WO2023120973A1 - 압력 패드 센서 가압 장치, 압력 패드 센서의 출력 수치 교정방법 및 배터리 셀 면압 측정방법 - Google Patents

압력 패드 센서 가압 장치, 압력 패드 센서의 출력 수치 교정방법 및 배터리 셀 면압 측정방법 Download PDF

Info

Publication number
WO2023120973A1
WO2023120973A1 PCT/KR2022/017588 KR2022017588W WO2023120973A1 WO 2023120973 A1 WO2023120973 A1 WO 2023120973A1 KR 2022017588 W KR2022017588 W KR 2022017588W WO 2023120973 A1 WO2023120973 A1 WO 2023120973A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
pad sensor
pressure pad
output value
node
Prior art date
Application number
PCT/KR2022/017588
Other languages
English (en)
French (fr)
Inventor
이기영
김동욱
김두열
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to JP2023558234A priority Critical patent/JP2024511429A/ja
Priority to EP22911611.6A priority patent/EP4379339A1/en
Priority to CN202280028216.1A priority patent/CN117178176A/zh
Publication of WO2023120973A1 publication Critical patent/WO2023120973A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L25/00Testing or calibrating of apparatus for measuring force, torque, work, mechanical power, or mechanical efficiency
    • G01L25/006Testing or calibrating of apparatus for measuring force, torque, work, mechanical power, or mechanical efficiency for measuring work or mechanical power or mechanical efficiency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/205Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using distributed sensing elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L25/00Testing or calibrating of apparatus for measuring force, torque, work, mechanical power, or mechanical efficiency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0028Force sensors associated with force applying means
    • G01L5/0038Force sensors associated with force applying means applying a pushing force
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus

