WO2023122898A1 - 液晶透镜面板和显示装置 - Google Patents

液晶透镜面板和显示装置 Download PDF

Info

Publication number
WO2023122898A1
WO2023122898A1 PCT/CN2021/141733 CN2021141733W WO2023122898A1 WO 2023122898 A1 WO2023122898 A1 WO 2023122898A1 CN 2021141733 W CN2021141733 W CN 2021141733W WO 2023122898 A1 WO2023122898 A1 WO 2023122898A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
alignment
crystal lens
substrate
layer
Prior art date
Application number
PCT/CN2021/141733
Other languages
English (en)
French (fr)
Inventor
李琳
梁蓬霞
李忠孝
赵伟利
洪涛
朱劲野
于静
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202180004226.7A priority Critical patent/CN116897313A/zh
Priority to US18/273,557 priority patent/US12117695B2/en
Priority to PCT/CN2021/141733 priority patent/WO2023122898A1/zh
Publication of WO2023122898A1 publication Critical patent/WO2023122898A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/28Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays involving active lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • G02F1/133761Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle with different pretilt angles
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection

Definitions

  • the present disclosure relates to but not limited to the field of display technology, and specifically relates to a liquid crystal lens panel and a display device.
  • Naked-eye three-dimensional graphics (Three Dimensional, 3D for short) display has gradually become a research hotspot, and is considered to be the next-generation display method.
  • one way to realize naked-eye 3D display is to superimpose a liquid crystal microlens array in front of the display panel, use the refraction of the lens to realize image separation, and project the images corresponding to the left and right eyes into the left and right eyes respectively, so that the viewer See 3D images. Since the liquid crystal microlens array naked-eye 3D display can make full use of the electronically controlled zoom characteristics of the liquid crystal microlens array, the imaging effect is better, so it can better present the rich information in the 3D scene, and has continuous viewing angles and spatial depth. Better in line with the viewing habits of the human eye.
  • an exemplary embodiment of the present disclosure provides a liquid crystal lens panel, including a first substrate disposed oppositely, a second substrate, and a liquid crystal layer disposed between the first substrate and the second substrate, the The first substrate includes a first structural layer disposed on the side of the first substrate facing the second substrate and a first alignment layer disposed on the side of the first structural layer away from the first substrate, the second substrate It includes a second structural layer disposed on the side of the second substrate facing the first substrate and a second alignment layer disposed on the side of the second structural layer away from the second substrate; on a plane parallel to the liquid crystal lens panel Above, at least one of the first alignment layer and the second alignment layer includes a plurality of alignment regions, and at least two alignment regions have different alignment pretilt angles.
  • the plurality of alignment regions includes a plurality of alignment rows sequentially arranged along the vertical direction, at least two alignment rows in the plurality of alignment rows have different alignment pretilt angles, and the vertical direction is that the liquid crystal lens panel is The vertical orientation the viewer is looking at.
  • At least two orientation rows are arranged symmetrically with respect to the first reference line, and the absolute values of the orientation pretilt angles of the two orientation rows are the same; the first reference line extends along the horizontal direction and passes through A straight line at the center point of the panel, which is the geometric center of the liquid crystal lens panel.
  • the absolute value of the orientation pretilt angle of the orientation row is proportional to a first distance, and the first distance is the distance between the first centerline of the orientation row and the first reference line,
  • the first center line is a straight line that bisects the orientation row in the vertical direction and extends in the horizontal direction.
  • the alignment pretilt angle of the alignment row above the first reference line is greater than 0°
  • the alignment row below the first reference line has an alignment pretilt angle of less than 0°
  • the alignment row below the first reference line has an alignment pretilt angle of less than 0°.
  • the orientation pretilt angle of the orientation row on the reference line is 0.1° to 1°.
  • the absolute value of the orientation pretilt angle is less than or equal to 6°.
  • the first structure layer includes a first electrode layer disposed on a side of the first substrate facing the second substrate and a first electrode layer disposed on a side away from the first substrate.
  • the second structural layer includes a second electrode layer arranged on the side of the second substrate facing the first substrate;
  • the first electrode layer is a strip electrode, so
  • the second electrode layer is a planar electrode.
  • the first insulating layer includes a plurality of repeating units regularly arranged, at least one repeating unit includes a plurality of insulating regions, and at least two insulating regions are separated by The electrical constants are different.
  • the repeating unit includes a first insulating region, a second insulating region, and a third insulating region, and the first insulating region is configured to respond to the light of the first wavelength when the light of the first wavelength passes through the liquid crystal layer.
  • the dispersion characteristic of the liquid crystal lens corresponding to the first insulating region is compensated, and the second insulating region is configured to affect the liquid crystal lens corresponding to the second insulating region when the light of the second wavelength passes through the liquid crystal layer.
  • the dispersion characteristic is compensated, and the third insulating region is configured to compensate the dispersion characteristic of the liquid crystal lens corresponding to the third insulating region when the light of the third wavelength passes through the liquid crystal layer, so that the three insulating regions
  • the focal lengths of the corresponding liquid crystal lenses are the same.
  • the first wavelength is greater than the second wavelength, the second wavelength is greater than the third wavelength;
  • the first insulating region has a first dielectric constant, and the second insulating region Having a second permittivity, the third insulating region has a third permittivity, the first permittivity is greater than the second permittivity, the second permittivity is greater than the third permittivity.
  • the first wavelength is 605 nm to 700 nm, and the first dielectric constant is 5 to 6.
  • the second wavelength is 505 nm to 600 nm
  • the second dielectric constant is 3.0 to 3.5.
  • the third wavelength is 400 nm to 500 nm, and the third dielectric constant is 1.5 to 2.0.
  • an exemplary embodiment of the present disclosure also provides a display device, including a display panel and the aforementioned liquid crystal lens panel.
  • the display panel includes a plurality of pixel units regularly arranged, and at least one pixel unit includes a first sub-pixel emitting light of a first color, a second sub-pixel emitting light of a second color, and a second sub-pixel emitting light of a second color.
  • the first insulating region corresponds to the position of the first sub-pixel
  • the second insulating region corresponds to the position of the second sub-pixel
  • the third insulating region corresponds to the position of the third sub-pixel.
  • 1 is a schematic structural view of a display device
  • FIG. 2 is a schematic structural view of a liquid crystal display panel
  • FIG. 3 is a schematic plan view of a liquid crystal display panel
  • FIG. 4 is a schematic cross-sectional structure diagram of a liquid crystal display panel
  • FIG. 5 is a schematic structural view of a liquid crystal lens panel
  • Fig. 6 is a working schematic diagram of a liquid crystal lens panel
  • Fig. 7 is a schematic diagram of a vertical viewing angle characteristic
  • FIG. 8 is a schematic structural diagram of a liquid crystal lens panel according to an exemplary embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a plurality of orientation rows according to an exemplary embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a pretilt angle of liquid crystal molecules in an exemplary embodiment of the present disclosure
  • FIG. 11 is a schematic plan view of a first insulating layer in an exemplary embodiment of the present disclosure.
  • Fig. 12 is a schematic diagram of a simulation result of an equivalent surface type of a liquid crystal lens
  • FIG. 13 is a schematic diagram of corresponding positions of pixel islands and lenses according to an exemplary embodiment of the present disclosure.
  • 70 Physical island
  • 80 Licular lens
  • 100 Display panel
  • 121 the first electrode layer
  • 122 the first insulation
  • 131 the first insulation area
  • 221 second electrode layer
  • 301 array substrate
  • 302 color film substrate
  • the proportions of the drawings in the present disclosure can be used as a reference in the actual process, but are not limited thereto.
  • the width-to-length ratio of the channel, the thickness and spacing of each film layer, and the width and spacing of each signal line can be adjusted according to actual needs.
  • the number of pixels in the display substrate and the number of sub-pixels in each pixel are not limited to the numbers shown in the figure.
  • the figures described in the present disclosure are only structural schematic diagrams, and one mode of the present disclosure is not limited to the accompanying drawings. The shape or value shown in the figure, etc.
  • connection should be interpreted in a broad sense.
  • it may be a fixed connection, or a detachable connection, or an integral connection; it may be a mechanical connection, or an electrical connection; it may be a direct connection, or an indirect connection through an intermediate piece, or an internal communication between two components.
  • a transistor refers to an element including at least three terminals of a gate electrode, a drain electrode, and a source electrode.
  • a transistor has a channel region between a drain electrode (drain electrode terminal, drain region, or drain electrode) and a source electrode (source electrode terminal, source region, or source electrode), and current can flow through the drain electrode, the channel region, and the source electrode .
  • a channel region refers to a region through which current mainly flows.
  • the first electrode may be a drain electrode and the second electrode may be a source electrode, or the first electrode may be a source electrode and the second electrode may be a drain electrode.
  • the functions of the "source electrode” and “drain electrode” may be interchanged. Therefore, in this specification, “source electrode” and “drain electrode” can be interchanged with each other.
  • electrically connected includes the case where constituent elements are connected together through an element having some kind of electrical effect.
  • the "element having some kind of electrical action” is not particularly limited as long as it can transmit and receive electrical signals between connected components.
  • Examples of “elements having some kind of electrical function” include not only electrodes and wiring but also switching elements such as transistors, resistors, inductors, capacitors, and other elements having various functions.
  • parallel refers to a state where the angle formed by two straight lines is -10° to 10°, and therefore includes a state where the angle is -5° to 5°.
  • perpendicular means a state in which the angle formed by two straight lines is 80° to 100°, and therefore also includes an angle of 85° to 95°.
  • film and “layer” are interchangeable.
  • conductive layer may sometimes be replaced with “conductive film”.
  • insulating film may sometimes be replaced with “insulating layer”.
  • the "same-layer arrangement" used refers to a structure formed by patterning two (or more than two) structures through the same patterning process, and their materials may be the same or different.
  • the materials of precursors forming multiple structures arranged in the same layer are the same, and the materials finally formed may be the same or different.
  • triangle, rectangle, trapezoid, pentagon, or hexagon in this specification are not strictly defined, and may be approximate triangles, rectangles, trapezoids, pentagons, or hexagons, etc., and there may be some small deformations caused by tolerances. There can be chamfers, arc edges, deformations, etc.
  • FIG. 1 is a schematic structural diagram of a display device.
  • the display device may include a display panel 100 and a liquid crystal lens panel 200 disposed on the light-emitting side of the display panel 100.
  • the light is modulated according to the set mode to realize 2D display or 3D display.
  • the display device may implement a first mode display and a second mode display.
  • the liquid crystal lens panel 200 When displaying in the first mode, the liquid crystal lens panel 200 does not modulate the light emitted from the display panel 100 , so that the display device realizes 2D display.
  • the liquid crystal lens panel 200 When displaying in the second mode, the liquid crystal lens panel 200 modulates the path or phase of the light emitted from the display panel 100 , so that the display device realizes 3D display. This mode-based selective modulation can enable the display device to switch between 2D display and 3D display.
  • the display panel may be a self-luminous display panel, or may be a non-self-luminous display panel including a backlight module.
  • the display panel can include any one or more of the following: Liquid Crystal Display (LCD for short), Organic Light Emitting Diode (OLED for short), Light Emitting Diode (Light Emitting Diode for short) display panel LED), inorganic electroluminescence display panel (Electro Luminescent display, EL for short), field emission display panel (Field Emission Display, FED for short), surface conduction electron emission display panel (Surface-conduction Electron-emitter Display, SED for short) , Plasma Display Panel (PDP for short), Electrophoretic Display Panel (EPD for short).
  • LCD Liquid Crystal Display
  • OLED Organic Light Emitting Diode
  • LED Light Emitting Diode
  • inorganic electroluminescence display panel Electro Luminescent display, EL for short
  • field emission display panel Field Emission Display, FED for short
  • FIG. 2 is a schematic structural diagram of a liquid crystal display panel.
  • a liquid crystal display panel may include a display area and a frame area, and the display area may include a plurality of gate lines (S1 to Sm) and a plurality of data lines (D1 to Dn), and a plurality of The gate lines can be extended along the horizontal direction and arranged in sequence along the vertical direction, and a plurality of data lines can be extended in the vertical direction and arranged in sequence along the horizontal direction, and the plurality of gate lines and the plurality of data lines crossing each other define a
  • m, n, i and j may be natural numbers.
  • at least one sub-pixel Pxij may include a thin film transistor, a pixel electrode and a common electrode, and the thin film transistor is connected to the gate line, the data line and the pixel electrode, respectively.
  • the display area may further include a plurality of common electrode lines (E1 to Eo), the plurality of common electrode lines may extend along the horizontal direction and be arranged in sequence along the vertical direction, the plurality of common electrode lines and the plurality of The common electrodes in the sub-pixels Pxij are correspondingly connected.
  • E1 to Eo common electrode lines
  • a plurality of gate lines are drawn out to the frame area and connected to the scan driver
  • a plurality of data lines are drawn out to the frame area and connected to the data driver
  • at least a part of the scan driver and the data driver may be formed in on the substrate.
  • an external control device may provide grayscale values and control signals suitable for specifications of the data driver to the data driver, and the data driver may use the received grayscale values and control signals to generate Data voltages will be supplied to the data signal lines D1, D2, D3, . . . and Dn.
  • the data driver may sample grayscale values using a clock signal, and apply data voltages corresponding to the grayscale values to the data signal lines D1 to Dn in units of pixel rows.
  • the external control device can provide a clock signal suitable for the specification of the scan driver, a scan start signal, etc. to the scan driver, and the scan driver can use the clock signal, the scan start signal, etc. ,... and the scanning signal of Sm.
  • the scan driver may sequentially supply scan signals having turn-on level pulses to the scan signal lines S1 to Sm.
