WO2023123036A1 - 密封胶、电芯、电池及用电设备 - Google Patents

密封胶、电芯、电池及用电设备 Download PDF

Info

Publication number
WO2023123036A1
WO2023123036A1 PCT/CN2021/142430 CN2021142430W WO2023123036A1 WO 2023123036 A1 WO2023123036 A1 WO 2023123036A1 CN 2021142430 W CN2021142430 W CN 2021142430W WO 2023123036 A1 WO2023123036 A1 WO 2023123036A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive layer
sealant
tab
melting point
battery
Prior art date
Application number
PCT/CN2021/142430
Other languages
English (en)
French (fr)
Inventor
夏恒涛
吴坚
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to PCT/CN2021/142430 priority Critical patent/WO2023123036A1/zh
Priority to CN202180032243.1A priority patent/CN115606043A/zh
Publication of WO2023123036A1 publication Critical patent/WO2023123036A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/136Flexibility or foldability
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/197Sealing members characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/198Sealing members characterised by the material characterised by physical properties, e.g. adhesiveness or hardness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/595Tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of batteries, and in particular to a sealant, a battery cell, a battery and electrical equipment.
  • the tabs are usually connected to the packaging bag with a sealant.
  • Conventional sealants currently on the market are usually made of a single material and have a relatively high melting point. When the temperature of the battery core rises abnormally, the sealant is not easy to melt, resulting in flatulence in the packaging bag, which affects the safety of the battery core.
  • An embodiment of the present application provides a sealant.
  • the sealant includes a first adhesive layer and a second adhesive layer arranged continuously along a first direction, and the first direction is perpendicular to a thickness direction of the first adhesive layer.
  • the melting point of the first adhesive layer is lower than the melting point of the second adhesive layer, wherein the difference between the melting points of the first adhesive layer and the second adhesive layer is 15°C to 55°C.
  • the sealant is used to connect between the tab and the packaging bag to improve the sealing performance and insulation performance of the connection area between the tab and the packaging bag.
  • the sealant when used in the cell, when the temperature of the cell rises abnormally, the temperature of the tab also rises correspondingly.
  • the first adhesive layer When reaching the melting point range of the first adhesive layer, the first adhesive layer will melt to reduce the sealing strength of the connection area between the first adhesive layer and the packaging bag, thereby reducing the sealing strength between the sealant and the packaging bag, so that The gas generated at high temperature rushes out of the connection area between the sealant and the packaging bag, reducing the heat accumulation and deformation inside the battery cell, and improving the safety of the battery cell.
  • the melting point of the first adhesive layer ranges from 110°C to 130°C.
  • the risk of the first adhesive layer melting when the cell is working normally and heating up is reduced.
  • the upper limit of the melting point of the first adhesive layer is set to 130°C, the first adhesive layer can be melted within the melting point range of 110°C to 130°C, reducing the risk of potential safety hazards caused by the further increase of the battery temperature after the temperature rises to 130°C .
  • the first adhesive layer includes polypropylene and/or polyethylene
  • the mass ratio of polypropylene in the first adhesive layer is 30% to 50% %
  • the mass ratio of polyethylene in the first adhesive layer is 50% to 70%, so as to adjust the melting point of the first adhesive layer in the range of 110°C to 130°C, and make the first adhesive layer have both rigidity and flexibility.
  • the second adhesive layer includes fiber and polypropylene, the mass ratio of fiber in the second adhesive layer is 3% to 10%, and the mass ratio of polypropylene in the second adhesive layer is 90% to 97%. Fibers are used to increase the structural strength of the second glue layer. And compared with the first adhesive layer, the melting point of polypropylene is higher than the melting point of the mixed structure of polypropylene and polyethylene, and the mass ratio of polypropylene in the second adhesive layer is more than 90%, so that the second adhesive layer has a lower melting point at the melting point of the first adhesive layer.
  • the composite layer of fiber and polypropylene used in the second adhesive layer can reduce the problem of over-melt overflow caused by poor packaging parallelism, excessive packaging pressure or high packaging temperature in the sealing area during heat sealing, thereby reducing the risk of extreme Problems such as battery corrosion and liquid leakage at the tabs caused by the contact between the ear and the aluminum layer of the packaging bag.
  • the sealant includes two second adhesive layers, and along the first direction, the first adhesive layer is arranged between the two second adhesive layers, so as to improve the support of the second adhesive layer to the first adhesive layer The stability and structural strength of the sealant.
  • the sealant further includes a plurality of through holes disposed on the second adhesive layer, and each through hole penetrates through the second adhesive layer along the thickness direction of the second adhesive layer.
  • the through hole is used to accommodate the colloid produced after the melting of the first adhesive layer, so as to limit the flow direction of the colloid and improve the separation efficiency of the first adhesive layer and the corresponding connection area.
  • the through hole can also be used to accommodate the colloid that overflows from the first adhesive layer when the sealant is heat-packed, so as to improve the sealing performance of the sealant.
  • the distance between the centers of the plurality of through holes and the junction of the first adhesive layer and the second adhesive layer is within 0.8mm, so that the through holes are located at the place where the first adhesive layer flows after melting. Within the range of the path, the possibility of glue overflow during heat sealing is reduced.
  • the embodiment of the present application also provides an electric core, including an electrode assembly, a tab, and a packaging bag.
  • the packaging bag is provided with a containing part for containing the electrode assembly and a sealing part connected with the containing part.
  • One end of the tab is connected to the electrode assembly and the other end protrudes from the sealing part.
  • the battery cell further includes any one of the sealants in the above embodiments. In the thickness direction of the sealant, a sealant is provided between at least one surface of the tab and the sealing part, and the sealant is at least partially disposed in the sealing part.
  • part of the first adhesive layer or part of the second adhesive layer is arranged outside the sealing part, so that the sealant can be fully filled between the sealing part and the tab, and the electrode can be improved. Sealing performance and insulation performance between the ear and the sealing part.
  • the battery core further includes a third adhesive layer partially disposed in the sealing part, one surface of the tab is provided with a sealant, and the other surface of the tab is provided with a third adhesive layer, the sealant and the first adhesive layer
  • the three adhesive layers are arranged opposite to each other, and are respectively used to improve the sealing performance and insulation performance between the two sides of the tab and the sealing part.