Definitions

  • the present invention relates to a pressure device for calibrating an output value of a pressure pad sensor used for measuring swelling pressure of a battery cell to a reliable pressure value, a calibration method, and a method for measuring surface pressure of a battery cell based on the calibration method.
  • Lithium-polymer pouch-type secondary batteries are generally prepared in the form of an aluminum laminate sheet in which an electrode assembly is embedded, so they have the advantage of high energy density compared to their small size and weight, but have a weak mechanical rigidity.
  • a swelling phenomenon occurs in which an electrode becomes thick during repetitive charging and discharging processes, or a pouch exterior material swells due to gas generated by decomposition of an internal electrolyte as a side reaction.
  • the swelling pressure of the pouch-type secondary batteries generated at this time is measured during a charge and discharge test for the pouch-type secondary batteries in the initial design stage, and based on the result It is necessary to determine the mechanical strength of a module case or the like.
  • the present applicant devised a pressure pad sensor (see FIG. 6).
  • the pressure pad sensor has a size corresponding to one surface of a pouch-type secondary battery, has a sheet shape, and includes a plurality of pressure sensing nodes therein.
  • Each sensing node may be composed of a Force Sensitive Resistor (FSR) sensor using a property in which a resistance value is changed according to physical force, weight, and the like.
  • FSR Force Sensitive Resistor
  • each sensing node of the pressure pad sensor converts the resistance into a digital value and outputs a numerical value (0 to 255) called ADC.
  • ADC a numerical value
  • the present invention has been devised to solve the above problems, in order to convert the output value of each sensing node of the pressure pad sensor into a reliable pressure value, to pressurize each sensing node of the pressure pad sensor while changing the pressure
  • An object of the present invention is to provide a method for calibrating output values of a specialized pressure device and a pressure pad sensor, and a method for measuring surface pressure of a battery cell using the pressure pad sensor and based on the calibration method.
  • a node pressing unit provided to be able to contact one of the sensing nodes by descending from a predetermined height. and a press unit including a weight loading unit provided on an upper portion of the node press unit so that a load of the weight is transferred to the node press unit; a support frame supporting the pressing unit at a predetermined height; and a first driving unit for moving the pressure unit in a first direction or an opposite direction, a second driving unit for moving the pressure unit in a second direction or an opposite direction, and a third driving unit for moving the pressure unit up and down with respect to the pressure pad sensor.
  • a pressure pad sensor pressing device including a driving unit may be provided.
  • the node pressing unit may be configured to have a bottom surface corresponding to one of the sensing nodes.
  • the support frame may include a pair of leg plates spaced apart from each other in the second direction and disposed upright; and a support board extending in the second direction and connected to upper ends of the pair of leg plates, wherein the support board is disposed so that the node pressing part extends downward from the top of the support board and is movable in the second direction. It may be provided with a long hole configured to.
  • the node pressing unit may include a pressing block extending to a lower portion of the support board through the long hole hole, and a flange block connected to the pressing block and having a larger width than the long hole hole and disposed above the support board.
  • the weight loading unit may be connected to the flange block at a predetermined interval by at least one connecting rod extending vertically upward from the flange block.
  • the weight loading unit is coupled to an upper end of the connecting rod and includes a tray; And it may include one or more weights provided to be seated on the tray.
  • the first driving unit may include a first guide rail extending along the first direction; a first slide block coupled to a lower portion of each of the leg plates and movably connected to the first guide rail; a shaft connection block coupled to one side of the leg plate; a first driving shaft connected to the shaft connection block so that the shaft connection block moves in the first direction or a reverse direction when the shaft connection block extends in the first direction and rotates in a forward and reverse direction through the shaft connection block; And it may include a first drive motor for rotating the first drive shaft in the normal and reverse direction.
  • the second drive unit may include a second guide rail disposed extending along a second direction on the support board; a second slide block movably connected to the second guide rail; a shaft connecting frame wrapped around the connecting rod and coupled to the second slide block; a second drive shaft connected to the shaft connection frame so that the shaft connection frame moves in the second direction or a reverse direction when the shaft connection frame extends in the second direction and rotates forward and backward through the shaft connection frame; And it may include a second drive motor for rotating the second drive shaft in the normal and reverse direction.
  • the third driving unit may include a piston rod extending in a vertical direction; a lever member having one end coupled to the weight loading unit and the other end coupled to the piston rod, and configured to elevate and lower the weight loading unit by a seesaw operation by the operation of the piston rod; And it may include a third drive motor for moving the piston rod in the vertical direction.
  • the pressure pad sensor pressing device may further include a system unit for recording the output values of each of the sensing nodes obtained by individually pressing the plurality of sensing nodes with different weights, and a display device capable of displaying the output values.
  • a pressure pad sensor is prepared, and each sensing node of the pressure pad sensor is individually pressed while the pressure is changed each time from 1 to n times (n is a natural number of 2 or more) to achieve the above 1
  • a method for calibrating the output value of can be provided.
  • the step of measuring the sensor output value may be performed using the above-described pressure pad sensor pressing device.
  • Displaying the standard pressure data derived through the standard pressure data estimating step may further include.
  • the step of estimating standard pressure data includes deriving linear equations for estimating standard pressure data corresponding to a section between the output values of each sensing node for each of the first to n times using a linear interpolation method.
  • the pressure applied m-1 time means P m-1
  • the pressure applied m times means Pm
  • m n ⁇ 2
  • the output value of the sensing node for P 1 is K 1
  • the output value of the sensing node for P 2 is K 2
  • the output value of the sensing node for P m-1 is K m- 1
  • the output value of the sensing node for P m means K m Fm-1(X): standard pressure data value
  • X the output value of the sensing node
  • a battery cell surface pressure measurement method for measuring surface pressure during swelling of battery cells, wherein a plurality of sensing nodes are arranged in horizontal and vertical directions and have an area corresponding to one surface of the battery cell inserting a pressure pad sensor between the battery cells and stacking them together; and measuring the surface pressure of each area during swelling of the battery cells based on the above-described method of calibrating the output value of the pressure pad sensor.
  • the present invention it is possible to determine the output value according to the pressure for each sensing node of the pressure pad sensor using the pressure pad sensor pressurizing device, and the output values for each sensing node identified in this way can be used as the pressure pad sensor according to the present invention.
  • calibrating through the output value calibration method and converting it into standard pressure data it is possible to solve the problem that the output value does not come out the same for the same force due to manufacturing errors of each sensing node.
  • the pressure pad sensor when measuring the swelling pressure distribution of battery cells using a pressure pad sensor, instead of an output value having an error for each sensing node even with the same force, standard pressure data corrected for the error is used as a measured value. can be used Accordingly, the pressure pad sensor can be used to more accurately and easily measure the surface pressure of each region during swelling of the battery cells.
  • FIG. 1 is a perspective view of a pressure pad sensor pressure device according to an embodiment of the present invention.
  • FIG. 2 is a view of the pressure pad sensor pressing device of FIG. 1 viewed from the rear (along the X direction).
  • FIG. 3 is a schematic cutaway view of the pressure pad sensor pressing device according to AA′ of FIG. 1;
  • FIG. 4 is a schematic cutaway view of a pressure pad sensor pressing device according to BB′ of FIG. 1;
  • FIG. 5 is a view of the pressure pad sensor pressing device of FIG. 4 viewed from another angle.
  • FIG. 6 is a diagram showing a pressure pad sensor according to an embodiment of the present invention.
  • 7A to 7D are views showing output values for each sensing node obtained by individually pressing each sensing node while changing the pressure P1 to P4 from one to four times according to an embodiment of the present invention.
  • FIGS. 7A to 7D is a graph showing an example of applying a linear interpolation method using output values according to pressure changes of one sensing node (C0, R0) according to FIGS. 7A to 7D.
  • FIG. 9 is a graph showing the relationship between output values of a plurality of sensing nodes and standard pressure data derived by a calibration method according to an embodiment of the present invention.
  • FIG. 10 is a view showing a pressure pad sensor placed between battery cells and stacked together with battery cells according to a method for measuring surface pressure of a battery cell according to an embodiment of the present invention.
  • a pressure pad sensor press device may be used for pressurizing each sensing node in a film type pressure pad sensor having a plurality of sensing nodes.
  • the scope of rights of the pressure pad sensor pressing device of the present invention should not be limited to the use of pressing the pressure pad sensor.
  • FIG. 1 is a perspective view of a pressure pad sensor pressing device according to an embodiment of the present invention
  • FIG. 2 is a view looking at the pressure pad sensor pressing device of FIG. 1 from the rear (from -X to +X direction)
  • FIG. 3 is 1 is a schematic cutaway view of the pressure pad sensor pressing device along line AA'
  • Figure 4 is a schematic cutaway view of the pressure pad sensor pressing device along line BB' in FIG. 1, and FIG. This is a view of the pressure pad sensor pressing device of the other angle.
  • the pressure pad sensor pressing device 10 includes a pressing unit 100, a support frame 200, a first driving unit 300, a second driving unit 400, and a second driving unit 400.
  • 3 drive unit 500 is included.
  • the pressing unit 100 includes a node pressing unit 110 and a weight loading unit 120, and by the operation of the first driving unit 300, the second driving unit 400 and the third driving unit 500, X, It may be configured to apply uniform pressure to all sensing nodes 21 of the pressure pad sensor 20 while moving along the Y and Z axes.
  • the node pressing unit 110 descends from the upper part of the pressure pad sensor 20 vertically and is provided to be in surface contact with one of the sensing nodes 21, and the weight loading unit 120 ) may be provided on the upper part of the node pressurizing part 110 so as to pressurize each sensing node 21 while increasing its weight.
  • the pressure pad sensor pressing device 10 includes a base frame 600, a frame cover 700 covering an upper portion of the support frame 200, and the base A table 800 capable of seating or coupling the frame 600 thereon may be further included.
  • the base frame 600 includes a sensor pedestal 610 on which the pressure pad sensor 20 can be placed flat, and rail covers 620 and 630 at both edge regions along the Y direction.
  • the support frame 200 includes a pair of leg plates 210 and 220 that are spaced side by side in a second direction (Y direction) and disposed upright, and an upper end of the pair of leg plates 210 and 220 extending in the second direction. It includes a support board 230 connected to, and is provided to be movable in a first direction or a reverse direction ( ⁇ X direction) on the base frame 600.
  • the press unit 100 is installed on the upper part of the support frame 200 .
  • a first driving unit 300 is connected to the support frame 200 to move the support frame 200 in the first direction or the reverse direction ( ⁇ X direction).
  • the first drive unit 300 is located under the rail covers 620 and 630 of the base frame 600 and extends along a first direction (X direction). , a first slide block 320 coupled to the lower portion of the leg plates 210 and 220 and movably connected to the first guide rail 310, and a shaft connection block coupled to one side of the leg plates 210 and 220 330, passing through the shaft connection block 330 and extending in the first direction (X direction) and rotating in the forward and reverse direction, the shaft connection block 330 moves in the first direction or the reverse direction ( ⁇ X direction)
  • a first driving shaft 340 connected to the shaft connection block 330 to move and a first driving motor 350 rotating the first driving shaft 340 forward and backward.
  • the first drive motor 350 may be connected to one end of the first drive shaft 340 by a timing belt.
  • the first drive shaft 340 and the shaft connection block 330 are relatively rotatably connected by, for example, a ball screw method, so that when the first drive shaft 340 rotates forward and backward, the shaft connection block 330 It may move in a first direction or a reverse direction along the first driving shaft 340 .