  • the scan driver can be configured in the form of a shift register, and can generate scan signals in such a manner as to sequentially transmit scan start signals supplied in the form of on-level pulses to the next-stage circuit under the control of a clock signal .
  • FIG. 3 is a schematic plan view of a liquid crystal display panel.
  • the display panel may include a plurality of pixel units P regularly arranged, and at least one of the plurality of pixel units P may include a first sub-pixel P1 that emits light of a first color, a second sub-pixel that emits light of a second color.
  • the sub-pixel P2 and the third sub-pixel P3 that emit light of the third color may each include a thin film transistor, a pixel electrode and a common electrode.
  • the first sub-pixel P1 may be a red sub-pixel emitting red (R) light
  • the second sub-pixel P2 may be a green sub-pixel emitting green (G) light
  • the third sub-pixel P3 may be The blue sub-pixel that emits blue (B) light
  • the shape of the sub-pixel in the pixel unit can be a rectangle, rhombus, pentagon or hexagon, etc.
  • the sub-pixels in the pixel unit can be arranged horizontally, vertically or
  • the characters are arranged in the manner of characters, which is not limited in the present disclosure.
  • a pixel unit may include four sub-pixels, which is not limited in the present disclosure.
  • FIG. 4 is a schematic cross-sectional structure diagram of a liquid crystal display panel.
  • the liquid crystal display panel may include a thin film transistor (Thin Film Transistor, TFT for short) array substrate 301 of a cell (CELL) and a color filter (Color Filter, CF for short) substrate 302, and the array substrate 301 and the
  • the display liquid crystal (LC for short) layer 303 between the color filter substrates 302 controls the common electrode and the pixel electrode to form an electric field that drives the deflection of the liquid crystal to realize grayscale display.
  • the liquid crystal display panel can be divided into a twisted nematic (Twisted Nematic, TN) display mode, a vertical alignment (Vertical Alignment, referred to as VA) display mode, and an in-plane switching (In Plane Switching, IPS) display mode according to the display mode.
  • TN twisted nematic
  • VA Vertical Alignment
  • IPS in-plane switching
  • FFS Fringe Field Switching
  • ADS Advanced Super Dimension Switch
  • the array substrate 301 may include gate lines, data lines, thin film transistors, pixel electrodes and common electrodes
  • the color filter substrate 302 may include a black matrix and a filter layer.
  • the liquid crystal panel may further include a first polarizer, a second polarizer and a backlight
  • the first polarizer may be arranged on the side of the array substrate 301 away from the color filter substrate 302
  • the second polarizer may be arranged On the side of the color filter substrate 302 away from the array substrate 301, the light transmission axis of the first polarizer and the light transmission axis of the second polarizer are perpendicular to each other, and the light emitted by the backlight passes through the first polarizer, the array substrate, the The liquid crystal layer, the color filter substrate and the second polarizer are emitted.
  • the liquid crystal layer has no twisting effect on the light, and the polarization direction of the light after passing through the first polarizer and the liquid crystal layer is perpendicular to the light transmission axis direction of the second polarizer, and the light cannot pass through, thus displaying dark screen, the display panel is in a dark state.
  • the liquid crystal molecules rotate to distort the light and change the polarization direction of the light, so that the light can be emitted through the second polarizer, thereby displaying a bright picture, and the display panel is in a bright state.
  • FIG. 5 is a schematic structural diagram of a liquid crystal lens panel.
  • the liquid crystal lens panel may include a first substrate 10 and a second substrate 20 disposed opposite to each other, and a liquid crystal layer 30 disposed between the first substrate 10 and the second substrate 20 .
  • the first substrate 10 may include a first electrode layer and a first alignment layer disposed on a first substrate
  • the second substrate 20 may include a second electrode layer and a first alignment layer disposed on a second substrate. the second alignment layer.
  • the first electrode layer and the second electrode layer are respectively configured to form a predetermined electric field between the first electrode layer and the second electrode layer so that the liquid crystal layer 30 forms a liquid crystal lens.
  • the first alignment layer and the second alignment layer are disposed on both sides of the liquid crystal layer 30 respectively, and are configured such that the liquid crystal molecules in the liquid crystal layer 30 have an initial posture.
  • FIG. 6 is a working diagram of a liquid crystal lens panel.
  • the liquid crystal molecules in the liquid crystal layer have optical birefringence characteristics, that is, the liquid crystal molecules have two kinds of refractive indices optically, including an ordinary ray (ordinary ray) refractive index no for light in the long-axis direction and a refractive index for short-axis light.
  • the extraordinary ray (extraordinary ray) refractive index ne of axial light, and the ordinary ray refractive index no can be smaller than the extraordinary ray refractive index ne.
  • the ordinary ray refractive index no of the liquid crystal molecules may be about 1.5, and the extraordinary ray refractive index ne of the liquid crystal molecules may be about 1.7.
  • the liquid crystal layer has an extraordinary ray refractive index ne, and its refractive index is relatively large; if the liquid crystal molecules are rotated to the vertical direction, the liquid crystal layer has an ordinary ray refractive index no, and its refractive index is relatively small. Since light propagates slowly in a material with a larger refractive index, and travels faster in a material with a smaller refractive index, when the light propagates in a liquid crystal layer with a different refractive index, the light path will change from a liquid crystal layer with a lower refractive index. The liquid crystal region with a low refractive index bends toward the liquid crystal region with a higher refractive index, presenting a light propagation path as shown in FIG. 6 .
  • the light propagation path shown in FIG. 6 is substantially similar to the light propagation path of the light passing through the convex lens, and the liquid crystal layer has optical characteristics similar to the convex lens.
  • the light path of the light will be modulated to bend to the right and enter the viewer's right eye E1
  • the light from the display panel will pass through the liquid crystal lens
  • the light path of the light will be modulated to bend to the left and enter the viewer's left eye E2 so the viewer can watch a three-dimensional image.
  • the viewing angle characteristic means that when the viewer's viewing position is on the center line of sight of the panel, the viewer's line of sight at the edge of the panel forms a certain angle with the line of sight at the center of the panel.
  • the center point of the panel may be the geometric center of the liquid crystal lens panel.
  • FIG. 7 is a schematic diagram of a vertical viewing angle characteristic, taking the viewer's eye E located on the central line of sight O of the liquid crystal lens panel 200 as an example.
  • the viewer's line of sight overlaps with the line of sight O at the center of the panel, so the viewing angle of the viewer watching the image is 0, and there is no viewing angle characteristic.
  • the viewer watches the image at the upper and lower edges of the panel in the vertical direction Y the viewer's line of sight and the center line of sight O of the panel have an angle ⁇ , so the viewer watches the image at the upper and lower edges of the panel with a vertical angle of view ⁇ , as shown in Figure 7 shown.
  • the vertical viewing angle will continue to increase.
  • the focal length of the liquid crystal lens is designed according to the viewing angle of 0°, when the vertical viewing angle is large, the liquid crystals in the same arrangement state will show different refraction
  • the vertical direction Y refers to the vertical direction of the liquid crystal lens panel from top to bottom or from bottom to top when the liquid crystal lens panel is viewed by the eyes E of the viewer
  • the horizontal direction X refers to the vertical direction of the liquid crystal lens panel viewed by the viewer.
  • the liquid crystal lens panel is horizontal from left to right or from right to left
  • the viewing direction Z is a direction perpendicular to the plane of the liquid crystal lens panel.
  • An exemplary embodiment of the present disclosure provides a liquid crystal lens panel, including a first substrate disposed opposite to each other, a second substrate, and a liquid crystal layer disposed between the first substrate and the second substrate, the first substrate It includes a first structural layer disposed on the side of the first substrate facing the second substrate and a first alignment layer disposed on the side of the first structural layer away from the first substrate, and the second substrate includes a The second structural layer on the side of the second substrate facing the first substrate and the second alignment layer arranged on the side of the second structural layer away from the second substrate; on a plane parallel to the liquid crystal lens panel, the At least one of the first alignment layer and the second alignment layer includes a plurality of alignment regions, and at least two alignment regions have different alignment pretilt angles.
  • the plurality of alignment regions includes a plurality of alignment rows sequentially arranged along the vertical direction, at least two alignment rows in the plurality of alignment rows have different alignment pretilt angles, and the vertical direction is that the liquid crystal lens panel is The vertical orientation the viewer is looking at.
  • the first structure layer includes a first electrode layer disposed on a side of the first substrate facing the second substrate and a first electrode layer disposed on a side away from the first substrate.
  • the second structural layer includes a second electrode layer arranged on the side of the second substrate facing the first substrate;
  • the first electrode layer is a strip electrode, so
  • the second electrode layer is a planar electrode.
  • the first insulating layer includes a plurality of repeating units regularly arranged, at least one repeating unit includes a plurality of insulating regions, and at least two insulating regions are separated by The electrical constants are different.
  • FIG. 8 is a schematic structural diagram of a liquid crystal lens panel according to an exemplary embodiment of the present disclosure.
  • the liquid crystal lens panel may include a first substrate 10 and a second substrate 20 disposed opposite to each other, and a liquid crystal layer 30 disposed between the first substrate 10 and the second substrate 20 .
  • the first substrate 10 may include a first base 11, a first structure layer 12 disposed on the side of the first base 11 facing the second substrate 20, and a first alignment layer disposed on the side of the first structure layer 12 away from the first base 11.
  • the second substrate 20 may include a second base 21, a second structural layer 22 disposed on the side of the second base 21 facing the first substrate 10, and a second structural layer 22 disposed on the side of the second structural layer 22 away from the second base 21. Alignment layer 23.
  • the first structure layer 12 may include a first electrode layer 121 disposed on a side of the first substrate 11 facing the second substrate 20 and a first electrode layer 121 disposed on a side of the first electrode layer 121 away from the first substrate 11.
  • An insulation 122 , the first alignment layer 13 is disposed on a side of the first insulation 122 away from the first substrate 11 .
  • the second structure layer 22 may include a second electrode layer 221 disposed on the side of the second substrate 21 facing the first substrate 10, and the second alignment layer 23 is disposed on the second structure layer 22 away from the second substrate. 21 side.
  • the first electrode layer 121 may be a strip electrode, and the second electrode layer 221 may be a whole surface electrode.
  • the first electrode layer 121 and the second electrode layer 221 are configured to form a predetermined electric field between the first electrode layer 121 and the second electrode layer 221 so that the liquid crystal layer 30 forms a liquid crystal lens.
  • the first electrode layer 121 and the second electrode layer 221 can be made of indium tin oxide (Indium Tin Oxide, ITO for short), indium zinc oxide (Indium Zinc Oxide, IZO for short), zinc oxide (ZincOxide, ZO), indium oxide (Indium Oxide, referred to as IO), titanium oxide (Titanium Oxide, referred to as TiO) and other transparent conductive materials.
  • the first electrode layer 121 and the second electrode layer 221 can use materials such as carbon nanotube (Carbon Nanotube), metal nanowire (metal nanowire), conductive polymer (Conductive Polymer),
  • the first electrode layer 121 and the second electrode layer 221 may use the same material, or may use different materials, which is not limited in this disclosure.
  • the first insulating layer 122 may adopt silicon oxide SiOx, silicon nitride SiNx or silicon oxynitride SiON, etc., and may be a single-layer structure, or may be a multi-layer composite structure.
  • the first insulating layer may be referred to as a passivation (PVX) layer.
  • the first alignment layer 13 and the second alignment layer 23 are arranged on both sides of the liquid crystal layer 30 respectively, and are configured so that the liquid crystal molecules in the liquid crystal layer 30 have an initial attitude, and the initial attitude may include at least an alignment pre-position. inclination.
  • the first alignment layer 13 and the second alignment layer 23 can realize the alignment pretilt angle by rubbing, and the first alignment layer 13 and the second alignment layer 23 can adopt polyimide (PI), which has a chemical Good stability, excellent mechanical properties, good insulation, high temperature resistance, radiation resistance and other advantages.
  • PI polyimide
  • the first alignment layer 13 and the second alignment layer 23 can achieve an alignment pretilt angle through optical alignment (Optical Alignment, OA for short), which is not limited in this disclosure.
  • At least one of the first alignment layer 13 and the second alignment layer 23 may include a plurality of alignment rows on a plane parallel to the liquid crystal lens panel, and at least two alignment rows have different alignment pretilt angles.
  • Fig. 9 is a schematic structural diagram of a plurality of alignment rows according to an exemplary embodiment of the present disclosure, illustrating the structure of five alignment rows.
  • the plurality of orientation rows may include sequentially arranging a first orientation row 31, a second orientation row 32, a third orientation row 33, a fourth orientation row 34, and a fifth orientation row 35 along the vertical direction Y, Each orientation row is in the shape of a bar extending along the horizontal direction X.
  • At least two alignment rows may be arranged symmetrically with respect to the first reference line O1, which may be a straight line extending along the horizontal direction X and passing through the center point of the panel, where the center point of the panel is the liquid crystal lens
  • the geometric center of the panel may be relative to the first reference line O1, the positions and geometric parameters of the first orientation row 31 and the fifth orientation row 35 may be mirror-symmetrical.
  • the positions and geometric parameters of the second orientation row 32 and the fourth orientation row 34 may be mirror-symmetrical.
  • the third orientation row 33 can be arranged symmetrically with respect to the first reference line O1, the first centerline M1 of the third orientation row 33 can overlap with the first reference line O1, and the first centerline M1 is in the vertical direction Y A straight line that bisects the orientation row and extends along the horizontal direction X.
  • the absolute values of the orientation pretilt angles of the two orientation rows arranged symmetrically with respect to the first reference line O1 may be the same.
  • the first orientation row 31 and the fifth orientation row 35 are mirror-symmetrical with respect to the first reference line O1
  • the orientation pretilt angle of the first orientation row 31 can be 5°
  • the orientation pretilt angle of the fifth orientation row 35 can be -5° °
  • the absolute values of the orientation pretilt angles of the two are the same.
  • the same absolute value of the orientation pretilt angle is not strictly equal, and there may be a certain tolerance range, for example, the tolerance range is within ⁇ 20%.