  • the third adhesive layer may be polypropylene, or any of the above-mentioned sealants may be used.
  • Embodiments of the present application also provide a battery, including the battery cell in any of the above embodiments and a protective plate connected to the battery cell.
  • Embodiments of the present application also provide an electric device, including the battery in any one of the foregoing embodiments.
  • the sealant of the present application the electric core provided with the sealant, the battery and the electrical equipment, the sealant is used to connect between the tab and the packaging bag to improve the sealing performance and insulation performance of the connection area between the tab and the packaging bag .
  • the sealant is used in the cell, when the temperature of the cell rises abnormally, the temperature of the tab also rises correspondingly.
  • the first adhesive layer When reaching the melting point range of the first adhesive layer, the first adhesive layer will melt to reduce the sealing strength of the connection area between the first adhesive layer and the packaging bag, thereby reducing the sealing strength between the sealant and the packaging bag, so that The gas generated at high temperature rushes out of the connection area between the sealant and the packaging bag, reducing the heat accumulation and deformation inside the battery cell, and improving the safety of the battery cell.
  • FIG. 1 is a first schematic top view of a sealant according to an embodiment of the present application.
  • Fig. 2 is a first schematic side view of the sealant according to an embodiment of the present application.
  • Fig. 3 is a first extended schematic view of the junction of the first adhesive layer and the second adhesive layer in the sealant according to an embodiment of the present application.
  • Fig. 4 is a second extended schematic view of the junction of the first adhesive layer and the second adhesive layer in the sealant according to an embodiment of the present application.
  • Fig. 5 is a schematic top view of a through hole in the sealant according to an embodiment of the present application.
  • FIG. 6 is a schematic cross-sectional view of a through hole in the sealant according to an embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of a battery cell according to an embodiment of the present application.
  • Fig. 8 is a second schematic top view of the sealant according to an embodiment of the present application.
  • Fig. 9 is a second schematic side view of the sealant according to an embodiment of the present application.
  • Fig. 10 is a third schematic top view of the sealant according to an embodiment of the present application.
  • Fig. 11 is a schematic diagram of a third side view of the sealant according to an embodiment of the present application.
  • Fig. 12 is a fourth schematic top view of the sealant according to an embodiment of the present application.
  • Fig. 13 is a schematic diagram of a fourth side view of the sealant according to an embodiment of the present application.
  • Fig. 14 is a schematic structural diagram of a battery according to an embodiment of the present application.
  • Fig. 15 is a schematic structural diagram of an electrical device according to an embodiment of the present application.
  • the first adhesive layer 10 is the first adhesive layer 10
  • the third adhesive layer 70 is the third adhesive layer 70
  • An embodiment of the present application provides a sealant.
  • the sealant includes a first adhesive layer and a second adhesive layer continuously arranged along a first direction, and the first direction is perpendicular to a thickness direction of the first adhesive layer.
  • the melting point of the first adhesive layer is lower than the melting point of the second adhesive layer, wherein the difference between the melting points of the first adhesive layer and the second adhesive layer is 15°C to 55°C.
  • the sealant is used to connect between the tab and the packaging bag to improve the sealing performance and insulation performance of the connection area between the tab and the packaging bag.
  • the sealant is used in the cell and the temperature of the cell rises abnormally, the temperature of the tab also rises correspondingly.
  • the first adhesive layer will melt to reduce the sealing strength of the connection area between the first adhesive layer and the packaging bag, thereby reducing the sealing strength between the sealant and the packaging bag, so that The gas generated at high temperature rushes out of the connection area between the sealant and the packaging bag, reducing the heat accumulation and deformation inside the battery cell, and improving the safety of the battery cell.
  • An embodiment of the present application provides a sealant 100, including a first adhesive layer 10 and a second adhesive layer 20 arranged continuously along a first direction A, and the first direction A is vertical in the thickness direction of the first adhesive layer 10 .
  • the melting point of the first adhesive layer 10 is lower than the melting point of the second adhesive layer 20 , wherein the difference between the melting points of the first adhesive layer 10 and the second adhesive layer 20 is 15°C to 55°C.
  • the second adhesive layer 20 is used to improve the structural strength of the sealant 100, and can provide support to the first adhesive layer 10 when the sealant 100 is hot-packed, reducing the overflow of the first adhesive layer 10 due to the large deformation rate caused by pressure and high temperature. glue risk.
  • the melting point of the first adhesive layer 10 is lower than the melting point of the second adhesive layer 20, so that the first adhesive layer 10 melts before the second adhesive layer 20 in a high-temperature environment, so as to reduce the temperature of the connection area corresponding to the first adhesive layer 10.
  • Package strength is used to improve the structural strength of the sealant 100, and can provide support to the first adhesive layer 10 when the sealant 100 is hot-packed, reducing the overflow of the first adhesive layer 10 due to the large deformation rate caused by pressure and high temperature. glue risk.
  • the melting point of the first adhesive layer 10 is lower than the melting point of the second adhesive layer 20, so that the first adhesive layer 10 melts before the second adhesive layer 20 in a high-temperature environment, so as to reduce the temperature of the connection area
  • the melting point difference between the first adhesive layer 10 and the second adhesive layer 20 may be 15°C, 20°C, 25°C, 30°C, 35°C, 40°C, 45°C, 50°C, 55°C One of °C and so on.
  • the above-mentioned sealant 100 is used to connect between the tab 50 and the packaging bag, so as to improve the sealing performance and insulation performance of the connection area between the tab 50 and the packaging bag.
  • the sealant 100 is used in the battery cell, when the temperature of the battery cell rises abnormally, the temperature of the tab 50 also rises correspondingly.
  • the melting point range of the first adhesive layer 10 When the melting point range of the first adhesive layer 10 is reached, the first adhesive layer 10 will melt to reduce the packaging strength of the connection area between the first adhesive layer 10 and the packaging bag, thereby reducing the sealant 100 and the packaging bag. Encapsulation strength, so that the gas generated by high temperature can rush out of the connection area between the sealant 100 and the packaging bag, reduce the heat accumulation and deformation inside the battery cell, and improve the safety of the battery cell.
  • the melting point of the first adhesive layer 10 ranges from 110°C to 130°C.
  • the risk of melting of the first adhesive layer 10 during normal operation of the battery is reduced.
