晶X-射线衍射,粉末X-射线衍射和热分析等对该化合物进行了结构表征。其晶体学参数见表1,粉末X-射线衍射图和热分析图参见附图3,4。
表1实施例一的配位聚合物的晶体学参数
Figure PCTCN2022076363-appb-000004
Figure PCTCN2022076363-appb-000005
该化合物结晶于单斜晶系,空间群为C2/c。附图1示出了CP1化合物的合成示意图和空间结构示意图。从图中可以看出,上述含烯烃配体的配位聚合物的中心金属离子为Zn 2+,该金属与来自两个对氟苯甲酸中的O、以及两个tkpvb配体中的N进行配位。金属离子之间通过tkpvb配体桥连,延伸出去形成一维链状结构参见附图2。
实施例二:配位聚合物[Zn(poly-bpbpvpcb)(Fb) 2] n2(CP2)的制备
室温下,取少量的CP1晶体于干净的载玻片中,保持光源和晶体的距离为2cm的情况下,用365nm波长的LED灯照射30分钟,获得100%转化的[2+2]环加成产物[Zn(poly-bpbpvpcb)(Fb) 2] n2(CP2)。
元素分析(%):C 48H 34F 2N 4O 4Zn;理论值:C 69.11,H 4.11,N 6.72;实测值:C 69.10,H 4.15,N 6.73。
红外光谱(溴化钾压片法):2934(w),1735(w),1431(w),1375(w),1245(w),1143(w),1095(s),919(w),881(m),821(s),745(s),688(m),546(s)cm -1
对该产物进行单晶X-射线衍射测试。其晶体学参数见表2,粉末单晶形貌、二维结构图、X-射线衍射图和热分析图参见附图6-9。
表2实施例二的配位聚合物的晶体学参数
Figure PCTCN2022076363-appb-000006
Figure PCTCN2022076363-appb-000007
实施例三:复合膜0-PVA的制备
与先用研钵将CP1研磨(约30分钟)成均匀的粉末,而后200mg的粉末分散到4mL的乙醇中超声5小时,60℃烘干。将2.25g 10%PVA水溶液与上述粉末混合并搅拌12小时获得均匀粘稠液。随后,将该混合溶液滴加至表面洁净并用氮气干燥过的聚四氟乙烯模具中,在80℃烘箱过夜烘干去除残余溶剂。待溶剂完全挥发后,通过从模具上剥离获得独立复合膜0-PVA。
对该复合膜进行了扫描电子显微镜(SEM)、能量色散成像(EDS mapping)X-射线和粉末衍射。扫描电子显微镜(SEM)、能量色散成像(EDS mapping)图X-射线和粉末衍射图参见附图11,12。
实施例四:光致驱动器1的制备及机械行为研究
将0-PVA裁剪为0.5cm×2cm的条状,制备为光致驱动器1(1-PVA),将光致驱动器1的一端用夹子固定,另一端系上重物。同时用365nm波长的LED灯(距离约2cm)照射薄膜并用高速照相机记录该过程(1200帧/秒)。当暴露在365nm光辐射下,光致驱动器1快速发生背光弯曲。弯曲角度达45°,从而将重物抬起(参见附图13)。
实施例五:光致驱动器2的制备及机械行为研究
将0-PVA裁剪为0.5cm×3cm的条状,并将条状复合膜的边缘(0.5cm×0.5cm)弯折90°形成“手指”的“指节”用于抓取重物。该膜材料为光致驱动器2(2-PVA)。之后在平放状态下,从其上方进行5cm处使用365nm波长光进行照射并用高速照相机记录该过程(1200帧/秒),“手指”开始弯曲,可以将位于下方的重物抓住(参见附图13)。
实施例六:光致驱动器3-PVA的机械行为研究
将0-PVA裁剪为0.5cm×2cm的条状,选取两条裁剪后的复合膜,十字交叉的固定在一起,两条复合膜成90°夹角。该膜材料为光致驱动器3(3-PVA)。将3-PVA平放在一处平面,在中心位置放置重物。在4-PVA上方(距离约5cm)进行365nm波长LED光照射并用高速照相机记录该过程(1200帧/秒),如图X所示,当暴露在365nm光辐射下,3-PVA的四条边发生弯曲,中心拱起,类似于千斤顶将位于中心的重物顶起。3-PVA使用该种方式可以顶起高于自身20倍重量的物体(参见附图13)。
