WO2023123598A1 - 无线通信方法、装置、系统、设备和存储介质 - Google Patents

无线通信方法、装置、系统、设备和存储介质 Download PDF

Info

Publication number
WO2023123598A1
WO2023123598A1 PCT/CN2022/074082 CN2022074082W WO2023123598A1 WO 2023123598 A1 WO2023123598 A1 WO 2023123598A1 CN 2022074082 W CN2022074082 W CN 2022074082W WO 2023123598 A1 WO2023123598 A1 WO 2023123598A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
stream converter
access devices
access point
access
Prior art date
Application number
PCT/CN2022/074082
Other languages
English (en)
French (fr)
Inventor
古强
薛林
Original Assignee
上海物骐微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海物骐微电子有限公司 filed Critical 上海物骐微电子有限公司
Publication of WO2023123598A1 publication Critical patent/WO2023123598A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a wireless communication method, device, system, equipment, and storage medium.
  • WiFi Wireless Fidelity
  • MU-MIMO Multi-User Multiple-Input Multiple-Output
  • WiFi networks are mainly used in various indoor environments, so this problem will limit the application and implementation of WiFi6 MU-MIMO technology.
  • WiFi cross-room coverage solutions such as WiFi relay and WiFi mesh (wireless mesh network) demodulate and decode the received data packets, analyze the data at the MAC layer, and then forward it, so the delay is relatively large.
  • WiFi relay and WiFi mesh wireless mesh network
  • these devices use omnidirectional antennas to transmit, do not support MU-MIMO multi-stream transmission and reception, and have disadvantages such as small signal coverage and low speed.
  • Embodiments of the present disclosure provide a wireless communication method, device, system, device, and storage medium, which can realize multi-flow between the access point and the access device when the access point and the access device are located in different spaces.
  • the signal is concurrent, which expands the scope of application of wireless communication and improves application flexibility.
  • An embodiment of the present disclosure provides a wireless communication method, which is applied to a wireless communication system.
  • the wireless communication system may include: a signal access point, a multi-stream converter, and multiple access devices; the method may include: using the The signal access point sends a downlink data signal based on a calibration beam, and sends resource unit allocation information to the multi-stream converter through the signal access point, where the calibration beam may be the signal access point and the The calibrated beam between the multi-stream converters; the multi-stream converter demodulates the downlink data signal based on the resource unit allocation information to obtain signal data directed to each of the access devices; based on The signal data directed to each of the access devices and the beam direction weight corresponding to each of the access devices are sent to the multi-stream signals directed to the multiple access devices through the multi-stream converter, wherein , the beam direction weight is determined based on the calibrated beam direction between the multi-stream converter and each of the access devices.
  • the downlink data signal based on the calibration beam before sending the downlink data signal based on the calibration beam through the signal access point, it may further include: when a beam calibration instruction is detected, performing an operation between the signal access point and the multiple The stream converter performs wide-beam scanning, and based on the wide-beam scanning result, performs narrow-beam scanning on the signal access point and the multi-stream converter to obtain the distance between the signal access point and the multi-stream converter. of the calibration beam.
  • the signal access point before using the signal access point to send the downlink data signal based on the calibration beam, it may further include: when a beam calibration instruction is detected, sending the signal to the multiple signals through the signal access point An access device initiates multiple different beam scans, and based on the compressed beam feedback information reported by the multiple access devices, determines the calibrated beam direction between the multi-stream converter and each of the access devices. weight.
  • the signal access point initiates multiple different beam scans to the multiple access devices, and based on the compressed beam feedback information reported by the multiple access devices, determine The calibrated beam direction weight between the multi-stream converter and each of the access devices may further include: instructing the multi-stream converter to use the target wide beam in the optimal wide beam set Divide into multiple narrow beams, instruct the multi-stream converter to send the multiple narrow beams, and send signal measurement instructions to the multiple access devices; send the probe data frame to the multiple access devices , sending the trigger frame to the plurality of access devices; receiving second compressed beam feedback information reported by each of the access devices, where each of the access devices is carried in the second compressed beam feedback information The detected second signal strength set of the plurality of narrow beams; for each of the access devices, respectively select the target narrow beam corresponding to the maximum value in the second signal strength set, and place the target narrow beam As the calibrated beam direction weight between the multi-stream converter and the corresponding access device.
  • it may further include: receiving uplink data signals from the plurality of access devices through the multi-stream converter, and assigning the uplink data signals to the resource units based on the resource unit allocation information through the multi-stream converter Demodulate the uplink data signal to obtain the signal data from each of the access devices; through the multi-stream converter, the signal data from each of the access devices is composed into an uplink data frame, and according to the The calibration beam forwards the uplink data frame to the signal access point.
  • it may also include: sending a beam detection signal to the multi-stream converter through the signal access point; using the multi-stream converter based on the beam direction corresponding to each of the access devices weight, forwarding the beam detection signal to the plurality of access devices; when there is a target access device whose reported signal strength is less than the warning threshold among the plurality of access devices, the wireless communication system Perform the beam calibration process and transmit signal waves according to the recalibrated beam information.
  • the sending the beam detection signal to the multi-stream converter through the signal access point may also include: starting the beam measurement process irregularly through the signal access point to check the currently used beam situation.
  • it may also include: when the multiple access devices connected to the signal access point are changed, performing beam transfer between the multi-stream converter and the changed access device In the calibration process, the beam direction weight between the multi-stream converter and the changed access device is updated, and signal waves are transmitted according to the updated beam direction weight.
  • An embodiment of the present disclosure also provides a wireless communication device, which is applied to a wireless communication system.
  • the wireless communication system may include: a signal access point, a multi-stream converter, and multiple access devices; the device may include: a sending A module configured to send a downlink data signal based on a calibration beam through the signal access point, and send resource unit allocation information to the multi-stream converter through the signal access point, wherein the calibration beam may be the a calibrated beam between the signal access point and the multi-stream converter; a demodulation module configured to demodulate the downlink data signal based on the resource unit allocation information through the multi-stream converter, Obtaining the signal data directed to each of the access devices; the first forwarding module is configured to, based on the signal data directed to each of the access devices and the beam direction weight corresponding to each of the access devices, Sending multi-stream signals directed to the multiple access devices through the multi-stream converter, wherein the beam direction weight may be based on a calibrated value between the multi-stream converter and each of the access devices
  • it may further include: a first calibration module configured to, before the downlink data signal is sent based on the calibration beam through the signal access point, when a beam calibration instruction is detected, perform the performing wide beam scanning on the signal access point and the multi-stream converter, and performing narrow beam scanning on the signal access point and the multi-stream converter based on the wide beam scanning result, to obtain the signal access point and the multi-stream converter the calibration beam between the multi-stream converters.
  • a first calibration module configured to, before the downlink data signal is sent based on the calibration beam through the signal access point, when a beam calibration instruction is detected, perform the performing wide beam scanning on the signal access point and the multi-stream converter, and performing narrow beam scanning on the signal access point and the multi-stream converter based on the wide beam scanning result, to obtain the signal access point and the multi-stream converter the calibration beam between the multi-stream converters.
  • it may further include: a second calibration module configured to, before sending the downlink data signal based on the calibration beam through the signal access point, when a beam calibration instruction is detected, through the The signal access point initiates multiple different beam scans to the multiple access devices, and determines the relationship between the multi-stream converter and each of the access devices based on the compressed beam feedback information reported by the multiple access devices. Calibrated beam direction weights between devices.
  • the second calibration module may be configured to: send the resource unit allocation message to the multi-stream converter, and receive the number of wide beams returned by the multi-stream converter; indicate the The multi-stream converter sends multiple wide beams, and sends signal measurement instructions to the multiple access devices; sends a probe data frame to the multiple access devices, and the probe data frame is configured to indicate the multiple A plurality of access devices detect received signal strength; send a trigger frame to the plurality of access devices, the trigger frame is configured to instruct the plurality of access devices to report the detected signal strength; receive each of the access devices The first compressed beam feedback information reported by the device, the first compressed beam feedback information carries the first signal strength set of the plurality of wide beams detected by each of the access devices; The input device selects the target wide beam corresponding to the maximum value in the first signal strength set respectively to form an optimal wide beam set.
  • the second calibration module may also be configured to: instruct the multi-stream converter to divide the target wide beam in the optimal wide beam set into multiple narrow beams, indicating The multi-stream converter sends the multiple narrow beams, and sends signal measurement instructions to the multiple access devices; sends the detection data frame to the multiple access devices, and sends the trigger frame to the multiple access devices the plurality of access devices; receiving the second compressed beam feedback information reported by each of the access devices, the second compressed beam feedback information carrying the plurality of narrow beams detected by each of the access devices A second signal strength set of beams; for each of the access devices, select the target narrow beam corresponding to the maximum value in the second signal strength set, and use the target narrow beam as the multi-stream converter and Corresponding calibrated beam direction weights between the access devices.
  • it may further include: a receiving module configured to receive uplink data signals from the multiple access devices through the multi-stream converter, and use the multi-stream converter based on the The resource unit allocation information demodulates the uplink data signal to obtain the signal data from each of the access devices; the second forwarding module is configured to transmit the data from each of the access devices through the multi-stream converter The signal data of the access device forms an uplink data frame, and forwards the uplink data frame to the signal access point according to the calibration beam.
  • it may further include: a detection module configured to send a beam detection signal to the multi-stream converter through the signal access point; a third forwarding module configured to send a beam detection signal to the multi-stream converter through the multi-stream The converter forwards the beam detection signal to the multiple access devices based on the beam direction weights corresponding to each of the access devices; the first recalibration module is configured to when the multiple access devices When there is a target access device whose reported signal strength is less than the warning threshold, re-execute the beam calibration process on the wireless communication system, and transmit signal waves according to the beam information after re-calibration.
  • it may further include: a second recalibration module configured to, when the multiple access devices connected to the signal access point change, execute the multi-stream converter and In the beam calibration process between the changed access devices, the beam direction weight between the multi-stream converter and the changed access device is updated, and signal waves are transmitted according to the updated beam direction weight.
  • a second recalibration module configured to, when the multiple access devices connected to the signal access point change, execute the multi-stream converter and In the beam calibration process between the changed access devices, the beam direction weight between the multi-stream converter and the changed access device is updated, and signal waves are transmitted according to the updated beam direction weight.
  • An embodiment of the present disclosure also provides a wireless communication system, which may include: a signal access point configured to access network signals; a multi-stream converter connected to the signal access point and configured to The downlink data signal of the access point is demodulated and forwarded; the access device accesses the network through the signal wave of the signal access point; wherein, the multi-stream converter is also configured to be based on the demodulation result and the resource unit Allocating information, sending multi-stream signals directed to the plurality of access devices; the signal access point is further configured to adjust the multi-stream converter and each of the access devices according to the received signal measurement results The beam direction weights between .