  • the upper limit of the melting point of the first adhesive layer 10 to 130°C the first adhesive layer 10 is melted within the melting point range of 110°C to 130°C, reducing the further rise of the battery temperature after rising to 130°C, resulting in potential safety hazards risks of.
  • the melting point of the first adhesive layer 10 may be 110°C, 111°C, 112°C, 113°C, 117°C, 115°C, 116°C, 117°C, 118°C, 119°C, 120°C, 121°C , 122°C, 123°C, 124°C, 125°C, 126°C, 127°C, 128°C, 129°C, 129°C, 130°C, etc.
  • the first adhesive layer 10 includes polypropylene and polyethylene.
  • the heat resistance of polypropylene is higher than that of polyethylene, that is, the melting point of polypropylene is higher than that of polyethylene; the rigidity of polypropylene is better than that of polyethylene, and the flexibility of polyethylene is better than that of polyethylene. vinyl.
  • the mass ratio of polypropylene in the first adhesive layer 10 is 30% to 50%, and the mass ratio of polyethylene in the first adhesive layer 10 is 50% to 70%, so as to adjust the melting point of the first adhesive layer 10 at 110°C to 130°C, and make the first adhesive layer 10 have both rigidity and flexibility.
  • the mass ratio of polypropylene in the first adhesive layer 10 can be 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, One of 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, etc.; correspondingly, the mass ratio of polyethylene in the first adhesive layer 10 Can be 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, One of 67%, 68%, 69%, 70%, etc.
  • the first adhesive layer 10 includes polypropylene, and the mass ratio of polypropylene in the first adhesive layer 10 is 100%.
  • the first adhesive layer 10 includes polyethylene, and the mass ratio of polyethylene in the first adhesive layer 10 is 100%.
  • the second adhesive layer 20 includes fibers and polypropylene.
  • the mass ratio of fibers in the second adhesive layer 20 is 3% to 10%, and the mass ratio of polypropylene in the second adhesive layer 20 is 90% to 97%.
  • the fibers are used to improve the structural strength of the second adhesive layer 20 .
  • the melting point of polypropylene is higher than the melting point of the mixed structure of polypropylene and polyethylene, and the mass ratio of polypropylene in the second adhesive layer is more than 90%, so that the second adhesive layer 20 The melting point is lower than the melting point of the first adhesive layer 10 .
  • the second adhesive layer 20 adopts the composite layer of fiber and polypropylene, which can reduce the problem of over-melt glue overflow caused by poor packaging parallelism, excessive packaging pressure or high packaging temperature in the sealing area during heat sealing, thereby reducing the problem of over-melt glue due to tabs. Problems such as battery corrosion and liquid leakage at the tabs caused by contact with the aluminum layer of the packaging bag.
  • the fibers may use PPS (polyphenylene sulfide), PAI (imide), PTFE (polytetrafluoroethylene), PEEK (polyether ether ketone) and other polymers with mechanical strength properties.
  • PPS polyphenylene sulfide
  • PAI imide
  • PTFE polytetrafluoroethylene
  • PEEK polyether ether ketone
  • the mass ratio of fibers in the second adhesive layer 20 can be one of 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, etc.; Yes, the mass ratio of polypropylene in the second adhesive layer 20 is one of 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97% and the like.
  • the sealant 100 includes two second adhesive layers 20 , and along the first direction A, the first adhesive layer 10 is disposed between the two second adhesive layers 20 .
  • Two second adhesive layers 20 arranged at intervals are arranged on both sides of the first adhesive layer 10 to improve the stability of the second adhesive layer 20 supporting the first adhesive layer 10 and the structural strength of the sealant 100 .
  • the gas generated by the high temperature rushes out of the connection area between the first adhesive layer 10 and the packaging bag so that a gap is formed between the two second adhesive layers 20 to reduce the gap between the sealant 100 and the packaging bag.
  • the packaging strength between them is convenient for the gas generated by high temperature to rush out of the packaging bag.
  • the junction 15 between the first adhesive layer 10 and the second adhesive layer 20 extends along a straight line.
  • the junction of the first adhesive layer 10 and the second adhesive layer 20 extends along an arc.
  • the arc is extended as a wavy line to increase the area of the joint 15 between the first adhesive layer 10 and the second adhesive layer 20, thereby improving the stability of the connection between the first adhesive layer 10 and the second adhesive layer 20 .
  • the joint 15 of the first adhesive layer 10 and the second adhesive layer 20 extends along a zigzag line, so as to The area of the joint 15 between the first adhesive layer 10 and the second adhesive layer 20 is increased, thereby improving the stability of the connection between the first adhesive layer 10 and the second adhesive layer 20 .
  • the sealant 100 further includes a plurality of through holes 30 disposed on the second adhesive layer 20 , and each through hole 30 penetrates along the thickness direction of the second adhesive layer 20 .
  • the second adhesive layer 20 The through hole 30 is used to accommodate the colloid produced after the first adhesive layer 10 is melted, so as to limit the flow direction of the colloid and improve the separation efficiency of the first adhesive layer 10 and the corresponding connection area.
  • the through hole 30 can also be used to accommodate the colloid overflowing from the first adhesive layer 10 when the sealant 100 is shrink-fitted, so as to improve the sealing performance of the sealant 100 .
  • the distance between the centers of the plurality of through holes 30 and the junction 15 of the first adhesive layer 10 and the second adhesive layer 20 is within 0.8 mm, so that the through holes 30 are located when the first adhesive layer 10 is melted. within the path of subsequent flow.
  • the distances between the centers of the plurality of through holes 30 and the junction 15 of the first adhesive layer 10 and the second adhesive layer 20 are 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm. One of mm, 0.7mm, 0.8mm, etc.
  • a plurality of through holes 30 are arranged at intervals along the extending direction of the junction 15 of the first adhesive layer 10 and the second adhesive layer 20 .
  • an embodiment of the present application also provides a battery cell 200 , including an electrode assembly 40 , tabs 50 and a packaging bag 60 .
  • the packaging bag 60 is provided with a housing portion 61 for housing the electrode assembly 40 and a sealing portion 62 connected to the housing portion 61 .
  • One end of the tab 50 is connected to the electrode assembly 40 and the other end protrudes from the sealing portion 62 .
  • the battery cell 200 also includes the sealant 100 of any one of the above embodiments. In the thickness direction of the sealant 100, the sealant 100 is provided between at least one surface of the tab 50 and the sealing part 62, and the sealant 100 is at least partially It is provided in the sealing portion 62 .
  • the sealant 100 is used to improve the sealing performance and insulation performance between the tab 50 and the sealing portion 62 , and when the temperature of the battery cell 200 rises abnormally, the temperature of the tab 50 also rises correspondingly.
  • the first adhesive layer 10 will melt to reduce the packaging strength of the connection area between the first adhesive layer 10 and the sealing portion 62, thereby reducing the distance between the sealant 100 and the sealing portion 62. Encapsulation strength between them, so that the gas generated by high temperature rushes out of the connection area between the sealant 100 and the sealing part 62, reduces the heat accumulation and deformation inside the battery cell 200, and improves the safety of the battery cell 200.
