WO2023123115A1 - 一种激光雷达调试方法、激光器、激光雷达及其应用 - Google Patents

一种激光雷达调试方法、激光器、激光雷达及其应用 Download PDF

Info

Publication number
WO2023123115A1
WO2023123115A1 PCT/CN2021/142665 CN2021142665W WO2023123115A1 WO 2023123115 A1 WO2023123115 A1 WO 2023123115A1 CN 2021142665 W CN2021142665 W CN 2021142665W WO 2023123115 A1 WO2023123115 A1 WO 2023123115A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
laser
qth
output end
amplifying
Prior art date
Application number
PCT/CN2021/142665
Other languages
English (en)
French (fr)
Inventor
胡小波
刘颖
Original Assignee
深圳市镭神智能系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市镭神智能系统有限公司 filed Critical 深圳市镭神智能系统有限公司
Priority to CN202311484956.9A priority Critical patent/CN117543325A/zh
Priority to CN202180004348.6A priority patent/CN114502978B/zh
Priority to PCT/CN2021/142665 priority patent/WO2023123115A1/zh
Publication of WO2023123115A1 publication Critical patent/WO2023123115A1/zh
Priority to US18/220,243 priority patent/US12025732B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4008Means for monitoring or calibrating of parts of a radar system of transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/282Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4818Constructional features, e.g. arrangements of optical elements using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10084Frequency control by seeding