  • An embodiment of the present disclosure also provides an electronic device, which may include: a memory configured to store a computer program; a processor configured to execute the method of the embodiment of the present disclosure and any implementation thereof.
  • the electronic device may be a gateway device with a PLC function, a mobile phone, a tablet computer, a notebook computer, a desktop computer, or a large computing system composed of multiple computers.
  • An embodiment of the present disclosure also provides a non-transitory electronic device-readable storage medium, which may include: a program that, when run by an electronic device, causes the electronic device to execute the embodiment of the present disclosure and any implementation thereof. method.
  • the storage medium can be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a flash memory (Flash Memory), Hard disk drive (Hard Disk Drive, abbreviation: HDD) or solid-state drive (Solid-State Drive, SSD), etc.
  • the storage medium may also include a combination of the above-mentioned kinds of memories.
  • the wireless communication method, device, system, equipment, and storage medium provided in the present disclosure, first, after calibrating the connection between the signal access point and the multi-stream converter, a calibration beam is obtained, and then the signal access
  • the downlink data signal is sent based on the calibration beam, and the resource unit allocation information is sent to the multi-stream converter through the signal access point, and the downlink data is processed by the multi-stream converter based on the resource unit allocation information
  • the signal is demodulated to obtain the signal data directed to each of the access devices; finally, based on the signal data directed to each of the access devices and the beam direction weight corresponding to each of the access devices, through the
  • the multi-stream converter sends multi-stream signals directed to the multiple access devices, thus realizing concurrent multi-data streams in wireless communication under dynamic calibration, and improving the stability and effectiveness of wireless communication.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure
  • FIG. 3A is a schematic flowchart of a wireless communication method provided by an embodiment of the present disclosure.
  • FIG. 3B is a schematic diagram of the AP in the embodiment of the present disclosure using the OMC to implement MU-MIMO bidirectional transmission with STAs in the next room;
  • FIG. 4A is a schematic flowchart of a wireless communication method provided by an embodiment of the present disclosure.
  • FIG. 4B is a schematic diagram of a beam measurement process in an embodiment of the present disclosure.
  • FIG. 5A is a schematic flowchart of a wireless communication method provided by an embodiment of the present disclosure.
  • FIG. 5B is a schematic diagram of re-performing a beam measurement process in an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a wireless communication device provided by an embodiment of the present disclosure.
  • OFDMA Orthogonal Frequency Division Multiple Access refers to Orthogonal Frequency Division Multiple Access.
  • RU Resource Unit, which is the resource unit of OFDMA.
  • AAU Active Antenna Unit, active antenna processing unit.
  • PLC Power Line Communication, power line communication.
  • MU-MIMO Multi-User Multiple-Input Multiple-Output, multi-user multiple input multiple output.
  • this embodiment provides an electronic device 1 , which may include: at least one processor 11 and a memory 12 , and one processor is taken as an example in FIG. 1 .
  • Processor 11 and memory 12 can be connected via bus 10 .
  • the memory 12 may store instructions that can be executed by the processor 11, and the instructions may be executed by the processor 11, so that the electronic device 1 can execute all or part of the procedures of the methods in the following embodiments, so as to communicate between the access point and the access
  • multi-stream signal concurrency between the access point and the access device is realized, which expands the scope of application of wireless communication and improves application flexibility.
  • the electronic device 1 may be a gateway device with a PLC function, a mobile phone, a tablet computer, a notebook computer, a desktop computer, or a large computing system composed of multiple computers.
  • FIG. 2 is a wireless communication system according to an embodiment of the present disclosure, which may include: a signal access point AP, a multi-stream converter OMC and multiple access devices STA, wherein: the signal access point AP may be configured as Access network signal.
  • the multi-stream converter OMC is connected to the signal access point AP, and can be configured to demodulate and forward the downlink data signal from the signal access point AP.
  • the access device STA can access the network through the signal wave of the signal access point AP.
  • the multi-stream converter OMC may also be configured to send multi-stream signals directed to multiple access devices STA based on the demodulation result and resource unit allocation information.
  • the signal access point AP may also be configured to adjust the beam direction weight between the multi-stream converter OMC and each access device STA according to the received signal measurement results.
  • the signal access point can be a WiFi signal access point (Access Point, referred to as AP), and the multi-stream converter can be a WiFi OFDMA MIMO Converter (WiFi OFDMA MIMO Converter, referred to as OMC later) .
  • the WiFi AP can provide wireless access to the Internet service for the access device (Station, referred to as STA).
  • STA the access device
  • One WiFi AP can be connected to multiple access devices STAs, such as the access devices STA1, STA2...STAm in Figure 2.
  • WiFi AP can include: WiFi Gateway (WiFi Gate) and PLC master control device (PLC Host).
  • WiFi Gateway WiFi Gate
  • PLC Host PLC master control device
  • the multi-stream converter OMC can include: a main control unit (MCU), a physical layer processing unit (Physical Process Unit, PPU for short), an array antenna unit (Array Antenna Unit, AAU for short) and a PLC client module (PLC Client).
  • the PLC Host of the access point AP and the PLC Client of the multi-stream converter OMC can build a communication link through the power line to realize the message interaction between the AP and the OMC.
  • the multi-stream converter OMC can realize the conversion between OFDMA data packets sent and received by the access point AP and MU-MIMO multi-streams sent and received by the access devices STAs.
  • the access point AP and multiple user equipment STAs are often located in different rooms, and the communication between them is likely to be blocked by room walls or other obstacles, so it is impossible to directly construct MU-MIMO spatial multi-streaming (such as marked by dashed lines in Figure 2).
  • OMC devices are arranged at room aisles (or other positions avoiding obstacles), and the OFDMA data frames sent by the access point AP to the access device STAs are processed by the converter OMC into MU-MIMO spatial multi-streams, and then It is forwarded to each access device STAs, so as to realize multi-stream concurrency (DL-MIMO) of multi-user devices in the downlink direction.
  • DL-MIMO multi-stream concurrency
  • multi-stream data from access devices STAs at different locations are aggregated at the multi-stream converter OMC, combined into OFDMA data frames, and then forwarded to the access point AP, thereby realizing multi-stream concurrency of multi-user devices in the uplink direction ( UL-MIMO).
  • FIG. 3A is a wireless communication method according to an embodiment of the present disclosure.
  • This method can be executed by the electronic device 1 shown in FIG. 1, and can be applied to the wireless communication system shown in FIG.
  • the point AP and the access device STAs are located in different spaces, multi-stream signal concurrency between the access point AP and the access device STAs is realized, which expands the scope of application of wireless communication and improves application flexibility.
  • the method optionally includes the steps of:
  • Step 301 Send downlink data signals based on the calibration beam through the signal access point AP, and send resource unit allocation information to the multi-stream converter OMC through the signal access point AP.
  • the calibration beam may be a calibrated beam between the signal access point AP and the multi-stream converter OMC.
  • the signal access point AP can use the power line carrier (PLC) network to control multiple streams.
  • Stream Converter OMC After completing the calibration of the signal access point AP to the multi-stream converter OMC, for the downlink data signal, the signal access point AP can send the downlink OFDMA frame carrying the data of each access device STAs according to the calibration beam (ie DL OFDMA). At the same time, the signal access point AP can send the "OFDMA RU allocation setting" message to the multi-stream converter OMC through the PLC network to inform the multi-stream converter OMC of the allocation of each access device STAs in OFDMA RU.
  • PLC power line carrier
  • Step 302 The multi-stream converter OMC demodulates the downlink data signal based on the resource unit allocation information to obtain signal data directed to each access device STAs.
  • the multi-stream converter OMC After the multi-stream converter OMC receives the downlink OFDMA signal sent by the access point AP, it can demodulate the downlink OFDMA signal based on the RU information occupied by each access device STAs, and obtain the Enter the signal data of STAs on the device. That is to say, the multi-stream converter OMC can be used as a transfer station to avoid the situation where there is an obstacle area between the signal access point AP and the access device STAs, and the signal access point AP cannot directly perform multi-stream concurrency with the access device STAs .
  • Step 303 Based on the signal data directed to each access device STAs and the beam direction weight corresponding to each access device STAs, the multi-stream converter OMC sends multi-stream signals directed to multiple access devices STAs.
  • the beam direction weight may be determined based on the calibrated beam direction between the multi-stream converter OMC and each access device STAs.
  • the beam directions pointing to the STAs of the access devices can be obtained in advance through a beam calibration process.
  • the multi-stream converter OMC can transfer the signal data directed to each access device STAs demodulated in step 302 to each access device STAs
  • the corresponding beam direction weights allocate the data of each access device STAs distributed on different RUs to different beam directions to form a spatial multi-stream (Stream), and then send it through the array antenna to realize the downlink MIMO of the access device STAs ( Downlink-MIMO, DL-MIMO). In this way, even if there is an obstacle area between the signal access point AP and the access devices STAs, multi-stream concurrency can be successfully completed.
  • step 302 the symbol demodulated by a certain access device STA i is denoted as SIG i , and its corresponding calibrated beam direction weight is denoted as W i , then the multi-stream converter OMC
  • the symbol forwarded to the access device STA i can be expressed as: W i *SIG i .
  • the total symbol sent by the OMC to each STAs is expressed as:
  • the OMC can use the symbol SIG mimo to form multiple beams through the antenna array AAU, and each beam (Beamforming, BF) can point to different access devices STAs. In this way, each access device STAs can receive a downlink data frame (Downlink Physical Protocol Data Unit, DL PPDU for short).
  • DL PPDU Downlink Physical Protocol Data Unit
  • Step 304 Receive the uplink data signals from multiple access devices STAs through the multi-stream converter OMC, and demodulate the uplink data signals based on the resource unit allocation information through the multi-stream converter OMC to obtain the STAs from each access device STAs signal data.
  • the uplink Physical Protocol Data Unit (UL PPDU) sent by each access device STAs can be carried on different RUs, and the multi-stream converter OMC can follow the known access device
  • the STAs data is demodulated in the allocation information of OFDMA RU, and the signal data from each access device STAs can be obtained.
  • Step 305 Composing the signal data from each access device STAs into an uplink data frame through the multi-stream converter OMC, and forwarding the uplink data frame to the signal access point AP according to the calibration beam.
  • the multi-stream converter OMC can recompose the signal data from each access device STAs into an uplink OFDMA data frame (UL OFDMA), according to the calibration beam between the signal access point AP and the multi-stream converter OMC The opposite direction is sent to the signal access point AP.
  • uplink MIMO Uplink-MIMO, UL-MIMO for short
  • the signal access point AP of the embodiment of the present disclosure uses the multi-stream converter OMC to implement MU-MIMO two-way transmission with multiple access devices STAs (take STA1, STA2, and STA3 as examples) in the next room.
  • the above wireless communication method can aim at the scenario where the signal access point AP and the access devices STAs are in different rooms, by setting the multi-stream converter OMC at the aisle of the room, and through the forwarding of the multi-stream converter OMC, the signal access point AP can be realized.
  • Multi-stream concurrency with access device STAs This can effectively solve the problem of difficult implementation of WiFi6 MU-MIMO technology in indoor environments. Only WiFi physical symbols are processed. Compared with WiFi relay and WiFi Mesh, it has the advantages of fast processing speed and low delay, and realizes MU-MIMO concurrency , which increases the coverage of the signal and improves the speed of the user's equipment to access the Internet.
  • the multi-stream converter OMC in the embodiment of the present disclosure only needs a civilian electrical socket and does not need a wired network connection. The networking is simple and flexible, which is extremely beneficial for upgrading indoor places that have been decorated to a WiFi6 network.
  • FIG. 4A is a wireless communication method according to an embodiment of the present disclosure.
  • This method can be executed by the electronic device 1 shown in FIG. 1, and can be applied to the wireless communication system shown in FIG.
  • the point AP and the access device STAs are located in different spaces, multi-stream signal concurrency between the access point AP and the access device STAs is realized, which expands the scope of application of wireless communication and improves application flexibility.