  • the first direction A is set in the same direction as the protruding direction of the tab 50 .
  • both sides of the sealant 100 respectively protrude from both sides of the tab 50 .
  • the range of the width W1 of the tab 50 satisfies: 1.5mm ⁇ W1 ⁇ 6.0mm; the range of the width W2 of the sealant 100 protruding from the tab 50 in the width direction of the tab 50 satisfies: 1.3mm ⁇ W2 ⁇ 2.5mm .
  • the range of the height H1 of the second adhesive layer 20 satisfies: 1.0mm ⁇ H1 ⁇ 1.5mm; the range of the height H2 of the first adhesive layer 10 satisfies: 1.5mm ⁇ H2 ⁇ 3.0mm; the sealant The range of the total height H3 of 100 satisfies: 3.5mm ⁇ H3 ⁇ 6.0mm.
  • the thickness T1 of the sealant 100 satisfies: 0.055mm ⁇ T1 ⁇ 0.1mm; the thickness T2 of the tab 50 satisfies: 0.06mm ⁇ T2 ⁇ 0.1mm.
  • part of the first adhesive layer 10 or part of the second adhesive layer 20 is disposed outside the sealing portion 62, so that the sealant 100 is fully filled in the sealing portion. Between the part 62 and the tab 50, the sealing performance and insulation performance between the tab 50 and the sealing part 62 are improved.
  • the projection of the first adhesive layer 10 on the sealing portion 62 is located within the range of the sealing portion 62 , so that the first adhesive layer 10 is fully in contact with the sealing portion 62 , so as to reduce the encapsulation strength between the sealant 100 and the sealing portion 62 after the first adhesive layer 10 is melted.
  • the number of the first adhesive layer 10 and the second adhesive layer 20 is one each.
  • the first adhesive layer 10 and the second adhesive layer The adhesive layers 20 are arranged in sequence. Specifically, the first adhesive layer 10 is provided on the side of the tab 50 close to the electrode assembly 40 , and the second adhesive layer 20 is provided on the side of the tab 50 away from the electrode assembly 40 .
  • the second adhesive layer 20 is used to improve the structural strength of the sealant 100, and can provide support to the first adhesive layer 10 when the sealant 100 is hot-packed, reducing the overflow of the first adhesive layer 10 due to the large deformation rate caused by pressure and high temperature.
  • the risk of glue is reduced, thereby reducing the risk of corrosion of the battery cell 200 due to poor packaging and leakage of the tab 50.
  • the first adhesive layer 10 will melt to reduce the packaging strength of the sealing portion 62 on the side close to the electrode assembly 40, so that the gas generated at high temperature The connecting region between the sealant 100 and the seal 62 is punched out.
  • the second adhesive layer 20 and the first adhesive layer 10 are arranged in sequence. Specifically, the second adhesive layer 20 is disposed on the side of the tab 50 close to the electrode assembly 40 , and the first adhesive layer 10 is disposed on the side of the tab 50 away from the electrode assembly 40 .
  • the first adhesive layer 10 will melt to reduce the packaging strength of the sealing portion 62 on the side away from the electrode assembly 40, so that the gas generated at high temperature The connecting region between the sealant 100 and the seal 62 is punched out.
  • the battery cell 200 further includes a third adhesive layer 70 partially disposed in the sealing portion 62 , one surface of the tab 50 is provided with a sealant 100 , and the other surface of the tab 50 is provided with a third adhesive layer. 70.
  • the sealant 100 and the third glue layer 70 are arranged opposite to each other to improve the sealing performance and insulation performance between the two sides of the tab 50 and the sealing part 62 .
  • the third adhesive layer 70 includes polypropylene, and any structure of the sealant 100 described above may also be used.
  • the thickness T3 of the third adhesive layer 70 satisfies: 0.055mm ⁇ T3 ⁇ 0.1mm.
  • both surfaces of the electric core 200 are provided with a sealant 100 , and when the temperature of the electric core 200 reaches the melting point range of the first adhesive layer 10 when the temperature of the electric core 200 rises abnormally, the first adhesive layer 10 It will be melted to reduce the packaging strength of the sealing portion 62 on both sides of the tab 50 , so that the gas generated by high temperature will rush out of the connection area between the sealant 100 on both sides of the tab 50 and the sealing portion 62 .
  • the two sides of the sealant 100 respectively protrude from the two sides of the tab 50
  • the two sides of the third adhesive layer 70 respectively protrude from the On both sides of the tab 50, the protruding parts of the sealant 100 and the third adhesive layer 70 on the same side in the width direction of the tab 50 are connected to each other, so that the sealant 100 and the third adhesive layer 70 wrap around the side of the tab 50 , used to improve the sealing performance and insulation performance between the tab 50 and the sealing part 62 .
  • the first direction A is set perpendicular to the protruding direction of the tab 50
  • the first adhesive layer 10 is provided between the tab 50 and the sealing portion 62 to penetrate the sealing portion along the protruding direction of the tab 50 62.
  • the second adhesive layer 20 is disposed on both sides of the first adhesive layer 10 along the width direction of the tab 50 and protrudes from the tab 50 .
  • the protruding parts of each second adhesive layer 20 and third adhesive layer 70 on the same side in the width direction of the tab 50 are connected to each other, so that the sealant 100 and the third adhesive layer 70 wrap around the side of the tab 50. This is to improve the sealing performance and insulation performance between the tab 50 and the sealing part 62 .
  • both surfaces of the battery cell 200 are provided with the sealant 100 , the protruding parts of the two sealants 100 on the same side in the width direction of the tab 50 are connected to each other.
  • an embodiment of the present application further provides a battery 300 , including the battery cell 200 of any one of the above embodiments and a protective plate 91 connected to the battery cell 200 .
  • an embodiment of the present application further provides an electric device 400 , including the battery 300 in the above embodiment.
  • the electric device 400 also includes a device main body 92 , and the battery 300 is electrically connected to the device main body 92 to provide power for the device main body 92 .
  • the sealant 100 of the embodiment of the present application the battery cell 200 provided with the sealant 100, the battery 300 and the electrical equipment 400, the sealant 100 is used to connect between the tab 50 and the packaging bag 60, so as to improve the quality of the tab 50.
  • the sealing performance and insulation performance of the area connected with the packaging bag 60 When the sealant 100 is used in the battery cell 200 and the temperature of the battery cell 200 rises abnormally, the temperature of the tab 50 also rises correspondingly.
  • the first adhesive layer 10 will melt to reduce the sealing strength of the connection area between the first adhesive layer 10 and the packaging bag, thereby reducing the sealing strength between the sealant 100 and the packaging bag 60.
  • the packaging strength of the package is high, so that the gas generated by high temperature can rush out of the connection area between the sealant 100 and the packaging bag 60, reduce the heat accumulation and deformation inside the battery cell 200, and improve the safety of the battery cell 200.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