  • the shaft connection block 330 is fixedly coupled to one side of one leg plate 210 so that the support frame 200 together with the shaft connection block 330 moves in the first direction. Or it can be made to move in the reverse direction.
  • the support frame 200 passes through the upper surfaces of the rail covers 620 and 630 in which the pair of leg plates 210 and 220 are cut, and the lower end thereof is fixedly coupled to the first slide block 320 and the first slide block 320 ) is slidably connected on the first guide rail 310 and can move smoothly and precisely along the first guide rail 310 .
  • the pressing unit 100 is installed on the support board 230 of the support frame 200 and can move in a first direction or the reverse direction together with the support frame 200 .
  • the second driving unit 400 is disposed extending along the second direction (Y direction) on the support board 230
  • the second drive shaft 440 and the second drive shaft 440 connected to the shaft connection frame 430 so that the shaft connection frame 430 moves in the second direction or the opposite direction
  • the support board 230 has a long hole 231 provided in a long perforated form in the second direction (Y direction).
  • the long hole 231 may have a width corresponding to a portion having the largest width in the node pressing portion 110 and may be provided in a long perforated form in the second direction. Since this long hole 231 is provided in the support board 230, the node pressing part 110 of the pressing unit 100 can be vertically disposed from top to bottom of the support board 230, in this state. It can move in the second direction or its reverse direction ( ⁇ Y direction).
  • the second guide rail 410 may be provided at both edge regions in the width direction (X direction) of the support board 230 with the long hole 231 interposed therebetween.
  • a second slide block 420 is connected to each of the second guide rails 410, and at least one side of a shaft connection frame 430 is fixedly coupled to an upper portion of the second slide block 420.
  • the shaft connection frame 430 covers the upper part of the node pressing part 110, and includes four connecting rods vertically connecting the node pressing part 110 and the weight loading part 120. (130) may be provided in a form that can pass through the body up and down.
  • the second drive shaft 440 is connected to the shaft connection frame 430 in a relative rotation manner, for example, by a ball screw method, and one side of the second drive shaft 440 A second drive motor 450 is connected to the end.
  • the shaft connection frame 430 moves in the second direction or the reverse direction ( ⁇ Y direction). do.
  • the pressure unit 100 is connected to the shaft connection frame 430 so that the pressure unit 100 moves together with the shaft connection frame 430 .
  • the first driving motor 350 and the second driving motor 450 are controlled so that the pressurizing unit 100 presses
  • the pressure unit 100 may be moved in the ⁇ X direction and the ⁇ Y direction so as to be located vertically above the position where the sensing node 21 is located.
  • the pressure pad sensor 20 includes a plurality of sensing nodes 21 arranged in 5 rows (R0 to R4) and 24 columns (C0 to C23) spaced apart from each other at predetermined intervals.
  • the first driving motor 350 and/or the second driving motor 450 are controlled to pressurize
  • the unit 100 can be precisely moved to a desired location.
  • the pressurization unit 100 includes a node pressurization unit 110 and a weight loading unit. 120, and the node pressing part 110 and the weight loading part 120 are configured to be connected by at least one connecting rod 130.
  • the node pressing part 110 includes a pressing block 111 and a flange block 113.
  • the press block 111 protrudes below the support board 230 through the long hole 231 of the support board 230, and the bottom surface may be provided with a size corresponding to the surface area of one sensing node 21. there is.
  • the bottom surface of the pressure block 111 means a place in direct surface contact with the sensing node 21 .
  • the pressing block 111 may be provided integrally as a whole or may be configured in a form in which several parts are assembled.
  • the press block 111 of this embodiment belongs to the latter, and includes a replaceable contact point block 111a at the lower end.
  • the contact point block 111a is a portion having the bottom surface and may be manufactured in various shapes according to the shape of the sensing node 21 to be pressed. That is, as shown in FIG. 6, the sensing node 21 of this embodiment is square, so that the lower surface of the contact point block 111a is also provided in a square shape corresponding to the area of the sensing node 21 of the square. Unlike the present embodiment, when the sensing node 21 is circular or polygonal, the lower surface of the contact point block 111a may also be provided in a corresponding shape.
  • the flange block 113 has a predetermined thickness and has a plate-like shape extending horizontally at the top of the pressing block 111, is disposed on the upper part of the support board 230, and has a larger width than the long hole 231. It can be arranged to have. Therefore, the pressing block 111 can go down the support board 230 only until the flange block 113 contacts the upper surface of the support board 230 .
  • the weight loading unit 120 includes a tray 121 and a weight weight 122 .
  • the tray 121 may be provided in the form of a shelf or box on which the weight 122 can be placed, and various types of weight 122, such as 1 kg to 10 kg, for example, may be used.
  • the node pressing unit 110 and the weight loading unit 120 are connected by at least one connecting rod 130, and a predetermined distance may be maintained vertically.
  • the connecting rod 130 may be provided in the form of a rod having a predetermined length and vertically disposed between the flange block 113 and the tray 121 .
  • a bearing structure may be applied to a region where the connecting rod 130 passes through the shaft connecting frame 430 .
  • a total of four connecting rods 130 are provided at each of the four corners of the flange block 113 so that the tray 121 is stably positioned on the top of the flange block 113 and the weights 122 are loaded on either side. It is good to apply it to the flange block 113 without leaning towards it.
  • the third drive unit 500 is configured to support the press unit 100 as described above and move it up and down.
  • the third driving unit 500 is a piston rod 510 extending in the vertical direction, one end coupled to the weight loading unit 120, and the other end connected to the piston. It is coupled to the rod 510 and includes a lever member 520 provided to seesaw by the operation of the piston rod 510 and a third drive motor 530 for moving the piston rod 510 in the vertical direction. .
  • the lever member 520 has one end coupled to the tray 121 and the other end coupled to the piston rod 510 so as to seesaw with respect to a central fixed axis.
  • the piston rod 510 is lowered by the operation of the third driving motor 530 and the other end of the lever member 520 goes down, one end of the lever member 520 goes up and loads the weight.
  • the tray 121 of the section 120 also rises in the +Z direction.
  • the node pressing unit 110 connected to the weight loading unit 120 by the connecting rod 130 also rises in the +Z direction.
  • the pressing unit 100 can be moved in the ⁇ Z direction by the third driving unit 500 .
  • the pressure block 111 is moved to a position close to the corresponding sensing node 21, and the operation of the first to third driving motors 350, 450, and 530 are all stopped. Then, the sensing node 21 may be pressurized by the load of the pressurization unit 100 .
  • the load of the pressurization unit 100 without the weights 122 is 5kgf
  • adding 5kg weights 122 to the top of the tray 121 one by one will increase the load of the pressurization unit 100. It can be increased to 10kgf, 15kgf, 20kgf.
  • the resistance value of the sensing node 21 may be output as a digital value each time.
  • a (flat flexible) cable can be connected to the connector part 22 of the pressure pad sensor 20, and the digital values obtained by pressing each sensing node 21 are obtained through the cable not shown).
  • the system unit may refer to a device composed of a memory for recording the digital values and a microprocessor for performing an operation according to a method for calibrating an output value of the pressure pad sensor 20 to be described later based on the digital values.
  • the digital values may be displayed on the display device 900 as output values ranging from 1 to 255, for example.
  • a constant pressure can be uniformly applied to each sensing node 21 of the pressure pad sensor 20, and the applied pressure It is possible to grasp how the output value of each sensing node 21 changes when it is changed.
  • the method for calibrating the output value of the pressure pad sensor 20 according to the present invention includes measuring the output value of the sensor and estimating standard pressure data.
  • the pressure pad sensor 20 is prepared, and the pressure is changed each time from 1 to n times (n is a natural number of 2 or more), and each sensing node 21 of the pressure pad sensor 20 ) is individually pressed to store the output values of each of the sensing nodes 21 from the 1st to n times.
  • the step of measuring the sensor output value may be performed through the pressure pad sensor pressing device 10 according to the present invention.
  • pressure can be uniformly applied to each sensing node 21, so that the output value of each sensing node 21 for a specific pressure can be accurately known. Therefore, it is most preferable to perform the sensor output numerical measurement step using the pressure pad sensor pressing device 10 .
  • the scope of rights of the method for calibrating the output value of the pressure pad sensor 20 according to the present invention is not limited depending on whether or not the pressure device according to the present invention is used. That is, the sensor output numerical measurement step may be performed by an alternative means other than the pressurization device of the present invention.
  • each sensing node 21 shown in FIGS. 7A to 7D it can be seen that the output values are not the same even if the same pressure is applied to each sensing node 21 .
  • the output values of the first sensing node C0 and R0 and the 120th sensing node C23 and R4 for the pressure P 1 are 89 and 80, respectively, which are not the same.
  • the same output value may not be obtained for each sensing node 21 even with the same force as described above. Therefore, if the output value for each area of the pressure pad sensor 20 is used as it is during swelling of the battery cell, a large pressure measurement error may occur. Therefore, the output value of each sensing node 21 needs to be calibrated.
  • the calibration may be performed through the standard pressure data estimation step according to the present invention as follows.
  • the standard pressure data estimating step is the standard pressure according to the output value for each sensing node 21 using two or more different pressures applied to each of the sensing nodes 21 and two or more output values and interpolation. This step is to estimate the data.
  • standard pressure data corresponding to the interval between the output values of each sensing node 21 for each iteration from the 1st to the nth times is estimated using a linear interpolation method. It includes deriving linear equations for
  • the first order equation can be calculated by the following formula.
  • Standard pressure data can be obtained by substituting the value of X in the difference equation.
  • the standard pressure data obtained in this way may be used as a scale representing the intensity of the arbitrary pressure value.
  • FIGS. 7A to 7D is a graph showing an example of applying a linear interpolation method using output values according to pressure changes of one sensing node (C0, R0) according to FIGS. 7A to 7D.
  • the linear equation for the interval between (K 1 ,P 1 ) ⁇ (K 2 ,P 2 ) is F 1 (X), and (K 2 ,P 2 ) ⁇ (K 3 ,P 3 )
  • the linear equation for the interval between (K 3 ,P 3 ) and (K 4 ,P 4 ) is F 3 (X).
  • the linear equation of can be derived as follows.
  • the six sensing nodes may have different output values, but the standard pressure corresponding to the different output values, respectively.
  • the data values come out the same.
  • the relationship between the output value and the resulting standard pressure data can be graphed. And when arbitrary pressure is applied from the 1st to the 120th sensing node 21, even if the output values from the 1st to the 120th sensing node 21 come out differently, the standard pressure data is the same as Px.
  • FIG. 10 is a view showing that the pressure pad sensor 20 is inserted between battery cells 30 and stacked together with the battery cells according to the battery cell surface pressure measurement method according to an embodiment of the present invention.
  • the battery cell surface pressure measuring method is a method for measuring the surface pressure of each region during swelling of the battery cell 30, wherein a plurality of sensing nodes 21 are arranged in horizontal and vertical directions and correspond to one surface of the battery cell.
  • a pressure pad sensor 20 having an area is inserted between the battery cells 30 and stacked together with the battery cells 30 as shown in FIG. 10 .
  • the battery cell 30 is a pouch-type battery cell, but the pouch-type battery cell may be replaced with, for example, a rectangular parallelepiped-shaped prismatic battery cell.
  • the pressure pad sensor 20 is a pressure pad sensor 20 having a plurality of sensing nodes 21 as shown in FIG. 6, and a plurality of them may be used.
  • the battery cell surface pressure measurement method measures the surface pressure of each region during swelling of the battery cells 30 based on the above-described method for calibrating output values of the pressure pad sensor 20 according to the present invention.
  • the step of measuring is further included.
  • the pressure distribution during swelling can be known through the sensing nodes 21 distributed over the entire surface of the battery cells 30 .
  • standard pressure data calibrated instead of the output value of each sensing node 21 is displayed as a value indicating the intensity of pressure, it is possible to accurately grasp the pressure distribution for each area of the battery cell.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