  • the method optionally includes the steps of:
  • Step 401 When a beam calibration instruction is detected, perform a wide beam scan on the signal access point AP and the multi-stream converter OMC, and perform narrow beam scan on the signal access point AP and the multi-stream converter OMC based on the result of the wide beam scan Scan to obtain the calibration beam between the signal access point AP and the multi-stream converter OMC.
  • the beam calibration at this stage can be divided into two steps: wide beam scanning and narrow beam scanning.
  • the AP can obtain the best wide beam direction from the AP to the OMC through the wide beam scanning. Specifically, the AP sends out multiple wide beams, and the OMC detects the signal strength of each received wide beam, reports the signal strength detection results to the AP, and sends the wide beam corresponding to the maximum signal strength as the AP to the OMC.
  • Optimal wide beam orientation can be optionally performed within the selected wide beam range, and similarly, the optimal narrow beam direction from the AP to the OMC can be obtained.
  • Optimal use of narrow beam directions can be determined as the calibration beam between the signal access point AP and the multi-stream converter OMC
  • each time the AP configures a wide beam direction it will send a message to the OMC through the PLC network, instructing the OMC to measure the signal strength sent by the AP. After the OMC completes the measurement, it reports the result to the AP.
  • the AP can select the beam corresponding to the maximum signal strength as the optimal beam according to the collected signal strength of each beam.
  • Step 402 Initiate multiple different beam scans to multiple access devices STAs through the signal access point AP, and determine the relationship between the multi-stream converter OMC and each access device STAs based on the compressed beam feedback information reported by the multiple access devices STAs Calibrated beam direction weights between device STAs.
  • the beam calibration from the OMC to each STAs can be started.
  • the AP initiates scanning of different beams.
  • the OMC can find the beam direction used by each STAs by receiving the compressed beam feedback (CBF) reported by each STAs.
  • CBF compressed beam feedback
  • step 402 may specifically include: sending a resource unit allocation message to the multi-stream converter OMC, and receiving the number of wide beams returned by the multi-stream converter OMC; instructing the multi-stream converter OMC to send multiple wide beams, And send signal measurement instructions to multiple access devices STAs; send detection data frames to multiple access devices STAs, and the detection data frames are configured to instruct multiple access devices STAs to detect received signal strength; send trigger frames to multiple access devices STAs , the trigger frame is configured to instruct multiple access devices STAs to report the detected signal strength; receive the first compressed beam feedback information reported by each access device STAs, and the first compressed beam feedback information carries each access device A first set of signal strengths of multiple wide beams detected by STAs; for each access device STAs, respectively select a target wide beam corresponding to the maximum value in the first set of signal strengths to form an optimal set of wide beams.
  • the beam calibration process from the OMC to each STAs can also be divided into two steps of wide beam scanning and narrow beam scanning.
  • Step 1 The AP can send the "OFDMA RU allocation setting" message to the OMC through the PLC network, and the message includes the RU allocation of each STAs on the OFDMA data frame.
  • the OMC can set the number n of wide beams to be scanned and the sequence of wide beams ⁇ wb 0 , wb 1 , wb 2 ,...,wb n-1 ⁇ , and then feed back the number n of wide beams to be scanned by the AP.
  • Step 2 The AP can initiate n times of wide beam measurement (n is an integer), and before each wide beam measurement, the AP sends a message to the OMC through the PLC network to notify it to enter the beam measurement time slice. As shown in FIG. 4B , taking the i-th wide beam measurement as an example, the AP sends the "i-th wide beam measurement" message to the OMC, and the OMC sets the beam to STAs as wb i .
  • the AP sends a "Null Data Packet Announcement” (Null Data Packet Announcement, referred to as NDPA) to notify each STAs to perform beam measurement, and then sends a "Null Data Packet” (Null Data Packet, referred to as NDP) as the sounding frame for each STAs measurement, Finally, the AP sends a trigger frame (Trigger Frame, TF for short) to notify each STAs to report the measurement results.
  • Each STAs can report the received signal strength in the CBF through OFDMA multiplexing.
  • the OMC can receive the CBF reported by each STAs, and complete the measurement of the wb i beam.
  • the target wide beam corresponding to the maximum value in the first signal strength set can be used as the best wide beam of the corresponding STAs, so that the OMC obtains the best wide beam of each STAs, set M
  • the best wide beam set of STAs includes m beams (due to the existence of the same best wide beam of different STAs, m is less than or equal to M, and M is an integer).
  • step 402 may specifically include: initiating multiple different beam scans to multiple access devices STAs through the signal access point AP, and based on the compressed beam feedback information reported by the multiple access devices STAs, Determining the calibrated beam direction weight between the multi-stream converter OMC and each access device STAs may also include: instructing the multi-stream converter OMC to divide the target wide beam in the optimal wide beam set into multiple narrow beams , instruct the multi-stream converter OMC to send multiple narrow beams, and send signal measurement instructions to multiple access device STAs; send probe data frames to multiple access device STAs, and send trigger frames to multiple access device STAs; receive each The second compressed beam feedback information reported by the access device STAs, the second compressed beam feedback information carries the second signal strength set of multiple narrow beams detected by each access device STAs; for each access device STAs, respectively The target narrow beam corresponding to the maximum value in the second signal strength set is selected, and the target narrow beam is used as the calibrated beam direction weight value between the multi-stream converter O
  • a narrow beam scanning process from the OMC to each STAs may be performed.
  • the OMC can optionally divide the m wide beams obtained in the above step 2 into k narrow beams, expressed as ⁇ nb 0 ,nb 1 ,nb 2 ,...,nb k-1 ⁇ .
  • the message "Enter Narrow Beam Measurement" can be sent to the AP through the PLC network, and the message includes the number k of narrow beams to be scanned.
  • the AP can initiate k narrow beam measurements.
  • the narrow beam process is similar to step 2.
  • the AP sends the "jth narrow beam measurement" message to the OMC, and the OMC sets the beam to STAs as nb j . Then the AP sends the "Useless Data Declaration Frame" NDPA to notify each STAs to perform beam measurement, and then sends the "Useless Data Frame” NDP to be used as the sounding frame for each STAs measurement, and finally the AP sends a trigger frame TF to notify each STAs to report the measurement results.
  • Each STAs can report the received signal strength in the CBF through OFDMA multiplexing.
  • the OMC can receive the CBF reported by each STAs, and complete the measurement of the nb j beam.
  • the OMC uses the target narrow beam corresponding to the maximum value in the second signal strength set as the best wide and narrow beam of the corresponding STAs, so that the OMC can obtain the best narrow beam of each STAs, and the best The narrow beam is used as the calibrated beam direction weight between the multi-stream converter OMC and the corresponding access devices STAs.
  • Step 403 Send the downlink data signal based on the calibration beam through the signal access point AP, and send resource unit allocation information to the multi-stream converter OMC through the signal access point AP.
  • Step 403 Send the downlink data signal based on the calibration beam through the signal access point AP, and send resource unit allocation information to the multi-stream converter OMC through the signal access point AP.
  • Step 404 The multi-stream converter OMC demodulates the downlink data signal based on the resource unit allocation information to obtain signal data directed to each access device STAs. For details, refer to the description of step 302 in the foregoing embodiments.
  • Step 405 Based on the signal data directed to each access device STAs and the beam direction weight corresponding to each access device STAs, the multi-stream converter OMC sends multi-stream signals directed to multiple access devices STAs.
  • the multi-stream converter OMC Based on the signal data directed to each access device STAs and the beam direction weight corresponding to each access device STAs, the multi-stream converter OMC sends multi-stream signals directed to multiple access devices STAs.
  • Step 406 Receive the uplink data signals from multiple access devices STAs through the multi-stream converter OMC, and demodulate the uplink data signals based on the resource unit allocation information through the multi-stream converter OMC to obtain the STAs from each access device STAs signal data.
  • Step 406 Receive the uplink data signals from multiple access devices STAs through the multi-stream converter OMC, and demodulate the uplink data signals based on the resource unit allocation information through the multi-stream converter OMC to obtain the STAs from each access device STAs signal data.
  • Step 407 Composing the signal data from each access device STAs into an uplink data frame through the multi-stream converter OMC, and forwarding the uplink data frame to the signal access point AP according to the calibration beam.
  • Step 407 Composing the signal data from each access device STAs into an uplink data frame through the multi-stream converter OMC, and forwarding the uplink data frame to the signal access point AP according to the calibration beam.
  • this method also optionally include the following steps:
  • Step 408 When the multiple access devices STAs connected to the signal access point AP are changed, execute the beam calibration process between the multi-stream converter OMC and the changed access device STAs, update the multi-stream converter OMC and the changed The beam direction weights between the STAs of the access devices, and transmit signal waves according to the updated beam direction weights.
  • the original AP is connected to N user equipments ⁇ STA 0 , STA 1 , . . . , STA N-1 ⁇ through the OMC.
  • the AP can send a message to the OMC through the PLC network, and the message includes the information that STA X allocates RUs on the OFDMA frame.
  • the OMC may feed back to the AP the number of wide beams to be scanned for STA X.
  • the AP initiates a wide beam measurement, and the process may be similar to the above step 402 of beam calibration from the OMC to STAs, the difference is that only the best wide beam of STA X needs to be selected after the wide beam measurement is completed. Then perform narrow beam scanning on the optimal wide beam, the process may be similar to step 403 of beam calibration from OMC to STAs, and finally determine the beam direction weight of STA X.
  • the OMC can superimpose the transmission symbol of STA X on the original multi-stream transmission symbol SIG mimo , that is, the updated transmission symbol is expressed as:
  • SIGX mimo SIG mimo +W X *SIG X
  • SIG X is a symbol sent by the AP to STA X
  • W X is a beam direction weight used by STA X.
  • the AP may send a message to notify the OMC, and the message includes the RU to be removed from the STA used in OFDMA.
  • the OMC will not superimpose the symbols on the RU when generating the multi-stream transmission symbol SIG mimo , so that the OMC will no longer generate beams facing disconnected devices.
  • the above wireless communication method can dynamically adjust the wireless communication system through the calibration process, so that the multi-stream concurrent engineering of the wireless communication system can be applied to different environments and improve the stability of network communication.
  • New device beam calibration and MIMO beam update, as well as beam removal for disconnected devices, can be implemented for new user device access and disconnection.
  • FIG. 5A is a wireless communication method according to an embodiment of the present disclosure.
  • This method can be executed by the electronic device 1 shown in FIG. 1, and can be applied to the wireless communication system shown in FIG.
  • the point AP and the access device STAs are located in different spaces, multi-stream signal concurrency between the access point AP and the access device STAs is realized, which expands the scope of application of wireless communication and improves application flexibility.
  • the method optionally includes the steps of:
  • Step 501 When a beam calibration instruction is detected, perform a wide beam scan on the signal access point AP and the multi-stream converter OMC, and perform a narrow beam scan on the signal access point AP and the multi-stream converter OMC based on the result of the wide beam scan Scan to obtain the calibration beam between the signal access point AP and the multi-stream converter OMC.
  • a beam calibration instruction When a beam calibration instruction is detected, perform a wide beam scan on the signal access point AP and the multi-stream converter OMC, and perform a narrow beam scan on the signal access point AP and the multi-stream converter OMC based on the result of the wide beam scan Scan to obtain the calibration beam between the signal access point AP and the multi-stream converter OMC.
  • Step 502 When the beam calibration instruction is detected, multiple different beam scans are initiated to multiple access devices STAs through the signal access point AP, and based on the compressed beam feedback information reported by the multiple access devices STAs, determine the multi-stream The calibrated beam direction weight between the converter OMC and each access device STAs. For details, refer to the description of step 402 in the foregoing embodiments.
  • Step 503 Send downlink data signals based on the calibration beam through the signal access point AP, and send resource unit allocation information to the multi-stream converter OMC through the signal access point AP.
  • Step 503 Send downlink data signals based on the calibration beam through the signal access point AP, and send resource unit allocation information to the multi-stream converter OMC through the signal access point AP.
  • Step 504 The multi-stream converter OMC demodulates the downlink data signal based on the resource unit allocation information to obtain signal data directed to each access device STAs.
  • the multi-stream converter OMC demodulates the downlink data signal based on the resource unit allocation information to obtain signal data directed to each access device STAs.