  • the absolute value of the orientation pretilt angle of the orientation row is proportional to the first distance L1
  • the first distance L1 is the distance between the first centerline M1 of the orientation row and the first reference line O1, and is vertical The dimension in the vertical Y direction.
  • the first distance of the first alignment row 31 is greater than the first distance of the second alignment row 32
  • the absolute value of the alignment pretilt angle of the first alignment row 31 is greater than the absolute value of the alignment pretilt angle of the second alignment row 32 .
  • the first distance of the fifth alignment row 35 is greater than the first distance of the fourth alignment row 34
  • the absolute value of the alignment pretilt angle of the fifth alignment row 35 is greater than the absolute value of the alignment pretilt angle of the fourth alignment row 34 .
  • a plurality of orientation rows arranged in sequence along the vertical direction Y can be divided into orientation rows located above the first reference line O1 and orientation rows located on the first reference line O1.
  • the first orientation row 31 and the second orientation row 32 are orientation rows located above the first reference line O1 , and all areas of the above two orientation rows are located above the first reference line O1 .
  • the fourth alignment row 34 and the fifth alignment row 35 are alignment rows located below the first reference line O1 , and all regions of the above two orientation rows are located below the first reference line O1 .
  • an alignment pretilt angle of an alignment row above the first reference line O1 may be greater than 0°, and an alignment row below the first reference line O1 may have an alignment pretilt angle of less than 0°.
  • the alignment pretilt angle of the first alignment row 31 may be 5°
  • the alignment pretilt angle of the fifth alignment row 35 may be -5°.
  • the alignment pretilt angle of the second alignment row 32 may be 2.5°
  • the alignment pretilt angle of the fourth alignment row 34 may be -2.5°.
  • the plurality of alignment rows can also be divided into alignment rows located in the central region, and the orthographic projection of the alignment rows located in the central region on the plane of the liquid crystal lens panel and the first reference line O1 on the plane of the liquid crystal lens panel
  • the orthographic projections of are at least partially overlapping.
  • the third orientation row 33 is an orientation row located in the central region.
  • the alignment pretilt angle of the alignment row located in the central region may be about 0.1° to 1°.
  • the alignment pretilt angle of the alignment row located in the central region may be about 0.1°.
  • the even number of orientation rows may include an orientation row above the first reference line O1 and an orientation row below the first reference line O1.
  • the odd number of orientation rows may include an orientation row located above the first reference line O1, an orientation row located below the first reference line O1, and an orientation row located in the middle region.
  • the absolute value of the orientation pretilt angle may be less than or equal to 6°.
  • the alignment pretilt angle of the first alignment row 31 may be about 4° to 6°
  • the alignment pretilt angle of the second alignment row 32 may be about 2° to 3°
  • the orientation of the third alignment row 33 The pretilt angle can be about 0.1° to 1°
  • the orientation pretilt angle of the fourth orientation row 34 can be about -2° to -3°
  • the orientation pretilt angle of the fifth orientation row 35 can be about -4° to -6° .
  • the orientation pretilt angle of the first orientation row 31 can be about 5°
  • the orientation pretilt angle of the second orientation row 32 can be about 2.5°
  • the orientation pretilt angle of the third orientation row 33 can be about 0.1°
  • the orientation pretilt angle of the fourth orientation row 32 can be about 5°
  • the orientation pretilt angle of row 34 may be about -2.5°
  • the orientation pretilt angle of fifth orientation row 35 may be about -5°.
  • the number of orientation rows may be about 2 to 10.
  • FIG. 10 is a schematic diagram of pretilt angles of liquid crystal molecules according to an exemplary embodiment of the present disclosure.
  • the liquid crystal molecules in the liquid crystal layer will be arranged according to the alignment pretilt angle of the alignment layer in the initial state without electricity, and the liquid crystal
  • the optical axis A1 of the molecule has an inclination angle ⁇ with the liquid crystal lens panel plane (XY plane), and the inclination angle ⁇ is called the pre-tilt angle of the liquid crystal molecule.
  • the focal length of the liquid crystal lens is 726.61 ⁇ m
  • the focal length of the liquid crystal lens is 688.20 ⁇ m.
  • the focal length is 787.71 ⁇ m.
  • the focal length of the liquid crystal lens decreases when the viewer watches the upper edge of the panel, and increases when the viewer watches the lower edge of the panel, and the focal length of the liquid crystal lens differs greatly from that when the viewer watches the center of the panel, resulting in poor 3D imaging effect.
  • the alignment layer is partitioned, the focal length of the liquid crystal lens is increased by increasing the pre-tilt angle (positive value), and the focal length of the liquid crystal lens is decreased by decreasing the pre-tilt angle (negative value). , which compensates the focal length of the liquid crystal lens at a larger vertical viewing angle, effectively reduces the deviation between the focal length of the liquid crystal lens at a larger vertical viewing angle and the focal length of the initial design, and effectively improves the 3D imaging effect.
  • the simulation test shows that when the liquid crystal molecules at the upper edge of the panel have a pretilt angle of about 5° and the liquid crystal molecules at the lower edge of the panel have a pretilt angle of about -5°, the focal length of the liquid crystal lens when the viewer looks at the upper edge of the panel is optimized as 723.1 ⁇ m, when the viewer looks at the lower edge of the panel, the focal length of the liquid crystal lens is optimized to 729.90 ⁇ m, and the optimized focal length and the initial design focal length are only about 3.29 ⁇ m, which is within the allowable range of error. It can be seen that the present disclosure can effectively improve the focal length deviation of the lens caused by the viewing angle characteristics of the liquid crystal in the vertical direction by optimizing the pre-tilt angle partition of the alignment layer, and can effectively improve the 3D imaging effect.
  • a positive liquid crystal is used for the liquid crystal layer.
  • the specific numerical relationship is related to the properties of the liquid crystal material and the specification of the liquid crystal lens, and can be obtained through simulation calculation according to the actual situation.
  • the liquid crystal material has wavelength dispersibility, and light of different wavelengths has different refractive indices when propagating in the liquid crystal layer.
  • the equivalent focal length of the liquid crystal lens is proportional to the refractive index. For light of different wavelengths, the focal length of the liquid crystal lens is different. The larger the wavelength, the greater the focal length of the liquid crystal lens.
  • the design focal length is about 725 ⁇ m, and the actual focal length is about 731.1 ⁇ m.
  • the actual focal length is about 606.2 ⁇ m
  • the actual focal length is about 790.5 ⁇ m. Since the light of different wavelengths passes through the liquid crystal lens, the deflection is different, and they are no longer parallel when they propagate in space, and the liquid crystal lens has different focal lengths, so the light of different wavelengths cannot converge to the same point after passing through the liquid crystal lens (called the liquid crystal lens). Dispersion characteristics), resulting in color separation in the display screen, and even confusion in the viewed images.
  • the first insulating layer may include a plurality of repeating units regularly arranged, at least one repeating unit may include a plurality of insulating regions, and at least two of the insulating regions are separated by a plurality of repeating units.
  • the permittivity is different.
  • FIG. 11 is a schematic plan view of a first insulating layer according to an exemplary embodiment of the present disclosure.
  • the first insulating layer may include a plurality of repeating units 60 regularly arranged, at least one repeating unit 60 may include a first insulating region 131, a second insulating region 132 and the third insulating region 133 .
  • the first insulating region 131 is configured to compensate the dispersion characteristic of the liquid crystal lens corresponding to the first insulating region 131 when the light of the first wavelength passes through the liquid crystal layer
  • the second insulating region 132 is configured to In order to compensate the dispersion characteristic of the liquid crystal lens corresponding to the second insulating region 132 when the light of the second wavelength passes through the liquid crystal layer, the third insulating region 133 is configured so that when the light of the third wavelength passes through the liquid crystal layer, The dispersion characteristics of the liquid crystal lenses corresponding to the three insulating regions 133 are compensated, so that the focal lengths of the liquid crystal lenses corresponding to the three insulating regions are basically the same, and the light rays of the three wavelengths can converge to the same point in space after passing through the liquid crystal lenses.
  • the first insulating region of the first insulating layer has a first dielectric constant
  • the second insulating region of the first insulating layer has a second dielectric constant
  • the third insulating region of the first insulating layer has a first dielectric constant.
  • Three permittivity, the first permittivity, the second permittivity and the third permittivity are different.
  • the first wavelength may be greater than the second wavelength
  • the first dielectric constant may be greater than the second dielectric constant
  • the second wavelength may be greater than the third wavelength
  • the second dielectric constant may be greater than the third dielectric constant
  • the first wavelength may be about 605nm to 700nm
  • the second wavelength may be about 505nm to 600nm
  • the third wavelength may be about 400nm to 500nm.
  • the first dielectric constant may be about 5-6.
  • the focal length can be compensated from 790.5 ⁇ m to about 725 ⁇ m by using the first insulating region with a first dielectric constant of about 5.5.
  • the second dielectric constant may be about 3.0 to 3.5.
  • a focal length of about 725 ⁇ m can be achieved by using the second insulating region with a second dielectric constant of about 3.2.
  • the third dielectric constant may be about 1.5 to 2.0.
  • the focal length can be compensated from 606.2 ⁇ m to about 725 ⁇ m by using the third insulating region with a third dielectric constant of about 1.7.
  • the thickness of the first insulating layer may be about 1.0 ⁇ m to 2.0 ⁇ m.
  • the thickness of the first insulating layer may be about 1.4 ⁇ m.
  • the voltage reduction effect of the insulating layer is also related to the thickness of the insulating layer.
  • partitions are set on the first insulating layer.
  • Different insulating regions correspond to light rays of different wavelengths.
  • the materials of different insulating regions have different dielectric coefficients. Different dielectric coefficients are used to adjust the actual effect on the liquid crystal layer. Voltage, so that the focal lengths of the liquid crystal lenses corresponding to the three insulating regions are all design values, and the light of three wavelengths can converge to the same point in space after passing through the liquid crystal lens, thereby realizing compensation for the dispersion characteristics of the liquid crystal lens.
  • Fig. 12 is a schematic diagram of the simulation results of the equivalent surface type of the liquid crystal lens, taking light with a wavelength of 450nm as an example.
  • the actual focal length of the liquid crystal lens is about 606.2 ⁇ m
  • the deviation between the equivalent surface shape of the liquid crystal lens and the ideal surface shape is about 18.36%, exceeding allowed range.
  • the focal length of the liquid crystal lens is compensated to 725.16 ⁇ m, and the equivalent of the liquid crystal lens The deviation of the face shape from the ideal face shape dropped to 9.17%.
  • forming a plurality of insulating regions on the first insulating layer may be implemented through a patterning process.
  • a first insulating region pattern with a first dielectric constant can be formed by a first patterning process
  • a second insulating region pattern with a second dielectric constant can be formed by a second patterning process
  • a third pattern can be formed by a third patterning process.
  • a third insulating region pattern having a third dielectric constant is formed by an electroplating process.
  • the present disclosure innovatively proposes a composite partitioning scheme.
  • the viewing angle characteristics in the vertical direction are partitioned according to the orientation pretilt angle. Partitioning is carried out, and the dielectric coefficients of different partitions are different, which effectively improves the 3D display imaging effect based on the liquid crystal lens, and improves the display quality and quality.
  • the focal length of the liquid crystal lens is increased by increasing the pre-tilt angle, and the focal length of the liquid crystal lens is reduced by reducing the pre-tilt angle, which compensates the focal length of the liquid crystal lens under a larger vertical viewing angle and effectively reduces the The deviation between the focal length of the liquid crystal lens and the focal length of the initial design at a large vertical viewing angle.
  • different insulating regions correspond to light of different wavelengths, and the materials of different insulating regions have different dielectric coefficients.
  • the preparation of the liquid crystal lens panel in the exemplary embodiment of the present disclosure can be realized by using mature preparation equipment, with little improvement to the process, high compatibility, simple process implementation, wide source of materials and low cost, easy to implement, and good performance. Application prospect.
  • Exemplary embodiments of the present disclosure also provide a display device, including a display panel and the aforementioned liquid crystal lens panel, where the liquid crystal lens panel is disposed on a light-emitting side of the display panel.
  • the display panel may include a plurality of pixel islands, at least one pixel island may include at least one pixel unit, and at least one pixel unit may include a first sub-pixel P1 that emits red light, and a second sub-pixel P1 that emits green light.
  • the pixel P2 and the third sub-pixel P3 emitting blue light.
  • the positions of the plurality of repeating units of the first insulating layer on the liquid crystal lens panel may be in one-to-one correspondence with the positions of the plurality of pixel units on the display panel.
  • the position and shape of the first insulating region in the repeating unit may be in one-to-one correspondence with the position and shape of the first sub-pixel in the pixel unit, so that the red light emitted by the first sub-pixel only passes through the first insulating region.
  • the position and shape of the second insulating region in the repeating unit may be in one-to-one correspondence with the position and shape of the second sub-pixel in the pixel unit, so that the green light emitted by the second sub-pixel only passes through the second insulating region.
  • the position and shape of the third insulating region in the repeating unit may be in one-to-one correspondence with the position and shape of the third sub-pixel in the pixel unit, so that the blue light emitted by the third sub-pixel only passes through the third insulating region.
  • FIG. 13 is a schematic diagram of corresponding positions of pixel islands and lenses according to an exemplary embodiment of the present disclosure.
  • the display panel may include a plurality of pixel islands 70, and each pixel island 70 may include three pixel unit columns, and each pixel unit column may include first sub-pixels periodically arranged in the vertical direction Y. P1, the second sub-pixel P2 and the third sub-pixel P3.
  • the liquid crystal lens formed by the liquid crystal lens panel is a lenticular lens 80 extending along the vertical direction Y, and the position of each lenticular lens 80 is in one-to-one correspondence with the position of each pixel island 70, that is, the first pixel in each pixel island 70
  • the sub-pixel P1, the second sub-pixel P2 and the third sub-pixel P3 correspond to the same columnar liquid crystal lens.
  • the display device may be any product or component with a display function such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)