本发明公开了一种配位聚合物的制备方法及其作为原料制备的三种光致驱动器的方法。具体而言,本发明通过在较低温度下(120℃)水热合成了一种光敏性的配位聚合物[Zn(tkpvb)(Fb) 2] n1(CP1),该化合物在365nm波长光的照射下发生[2+2]环加成反应,该过程中产生一定大小的光生力,通过制备复合膜的方法将这种光生力进行放大,之后利用CP1作为原料制得到一系列光致驱动器1-PVA、2-PVA、3-PVA。此本发明所述制备方法简单,反应条件温和,且光转化速率快。通过引入非接触型和无损伤性的光作为驱动源,准确控制光致驱动 器的机械行为。该光致驱动器响应迅速,能够完整多种机械行为,调控过程简单、易操作,调控过程无化学试剂参与,符合绿色化学理念。
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种光刺激响应配位聚合物,其特征在于,所述配位聚合物为亮黄色块状晶体,其化学式为[Zn(tkpvb)(Fb) 2] n1,晶体学参数为:
    (1)晶系:单斜晶系;
    (2)空间群:C2/c;
    (3)
    Figure PCTCN2022076363-appb-100001
    β=126.771(2)°,
    Figure PCTCN2022076363-appb-100002
    (4)Z=4;
    (5)F(000)=1720,R 1=0.0440,wR 2=0.1042,GOF=1.047;
    其中,Fb表示对氟苯甲酸根,tkpvb表示1,2,4,5-四((E)-2-(4-吡啶基)乙烯基)苯,n1=3000-60000。
  2. 一种如权利要求1所述的光刺激响应配位聚合物的制备方法,其特征在于,包括以下步骤:
    将六水合硝酸锌、对氟苯甲酸或其水溶盐和1,2,4,5-四((E)-2-(4-吡啶基)乙烯基)苯溶于N,N’-二甲基甲酰胺和水的混合溶剂中,调节pH值为5-6,反应得到所述光刺激响应配位聚合物。
  3. 如权利要求2所述的制备方法,其特征在于,所述六水合硝酸锌、对氟苯甲酸或其水溶盐和1,2,4,5-四((E)-2-(4-吡啶基)乙烯基)苯的摩尔比为1-2.5:1-2.5:1-2.5。
  4. 如权利要求2所述的制备方法,其特征在于,所述反应的温度为120-125℃,时间为5-12h。
  5. 一种复合膜,其特征在于,包括权利要求1所述的光刺激响应配位聚合物。
  6. 一种权利要求5所述的复合膜的制备方法,其特征在于,包括以下步骤:
    S1:将所述光刺激响应配位聚合物研磨并分散在溶剂中,干燥;
    S2:加入基底,搅拌得到均匀粘稠液;
    S3:将所述均匀粘稠液倒入模具中,干燥,剥离得到所述复合膜。
  7. 如权利要求6所述的复合膜的制备方法,其特征在于,所述基底选自PVA、壳聚糖、聚偏二氟乙烯和聚丙烯中的一种或多种。
  8. 一种光致驱动器,其特征在于,由权利要求5所述的复合膜制得。
  9. 如权利要求1所述的光刺激响应配位聚合物或权利要求5所述的复合膜在光致驱动中的应用。
  10. 如权利要求9所述的应用,其特征在于,采用365nm光进行照射。
PCT/CN2022/076363 2021-12-30 2022-02-15 光刺激响应配位聚合物及其制备和应用 WO2023123626A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/026,820 US11976087B2 (en) 2021-12-30 2022-02-15 Light-stimuli responsive coordination polymer, and preparation and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111638710.3A CN113999402B (zh) 2021-12-30 2021-12-30 光刺激响应配位聚合物及其制备和应用
CN202111638710.3 2021-12-30