  • Step 505 Based on the signal data directed to each access device STAs and the beam direction weight corresponding to each access device STAs, the multi-stream converter OMC sends multi-stream signals directed to multiple access devices STAs.
  • the multi-stream converter OMC Based on the signal data directed to each access device STAs and the beam direction weight corresponding to each access device STAs, the multi-stream converter OMC sends multi-stream signals directed to multiple access devices STAs.
  • Step 506 Receive the uplink data signals from multiple access device STAs through the multi-stream converter OMC, and demodulate the uplink data signals based on the resource unit allocation information through the multi-stream converter OMC to obtain the STAs from each access device STAs signal data.
  • Step 506 Receive the uplink data signals from multiple access device STAs through the multi-stream converter OMC, and demodulate the uplink data signals based on the resource unit allocation information through the multi-stream converter OMC to obtain the STAs from each access device STAs signal data.
  • Step 507 Composing the signal data from each access device STAs into an uplink data frame through the multi-stream converter OMC, and forwarding the uplink data frame to the signal access point AP according to the calibration beam.
  • Step 507 Composing the signal data from each access device STAs into an uplink data frame through the multi-stream converter OMC, and forwarding the uplink data frame to the signal access point AP according to the calibration beam.
  • the user's living environment may change dynamically, and the indoor coverage effect of WiFi may change due to the increase or decrease of indoor items or the movement of the location. Therefore, real-time monitoring can be performed through the AP, and the beam calibration process can be restarted for the above situation.
  • the method therefore optionally also includes:
  • Step 508 Send the beam detection signal to the multi-stream converter OMC through the signal access point AP.
  • the performance of the MU-MIMO multi-stream originally used by the OMC may degrade, and the beam direction needs to be recalibrated.
  • the AP can send a message of "use beam measurement" to the OMC through the PLC network.
  • Step 509 The multi-stream converter OMC forwards the beam detection signal to multiple access devices STAs based on the beam direction weight corresponding to each access device STAs.
  • the calibration single beam measurement from the OMC to the STAs beam in the above step 402 is similar, the difference is that the OMC uses MU-MIMO multi-beam forwarding for the received AP downlink data to each STAs instead of single beam forwarding , as shown in FIG. 5B, taking three access devices STA1, STA2, and STA3 as an example.
  • the transmitted symbol of the beam detection signal is SIG sd
  • the calibrated beam direction weight corresponding to each STAs is expressed as W i
  • the symbol sent by the MU-MIMO mode of the multi-stream converter OMC is:
  • the OMC can receive the CBF reported by each STAs, and complete the measurement of the currently used beam, so as to evaluate whether the current MU-MIMO spatial multi-stream is suitable.
  • Step 510 When there are target access devices STAs whose reported signal strength is lower than the warning threshold among the plurality of access devices STAs, re-execute the beam calibration process for the wireless communication system, and transmit signal waves according to the beam information after recalibration.
  • the OMC may select a wide beam sequence for scanning, and the scanning order is as follows: first, select a wide beam covering the original beam direction of STA i for scanning. The second is wide beam scanning with a small difference in beam direction angle from STA i 's original use.
  • the scanning process may be similar to the wide beam scanning process from the OMC to STAs in step 402 above, except that only the best wide beam of STA i is selected after the wide beam measurement is completed. Then perform narrow beam scanning for the optimal wide beam of STA i , the narrow beam scanning process is similar to the narrow beam scanning process from the OMC to STAs in step 402 above, and finally obtain the new beam direction weight of STA i .
  • OMC After obtaining the new beam direction weight, OMC will use the latest beam direction weight of STA i to calculate the multi-stream transmission symbol SIG mimo , so that OMC can dynamically update the multi-stream spatial direction of MU-MIMO and ensure that the entire WiFi6 network is indoors. reliable operation of the environment.
  • the above wireless communication method by sending a beam detection signal to the multi-stream converter OMC, instructs the multi-stream converter OMC to forward the beam detection signal to multiple access devices STAs, and judges multiple access devices based on the received signal strength reported by the access device STAs. Whether there is a target access device whose received signal strength is less than the warning threshold among the access devices STAs. When there is such a target access device, it means that the signal that the target access device can receive through the signal access point AP is weak.
  • the beam calibration process can be dynamically performed on the wireless communication system, and the recalibrated beam information transmits signal waves, so that all access devices STAs including the target access device can have better signal reception.
  • the beam with poor signal quality is adjusted in time according to the monitoring results, ensuring the reliable use of MU-MIMO in the entire WiFi6 network in the indoor environment.
  • FIG. 6 is a wireless communication device 600 according to an embodiment of the present disclosure.
  • This device can be applied to the electronic device 1 shown in FIG. 1, and can be applied to the wireless communication system shown in FIG.
  • the device may include: a sending module 601, a demodulation module 602 and a first forwarding module 603, and the principle relationship of each module is as follows:
  • the sending module 601 may be configured to send downlink data signals based on the calibration beam through the signal access point AP, and send resource unit allocation information to the multi-stream converter OMC through the signal access point AP, wherein the calibration beam may be a signal access point The calibrated beam between the point AP and the multi-stream converter OMC.
  • the demodulation module 602 may be configured to demodulate the downlink data signal based on resource unit allocation information through the multi-stream converter OMC to obtain signal data directed to each access device STAs.
  • the first forwarding module 603 may be configured to send the signal directed to multiple access devices STAs through the multi-stream converter OMC based on the signal data directed to each access device STAs and the beam direction weight corresponding to each access device STAs For multi-stream signals, the beam direction weights may be determined based on the calibrated beam directions between the multi-stream converter OMC and each access device STAs.
  • it may further include: a first calibration module 604 configured to, before the downlink data signal is sent by the signal access point AP based on the calibration beam, when a beam calibration instruction is detected, the signal access point AP
  • the AP and the multi-stream converter OMC perform wide-beam scanning, and based on the results of the wide-beam scanning, perform narrow-beam scanning on the signal access point AP and the multi-stream converter OMC to obtain the distance between the signal access point AP and the multi-stream converter OMC. calibration beam.
  • it may further include: a second calibration module 605 configured to, before sending the downlink data signal based on the calibration beam through the signal access point AP, when a beam calibration instruction is detected, through the signal access point AP
  • the AP initiates multiple different beam scans to multiple access devices STAs, and based on the compressed beam feedback information reported by multiple access devices STAs, determines the calibrated beam between the multi-stream converter OMC and each access device STAs direction weights.
  • the second calibration module 605 may be configured to: send a resource unit allocation message to the multi-stream converter OMC, and receive the number of wide beams returned by the multi-stream converter OMC; instruct the multi-stream converter OMC to send multiple wide beam, and send signal measurement instructions to multiple access devices STAs; send detection data frames to multiple access devices STAs, and the detection data frames are configured to instruct multiple access devices STAs to detect received signal strength; send trigger frames to multiple access devices STAs The access device STAs, the trigger frame is configured to instruct multiple access devices STAs to report the detected signal strength; receive the first compressed beam feedback information reported by each access device STAs, and the first compressed beam feedback information may carry The first signal strength set of multiple wide beams detected by each access device STAs; for each access device STAs, select the target wide beam corresponding to the maximum value in the first signal strength set to form the best wide beam gather.
  • the second calibration module 605 may also be configured to: instruct the multi-stream converter OMC to divide the target wide beam in the optimal wide beam set into multiple narrow beams, instruct the multi-stream converter OMC to send Multiple narrow beams, and send signal measurement instructions to multiple access device STAs; send probe data frames to multiple access device STAs, send trigger frames to multiple access device STAs; receive the second compression reported by each access device STAs Beam feedback information, the second compressed beam feedback information carries the second signal strength set of multiple narrow beams detected by each access device STAs; for each access device STAs, select the second signal strength set The target narrow beam corresponding to the maximum value is used as the calibrated beam direction weight between the multi-stream converter OMC and the corresponding access device STAs.
  • it may further include: a receiving module 606 configured to receive uplink data signals from multiple access devices STAs through the multi-stream converter OMC, and allocate information based on resource units through the multi-stream converter OMC Demodulate the uplink data signal to obtain signal data from each access device STAs; the second forwarding module 607 is configured to form an uplink data frame from the signal data from each access device STAs through a multi-stream converter OMC , and forward the uplink data frame to the signal access point AP according to the calibration beam.
  • a receiving module 606 configured to receive uplink data signals from multiple access devices STAs through the multi-stream converter OMC, and allocate information based on resource units through the multi-stream converter OMC Demodulate the uplink data signal to obtain signal data from each access device STAs; the second forwarding module 607 is configured to form an uplink data frame from the signal data from each access device STAs through a multi-stream converter OMC , and forward the uplink data frame to the signal access point AP according to the calibration beam.
  • it may also include: a detection module 608 configured to send a beam detection signal to the multi-stream converter OMC through the signal access point AP; a third forwarding module 609 configured to send the beam detection signal to the multi-stream converter OMC through the multi-stream converter Based on the beam direction weight corresponding to each access device STAs, the OMC forwards the beam detection signal to multiple access devices STAs; the first recalibration module 610 is configured to when there are reported signals in multiple access devices STAs When the target access device STAs whose strength is less than the warning threshold, re-executes the beam calibration process for the wireless communication system, and transmits signal waves according to the beam information after re-calibration.
  • it may also include: a second recalibration module 611, configured to execute the multi-stream converter OMC and the changed
  • the beam calibration process between the access devices STAs updates the beam direction weight between the multi-stream converter OMC and the changed access device STAs, and transmits signal waves according to the updated beam direction weight.
  • An embodiment of the present disclosure also provides a non-transitory electronic device 1-readable storage medium, which may include: a program configured to enable the electronic device 1 to execute the method in the above-mentioned embodiments when it runs on the electronic device 1 all or part of the process.
  • the storage medium can be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a flash memory (Flash Memory), a hard disk (Hard Disk Drive, Abbreviation: HDD) or Solid-State Drive (SSD), etc.
  • the storage medium may also include a combination of the above-mentioned kinds of memories.
  • the present disclosure provides a wireless communication method, device, system, device, and storage medium, the method comprising: sending a downlink data signal based on a calibration beam through a signal access point, and sending resource unit allocation information to a multi-stream through the signal access point
  • the converter wherein the calibration beam is a calibrated beam between the signal access point and the multi-stream converter; the multi-stream converter demodulates the downlink data signal based on the resource unit allocation information, and obtains the Signal data; based on the signal data directed to each access device and the beam direction weight corresponding to each access device, a multi-stream signal directed to multiple access devices is sent through a multi-stream converter, wherein the beam direction weight is based on Calibrated beam direction determination between the multi-stream converter and each access device.
  • the disclosure realizes concurrent multi-stream signals between the access point and the access device, expands the scope of application of wireless communication, and improves application flexibility.
  • the wireless communication method, device, system, device and storage medium of the present disclosure are reproducible and can be used in various industrial applications.
  • the wireless communication method, device, system, device and storage medium of the present disclosure may be used in a scenario where WiFi needs to be used for wireless network communication in an indoor environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种无线通信方法、装置、系统、设备和存储介质,该方法包括:通过信号接入点基于校准波束发送下行数据信号,并通过信号接入点发送资源单元分配信息给多流转换器,其中,校准波束为信号接入点与多流转换器之间的校准后波束;通过多流转换器基于资源单元分配信息对下行数据信号进行解调,得到指向每个接入设备的信号数据;基于指向每个接入设备的信号数据和每个接入设备对应的波束方向权值,通过多流转换器发送指向多个接入设备的多流信号,其中,波束方向权值基于多流转换器与每个接入设备之间校准后的波束方向确定。本公开实现了接入点与接入设备之间的多流信号并发,扩大了无线通信的适用范围,提高了应用灵活性。