Definitions

  • the invention relates to the technical field of laser devices, in particular to a laser radar debugging method, a laser, a laser radar and applications thereof.
  • Fiber lasers have outstanding advantages such as small size, high efficiency, good beam quality, and convenient thermal management. Therefore, they have developed extremely fast and have been widely used in industry and defense fields, with good development prospects.
  • laser radar produced by fiber laser is widely used in automatic driving, surveying and mapping, robot navigation, space modeling and other scenarios.
  • For laser radar before leaving the factory, it is necessary to perform optical path debugging to ensure the parameters such as azimuth angle and divergence angle of the emitted laser light. Since the light emitted by lidar is generally invisible light, invisible light cameras (such as short-infrared cameras) are usually used in the industry for debugging and angle adjustment. The price of invisible light cameras is very high, which is not conducive to reducing production costs for enterprises.
  • the object of the present invention is to provide a laser radar debugging method, a laser, a laser radar and applications thereof, so as to reduce production costs.
  • the present application provides a lidar debugging method for debugging the lidar, the lidar includes a laser and a collimator, and the laser has the characteristic of coaxially outputting visible light and invisible light, including the following steps:
  • a collimator and a target surface are provided, and a second distance is set according to the wavelength of the invisible light of the laser, and the second distance is the distance between the lens of the collimator and the target surface;
  • the first distance is the distance between the laser and the collimator.
  • the present application also provides a laser, which has the characteristic of coaxially outputting visible light and invisible light, and the laser includes a seed source outputting invisible light, a visible light source outputting visible light, a first wavelength division multiplexing module and N amplifying module, N is a positive integer;
  • the seed source outputs pulsed laser light to the amplification module
  • the amplifying module is used to amplify the power of the passed signal to obtain a power amplified signal
  • the first wavelength division multiplexing module is used for performing wavelength division multiplexing processing on visible light and invisible light, so as to ensure that the output end of the laser has the characteristic of coaxially outputting visible light and invisible light.
  • the present application also provides a laser radar, including a collimator and the above-mentioned laser, the laser has the characteristic of coaxially outputting visible light and invisible light, and the light emitted by the laser is projected onto the collimator.
  • the present application also provides a motor vehicle, including the above-mentioned laser radar.
  • the present application also provides a robot, including the above-mentioned laser radar.
  • the invention provides a laser radar debugging method, a laser, a laser radar and its application.
  • the output end of the laser has the characteristic of coaxially outputting visible light and invisible light, thereby
  • the method of observing visible light can be used to debug the invisible light in the lidar, which is convenient for debugging the lidar.
  • a relatively cheap ordinary camera can be used for debugging, which reduces the cost of debugging and is beneficial for enterprises to carry out production operations. and reduction of production costs.
  • Fig. 1 is a schematic diagram of a lidar debugging method provided by an embodiment of the present invention
  • Fig. 2 is the schematic diagram of laser described in the present invention.
  • Fig. 3 is a schematic diagram of the laser described in Fig. 2 in a first embodiment
  • Fig. 4 is a schematic diagram of the laser described in Fig. 2 in a second embodiment
  • Fig. 5 is a schematic diagram of the laser described in Fig. 2 in a third embodiment
  • Fig. 6 is a schematic diagram of the laser described in Fig. 2 in a fourth embodiment
  • Fig. 7 is a schematic diagram of the laser described in Fig. 2 in a fifth embodiment
  • Fig. 8 is a schematic diagram of a first amplification module in the laser described in Fig. 2;
  • Fig. 9 is a schematic diagram of another embodiment of the first amplifying module described in Fig. 8;
  • Fig. 10 is a schematic diagram of another embodiment of the first amplifying module described in Fig. 8;
  • Fig. 11 is a schematic diagram of an isolation filter module provided in the laser described in Fig. 2;
  • Fig. 12 is a schematic diagram of the isolation filter module described in Fig. 11;
  • Fig. 13 is a schematic diagram of any amplifying module in the laser described in Fig. 2 except the first amplifying module;
  • Fig. 14 is a schematic diagram of another embodiment of the amplifying module described in Fig. 13;
  • Fig. 15 is a schematic diagram of another embodiment of any amplifying module in the laser described in Fig. 2 except the first amplifying module;
  • Fig. 16 is a schematic diagram of the laser radar in the first embodiment
  • Fig. 17 is a schematic diagram of the laser radar in the second embodiment
  • FIG. 18 is a schematic diagram of the laser radar in the third embodiment.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • the first feature may be in direct contact with the first feature or the first and second feature may be in direct contact with the second feature through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • the present application provides a laser radar debugging method for debugging a laser radar 200
  • the laser radar 200 includes a laser 100 and a collimating mirror 201 .
  • the laser 100 has the characteristic of coaxially outputting visible light and invisible light.
  • the collimating mirror 201 is arranged on the front side of the output end of the laser 100 .
  • the distance between the laser 100 and the collimating mirror 201 is defined as a first distance.
  • the laser radar debugging method comprises the following steps:
  • Step 1 Provide a collimator 301 and a target surface 302 .
  • the collimator 301 is arranged on the side of the collimating mirror 201 away from the laser 100 .
  • the target surface 302 is disposed on a side of the collimator 301 away from the collimator 201 .
  • the distance between the collimator 301 and the target surface 302 is set, and the distance between the collimator 301 and the target surface 302 is defined as the second distance.
  • Step 2 According to the wavelength of the invisible light and the wavelength of the visible light in the laser 100, a test deviation value about the second distance is obtained.
  • test deviation value is obtained by completing the following sub-steps in the simulation system:
  • the laser radar 200, the collimator 301 and the target surface 302 are set according to the debugging position.
  • the first distance and the second distance are set.
  • the laser radar 200 is made to output visible light, and the light spots of the visible light on the target surface 302 are observed.
  • the deviation value in the simulation system reflects the change of the second distance caused by a single variable change (switching of visible light/invisible light) when the first distance remains unchanged.
  • a single variable change can also be realized, and the deviation value of the simulation system can be used in the actual system.
  • the actual system is not perfect, there must be a certain deviation, so it is necessary to adjust the first distance, that is, fine-tune the first distance, in order to complete the final debugging in the actual system.
  • Step 3 Adjust the second distance according to the test deviation value to obtain a corrected second distance.
  • Step 4 Make the laser 100 output visible light according to the corrected second distance, and adjust the first distance until the area of the visible light spot on the target surface 302 reaches a minimum value. That is, debugging of the lidar 200 is completed.
  • the lidar debugging method provided in the present application can also verify the debugged lidar 200 .
  • the specific verification steps are as follows:
  • the distance between the collimator 301 and the target surface 302 is the corrected second distance, and the corrected second distance is the distance used in the commissioning of the debugged laser radar 200 .
  • the light spot of visible light on the target surface 302 is judged as follows:
  • the standard lidar 200 may be a lidar calibrated by an invisible light camera or other means as a standard.
  • the method of observing visible light can be used to debug the invisible light in the laser radar 200, which is convenient for the laser radar 200.
  • a relatively cheap ordinary camera can be used for debugging, which reduces the cost of debugging, and is conducive to the production operation of enterprises and the reduction of production costs.
  • the present application also provides a laser 100 , which is applied to the laser radar 200 in the above laser radar debugging method.
  • the laser 100 has the characteristic of outputting visible light and invisible light coaxially.
  • the laser 100 includes a seed source 10 outputting invisible light, a visible light source 20 outputting visible light, a first wavelength division multiplexing module 30 and an amplification module 40 .
  • the seed source 10 is used to output pulsed laser light, which is sent to the amplification module 40 for amplification.