一种密封胶,密封胶包括沿第一方向连续排列的第一胶层和第二胶层,第一方向垂直于第一胶层的厚度方向。第一胶层的熔点低于第二胶层的熔点,其中,第一胶层与第二胶层之间的熔点之差为15℃至为55℃。本申请还提供设有上述密封胶的电芯、电池和用电设备。密封胶用于连接于极耳和包装袋之间,以提高极耳和包装袋连接区域的密封性能和绝缘性能。当密封胶用于电芯中,电芯温度异常升高达到第一胶层的熔点范围时,第一胶层将会熔化以降低第一胶层和包装袋之间的连接区域的封装强度,进而降低密封胶和包装袋之间的封装强度,以便于高温产生的气体冲出密封胶和包装袋之间的连接区域,减少电芯内部的热量积累和变形程度,提高电芯的安全性。

Description

密封胶、电芯、电池及用电设备 技术领域
本申请涉及电池技术领域,特别涉及一种密封胶、电芯、电池及用电设备。
背景技术
为了提高电芯的密封性,极耳通常通过密封胶连接包装袋。目前市场上常规的密封胶通常由单一材料制成,且熔点较高。在电芯温度异常升高时,密封胶不易熔解,导致包装袋内出现胀气现象,影响电芯的安全性。
发明内容
鉴于上述状况,有必要提供一种包括不同熔点组分组成的密封胶,以及具有高安全性能的电芯。
本申请的实施例提供一种密封胶,密封胶包括沿第一方向连续排列的第一胶层和第二胶层,第一方向垂直于第一胶层的厚度方向。第一胶层的熔点低于第二胶层的熔点,其中,第一胶层与第二胶层之间的熔点之差为15℃至为55℃。
密封胶用于连接于极耳和包装袋之间,以提高极耳和包装袋连接区域的密封性能和绝缘性能。当密封胶用于电芯中时,电芯温度异常升高时,极耳温度也相应地升高。当达到第一胶层的熔点范围时,第一胶层将会熔化以降低第一胶层和包装袋之间的连接区域的封装强度,进而降低密封胶和包装袋之间的封装强度,以便于高温产生的气体冲出密封胶和包装袋之间的连接区域,减少电芯内部的热量积累和变形程度,提高电芯的安全性。
本申请的一些实施例中,第一胶层的熔点范围为110℃至130℃。通过将第一胶层的熔点下限设为110℃,降低电芯正常工作升温时第一胶层熔化的风险。通过将第一胶层的熔点上限设为130℃,使第一胶层在110℃至130℃的熔点范围内熔化,降低电芯温度在升高至130℃后进一步升高产生安全隐患的风险。
本申请的一些实施例中,第一胶层包括聚丙烯和/或聚乙烯,当第一胶层包括聚丙烯和聚乙烯时,聚丙烯在第一胶层中的质量比为30%至50%,聚乙烯在第一胶层中的质量比为50%至70%,以调节第一胶层的熔点在110℃至130℃的范围内,并且使第一胶层兼备刚性和柔韧性。
本申请的一些实施例中,第二胶层包括纤维和聚丙烯,纤维在第二胶层中的质量比为3%至10%,聚丙烯在第二胶层中的质量比为90%至97%。纤维用于提高第二胶层的结构强度。并且相较于第一胶层,聚丙烯的熔点高于聚丙烯和聚乙烯的混合结构的熔点,聚丙烯在第二胶层中的质量比为90%以上,从而使第二胶层熔点低于第一胶层的熔点。此外,第二胶层采用纤维和聚丙烯这一复合层可以减少密封区域在热封时因封装平行度不良、封装压力过大或封装温度过高导致过熔溢胶问题,从而减少了因极耳与包装袋铝层接触带来的电池腐蚀、极耳处漏液等问题。
本申请的一些实施例中,密封胶包括两个第二胶层,沿第一方向,第一胶层设于两个第二胶层之间,以提高第二胶层对第一胶层支撑的稳定性和密封胶的结构强度。
本申请的一些实施例中,密封胶还包括设于第二胶层上的多个通孔,每一通孔沿第二胶层的厚度方向贯通第二胶层。通孔用于容纳第一胶层熔化后产生的胶体,以限制该胶体流向,提高第一胶层与对应的连接区域的分离效率。并且,通孔还可用于在密封胶热装时容纳第一胶层受热溢出的胶体,提高密封胶的密封性能。
本申请的一些实施例中,多个通孔的中心与第一胶层和第二胶层的连接处之间的距离为0.8mm以内,以使通孔位于第一胶层熔化后流经的路径范围内,减小热封时溢胶的可能性。
本申请的实施例还提供了一种电芯,包括电极组件、极耳和包装袋。包装袋设有收容电极组件的容纳部和与容纳部连接的密封部。极耳的一端连接电极组件且另一端从密封部伸出。电芯还包括上述实施例中的任一种密封胶,在密封胶的厚度方向,极耳的至少一个表面与密封部之间设有密封胶,且密封胶至少部分设置在密封部内。
本申请的一些实施例中,沿极耳的伸出方向,部分第一胶层或部分第二胶层设置在密封部外,以使密封胶充分填充于密封部和极耳之间,提高极耳和密封部之间 的密封性能和绝缘性能。
本申请的一些实施例中,电芯还包括部分设置在密封部内的第三胶层,极耳其中一表面设有密封胶,极耳的另一表面设有第三胶层,密封胶和第三胶层相对设置,分别用于提高极耳两面和密封部之间的密封性能和绝缘性能。
本申请的一些实施例中,第三胶层可以是聚丙烯,也可以采用上述的任一种密封胶。
本申请的实施例还提供了一种电池,包括上述任一实施例中的电芯和与电芯连接的保护板。
本申请的实施例还提供了一种用电设备,包括上述任一实施例中的电池。
本申请的密封胶、设有密封胶的电芯、电池和用电设备中,密封胶用于连接于极耳和包装袋之间,以提高极耳和包装袋连接区域的密封性能和绝缘性能。当密封胶用于电芯中时,电芯温度异常升高时,极耳温度也相应地升高。当达到第一胶层的熔点范围时,第一胶层将会熔化以降低第一胶层和包装袋之间的连接区域的封装强度,进而降低密封胶和包装袋之间的封装强度,以便于高温产生的气体冲出密封胶和包装袋之间的连接区域,减少电芯内部的热量积累和变形程度,提高电芯的安全性。
附图说明
图1是本申请的一个实施例的密封胶的第一俯视示意图。
图2是本申请的一个实施例的密封胶的第一侧视示意图。
图3是本申请的一个实施例的密封胶中第一胶层和第二胶层的连接处的第一延伸示意图。
图4是本申请的一个实施例的密封胶中第一胶层和第二胶层的连接处的第二延伸示意图。
图5是本申请的一个实施例的密封胶中通孔的俯视示意图。
图6是本申请的一个实施例的密封胶中通孔的剖面示意图。
图7是本申请的一个实施例的电芯的结构示意图。
图8是本申请的一个实施例的密封胶的第二俯视示意图。
图9是本申请的一个实施例的密封胶的第二侧视示意图。
图10是本申请的一个实施例的密封胶的第三俯视示意图。
图11是本申请的一个实施例的密封胶的第三侧视示意图。
图12是本申请的一个实施例的密封胶的第四俯视示意图。
图13是本申请的一个实施例的密封胶的第四侧视示意图。
图14是本申请的一个实施例的电池的结构示意图。
图15是本申请的一个实施例的用电设备的结构示意图。
主要元件符号说明
密封胶                                  100
电芯                                    200
电池                                    300
用电设备                                400
第一胶层                                10
第二胶层                                20
通孔                                    30
电极组件                                40
极耳                                    50
包装袋                                  60
容纳部                                  61
密封部                                  62