Description

无线通信方法、装置、系统、设备和存储介质
相关申请的交叉引用
本公开要求于2021年12月31日提交中国国家知识产权局的申请号为202111672142.9、名称为“无线通信方法、装置、系统、设备和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及通信技术领域,具体而言,涉及一种无线通信方法、装置、系统、设备和存储介质。
背景技术
伴随整个社会进入智能化时代,无线互联成为整个信息社会的基础,WiFi作为最主要的无线通信技术之一,被广泛应用。高网速和大带宽的WiFi6(802.11ax)标准已经逐渐成为今后WiFi主流产品,WiFi6新增的关键技术MU-MIMO(Multi-User Multiple-Input Multiple-Output,多用户多输入多输出)充分利用不同用户设备(Stations,简称STAs)的空间分布位置不同,实现了多用户上下行数据并发。
但是该技术在室内应用会存在困难,例如WiFi接入点(Access Point,简称AP)和多个STAs如果位于不同的房间,受到墙壁阻隔,AP和STAs之间会很难构成AP到STAs的空间多流。而WiFi网络主要应用于各种室内环境,因此这个问题会限制WiFi6 MU-MIMO技术的应用实施。
传统WiFi跨房间覆盖方案如WiFi中继和WiFi mesh(无线网格网络)都是对接收的数据包进行解调译码,以及MAC层的数据解析,然后再转发出去,所以延迟较大。同时这些设备采用全向天线发射,不支持MU-MIMO的多流收发,存在信号覆盖范围小、速率低等弊端。
发明内容
本公开实施例提供了一种无线通信方法、装置、系统、设备和存储介质,在接入点与接入设备位于不同的空间中时,可以实现接入点与接入设备之间的多流信号并发,扩大无线通信的适用范围、提高应用灵活性。
本公开实施例提供了一种无线通信方法,应用于无线通信系统,所述无线通信系统可以包括:信号接入点、多流转换器和多个接入设备;所述方法可以包括:通过所述信号接入点基于校准波束发送下行数据信号,并通过所述信号接入点发送资源单元分配信息给所述多流转换器,其中,所述校准波束可以是所述信号接入点与所述多流转换器之间的校准后波束;通过所述多流转换器基于所述资源单元分配信息对所述下行数据信号进行解调,得到指向每个所述接入设备的信号数据;基于所述指向每个所述接入设备的信号数据和每个所述接入设备对应的波束方向权值,通过所述多流转换器发送指向所述多个接入设备的多流信号,其中,所述波束方向权值基于所述多流转换器与每个所述接入设备之间校准后的波束方向确定。
在可选的实现方式中,在所述通过所述信号接入点基于校准波束发送下行数据信号之前,还可以包括:在检测到波束校准指令时,对所述信号接入点与所述多流转换器进行宽波束扫描,并基于宽波束扫描结果,对所述信号接入点与所述多流转换器进行窄波束扫描,得到所述信号接入点与所述多流转换器之间的所述校准波束。
在可选的实现方式中,在所述通过所述信号接入点基于校准波束发送下行数据信号之前,还可以包括:在检测到波束校准指令时,通过所述信号接入点向所述多个接入设备发起多次不同的波束扫描,并基于所述多个接入设备上报的压缩波束反馈信息,确定所述多流转换器与每个所述接入设备之间校准后的波束方向权值。
在可选的实现方式中,所述通过所述信号接入点向所述多个接入设备发起多次不同的波束扫描,并基于所述多个接入设备上报的压缩波束反馈信息,确定所述多流转换器与每个所述接入设备之间校准后的波束方向权值,可以包括:发送所述资源单元分配消息至所述多流转换器,并接收所述多流转换器返回的宽波束数目;指示所述多流转换器发送多个宽波束,并发送信号测量指令至所述多个接入设备;发送探测数据帧至所述多个接入设备,所述探测数据帧被配置成指示所述多个接入设备探测接收信号强度;发送触发帧至所述多个接入设备,所述触发帧被配置成指示所述多个接入设备上报探测到的信号强度;接收每个所述接入设备上报的第一压缩波束反馈信息,所述第一压缩波束反馈信息中携带有每个所述接入设备探测到的所述多个宽波束的第一信号强度集合;针对每个所述接入设备,分别选出所述第一信号强度集合中最大值对应的目标宽波束,形成最佳宽波束集合。
在可选的实现方式中,所述通过所述信号接入点向所述多个接入设备发起多次不同的波束扫描,并基于所述多个接入设备上报的压缩波束反馈信息,确定所述多流转换器与每个所述接入设备之间校准后的波束方向权值,还可以包括:指示所述多流转换器将所述最佳宽波束集合中的所述目标宽波束分割成多个窄波束,指示所述多流转换器发送所述多个窄波束,并发送信号测量指令至所述多个接入设备;发送所述探测数据帧至所述多个接入设备,发送所述触发帧至所述多个接入设备;接收每个所述接入设备上报的第二压缩波束反馈信息,所述第二压缩波束反馈信息中携带有每个所述接入设备探测到的所述多个窄波束的第二信号强度集合;针对每个所述接入设备,分别选出所述第二信号强度集合中最大值对应的目标窄波束,将所述目标窄波束作为所述多流转换器与对应的所述接入设备之间校准后的波束方向权值。
在可选的实现方式中,还可以包括:通过所述多流转换器接收来自所述多个接入设备的上行数据信号,并通过所述多流转换器基于所述资源单元分配信息对所述上行数据信号进行解调,得到来自每个所述接入设备的信号数据;通过所述多流转换器将所述来自每个所述接入设备的信号数据组成上行数据帧,并按照所述校准波束转发所述上行数据帧至所述信号接入点。
在可选的实现方式中,还可以包括:通过所述信号接入点发送波束检测信号给所述多流转换器;通过所述多流转换器基于每个所述接入设备对应的波束方向权值,将所述波束检测信号转发给所述 多个接入设备;当所述多个接入设备中存在上报的信号强度小于警戒阈值的目标接入设备时,重新对所述无线通信系统执行波束校准过程,并按照重新校准后波束信息传输信号波。
在可选的实现方式中,所述通过所述信号接入点发送波束检测信号给所述多流转换器,还可以包括:通过信号接入点不定期地启动波束测量过程,检查当前使用波束状况。
在可选的实现方式中,还可以包括:当连接于所述信号接入点的所述多个接入设备发生变更时,执行所述多流转换器与变更的接入设备之间的波束校准过程,更新所述多流转换器与变更的接入设备之间的波束方向权值,并按照更新后的波束方向权值传输信号波。
本公开实施例还提供了一种无线通信装置,应用于无线通信系统,所述无线通信系统可以包括:信号接入点、多流转换器和多个接入设备;所述装置可以包括:发送模块,被配置成通过所述信号接入点基于校准波束发送下行数据信号,并通过所述信号接入点发送资源单元分配信息给所述多流转换器,其中,所述校准波束可以是所述信号接入点与所述多流转换器之间的校准后波束;解调模块,被配置成通过所述多流转换器基于所述资源单元分配信息对所述下行数据信号进行解调,得到指向每个所述接入设备的信号数据;第一转发模块,被配置成基于所述指向每个所述接入设备的信号数据和每个所述接入设备对应的波束方向权值,通过所述多流转换器发送指向所述多个接入设备的多流信号,其中,所述波束方向权值可以基于所述多流转换器与每个所述接入设备之间校准后的波束方向确定。
在可选的实现方式中,还可以包括:第一校准模块,被配置成在所述通过所述信号接入点基于校准波束发送下行数据信号之前,在检测到波束校准指令时,对所述信号接入点与所述多流转换器进行宽波束扫描,并基于宽波束扫描结果,对所述信号接入点与所述多流转换器进行窄波束扫描,得到所述信号接入点与所述多流转换器之间的所述校准波束。
在可选的实现方式中,还可以包括:第二校准模块,被配置成在所述通过所述信号接入点基于校准波束发送下行数据信号之前,在检测到波束校准指令时,通过所述信号接入点向所述多个接入设备发起多次不同的波束扫描,并基于所述多个接入设备上报的压缩波束反馈信息,确定所述多流转换器与每个所述接入设备之间校准后的波束方向权值。
在可选的实现方式中,所述第二校准模块可以被配置成:发送所述资源单元分配消息至所述多流转换器,并接收所述多流转换器返回的宽波束数目;指示所述多流转换器发送多个宽波束,并发送信号测量指令至所述多个接入设备;发送探测数据帧至所述多个接入设备,所述探测数据帧被配置成指示所述多个接入设备探测接收信号强度;发送触发帧至所述多个接入设备,所述触发帧被配置成指示所述多个接入设备上报探测到的信号强度;接收每个所述接入设备上报的第一压缩波束反馈信息,所述第一压缩波束反馈信息中携带有每个所述接入设备探测到的所述多个宽波束的第一信号强度集合;针对每个所述接入设备,分别选出所述第一信号强度集合中最大值对应的目标宽波束,形成最佳宽波束集合。
在可选的实现方式中,所述第二校准模块还可以被配置成:指示所述多流转换器将所述最佳宽波束集合中的所述目标宽波束分割成多个窄波束,指示所述多流转换器发送所述多个窄波束,并发送信号测量指令至所述多个接入设备;发送所述探测数据帧至所述多个接入设备,发送所述触发帧至所述多个接入设备;接收每个所述接入设备上报的第二压缩波束反馈信息,所述第二压缩波束反馈信息中携带有每个所述接入设备探测到的所述多个窄波束的第二信号强度集合;针对每个所述接入设备,分别选出所述第二信号强度集合中最大值对应的目标窄波束,将所述目标窄波束作为所述多流转换器与对应的所述接入设备之间校准后的波束方向权值。
在可选的实现方式中,还可以包括:接收模块,被配置成通过所述多流转换器接收来自所述多个接入设备的上行数据信号,并通过所述多流转换器基于所述资源单元分配信息对所述上行数据信号进行解调,得到来自每个所述接入设备的信号数据;第二转发模块,被配置成通过所述多流转换器将所述来自每个所述接入设备的信号数据组成上行数据帧,并按照所述校准波束转发所述上行数据帧至所述信号接入点。
在可选的实现方式中,还可以包括:检测模块,被配置成通过所述信号接入点发送波束检测信号给所述多流转换器;第三转发模块,被配置成通过所述多流转换器基于每个所述接入设备对应的波束方向权值,将所述波束检测信号转发给所述多个接入设备;第一重新校准模块,被配置成当所述多个接入设备中存在上报的信号强度小于警戒阈值的目标接入设备时,重新对所述无线通信系统执行波束校准过程,并按照重新校准后波束信息传输信号波。
在可选的实现方式中,还可以包括:第二重新校准模块,被配置成当连接于所述信号接入点的所述多个接入设备发生变更时,执行所述多流转换器与变更的接入设备之间的波束校准过程,更新所述多流转换器与变更的接入设备之间的波束方向权值,并按照更新后的波束方向权值传输信号波。
本公开实施例还提供了一种无线通信系统,可以包括:信号接入点,被配置成接入网络信号;多流转换器,连接所述信号接入点,被配置成对来自所述信号接入点的下行数据信号进行解调和转发;接入设备,通过所述信号接入点的信号波接入网络;其中,所述多流转换器还被配置成基于解调结果和资源单元分配信息,发送指向所述多个接入设备的多流信号;所述信号接入点还被配置成根据接收到的信号测量结果,调整所述多流转换器与每个所述接入设备之间的波束方向权值。
本公开实施例还提供了一种电子设备,可以包括:存储器,被配置成存储计算机程序;处理器,被配置成执行本公开实施例及其任一实现方式的方法。
在可选的实现方式中,所述电子设备可以是具备PLC功能的网关设备、手机、平板电脑、笔记本电脑、台式电脑或者多个计算机组成的大型计算系统等设备。
本公开实施例还提供了一种非暂态电子设备可读存储介质,可以包括:程序,当其藉由电子设备运行时,使得所述电子设备执行本公开实施例及其任一实现方式的方法。
在可选的实现方式中,存储介质可以为磁盘、光盘、只读存储记忆体(Read-Only Memory,ROM)、 随机存储记忆体(Random Access Memory,RAM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,缩写:HDD)或固态硬盘(Solid-State Drive,SSD)等。存储介质还可以包括上述种类的存储器的组合。
本公开提供的无线通信方法、装置、系统、设备和存储介质,首先对所述信号接入点与所述多流转换器之间的进行校准后,得到校准波束,然后通过所述信号接入点基于校准波束发送下行数据信号,并通过所述信号接入点发送资源单元分配信息给所述多流转换器,在通过所述多流转换器基于所述资源单元分配信息对所述下行数据信号进行解调,得到指向每个所述接入设备的信号数据;最后基于所述指向每个所述接入设备的信号数据和每个所述接入设备对应的波束方向权值,通过所述多流转换器发送指向所述多个接入设备的多流信号,如此实现了动态校准下的无线通信的多数据流并发,提高了无线通信的稳定性和有效性。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本公开实施例提供的电子设备的结构示意图;
图2为本公开实施例提供的无线通信系统的结构示意图;
图3A为本公开实施例提供的无线通信方法的流程示意图;
图3B为本公开实施例中的AP利用OMC实现和隔壁房间STAs MU-MIMO双向传输的示意图;
图4A为本公开实施例提供的无线通信方法的流程示意图;
图4B为本公开实施例中的波束测量过程的示意图;
图5A为本公开实施例提供的无线通信方法的流程示意图;
图5B为本公开实施例中的重新进行波束测量过程的示意图;
图6本公开实施例提供的无线通信装置的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行描述。在本公开的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
为了清楚地描述本公开的技术方案,现将涉及的技术名词释义如下:
OFDMA:Orthogonal Frequency Division Multiple Access,是指正交频分多址。
RU:Resource Unit,为OFDMA的资源单元。
AAU:Active Antenna Unit,有源天线处理单元。
PLC:Power Line Communication,电力线通信。
MU-MIMO:Multi-User Multiple-Input Multiple-Output,多用户多输入多输出。
如图1所示,本实施例提供一种电子设备1,可以包括:至少一个处理器11和存储器12,图1中以一个处理器为例。处理器11和存储器12可以通过总线10连接。存储器12可以存储有可被处理器11执行的指令,指令可以被处理器11执行,以使电子设备1可执行下述的实施例中方法的全部或部分流程,以在接入点与接入设备位于不同的空间中时,实现接入点与接入设备之间的多流信号并发,扩大无线通信的适用范围、提高应用灵活性。
在可选的实现方式中,电子设备1可以是具备PLC功能的网关设备、手机、平板电脑、笔记本电脑、台式电脑或者多个计算机组成的大型计算系统等设备。