Abstract

本公开提供了一种液晶透镜面板和显示装置。液晶透镜面板包括相对设置的第一基板(10)、第二基板(20)以及设置在第一基板(10)和第二基板(20)之间的液晶层(30),第一基板(10)包括设置在第一基底(11)上的第一结构层(12)和设置在第一结构层(12)上的第一取向层(13),第二基板(20)包括设置在第二基底(21)上的第二结构层(22)和设置在第二结构层(22)上的第二取向层(23);在平行于液晶透镜面板的平面上,第一取向层(13)和第二取向层(23)中的至少一个包括多个取向区,至少两个取向区的取向预倾角不同。

Description

液晶透镜面板和显示装置 技术领域
本公开涉及但不限于显示技术领域,具体涉及一种液晶透镜面板和显示装置。
背景技术
裸眼三维图形(Three Dimensional,简称3D)显示逐渐成为研究热点,被认为是下一代显示方式。目前,裸眼3D显示的一种实现方式是在显示面板前叠加液晶微透镜阵列,利用透镜的折射实现图像分离,将左眼和右眼对应的图像分别投射在左眼和右眼中,使观者看到3D影像。由于液晶微透镜阵列式裸眼3D显示可以充分利用液晶微透镜阵列的电控变焦特性,成像效果较好,因而能够较好地呈现3D场景内丰富的信息,并具有连续视角和空间深度感,可以较好地符合人眼观看习惯。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
一方面,本公开示例性实施例提供了一种液晶透镜面板,包括相对设置的第一基板、第二基板以及设置在所述第一基板和所述第二基板之间的液晶层,所述第一基板包括设置在第一基底朝向所述第二基板一侧的第一结构层和设置在所述第一结构层远离所述第一基底一侧的第一取向层,所述第二基板包括设置在第二基底朝向所述第一基板一侧的第二结构层和设置在所述第二结构层远离所述第二基底一侧的第二取向层;在平行于液晶透镜面板的平面上,所述第一取向层和所述第二取向层中的至少一个包括多个取向区,至少两个取向区的取向预倾角不同。
在示例性实施方式中,多个取向区包括沿着竖直方向依次设置多个取向 行,多个取向行中至少两个取向行的取向预倾角不同,所述竖直方向是液晶透镜面板被观看者观看时的竖直方向。
在示例性实施方式中,至少两个取向行相对于第一基准线对称设置,所述两个取向行的取向预倾角的绝对值相同;所述第一基准线是沿着水平方向延伸且经过面板中心点的直线,所述面板中心点是液晶透镜面板的几何中心。
在示例性实施方式中,所述取向行的取向预倾角的绝对值与第一距离成正比,所述第一距离是取向行的第一中心线与所述第一基准线之间的距离,所述第一中心线是在竖直方向上平分所述取向行且沿着水平方向延伸的直线。
在示例性实施方式中,位于所述第一基准线上方的取向行的取向预倾角大于0°,位于所述第一基准线下方的取向行的取向预倾角小于0°,位于所述第一基准线上的取向行的取向预倾角为0.1°至1°。
在示例性实施方式中,所述取向预倾角的绝对值小于或等于6°。
在示例性实施方式中,所述第一结构层包括设置在所述第一衬底朝向所述第二基板一侧的第一电极层以及设置在所述第一电极层远离所述第一衬底一侧的第一绝缘层;所述第二结构层包括设置在所述第二衬底朝向所述第一基板一侧的第二电极层;所述第一电极层为条状电极,所述第二电极层为面状电极。
在示例性实施方式中,在平行于液晶透镜面板的平面上,所述第一绝缘层包括规则排布的多个重复单元,至少一个重复单元包括多个绝缘区,至少两个绝缘区的介电常数不同。
在示例性实施方式中,所述重复单元包括第一绝缘区、第二绝缘区和第三绝缘区,所述第一绝缘区被配置在第一波长的光线经过所述液晶层时,对所述第一绝缘区所对应的液晶透镜的色散特性进行补偿,所述第二绝缘区被配置在第二波长的光线经过所述液晶层时,对所述第二绝缘区所对应的液晶透镜的色散特性进行补偿,所述第三绝缘区被配置在第三波长的光线经过所述液晶层时,对所述第三绝缘区所对应的液晶透镜的色散特性进行补偿,使 得三个绝缘区所对应的液晶透镜的焦距相同。
在示例性实施方式中,所述第一波长大于所述第二波长,所述第二波长大于所述第三波长;所述第一绝缘区具有第一介电常数,所述第二绝缘区具有第二介电常数,第三绝缘区具有第三介电常数,所述第一介电常数大于所述第二介电常数,所述第二介电常数大于所述第三介电常数。
在示例性实施方式中,所述第一波长为605nm至700nm,所述第一介电常数为5至6。
在示例性实施方式中,所述第二波长为505nm至600nm,所述第二介电常数为3.0至3.5。
在示例性实施方式中,所述第三波长为400nm至500nm,所述第三介电常数为1.5至2.0。
另一方面,本公开示例性实施例还提供了一种显示装置,包括显示面板和前述的液晶透镜面板。
在示例性实施方式中,所述显示面板包括规则排布的多个像素单元,至少一个像素单元包括出射第一颜色光线的第一子像素、出射第二颜色光线的第二子像素和出射第三颜色光线的第三子像素,所述液晶透镜面板的重复单元中,第一绝缘区与所述第一子像素的位置相对应,第二绝缘区与所述第二子像素的位置相对应,第三绝缘区与所述第三子像素的位置相对应。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。附图中各部件的形状和大小不反映真实比例,目的只是示意说明本公开内容。
图1为一种显示装置的结构示意图;
图2为一种液晶显示面板的结构示意图;
图3为一种液晶显示面板的平面结构示意图;
图4为一种液晶显示面板的剖面结构示意图;
图5为一种液晶透镜面板的结构示意图;
图6为一种液晶透镜面板的工作示意图;
图7为一种竖直视角特性的示意图;
图8为本公开示例性实施例一种液晶透镜面板的结构示意图;
图9为本公开示例性实施例一种多个取向行的结构示意图;
图10为本公开示例性实施例液晶分子的预倾角的示意图;
图11为本公开示例性实施例第一绝缘层的平面结构示意图;
图12为液晶透镜等效面型的仿真结果示意图;
图13为本公开示例性实施例像素岛与透镜对应位置的示意图。
附图标记说明:
10—第一基板;         11—第一基底;         12—第一结构层;
13—第一取向层;       20—第二基板;         21—第二基底;
22—第二结构层;       23—第二取向层;       30—液晶层;
31—第一取向行;       32—第二取向行;       33—第三取向行;
34—第四取向行;       35—第五取向行;       60—重复单元;
70—像素岛;           80—柱状透镜;         100—显示面板;
121—第一电极层;      122—第一绝缘;        131—第一绝缘区;
132—第二绝缘区;      133—第三绝缘区;      200—液晶透镜面板;
221—第二电极层;      301—阵列基板;        302—彩膜基板;
303—显示液晶层。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下文中将结合附图对本公开的实施例进行详细说明。注意,实施方式可以以多个不同形式来实 施。所属技术领域的普通技术人员可以很容易地理解一个事实,就是方式和内容可以在不脱离本公开的宗旨及其范围的条件下被变换为各种各样的形式。因此,本公开不应该被解释为仅限定在下面的实施方式所记载的内容中。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。为了保持本公开实施例的以下说明清楚且简明,本公开省略了部分已知功能和已知部件的详细说明。本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计
本公开中的附图比例可以作为实际工艺中的参考,但不限于此。例如:沟道的宽长比、各个膜层的厚度和间距、各个信号线的宽度和间距,可以根据实际需要进行调整。显示基板中像素的个数和每个像素中子像素的个数也不是限定为图中所示的数量,本公开中所描述的附图仅是结构示意图,本公开的一个方式不局限于附图所示的形状或数值等。
本说明书中的“第一”、“第二”、“第三”等序数词是为了避免构成要素的混同而设置,而不是为了在数量方面上进行限定的。
在本说明书中,为了方便起见,使用“中部”、“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示方位或位置关系的词句以参照附图说明构成要素的位置关系,仅是为了便于描述本说明书和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。构成要素的位置关系根据描述各构成要素的方向适当地改变。因此,不局限于在说明书中说明的词句,根据情况可以适当地更换。
在本说明书中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解。例如,可以是固定连接,或可拆卸连接,或一体地连接;可以是机械连接,或电连接;可以是直接相连,或通过中间件间接相连,或两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
在本说明书中,晶体管是指至少包括栅电极、漏电极以及源电极这三个端子的元件。晶体管在漏电极(漏电极端子、漏区域或漏电极)与源电极(源电极端子、源区域或源电极)之间具有沟道区域,并且电流能够流过漏电 极、沟道区域以及源电极。注意,在本说明书中,沟道区域是指电流主要流过的区域。
在本说明书中,第一极可以为漏电极、第二极可以为源电极,或者第一极可以为源电极、第二极可以为漏电极。在使用极性相反的晶体管的情况或电路工作中的电流方向变化的情况等下,“源电极”及“漏电极”的功能有时互相调换。因此,在本说明书中,“源电极”和“漏电极”可以互相调换。
在本说明书中,“电连接”包括构成要素通过具有某种电作用的元件连接在一起的情况。“具有某种电作用的元件”只要可以进行连接的构成要素间的电信号的授受,就对其没有特别的限制。“具有某种电作用的元件”的例子不仅包括电极和布线,而且还包括晶体管等开关元件、电阻器、电感器、电容器、其它具有各种功能的元件等。
在本说明书中,“平行”是指两条直线形成的角度为-10°以上且10°以下的状态,因此,也包括该角度为-5°以上且5°以下的状态。另外,“垂直”是指两条直线形成的角度为80°以上且100°以下的状态,因此,也包括85°以上且95°以下的角度的状态。
在本说明书中,“膜”和“层”可以相互调换。例如,有时可以将“导电层”换成为“导电膜”。与此同样,有时可以将“绝缘膜”换成为“绝缘层”。
在本说明书中,所采用的“同层设置”是指两种(或两种以上)结构通过同一次图案化工艺得以图案化而形成的结构,它们的材料可以相同或不同。例如,形成同层设置的多种结构的前驱体的材料是相同的,最终形成的材料可以相同或不同。
本说明书中三角形、矩形、梯形、五边形或六边形等并非严格意义上的,可以是近似三角形、矩形、梯形、五边形或六边形等,可以存在公差导致的一些小变形,可以存在导角、弧边以及变形等。
本公开中的“约”,是指不严格限定界限,允许工艺和测量误差范围内的数值。
图1为一种显示装置的结构示意图。如图1所示,显示装置可以包括显示面板100和设置在显示面板100出光侧的液晶透镜面板200,显示面板100 被配置为进行图像显示,液晶透镜面板200被配置为对显示面板100出射的光线按照设定的模式进行调制,实现2D显示或者3D显示。
在示例性实施方式中,显示装置可以实现第一模式显示和第二模式显示。在第一模式显示时,液晶透镜面板200不对显示面板100出射的光线进行调制,使得显示装置实现2D显示。在第二模式显示时,液晶透镜面板200对显示面板100出射的光线进行路径或相位等进行调制,使得显示装置实现3D显示。这种基于模式的选择性调制,可以使得显示装置可以实现2D显示和3D显示的切换。
在示例性实施方式中,显示面板可以是自发光显示面板,或者可以是包括背光模组的非自发光显示面板。显示面板可以包括如下的任意一种或多种:液晶显示面板(Liquid Crystal Display,简称LCD),有机发光二极管显示面板(Organic Light Emitting Diode,简称OLED),发光二极管显示面板(Light Emitting Diode,简称LED),无机电致发光显示面板(Electro Luminescent display,简称EL),场致发射显示面板(Field Emission Display,简称FED),表面传导电子发射显示面板(Surface-conduction Electron-emitter Display,简称SED),等离子显示面板(Plasma Display Panel,简称PDP),电泳显示面板(Electro Phoretic Display,简称EPD)。