본 발명에 의하면, 소정의 높이에서 하강하여 하나의 센싱노드에 접촉 가능하게 마련된 노드 가압부와, 상기 노드 가압부에 무게추의 하중이 전달되도록 상기 노드 가압부의 상부에 구비되는 무게추 적재부를 포함하는 가압 유닛; 상기 가압 유닛을 소정 높이로 지지하는 지지 프레임; 및 상기 가압 유닛을 제1방향 또는 그 역방향으로 이동시키는 제1 구동부, 상기 가압 유닛을 제2방향 또는 그 역방향으로 이동시키는 제2 구동부, 상기 압력 패드 센서에 대해 상기 가압 유닛을 승하강시키는 제3 구동부를 포함하는 압력 패드 센서 가압장치와, 상기 압력 패드 센서 가압장치를 이용하여 센싱노드의 출력 수치를 신뢰성 있는 압력 값으로 교정할 수 있는 교정방법이 제공될 수 있다.

Description

압력 패드 센서 가압 장치, 압력 패드 센서의 출력 수치 교정방법 및 배터리 셀 면압 측정방법
본 발명은 배터리 셀의 스웰링 압력 측정에 사용되는 압력 패드 센서의 출력 수치를 신뢰할 수 있는 압력 값으로 교정하기 위한 가압장치, 교정 방법 및 상기 교정방법을 기초한 배터리 셀 면압 측정방법에 관한 것이다.
본 출원은 2021년 12월 20일자로 출원된 한국 특허출원 번호 제10-2021-0183108호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
리튬-폴리머 파우치형 이차전지는 일반적으로 알루미늄 라미네이트 시트로 전극 조립체를 내장한 형태로 마련되기 때문에 작은 크기와 중량에 비해 에너지 밀도가 높은 장점이 있지만, 기계적 강성이 약한 단점이 있다. 특히, 리튬-폴리머 파우치형 이차전지의 경우, 반복적인 충방전 과정에서 전극이 두꺼워지거나, 부반응으로 내부 전해질이 분해되어 발생하는 가스로 인해 파우치 외장재가 부풀어 오르는 스웰링 현상이 일어난다.
따라서 예컨대 파우치형 이차전지들을 사용하여 배터리 모듈을 제작할 경우, 초기 설계 단계에서 파우치형 이차전지들에 대한 충방전 테스트시 이때 발생하는 상기 파우치형 이차전지들의 스웰링 압력을 측정하고 그 결과에 기초하여 모듈 케이스 등의 기계적 강도를 결정할 필요가 있다.
그런데 종래의 경우, 파우치형 이차전지의 표면 압력을 측정할 수 있는 마땅한 기술이 없어, 예컨대 한국 공개특허공보 제10-2021-0055363 A에 개시된 바와 같이 로드셀을 포함한 지그를 사용하였다. 상기 로드셀을 포함한 지그는 가격이 비싸고 부피가 크기 때문에 사용에 어려움이 있다.
이에 본 출원인은 압력 패드 센서(도 6 참조)를 고안하였다. 상기 압력 패드 센서는 파우치형 이차전지의 일면에 대응하는 크기이고 시트 형태이고, 내부에 다수의 압력 측정용 센싱노드들을 포함한다. 각 센싱노드는 물리적인 힘, 무게 등에 따라 저항값이 바뀌는 성질을 이용한 FSR(Force Sensitive Resistor) 센서로 구성될 수 있다. 이러한 압력 패드 센서에 의하면, 파우치형 이차전지가 스웰링할 때, 상기 파우치형 이차전지의 영역별 면압이 어느 정도인지 측정할 수 있다.
한편, 상기 압력 패드 센서의 각 센싱노드는 저항을 디지털(digital) 값으로 변환한 ADC 라는 수치(0~255)로 출력한다. 상기 수치가 높을수록 압력이 높다는 것을 의미한다. 그런데 압력 패드 센서를 구성하는 모든 센싱노드가 정확히 동일한 성능을 갖도록 제작하기는 어렵다. 즉, 센싱노드의 제작 또는 조립 상의 오차로 인해, 압력 패드 센서에 분포한 모든 센싱노드들이 같은 힘에 대해 수치가 동일하게 나오지 않는다.
따라서 상기 압력 패드 센서를 이용하여 이차전지의 스웰링 압력 분포를 보다 정확히 측정하려면, 상기 다수의 센싱노드들의 출력 수치를 교정할 필요가 있다.
본 발명은 상술한 문제점을 해결하고자 창안된 것으로서, 압력 패드 센서의 각 센싱노드의 출력 수치를 신뢰성 있는 압력 값으로 변환하기 위해서, 압력을 바뀌어 가며 상기 압력 패드 센서의 각 센싱노드를 가압할 수 있도록 특화된 가압 장치와 압력 패드 센서의 출력 수치 교정방법 및 상기 압력 패드 센서를 사용하고 상기 교정방법에 기초한 배터리 셀 면압 측정방법을 제공하는데 일 목적이 있다.
다만, 본 발명이 해결하고자 하는 기술적 과제는 상술한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래에 기재된 발명의 설명으로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명에 따르면, 다수의 센싱노드를 구비한 압력 패드 센서에서 각 센싱노드에 개별적으로 압력을 인가하기 위한 가압장치로서, 소정의 높이에서 하강하여 하나의 상기 센싱노드에 접촉 가능하게 마련된 노드 가압부와, 상기 노드 가압부에 무게추의 하중이 전달되도록 상기 노드 가압부의 상부에 구비되는 무게추 적재부를 포함하는 가압 유닛; 상기 가압 유닛을 소정 높이로 지지하는 지지 프레임; 및 상기 가압 유닛을 제1방향 또는 그 역방향으로 이동시키는 제1 구동부, 상기 가압 유닛을 제2방향 또는 그 역방향으로 이동시키는 제2 구동부, 상기 압력 패드 센서에 대해 상기 가압 유닛을 승하강시키는 제3 구동부를 포함하는 압력 패드 센서 가압장치가 제공될 수 있다.
상기 노드 가압부는, 하나의 상기 센싱노드에 대응하는 하단면을 갖도록 구성될 수 있다.
상기 지지 프레임은, 상기 제2방향으로 상호 나란하게 이격되고 기립 배치된 한 쌍의 레그 플레이트; 및 상기 제2방향으로 연장되고 상기 한 쌍의 레그 플레이트의 상단에 연결된 지지보드를 포함하고, 상기 지지보드는 상기 노드 가압부가 상기 지지보드의 위에서 아래로 연장되게 배치되고 상기 제2방향으로 이동할 수 있도록 구성된 장공홀을 구비할 수 있다.
상기 노드 가압부는, 상기 장공홀을 통과해 상기 지지보드의 하부로 연장되는 가압 블록과, 상기 가압 블록과 연결되고 상기 장공홀보다 큰 폭을 가지며 상기 지지보드의 상부에 배치되는 플랜지 블록을 포함할 수 있다.
상기 무게추 적재부는 상기 플랜지 블록에서 상부 방향으로 수직하게 연장된 적어도 하나의 연결봉에 의해 상기 플랜지 블록과 소정 간격 이격되게 연결될 수 있다.
상기 무게추 적재부는, 상기 연결봉의 상단에 결합되고 트레이; 및 상기 트레이 상에 안착 가능하게 마련된 하나 이상의 무게추를 포함할 수 있다.
상기 제1 구동부는, 상기 제1방향을 따라 연장 배치되는 제1 가이드 레일; 각 상기 레그 플레이트의 하부에 결합되고 상기 제1 가이드 레일 상에 슬라이드 이동 가능하게 연결된 제1 슬라이드 블록; 상기 레그 플레이트의 일측부에 결합된 샤프트 연결블록; 상기 샤프트 연결블록을 통과하여 상기 제1방향으로 연장되고 정역방향으로 회전하게 되면 상기 샤프트 연결블록이 상기 제1방향 또는 그 역방향으로 이동하도록 상기 샤프트 연결블록에 연결된 제1 구동 샤프트; 및 상기 제1 구동 샤프트를 정역방향으로 회전시키는 제1 구동모터를 포함할 수 있다.
상기 제2 구동부는, 상기 지지보드 상에 제2방향을 따라 연장 배치되는 제2 가이드 레일; 상기 제2 가이드 레일 상에 슬라이드 이동 가능하게 연결된 제2 슬라이드 블록; 상기 연결봉의 둘레를 감싸고 상기 제2 슬라이드 블록 상에 결합된 샤프트 연결 프레임; 상기 샤프트 연결 프레임을 통과하여 상기 제2방향으로 연장되고 정역방향으로 회전하게 되면 상기 샤프트 연결 프레임이 상기 제2방향 또는 그 역방향으로 이동하도록 상기 샤프트 연결 프레임과 연결된 제2 구동 샤프트; 및 상기 제2 구동 샤프트를 정역방향으로 회전시키는 제2 구동모터를 포함할 수 있다.
상기 제3 구동부는, 상하 방향으로 연장 배치되는 피스톤 로드; 일단은 상기 무게추 적재부에 결합되고, 타단은 상기 피스톤 로드에 결합되며, 상기 피스톤 로드의 동작에 의해 시소 동작하여 상기 무게추 적재부를 승하강시키도록 구성된 지렛대 부재; 및 상기 피스톤 로드를 상하 방향으로 이동시키는 제3 구동모터를 포함할 수 있다.
상기 압력 패드 센서 가압장치는 무게추를 달리하여 다수의 상기 센싱노드를 개별적으로 가압하여 구해진 각 상기 센싱노드의 출력 수치를 기록하는 시스템부와, 상기 출력 수치를 표시할 수 있는 디스플레이 장치를 더 포함할 수 있다.
본 발명의 다른 양태에 의하면, 압력 패드 센서를 준비하고, 1회부터 n회(n은 2 이상의 자연수)까지 각 회 마다 압력을 바뀌어 가며 상기 압력 패드 센서의 각 센싱노드를 개별적으로 가압하여 상기 1회부터 n회까지 각 상기 센싱노드의 출력 수치를 저장하는 센서 출력 수치 측정단계; 및 각 상기 센싱노드에 인가한 2가지 이상의 상이한 압력과 그에 따른 2개 이상의 출력 수치들과 보간법을 이용하여 각 상기 센싱노드 별로 출력 수치에 따른 표준 압력 데이터를 추정하는 단계;를 포함하는 압력 패드 센서의 출력 수치 교정방법이 제공될 수 있다.
상기 센서 출력 수치 측정단계는, 상술한 압력 패드 센서 가압장치를 이용하여 수행될 수 있다.
상기 표준 압력 데이터 추정단계를 통해 도출된 표준 압력 데이터를 표시하는 단계;를 더 포함할 수 있다.
상기 표준 압력 데이터 추정 단계는, 선형 보간법을 사용하여 상기 1회부터 n회까지 회차 별 상기 각 센싱노드의 출력 수치들 사이 구간에 대응하는 표준 압력 데이터를 추정하기 위한 1차 방정식들을 도출하는 단계를 포함할 수 있다.
상기 1차 방정식은 다음의 수식으로 산출될 수 있다.
Figure PCTKR2022017588-appb-img-000001
(1회 인가 압력을 P1, 2회 인가 압력을 P2...라고 할 때, m-1회 인가 압력은 Pm-1, m회 인가 압력은 Pm 을 의미하고, m=n≥2 임. P1에 대한 센싱노드의 출력 수치를 K1, P2에 대한 센싱노드의 출력 수치를 K2,...라고 할 때, Pm-1에 대한 센싱노드의 출력 수치는 Km-1, Pm에 대한 센싱노드의 출력 수치는 Km 을 의미함. Fm-1(X) : 표준 압력 데이터 값, X : 센싱노드의 출력 수치)
본 발명의 또 다른 양태에 의하면, 배터리 셀들의 스웰링 시 면압을 측정하기 위한 배터리 셀 면압 측정방법으로서, 복수 개의 센싱노드가 가로 및 세로 방향으로 배열되고 상기 배터리 셀의 일면에 대응하는 면적을 갖는 압력 패드 센서를 상기 배터리 셀들 사이에 넣고 상기 배터리 셀들과 함께 적층하는 단계; 및 상술한 압력 패드 센서의 출력 수치 교정방법에 기초해 상기 배터리 셀들의 스웰링시 영역별 면압을 측정하는 단계를 포함하는 배터리 셀 면압 측정방법이 제공될 수 있다.
본 발명에 의하면, 압력 패드 센서 가압장치를 사용하여 압력 패드 센서의 각 센싱노드 별로 압력에 따른 출력 수치를 파악할 수 있고, 이 같이 파악된 각 센싱노드 별 출력 수치들을 본 발명에 따른 압력 패드 센서의 출력 수치 교정방법을 통해 교정하여 표준 압력 데이터로 변환시켜 나타냄으로써, 각 센싱노드들의 제작상의 오차로 인해 같은 힘에 대해 출력 수치가 동일하게 나오지 않는 문제를 해결할 수 있다.
즉, 본 발명에 의하면, 압력 패드 센서를 이용하여 배터리 셀들의 스웰링 압력 분포를 측정할 때, 같은 힘에도 각 센싱노드 별로 오차가 있는 출력 수치 대신 상기 오차를 보정한 표준 압력 데이터가 측정값으로 사용될 수 있다. 따라서 상기 압력 패드 센서를 사용하여 배터리 셀들의 스웰링 시 영역별 면압을 보다 정확하고 용이하게 측정할 수 있다.
본 발명의 효과가 상술한 효과들로 한정되는 것은 아니며, 언급되지 아니한 효과들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확히 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 압력 패드 센서 가압장치의 사시도이다.
도 2는 도 1의 압력 패드 센서 가압장치를 후방(X 방향에 따름)에서 바라본 도면이다.
도 3은 도 1의 A-A'에 따른 압력 패드 센서 가압장치의 개략적인 절개도이다.
도 4는 도 1의 B-B'에 따른 압력 패드 센서 가압장치의 개략적인 절개도이다.
도 5는 도 4의 압력 패드 센서 가압장치를 다른 각도에서 바라본 도면이다.
도 6은 본 발명의 일 실시예에 따른 압력 패드 센서를 나타낸 도면이다.
도 7a 내지 도 7d는 본 발명의 일 실시예에 따라 1회부터 4회까지 압력(P1~P4)을 바뀌어 가며 각 센싱노드를 개별적으로 가압하여 얻은 각 센싱노드 별 출력 수치를 나타낸 도면들이다.
도 8은 도 7a~도 7d에 따른 1개의 센싱노드(C0,R0)의 압력 변화에 따른 출력 수치들을 이용하여 선형 보간법을 적용한 예를 나타낸 그래프이다.