  • the first wavelength division multiplexing module 30 is used to perform wavelength division multiplexing on the visible light output from the visible light source 20 and the invisible light output from the seed source 10 to ensure that the output end of the laser 100 has the characteristic of coaxial output of visible light and invisible light.
  • the amplifying module 40 is used to amplify the power of the passing signal to obtain a power amplified signal.
  • the laser 100 performs wavelength division multiplexing processing on visible light and invisible light through the first wavelength division multiplexing module 30, so that the output end of the laser 100 has the characteristic of coaxially outputting visible light and invisible light, so that the visible light can be observed
  • the method is to debug the invisible light in the laser radar 200 using the laser 100, which is convenient for debugging the laser radar 200, and a relatively cheap ordinary camera can be used for debugging, which reduces the cost of debugging, and is beneficial for enterprises to carry out production operations and production cost reduction.
  • the laser 100 has the following two implementation manners.
  • the output terminal of the seed source 10 is connected to the first input terminal of the first wavelength division multiplexing module 30 .
  • the output end of the visible light source 20 is connected to the second input end of the first wavelength division multiplexing module 30 .
  • the output end of the first wavelength division multiplexing module 30 is connected to the input end of the amplification module 40 .
  • the output terminal of the amplification module 40 is used as the output terminal of the laser 100 .
  • the laser 100 outputs through an optical fiber.
  • the output terminal of the seed source 10 is connected to the input terminal of the amplification module 40 .
  • the output end of the amplification module 40 is connected to the first input end of the first wavelength division multiplexing module 30 .
  • the output end of the visible light source 20 is connected to the second input end of the first wavelength division multiplexing module 30 .
  • the output end of the first wavelength division multiplexing module 30 is used as the output end of the laser 100, and the laser 100 outputs through the optical fiber.
  • the N amplifying modules 40 are sequentially defined as the first amplifying module 41 to the Nth amplifying module 4N.
  • the laser 100 has several implementations as follows.
  • the output terminal of the seed source 10 is connected to the input terminal of the first amplification module 41 .
  • the N amplifying modules 40 are connected in sequence to implement step-by-step power amplification of signals.
  • the output end of the Nth amplification module 4N is connected to the first input end of the first wavelength division multiplexing module 30 .
  • the output end of the visible light source 20 is connected to the second input end of the first wavelength division multiplexing module 30 .
  • the output end of the first wavelength division multiplexing module 30 serves as the output end of the laser 100, and the laser 100 outputs through an optical fiber.
  • the output terminal of the seed source 10 is connected to the first input terminal of the first wavelength division multiplexing module 30 .
  • the output end of the visible light source 20 is connected to the second input end of the first wavelength division multiplexing module 30 .
  • the output end of the first wavelength division multiplexing module 30 is connected to the input end of the first amplification module 41 .
  • the N amplifying modules 40 are connected in sequence to implement step-by-step power amplification of signals.
  • the output end of the Nth amplification module 4N is used as the output end of the laser 100, and the laser 100 outputs through the optical fiber.
  • M is defined as a positive integer and the value range of M is restricted by the following relationship: M ⁇ [1, N ⁇ 1].
  • the Mth amplification module is 4M, and the (M+1)th amplification module is 4(M+1).
  • the output terminal of the seed source 10 is connected with the input terminal of the first amplification module 41 .
  • the output terminal of the Mth amplification module 4M is connected to the first input terminal of the first wavelength division multiplexing module 30 .
  • the output end of the visible light source 20 is connected to the second input end of the first wavelength division multiplexing module 30 .
  • the output terminal of the first wavelength division multiplexing module 30 is connected with the first
  • the (M+1) amplifier module 4 (M+1) is connected to the input terminal.
  • the output end of the Nth amplification module 4N is used as the output end of the laser 100, and the laser 100 outputs through the optical fiber.
  • the N amplifying modules 40 are connected in sequence to implement step-by-step power amplification of signals.
  • the first amplification module 40 in the N amplification modules 40 is defined as the first amplification module 41, and the first amplification module 41 includes a first pumping source 411 , a first coupling module 412 and a first gain fiber 413 .
  • the first pump source 411 is used to emit first pump light.
  • the first terminal of the first coupling module 412 is used as the input terminal of the first amplification module 41, the second terminal of the first coupling module 412 is connected with the output terminal of the first pumping source 411, and the third terminal of the first coupling module 412 is connected with the output terminal of the first pumping source 411.
  • the first end of the first gain fiber 413 is connected.
  • the first gain fiber 413 is used to amplify the power of the passing signal, and the second end of the first gain fiber 413 serves as the output end of the first amplification module 41 .
  • the first amplification module 41 further includes a reflector 414 .
  • the reflector 414 is connected with the second end of the first gain fiber 413, and is used to reflect the first power-amplified pulsed laser light output by the first gain fiber 413 back into the first gain fiber 413, so that the first gain fiber 413 has a pair of The signal after the first power amplification is subjected to the second power amplification.
  • the first amplification module 41 further includes a circulator 415 .
  • the first port of the circulator 415 is used as the input end of the first amplifying module 41
  • the second port of the circulator 415 is connected with the first end of the first coupling module 412
  • the third port of the circulator 415 is used as the input terminal of the first amplifying module 41. output.
  • the first amplifying module 41 further includes a first heat dissipation unit 416 , and the first heat dissipation unit 416 is used for cooling down the temperature of the first pump source 411 .
  • the laser 100 further includes an isolation filter module 50 .
  • the isolation filter module 50 is arranged between the two amplification modules 40 for preventing signal backflow and filtering noise.
  • the number of isolation filter modules 50 is P, and P is a positive integer, and the value range of P is restricted by the following relationship: P ⁇ [1,N ⁇ 1].
  • the isolation and filtering module 50 includes an isolator 51 and a filter 52 .
  • the input terminal of the isolator 51 is used as the input terminal of the isolation filter module 50 .
  • the output of the isolator 51 is connected to the input of the filter 52 .
  • the output terminal of the filter 52 serves as the output terminal of the isolation filter module 50 .
  • the isolation filter module 50 arranged between the M amplifying module 4M and the (M+1) amplifying module 4 (M+1) is as shown in Fig. 12
  • the connections shown are different.
  • the input end of the filter 52 serves as the input end of the isolation filter module 50 .
  • the output end of the Mth amplification module 4M is connected to the input end of the filter 52 .
  • the output terminal of the filter 52 is connected with the first input terminal of the first wavelength division multiplexing module 30 .
  • the output end of the visible light source 20 is connected to the second input end of the first wavelength division multiplexing module 30 .
  • the output end of the first wavelength division multiplexing module 30 is connected to the input end of the isolator 51 .
  • the output terminal of the isolator 51 is used as the output terminal of the isolation filter module 50 .
  • the output end of the isolator 51 is connected to the input end of the (M+1)th amplification module 4 (M+1).
  • isolation filter module 50 arranged between the other two amplification modules 40 it may be the same as that shown in FIG. 12 .
  • the Qth amplifying module 4Q as any amplifying module 40 in the N amplifying modules 40 except the first amplifying module 41 .
  • Q is a positive integer and the value range of Q is restricted by the following relationship: Q ⁇ [2,N].
  • the Qth amplification module 4Q includes a Qth pump source 4Q1 , a Qth gain fiber 4Q2 and a Qth beam combiner 4Q3 .
  • the Qth pumping source 4Q1 is used to emit the Qth pumping light.
  • the input end of the Qth gain fiber 4Q2 serves as the input end of the Qth amplification module 4Q.
  • the output end of the Qth gain fiber 4Q2 is connected to the first input end of the Qth beam combiner 4Q3.
  • the second input end of the Qth beam combiner 4Q3 is connected to the output end of the Qth pumping source 4Q1, and the output end of the Qth beam combiner 4Q3 serves as the output end of the Qth amplifier module 4Q.