第三胶层                                70
保护板                                  91
设备主体                                92
第一方向                                A
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。
需要说明的是,当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中设置的元件。当一个元件被认为是“设置在”另一个元件,它可以是直接设置在另一个元件上或者可能同时存在居中设置的元件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。本文所使用的术语“垂直的”、“水平的”、“左”、“右”、“顶”、“底”以及类似的表述只是为了说明的目的,并不用于限制本申请。
可以理解,当两元件平行/垂直设置时沿同一方向设置,两元件之间可存在一定的夹角,两元件之间的允许存在0-±10%的公差,两元件大于、等于或小于允许存在0-±10%的公差。
本申请的实施例提供了一种密封胶,密封胶包括沿第一方向连续排列的第一胶层和第二胶层,第一方向垂直于第一胶层的厚度方向。第一胶层的熔点低于第二胶层的熔点,其中,第一胶层与第二胶层之间的熔点之差为15℃至为55℃。
上述密封胶、设有密封胶的电芯、电池和用电设备中,密封胶用于连接于极耳和包装袋之间,以提高极耳和包装袋连接区域的密封性能和绝缘性能。当密封胶用于电芯中,电芯温度异常升高时,极耳温度也相应地升高。当达到第一胶层的熔点范围时,第一胶层将会熔化以降低第一胶层和包装袋之间的连接区域的封装强度,进而降低密封胶和包装袋之间的封装强度,以便于高温产生的气体冲出密封胶和包装袋之间的连接区域,减少电芯内部的热量积累和变形程度,提高电芯的安全性。
结合附图,对本申请的实施例作进一步的说明。
请一并参阅图1和图2,本申请的一个实施例提供了一种密封胶100,包括沿第一方向A连续排列的第一胶层10和第二胶层20,第一方向A垂直于第一胶层10的厚度方向。第一胶层10的熔点低于第二胶层20的熔点,其中,第一胶层10与第二胶层20之间的熔点之差为15℃至为55℃。
第二胶层20用于提高密封胶100的结构强度,并可在密封胶100热装时对第一胶层10提供支撑,降低第一胶层10由于压力和高温导致变形率大而产生溢胶的风险。通过第一胶层10的熔点低于第二胶层20的熔点,使第一胶层10在高温的环境下率先于第二胶层20熔化,以降低第一胶层10对应的连接区域的封装强度。
在一些实施例中,第一胶层10与第二胶层20之间的熔点之差可以为15℃、20℃、25℃、30℃、35℃、40℃、45℃、50℃、55℃等中的一种。
上述密封胶100用于连接于极耳50和包装袋之间,以提高极耳50和包装袋连接区域的密封性能和绝缘性能。当密封胶100用于电芯中时,电芯温度异常升高时,极耳50温度也相应地升高。当达到第一胶层10的熔点范围时,第一胶层10将会熔化以降低第一胶层10和包装袋之间的连接区域的封装强度,进而降低密封胶100和包装袋之间的封装强度,以便于高温产生的气体冲出密封胶100和包装袋之间的连接区域,减少电芯内部的热量积累和变形程度,提高电芯的安全性。
在一些实施例中,第一胶层10的熔点范围为110℃至130℃。通过将第一胶层10的熔点下限设为110℃,降低电芯正常工作升温时第一胶层10熔化的风险。通过将第一胶层10的熔点上限设为130℃,使第一胶层10在110℃至130℃的熔点范围内熔化,降低电芯温度在升高至130℃后进一步升高产生安全隐患的风险。
在一些实施例中,第一胶层10的熔点可以为110℃、111℃、112℃、113℃、117℃、115℃、116℃、117℃、118℃、119℃、120℃、121℃、122℃、123℃、124℃、125℃、126℃、127℃、128℃、129℃、129℃、130℃等中的一种。
在一些实施例中,第一胶层10包括聚丙烯和聚乙烯。
聚丙烯和聚乙烯两种材料中,聚丙烯的耐热性高于聚乙烯,即聚丙烯的熔点高于聚乙烯的熔点;聚丙烯的刚性优于聚乙烯,聚乙烯的柔韧性优于聚乙烯。聚丙烯在第一胶层10中的质量比为30%至50%,聚乙烯在第一胶层10中的质量比为50%至70%,以调节第一胶层10的熔点在110℃至130℃的范围内,并且使第一胶层10兼备刚性和柔韧性。
在一些实施例中,聚丙烯在第一胶层10中的质量比可以为31%、32%、33%、34%、35%、36%、37%、38%、39%、40%、41%、42%、43%、44%、45%、46%、47%、48%、49%、50%等中的一种;对应的,聚乙烯在第一胶层10中的质量比可 以为51%、52%、53%、54%、55%、56%、57%、58%、59%、60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%等中的一种。
可以理解的是,在一些实施例中,第一胶层10包括聚丙烯,聚丙烯在第一胶层10中的质量比为100%。
可以理解的是,在一些实施例中,第一胶层10包括聚乙烯,聚乙烯在第一胶层10中的质量比为100%。
在一些实施例中,第二胶层20包括纤维和聚丙烯。纤维在第二胶层20中的质量比为3%至10%,聚丙烯在第二胶层20中的质量比为90%至97%,纤维用于提高第二胶层20的结构强度。并且相较于第一胶层10,聚丙烯的熔点高于聚丙烯和聚乙烯的混合结构的熔点,聚丙烯在第二胶层中的质量比为90%以上,从而使第二胶层20熔点低于第一胶层10的熔点。第二胶层20采用纤维和聚丙烯这一复合层可以减少密封区域在热封时因封装平行度不良、封装压力过大或封装温度过高导致过熔溢胶问题,从而减少了因极耳与包装袋铝层接触带来的电池腐蚀、极耳处漏液等问题。
在一些实施例中,纤维可以采用PPS(聚苯硫醚)、PAI(酰亚胺)、PTFE(聚四氟乙烯)、PEEK(聚醚醚酮)等具有机械强度特性类聚合物。
在一些实施例中,纤维在第二胶层20中的质量比可以为3%、4%、5%、6%、7%、8%、9%、10%、等中的一种;对应的,聚丙烯在第二胶层20中的质量比为90%、91%、92%、93%、94%、95%、96%、97%等中的一种。
在一些实施例中,密封胶100包括两个第二胶层20,沿第一方向A,第一胶层10设于两个第二胶层20之间。通过两个间隔设置的第二胶层20设于第一胶层10两侧,以提高第二胶层20对第一胶层10支撑的稳定性和密封胶100的结构强度。当第一胶层10熔化时,高温产生的气体冲出第一胶层10和包装袋之间的连接区域使两个第二胶层20之间形成间隙,以降低密封胶100和包装袋之间的封装强度,便于高温产生的气体从包装袋内冲出。
在一些实施例中,在一些实施例中,沿密封胶100的厚度方向观察,第一胶层10和第二胶层20的连接处15沿直线延伸。
请一并参阅图3,可以理解的是,在一些实施例中,沿密封胶100的厚度方向 观察,第一胶层10和第二胶层20的连接处沿弧线延伸。可选地,该弧线呈波浪状的线条延伸,以提高第一胶层10和第二胶层20连接处15的面积,进而提高第一胶层10和第二胶层20连接的稳定性。
请一并参阅图4,可以理解的是,在一些实施例中,沿密封胶100的厚度方向观察,第一胶层10和第二胶层20的连接处15沿锯齿状的线条延伸,以提高第一胶层10和第二胶层20连接处15的面积,进而提高第一胶层10和第二胶层20连接的稳定性。