도 9는 본 발명의 일 실시예에 따른 교정방법으로 도출한 복수 개의 센싱노드들의 출력 수치와 표준 압력 데이터의 관계를 나타낸 그래프이다.
도 10은 본 발명의 일 실시예에 따른 배터리 셀 면압 측정 방법에 따라 압력 패드 센서를 배터리 셀들 사이에 넣고 배터리 셀들과 함께 적층한 것을 나타낸 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일부 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
이하에서 설명하는 본 발명에 따른 압력 패드 센서 가압장치는 복수 개의 센싱노드들을 구비한 필름형의 압력 패드 센서에서 각 센싱노드를 가압하기 위한 용도로 사용될 수 있다. 그러나 본 발명의 압력 패드 센서 가압장치의 권리범위가 상기 압력 패드 센서를 가압하는 용도로 제한되어야 하는 것은 아님을 밝혀둔다.
도 1은 본 발명의 일 실시예에 따른 압력 패드 센서 가압장치의 사시도이고, 도 2는 도 1의 압력 패드 센서 가압장치를 후방에서 (-X에서 +X 방향으로)바라본 도면이고, 도 3은 도 1의 A-A'에 따른 압력 패드 센서 가압장치의 개략적인 절개도이고, 도 4는 도 1의 B-B'에 따른 압력 패드 센서 가압장치의 개략적인 절개도이며, 도 5는 도 4의 압력 패드 센서 가압장치를 다른 각도에서 바라본 도면이다.
이들 도면들을 참조하면, 본 발명의 일 실시예에 따른 압력 패드 센서 가압장치(10)는 가압 유닛(100), 지지 프레임(200), 제1 구동부(300), 제2 구동부(400) 및 제3 구동부(500)를 포함한다.
가압 유닛(100)은 노드 가압부(110)와 무게추 적재부(120)를 포함하고, 제1 구동부(300), 제2 구동부(400), 제3 구동부(500)의 작동에 의해 X,Y,Z 축을 따라 움직이며 압력 패드 센서(20)의 모든 센싱노드(21)에 균일한 압력을 가할 수 있게 구성될 수 있다.
상기 노드 가압부(110)는 압력 패드 센서(20)의 연직 상부에서 하강하여 상기 센싱노드(21)들 중 하나의 센싱노드(21)에 면 접촉 가능하게 마련되고, 상기 무게추 적재부(120)는 무게를 늘려 가며 각 센싱노드(21)를 가압할 수 있도록 상기 노드 가압부(110)의 상부에 마련될 수 있다.
또한, 본 실시예에 따른 압력 패드 센서 가압장치(10)는, 도 1에 도시한 바와 같이, 베이스 프레임(600), 상기 지지 프레임(200)의 상부를 커버하는 프레임 커버(700) 및 상기 베이스 프레임(600)을 상부에 안착 내지 결합할 수 있는 테이블(800)을 더 포함할 수 있다.
상기 베이스 프레임(600)은, 도 1과 같이, 압력 패드 센서(20)를 반듯하게 올려놓을 수 있는 센서 받침대(610)와 Y 방향에 따른 양쪽 가장자리 영역에 레일 커버(620,630)를 구비한다.
상기 지지 프레임(200)은 제2방향(Y 방향)으로 상호 나란하게 이격되고 기립 배치된 한 쌍의 레그 플레이트(210,220) 및 상기 제2방향으로 연장되고 상기 한 쌍의 레그 플레이트(210,220)의 상단에 연결된 지지보드(230)를 포함하고, 상기 베이스 프레임(600)의 상에서 제1방향 또는 그 역방향(±X 방향)으로 이동 가능하게 마련된다. 이러한 지지 프레임(200)의 상부에 가압 유닛(100)이 설치된다.
상기 지지 프레임(200)의 제1방향 또는 그 역방향(±X 방향) 이동을 위해 제1 구동부(300)가 상기 지지 프레임(200)에 연결된다.
제1 구동부(300)는, 도 3에 도시한 바와 같이 상기 베이스 프레임(600)의 레일 커버(620,630) 아래에 위치하고, 제1방향(X방향)을 따라 연장 배치되는 제1 가이드 레일(310), 상기 레그 플레이트(210,220)의 하부에 결합되고 상기 제1 가이드 레일(310) 상에 슬라이드 이동 가능하게 연결된 제1 슬라이드 블록(320), 상기 레그 플레이트(210,220)의 일측부에 결합된 샤프트 연결 블록(330), 상기 샤프트 연결 블록(330)을 통과하여 상기 제1방향(X 방향)으로 연장되고 정역방향으로 회전하면 상기 샤프트 연결 블록(330)이 제1방향 또는 그 역방향(±X 방향)으로 이동하도록 상기 샤프트 연결 블록(330)에 연결된 제1 구동 샤프트(340) 및 상기 제1 구동 샤프트(340)를 정역방향으로 회전시키는 제1 구동모터(350)를 포함한다. 도면의 편의상 미도시 하였으나, 제1 구동모터(350)는 상기 제1 구동 샤프트(340)의 일단부와 타이밍 벨트로 연결될 수 있다.
상기 제1 구동 샤프트(340)와 상기 샤프트 연결 블록(330)은 예컨대 볼 스크류 방식으로 상대 회전 가능하게 연결됨으로써, 상기 제1 구동 샤프트(340)의 정,역방향 회전시 샤프트 연결 블록(330)이 상기 제1 구동 샤프트(340)를 따라 제1방향 또는 그 역방향으로 이동할 수 있다.
도 3에 도시한 바와 같이, 상기 샤프트 연결 블록(330)을 한 쪽 레그 플레이트(210)의 일측부에 고정 결합하여, 상기 샤프트 연결 블록(330)과 함께 상기 지지 프레임(200)이 제1방향 또는 그 역방향으로 이동하도록 할 수 있다.
그리고 지지 프레임(200)은 한 쌍의 레그 플레이트(210,220)가 절개되어 있는 레일 커버(620,630)의 상면을 통과하고 그 하단부가 제1 슬라이드 블록(320)에 고정 결합되고 상기 제1 슬라이드 블록(320)은 제1 가이드 레일(310) 상에 슬라이드 이동 가능하게 연결되어 있어 상기 제1 가이드 레일(310)을 따라 부드럽고 정교하게 이동할 수 있다. 가압 유닛(100)은 이러한 지지 프레임(200)의 지지보드(230)에 설치되어 있어, 상기 지지 프레임(200)과 함께 제1방향 또는 그 역방향으로 이동할 수 있다.
한편, 도 1, 도 4 및 도 5를 참조하여 살펴보면, 본 발명의 일 실시예에 따른 제2 구동부(400)는 상기 지지보드(230) 상에 제2방향(Y 방향)을 따라 연장 배치되는 제2 가이드 레일(410), 상기 제2 가이드 레일(410) 상에 슬라이드 이동 가능하게 연결된 제2 슬라이드 블록(420), 노드 가압부(110)와 무게추 적재부(120) 사이에 연결된 연결봉(130)의 둘레를 감싸고 있고 상기 제2 슬라이드 블록(420) 상에 결합된 샤프트 연결 프레임(430) 및 상기 샤프트 연결 프레임(430)의 몸체를 (Y방향으로) 통과하여 상기 제2방향으로 연장되고 정역방향으로 회전하게 되면, 상기 샤프트 연결 프레임(430)이 상기 제2방향 또는 그 역방향으로 이동하도록 상기 샤프트 연결 프레임(430)과 연결된 제2 구동 샤프트(440) 및 상기 제2 구동 샤프트(440)를 정역방향으로 회전시키는 제2 구동모터(450)를 포함한다.
도 5에 도시한 바와 같이, 상기 지지보드(230)는 제2방향(Y방향)으로 길게 천공된 형태로 마련된 장공홀(231)을 구비한다. 상기 장공홀(231)은 노드 가압부(110)에서 폭이 가장 큰 부위에 대응하는 폭을 가지며 제2 방향으로 길게 천공된 형태로 마련될 수 있다. 이러한 장공홀(231)이 상기 지지보드(230)에 마련되어 있어, 가압 유닛(100)의 노드 가압부(110)가 상기 지지보드(230)의 위에서 아래로 수직하게 배치될 수 있고, 이 상태로 제2방향 또는 그 역방향(±Y 방향)으로 이동할 수 있다.
상기 제2 가이드 레일(410)은 상기 장공홀(231)을 사이에 두고 상기 지지보드(230)의 너비 방향(X 방향)으로 양쪽 가장자리 영역에 구비될 수 있다. 각 상기 제2 가이드 레일(410) 상에는 제2 슬라이드 블록(420)이 연결되고, 이러한 제2 슬라이드 블록(420)의 상부에 샤프트 연결 프레임(430)의 적어도 일측이 고정 결합된다.
상기 샤프트 연결 프레임(430)은, 도 5와 같이, 노드 가압부(110)의 상부를 커버하되, 상기 노드 가압부(110)와 상기 무게추 적재부(120)를 상하로 연결하는 4개의 연결봉(130)들이 몸체를 상하로 통과할 수 있는 형태로 마련될 수 있다.
상기와 같은 구성에 의해, 상기 샤프트 연결 프레임(430)이 상기 제2 슬라이드 블록(420)과 함께 제2 가이드 레일(410)을 따라 ±Y방향으로 움직일 때, 상기 가압 유닛(100)도 함께 움직일 수 있다.
또한, 제1 구동부(300)와 유사하게, 제2 구동 샤프트(440)가 상기 샤프트 연결 프레임(430)과 예컨대 볼 스크류 방식으로 상대 회전 가능하게 연결되고, 이러한 제2 구동 샤프트(440)의 일측 끝단에 제2 구동모터(450)가 연결되어 있다.
따라서 상기 제2 구동모터(450)를 제어하여 상기 제2 구동 샤프트(440)를 정방향 또는 역방향으로 회전시키면, 상기 샤프트 연결 프레임(430)이 제2방향 또는 그 역방향(±Y방향)으로 이동하게 된다. 이때 가압 유닛(100)이 상기 샤프트 연결 프레임(430)과 연결되어 있어 가압 유닛(100)이 상기 샤프트 연결 프레임(430)과 함께 이동하게 된다.
이와 같은 본 실시예의 상기 제1 구동부(300) 및 상기 제2 구동부(400) 구성에 의하면, 제1 구동모터(350) 및 제2 구동모터(450)를 제어하여 가압 유닛(100)이 가압하고자 하는 센싱노드(21)가 위치한 곳의 연직 상부에 위치하도록 상기 가압 유닛(100)을 ±X방향과 ±Y방향으로 이동시킬 수 있다. 이를테면, 본 실시예에 따른 압력 패드 센서(20)는 상호 간 소정 간격 떨어져서 5행(R0~R4)과 24열(C0~C23)로 배열된 복수 개의 센싱노드(21)들을 구비하고 있는데, 어느 하나의 센싱노드(21)를 가압하고 난 후 그 다음 행 또는 열의 센싱노드(21)를 가압하고자 할 때 상기 제1 구동모터(350) 및/또는 상기 제2 구동모터(450)를 제어하여 가압 유닛(100)을 원하는 위치로 정밀하게 옮길 수 있다.
한편, 본 발명의 일 실시예에 따른 가압 유닛(100)의 주요 구성들에 대해 도 4 및 도 5를 참조하여 자세히 살펴보면, 상기 가압 유닛(100)은 노드 가압부(110)와 무게추 적재부(120)를 포함하며, 상기 노드 가압부(110)와 무게추 적재부(120)는 적어도 하나의 연결봉(130)으로 연결되게 구성되어 있다.
상기 노드 가압부(110)는 가압 블록(111)과 플랜지 블록(113)을 포함한다. 상기 가압 블록(111)은 지지보드(230)의 장공홀(231)을 통과하여 지지보드(230) 아래로 돌출되고 하단면이 하나의 센싱노드(21)의 표면적에 대응하는 크기로 마련될 수 있다. 여기서 상기 가압 블록(111)의 하단면은 상기 센싱노드(21)와 직접 면 접촉하는 곳을 의미한다.
상기 가압 블록(111)은 전체가 일체형으로 마련될 수도 있고, 여러 부분을 조립하는 형태로 구성될 수도 있다. 본 실시예의 가압 블록(111)은 후자에 속하는 것으로, 하단부에 교체 가능한 접촉 포인트 블록(111a)을 포함한다. 상기 접촉 포인트 블록(111a)은 상기 하단면이 있는 부분으로서 가압 대상인 센싱노드(21)의 형상에 따라 여러 가지로 형상으로 제작될 수 있다. 즉, 본 실시예의 센싱노드(21)는 도 6과 같이, 정사각형이어서 상기 접촉 포인트 블록(111a)의 하단면도 상기 정사각형의 센싱노드(21) 면적에 대응하는 정사각형으로 마련된다. 본 실시예와 달리, 센싱노드(21)가 원형 또는 다각형일 경우, 접촉 포인트 블록(111a)의 하단면도 그에 대응하는 형상으로 마련될 수 있다.
상기 플랜지 블록(113)은 소정의 두께를 가지고 상기 가압 블록(111)의 상단에 수평하게 확장된 판상체 형태로, 지지보드(230)의 상부에 배치되고 상기 장공홀(231)보다 큰 폭을 갖도록 마련될 수 있다. 따라서 가압 블록(111)은 플랜지 블록(113)이 지지보드(230)의 상면에 접촉할 때까지만 지지보드(230) 아래로 내려갈 수 있다.
상기 무게추 적재부(120)는 트레이(121)와, 무게추(122)를 포함한다. 상기 트레이(121)는 상기 무게추(122)를 올려놓을 수 있는 선반 내지 박스 형태로 마련될 수 있고, 무게추(122)는 예컨대 1kg~10kg 등 여러 종류가 사용될 수 있다.
상기 노드 가압부(110)와 상기 무게추 적재부(120)는 적어도 하나의 연결봉(130)에 의해 연결되고 상하로 일정 간격이 유지될 수 있다. 상기 연결봉(130)은 플랜지 블록(113)과 트레이(121) 사이에 수직 배치되고 소정 길이를 갖는 봉 형태로 마련될 수 있다. 상기 연결봉(130)이 승하강 시 전술한 샤프트 연결 프레임(430)과의 마찰을 최소화하기 위해, 상기 연결봉(130)이 샤프트 연결 프레임(430)을 통과하는 영역에는 베어링 구조가 적용될 수 있다. 또한, 플랜지 블록(113)의 4 귀퉁이에 하나씩 총 4개의 연결봉(130)이 구비되도록 하여, 트레이(121)가 플랜지 블록(113)의 상부에 안정적으로 위치하고 무게추(122)들의 하중이 어느 한쪽으로 쏠리지 않고 플랜지 블록(113)에 인가되도록 하는 것이 좋다.