请参看图2,其为本公开一实施例的无线通信系统,可以包括:信号接入点AP,多流转换器OMC和多个接入设备STA,其中:信号接入点AP可以被配置成接入网络信号。多流转换器OMC连接信号接入点AP,可以被配置成对来自信号接入点AP的下行数据信号进行解调和转发。接入设备STA可以通过信号接入点AP的信号波接入网络。其中,多流转换器OMC还可以被配置成基于解调结果和资源单元分配信息,发送指向多个接入设备STA的多流信号。信号接入点AP还可以被配置成根据接收到的信号测量结果,调整多流转换器OMC与每个接入设备STA之间的波束方向权值。
以基于WiFi的无线通信系统为例,信号接入点可以是WiFi信号接入点(Access Point,简称AP),多流转换器可以是WiFi OFDMA MIMO转换器(WiFi OFDMA MIMO Convertor,后续简称OMC)。其中WiFi AP可以为接入设备(Station,简称STA)提供无线接入Internet服务,一个WiFi AP可以供多个接入设备STAs连接,如图2中的接入设备STA1、STA2……STAm。
WiFi AP可以包括:WiFi网关(WiFi Gate)和PLC主控设备(PLC Host)。
多流转换器OMC可以包括:主控单元(MCU)、物理层处理单元(Physical Process Unit,简称PPU)、阵列天线单元(Array Antenna Unit,简称AAU)和PLC客户端模组(PLC Client)。接入点AP的PLC Host和多流转换器OMC的PLC Client可以通过电力线构建通信链路,实现AP和OMC的消息交互。多流转换器OMC可以实现接入点AP收发的OFDMA数据包和接入设备STAs收发的MU-MIMO多流之间的转化。
实际场景中,接入点AP和多个用户设备STAs往往分别位于不同的房间内,它们之间的通信很可能被房间墙壁或其他障碍物遮挡,无法直接构建MU-MIMO的空间多流(如图2中虚线标识)。
本公开通过在房间过道处(或其他避开障碍物的位置)布置OMC设备,接入点AP发送给接入设备STAs的OFDMA数据帧被转换器OMC处理为MU-MIMO空间多流后,再转发给各接入设备STAs,从而实现下行方向多用户设备的多流并发(DL-MIMO)。在上行方向来自不同位置接入设备STAs的多流数据在多流转换器OMC处汇聚,合并成OFDMA数据帧后,再转发给接入点AP,从而实现上行方向多用户设备的多流并发(UL-MIMO)。
下面结合图例进一步详细描述本公开实施例的无线通信方法。
请参看图3A,其为本公开一实施例的无线通信方法,该方法可由图1所示的电子设备1来执行,并可以应用于如图2所示的无线通信系统中,以在接入点AP与接入设备STAs位于不同的空间中时,实现接入点AP与接入设备STAs之间的多流信号并发,扩大无线通信的适用范围、提高应用灵活性。该方法可选地包括如下步骤:
步骤301:通过信号接入点AP基于校准波束发送下行数据信号,并通过信号接入点AP发送资源单元分配信息给多流转换器OMC。
在本步骤中,校准波束可以是信号接入点AP与多流转换器OMC之间的校准后波束。针对接入点AP和接入设备STAs处于不同空间的场景,比如分别位于不同的房间,通过在房间过道处安装多流转换器OMC,信号接入点AP可以利用电力线载波(PLC)网络控制多流转换器OMC。在完成信号接入点AP到多流转换器OMC的校准后,对于下行数据信号,信号接入点AP可以按照校准波束发送承载各接入设备STAs数据的下行OFDMA帧(即DL OFDMA)。同时信号接入点AP可以通过PLC网络将“OFDMA RU分配设置”消息发送给多流转换器OMC,用以告知多流转换器OMC每个接入设备STAs在OFDMA RU的分配情况。
步骤302:通过多流转换器OMC基于资源单元分配信息对下行数据信号进行解调,得到指向每个接入设备STAs的信号数据。
在本步骤中,在多流转换器OMC接收接入点AP发送的下行OFDMA信号后,可以基于每个接入设备STAs占用的RU信息,对下行OFDMA信号进行解调,可以得到指向每个接入设备STAs的信号数据。也就是可以将多流转换器OMC作为中转站,避免在信号接入点AP与接入设备STAs之间有障碍区的情况下,信号接入点AP无法直接与接入设备STAs进行多流并发。
步骤303:基于指向每个接入设备STAs的信号数据和每个接入设备STAs对应的波束方向权值,通过多流转换器OMC发送指向多个接入设备STAs的多流信号。
在本步骤中,波束方向权值可以基于多流转换器OMC与每个接入设备STAs之间校准后的波束方向确定。可以预先通过波束校准过程获得指向接入设备STAs的波束方向。在完成多流转换器OMC到接入设备STAs之间的校准后,多流转换器OMC可以将步骤302中解调出的指向每个接入设备STAs的信号数据分别按照每个接入设备STAs对应的波束方向权值,将分布在不同RU上的各接入设备STAs数据分配到不同波束方向,形成空间多流(Stream),然后通过阵列天线发出,实现对接入设备STAs的下行MIMO(Downlink-MIMO,DL-MIMO)。如此,即使信号接入点AP与接入设备STAs之间存在障碍区,也可以顺利完成多流并发。
在可选的实现方式中,可以设在步骤302中某接入设备STA i解调出的符号表示为SIG i,其对应的校准后波束方向权值表示为W i,则多流转换器OMC转发给接入设备STA i的符号可以表示为:W i*SIG i。设总共M个接入设备STAs,则由OMC发送到各STAs的总符号表示为:
Figure PCTCN2022074082-appb-000001
OMC可以将符号SIG mimo通过天线阵列AAU形成多波束,每个波束(Beamforming,BF)可以指向不同接入设备STAs。如此,各接入设备STAs可以接收到下行数据帧(Downlink Physical Protocol Data Unit,简称DL PPDU)。
步骤304:通过多流转换器OMC接收来自多个接入设备STAs的上行数据信号,并通过多流转换器OMC基于资源单元分配信息对上行数据信号进行解调,得到来自每个接入设备STAs的信号数据。
在本步骤中,对于上行方向,各接入设备STAs发送的上行数据帧(Uplink Physical Protocol Data Unit,简称UL PPDU)可以承载在不同RU上,多流转换器OMC可以按照已知的接入设备STAs数据在OFDMA RU的分配信息进行解调,即可得到来自每个接入设备STAs的信号数据。
步骤305:通过多流转换器OMC将来自每个接入设备STAs的信号数据组成上行数据帧,并按照校准波束转发上行数据帧至信号接入点AP。
在本步骤中,多流转换器OMC可以将来自每个接入设备STAs的信号数据重新组成上行OFDMA数据帧(UL OFDMA),按照信号接入点AP到多流转换器OMC之间的校准波束的反方向发送给信号接入点AP。如此,可以实现上行MIMO(Uplink-MIMO,简称UL-MIMO)。
如图3B所示,为本公开实施例信号接入点AP利用多流转换器OMC实现和隔壁房间的多个接入设备STAs(以STA1、STA2、STA3为例)进行MU-MIMO双向传输的示意图。
上述无线通信方法,可以针对信号接入点AP和接入设备STAs处于不同房间的场景,通过在房间过道处设置多流转换器OMC,通过多流转换器OMC的转发,实现信号接入点AP与接入设备STAs之间的多流并发。如此可以有效解决WiFi6 MU-MIMO技术在室内环境实现困难的问题,仅对WiFi物理符号处理,相对WiFi中继和WiFi Mesh,具有处理速度快、延时低的优势,而且实现了MU-MIMO并发,增大了信号覆盖范围,提高了用户设备上网速度。此外本公开实施例中的多流转换器OMC仅需民用电插座即可,无需有线网络连接,组网简单灵活,对于已经装修的室内场所升级到WiFi6网络极为有利。
请参看图4A,其为本公开一实施例的无线通信方法,该方法可由图1所示的电子设备1来执行,并可以应用于如图2所示的无线通信系统中,以在接入点AP与接入设备STAs位于不同的空间中时,实现接入点AP与接入设备STAs之间的多流信号并发,扩大无线通信的适用范围、提高应用灵活性。该方法可选地包括如下步骤:
步骤401:在检测到波束校准指令时,对信号接入点AP与多流转换器OMC进行宽波束扫描,并基于宽波束扫描结果,对信号接入点AP与多流转换器OMC进行窄波束扫描,得到信号接入点AP与多流转换器OMC之间的校准波束。
在本步骤中,为了准确的通过多流转换器OMC的转发,实现信号接入点AP与接入设备STAs之间的多流并发,需要预先完成两阶段的波束校准:1.信号接入点AP到多流转换器OMC的波束校准。2.多流转换器OMC到多接入设备STAs的波束校准。其中波束校准指令可以由人工通过AP上的按钮触发,也可以通过特定事件触发,或者周期性触发。触发方式不做限定。
首先进行信号接入点AP到多流转换器OMC的波束校准过程:
该阶段波束校准可以分为宽波束扫描和窄波束扫描两个步骤,AP可以通过宽波束扫描获得AP到OMC最佳宽波束方向。具体地,AP发出多个宽波束,OMC分别对接收到的每个宽波束的进行信号强度探测,并将信号强度探测结果上报给AP,将其中信号强度最大值对应的宽波束作为AP到OMC最佳宽波束方向。然后可选地在选定宽波束范围内进行更精细的窄波束扫描,同理可获得AP到OMC的最佳使用窄波束方向。可以将最佳使用窄波束方向确定为信号接入点AP与多流转换器OMC之间的校准波束
在上述扫描过程中,AP每配置一个宽波束方向,会通过PLC网络发送消息给OMC,通知OMC对AP发送的信号强度进行测量。OMC完成测量后上报结果给AP,AP可以根据收集的各波束信号强度,选出信号强度最大值对应的波束为最优波束。
步骤402:通过信号接入点AP向多个接入设备STAs发起多次不同的波束扫描,并基于多个接入设备STAs上报的压缩波束反馈信息,确定多流转换器OMC与每个接入设备STAs之间校准后的波束方向权值。
在本步骤中,在完成AP到OMC的波束校准后,可以启动OMC到各STAs的波束校准。AP发起不同波束的扫描,OMC在设置对应波束后,可以通过接收各STAs上报的压缩波束反馈信息(Compressed Beamforming feedback,简称CBF)找到各STAs的使用波束方向。
在可选的实现方式中,步骤402具体可以包括:发送资源单元分配消息至多流转换器OMC,并接收多流转换器OMC返回的宽波束数目;指示多流转换器OMC发送多个宽波束,并发送信号测量指令至多个接入设备STAs;发送探测数据帧至多个接入设备STAs,探测数据帧被配置成指示多个接入设备STAs探测接收信号强度;发送触发帧至多个接入设备STAs,触发帧被配置成指示多个接入设备STAs上报探测到的信号强度;接收每个接入设备STAs上报的第一压缩波束反馈信息,第一压缩波束反馈信息中携带有每个接入设备STAs探测到的多个宽波束的第一信号强度集合;针对每个接入设备STAs,分别选出第一信号强度集合中最大值对应的目标宽波束,形成最佳宽波束集合。
在本步骤中,OMC到各STAs的波束校准过程也可以分为宽波束扫描和窄波束扫描两个步骤。首先进行宽波束扫描,结合图4B,以三个接入设备STA1、STA2、STA3为例,具体过程如下:
步骤1:AP可以通过PLC网络发送“OFDMA RU分配设置”消息给OMC,消息包含各STAs在OFDMA数据帧上RU的分配情况。OMC可以设定待扫描的宽波束数目n和宽波束序列 {wb 0,wb 1,wb 2,…,wb n-1},然后反馈AP要扫描的宽波束数目n。
步骤2:AP可以发起n次宽波束测量(n为整数),在每次宽波束测量前AP通过PLC网络发送消息给OMC,通知其进入波束测量时间片。如图4B所示,以第i次宽波束测量为例,AP发送“第i次宽波束测量”消息给OMC,OMC设置到STAs的波束为wb i。随后AP发送“无用数据声明帧”(Null Data Packet Announcement,简称NDPA),通知各STAs进行波束测量,然后发送“无用数据帧”(Null Data Packet,简称NDP)用作各STAs测量的sounding帧,最后AP发送触发帧(Trigger Frame,简称TF),通知各STAs上报测量结果。各STAs可以通过OFDMA复用方式在CBF上报接收信号强度。OMC可以接收各STAs上报的CBF,完成wb i波束的测量。在完成全部n次宽波束测量后,可以将第一信号强度集合中最大值对应的目标宽波束作为对应的STAs的最佳宽波束,如此OMC获得每个STAs的最佳宽波束,设M个STAs的最佳宽波束集合包含m个波束(由于存在不同STAs的最佳宽波束相同情况,m小于等于M,M为整数)。
在可选的实现方式中,步骤402具体可以包括:通过信号接入点AP向多个接入设备STAs发起多次不同的波束扫描,并基于多个接入设备STAs上报的压缩波束反馈信息,确定多流转换器OMC与每个接入设备STAs之间校准后的波束方向权值,还可以包括:指示多流转换器OMC将最佳宽波束集合中的目标宽波束分割成多个窄波束,指示多流转换器OMC发送多个窄波束,并发送信号测量指令至多个接入设备STAs;发送探测数据帧至多个接入设备STAs,发送触发帧至多个接入设备STAs;接收每个接入设备STAs上报的第二压缩波束反馈信息,第二压缩波束反馈信息中携带有每个接入设备STAs探测到的多个窄波束的第二信号强度集合;针对每个接入设备STAs,分别选出第二信号强度集合中最大值对应的目标窄波束,将目标窄波束作为多流转换器OMC与对应的接入设备STAs之间校准后的波束方向权值。
在本步骤中,在完成OMC到各STAs的宽波束扫描后,可以进行OMC到各STAs的窄波束扫描波过程。具体地,结合上述图4B所示的内容,OMC可以将上述步骤2获得的m个宽波束再可选地分为k个窄波束,表示为{nb 0,nb 1,nb 2,…,nb k-1}。然后可以通过PLC网络发送“进入窄波束测量”消息给AP,消息中包含待扫描窄波束数目k。随后AP可以发起k次窄波束测量,窄波束过程和步骤2类似,以第j次窄波束测量为例,AP发送“第j次窄波束测量”消息给OMC,OMC设置到STAs的波束为nb j。随后AP发送“无用数据声明帧”NDPA,通知各STAs进行波束测量,然后发送“无用数据帧”NDP用作各STAs测量的sounding帧,最后AP发送触发帧TF,通知各STAs上报测量结果。各STAs可以通过OFDMA复用方式在CBF上报接收信号强度。OMC可以接收各STAs上报的CBF,完成nb j波束的测量。在完成全部k次窄波束测量后OMC将第二信号强度集合中最大值对应的目标窄波束作为对应的STAs的最佳宽窄波束,如此OMC可以获得每个STAs的最佳窄波束,将最佳窄波束作为多流转换器OMC与对应的接入设备STAs之间校准后的波束方向权值。
步骤403:通过信号接入点AP基于校准波束发送下行数据信号,并通过信号接入点AP发送资 源单元分配信息给多流转换器OMC。详细参见上述实施例中对步骤301的描述。