请一并参阅图5和图6,在一些实施例中,密封胶100还包括设于第二胶层20上的多个通孔30,每一通孔30沿第二胶层20的厚度方向贯通第二胶层20。通孔30用于容纳第一胶层10熔化后产生的胶体,以限制该胶体流向,提高第一胶层10与对应的连接区域的分离效率。并且,通孔30还可用于在密封胶100热装时容纳第一胶层10受热溢出的胶体,提高密封胶100的密封性能。
在一些实施例中,多个通孔30的中心与第一胶层10和第二胶层20的连接处15之间的距离为0.8mm以内,以使通孔30位于第一胶层10熔化后流经的路径范围内。
在一些实施例中,多个通孔30的中心与第一胶层10和第二胶层20的连接处15之间的距离为0.1mm、0.2mm、0.3mm、0.4mm、0.5mm、0.6mm、0.7mm、0.8mm等中的一种。
在一些实施例中,多个通孔30沿第一胶层10和第二胶层20的连接处15的延伸方向间隔排列。
请参阅图7,本申请的一个实施例还提供一种电芯200,包括电极组件40、极耳50和包装袋60。包装袋60设有收容电极组件40的容纳部61和与容纳部61连接的密封部62。极耳50的一端连接电极组件40且另一端从密封部62伸出。电芯200还包括上述实施例中任一种的密封胶100,在密封胶100的厚度方向,极耳50的至少一个表面与密封部62之间设有密封胶100,且密封胶100至少部分设置在密封部62内。
密封胶100用于提高极耳50和密封部62之间的密封性能和绝缘性能,并且当电芯200温度异常升高时,极耳50温度也相应地升高。当达到第一胶层10的熔点 范围时,第一胶层10将会熔化以降低第一胶层10和密封部62之间的连接区域的封装强度,进而降低密封胶100和密封部62之间的封装强度,以便于高温产生的气体冲出密封胶100和密封部62之间的连接区域,减少电芯200内部的热量积累和变形程度,提高电芯200的安全性。
在一些实施例中,第一方向A与极耳50的伸出方向同向设置。
请再次参阅图1和图2,在一些实施例中,沿极耳50的宽度方向,密封胶100两侧分别凸出于极耳50两侧。具体地,极耳50的宽度W1的范围满足:1.5mm≤W1≤6.0mm;密封胶100在极耳50宽度方向上凸出极耳50的宽度W2的范围满足:1.3mm≤W2≤2.5mm。
沿极耳50的延伸方向,第二胶层20的高度H1的范围满足:1.0mm≤H1≤1.5mm;第一胶层10的高度H2的范围满足:1.5mm≤H2≤3.0mm;密封胶100的总高H3的范围满足:3.5mm≤H3≤6.0mm。
沿极耳50的厚度方向,密封胶100的厚度T1的范围满足:0.055mm≤T1≤0.1mm;极耳50的厚度T2的范围满足:0.06mm≤T2≤0.1mm。
请再次参阅图7,在一些实施例中,沿极耳50的伸出方向,部分第一胶层10或部分第二胶层20设置在密封部62外,以使密封胶100充分填充于密封部62和极耳50之间,提高极耳50和密封部62之间的密封性能和绝缘性能。
在一些实施例中,沿极耳50的厚度方向,第一胶层10在所述密封部62上形成的投影位于密封部62的范围内,以使第一胶层10与密封部62充分接触,便于第一胶层10熔化后降低密封胶100和密封部62之间的封装强度。
请一并参阅图8和图9,在一些实施例中,第一胶层10和第二胶层20的数量各为一个,沿极耳50的伸出方向,第一胶层10和第二胶层20依次排列。具体地,第一胶层10设于极耳50靠近电极组件40的一侧,第二胶层20设于极耳50远离电极组件40的一侧。第二胶层20用于提高密封胶100的结构强度,并可在密封胶100热装时对第一胶层10提供支撑,降低第一胶层10由于压力和高温导致变形率大而产生溢胶的风险,进而降低电芯200因封装不良产生腐蚀、极耳50处漏液的风险。当电芯200温度异常升高时达到第一胶层10的熔点范围时,第一胶层10将会熔化以降低密封部62靠近电极组件40的一侧的封装强度,以便于高温产生的气 体冲出密封胶100和密封部62之间的连接区域。
请一并参阅图10和图11,可以理解的是,在一些实施例中,沿极耳50的伸出方向,第二胶层20和第一胶层10依次排列。具体地,第二胶层20设于极耳50靠近电极组件40的一侧,第一胶层10设于极耳50远离电极组件40的一侧。当电芯200温度异常升高时达到第一胶层10的熔点范围时,第一胶层10将会熔化以降低密封部62远离电极组件40的一侧的封装强度,以便于高温产生的气体冲出密封胶100和密封部62之间的连接区域。
在一些实施例中,电芯200还包括部分设置在密封部62内的第三胶层70,极耳50其中一表面设有密封胶100,极耳50的另一表面设有第三胶层70。密封胶100和第三胶层70相对设置,分别用于提高极耳50两面和密封部62之间的密封性能和绝缘性能。在一些实施例中,第三胶层70包括聚丙烯,也可以采用上述的任一种结构的密封胶100。
在一些实施例中,沿极耳50的厚度方向,第三胶层70的厚度T3的范围满足:0.055mm≤T3≤0.1mm。
可以理解的是,在一些实施例中,电芯200的两个表面均设有密封胶100,当电芯200温度异常升高时达到第一胶层10的熔点范围时,第一胶层10将会熔化以降低极耳50两侧密封部62的封装强度,以便于高温产生的气体冲出极耳50两侧的密封胶100和密封部62之间的连接区域。
请一并参阅图12和图13,在一些实施例中,沿极耳50的宽度方向,密封胶100两侧分别凸出于极耳50两侧,第三胶层70两侧分别凸出于极耳50两侧,密封胶100和第三胶层70在极耳50的宽度方向上位于同侧的凸出部分相互连接,以使密封胶100和第三胶层70包裹极耳50周侧,用于提高极耳50和密封部62之间的密封性能和绝缘性能。
在一些实施例中,第一方向A与极耳50的伸出方向垂直设置,第一胶层10设于极耳50和密封部62之间,以沿极耳50的伸出方向贯穿密封部62。第二胶层20沿极耳50的宽度方向分别设于第一胶层10两侧并凸出于极耳50。每一第二胶层20和第三胶层70在极耳50的宽度方向上位于同侧的凸出部分相互连接,以使密封胶100和第三胶层70包裹极耳50周侧,用于提高极耳50和密封部62之间的密 封性能和绝缘性能。
可以理解的是,在一些实施例中,当电芯200的两个表面均设有密封胶100时,两个密封胶100在极耳50的宽度方向上位于同侧的凸出部分相互连接。
请参阅图14,本申请的一个实施例还提供一种电池300,包括上述实施例中任一种的电芯200和与电芯200连接的保护板91。
请参阅图15,本申请的一个实施例还提供一种用电设备400,包括上述实施例中的电池300。用电设备400还包括设备主体92,电池300电连接于设备主体92,以为设备主体92供电。
本申请实施例的密封胶100、设有密封胶100的电芯200、电池300和用电设备400中,密封胶100用于连接于极耳50和包装袋60之间,以提高极耳50和包装袋60连接区域的密封性能和绝缘性能。当密封胶100用于电芯200中时,电芯200温度异常升高时,极耳50温度也相应地升高。当达到第一胶层10的熔点范围时,第一胶层10将会熔化以降低第一胶层10和包装袋之间的连接区域的封装强度,进而降低密封胶100和包装袋60之间的封装强度,以便于高温产生的气体冲出密封胶100和包装袋60之间的连接区域,减少电芯200内部的热量积累和变形程度,提高电芯200的安全性。
另外,本领域技术人员还可在本申请精神内做其它变化,当然,这些依据本申请精神所做的变化,都应包含在本申请所公开的范围。