제3 구동부(500)는 상기와 같은 가압 유닛(100)을 지지하고 상하 방향으로 승하강시킬 수 있게 구성된다.
다시 도 1, 도 4 내지 도 5를 참조하면, 상기 제3 구동부(500)는 상하 방향으로 연장 배치되는 피스톤 로드(510), 일단은 상기 무게추 적재부(120)에 결합되고, 타단은 피스톤 로드(510)에 결합되며, 상기 피스톤 로드(510)의 동작에 의해 시소동작하도록 마련된 지렛대 부재(520) 및 상기 피스톤 로드(510)를 상하 방향으로 이동시키는 제3 구동모터(530)를 포함한다.
상기 지렛대 부재(520)는 일단부가 상기 트레이(121)에 결합되고 타단부는 피스톤 로드(510)에 결합되고 가운데 고정축을 기준으로 시소동작하도록 마련된다. 상기 제3 구동모터(530)의 작동으로 피스톤 로드(510)가 아래로 내려와 상기 지렛대 부재(520)의 타단부가 아래로 내려가면 상기 지렛대 부재(520)의 일단부는 위로 올라가게 되어 무게추 적재부(120)의 트레이(121)도 +Z방향으로 올라간다. 이때, 전술한 바와 같이 연결봉(130)으로 무게추 적재부(120)와 연결되어 있는 노드 가압부(110)도 같이 +Z방향으로 올라간다.
반대로 상기 피스톤 로드(510)가 올라가 상기 지렛대 부재(520)의 타단부가 +Z방향으로 잡아 당겨지면 상기 지렛대 부재(520)의 일단부가 내려가고 이에 따라 무게추 적재부(120)와 노드 가압부(110)도 일체로 같이 -Z방향으로 내려간다.
이와 같이, 가압 유닛(100)은 상기 제3 구동부(500)에 의해 ±Z방향으로 움직일 수 있다.
한편, 각 센싱노드(21)에 하중을 인가할 때는, 상기 가압 블록(111)을 해당 센싱노드(21)에 근접한 위치까지 옮겨놓고 제1 내지 제3 구동모터(350,450,530)의 작동을 모두 멈춘다. 그러면 가압 유닛(100)의 자체 하중에 의해 센싱노드(21)가 가압될 수 있다. 예컨대, 무게추(122)를 적재하지 않은 가압 유닛(100)의 하중을 5kgf라고 할 때, 5kg짜리 무게추(122)를 하나씩 트레이(121)의 상부에 추가하면 가압 유닛(100)의 하중이 10kgf, 15kgf, 20kgf으로 증가할 수 있다.
위와 같이 하중을 늘려가면서 센싱노드(21)를 가압하면, 그때마다 센싱노드(21)의 저항값이 디지털 값으로 출력될 수 있다. 미도시 하였으나, 도 1에서 압력 패드 센서(20)의 커넥터부(22)에 (평면연성)케이블을 연결할 수 있고, 각 센싱노드(21)를 가압하여 구해진 디지털 값들은 상기 케이블을 통해 시스템부(미도시)에 전송될 수 있다. 여기서 상기 시스템부는 상기 디지털 값들을 기록하기 위한 메모리와, 상기 디지털 값들을 기초로 후술할 압력 패드 센서(20)의 출력 수치 교정방법에 따른 연산을 수행하기 위한 마이크로프로세서 등으로 구성된 장치를 의미할 수 있다. 또한, 상기 디지털 값은 예컨대 1~255까지의 출력 수치로 디스플레이 장치(900)에 표시될 수 있다.
이상과 같이 설명한 본 발명의 일 실시예에 따른 압력 패드 센서 가압장치(10)에 의하면, 압력 패드 센서(20)의 각 센싱노드(21)에 균일하게 일정한 압력을 가할 수 있고, 또한 인가 압력을 변화시켰을 때 각 센싱노드(21)의 출력 수치가 어떻게 변화하는지 파악할 수 있다.
이하에서는, 상술한 압력 패드 센서 가압장치(10)를 이용하여 얻은 각 센싱노드(21)별 출력 수치를 표준 압력 데이터로 교정하는 방법에 대해 설명하기로 한다.
본 발명에 따른 압력 패드 센서(20)의 출력 수치 교정방법은 센서 출력 수치 측정단계 및 표준 압력 데이터 추정단계를 포함한다.
상기 센서 출력 수치 측정단계는 압력 패드 센서(20)를 준비하고, 1회부터 n회(n은 2 이상의 자연수)까지 각 회마다 압력을 바뀌어 가며 상기 압력 패드 센서(20)의 각 센싱노드(21)를 개별적으로 가압하여 상기 1회부터 n회까지 각 상기 센싱노드(21)의 출력 수치를 저장하는 단계이다.
상기 센서 출력 수치 측정단계는 본 발명에 따른 압력 패드 센서 가압장치(10)를 통해 수행될 수 있다. 상기 압력 패드 센서 가압장치(10)를 이용하면 각 센싱노드(21)에 압력을 균일하게 인가할 수 있어, 특정 압력에 대한 각 센싱노드(21) 별 출력 수치를 정확히 알 수 있다. 따라서 상기 압력 패드 센서 가압장치(10)를 사용하여 센서 출력 수치 측정단계를 수행하는 것이 가장 바람직하다. 다만, 본 발명에 따른 압력 패드 센서(20)의 출력 수치 교정방법의 권리범위가 본 발명에 따른 가압장치 사용 여부에 따라 제한되는 것은 아니다. 즉, 본 발명의 가압장치 이외 대체 가능한 수단으로 센서 출력 수치 측정단계가 수행될 수도 있다.
본 실시예의 경우, 1회부터 4회까지 각 회마다 압력을 P1,P2,P3,P4 변경하면서 각 센싱노드(21)를 가압하였고, (본 실시예에서 P1 = 5kgf, 고 ,P2 = 10kgf, P3=15kgf, P4=20kgf 을 의미함) 그 결과를 도 7a~도 7d에 나타내었다.
도 7a~도 7d에 나타낸 각 센싱노드(21) 별 출력 수치들을 살펴보면, 각 센싱노드(21)에 동일한 압력이 인가되더라도 출력 수치가 동일하지 않음을 알 수 있다. 예컨대, 압력 P1에 대한 1번 센싱노드(C0,R0) 및 120번 센싱노드(C23,R4)의 출력 수치는 각각 89와 80으로 동일하지 않다.
즉, 다수의 센싱노드(21)를 구비한 압력 패드 센서(20)는 위와 같이 동일한 힘에도 각 센싱노드(21) 별로 출력 수치가 동일하게 나오지 않을 수 있다. 그러므로 배터리 셀의 스웰링 시 이러한 압력 패드 센서(20)의 영역별 출력 수치를 그대로 이용하면 압력 측정 오차가 크게 발생할 수 있다. 따라서 각 센싱노드(21) 별 출력 수치는 교정이 필요하다.
상기 교정은 다음과 같이 본 발명에 따른 표준 압력 데이터 추정단계를 통해 수행될 수 있다.
상기 표준 압력 데이터 추정단계는 각 상기 센싱노드(21)에 인가한 2가지 이상의 상이한 압력과 그에 따른 2개 이상의 출력 수치들과 보간법을 이용하여 각 상기 센싱노드(21) 별로 출력 수치에 따른 표준 압력 데이터를 추정하는 단계이다.
구체적으로 본 실시예에 따른 표준 압력 데이터 추정 단계는, 선형 보간법을 사용하여 상기 1회부터 n회까지 회차 별 상기 각 센싱노드(21)의 출력 수치들 사이 구간에 대응하는 표준 압력 데이터를 추정하기 위한 1차 방정식들을 도출하는 단계를 포함한다.
상기 1차 방정식은 다음과 같은 수식으로 산출될 수 있다.
Figure PCTKR2022017588-appb-img-000002
(1회 인가 압력을 P1, 2회 인가 압력을 P2...라고 할 때, m-1회 인가 압력은 Pm-1, m회 인가 압력은 Pm 을 의미하고, m=n≥2 임. P1에 대한 센싱노드(21)의 출력 수치를 K1, P2에 대한 센싱노드(21)의 출력 수치를 K2,...라고 할 때, Pm-1에 대한 센싱노드(21)의 출력 수치는 Km-1, Pm에 대한 센싱노드(21)의 출력 수치는 Km 을 의미함. Fm-1(X) : 표준 압력 데이터 값, X : 센싱노드(21)의 출력 수치)
이를테면, 상기 표준 압력 데이터 추정단계에서는, 미리 정해진 압력 값들과 상기 미리 정해진 압력 값들로 어떤 센싱노드(Cx,Ry)를 가압해 알아낸 상기 어떤 센싱노드(Cx,Ry)의 출력 수치들을 이용해 구간별 1차 방정식을 도출한다.
상기와 같이 1차 방정식이 도출되면, 알 수 없는 임의의 압력 값이 상기 어떤 센싱노드(Cx,Ry)에 인가된 때, 상기 어떤 센싱노드(Cx,Ry)가 나타내는 고유의 출력 수치를 상기 1차 방정식의 X 값에 대입해 표준 압력 데이터를 구할 수 있다. 이렇게 구한 상기 표준 압력 데이터가 상기 임의의 압력 값의 세기를 나타내는 척도로 사용될 수 있다.
도 8은 도 7a~도 7d에 따른 1개의 센싱노드(C0,R0)의 압력 변화에 따른 출력 수치들을 이용하여 선형 보간법을 적용한 예를 나타낸 그래프이다.
보다 구체적으로, 도 8에서 (K1,P1)~(K2,P2) 사이 구간에 대한 1차 방정식은 F1(X)이고, (K2,P2)~(K3,P3) 사이 구간에 대한 1차 방정식은 F2(X)이며, (K3,P3)~(K4,P4) 사이 구간에 대한 1차 방정식은 F3(X)이라 하면, 각 구간의 1차 방정식은 다음과 같이 도출될 수 있다.
F1(X)= X/6-29/6
F2(X) = 5X/16-285/16
F3(X) = 5X/12-345/12
상기 센싱노드(C0,R0)에 임의의 압력이 인가되고 그때의 출력 수치가 79이면, 79를 X에 대입해 표준 압력 데이터 값으로 50/6 Kgf[F1(79)]를 구할 수 있다. 이에 따라 상기 임의의 압력의 세기는 상기 센싱노드(C0,R0)의 출력 수치 79가 아닌 압력 50/6 Kgf으로 표시될 수 있다.
예컨대, 6개의 센싱노드(21)를 갖는 압력 패드 센서(20)가 있다고 가정하면, 본 발명에 의할 때, 상기 6개의 센싱노드(21)는 출력 수치와 그에 따른 표준 압력 데이터의 관계가 도 9와 같은 그래프로 표시될 수 있다.
도 9를 참조하면, 어떤 압력이 상기 6개의 센싱노드(21)에 동일하게 인가된 때, 상기 6개의 센싱노드는 저마다 출력 수치들이 상이할 수 있지만, 상기 상이한 출력 수치들에 각각 대응하는 표준 압력 데이터 값은 동일하게 나온다.
상기 6개의 센싱노드의 경우와 마찬가지로, 도 6의 120개의 센싱노드(21)들에 대해서도 1번 센싱노드(C0,R0)부터 120번 센싱노드(C23,R3)까지 각 센싱노드(21)의 출력 수치와 그에 따른 표준 압력 데이터의 관계를 그래프로 표시할 수 있다. 그리고 1번부터 120번 센싱노드(21)까지 임의의 압력을 인가한 때, 1번부터 120번 센싱노드(21)까지 출력 수치가 저마다 다르게 나오더라도 표준 압력 데이터는 Px로 동일하게 나온다.
따라서 본 발명에 따른 압력 패드 센서(20)의 출력 수치 교정방법으로 각 센싱노드(21)의 출력 수치를 표준 압력 데이터로 변환하여 사용하면 압력 패드 센서(20)의 문제(제조상의 공차 등으로 인해, 센싱노드들이 동일 압력에도 출력 수치가 저마다 상이하게 나오는 문제)점이 해결될 수 있다.
도 10은 본 발명의 일 실시예에 따른 배터리 셀 면압 측정 방법에 따라 압력 패드 센서(20)를 배터리 셀(30)들 사이에 넣고 배터리 셀들과 함께 적층한 것을 나타낸 도면이다.
이어서 본 발명의 일 실시예에 따른 배터리 셀 면압 측정방법에 대해 설명하기로 한다.
상기 배터리 셀 면압 측정방법은 배터리 셀(30)의 스웰링시 영역별 면압이 어떠한지 측정하기 위한 방법으로서, 복수 개의 센싱노드(21)가 가로 및 세로 방향으로 배열되고 상기 배터리 셀의 일면에 대응하는 면적을 갖는 압력 패드 센서(20)를 상기 배터리 셀(30)들 사이에 넣고, 도 10과 같이, 상기 배터리 셀(30)들과 함께 적층하는 단계를 포함한다.
본 실시예에서 배터리 셀(30)은 파우치형 배터리 셀이나, 상기 파우치형 배터리 셀은 예컨대 직육면체 형상의 각형 배터리 셀로 대체될 수도 있다. 또한, 상기 압력 패드 센서(20)는 도 6과 같이 다수의 센싱노드(21)를 구비한 압력 패드 센서(20)이고, 복수 개가 사용될 수 있다.
또한, 본 발명의 일 실시예에 따른 배터리 셀 면압 측정방법은 상술한 본 발명에 따른 압력 패드 센서(20)의 출력 수치 교정방법에 기초해 상기 배터리 셀(30)들의 스웰링시 영역별 면압을 측정하는 단계를 더 포함한다.
이러한 배터리 셀 면압 측정방법에 의하면, 배터리 셀(30)들의 일면 전체에 걸쳐 분포하는 센싱노드(21)들을 통해 스웰링시 압력 분포를 알 수 있다. 또한, 각 센싱노드(21) 별 출력 수치가 아닌 이를 교정한 표준 압력 데이터가 압력의 세기를 나타내는 값으로 표시됨으로 배터리 셀의 영역별 압력 분포를 정확히 파악할 수 있다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
한편, 본 명세서에서는 상, 하, 좌, 우, 전, 후와 같은 방향을 나타내는 용어가 사용되었으나, 이러한 용어들은 설명의 편의를 위한 것일 뿐, 대상이 되는 사물의 위치나 관측자의 위치 등에 따라 달라질 수 있음은 본 발명의 당업자에게 자명하다.