步骤404:通过多流转换器OMC基于资源单元分配信息对下行数据信号进行解调,得到指向每个接入设备STAs的信号数据。详细参见上述实施例中对步骤302的描述。
步骤405:基于指向每个接入设备STAs的信号数据和每个接入设备STAs对应的波束方向权值,通过多流转换器OMC发送指向多个接入设备STAs的多流信号。详细参见上述实施例中对步骤303的描述。
步骤406:通过多流转换器OMC接收来自多个接入设备STAs的上行数据信号,并通过多流转换器OMC基于资源单元分配信息对上行数据信号进行解调,得到来自每个接入设备STAs的信号数据。详细参见上述实施例中对步骤304的描述。
步骤407:通过多流转换器OMC将来自每个接入设备STAs的信号数据组成上行数据帧,并按照校准波束转发上行数据帧至信号接入点AP。详细参见上述实施例中对步骤305的描述。
实际使用场景中,与AP连接的用户设备也可能会发生变化,如增加新接入设备STAs或者断开原有连接等,这些情况下,也可以触发波束的重新校准调整过程,因此,该方法还可选地包括如下步骤:
步骤408:当连接于信号接入点AP的多个接入设备STAs发生变更时,执行多流转换器OMC与变更的接入设备STAs之间的波束校准过程,更新多流转换器OMC与变更的接入设备STAs之间的波束方向权值,并按照更新后的波束方向权值传输信号波。
在本步骤中,可以假设原先AP通过OMC连接了N个用户设备{STA 0,STA 1,…,STA N-1}。当有新设备STA X接入AP,AP可以通过PLC网络发送消息給OMC,消息中包含STA X在OFDMA帧上分配RU的信息。OMC可以反馈給AP要对STA X进行扫描的宽波束数目。
随后AP发起宽波束测量,过程可以和OMC到STAs波束校准的上述步骤402类似,区别只是在宽波束测量结束后只需要选出STA X的最佳宽波束。然后对该最佳宽波束进行窄波束扫描,过程可以和OMC到STAs波束校准的步骤403类似,最后确定STA X的波束方向权值。
在以后AP与各STAs的数据收发过程中,OMC可以在原先多流发送符号SIG mimo上叠加STA X的发送符号,即更新的发送符号表示为:
SIGX mimo=SIG mimo+W X*SIG X
其中,SIG X是AP发送给STA X的符号,W X为STA X使用的波束方向权值。
在可选的实现方式中,当原有的某个STA断开和AP的连接,AP可以发送消息通知OMC,消息中包含要去除STA在OFDMA中使用的RU。以后OMC在产生多流发送符号SIG mimo时不叠加该RU上的符号,这样OMC就不再产生面向断开设备的波束了。
上述无线通信方法,可以通过校准过程,对无线通信系统进行动态调整,以使无线通信系统的多流并发工程可以适用不同的环境,提高网络通信的稳定性。可以针对新用户设备的接入和断开连 接,实现新设备波束校准和MIMO波束更新,以及去除断开设备的波束。
请参看图5A,其为本公开一实施例的无线通信方法,该方法可由图1所示的电子设备1来执行,并可以应用于如图2所示的无线通信系统中,以在接入点AP与接入设备STAs位于不同的空间中时,实现接入点AP与接入设备STAs之间的多流信号并发,扩大无线通信的适用范围、提高应用灵活性。该方法可选地包括如下步骤:
步骤501:在检测到波束校准指令时,对信号接入点AP与多流转换器OMC进行宽波束扫描,并基于宽波束扫描结果,对信号接入点AP与多流转换器OMC进行窄波束扫描,得到信号接入点AP与多流转换器OMC之间的校准波束。详细参见上述实施例中对步骤401的描述。
步骤502:在检测到波束校准指令时,通过信号接入点AP向多个接入设备STAs发起多次不同的波束扫描,并基于多个接入设备STAs上报的压缩波束反馈信息,确定多流转换器OMC与每个接入设备STAs之间校准后的波束方向权值。详细参见上述实施例中对步骤402的描述。
步骤503:通过信号接入点AP基于校准波束发送下行数据信号,并通过信号接入点AP发送资源单元分配信息给多流转换器OMC。详细参见上述实施例中对步骤301的描述。
步骤504:通过多流转换器OMC基于资源单元分配信息对下行数据信号进行解调,得到指向每个接入设备STAs的信号数据。详细参见上述实施例中对步骤302的描述。
步骤505:基于指向每个接入设备STAs的信号数据和每个接入设备STAs对应的波束方向权值,通过多流转换器OMC发送指向多个接入设备STAs的多流信号。详细参见上述实施例中对步骤303的描述。
步骤506:通过多流转换器OMC接收来自多个接入设备STAs的上行数据信号,并通过多流转换器OMC基于资源单元分配信息对上行数据信号进行解调,得到来自每个接入设备STAs的信号数据。详细参见上述实施例中对步骤304的描述。
步骤507:通过多流转换器OMC将来自每个接入设备STAs的信号数据组成上行数据帧,并按照校准波束转发上行数据帧至信号接入点AP。详细参见上述实施例中对步骤305的描述。
实际使用场景中,用户的生活环境可能是动态变化的,WiFi的室内覆盖效果可能因为室内物品增减或者位置移动而发生变化,因此可以通过AP进行实时监测,针对上述情况重新启动波束校准流程。因此该方法还可选地包括:
步骤508:通过信号接入点AP发送波束检测信号给多流转换器OMC。
在本步骤中,比如由于室内物品的变化或者客户设备的移动,原先OMC使用的MU-MIMO多流可能性能下降,需要重新校准波束方向。可以通过AP不定期地启动波束测量过程,检查当前使用波束状况。比如AP可以通过PLC网络发送“使用波束测量”消息给OMC。
步骤509:通过多流转换器OMC基于每个接入设备STAs对应的波束方向权值,将波束检测信号转发给多个接入设备STAs。
在本步骤中,过程上述步骤402中的OMC到STAs波束的校准单次波束测量类似,区别是OMC对收到的AP下行数据采用MU-MIMO多波束转发给各STAs,而不是采用单波束转发,如图5B所示,以三个接入设备STA1、STA2、STA3为例。设波束检测信号的被发送符号为SIG sd,各STAs对应的校准后波束方向权值表示为W i,则多流转换器OMC的MU-MIMO方式发送的符号为:
Figure PCTCN2022074082-appb-000002
OMC可以接收各STAs上报的CBF,完成对当前使用波束的测量,从而评估当前MU-MIMO空间多流是否合适。
步骤510:当多个接入设备STAs中存在上报的信号强度小于警戒阈值的目标接入设备STAs时,重新对无线通信系统执行波束校准过程,并按照重新校准后波束信息传输信号波。
在本步骤中,当多个接入设备STAs中存在上报的信号强度小于警戒阈值的目标接入设备时,比如OMC检测到某接入设备STA i上报的信号强度小于警戒阈值,说明STA i的波束质量低于阈值,将启动STA i的波束校准过程。具体地,OMC可以选取宽波束序列进行扫描,扫描顺序为:首先选择覆盖STA i的原使用波束方向的宽波束进行扫描。其次是和STA i的原使用波束方向角度差较小的宽波束扫描。扫描过程可以和上述步骤402中OMC到STAs的宽波束扫描过程类似,区别只是在宽波束测量结束后只选出STA i的最佳宽波束。然后再针STA i的最佳宽波束进行窄波束扫描,窄波束扫描过程和上述步骤402中OMC到STAs的窄波束扫描过程类似,最后获得STA i的新波束方向权值。
获得新的波束方向权值后,OMC会使用STA i最新的波束方向权值进行多流发送符号SIG mimo的计算,从而实现OMC动态更新MU-MIMO的多流空间方向,保证整个WiFi6网络在室内环境的可靠运行。
上述无线通信方法,通过向多流转换器OMC发送波束检测信号,指示多流转换器OMC将波束检测信号转发给多个接入设备STAs,并基于接入设备STAs上报的接收信号强度判断多个接入设备STAs中是否存在接收信号强度小于警戒阈值的目标接入设备,当存在这样的目标接入设备时,说明该目标接入设备能够通过信号接入点AP接收的信号较弱,此时可以动态对无线通信系统执行波束校准过程,并重新校准后波束信息传输信号波,以便于包含目标接入设备在内的全部接入设备STAs可以具备较好的信号接收效果。实现了针对室内信号传播环境变化,根据监测结果及时调整信号质量差的波束,保证整个WiFi6网络MU-MIMO在室内环境的可靠使用。
请参看图6,其为本公开一实施例的无线通信装置600,该装置可应用于图1所示的电子设备1,并可以应用于如图2所示的无线通信系统中,以在接入点AP与接入设备STAs位于不同的空间中时,实现接入点AP与接入设备STAs之间的多流信号并发,扩大无线通信的适用范围、提高应用灵活性。该装置可以包括:发送模块601、解调模块602和第一转发模块603,各个模块的原理关 系如下:
发送模块601,可以被配置成通过信号接入点AP基于校准波束发送下行数据信号,并通过信号接入点AP发送资源单元分配信息给多流转换器OMC,其中,校准波束可以是信号接入点AP与多流转换器OMC之间的校准后波束。解调模块602,可以被配置成通过多流转换器OMC基于资源单元分配信息对下行数据信号进行解调,得到指向每个接入设备STAs的信号数据。第一转发模块603,可以被配置成基于指向每个接入设备STAs的信号数据和每个接入设备STAs对应的波束方向权值,通过多流转换器OMC发送指向多个接入设备STAs的多流信号,其中,波束方向权值可以基于多流转换器OMC与每个接入设备STAs之间校准后的波束方向确定。
在可选的实现方式中,还可以包括:第一校准模块604,被配置成在通过信号接入点AP基于校准波束发送下行数据信号之前,在检测到波束校准指令时,对信号接入点AP与多流转换器OMC进行宽波束扫描,并基于宽波束扫描结果,对信号接入点AP与多流转换器OMC进行窄波束扫描,得到信号接入点AP与多流转换器OMC之间的校准波束。
在可选的实现方式中,还可以包括:第二校准模块605,被配置成在通过信号接入点AP基于校准波束发送下行数据信号之前,在检测到波束校准指令时,通过信号接入点AP向多个接入设备STAs发起多次不同的波束扫描,并基于多个接入设备STAs上报的压缩波束反馈信息,确定多流转换器OMC与每个接入设备STAs之间校准后的波束方向权值。
在可选的实现方式中,第二校准模块605可以被配置成:发送资源单元分配消息至多流转换器OMC,并接收多流转换器OMC返回的宽波束数目;指示多流转换器OMC发送多个宽波束,并发送信号测量指令至多个接入设备STAs;发送探测数据帧至多个接入设备STAs,探测数据帧被配置成指示多个接入设备STAs探测接收信号强度;发送触发帧至多个接入设备STAs,触发帧被配置成指示多个接入设备STAs上报探测到的信号强度;接收每个接入设备STAs上报的第一压缩波束反馈信息,第一压缩波束反馈信息中可以携带有每个接入设备STAs探测到的多个宽波束的第一信号强度集合;针对每个接入设备STAs,分别选出第一信号强度集合中最大值对应的目标宽波束,形成最佳宽波束集合。
在可选的实现方式中,第二校准模块605还可以被配置成:指示多流转换器OMC将最佳宽波束集合中的目标宽波束分割成多个窄波束,指示多流转换器OMC发送多个窄波束,并发送信号测量指令至多个接入设备STAs;发送探测数据帧至多个接入设备STAs,发送触发帧至多个接入设备STAs;接收每个接入设备STAs上报的第二压缩波束反馈信息,第二压缩波束反馈信息中携带有每个接入设备STAs探测到的多个窄波束的第二信号强度集合;针对每个接入设备STAs,分别选出第二信号强度集合中最大值对应的目标窄波束,将目标窄波束作为多流转换器OMC与对应的接入设备STAs之间校准后的波束方向权值。
在可选的实现方式中,还可以包括:接收模块606,被配置成通过多流转换器OMC接收来自 多个接入设备STAs的上行数据信号,并通过多流转换器OMC基于资源单元分配信息对上行数据信号进行解调,得到来自每个接入设备STAs的信号数据;第二转发模块607,被配置成通过多流转换器OMC将来自每个接入设备STAs的信号数据组成上行数据帧,并按照校准波束转发上行数据帧至信号接入点AP。
在可选的实现方式中,还可以包括:检测模块608,被配置成通过信号接入点AP发送波束检测信号给多流转换器OMC;第三转发模块609,被配置成通过多流转换器OMC基于每个接入设备STAs对应的波束方向权值,将波束检测信号转发给多个接入设备STAs;第一重新校准模块610,被配置成当多个接入设备STAs中存在上报的信号强度小于警戒阈值的目标接入设备STAs时,重新对无线通信系统执行波束校准过程,并按照重新校准后波束信息传输信号波。
在可选的实现方式中,还可以包括:第二重新校准模块611,被配置成当连接于信号接入点AP的多个接入设备STAs发生变更时,执行多流转换器OMC与变更的接入设备STAs之间的波束校准过程,更新多流转换器OMC与变更的接入设备STAs之间的波束方向权值,并按照更新后的波束方向权值传输信号波。
上述无线通信装置600的详细描述,请参见上述实施例中相关方法步骤的描述。
本公开实施例还提供了一种非暂态电子设备1可读存储介质,可以包括:程序,被配置成当其在电子设备1上运行时,使得电子设备1可执行上述实施例中方法的全部或部分流程。其中,存储介质可为磁盘、光盘、只读存储记忆体(Read-Only Memory,ROM)、随机存储记忆体(Random Access Memory,RAM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,缩写:HDD)或固态硬盘(Solid-State Drive,SSD)等。存储介质还可以包括上述种类的存储器的组合。
虽然结合附图描述了本公开的实施例,但是本领域技术人员可以在不脱离本公开的精神和范围的情况下做出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。
工业实用性
本公开提供了一种无线通信方法、装置、系统、设备和存储介质,该方法包括:通过信号接入点基于校准波束发送下行数据信号,并通过信号接入点发送资源单元分配信息给多流转换器,其中,校准波束为信号接入点与多流转换器之间的校准后波束;通过多流转换器基于资源单元分配信息对下行数据信号进行解调,得到指向每个接入设备的信号数据;基于指向每个接入设备的信号数据和每个接入设备对应的波束方向权值,通过多流转换器发送指向多个接入设备的多流信号,其中,波束方向权值基于多流转换器与每个接入设备之间校准后的波束方向确定。本公开实现了接入点与接入设备之间的多流信号并发,扩大了无线通信的适用范围,提高了应用灵活性。
此外,可以理解的是,本公开的无线通信方法、装置、系统、设备和存储介质是可以重现的,并且可以用在多种工业应用中。例如,本公开的无线通信方法、装置、系统、设备和存储介质可以用于需要在室内环境中使用WiFi进行无线网络通信的场景。