  • the direction in which the Qth pump light is incident on the Qth beam combiner 4Q3 is opposite to that of the signal output by the Qth gain fiber 4Q2 .
  • the Qth amplifying module 4Q further includes a Qth cooling unit 4Q4 , and the Qth cooling unit 4Q4 is used to cool down the Qth pumping source 4Q1 .
  • the Qth amplification module 4Q is defined as any amplification module 40 among the N amplification modules 40 except the first amplification module 41 .
  • Q is a positive integer and the value range of Q is restricted by the following relationship: Q ⁇ [2,N].
  • the laser 100 also includes a pump source 60 and a beam splitter 70 .
  • the pump source 60 is connected to the beam splitter 70 in a one-to-one correspondence.
  • the number of pump sources 60 and beam splitters 70 is O, and O is a positive integer, and the value range of O is restricted by the following relationship: O ⁇ [1,N-2].
  • the pumping source 60 supplies energy to the R amplification modules 40 except the first amplification module 41 at the same time according to the beam splitting ratio, and the O pumping sources 60 complete the N-1 amplification modules 40 except the first amplification module 41. energy supply.
  • R is defined as a positive integer, and the value range of R is restricted by the following relationship: R ⁇ [2,N-1].
  • the Qth amplification module 4Q includes a Qth gain fiber 4Q2 and a Qth beam combiner 4Q3.
  • the input end of the Qth gain fiber 4Q2 serves as the input end of the Qth amplification module 4Q.
  • the output end of the Qth gain fiber 4Q2 is connected to the first input end of the Qth beam combiner 4Q3.
  • the second input end of the Qth beam combiner 4Q3 is connected to the output end of the beam splitter 70, and the output end of the Qth beam combiner 4Q3 serves as the output end of the Qth amplification module 4Q.
  • the signal output by the beam splitter 70 and the signal output by the Qth gain fiber 4Q2 enter the Qth beam combiner 4Q3 in the opposite direction.
  • the beam splitting ratio of the pump source 60 ranges from 3:17 to 7:13.
  • the present application also provides a laser radar 200, the laser radar 200 includes a collimator 201 and the laser 100 in any one of the above-mentioned embodiments, the laser 100 has the characteristic of coaxially outputting visible light and invisible light. The light emitted by the laser 100 is projected onto the collimator 201 .
  • the laser 100 used by the lidar 200 performs wavelength division multiplexing processing on visible light and invisible light through the first wavelength division multiplexing module 30, so that the output end of the laser 100 has the characteristic of coaxially outputting visible light and invisible light, so that it can use
  • the method of observing visible light and debugging the invisible light in the laser radar 200 is convenient for debugging the laser radar 200, and a relatively cheap ordinary camera can be used for debugging, which reduces the cost of debugging and is beneficial for enterprises to carry out production operations and Production cost reduction.
  • the present application also provides a motor vehicle, including the above-mentioned laser radar 200 .
  • the present application also provides a robot, including the above-mentioned laser radar 200 .
  • Embodiment 1 of the present application provides a laser radar 200 .
  • the laser radar 200 can coaxially output laser light of visible light and invisible light.
  • the lidar 200 includes a seed source 10 , a visible light source 20 , a first wavelength division multiplexing module 30 , a first amplification module 41 , an isolation filter module 50 , a second amplification module 42 and a collimator 201 .
  • connection mode of the laser 100 is the same as that in the fourth embodiment.
  • the seed source 10 , the visible light source 20 , the first wavelength division multiplexing module 30 , the first amplification module 41 , the isolation filter module 50 , the second amplification module 42 and the collimator 201 are connected by optical fibers.
  • the seed source 10 is any one of infrared laser sources with a wavelength of 1550nm, 1064nm, 2000nm or 1310nm.
  • the seed source 10 emits pulsed light with a peak power of about 10 mW through circuit modulation.
  • the visible light source 20 is a visible light ribbon pigtail with a wavelength of 650nm or 532nm.
  • the visible light source 20 emits light with an average power of 5-10 mW through circuit modulation.
  • the first wavelength division multiplexing module 30 adopts a wavelength division multiplexer.
  • the first amplifying module 41 amplifies the light passing therethrough in a forward pumping manner.
  • the first amplifying module 41 includes a first pumping source 411 , a first coupling module 412 , a first gain fiber 413 , a reflector 414 and a circulator 415 .
  • the first pump source 411 is a 976nm single-mode pump.
  • the first gain fiber 413 is an erbium-doped fiber.
  • the reflector 414 is a reflective mirror or a highly reflective grating.
  • the circulator 415 is a three-port circulator.
  • the light amplified twice by the first amplification module 41 is output from the third port of the circulator 415, and the output power is about 10 mW.
  • the isolation filter module 50 is used to protect and filter ASE (Amplified Spontaneous Emission) light brought by the first stage of amplification.
  • the isolation filter module 50 includes an isolator 51 and a filter 52 .
  • the isolator 51 can protect the seed source 10 from being damaged by returning light.
  • the second amplifying module 42 performs secondary amplification on the light passing therethrough in the way of reverse pumping.
  • the second amplifying module 42 includes a second pumping source 421 , a second gain fiber 422 and a second beam combiner 423 .
  • the second pump source 421 is a 940nm multimode pump.
  • the second gain fiber 422 is an erbium-ytterbium co-doped fiber.
  • the power of the light amplified by the second amplification module 42 can reach 1-2W.
  • the output end of the seed source 10 is connected to the first input end of the first wavelength division multiplexing module 30 .
  • the output end of the visible light source 20 is connected to the second input end of the first wavelength division multiplexing module 30 .
  • the output end of the first wavelength division multiplexing module 30 is connected to the first port of the circulator 415 .
  • the second port of the circulator 415 is connected to the first end of the first coupling module 412 .
  • the second end of the first coupling module 412 is connected to the output end of the first pumping source 411
  • the third end of the first coupling module 412 is connected to the first end of the first gain fiber 413 .
  • the second end of the first gain fiber 413 is connected to the reflector 414 .
  • the third port of the circulator 415 serves as the output port of the first amplification module 41 .
  • the third port of the circulator 415 is connected to the input end of the isolator 51 .
  • the output of the isolator 51 is connected to the input of the filter 52 .
  • the output terminal of the filter 52 serves as the output terminal of the isolation filter module 50 .
  • the output end of the filter 52 is connected to the input end of the second gain fiber 422 .
  • the output end of the second gain fiber 422 is connected to the first input end of the second beam combiner 423 .
  • the second input end of the second beam combiner 423 is connected to the output end of the second pumping source 421 .
  • the output end of the second beam combiner 423 serves as the output end of the second amplification module 42 and is connected to the collimator 201 .
  • FIG. 17 shows a laser radar 200 provided in the second embodiment. Compared with the above-mentioned specific embodiment 1, the difference lies in:
  • connection method of the laser 100 adopts the connection method in the third embodiment.
  • FIG. 18 shows a laser radar 200 provided in the third embodiment. Compared with the above-mentioned specific embodiment 1 and specific embodiment 2, the difference is that:
  • connection method of the laser 100 adopts the connection method in the fifth embodiment.
  • the installation positions of the isolator 51 and the filter 52 of the isolation filter module 50 are different from those in other embodiments.
  • the filter 52 is arranged between the first amplification module 41 and the first wavelength division multiplexing module 30 .
  • the isolator 51 is disposed between the first wavelength division multiplexing module 30 and the second amplification module 42 .
  • the isolator 51 is used to prevent back light, and the filter 52 will cause part of the stray light. Therefore, the isolator 51 is usually placed in front of the filter 52 so that the stray light generated by the filter 52 will not be strayed to the front of the isolator 51 .
  • the filter 52 in front of the isolator 51, the purity of the invisible light coupled with the visible light can be improved after a stage of amplification (higher signal-to-noise ratio) through the filter 52, thereby It can better couple with visible light and improve the quality of the coupled signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光雷达调试方法、激光器、激光雷达及其应用。激光器(100)包括:输出不可见光的种子源(10)、输出可见光的可见光光源(20)、第一波分复用模块(30)和放大模块(40);种子源(10)输出脉冲激光至放大模块(40);放大模块(40)用于对通过的信号进行功率放大,以得到功率放大的信号;第一波分复用模块(30)用于对可见光与不可见光进行波分复用处理,以确保激光器(100)的输出端具有同轴输出可见光与不可见光的特性,可采用对可见光进行观测的方法,对激光雷达中的不可见光进行调试,便于对激光雷达进行调试,可使用相对廉价的普通相机进行调试工作,降低调试和生产成本。