Claims (16)

  1. 다수의 센싱노드를 구비한 압력 패드 센서에서 각 센싱노드에 개별적으로 압력을 인가하기 위한 가압장치로서,
    소정의 높이에서 하강하여 하나의 상기 센싱노드에 접촉 가능하게 마련된 노드 가압부와, 상기 노드 가압부에 무게추의 하중이 전달되도록 상기 노드 가압부의 상부에 구비되는 무게추 적재부를 포함하는 가압 유닛;
    상기 가압 유닛을 소정 높이로 지지하는 지지 프레임; 및
    상기 가압 유닛을 제1방향 또는 그 역방향으로 이동시키는 제1 구동부, 상기 가압 유닛을 제2방향 또는 그 역방향으로 이동시키는 제2 구동부, 상기 압력 패드 센서에 대해 상기 가압 유닛을 승하강시키는 제3 구동부를 포함하는 것을 특징으로 하는 압력 패드 센서 가압장치.
  2. 제1항에 있어서,
    상기 노드 가압부는, 하나의 상기 센싱노드에 대응하는 하단면을 갖는 것을 특징으로 하는 압력 패드 센서 가압장치.
  3. 제1항에 있어서,
    상기 지지 프레임은, 상기 제2방향으로 상호 나란하게 이격되고 기립 배치된 한 쌍의 레그 플레이트; 및 상기 제2방향으로 연장되고 상기 한 쌍의 레그 플레이트의 상단에 연결된 지지보드를 포함하고,
    상기 지지보드는 상기 노드 가압부가 상기 지지보드의 위에서 아래로 연장되게 배치되고 상기 제2방향으로 이동할 수 있도록 구성된 장공홀을 구비하는 것을 특징으로 하는 압력 패드 센서 가압장치.
  4. 제3항에 있어서,
    상기 노드 가압부는,
    상기 장공홀를 통해 상기 지지보드의 하부로 연장되는 가압 블록과, 상기 가압 블록과 연결되고 상기 장공홀보다 큰 폭을 가지며 상기 지지보드의 상부에 배치되는 플랜지 블록을 포함하는 것을 특징으로 하는 압력 패드 센서 가압장치.
  5. 제4항에 있어서,
    상기 무게추 적재부는 상기 플랜지 블록에서 상부 방향으로 수직하게 연장된 적어도 하나의 연결봉에 의해 상기 플랜지 블록과 소정 간격 이격되게 연결된 것을 특징으로 하는 압력 패드 센서 가압장치.
  6. 제5항에 있어서,
    상기 무게추 적재부는,
    상기 연결봉의 상단에 결합되고 트레이; 및 상기 트레이 상에 안착 가능하게 마련된 하나 이상의 무게추를 포함하는 것을 특징으로 하는 압력 패드 센서 가압장치.
  7. 제3항에 있어서,
    상기 제1 구동부는,
    상기 제1방향을 따라 연장 배치되는 제1 가이드 레일;
    각 상기 레그 플레이트의 하부에 결합되고 상기 제1 가이드 레일 상에 슬라이드 이동 가능하게 연결된 제1 슬라이드 블록;
    상기 레그 플레이트의 일측부에 결합된 샤프트 연결블록;
    상기 샤프트 연결블록을 통과하여 상기 제1방향으로 연장되고 정역방향으로 회전하게 되면 상기 샤프트 연결블록이 상기 제1방향 또는 그 역방향으로 이동하도록 상기 샤프트 연결블록에 연결된 제1 구동 샤프트; 및
    상기 제1 구동 샤프트를 정역방향으로 회전시키는 제1 구동모터를 포함하는 것을 특징으로 하는 압력 패드 센서 가압장치.
  8. 제5항에 있어서,
    상기 제2 구동부는,
    상기 지지보드 상에 제2방향을 따라 연장 배치되는 제2 가이드 레일;
    상기 제2 가이드 레일 상에 슬라이드 이동 가능하게 연결된 제2 슬라이드 블록;
    상기 연결봉의 둘레를 감싸고 상기 제2 슬라이드 블록 상에 결합된 샤프트 연결 프레임;
    상기 샤프트 연결 프레임을 통과하여 상기 제2방향으로 연장되고 정역방향으로 회전하게 되면 상기 샤프트 연결 프레임이 상기 제2방향 또는 그 역방향으로 이동하도록 상기 샤프트 연결 프레임과 연결된 제2 구동 샤프트; 및
    상기 제2 구동 샤프트를 정역방향으로 회전시키는 제2 구동모터를 포함하는 것을 특징으로 하는 압력 패드 센서 가압장치.
  9. 제5항에 있어서,
    상기 제3 구동부는,
    상하 방향으로 연장 배치되는 피스톤 로드;
    일단은 상기 무게추 적재부에 결합되고, 타단은 상기 피스톤 로드에 결합되며, 상기 피스톤 로드의 동작에 의해 시소 동작하여 상기 무게추 적재부를 승하강시키도록 구성된 지렛대 부재; 및
    상기 피스톤 로드를 상하 방향으로 이동시키는 제3 구동모터를 포함하는 것을 특징으로 하는 압력 패드 센서 가압장치.
  10. 제1항에 있어서,
    무게추를 달리하여 다수의 상기 센싱노드를 개별적으로 가압하여 구해진 각 상기 센싱노드의 출력 수치를 기록하는 시스템부와, 상기 출력 수치를 표시할 수 있는 디스플레이 장치를 더 포함하는 것을 특징으로 하는 압력 패드 센서 가압장치.
  11. 동일 압력에도 각 센싱노드의 출력 수치가 상이한 압력 패드 센서의 출력 수치 교정방법으로서,
    압력 패드 센서를 준비하고, 1회부터 n회(n은 2 이상의 자연수)까지 각 회 마다 압력을 바뀌어 가며 상기 압력 패드 센서의 각 센싱노드를 개별적으로 가압하여 상기 1회부터 n회까지 각 상기 센싱노드의 출력 수치를 저장하는 센서 출력 수치 측정단계; 및
    각 상기 센싱노드에 인가한 2가지 이상의 상이한 압력과 그에 따른 2개 이상의 출력 수치들과 보간법을 이용하여 각 상기 센싱노드 별로 출력 수치에 따른 표준 압력 데이터를 추정하는 단계;를 포함하는 것을 특징으로 하는 압력 패드 센서의 출력 수치 교정방법.
  12. 제11항에 있어서,
    상기 센서 출력 수치 측정단계는, 제1항에 따른 압력 패드 센서 가압장치를 사용하여 수행하는 것을 특징으로 압력 패드 센서의 출력 수치 교정방법.
  13. 제11항에 있어서,
    상기 표준 압력 데이터 추정단계를 통해 도출된 표준 압력 데이터를 표시하는 단계;를 더 포함하는 것을 특징으로 하는 압력 패드 센서의 출력 수치 교정방법.
  14. 제11항에 있어서,
    상기 표준 압력 데이터 추정단계는,
    선형 보간법을 사용하여 상기 1회부터 n회까지 회차 별 상기 각 센싱노드의 출력 수치들 사이 구간에 대응하는 표준 압력 데이터를 추정하기 위한 1차 방정식들을 도출하는 단계를 포함하는 것을 특징으로 하는 압력 패드 센서의 출력 수치 교정방법.
  15. 제14항에 있어서,
    상기 1차 방정식은 다음의 수식으로 산출된 것을 특징으로 하는 압력 패드 센서의 출력 수치 교정방법.
    Figure PCTKR2022017588-appb-img-000003
    (1회 인가 압력을 P1, 2회 인가 압력을 P2...라고 할 때, m-1회 인가 압력은 Pm-1, m회 인가 압력은 Pm 을 의미하고, m=n≥2 임.
    P1에 대한 센싱노드의 출력 수치를 K1, P2에 대한 센싱노드의 출력 수치를 K2,...라고 할 때, Pm-1에 대한 센싱노드의 출력 수치는 Km-1, Pm에 대한 센싱노드의 출력 수치는 Km 을 의미함.
    Fm-1(X) : 표준 압력 데이터 값, X : 센싱노드의 출력 수치)
  16. 배터리 셀들의 스웰링 시 면압을 측정하기 위한 배터리 셀 면압 측정방법으로서,
    복수 개의 센싱노드가 가로 및 세로 방향으로 배열되고 상기 배터리 셀의 일면에 대응하는 면적을 갖는 압력 패드 센서를 상기 배터리 셀들 사이에 넣고 상기 배터리 셀들과 함께 적층하는 단계; 및
    제11항 내지 제15항 중 어느 한 항에 따른 압력 패드 센서의 출력 수치 교정방법에 기초해 상기 배터리 셀들의 스웰링시 영역별 면압을 측정하는 단계를 포함하는 것을 특징으로 하는 배터리 셀 면압 측정방법.
PCT/KR2022/017588 2021-12-20 2022-11-09 압력 패드 센서 가압 장치, 압력 패드 센서의 출력 수치 교정방법 및 배터리 셀 면압 측정방법 WO2023120973A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023558234A JP2024511429A (ja) 2021-12-20 2022-11-09 圧力パッドセンサー加圧装置、圧力パッドセンサーの出力値校正方法およびバッテリーセルの面圧測定方法
EP22911611.6A EP4379339A1 (en) 2021-12-20 2022-11-09 Device for pressurizing pressure pad sensor, method for calibrating output value of pressure pad sensor, and method for measuring surface pressure of battery cell
CN202280028216.1A CN117178176A (zh) 2021-12-20 2022-11-09 压力垫传感器按压装置、压力垫传感器的输出值校准方法及电池单元的表面压力测量方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210183108A KR20230093992A (ko) 2021-12-20 2021-12-20 압력 패드 센서 가압 장치, 압력 패드 센서의 출력 수치 교정방법 및 배터리 셀 면압 측정방법
KR10-2021-0183108 2021-12-20