图2为一种液晶显示面板的结构示意图。如图2所示,在示例性实施方式中,液晶显示面板可以包括显示区域和边框区域,显示区域可以包括多条栅线(S1到Sm)和多条数据线(D1到Dn),多条栅线可以沿着水平方向延伸并沿着竖直方向依次设置,多条数据线可以沿着竖直方向延伸并沿着水平方向依次设置,相互交叉的多条栅线和多条数据线限定出规则排布的多个子像素Pxij,m、n、i和j可以是自然数。在示例性实施方式中,至少一个子像素Pxij可以包括薄膜晶体管、像素电极和公共电极,薄膜晶体管分别与栅线、数据线和像素电极连接。
在示例性实施方式中,显示区域还可以包括多条公共电极线(E1到Eo),多条公共电极线可以沿着水平方向延伸并沿着竖直方向依次设置,多条公共电极线与多个子像素Pxij中的公共电极对应连接。
在示例性实施方式中,多条栅线被引出到边框区域,并与扫描驱动器连 接,多条数据线被引出到边框区域,并与数据驱动器连接,扫描驱动器和数据驱动器的至少一部分可以形成在基板上。
在示例性实施方式中,外部控制装置(如时序控制器)可以将适合于数据驱动器的规格的灰度值和控制信号提供到数据驱动器,数据驱动器可以利用接收的灰度值和控制信号来产生将提供到数据信号线D1、D2、D3、……和Dn的数据电压。例如,数据驱动器可以利用时钟信号对灰度值进行采样,并且以像素行为单位将与灰度值对应的数据电压施加到数据信号线D1至Dn。外部控制装置可以将适合于扫描驱动器的规格的时钟信号、扫描起始信号等提供到扫描驱动器,扫描驱动器可以利用时钟信号、扫描起始信号等来产生将提供到扫描信号线S1、S2、S3、……和Sm的扫描信号。例如,扫描驱动器可以将具有导通电平脉冲的扫描信号顺序地提供到扫描信号线S1至Sm。例如,扫描驱动器可以被构造为移位寄存器的形式,并且可以以在时钟信号的控制下顺序地将以导通电平脉冲形式提供的扫描起始信号传输到下一级电路的方式产生扫描信号。
图3为一种液晶显示面板的平面结构示意图。如图3所示,显示面板可以包括规则排布的多个像素单元P,多个像素单元P的至少一个可以包括出射第一颜色光线的第一子像素P1、出射第二颜色光线的第二子像素P2和出射第三颜色光线的第三子像素P3,三个子像素可以均包括薄膜晶体管、像素电极和公共电极。在示例性实施方式中,第一子像素P1可以是出射红色(R)光线的红色子像素,第二子像素P2可以是出射绿色(G)光线的绿色子像素,第三子像素P3可以是出射蓝色(B)光线的蓝色子像素,像素单元中子像素的形状可以是矩形状、菱形、五边形或六边形等,像素单元中子像素可以采用水平并列、竖直并列或品字方式排列,本公开在此不做限定。在示例性实施方式中,像素单元可以包括四个子像素,本公开在此不做限定。
图4为一种液晶显示面板的剖面结构示意图。如图4所示,液晶显示面板可以包括对盒(CELL)的薄膜晶体管(Thin Film Transistor,简称TFT)阵列基板301和彩膜(Color Filter,简称CF)基板302,以及设置在阵列基板301和彩膜基板302之间的显示液晶(Liquid Crystal,简称LC)层303,通过控制公共电极和像素电极来形成驱动液晶偏转的电场,实现灰阶显示。 在示例性实施方式中,液晶显示面板按照显示模式可以分为扭曲向列(Twisted Nematic,TN)显示模式、垂直取向(Vertical Alignment,简称VA)显示模式、平面转换(In Plane Switching,IPS)显示模式、边缘场开关(Fringe Field Switching,FFS)显示模式和高级超维场转换(Advanced Super Dimension Switch,ADS)显示模式等。对于水平电场型的ADS显示模式,阵列基板301可以包括栅线、数据线、薄膜晶体管、像素电极和公共电极,彩膜基板302可以包括黑矩阵和滤光层。
在示例性实施方式中,液晶面板还可以包括第一偏振片、第二偏振片和背光源,第一偏振片可以设置在阵列基板301远离彩膜基板302的一侧,第二偏振片可以设置在彩膜基板302远离阵列基板301的一侧,第一偏振片的光透过轴与第二偏振片的光透过轴相互垂直,背光源发出的光线依次经由第一偏振片、阵列基板、液晶层、彩膜基板和第二偏振片射出。在不加电压的情况下,液晶层对光线没有扭曲作用,经过第一偏振片和液晶层后光线的偏振方向与第二偏振片的光透过轴方向垂直,光线不能透过,从而显示暗画面,显示面板处于暗态。在加电压的情况下,液晶分子旋转从而扭曲光线,改变了光线的偏振方向,使得光线可以通过第二偏振片射出,从而显示亮画面,显示面板处于亮态。
图5为一种液晶透镜面板的结构示意图。如图5所示,液晶透镜面板可以包括相对设置的第一基板10和第二基板20,以及设置在第一基板10和第二基板20之间的液晶层30。在示例性实施方式中,第一基板10可以包括设置在第一衬底上的第一电极层和第一取向层,第二基板20可以包括设置在第二衬底上的第二电极层和第二取向层。第一电极层和第二电极层分别被配置为在第一电极层和第二电极层之间形成预定的电场,使得液晶层30形成液晶透镜。第一取向层和第二取向层分别设置在液晶层30的两侧,被配置为使得液晶层30中的液晶分子具有初始姿态。
图6为一种液晶透镜面板的工作示意图。通过在第一电极层和第二电极层上施加相应的电压,使得液晶层中不同位置的液晶分子的偏转程度不同,形成液晶透镜以改变光线透过液晶层后的传播方向。
在示例性实施方式中,液晶层中的液晶分子具有光学双折射特性,即液晶分子在光学上具有两种折射率,包括针对长轴方向光的寻常光线(ordinary ray)折射率no和针对短轴方向光的非常光线(extraordinary ray)折射率ne,寻常光线折射率no可以小于非常光线折射率ne。例如,液晶分子的寻常光线曲折率no可以约为1.5左右,而液晶分子的非常光线折射率ne可以约为1.7左右。因此,若使液晶分子水平地排列,液晶层具有非常光线折射率ne,其折射率相对较大,若液晶分子旋转到垂直方向,液晶层具有寻常光线折射率no,其折射率相对变小。由于光线在折射率较大的物质里的传播速度较慢,在折射率较小的物质里的传播速度较快,因而光线在折射率不同的液晶层中传播时,光线路径会从折射率较低的液晶区域向折射率较高的液晶区域弯曲,呈现如图6所示的光线传播路径。
在示例性实施方式中,图6所示的光线传播路径与光线透过凸透镜的光线传播路径基本上类似,液晶层具有类似于凸透镜的光学特性。如图6所示,来自显示面板的光线经过液晶透镜面板的左侧区域后,光线的光路径会被调制成向右侧弯曲,进入观看者的右眼E1,来自显示面板的光线经过液晶透镜面板的右侧区域后,光线的光路径会被调制成向左侧弯曲,进入观看者的左眼E2,因而观看者可以观看到三维影像。
研究发现,现有结构的液晶透镜面板中,视角特性会导致成像效果下降。视角特性是指观看者的观看位置位于面板中心视线上时,观看者观看面板边缘位置的视线与面板中心视线形成了一定的夹角,面板中心视线是垂直于面板平面且经过面板中心点的直线,面板中心点可以是液晶透镜面板的几何中心。
图7为一种竖直视角特性的示意图,以观看者的眼睛E位于液晶透镜面板200的中心视线O上为例。当观看者观看面板中心点位置的图像时,观看者的视线与面板中心视线O重叠,因而观看者观看图像的视角为0,不存在视角特性。当观看者观看面板竖直方向Y的上下边缘位置的图像时,观看者的视线与面板中心视线O具有夹角α,因而观看者观看面板上下边缘位置的图像具有竖直视角α,如图7所示。随着面板尺寸的增大,竖直视角会不断增大,由于液晶透镜的焦距是按照视角为0°情况设计的,当竖直视角较大 时,相同排列状态的液晶会表现出不同的折射率,使得大视角下液晶透镜的焦距出现较大偏差,液晶透镜的等效面型发生较大形变,与初始设计的焦距和等效面型偏离较大,因而导致3D成像效果变差。
本公开中,竖直方向Y是指液晶透镜面板被观看者的眼睛E观看时,液晶透镜面板从上到下或者从下到上的竖直方向,水平方向X是指液晶透镜面板被观看者的眼睛E观看时,液晶透镜面板从左到右或者从右到左的水平方向,观看方向Z是垂直于液晶透镜面板平面的方向。
本公开示例性实施例提供了一种液晶透镜面板,包括相对设置的第一基板、第二基板以及设置在所述第一基板和所述第二基板之间的液晶层,所述第一基板包括设置在第一基底朝向所述第二基板一侧的第一结构层和设置在所述第一结构层远离所述第一基底一侧的第一取向层,所述第二基板包括设置在第二基底朝向所述第一基板一侧的第二结构层和设置在所述第二结构层远离所述第二基底一侧的第二取向层;在平行于液晶透镜面板的平面上,所述第一取向层和所述第二取向层中的至少一个包括多个取向区,至少两个取向区的取向预倾角不同。
在示例性实施方式中,多个取向区包括沿着竖直方向依次设置多个取向行,多个取向行中至少两个取向行的取向预倾角不同,所述竖直方向是液晶透镜面板被观看者观看时的竖直方向。
在示例性实施方式中,所述第一结构层包括设置在所述第一衬底朝向所述第二基板一侧的第一电极层以及设置在所述第一电极层远离所述第一衬底一侧的第一绝缘层;所述第二结构层包括设置在所述第二衬底朝向所述第一基板一侧的第二电极层;所述第一电极层为条状电极,所述第二电极层为面状电极。
在示例性实施方式中,在平行于液晶透镜面板的平面上,所述第一绝缘层包括规则排布的多个重复单元,至少一个重复单元包括多个绝缘区,至少两个绝缘区的介电常数不同。
图8为本公开示例性实施例一种液晶透镜面板的结构示意图。如图8所示,液晶透镜面板可以包括相对设置的第一基板10和第二基板20,以及设 置在第一基板10和第二基板20之间的液晶层30。第一基板10可以包括第一基底11、设置在第一基底11朝向第二基板20一侧的第一结构层12和设置在第一结构层12远离第一基底11一侧的第一取向层13,第二基板20可以包括第二基底21、设置在第二基底21朝向第一基板10一侧的第二结构层22和设置在第二结构层22远离第二基底21一侧的第二取向层23。
在示例性实施方式中,第一结构层12可以包括设置在第一基底11朝向第二基板20一侧的第一电极层121和设置在第一电极层121远离第一基底11一侧的第一绝缘122,第一取向层13设置在第一绝缘122远离第一基底11的一侧。
在示例性实施方式中,第二结构层22可以包括设置在第二基底21朝向第一基板10一侧的第二电极层221,第二取向层23设置在第二结构层22远离第二基底21的一侧。
在示例性实施方式中,第一电极层121可以为条状电极,第二电极层221可以为面状电极(whole surface)。第一电极层121和第二电极层221被配置为在第一电极层121和第二电极层221之间形成预定的电场,使得液晶层30形成液晶透镜。
在示例性实施方式中,第一电极层121和第二电极层221可以采用氧化铟锡(Indium Tin Oxide,简称ITO)、氧化铟锌(Indium Zinc Oxide,简称IZO)、氧化锌(ZincOxide,简称ZO)、氧化铟(Indium Oxide,简称IO)、氧化钛(Titanium Oxide,简称TiO)等透明导电材料。在一些可能的示例性实施方式中,第一电极层121和第二电极层221可以采用碳纳米管(Carbon Nanotube)、金属纳米线(metal nanowire)、导电性高分子(Conductive Polymer)等材料,第一电极层121和第二电极层221可以采用相同的材料,或者可以采用不同的材料,本公开在此不做限定。
在示例性实施方式中,第一绝缘层122可以采用硅氧化物SiOx、硅氮化物SiNx或氮氧化硅SiON等,可以是单层结构,或者可以是多层复合结构。在示例性实施方式中,第一绝缘层可以称为钝化(PVX)层。
在示例性实施方式中,第一取向层13和第二取向层23分别设置在液晶层30的两侧,被配置为使得液晶层30中的液晶分子具有初始姿态,初始姿态可以至少包括取向预倾角。
在示例性实施方式中,第一取向层13和第二取向层23可以通过摩擦处理实现取向预倾角,第一取向层13和第二取向层23可以采用聚酰亚胺(PI),具有化学稳定性好、力学性能优良、绝缘性好、耐高温、抗辐射等优点。在一些可能的示例性实施方式中,第一取向层13和第二取向层23可以通过光配向(Optical Alignment,简称OA)处理实现取向预倾角,本公开在此不做限定。
在示例性实施方式中,在平行于液晶透镜面板的平面上,第一取向层13和第二取向层23中的至少一个可以包括多个取向行,至少两个取向行的取向预倾角不同。
图9为本公开示例性实施例一种多个取向行的结构示意图,示意了5个取向行的结构。如图9所示,多个取向行可以包括沿着竖直方向Y依次设置第一取向行31、第二取向行32、第三取向行33、第四取向行34和第五取向行35,每个取向行均为沿着水平方向X延伸的条形状。
在示例性实施方式中,至少两个取向行可以相对于第一基准线O1对称设置,第一基准线O1可以是沿着水平方向X延伸且经过面板中心点的直线,面板中心点是液晶透镜面板的几何中心。例如,相对于第一基准线O1,第一取向行31和第五取向行35的位置和几何参数可以镜像对称。又如,相对于第一基准线O1,第二取向行32和第四取向行34的位置和几何参数可以镜像对称。再如,第三取向行33可以相对于第一基准线O1对称设置,第三取向行33的第一中心线M1可以与第一基准线O1重叠,第一中心线M1是在竖直方向Y上平分取向行且沿着水平方向X延伸的直线。