Description

一种激光雷达调试方法、激光器、激光雷达及其应用 技术领域
本发明涉及激光器械技术领域,特别地涉及一种激光雷达调试方法、激光器、激光雷达及其应用。
背景技术
光纤激光器具有体积小、效率高、光束质量好、热管理方便等突出的优点,因此发展速度极快,在工业和国防领域等方面给得到了广泛的应用,具有良好的发展前景。如使用光纤激光器制作的激光雷达,广泛的应用于自动驾驶,测绘,机器人导航,空间建模等场景中。对于激光雷达而言,在出厂使用之前,需要先行进行光路调试,以保证发射激光的方位角及发散角等参数。由于激光雷达发射的光线一般为不可见光,业内现通常使用不可见光相机(例如短红外相机)进行调试,调整角度等,而不可见光相机的价格十分高昂,不利于企业降低生产成本。
发明内容
为克服现有技术中的不足,本发明的目的在于提供一种激光雷达调试方法、激光器、激光雷达及其应用,以降低生产成本。
一方面,本申请提供一种激光雷达调试方法,用于对激光雷达进行调试,所述激光雷达包括激光器和准直镜,所述激光器具有同轴输出可见光与不可见光的特性,包括以下步骤:
提供平行光管及靶面,根据所述激光器的不可见光的波长,设置第二距离,所述第二距离为所述平行光管的镜头与所述靶面之间的距离;
根据所述激光器的不可见光的波长和可见光的波长,得到关于所述第二距离的测试偏差值;
根据所述测试偏差值,对所述第二距离进行调整,得到修正后的第二距离;
根据所述修正后的第二距离,使所述激光器输出可见光,调整第一距离,直至可见光在所述靶面上光斑的面积达到最小值,完成所述激光雷达的调试,所述第一距离为所述激光器与所述准直镜之间的距离。
本申请还提供一种激光器,所述激光器具有同轴输出可见光与不可见光的特性,所述激光器包括输出不可见光的种子源、输出可见光的可见光光源、第一波分复用模块和N个放大模块,N为正整数;
所述种子源输出脉冲激光至所述放大模块;
所述放大模块用于对通过的信号进行功率放大,以得到功率放大的信号;
所述第一波分复用模块用于对可见光与不可见光进行波分复用处理,以确保所述激光器的输出端具有同轴输出可见光与不可见光的特性。
本申请还提供一种激光雷达,包括准直器及上述的激光器,所述激光器具有同轴输出可见光与不可见光的特性且所述激光器发射的光线投射到所述准直器上。
本申请还提供一种机动车,包括上述的激光雷达。
本申请还提供一种机器人,包括上述的激光雷达。
相比现有技术,本申请的有益效果:
本发明提供的一种激光雷达调试方法、激光器、激光雷达及其应用,通过将可见光光源与不可见光进行波分复用处理,使激光器的输出端具有同轴输出可见光与不可见光的特性,从而可采用对可见光进行观测的方法,来对激光雷达中的不可见光进行调试,便于对激光雷达进行调试,可使用相对廉价的普通相机进行调试工作,降低了调试的成本,有利于企业进行生产操作及生产成本的降低。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例提供的激光雷达调试方法的示意图;
图2为本发明所述激光器的示意图;
图3为图2所述激光器在第一实施例中的示意图;
图4为图2所述激光器在第二实施例中的示意图;
图5为图2所述激光器在第三实施例中的示意图;
图6为图2所述激光器在第四实施例中的示意图;
图7为图2所述激光器在第五实施例中的示意图;
图8为图2所述激光器中第一放大模块的示意图;
图9为图8所述第一放大模块在另一实施例中的示意图;
图10为图8所述第一放大模块在又一实施例中的示意图;
图11为图2所述激光器中设置隔离滤波模块的示意图;
图12为图11所述隔离滤波模块的示意图;
图13为图2所述激光器中除第一放大模块外的任一放大模块的示意图;
图14为图13中所述放大模块在另一实施例中的示意图;
图15为图2所述激光器中除第一放大模块外的任一放大模块的另一实施例中的示意图;
图16为在具体实施例一中激光雷达的示意图;
图17为在具体实施例二中激光雷达的示意图;
图18为在具体实施例三中激光雷达的示意图。
图中:
100-激光器;10-种子源;20-可见光光源;30-第一波分复用模块;40-放大模块;41-第一放大模块;411-第一泵;412-第一耦合模块;413-第一增益光纤;414-反射器;415-环形器;416-第一散热单元;4M-第M放大模块;4(M+1)-第(M+1)放大模块;4Q-第Q放大模块;4Q1-第Q泵浦源;4Q2-第Q增益光纤;4Q3-第Q合束器;4Q4-第Q散热单元;42-第二放大模块;421-第二泵浦源;422-第二增益光纤;423-第二合束器;4N-第N放大模块;50-隔离滤波模块;51-隔离器;52-滤波器;60-泵浦源;70-分束器;200-激光雷达;201-准直镜;301-平行光管;302-靶面。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
如图1所示,本申请提供了一种激光雷达调试方法,用于对激光雷达200进行调试,激光雷达200包括激光器100和准直镜201。激光器100具有同轴输出可 见光与不可见光的特性。准直镜201设于激光器100的输出端前侧。定义激光器100与准直镜201之间的距离为第一距离。所述激光雷达调试方法包括以下步骤:
步骤一:提供一平行光管301及靶面302。
将所述平行光管301设于准直镜201远离激光器100的一侧。所述靶面302设于平行光管301远离准直镜201的一侧。
根据激光器100中不可见光的波长,设置平行光管301与靶面302之间的距离,并定义此时平行光管301与靶面302之间的距离为第二距离。
步骤二:根据激光器100中不可见光的波长和可见光的波长,得到关于第二距离的测试偏差值。
具体的,所述测试偏差值是在仿真系统中,通过完成以下子步骤得出的:
将激光雷达200、平行光管301及靶面302照调试位置进行设置。
根据激光雷达200中的不可见光的波长,设置第一距离和第二距离。
使激光雷达200输出可见光,观察可见光在靶面302中光斑的情况。
保持第一距离不变,移动所述靶面302,并继续观察可见光在所述靶面302中光斑的变化。
若可见光在所述靶面302上光斑的面积达到最小值,记录所述靶面302移动的变化量,此变化量即为所述第二距离的测试偏差值。
仿真系统中的偏差值,体现了在第一距离保持不变的情况下,单一变量变化(可见光/不可见光的切换)导致的第二距离的变化。而在现实系统中,由于可见光与不可见光同轴输出,并且使用同一套平行光管和靶面,因此,同样可以实现单一变量变化,可以将仿真系统的偏差值使用到实际系统中。但由于,实际系统并不完美,必然存在一定偏差,所以需要对第一距离进行调整,即对第一距离进行微调,才能完成在实际系统中的最终调试。
步骤三:根据测试偏差值,对第二距离进行调整,得到修正后的第二距离。
步骤四:根据修正后的第二距离,使激光器100输出可见光,调整第一距离,直至可见光在靶面302上光斑的面积达到最小值。即,完成了激光雷达200的调试。
本申请提供的激光雷达调试方法还可以对完成调试的激光雷达200进行验证。具体的验证步骤如下:
取出一个标准的激光雷达200(即光路无误的激光雷达200),使标准的激光雷达200输出可见光。
使平行光管301与靶面302之间的距离为修正后的第二距离,此修正后的第二距离为完成调试的激光雷达200在调试中使用的距离。
对可见光在靶面302上的光斑进行以下判断:
若可见光在靶面302上光斑的面积达到最小值,则证明原先完成调试的激光雷达200确实已完成了光路的调试;否则,调试有误。
其中,标准的激光雷达200可以为通过不可见光相机或其他手段进行校正后 的激光雷达,作为标准。
本申请提供的激光雷达调试方法,由于激光器100具有同轴输出可见光与不可见光的特性,从而可采用对可见光进行观测的方法,来对激光雷达200中的不可见光进行调试,便于对激光雷达200进行调试,可使用相对廉价的普通相机进行调试工作,降低了调试的成本,有利于企业进行生产操作及生产成本的降低。
如图2所示,本申请还提供了一种激光器100,应用于上述激光雷达调试方法的激光雷达200中。激光器100具有同轴输出可见光与不可见光的特性。激光器100包括输出不可见光的种子源10、输出可见光的可见光光源20、第一波分复用模块30和放大模块40。
种子源10用于输出脉冲激光,并输送至放大模块40中进行放大。
第一波分复用模块30用于对可见光光源20输出的可见光与种子源10输出的不可见光进行波分复用处理,以确保激光器100的输出端具有同轴输出可见光与不可见光的特性。
放大模块40有N个,N为正整数。放大模块40用于对通过的信号进行功率放大,以得到功率放大的信号。
所述激光器100通过第一波分复用模块30将可见光与不可见光进行波分复用处理,使激光器100的输出端具有同轴输出可见光与不可见光的特性,从而可采用对可见光进行观测的方法,对使用激光器100的激光雷达200中的不可见光进行调试,便于对激光雷达200进行调试,可使用相对廉价的普通相机进行调试工作,降低了调试的成本,有利于企业进行生产操作及生产成本的降低。
具体的,当N=1时,所述激光器100存在以下两种实施方式。
如图3所示,在第一个实施例中,种子源10的输出端与第一波分复用模块30的第一输入端连接。可见光光源20的输出端与第一波分复用模块30的第二输入端连接。第一波分复用模块30的输出端与放大模块40的输入端连接。放大模块40的输出端则作为激光器100的输出端。激光器100通过光纤进行输出。
如图4所示,在第二个实施例中,种子源10的输出端与放大模块40的输入端连接。放大模块40的输出端与第一波分复用模块30的第一输入端连接。可见光光源20的输出端与第一波分复用模块30的第二输入端连接。第一波分复用模块30的输出端则作为激光器100的输出端,激光器100通过光纤进行输出。
当N≠1时,N个放大模块40依次定义为第一放大模块41至第N放大模块4N。所述激光器100存在以下几种实施方式。
如图5所示,在第三个实施例中,种子源10的输出端与第一放大模块41的输入端连接。N个放大模块40依次连接,用于实现对信号的逐级功率放大。第N放大模块4N的输出端与第一波分复用模块30的第一输入端连接。可见光光源20的输出端与第一波分复用模块30的第二输入端连接。第一波分复用模块30的输出端作为激光器100的输出端,激光器100通过光纤进行输出。
如图6所示,在第四个实施例中,种子源10的输出端与第一波分复用模块30的第一输入端连接。可见光光源20的输出端与第一波分复用模块30的第二输入端连接。第一波分复用模块30的输出端与第一放大模块41的输入端连接。N个放大模块40依次连接,用于实现对信号的逐级功率放大。第N放大模块4N的输出端作为激光器100的输出端,激光器100通过光纤进行输出。