Publications (1)

Publication Number Publication Date
WO2023120973A1 true WO2023120973A1 (ko) 2023-06-29

Family

ID=86902954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017588 WO2023120973A1 (ko) 2021-12-20 2022-11-09 압력 패드 센서 가압 장치, 압력 패드 센서의 출력 수치 교정방법 및 배터리 셀 면압 측정방법

Country Status (5)

Country Link
EP (1) EP4379339A1 (ko)
JP (1) JP2024511429A (ko)
KR (1) KR20230093992A (ko)
CN (1) CN117178176A (ko)
WO (1) WO2023120973A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979932A (ja) * 1995-09-13 1997-03-28 Honda Motor Co Ltd 分布型圧力センサの感度校正方法
JPH0979931A (ja) * 1995-09-13 1997-03-28 Honda Motor Co Ltd 分布型圧力センサの感度校正方法
KR100817843B1 (ko) * 2007-03-07 2008-03-31 한국신발피혁연구소 신발창 접착용 프레스의 휴대형 압력 측정장치를 위한켈리브레이터
KR20200021015A (ko) * 2018-08-16 2020-02-27 삼성디스플레이 주식회사 압력 센서를 테스트하는 장치 및 방법 그리고 이를 이용한 표시 장치
KR20210055363A (ko) 2019-11-07 2021-05-17 주식회사 엘지화학 셀 스웰링 압력 측정 지그
KR20210150215A (ko) * 2020-06-03 2021-12-10 주식회사 엘지에너지솔루션 배터리 스웰링 검사 장치 및 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979932A (ja) * 1995-09-13 1997-03-28 Honda Motor Co Ltd 分布型圧力センサの感度校正方法
JPH0979931A (ja) * 1995-09-13 1997-03-28 Honda Motor Co Ltd 分布型圧力センサの感度校正方法
KR100817843B1 (ko) * 2007-03-07 2008-03-31 한국신발피혁연구소 신발창 접착용 프레스의 휴대형 압력 측정장치를 위한켈리브레이터
KR20200021015A (ko) * 2018-08-16 2020-02-27 삼성디스플레이 주식회사 압력 센서를 테스트하는 장치 및 방법 그리고 이를 이용한 표시 장치
KR20210055363A (ko) 2019-11-07 2021-05-17 주식회사 엘지화학 셀 스웰링 압력 측정 지그
KR20210150215A (ko) * 2020-06-03 2021-12-10 주식회사 엘지에너지솔루션 배터리 스웰링 검사 장치 및 방법

Also Published As

Publication number Publication date
JP2024511429A (ja) 2024-03-13
CN117178176A (zh) 2023-12-05
KR20230093992A (ko) 2023-06-27
EP4379339A1 (en) 2024-06-05

Similar Documents

Publication Publication Date Title
WO2018139833A1 (ko) 이차 전지 평가 장치
WO2019107734A1 (ko) 셀 조립체에 대한 초기 가압력 강화 구조를 갖는 배터리 모듈 및 그 제조방법
WO2020085722A1 (ko) 중대형 셀 모듈의 폭발 압력 예측 시스템 및 이를 이용한 중대형 셀 모듈의 폭발 압력 예측 방법
WO2019151654A1 (ko) 이차전지 안전성 평가 방법 및 장치
CN110220780B (zh) 一种方形电池的力学性能测试系统及测试方法
CN210268543U (zh) 一种电池厚度检查装置
WO2023120973A1 (ko) 압력 패드 센서 가압 장치, 압력 패드 센서의 출력 수치 교정방법 및 배터리 셀 면압 측정방법
WO2020017907A1 (ko) 전극의 오정렬 검출 시스템 및 방법
WO2021194147A1 (ko) 배터리 팩의 적재장치 및 이를 이용한 배터리 팩 적재방법
KR20210055363A (ko) 셀 스웰링 압력 측정 지그
WO2018155775A1 (ko) 전지 재료의 두께 측정기
WO2022014954A1 (ko) 전극리드의 절곡 및 용접 장치 및 이를 이용한 전극리드의 용접 방법
WO2022014743A1 (ko) 이차전지 파우치 프레스 금형
KR101417960B1 (ko) 전기이중층 커패시터 셀 조립장치
CN114440754B (zh) 一种可测试多个电池在不同压力下膨胀量的装置及方法
WO2023113470A1 (ko) 전극조립체의 외경측정장치와 외경측정방법
CN217637742U (zh) 一种电芯膨胀力测试工装
EP2693228A1 (en) Cell voltage monitoring and self-calibrating device
WO2022197075A1 (ko) 배터리 셀 외관 손상 방지를 위한 셀 안착 지그, 셀 정렬 장치 및 셀 안착 방법
WO2022098077A1 (ko) 스토퍼를 포함하는 파우치형 전지 실링 장치 및 이를 이용한 파우치형 전지 실링 방법
US9069027B2 (en) Cell voltage monitoring and self-calibrating device
CN115451886A (zh) 包膜刀片电池尺寸测量与绝缘电阻测量机
WO2021246654A1 (ko) 배터리 스웰링 검사 장치 및 방법
WO2023167432A1 (ko) 전지셀의 가압단락검사기 및 가압단락검사방법
WO2023080543A1 (ko) 전극 조립체를 수용하는 파우치 컵부의 높이 측정 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911611

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023558234

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18561520

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022911611

Country of ref document: EP

Ref document number: 22911611.6

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022911611

Country of ref document: EP

Effective date: 20240226