Publications (1)

Publication Number Publication Date
WO2023123626A1 true WO2023123626A1 (zh) 2023-07-06

Family

ID=79932491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076363 WO2023123626A1 (zh) 2021-12-30 2022-02-15 光刺激响应配位聚合物及其制备和应用

Country Status (3)

Country Link
US (1) US11976087B2 (zh)
CN (1) CN113999402B (zh)
WO (1) WO2023123626A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113999402B (zh) * 2021-12-30 2022-03-11 苏州大学 光刺激响应配位聚合物及其制备和应用
CN114957697B (zh) * 2022-06-27 2023-07-07 苏州大学 基于[2+2]光环加成反应的光刺激响应配位聚合物及其制备和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100174047A1 (en) * 2007-01-03 2010-07-08 Insilicotech Co., Ltd. Coordination Polymer Crystal With Porous Metal-Organic Frameworks and Preparation Method Thereof
US20140088312A1 (en) * 2011-05-16 2014-03-27 Dan Li Zeolite porous metal bis(imidazole) coordination polymers and preparation method thereof
CN109096507A (zh) * 2018-07-09 2018-12-28 浙江工业大学 一种基于咪唑型离子液体修饰的三苯胺类衍生物的材料及其制备方法与应用
CN109232431A (zh) * 2018-08-30 2019-01-18 浙江工业大学 一种基于咪唑型离子液体修饰的三苯胺类衍生物及其制备方法与应用
CN113999402A (zh) * 2021-12-30 2022-02-01 苏州大学 光刺激响应配位聚合物及其制备和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100174047A1 (en) * 2007-01-03 2010-07-08 Insilicotech Co., Ltd. Coordination Polymer Crystal With Porous Metal-Organic Frameworks and Preparation Method Thereof
US20140088312A1 (en) * 2011-05-16 2014-03-27 Dan Li Zeolite porous metal bis(imidazole) coordination polymers and preparation method thereof
CN109096507A (zh) * 2018-07-09 2018-12-28 浙江工业大学 一种基于咪唑型离子液体修饰的三苯胺类衍生物的材料及其制备方法与应用
CN109232431A (zh) * 2018-08-30 2019-01-18 浙江工业大学 一种基于咪唑型离子液体修饰的三苯胺类衍生物及其制备方法与应用
CN113999402A (zh) * 2021-12-30 2022-02-01 苏州大学 光刺激响应配位聚合物及其制备和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GONG WEI-JIE, YAO RUI, LI HONG-XI, REN ZHI-GANG, ZHANG JIAN-GUO, LANG JIAN-PING: "Luminescent cadmium(ii) coordination polymers of 1, 2, 4, 5-tetrakis(4-pyridylvinyl)benzene used as efficient multi-responsive sensors for toxic metal ions in water", DALTON TRANSACTIONS, RSC - ROYAL SOCIETY OF CHEMISTRY, CAMBRIDGE, vol. 46, no. 48, 1 January 2017 (2017-01-01), Cambridge , pages 16861 - 16871, XP093074586, ISSN: 1477-9226, DOI: 10.1039/C7DT03876C *

Also Published As

Publication number Publication date
CN113999402A (zh) 2022-02-01
US11976087B2 (en) 2024-05-07
US20240051973A1 (en) 2024-02-15
CN113999402B (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
WO2023123626A1 (zh) 光刺激响应配位聚合物及其制备和应用
Rath et al. Single-crystal-to-single-crystal [2+ 2] photocycloaddition reaction in a photosalient one-Dimensional coordination polymer of Pb (II)
Yu et al. Photomechanical organic crystals as smart materials for advanced applications
Hills-Kimball et al. Synthesis of formamidinium lead halide perovskite nanocrystals through solid–liquid–solid cation exchange
JP3293641B2 (ja) 支持体に適用された層要素
Itoh et al. Reversible color changes in lamella hybrids of poly (diacetylenecarboxylates) incorporated in layered double hydroxide nanosheets
Peng et al. Programming surface morphology of TiO2 hollow spheres and their superhydrophilic films
Xu et al. Engineering photomechanical molecular crystals to achieve extraordinary expansion based on solid-state [2+ 2] photocycloaddition
Kitagawa et al. Crystal thickness dependence of the photoinduced crystal bending of 1-(5-methyl-2-(4-(p-vinylbenzoyloxymethyl) phenyl)-4-thiazolyl)-2-(5-methyl-2-phenyl-4-thiazolyl) perfluorocyclopentene
CN110461820B (zh) 有机发光团
Zheng et al. Energy Conversion in Single‐Crystal‐to‐Single‐Crystal Phase Transition Materials
Xu et al. Protective Coating with Crystalline Shells to Fabricate Dual-Stimuli Responsive Actuators
CN110684202B (zh) 二维层状咪唑铜c60材料及其制备方法和应用
Cui et al. Synthesis and UV absorption properties of 5, 5′-methylenedisalicylic acid-intercalated Zn− Al layered double hydroxides
Lee et al. Ion-exchange reactions and photothermal patterning of monolayer assembled polyacrylate-layered double hydroxide nanocomposites on solid substrates
Liu et al. Fast photoactuation of elastic crystals based on 3-(naphthalen-1-yl)-2-phenylacrylonitriles triggered by subtle photoisomerization
Horie et al. Stimuli-responsive dynamic pseudorotaxane crystals
CN105152209B (zh) 一种锐钛矿型二氧化钛有序超结构的高压溶剂热合成方法
Hirose et al. Photoluminescence by intercalation of a fluorescent β-diketone dye into a layered silicate
Revathi et al. Antibacterial activity and physico-chemical properties of metal-organic single crystal: zinc (Tris) thiourea chloride
CN109206444B (zh) 光致收缩金属有机框架化合物
Arai et al. Orientation control of two-dimensional perovskites by incorporating carboxylic acid moieties
CN106082321B (zh) 暴露可控高活性晶面的锐钛型二氧化钛纳米材料及其制备方法和应用
WO2023077654A1 (zh) 一种光致非线性膨胀配位聚合物及其制备方法
CN114957697A (zh) 基于[2+2]光环加成反应的光刺激响应配位聚合物及其制备和应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18026820

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22912933

Country of ref document: EP

Kind code of ref document: A1