如图7所示,在第五个实施例中,定义M为正整数且M的取值范围受以下关系制约:M∈[1,N-1]。第M放大模块为4M,第(M+1)放大模块为4(M+1)。
种子源10的输出端与第一放大模块41的输入端连接。第M放大模块4M的输出端与第一波分复用模块30的第一输入端连接。可见光光源20的输出端与第一波分复用模块30的第二输入端连接。第一波分复用模块30的输出端与第
(M+1)放大模块4(M+1)的输入端连接。第N放大模块4N的输出端作为激光器100的输出端,激光器100通过光纤进行输出。N个放大模块40依次连接,用于实现对信号的逐级功率放大。
如图8所示,在第一到第五个实施例中,定义N个放大模块40中第一个放大模块40均为第一放大模块41,第一放大模块41包括第一泵浦源411、第一耦合模块412及第一增益光纤413。
第一泵浦源411用于发射第一泵浦光。
第一耦合模块412的第一端作为第一放大模块41的输入端,第一耦合模块412的第二端与第一泵浦源411的输出端连接,第一耦合模块412的第三端与第一增益光纤413的第一端连接。
第一增益光纤413用于对通过的信号进行功率放大,第一增益光纤413的第二端作为第一放大模块41的输出端。
如图9所示,在另一实施例中,第一放大模块41还包括反射器414。
反射器414与第一增益光纤413的第二端连接,用于将第一增益光纤413输出的第一次功率放大后的脉冲激光反射回第一增益光纤413中,使得第一增益光纤413对第一次功率放大后的信号进行第二次功率放大。
在另一实施例中,第一放大模块41还包括环形器415。
环形器415的第一端口作为第一放大模块41的输入端,环形器415的第二端口与第一耦合模块412的第一端连接,环形器415的第三端口作为第一放大模块41的输出端。
如图10所示,在又一实施例中,第一放大模块41还包括第一散热单元416,第一散热单元416用于对第一泵浦源411进行降温处理。
如图11所示,若N≠1,激光器100还包括隔离滤波模块50。隔离滤波模块50设置在两个放大模块40之间,用于防止信号回流以及过滤噪声。
隔离滤波模块50的数量为P个,且P为正整数,P的取值范围受以下关系制约:P∈[1,N-1]。
如图12所示,在一些实施例中,隔离滤波模块50包括隔离器51和滤波器52。
在第一到第四个实施例中,隔离器51的输入端作为隔离滤波模块50的输入端。隔离器51的输出端与滤波器52的输入端连接。滤波器52的输出端作为隔离滤波模块50的输出端。
请结合图7及图18所示,在第五个实施例中,设置于第M放大模块4M与第(M+1)放大模块4(M+1)之间的隔离滤波模块50与图12所示连接关系有所不同。
具体的,滤波器52的输入端作为隔离滤波模块50的输入端。所述第M放大模块4M的输出端与所述滤波器52的输入端连接。滤波器52的输出端与第一波分复用模块30的第一输入端连接。可见光光源20的输出端与所述第一波分复用模块30的第二输入端连接。第一波分复用模块30的输出端与隔离器51的输入端连接。隔离器51的输出端作为隔离滤波模块50的输出端。所述隔离器51的输出端与第(M+1)放大模块4(M+1)的输入端连接。
至于在其他两个放大模块40之间设置的隔离滤波模块50,则可以与图12所示相同。
如图13所示,在一些实施例中,若N≠1,定义第Q放大模块4Q为N个放大模块40中除第一放大模块41外的任一放大模块40。Q为正整数且Q的取值范围受以下关系制约:Q∈[2,N]。
第Q放大模块4Q包括第Q泵浦源4Q1、第Q增益光纤4Q2及第Q合束器4Q3。
第Q泵浦源4Q1用于发射第Q泵浦光。
第Q增益光纤4Q2的输入端作为第Q放大模块4Q的输入端。第Q增益光纤4Q2的输出端与第Q合束器4Q3的第一输入端连接。
第Q合束器4Q3的第二输入端与第Q泵浦源4Q1的输出端连接,第Q合束器4Q3的输出端作为第Q放大模块4Q的输出端。
其中,第Q泵浦光与第Q增益光纤4Q2输出的信号入射至第Q合束器4Q3的方向相反。
如图14所示,在一些实施例中,第Q放大模块4Q还包括第Q散热单元4Q4,第Q散热单元4Q4用于对第Q泵浦源4Q1进行降温处理。
如图15所示,在另一些实施例中,若N>2,定义第Q放大模块4Q为N个放大模块40中除第一放大模块41外的任一放大模块40。Q为正整数且Q的取值范围受以下关系制约:Q∈[2,N]。
所述激光器100还包括泵浦源60和分束器70。泵浦源60与分束器70一一对应连接。
泵浦源60和分束器70的数量为O个,且O为正整数,O的取值范围受以下关系制约:O∈[1,N-2]。
泵浦源60按照分束比同时对除第一放大模块41外的R个放大模块40进行供能,O个泵浦源60完成对除第一放大模块41外的N-1个放大模块40的供能。其中定义R为正整数,且R的取值范围受以下关系制约:R∈[2,N-1]。
第Q放大模块4Q包括第Q增益光纤4Q2及第Q合束器4Q3。
第Q增益光纤4Q2的输入端作为第Q放大模块4Q的输入端。第Q增益光纤4Q2的 输出端连接与第Q合束器4Q3的第一输入端连接。
第Q合束器4Q3的第二输入端与分束器70的输出端连接,第Q合束器4Q3的输出端作为第Q放大模块4Q的输出端。
其中,分束器70输出的信号与第Q增益光纤4Q2输出的信号入射至第Q合束器4Q3的方向相反。
在一些实施例中,若N=3,泵浦源60的分束比的范围是3:17~7:13。
本申请还提供了一种激光雷达200,所述激光雷达200包括准直器201及上述实施例中任意一个的激光器100,激光器100具有同轴输出可见光与不可见光的特性。激光器100发射的光线投射到准直器201上。
所述激光雷达200采用的激光器100通过第一波分复用模块30将可见光与不可见光进行波分复用处理,使激光器100的输出端具有同轴输出可见光与不可见光的特性,从而可采用对可见光进行观测的方法,对激光雷达200中的不可见光进行调试,便于对激光雷达200进行调试,可使用相对廉价的普通相机进行调试工作,降低了调试的成本,有利于企业进行生产操作及生产成本的降低。
本申请还提供了一种机动车,包括上述的激光雷达200。
本申请还提供了一种机器人,包括上述的激光雷达200。
具体的,可参阅以下具体实施例。
具体实施例一
请参阅图16,本申请具体实施例一提供一种激光雷达200。激光雷达200能够同轴输出可见光与不可见光的激光。
所述激光雷达200包括种子源10、可见光光源20、第一波分复用模块30、第一放大模块41、隔离滤波模块50、第二放大模块42及准直器201。
本具体实施例中,激光器100的连接方式与第四个实施例中相同。
所述种子源10、可见光光源20、第一波分复用模块30、第一放大模块41、隔离滤波模块50、第二放大模块42及准直器201之间通过光纤连接。
所述种子源10为1550nm、1064nm、2000nm或1310nm波长的红外激光源中的任意一种。种子源10通过电路调制发射峰值功率约为10mW的脉冲光。
所述可见光光源20为650nm或532nm波长的可见光带尾纤。可见光光源20通过电路调制发射平均功率在5~10mW的光。
所述第一波分复用模块30采用波分复用器。
第一放大模块41通过正向泵浦的方式对经过其中的光进行一级放大。所述第一放大模块41包括第一泵浦源411、第一耦合模块412、第一增益光纤413、反射器414及环形器415。
所述第一泵浦源411为976nm的单模泵。
所述第一增益光纤413为掺铒光纤。
所述反射器414为反射镜或高反光栅。
所述环形器415为三端口环形器。
经过第一放大模块41两次放大的光,从环形器415的第三端口输出,输出功率约为10mW级。
隔离滤波模块50用于保护和滤除一级放大带来的ASE(放大自发辐射)光。隔离滤波模块50包括隔离器51和滤波器52。隔离器51可保护种子源10不受回光的损伤。
所述第二放大模块42通过反向泵浦的方式对经过其中的光进行二级放大。第二放大模块42包括第二泵浦源421、第二增益光纤422及第二合束器423。
所述第二泵浦源421为940nm多模泵。
所述第二增益光纤422为铒镱共掺光纤。
经过第二放大模块42放大的光,功率可达1-2W。
具体的,种子源10的输出端与第一波分复用模块30的第一输入端连接。可见光光源20的输出端与第一波分复用模块30的第二输入端连接。第一波分复用模块30的输出端与环形器415的第一端口连接。
环形器415的第二端口与第一耦合模块412的第一端连接。第一耦合模块412的第二端与第一泵浦源411的输出端连接,第一耦合模块412的第三端与第一增益光纤413的第一端连接。第一增益光纤413的第二端与反射器414连接。环形器415的第三端口作为第一放大模块41的输出端。
环形器415的第三端口与隔离器51的输入端连接。隔离器51的输出端与滤波器52的输入端连接。滤波器52的输出端作为隔离滤波模块50的输出端。
滤波器52的输出端与第二增益光纤422的输入端连接。第二增益光纤422的输出端与第二合束器423的第一输入端连接。第二合束器423的第二输入端与第二泵浦源421的输出端连接。第二合束器423的输出端作为第二放大模块42的输出端,与准直器201连接。
具体实施例二
请参阅图17,本具体实施例二提供的一种激光雷达200。相比于上述具体实施例一,区别之处在于:
本具体实施例中,激光器100的连接方式采用第三个实施例中的连接方式。
具体实施例三
请参阅图18,本具体实施例三提供的一种激光雷达200。相比于上述具体实施例一及体实施例二,区别之处在于:
本具体实施例中,激光器100的连接方式采用第五个实施例中的连接方式。
且,在本实施例中,隔离滤波模块50的隔离器51和滤波器52设置位置与其他实施例中不同。
具体的,本具体实施例中,滤波器52设置于第一放大模块41与第一波分复用模块30之间。隔离器51设置于第一波分复用模块30与第二放大模块42之间。
隔离器51用于防止回光,滤波器52会造成一部分杂光,因此,通常将隔离器51放置于滤波器52前,使得滤波器52产生的杂光不会串到隔离器51前端。
单本具体实施例中,通过将滤波器52放置于隔离器51前,使得与可见光进行耦合的不可见光,在一级放大后经过滤波器52的纯度得到提高(信噪比更高),从而能够更好的与可见光进行耦合,提高耦合后信号的质量。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (23)