Claims (12)

  1. 一种密封胶,其特征在于:所述密封胶包括沿第一方向连续排列的第一胶层和第二胶层,所述第一方向垂直于所述第一胶层的厚度方向,所述第一胶层的熔点低于所述第二胶层的熔点,其中,所述第一胶层与所述第二胶层之间的熔点之差为15℃至为55℃。
  2. 如权利要求1所述的密封胶,其特征在于:所述第一胶层的熔点范围为110℃至130℃。
  3. 如权利要求1所述的密封胶,其特征在于:所述第一胶层包括聚丙烯和/或聚乙烯,当所述第一胶层包括所述聚丙烯和所述聚乙烯时,所述聚丙烯在所述第一胶层中的质量比为30%至50%,所述聚乙烯在所述第一胶层中的质量比为50%至70%。
  4. 如权利要求1所述的密封胶,其特征在于:所述第二胶层包括纤维和聚丙烯,所述纤维在所述第二胶层中的质量比为3%至10%,所述聚丙烯在所述第二胶层中的质量比为90%至97%。
  5. 如权利要求1所述的密封胶,其特征在于:所述密封胶包括两个所述第二胶层,沿所述第一方向,所述第一胶层设于两个所述第二胶层之间。
  6. 如权利要求1所述的密封胶,其特征在于:所述密封胶还包括设于所述第二胶层上的多个通孔,每一所述通孔沿所述第二胶层的厚度方向贯通所述第二胶层。
  7. 如权利要求6所述的密封胶,其特征在于:多个所述通孔的中心与所述第一胶层和所述第二胶层的连接处之间的距离为0.8mm以内。
  8. 一种电芯,包括电极组件、极耳和包装袋,所述包装袋设有收容所述电极组件的容纳部和与所述容纳部连接的密封部,所述极耳的一端连接所述电极组件且另一端从所述密封部伸出,其特征在于:所述电芯还包括如权利要求1至7中任一项所述的密封胶,在所述密封胶的厚度方向,所述极耳的至少一个表面与所述密封部之间设有所述密封胶,且所述密封胶至少部分设置在所述密封部内。
  9. 如权利要求8所述的电芯,其特征在于:沿所述极耳的伸出方向,部分 所述第一胶层或部分所述第二胶层设置在所述密封部外。
  10. 如权利要求8所述的电芯,其特征在于:所述电芯还包括部分设置在所述密封部内的第三胶层,所述极耳其中一表面设有所述密封胶,所述极耳的另一表面设有所述第三胶层,所述密封胶和所述第三胶层相对设置。
  11. 一种电池,其特征在于:包括如权利要求8至10中任一项所述的电芯和与所述电芯连接的保护板。
  12. 一种用电设备,其特征在于:包括如权利要求11所述的电池。
PCT/CN2021/142430 2021-12-29 2021-12-29 密封胶、电芯、电池及用电设备 WO2023123036A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/142430 WO2023123036A1 (zh) 2021-12-29 2021-12-29 密封胶、电芯、电池及用电设备
CN202180032243.1A CN115606043A (zh) 2021-12-29 2021-12-29 密封胶、电芯、电池及用电设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/142430 WO2023123036A1 (zh) 2021-12-29 2021-12-29 密封胶、电芯、电池及用电设备

Publications (1)

Publication Number Publication Date
WO2023123036A1 true WO2023123036A1 (zh) 2023-07-06

Family

ID=84842148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142430 WO2023123036A1 (zh) 2021-12-29 2021-12-29 密封胶、电芯、电池及用电设备

Country Status (2)

Country Link
CN (1) CN115606043A (zh)
WO (1) WO2023123036A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116031569A (zh) * 2023-03-27 2023-04-28 宁德新能源科技有限公司 电化学装置以及用电设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012022821A (ja) * 2010-07-13 2012-02-02 Toppan Printing Co Ltd 二次電池用金属端子被覆樹脂フィルム
CN105368336A (zh) * 2015-10-16 2016-03-02 广东烛光新能源科技有限公司 一种电化学电池及其制备方法
CN209401760U (zh) * 2019-02-19 2019-09-17 宁德时代新能源科技股份有限公司 二次电池及其极耳组件
CN111261828A (zh) * 2020-05-07 2020-06-09 北京小米移动软件有限公司 一种电芯内置安全阀门及使用该安全阀门的锂电池
CN212366144U (zh) * 2020-05-27 2021-01-15 湖南立方新能源科技有限责任公司 一种极耳胶及含有该极耳胶的极耳

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012022821A (ja) * 2010-07-13 2012-02-02 Toppan Printing Co Ltd 二次電池用金属端子被覆樹脂フィルム
CN105368336A (zh) * 2015-10-16 2016-03-02 广东烛光新能源科技有限公司 一种电化学电池及其制备方法
CN209401760U (zh) * 2019-02-19 2019-09-17 宁德时代新能源科技股份有限公司 二次电池及其极耳组件
CN111261828A (zh) * 2020-05-07 2020-06-09 北京小米移动软件有限公司 一种电芯内置安全阀门及使用该安全阀门的锂电池
CN212366144U (zh) * 2020-05-27 2021-01-15 湖南立方新能源科技有限责任公司 一种极耳胶及含有该极耳胶的极耳

Also Published As

Publication number Publication date
CN115606043A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
JP5179494B2 (ja) 構造が改良された上側密封部を有する二次バッテリー
US20090317707A1 (en) Lithium secondary battery
WO2023123036A1 (zh) 密封胶、电芯、电池及用电设备
WO2022227650A1 (zh) 电池壳和电池
EP4333166A1 (en) Battery housing and battery
CN111081916A (zh) 二次电池
WO2021195853A1 (zh) 电芯及具有该电芯的电子装置
KR102510891B1 (ko) 이차전지
WO2022151837A1 (zh) 电池
EP2736099A1 (en) Rechargeable battery
KR102137756B1 (ko) 간단한 센싱 구조를 구비하는 배터리 모듈
WO2023010779A1 (zh) 纽扣电池组件和电子设备
KR102256603B1 (ko) 높은 에너지 밀도를 갖는 배터리 셀
US20220149492A1 (en) Layer-built tab, electrode plate, battery core, and battery using same
WO2022227651A1 (zh) 电池壳和电池
WO2023010781A1 (zh) 电池壳和电池
KR20230032880A (ko) 절연 및 열발산 특성이 우수한 파우치형 이차전지
CN212011032U (zh) 电子器件
KR101390139B1 (ko) 파우치형 이차전지
US10749152B2 (en) Sealing apparatus for secondary battery
WO2022000424A1 (zh) 电池及电子装置
CN215070150U (zh) 高容量易散热安全聚合物锂电池
US20230216116A1 (en) Electronic device and manufacturing method therefor
CN115764141A (zh) 微型电化学装置主体微型电化学装置组合体和电子设备
KR20020023486A (ko) 2차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969411

Country of ref document: EP

Kind code of ref document: A1