在示例性实施方式中,相对于第一基准线O1对称设置的两个取向行的取向预倾角的绝对值可以相同。例如,第一取向行31和第五取向行35相对于第一基准线O1镜像对称,第一取向行31的取向预倾角可以为5°,第五取向行35的取向预倾角可以为-5°,两者的取向预倾角的绝对值相同。本公开 中,取向预倾角的绝对值相同并不严格按照完全相等,可以存在一定的公差范围,例如,公差范围为±20%以内。
在示例性实施方式中,取向行的取向预倾角的绝对值与第一距离L1成正比,第一距离L1是取向行的第一中心线M1与第一基准线O1之间的距离,为竖直方向Y上的尺寸。例如,第一取向行31的第一距离大于第二取向行32的第一距离,第一取向行31的取向预倾角的绝对值大于第二取向行32的取向预倾角的绝对值。又如,第五取向行35的第一距离大于第四取向行34的第一距离,第五取向行35的取向预倾角的绝对值大于第四取向行34的取向预倾角的绝对值。
在示例性实施方式中,以第一基准线O1作为分类依据,沿着竖直方向Y依次排列的多个取向行可以被划分为位于第一基准线O1上方的取向行和位于第一基准线O1下方的取向行。例如,第一取向行31和第二取向行32为位于第一基准线O1上方的取向行,上述两个取向行的全部区域均位于第一基准线O1的上方。又如,第四取向行34和第五取向行35为位于第一基准线O1下方的取向行,上述两个取向行的全部区域均位于第一基准线O1的下方。
在示例性实施方式中,位于第一基准线O1上方的取向行的取向预倾角可以大于0°,位于第一基准线O1下方的取向行的取向预倾角可以小于0°。例如,第一取向行31的取向预倾角可以为5°,第五取向行35的取向预倾角可以为-5°。又如,第二取向行32的取向预倾角可以为2.5°,第四取向行34的取向预倾角可以为-2.5°。
在示例性实施方式中,多个取向行还可以被划分为位于中部区域的取向行,位于中部区域的取向行在液晶透镜面板平面上的正投影与第一基准线O1在液晶透镜面板平面上的正投影至少部分交叠。例如,第三取向行33为位于中部区域的取向行。
在示例性实施方式中,位于中部区域的取向行的取向预倾角可以约为0.1°至1°。例如,位于中部区域的取向行的取向预倾角可以约为0.1°。
在示例性实施方式中,当取向行的数量为偶数时,偶数个取向行可以包括位于第一基准线O1上方的取向行和位于第一基准线O1下方的取向行。当取向行的数量为奇数时,奇数个取向行可以包括位于第一基准线O1上方的取向行、位于第一基准线O1下方的取向行和位于中部区域的取向行。
在示例性实施方式中,取向预倾角的绝对值可以小于或等于6°。
在示例性实施方式中,第一取向行31的取向预倾角可以约为4°至6°,第二取向行32的取向预倾角可以约为2°至3°,第三取向行33的取向预倾角可以约为0.1°至1°,第四取向行34的取向预倾角可以约为-2°至-3°,第五取向行35的取向预倾角可以约为-4°至-6°。例如,第一取向行31的取向预倾角可以约为5°,第二取向行32的取向预倾角可以约为2.5°,第三取向行33的取向预倾角可以约为0.1°,第四取向行34的取向预倾角可以约为-2.5°,第五取向行35的取向预倾角可以约为-5°。
在示例性实施方式中,取向行的数量可以约为2个至10个。
图10为本公开示例性实施例液晶分子的预倾角的示意图。如图10所示,对于经过摩擦处理或者光配向处理的第一取向层和第二取向层,液晶层中的液晶分子在不加电的初始状态将按照取向层的取向预倾角排布,液晶分子的光轴A1与液晶透镜面板平面(XY平面)具有一个倾角γ,倾角γ称为液晶分子的预倾角。
如图7和图9所示,以13.5英寸(inch)尺寸的液晶透镜面板、540mm观看距离为例。对于取向层没有分区的现有液晶透镜面板,当观看者观看面板中心点(观看者的视线与面板中心视线O重叠时),液晶透镜的焦距为726.61μm,当观看者观看面板上方边缘时(观看者的视线与面板中心视线O具有夹角α),液晶透镜的焦距为688.20μm,当观看者观看面板下方边缘时(观看者的视线与面板中心视线O具有夹角-α),液晶透镜的焦距为787.71μm。由于观看者观看面板上方边缘时液晶透镜焦距减少,观看者观看面板下方边缘时液晶透镜焦距增大,且与观看者观看面板中心点时液晶透镜焦距差距很大,因而导致3D成像效果变差。本公开示例性实施例所提供的液晶透镜面板,对取向层进行分区设计,通过增加预倾角(正值)增大液晶透镜的焦距,通过减小预倾角(负值)减小液晶透镜的焦距,补偿了较大的 竖直视角下液晶透镜的焦距,有效减小了较大的竖直视角下液晶透镜的焦距与初始设计的焦距的偏离,有效提高了3D成像效果。
仿真试验表明,当面板上方边缘处的液晶分子具有5°左右的预倾角、面板下方边缘处的液晶分子具有-5°左右的预倾角时,观看者观看面板上方边缘时液晶透镜的焦距优化为723.1μm,观看者观看面板下方边缘时液晶透镜的焦距优化为729.90μm,优化后的焦距与初始设计的焦距仅为3.29μm左右,在误差允许范围内。由此可以看出,本公开通过对取向层进行预倾角分区优化,可以有效改善竖直方向上因液晶视角特性导致的透镜焦距偏差,可以有效提高3D成像效果。
在示例性实施方式中,液晶层采用正性液晶。本公开所涉及的增加预倾角增大焦距和减小预倾角减小焦距中,具体的数值关系与液晶材料的性质以及液晶透镜的规格有关系,可以根据实际情况通过仿真计算获得。
液晶材料具有波长分散性,不同波长的光线在液晶层中传播时具有不同的折射率。例如,某液晶材料对于波长436nm光线的折射率为:n o=1.5405,n e=1.9195;某液晶材料对于波长546nm的折射率为:n o=1.5263,n e=1.8319;某液晶材料对于波长680nm的折射率为:n o=1.5132,n e=1.7919。液晶透镜的等效焦距是与折射率成正比的,对于不同波长的光线,液晶透镜的焦距不同,波长越大,液晶透镜的焦距越大。当以波长546nm(绿光)为中心波长进行液晶透镜设计时,设计焦距约为725μm,实际焦距约为731.1μm。但该液晶透镜在波长450nm(蓝光)时,实际焦距约为606.2μm,在波长650nm(红光)时,实际焦距约为790.5μm。由于不同波长的光线经过液晶透镜时偏折情况不同,在空间传播时不再平行,且液晶透镜具有不同的焦距,因而不同波长的光线经过液晶透镜后不能汇聚到同一点(称为液晶透镜的色散特性),导致显示画面色分离,甚至导致观看到的图像发生错乱。
在示例性实施方式中,在平行于液晶透镜面板的平面上,第一绝缘层可以包括规则排布的多个重复单元,至少一个重复单元可以包括多个绝缘区,至少两个绝缘区的介电常数(permittivity)不同。
图11为本公开示例性实施例第一绝缘层的平面结构示意图。如图11所示,在平行于液晶透镜面板的平面上,第一绝缘层可以包括规则排布的多个 重复单元60,至少一个重复单元60可以包括第一绝缘区131、第二绝缘区132和第三绝缘区133。
在示例性实施方式中,第一绝缘区131被配置为当第一波长的光线经过液晶层时,对第一绝缘区131所对应的液晶透镜的色散特性进行补偿,第二绝缘区132被配置为当第二波长的光线经过液晶层时,对第二绝缘区132所对应的液晶透镜的色散特性进行补偿,第三绝缘区133被配置为当第三波长的光线经过液晶层时,对第三绝缘区133所对应的液晶透镜的色散特性进行补偿,使得三个绝缘区所对应的液晶透镜的焦距基本上相同,三个波长的光线经过液晶透镜后可以汇聚到空间同一点。
在示例性实施方式中,第一绝缘层的第一绝缘区具有第一介电常数,第一绝缘层的第二绝缘区具有第二介电常数,第一绝缘层的第三绝缘区具有第三介电常数,第一介电常数、第二介电常数和第三介电常数不同。
在示例性实施方式中,第一波长可以大于第二波长,第一介电常数可以大于第二介电常数。
在示例性实施方式中,第二波长可以大于第三波长,第二介电常数可以大于第三介电常数。
在示例性实施方式中,第一波长可以约为605nm至700nm,第二波长可以约为505nm至600nm,第三波长可以约为400nm至500nm。
在示例性实施方式中,第一介电常数可以约为5至6。例如,对于中心波长为650nm左右,采用第一介电常数约为5.5左右的第一绝缘区,可以将焦距从790.5μm补偿至725μm左右。
在示例性实施方式中,第二介电常数可以约为3.0至3.5。例如,对于中心波长为550nm左右,采用第二介电常数约为3.2左右的第二绝缘区,可以实现焦距为725μm左右。
在示例性实施方式中,第三介电常数可以约为1.5至2.0。例如,对于中心波长为450nm左右,采用第三介电常数约为1.7左右的第三绝缘区,可以将焦距从606.2μm补偿至725μm左右。
在示例性实施方式中,第一绝缘层的厚度可以约为1.0μm至2.0μm。例如,第一绝缘层的厚度可以约为1.4μm。
在示例性实施方式中,绝缘层对电压的削减作用还与绝缘层的厚度有关,绝缘层的厚度越大,绝缘层对电压的削减作用越大,因而实现相同的削减效果时,较厚的绝缘层作用下可以减小介电常数的变化量。
本公开通过在第一绝缘层上进行分区设置,不同的绝缘区对应透过不同波长的光线,不同绝缘区的材料具有不同的介电系数,利用不同的介电系数调整实际作用于液晶层的电压,使得三个绝缘区所对应的液晶透镜的焦距均为设计值,三个波长的光线经过液晶透镜后可以汇聚到空间同一点,从而实现对液晶透镜色散特性的补偿。
图12为液晶透镜等效面型的仿真结果示意图,以波长450nm光线为例。如图12所示,对于第一绝缘层没有进行分区的现有方案,液晶透镜的实际焦距约为606.2μm,且液晶透镜的等效面型与理想面型的偏差约为18.36%,超过了允许范围。对于本公开第一绝缘层进行分区的方案,通过改变波长450nm光线对应绝缘区的介电系数,在不改变其它结构的情况下,液晶透镜的焦距被补偿到725.16μm,且液晶透镜的等效面型与理想面型的偏差下降到9.17%。
在示例性实施方式中,第一绝缘层上形成多个绝缘区可以通过图案化工艺实现。例如,可以通过第一次图案化工艺形成具有第一介电常数的第一绝缘区图案,通过第二次图案化工艺形成具有第二介电常数的第二绝缘区图案,通过第三次图案化工艺形成具有第三介电常数的第三绝缘区图案。
通过本公开示例性实施例显示面板的结构可以看出,本公开创新性地提出了复合分区方案,竖直方向视角特性按取向预倾角进行分区,不同分区的取向预倾角不同,色散特性按波长进行分区,不同分区的介电系数不同,有效提高了基于液晶透镜的3D显示成像效果,提高了显示质量和品质。对于按取向预倾角进行分区,通过增加预倾角增大液晶透镜的焦距,通过减小预倾角减小液晶透镜的焦距,补偿了较大的竖直视角下液晶透镜的焦距,有效减小了较大的竖直视角下液晶透镜的焦距与初始设计的焦距的偏离。对于按波长进行分区,不同的绝缘区对应透过不同波长的光线,不同绝缘区的材料具有不同的介电系数,利用不同的介电系数调整实际作用于液晶层的电压, 使得三个绝缘区所对应的液晶透镜的焦距均为设计值,三个波长的光线经过液晶透镜后可以汇聚到空间同一点,从而实现对液晶透镜色散特性的补偿。此外,本公开示例性实施例液晶透镜面板的制备可以利用成熟的制备设备即可实现,对工艺改进较小,兼容性高,工艺实现简单,材料来源广泛并且成本低廉,易于实施,具有良好的应用前景。
本公开示例性实施例还提供了一种显示装置,包括显示面板和前述的液晶透镜面板,液晶透镜面板设置在显示面板的出光侧。
在示例性实施方式中,显示面板可以包括多个像素岛,至少一个像素岛可以包括至少一个像素单元,至少一个像素单元可以包括出射红色光线的第一子像素P1、出射绿色光线的第二子像素P2和出射蓝色光线的第三子像素P3。
在示例性实施方式中,液晶透镜面板上第一绝缘层的多个重复单元的位置可以与显示面板上的多个像素单元的位置一一对应。重复单元中第一绝缘区的位置和形状可以与像素单元中第一子像素的位置和形状一一对应,使得第一子像素出射的红色光线仅透过第一绝缘区。重复单元中第二绝缘区的位置和形状可以与像素单元中第二子像素的位置和形状一一对应,使得第二子像素出射的绿色光线仅透过第二绝缘区。重复单元中第三绝缘区的位置和形状可以与像素单元中第三子像素的位置和形状一一对应,使得第三子像素出射的蓝色光线仅透过第三绝缘区。
图13为本公开示例性实施例像素岛与透镜对应位置的示意图。如图13所示,显示面板可以包括多个像素岛70,每个像素岛70可以包括三个像素单元列,每个像素单元列可以包括在竖直方向Y周期性排布的第一子像素P1、第二子像素P2和第三子像素P3。液晶透镜面板所形成的液晶透镜为沿着竖直方向Y延伸的柱状透镜80,每个柱状透镜80的位置与每个像素岛70的位置一一对应,即每个像素岛70中的第一子像素P1、第二子像素P2和第三子像素P3对应同一个柱状的液晶透镜。
在示例性实施方式中,显示装置可以是手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
虽然本公开所揭露的实施方式如上,但所述的内容仅为便于理解本公开而采用的实施方式,并非用以限定本公开。任何本公开所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本申请的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (15)