  1. 一种激光雷达调试方法,其特征在于,用于对激光雷达进行调试,所述激光雷达包括激光器和准直镜,所述激光器具有同轴输出可见光与不可见光的特性,包括以下步骤:
    提供平行光管及靶面,根据所述激光器的不可见光的波长,设置第二距离,所述第二距离为所述平行光管的镜头与所述靶面之间的距离;
    根据所述激光器的不可见光的波长和可见光的波长,得到关于所述第二距离的测试偏差值;
    根据所述测试偏差值,对所述第二距离进行调整,得到修正后的第二距离;
    根据所述修正后的第二距离,使所述激光器输出可见光,调整第一距离,直至可见光在所述靶面上光斑的面积达到最小值,完成所述激光雷达的调试,所述第一距离为所述激光器与所述准直镜之间的距离。
  2. 根据权利要求1所述的激光雷达调试方法,其特征在于,所述激光雷达调试方法还可以对完成调试的激光雷达进行验证,包括以下步骤:
    取出一个标准的激光雷达,使所述标准的激光雷达输出可见光;
    使所述平行光管与所述靶面之间的距离为所述修正后的第二距离;
    对可见光在所述靶面上的光斑进行以下判断:
    若可见光在所述靶面上光斑的面积达到最小值,则证明原先的激光雷达已完成调试。
  3. 根据权利要求1或2所述的激光雷达调试方法,其特征在于,“根据所述激光器的不可见光的波长和可见光的波长,得到关于所述第二距离的测试偏差值”包括以下子步骤:
    在仿真系统,根据所述激光雷达的不可见光的波长,设置第一距离和第二距离;
    使所述激光雷达输出可见光,观察可见光在所述靶面中光斑的情况;
    保持第一距离不变,移动所述靶面,并继续观察可见光在所述靶面中光斑的变化;
    若可见光在所述靶面上光斑的面积达到最小值,记录所述靶面移动的变化量,上述变化量定义为所述第二距离的测试偏差值。
  4. 一种激光器,其特征在于,所述激光器具有同轴输出可见光与不可见光的特性,所述激光器包括输出不可见光的种子源、输出可见光的可见光光源、第一波分复用模块和N个放大模块,N为正整数;
    所述种子源输出脉冲激光至所述放大模块;
    所述放大模块用于对通过的信号进行功率放大,以得到功率放大的信号;
    所述第一波分复用模块用于对可见光与不可见光进行波分复用处理,以确保所述激光器的输出端具有同轴输出可见光与不可见光的特性。
  5. 根据权利要求4所述的激光器,其特征在于,若N=1,定义所述放大模块为第一放大模块;
    所述种子源的输出端与所述第一波分复用模块的第一输入端连接;
    所述可见光光源的输出端与所述第一波分复用模块的第二输入端连接;
    所述第一波分复用模块的输出端与所述放大模块的输入端连接;
    所述放大模块的输出端作为所述激光器的输出端,所述激光器通过光纤进行输出。
  6. 根据权利要求4所述的激光器,其特征在于,若N=1,定义所述放大模块为第一放大模块;
    所述种子源的输出端与所述放大模块的输入端连接;
    所述放大模块的输出端与所述第一波分复用模块的第一输入端连接;
    所述可见光光源的输出端与所述第一波分复用模块的第二输入端连接;
    所述第一波分复用模块的输出端作为所述激光器的输出端,所述激光器通过光纤进行输出。
  7. 根据权利要求4所述的激光器,其特征在于,若N≠1,N个所述放大模块依次定义为第一放大模块至第N放大模块;
    所述种子源的输出端与所述第一放大模块的输入端连接;
    N个所述放大模块依次连接,用于实现对信号的逐级功率放大;
    所述第N放大模块的输出端与所述第一波分复用模块的第一输入端连接;
    所述可见光光源的输出端与所述第一波分复用模块的第二输入端连接;
    所述第一波分复用模块的输出端作为所述激光器的输出端,所述激光器通过光纤进行输出。
  8. 根据权利要求4所述的激光器,其特征在于,若N≠1,N个所述放大模块依次定义为第一放大模块至第N放大模块;
    所述种子源的输出端与所述第一波分复用模块的第一输入端连接;
    所述可见光光源的输出端与所述第一波分复用模块的第二输入端连接;
    所述第一波分复用模块的输出端与所述第一放大模块的输入端连接;
    N个所述放大模块依次连接,用于实现对信号的逐级功率放大;
    所述第N放大模块的输出端作为所述激光器的输出端,所述激光器通过光纤进行输出。
  9. 根据权利要求4所述的激光器,其特征在于,若N≠1,定义M为正整数且M的取值范围受以下关系制约:M∈[1,N-1];
    N个所述放大模块依次定义为第一放大模块至第N放大模块;
    所述种子源的输出端与所述第一放大模块的输入端连接;
    N个所述放大模块依次连接,用于实现对信号的逐级功率放大;
    第M放大模块的输出端与所述第一波分复用模块的第一输入端连接;
    所述可见光光源的输出端与所述第一波分复用模块的第二输入端连接;
    所述第一波分复用模块的输出端与第(M+1)放大模块的输入端连接;
    所述第N放大模块的输出端作为所述激光器的输出端,所述激光器通过光纤进行输出。
  10. 根据权利要求7或8所述的激光器,其特征在于,若N≠1,所述激光器还包括P个隔离滤波模块,所述隔离滤波模块设置在两个所述放大模块之间,用于防止信号回流以及过滤噪声;P为正整数且P的取值范围受以下关系制约:P∈[1,N-1]。
  11. 根据权利要求10所述的激光器,其特征在于,所述隔离滤波模块包括隔离器和滤波器,
    所述隔离器的输入端作为所述隔离滤波模块的输入端;
    所述隔离器的输出端与所述滤波器的输入端连接;
    所述滤波器的输出端作为所述隔离滤波模块的输出端。
  12. 根据权利要求9所述的激光器,其特征在于,若N≠1,所述激光器还包括隔离器和滤波器,
    所述第M放大模块的输出端与所述滤波器的输入端连接;
    所述滤波器的输出端与所述第一波分复用模块的第一输入端连接;
    所述第一波分复用模块的输出端与所述隔离器的输入端连接;
    所述隔离器的输出端与第(M+1)放大模块的输入端连接。
  13. 根据权利要求7至12中任一权利要求所述的激光器,其特征在于,若N≠1,定义第Q放大模块为所述N个放大模块中除第一放大模块外的任一放大模块,所述第Q放大模块包括:
    第Q泵浦源,用于发射第Q泵浦光;
    第Q增益光纤,所述第Q增益光纤的输入端作为所述第Q放大模块的输入端;
    第Q合束器,所述第Q合束器的第一输入端与所述第Q增益光纤的输出端连接,所述第Q合束器的第二输入端与所述第Q泵浦源的输出端连接,所述第Q合束器的输出端作为所述第Q放大模块的输出端;
    其中,所述第Q泵浦光与所述第Q增益光纤输出的信号入射至所述第Q合束器的方向相反;
    Q为正整数且Q的取值范围受以下关系制约:Q∈[2,N]。
  14. 根据权利要求13所述的激光器,其特征在于,所述第Q放大模块还包括第Q散热单元,所述第Q散热单元用于对所述第Q泵浦源进行降温处理。
  15. 根据权利要求7至12中任一权利要求所述的激光器,其特征在于,若N>2,定义O为正整数且O的取值范围受以下关系制约:O∈[1,N-2];定义R为正整数且R的取值范围受以下关系制约:R∈[2,N-1];定义Q为正整数且Q的取值范围受以下关系制约:Q∈[2,N];
    所述激光器还包括O个泵浦源和O个分束器,所述泵浦源与所述分束器一一对应连接,所述泵浦源按照分束比同时对除第一放大模块外的R个放大模块进行供能,O个所述泵浦源完成对除第一放大模块外的N-1个放大模块的供能;
    定义第Q放大模块为所述N个放大模块中除第一放大模块外的任一放大模块,所述第Q放大模块包括:
    第Q增益光纤,所述第Q增益光纤的输入端作为所述第Q放大模块的输入端;
    第Q合束器,所述第Q合束器的第一输入端与所述第Q增益光纤的输出端连接,所述第Q合束器的第二输入端与所述分束器的输出端连接,所述第Q合束器的输出端作为所述 第Q放大模块的输出端;
    其中,所述分束器输出的信号与所述第Q增益光纤输出的信号入射至所述第Q合束器的方向相反。
  16. 根据权利要求15所述的激光器,其特征在于,若N=3,所述泵浦源的分束比的范围是3:17~7:13。
  17. 根据权利要求5至16中任一权利要求所述的激光器,其特征在于,所述第一放大模块包括:
    第一泵浦源,用于发射第一泵浦光;
    第一耦合模块,所述第一耦合模块的第一端作为所述第一放大模块的输入端,所述第一耦合模块的第二端与所述第一泵浦源的输出端连接;
    第一增益光纤,用于对通过的信号进行功率放大,所述第一增益光纤的第一端与所述第一耦合模块的第三端连接。
  18. 根据权利要求17所述的激光器,其特征在于,所述第一放大模块还包括反射器,
    所述反射器与所述第一增益光纤的第二端连接,用于将所述第一增益光纤输出的第一次功率放大后的脉冲激光反射回所述第一增益光纤,使得所述第一增益光纤对第一次功率放大后的信号进行第二次功率放大。
  19. 根据权利要求18所述的激光器,其特征在于,所述第一放大模块还包括环形器,
    所述环形器的第一端口作为所述第一放大模块的输入端,所述环形器的第二端口与所述第一耦合模块的第一端连接,所述环形器的第三端口作为所述第一放大模块的输出端。
  20. 根据权利要求17至19中任一权利要求所述的激光器,其特征在于,所述第一放大模块还包括第一散热单元,所述第一散热单元用于对所述第一泵浦源进行降温处理。
  21. 一种激光雷达,其特征在于,包括准直器及如权利要求4-20任一项所述的激光器,所述激光器具有同轴输出可见光与不可见光的特性且所述激光器发射的光线投射到所述准直器上。
  22. 一种机动车,其特征在于,包括如权利要求21所述的激光雷达。
  23. 一种机器人,其特征在于,包括如权利要求21所述的激光雷达。
PCT/CN2021/142665 2021-12-29 2021-12-29 一种激光雷达调试方法、激光器、激光雷达及其应用 WO2023123115A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202311484956.9A CN117543325A (zh) 2021-12-29 2021-12-29 一种激光器、激光雷达、机动车及其机器人
CN202180004348.6A CN114502978B (zh) 2021-12-29 2021-12-29 一种激光雷达调试方法、激光器、激光雷达及其应用
PCT/CN2021/142665 WO2023123115A1 (zh) 2021-12-29 2021-12-29 一种激光雷达调试方法、激光器、激光雷达及其应用
US18/220,243 US12025732B2 (en) 2023-07-10 Method for adjusting laser radar, laser device and laser radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/142665 WO2023123115A1 (zh) 2021-12-29 2021-12-29 一种激光雷达调试方法、激光器、激光雷达及其应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/220,243 Continuation US12025732B2 (en) 2023-07-10 Method for adjusting laser radar, laser device and laser radar