Claims (20)

  1. 一种无线通信方法,其特征在于,应用于无线通信系统,所述无线通信系统包括:信号接入点、多流转换器和多个接入设备;所述方法包括:
    通过所述信号接入点基于校准波束发送下行数据信号,并通过所述信号接入点发送资源单元分配信息给所述多流转换器,其中,所述校准波束为所述信号接入点与所述多流转换器之间的校准后波束;
    通过所述多流转换器基于所述资源单元分配信息对所述下行数据信号进行解调,得到指向每个所述接入设备的信号数据;
    基于所述指向每个所述接入设备的信号数据和每个所述接入设备对应的波束方向权值,通过所述多流转换器发送指向所述多个接入设备的多流信号,其中,所述波束方向权值基于所述多流转换器与每个所述接入设备之间校准后的波束方向确定。
  2. 根据权利要求1所述的方法,其特征在于,在所述通过所述信号接入点基于校准波束发送下行数据信号之前,还包括:
    在检测到波束校准指令时,对所述信号接入点与所述多流转换器进行宽波束扫描,并基于宽波束扫描结果,对所述信号接入点与所述多流转换器进行窄波束扫描,得到所述信号接入点与所述多流转换器之间的所述校准波束。
  3. 根据权利要求1或2所述的方法,其特征在于,在所述通过所述信号接入点基于校准波束发送下行数据信号之前,还包括:
    在检测到波束校准指令时,通过所述信号接入点向所述多个接入设备发起多次不同的波束扫描,并基于所述多个接入设备上报的压缩波束反馈信息,确定所述多流转换器与每个所述接入设备之间校准后的波束方向权值。
  4. 根据权利要求3所述的方法,其特征在于,所述通过所述信号接入点向所述多个接入设备发起多次不同的波束扫描,并基于所述多个接入设备上报的压缩波束反馈信息,确定所述多流转换器与每个所述接入设备之间校准后的波束方向权值,包括:
    发送所述资源单元分配消息至所述多流转换器,并接收所述多流转换器返回的宽波束数目;
    指示所述多流转换器发送多个宽波束,并发送信号测量指令至所述多个接入设备;
    发送探测数据帧至所述多个接入设备,所述探测数据帧被配置成指示所述多个接入设备探测接收信号强度;
    发送触发帧至所述多个接入设备,所述触发帧被配置成指示所述多个接入设备上报探测到的信号强度;
    接收每个所述接入设备上报的第一压缩波束反馈信息,所述第一压缩波束反馈信息中携带有每个所述接入设备探测到的所述多个宽波束的第一信号强度集合;
    针对每个所述接入设备,分别选出所述第一信号强度集合中最大值对应的目标宽波束,形成最佳宽波束集合。
  5. 根据权利要求4所述的方法,其特征在于,所述通过所述信号接入点向所述多个接入设备发起多次不同的波束扫描,并基于所述多个接入设备上报的压缩波束反馈信息,确定所述多流转换器与每个所述接入设备之间校准后的波束方向权值,还包括:
    指示所述多流转换器将所述最佳宽波束集合中的所述目标宽波束分割成多个窄波束,指示所述多流转换器发送所述多个窄波束,并发送信号测量指令至所述多个接入设备;
    发送所述探测数据帧至所述多个接入设备,发送所述触发帧至所述多个接入设备;
    接收每个所述接入设备上报的第二压缩波束反馈信息,所述第二压缩波束反馈信息中携带有每个所述接入设备探测到的所述多个窄波束的第二信号强度集合;
    针对每个所述接入设备,分别选出所述第二信号强度集合中最大值对应的目标窄波束,将所述目标窄波束作为所述多流转换器与对应的所述接入设备之间校准后的波束方向权值。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,还包括:
    通过所述多流转换器接收来自所述多个接入设备的上行数据信号,并通过所述多流转换器基于所述资源单元分配信息对所述上行数据信号进行解调,得到来自每个所述接入设备的信号数据;
    通过所述多流转换器将所述来自每个所述接入设备的信号数据组成上行数据帧,并按照所述校准波束转发所述上行数据帧至所述信号接入点。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,还包括:
    通过所述信号接入点发送波束检测信号给所述多流转换器;
    通过所述多流转换器基于每个所述接入设备对应的波束方向权值,将所述波束检测信号转发给所述多个接入设备;
    在所述多个接入设备中存在上报的信号强度小于警戒阈值的目标接入设备时,重新对所述无线通信系统执行波束校准过程,并按照重新校准后波束信息传输信号波。
  8. 根据权利要求7所述的方法,其特征在于,所述通过所述信号接入点发送波束检测信号给所述多流转换器,还包括:
    通过信号接入点不定期地启动波束测量过程,检查当前使用波束状况。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,还包括:
    在连接于所述信号接入点的所述多个接入设备发生变更时,执行所述多流转换器与变更的接入设备之间的波束校准过程,更新所述多流转换器与变更的接入设备之间的波束方向权值,并按照更新后的波束方向权值传输信号波。
  10. 一种无线通信装置,其特征在于,应用于无线通信系统,所述无线通信系统包括:信 号接入点、多流转换器和多个接入设备;所述装置包括:
    发送模块,被配置成通过所述信号接入点基于校准波束发送下行数据信号,并通过所述信号接入点发送资源单元分配信息给所述多流转换器,其中,所述校准波束为所述信号接入点与所述多流转换器之间的校准后波束;
    解调模块,被配置成通过所述多流转换器基于所述资源单元分配信息对所述下行数据信号进行解调,得到指向每个所述接入设备的信号数据;
    第一转发模块,被配置成基于所述指向每个所述接入设备的信号数据和每个所述接入设备对应的波束方向权值,通过所述多流转换器发送指向所述多个接入设备的多流信号,其中,所述波束方向权值基于所述多流转换器与每个所述接入设备之间校准后的波束方向确定。
  11. 根据权利要求10所述的装置,其特征在于,还包括:
    第一校准模块,被配置成在所述通过所述信号接入点基于校准波束发送下行数据信号之前,在检测到波束校准指令时,对所述信号接入点与所述多流转换器进行宽波束扫描,并基于宽波束扫描结果,对所述信号接入点与所述多流转换器进行窄波束扫描,得到所述信号接入点与所述多流转换器之间的所述校准波束。
  12. 根据权利要求10至11中任一项所述的装置,其特征在于,还包括:
    第二校准模块,被配置成在所述通过所述信号接入点基于校准波束发送下行数据信号之前,在检测到波束校准指令时,通过所述信号接入点向所述多个接入设备发起多次不同的波束扫描,并基于所述多个接入设备上报的压缩波束反馈信息,确定所述多流转换器与每个所述接入设备之间校准后的波束方向权值。
  13. 根据权利要求10至12中任一项所述的装置,其特征在于,还包括:
    接收模块,被配置成通过所述多流转换器接收来自所述多个接入设备的上行数据信号,并通过所述多流转换器基于所述资源单元分配信息对所述上行数据信号进行解调,得到来自每个所述接入设备的信号数据;
    第二转发模块,被配置成通过所述多流转换器将所述来自每个所述接入设备的信号数据组成上行数据帧,并按照所述校准波束转发所述上行数据帧至所述信号接入点。
  14. 根据权利要求10至13中任一项所述的装置,其特征在于,还包括:
    检测模块,被配置成通过所述信号接入点发送波束检测信号给所述多流转换器;
    第三转发模块,被配置成通过所述多流转换器基于每个所述接入设备对应的波束方向权值,将所述波束检测信号转发给所述多个接入设备;
    第一重新校准模块,被配置成在所述多个接入设备中存在上报的信号强度小于警戒阈值的目标接入设备时,重新对所述无线通信系统执行波束校准过程,并按照重新校准后波束信息传输信号波。
  15. 根据权利要求10至14中任一项所述的装置,其特征在于,还包括:
    第二重新校准模块,被配置成在连接于所述信号接入点的所述多个接入设备发生变更时,执行所述多流转换器与变更的接入设备之间的波束校准过程,更新所述多流转换器与变更的接入设备之间的波束方向权值,并按照更新后的波束方向权值传输信号波。
  16. 一种无线通信系统,其特征在于,包括:
    信号接入点,被配置成接入网络信号;
    多流转换器,连接所述信号接入点,被配置成对来自所述信号接入点的下行数据信号进行解调和转发;
    接入设备,通过所述信号接入点的信号波接入网络;
    其中,所述多流转换器还被配置成基于解调结果和资源单元分配信息,发送指向多个接入设备的多流信号;
    所述信号接入点还被配置成根据接收到的信号测量结果,调整所述多流转换器与每个所述接入设备之间的波束方向权值。
  17. 一种电子设备,其特征在于,包括:
    存储器,被配置成存储计算机程序;
    处理器,被配置成执行所述计算机程序,以实现根据权利要求1至9中任一项所述的方法。
  18. 根据权利要求17所述的电子设备,其特征在于,所述电子设备为具备PLC功能的网关设备、手机、平板电脑、笔记本电脑、台式电脑或者多个计算机组成的大型计算系统设备。
  19. 一种非暂态电子设备可读存储介质,其特征在于,包括:程序,被配置成在其藉由电子设备运行时,使得所述电子设备执行权利要求1至9中任一项所述的方法。
  20. 根据权利要求19所述的非暂态电子设备可读存储介质,其特征在于,所述非暂态电子设备可读存储介质为磁盘、光盘、只读存储记忆体、随机存储记忆体、硬盘或固态硬盘以及上述种类的存储器的组合。
PCT/CN2022/074082 2021-12-31 2022-01-26 无线通信方法、装置、系统、设备和存储介质 WO2023123598A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111672142.9A CN114499614A (zh) 2021-12-31 2021-12-31 无线通信方法、装置、系统、设备和存储介质
CN202111672142.9 2021-12-31

Publications (1)

Publication Number Publication Date
WO2023123598A1 true WO2023123598A1 (zh) 2023-07-06

Family

ID=81497074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074082 WO2023123598A1 (zh) 2021-12-31 2022-01-26 无线通信方法、装置、系统、设备和存储介质

Country Status (2)

Country Link
CN (1) CN114499614A (zh)
WO (1) WO2023123598A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468946A (zh) * 2010-11-08 2012-05-23 中兴通讯股份有限公司 一种多用户传输方法和接入点
US20170093600A1 (en) * 2015-09-29 2017-03-30 Apple Inc. Uplink sounding in a wireless local area network
CN109756258A (zh) * 2017-11-07 2019-05-14 华为技术有限公司 波束训练方法及装置
CN110912594A (zh) * 2018-09-17 2020-03-24 华为技术有限公司 波束训练方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468946A (zh) * 2010-11-08 2012-05-23 中兴通讯股份有限公司 一种多用户传输方法和接入点
US20170093600A1 (en) * 2015-09-29 2017-03-30 Apple Inc. Uplink sounding in a wireless local area network
CN109756258A (zh) * 2017-11-07 2019-05-14 华为技术有限公司 波束训练方法及装置
CN110912594A (zh) * 2018-09-17 2020-03-24 华为技术有限公司 波束训练方法及装置

Also Published As

Publication number Publication date
CN114499614A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
US11139945B2 (en) Communication method, terminal, and network device for determining a beam for an uplink channel
TWI680680B (zh) 波束管理方法及其使用者設備
US20210239783A1 (en) System and Method for Determining Line of Sight (LOS)
Yao et al. TAB-MAC: Assisted beamforming MAC protocol for Terahertz communication networks
US20180288755A1 (en) System and Method for Beam Management in High Frequency Multi-Carrier Operations with Spatial Quasi Co-Locations
WO2019137172A1 (zh) 确定波束、信号质量测量方法及通信装置
WO2018137484A1 (zh) 一种基于波束组进行通信的方法及设备
WO2010101003A1 (ja) 通信装置及び通信方法、コンピューター・プログラム、並びに通信システム
US9942778B2 (en) Virtual base station apparatus and communication method
WO2020048417A1 (zh) 扇区扫描方法及相关装置
WO2017020172A1 (zh) 一种多用户场景下波束训练方法及装置
WO2019105302A1 (zh) 信号测量方法、相关装置及系统
JP2011514759A (ja) ミリ波wpanにおける干渉を回避しチャネル効率を高めるメカニズム
US11646770B2 (en) Method and apparatus for millimeter-wave MIMO mode selection
WO2018149346A1 (zh) 确定和用于确定doa的方法以及接入网设备和终端
WO2020238922A1 (zh) 通信方法及装置
WO2023123598A1 (zh) 无线通信方法、装置、系统、设备和存储介质
WO2022166662A1 (zh) 射频感知方法及相关装置
WO2022151494A1 (zh) 一种传输参数确定方法及装置
EP3837773B1 (en) Method and system for managing interference in multi trp systems
JP2021010183A (ja) 無線ネットワークにおける同じリンク方向のサブフレーム部分間のガード期間
WO2023088114A1 (zh) 波束恢复方法、波束失败检测方法以及相关装置
WO2021082888A1 (zh) 一种资源分配方法、装置、通信系统以及存储介质
WO2023179437A1 (zh) 自发自收感知方法及相关产品
WO2017084583A1 (en) System and method for multi-source channel estimation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22912905

Country of ref document: EP

Kind code of ref document: A1