  1. 一种液晶透镜面板,包括相对设置的第一基板、第二基板以及设置在所述第一基板和所述第二基板之间的液晶层,所述第一基板包括设置在第一基底朝向所述第二基板一侧的第一结构层和设置在所述第一结构层远离所述第一基底一侧的第一取向层,所述第二基板包括设置在第二基底朝向所述第一基板一侧的第二结构层和设置在所述第二结构层远离所述第二基底一侧的第二取向层;在平行于液晶透镜面板的平面上,所述第一取向层和所述第二取向层中的至少一个包括多个取向区,至少两个取向区的取向预倾角不同。
  2. 根据权利要求1所述的液晶透镜面板,其中,多个取向区包括沿着竖直方向依次设置多个取向行,多个取向行中至少两个取向行的取向预倾角不同,所述竖直方向是液晶透镜面板被观看者观看时的竖直方向。
  3. 根据权利要求2所述的液晶透镜面板,其中,至少两个取向行相对于第一基准线对称设置,所述两个取向行的取向预倾角的绝对值相同;所述第一基准线是沿着水平方向延伸且经过面板中心点的直线,所述面板中心点是液晶透镜面板的几何中心。
  4. 根据权利要求3所述的液晶透镜面板,其中,所述取向行的取向预倾角的绝对值与第一距离成正比,所述第一距离是取向行的第一中心线与所述第一基准线之间的距离,所述第一中心线是在竖直方向上平分所述取向行且沿着水平方向延伸的直线。
  5. 根据权利要求3所述的液晶透镜面板,其中,位于所述第一基准线上方的取向行的取向预倾角大于0°,位于所述第一基准线下方的取向行的取向预倾角小于0°,位于所述第一基准线上的取向行的取向预倾角为0.1°至1°。
  6. 根据权利要求2所述的液晶透镜面板,其中,所述取向预倾角的绝对值小于或等于6°。
  7. 根据权利要求1至6任一所述的液晶透镜面板,其中,所述第一结构层包括设置在所述第一衬底朝向所述第二基板一侧的第一电极层以及设置在 所述第一电极层远离所述第一衬底一侧的第一绝缘层;所述第二结构层包括设置在所述第二衬底朝向所述第一基板一侧的第二电极层;所述第一电极层为条状电极,所述第二电极层为面状电极。
  8. 根据权利要求7所述的液晶透镜面板,其中,在平行于液晶透镜面板的平面上,所述第一绝缘层包括规则排布的多个重复单元,至少一个重复单元包括多个绝缘区,至少两个绝缘区的介电常数不同。
  9. 根据权利要求8所述的液晶透镜面板,其中,所述重复单元包括第一绝缘区、第二绝缘区和第三绝缘区,所述第一绝缘区被配置在第一波长的光线经过所述液晶层时,对所述第一绝缘区所对应的液晶透镜的色散特性进行补偿,所述第二绝缘区被配置在第二波长的光线经过所述液晶层时,对所述第二绝缘区所对应的液晶透镜的色散特性进行补偿,所述第三绝缘区被配置在第三波长的光线经过所述液晶层时,对所述第三绝缘区所对应的液晶透镜的色散特性进行补偿,使得三个绝缘区所对应的液晶透镜的焦距相同。
  10. 根据权利要求9所述的液晶透镜面板,其中,所述第一波长大于所述第二波长,所述第二波长大于所述第三波长;所述第一绝缘区具有第一介电常数,所述第二绝缘区具有第二介电常数,第三绝缘区具有第三介电常数,所述第一介电常数大于所述第二介电常数,所述第二介电常数大于所述第三介电常数。
  11. 根据权利要求10所述的液晶透镜面板,其中,所述第一波长为605nm至700nm,所述第一介电常数为5至6。
  12. 根据权利要求10所述的液晶透镜面板,其中,所述第二波长为505nm至600nm,所述第二介电常数为3.0至3.5。
  13. 根据权利要求10所述的液晶透镜面板,其中,所述第三波长为400nm至500nm,所述第三介电常数为1.5至2.0。
  14. 一种显示装置,其中,包括显示面板和如权利要求1至13任一所述的液晶透镜面板,所述液晶透镜面板设置在所述所述显示面板的出光侧。
  15. 根据权利要求14所述的显示装置,其中,所述显示面板包括规则排布的多个像素单元,至少一个像素单元包括出射第一颜色光线的第一子像 素、出射第二颜色光线的第二子像素和出射第三颜色光线的第三子像素,所述液晶透镜面板的重复单元中,第一绝缘区与所述第一子像素的位置相对应,第二绝缘区与所述第二子像素的位置相对应,第三绝缘区与所述第三子像素的位置相对应。
PCT/CN2021/141733 2021-12-27 2021-12-27 液晶透镜面板和显示装置 WO2023122898A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180004226.7A CN116897313A (zh) 2021-12-27 2021-12-27 液晶透镜面板和显示装置
US18/273,557 US12117695B2 (en) 2021-12-27 2021-12-27 Liquid crystal lens panel and display device
PCT/CN2021/141733 WO2023122898A1 (zh) 2021-12-27 2021-12-27 液晶透镜面板和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/141733 WO2023122898A1 (zh) 2021-12-27 2021-12-27 液晶透镜面板和显示装置