Publications (1)

Publication Number Publication Date
WO2023123115A1 true WO2023123115A1 (zh) 2023-07-06

Family

ID=81510062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142665 WO2023123115A1 (zh) 2021-12-29 2021-12-29 一种激光雷达调试方法、激光器、激光雷达及其应用

Country Status (2)

Country Link
CN (2) CN114502978B (zh)
WO (1) WO2023123115A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114502978B (zh) * 2021-12-29 2024-01-02 深圳市镭神智能系统有限公司 一种激光雷达调试方法、激光器、激光雷达及其应用
CN116626696A (zh) * 2023-07-20 2023-08-22 北京摩尔芯光半导体技术有限公司 一种调频连续波激光测距装置
CN117492027B (zh) * 2024-01-03 2024-03-15 成都量芯集成科技有限公司 一种基于激光扫描识别装置及其方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083557A (ja) * 1999-09-10 2001-03-30 Nikon Corp レーザ装置
US20140268098A1 (en) * 2013-03-14 2014-09-18 Pouch Holdings LLC Lidar scanner
CN106602392A (zh) * 2016-12-20 2017-04-26 北京工业大学 一种用于激光雷达的低重频纳秒级全光纤激光器
CN108462027A (zh) * 2018-04-11 2018-08-28 深圳市镭神智能系统有限公司 一种光纤激光装置
CN110233413A (zh) * 2019-07-04 2019-09-13 深圳市镭神智能系统有限公司 一种多波长脉冲光纤激光器及激光雷达系统
CN111442910A (zh) * 2020-04-23 2020-07-24 中国科学院西安光学精密机械研究所 高精度多光轴一致性测量系统及方法
CN112365545A (zh) * 2020-10-15 2021-02-12 中国科学院宁波材料技术与工程研究所 基于大平面复合靶标的激光雷达与可见光相机的标定方法
CN114502978A (zh) * 2021-12-29 2022-05-13 深圳市镭神智能系统有限公司 一种激光雷达调试方法、激光器、激光雷达及其应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103033944A (zh) * 2012-12-04 2013-04-10 广东汉唐量子光电科技有限公司 脉冲激光器偏振合束装置
CN204045920U (zh) * 2014-07-30 2014-12-24 深圳市杰普特电子技术有限公司 一种主控振荡器功率放大的激光输出系统
CN105278115B (zh) * 2015-08-05 2020-04-07 中国科学院光电研究院 激光器的光路调试装置及系统
CN109374261B (zh) * 2018-11-22 2020-09-11 中国航空工业集团公司洛阳电光设备研究所 一种基于靶标切换的多光轴一致性检测设备及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083557A (ja) * 1999-09-10 2001-03-30 Nikon Corp レーザ装置
US20140268098A1 (en) * 2013-03-14 2014-09-18 Pouch Holdings LLC Lidar scanner
CN106602392A (zh) * 2016-12-20 2017-04-26 北京工业大学 一种用于激光雷达的低重频纳秒级全光纤激光器
CN108462027A (zh) * 2018-04-11 2018-08-28 深圳市镭神智能系统有限公司 一种光纤激光装置
CN110233413A (zh) * 2019-07-04 2019-09-13 深圳市镭神智能系统有限公司 一种多波长脉冲光纤激光器及激光雷达系统
CN111442910A (zh) * 2020-04-23 2020-07-24 中国科学院西安光学精密机械研究所 高精度多光轴一致性测量系统及方法
CN112365545A (zh) * 2020-10-15 2021-02-12 中国科学院宁波材料技术与工程研究所 基于大平面复合靶标的激光雷达与可见光相机的标定方法
CN114502978A (zh) * 2021-12-29 2022-05-13 深圳市镭神智能系统有限公司 一种激光雷达调试方法、激光器、激光雷达及其应用

Also Published As

Publication number Publication date
CN117543325A (zh) 2024-02-09
CN114502978A (zh) 2022-05-13
CN114502978B (zh) 2024-01-02
US20230350016A1 (en) 2023-11-02

Similar Documents

Publication Publication Date Title
WO2023123115A1 (zh) 一种激光雷达调试方法、激光器、激光雷达及其应用
CN105312783B (zh) 激光处理装置
CN105388571A (zh) 具有多个信号通道的光发射器模块
CN112421353A (zh) 抑制增益窄化并获得超短脉冲放大输出的装置及调节方法
CN111129922B (zh) 大能量百ns脉冲宽度1.0μm单频激光放大系统
CN102820607B (zh) 一种信号及泵浦激光混合集成器件
CN110233413A (zh) 一种多波长脉冲光纤激光器及激光雷达系统
CN103368046A (zh) 线偏振激光输出高功率光纤放大器及输出控制方法
CN111478175A (zh) 一种激光能量放大器
US11217958B2 (en) Semiconductor laser diode light source package
CN108448372B (zh) 集成化光纤器件及其光纤放大器
US12025732B2 (en) Method for adjusting laser radar, laser device and laser radar
CN116667139A (zh) 无温控分束放大的脉冲激光器
CN103368047B (zh) 高功率线偏振激光输出光纤放大器及输出控制方法
CN203825232U (zh) 一种波分复用法拉第旋转镜复合器件
KR20240104216A (ko) 레이저 레이더 디버깅 방법, 레이저, 레이저 레이더 및 그의 적용
CN115693358A (zh) 一种种子光空间耦合的波长可调谐单频光纤放大器
CN205122994U (zh) 一种双端光纤耦合输出的半导体激光器及激光系统
CN210572751U (zh) 一种多线激光雷达系统
CN116526261A (zh) 小型化的主振荡器功率放大器结构二极管泵浦固体激光器
CN114361929A (zh) 一种提高多通激光放大器稳定性的指向性监测系统及方法
CN102882117A (zh) 一种全固态皮秒激光多通放大器
JP2018063354A (ja) 半導体光増幅器モジュールの製造方法
CN212323399U (zh) 空间泵浦耦合及输出的结构以及飞秒脉冲激光器
CN218040192U (zh) 一种激光雷达用光纤激光器、激光雷达和车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969483

Country of ref document: EP

Kind code of ref document: A1