Publications (1)

Publication Number Publication Date
WO2023122898A1 true WO2023122898A1 (zh) 2023-07-06

Family

ID=86996809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141733 WO2023122898A1 (zh) 2021-12-27 2021-12-27 液晶透镜面板和显示装置

Country Status (3)

Country Link
US (1) US12117695B2 (zh)
CN (1) CN116897313A (zh)
WO (1) WO2023122898A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091828A (ja) * 2008-10-09 2010-04-22 Citizen Holdings Co Ltd 液晶光学素子とその製造方法
CN102591088A (zh) * 2012-02-29 2012-07-18 华映视讯(吴江)有限公司 用于三维显示的液晶透镜及其制作方法
CN102830568A (zh) * 2011-06-15 2012-12-19 三星显示有限公司 液晶透镜及包括该液晶透镜的显示装置
CN109683422A (zh) * 2019-01-30 2019-04-26 京东方科技集团股份有限公司 一种液晶透镜及其制备方法
CN109870864A (zh) * 2019-03-28 2019-06-11 京东方科技集团股份有限公司 光学透镜及其制备方法和光学器件

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512563B1 (en) * 1999-09-27 2003-01-28 Citizen Watch Co., Ltd. Method for producing ultrahigh resolution optical device panel
TWI380098B (en) * 2008-10-17 2012-12-21 Au Optronics Corp Method of forming a display panel
JP5732348B2 (ja) * 2011-08-12 2015-06-10 株式会社ジャパンディスプレイ 表示装置
WO2013118779A1 (ja) * 2012-02-10 2013-08-15 シャープ株式会社 液晶表示パネル

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091828A (ja) * 2008-10-09 2010-04-22 Citizen Holdings Co Ltd 液晶光学素子とその製造方法
CN102830568A (zh) * 2011-06-15 2012-12-19 三星显示有限公司 液晶透镜及包括该液晶透镜的显示装置
CN102591088A (zh) * 2012-02-29 2012-07-18 华映视讯(吴江)有限公司 用于三维显示的液晶透镜及其制作方法
CN109683422A (zh) * 2019-01-30 2019-04-26 京东方科技集团股份有限公司 一种液晶透镜及其制备方法
CN109870864A (zh) * 2019-03-28 2019-06-11 京东方科技集团股份有限公司 光学透镜及其制备方法和光学器件

Also Published As

Publication number Publication date
CN116897313A (zh) 2023-10-17
US20240085742A1 (en) 2024-03-14
US12117695B2 (en) 2024-10-15

Similar Documents

Publication Publication Date Title
JP7415062B2 (ja) 液晶表示装置
US8482597B2 (en) Stereoscopic image display device
CN101387798B (zh) 液晶显示面板和使用其的lcd装置
US9086576B2 (en) Stereo display and image display method thereof
US20120314144A1 (en) Display device
JP2014048652A (ja) 液晶表示装置
US20130128354A1 (en) Three-dimensional image display apparatus
US10901273B2 (en) Display apparatus
JP2007171906A (ja) 液晶表示装置及びその駆動方法
US9195100B2 (en) Array substrate, liquid crystal panel and display device with pixel electrode and common electrode whose projections are overlapped
US20090237606A1 (en) Liquid crystal display device
CN101097366B (zh) 用于液晶显示器的薄膜晶体管基板
CN106802518B (zh) 液晶显示装置
JP6548015B2 (ja) 液晶表示装置
US20120229442A1 (en) Display and method of driving the same, as well as barrier device and method of producing the same
US9304343B2 (en) Liquid crystal display device
US10203564B2 (en) Array substrate, liquid crystal module and display device including pixel sub-units having different electric field intensities
US20120229429A1 (en) Display and method of driving the same, as well as barrier device and method of producing the same
JP2015004718A (ja) 液晶表示装置および液晶表示装置の駆動方法
US10866441B2 (en) Liquid crystal display device
WO2023122898A1 (zh) 液晶透镜面板和显示装置
US20140055684A1 (en) Liquid crystal display apparatus and liquid crystal projector
KR101308439B1 (ko) 액정 표시 패널
US11520199B2 (en) Display device
US8497946B2 (en) Liquid crystal display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180004226.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18273557

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE