WO2023119747A1 - 混合イオン交換樹脂の分離塔、およびこれを用いた混合イオン交換樹脂の分離方法 - Google Patents

混合イオン交換樹脂の分離塔、およびこれを用いた混合イオン交換樹脂の分離方法 Download PDF

Info

Publication number
WO2023119747A1
WO2023119747A1 PCT/JP2022/034176 JP2022034176W WO2023119747A1 WO 2023119747 A1 WO2023119747 A1 WO 2023119747A1 JP 2022034176 W JP2022034176 W JP 2022034176W WO 2023119747 A1 WO2023119747 A1 WO 2023119747A1
Authority
WO
WIPO (PCT)
Prior art keywords
exchange resin
ion
ion exchange
mixed
mixed ion
Prior art date
Application number
PCT/JP2022/034176
Other languages
English (en)
French (fr)
Inventor
祐一 小川
みどり 宮地
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2023119747A1 publication Critical patent/WO2023119747A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/05Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds
    • B01J49/09Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds of mixed beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/60Cleaning or rinsing ion-exchange beds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange

Definitions

  • the present invention relates to a separation tower for separating a mixed ion exchange resin used in a mixed bed ion exchange device used in a pure water production apparatus, etc., and a mixed ion exchange resin constituting a mixed bed ion exchange device using the same. It relates to the separation method of.
  • a pure water production system removes impurities in the raw water to improve cleanliness.
  • a mixed-bed type ion exchange apparatus filled with a mixture of and is commonly used.
  • the ion exchange resin removes ions in an amount corresponding to the ion exchange capacity, it breaks through without being able to remove any more ionic impurities. Therefore, after treating a certain amount of water, the ion exchange resin is recovered from this mixed bed ion exchange device, separated, and regenerated with sulfuric acid or caustic soda in the cation exchange resin regeneration tower and the anion exchange resin regeneration tower, respectively. Reuse is performed by filling a mixed-bed ion exchange device.
  • the quality of water treated by this mixed ion exchange resin is determined by the state of regeneration of the ion exchange resin, and in order to maintain the state of regeneration of the resin at a higher level, it is necessary to prevent reverse regeneration as much as possible.
  • reverse regeneration when the cation exchange resin mixed with the anion exchange resin is regenerated with an acid solution such as hydrochloric acid or sulfuric acid, the anion exchange resin is regenerated to the Cl type or SO 4 type, etc., and the anion exchange resin mixed with the cation exchange resin is regenerated.
  • the resin is regenerated with an alkaline solution such as sodium hydroxide, the cation exchange resin is regenerated to the Na form or the like.
  • the cation exchange resin and the anion exchange resin are separated in a state as close to complete as possible, and then transferred into the cation exchange resin. It is necessary to reduce the contamination of the anion exchange resin and the contamination of the anion exchange resin with the cation exchange resin as much as possible.
  • the ion exchange resin (mixed resin of the anion exchange resin and the cation exchange resin) used for condensate demineralization in the condensate demineralization tower is By introducing it into the cation exchange resin regeneration tower and passing backwash water from the bottom in an upward flow, the mixed ion exchange resin is separated into two upper and lower layers of anion exchange resin and cation exchange resin due to the difference in specific gravity. Then, the anion exchange resin constituting the upper layer is selectively extracted, transferred to an anion exchange resin regeneration tower, and regenerated with alkali. It has been proposed that the cation exchange resin remaining in the cation exchange resin regeneration tower be regenerated with an acid in the cation exchange resin regeneration tower (Patent Documents 1 and 2).
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a mixed ion exchange resin separation tower used in a mixed bed ion exchange apparatus or the like. Another object of the present invention is to provide a method for separating a mixed ion-exchange resin, which is capable of separating the mixed ion-exchange resin constituting a mixed-bed ion-exchange apparatus or the like with high accuracy.
  • the present invention firstly provides a mixed ion exchange resin separation column for separating a mixed ion exchange resin of two or more ion exchange resins, wherein the average particle size of the two or more ion exchange resins
  • a mesh screen having an average particle size of 90% or less of the ion exchange resin with the smallest diameter is installed at the top of the separation tower, and a water inlet is provided at the bottom of the separation tower and an outlet is provided above the screen.
  • Mixing A separation column for ion exchange resin is provided (Invention 1).
  • invention 1 it is possible to improve the separation accuracy of each ion exchange resin in a mixed ion exchange resin in which an anion exchange resin and a cation exchange resin are mixed. This is due to the following effects. That is, as a result of investigation by the present inventors on the factors that limit the separation accuracy even if each ion exchange resin of the mixed ion exchange resin is separated by specific gravity, it was found that in order to reuse the mixed ion exchange resin, an upward flow It is common to separate by passing water and using the difference in sedimentation speed due to the difference in specific gravity, but if there is a lot of crushed resin, the sedimentation speed of the crushed resin will change, so it is not always possible to separate by specific gravity.
  • the mixed ion exchange resin of two or more ion exchange resins contains at least one kind of anion exchange resin and one kind or more of cation exchange resin (invention 2).
  • invention 2 mixed resins of anion exchange resin and cation exchange resin are used for general purposes, and the separation tower of invention 1 is applied because they are easy to separate by utilizing the difference in specific gravity. It is suitable for
  • the separation tower for the mixed ion exchange resin may have an anion exchange resin outlet at the top and a cation exchange resin outlet below the anion exchange resin outlet.
  • the anion exchange resin since the anion exchange resin generally has a smaller specific gravity than the cation exchange resin, when the crushed resin is removed and the specific gravity is separated, the anion exchange resin is on the upper side. The cation exchange resin settles to the bottom. Therefore, the anion-exchange resin can be taken out from the upper anion-exchange resin extraction part and the cation-exchange resin can be taken out from the lower cation-exchange resin extraction part with high accuracy.
  • an average of the mixed ion exchange resins of two or more kinds of ion exchange resins is placed in the upper part of the mixed ion exchange resin separation tower for separating the mixed ion exchange resins of two or more kinds of ion exchange resins.
  • the exchange resin separation column is filled with the used mixed ion exchange resin of the above-mentioned two or more ion exchange resins, and the used ion exchange resin that has been damaged by passing water upward from the water injection part is removed from the discharge part.
  • a method for separating a mixed ion exchange resin which separates a plurality of remaining used ion exchange resins after being discharged to the outside (Invention 4).
  • a screen having a pore size smaller than that of the resin used is provided on the upper side of the separation tower, and water is passed in an upward flow, so that the normal resin that is not damaged remains at the bottom of the screen, Since only the finely crushed resin passes through the screen, after the crushed resin is discharged from the discharge part at the top of the separation tower, the separation accuracy can be improved by separating the multiple types of ion exchange resins by specific gravity.
  • the mixed ion exchange resin of two or more ion exchange resins preferably contains at least one kind of anion exchange resin and one kind or more of cation exchange resin (invention 5).
  • the mixed resin of an anion exchange resin and a cation exchange resin is used for general purposes, and the two are easily separated by utilizing the difference in specific gravity, so the separation tower of invention 1 is applied. It is suitable for
  • the ion exchange resin having the smallest average particle diameter has an average particle diameter of 50 to 2000 ⁇ m (Invention 6).
  • the mixed ion exchange resin of two or more ion exchange resins is preferably a porous ion exchange resin (invention 7).
  • the crushed resin is separated from the mesh screen having an average particle size of 90% or less. can be preferably separated.
  • the upward flow of water comprises a step of passing water at a high water passing speed for a predetermined time and a step of passing water at a slower water passing speed for a predetermined time. As such, it is preferable to repeat the water passage for one or more sets (Invention 8).
  • the mixing effect of the mixed ion-exchange resin is produced by adjusting the speed of the water flow when the water is passed through the separation tower of the mixed ion-exchange resin in an upward flow. Since the crushed ion-exchange resin floats upward, the finely crushed resin can be more reliably and efficiently discharged from the discharge section at the top of the separation tower.
  • a mesh screen having an average particle size of 90% or less of the average particle size of the ion-exchange resin having the smallest average particle size among the mixed ion-exchange resins of two or more types of ion-exchange resins is used. Since it is installed at the top of the separation tower, finely crushed resin passes through the screen, but normal resin stays at the bottom of the screen, so that only the crushed resin is discharged from the discharge part at the top of the separation tower. Therefore, it is possible to improve the separation accuracy of the mixed resin.
  • FIG. 1 is a schematic diagram illustrating a separation column for mixed ion exchange resins according to one embodiment of the present invention
  • FIG. FIG. 4 is a schematic view showing a backwashing process by a separation tower for mixed ion exchange resins according to the embodiment
  • FIG. 4 is an enlarged view showing a backwashing process by a separation tower for mixed ion exchange resins according to the embodiment
  • It is a schematic diagram showing a separation tower of mixed ion exchange resin of Comparative Example 1 (conventional).
  • FIG. 1 shows a separation column for mixed ion exchange resins according to one embodiment of the present invention.
  • a separation tower 1 for mixed ion exchange resin is provided with a water supply pipe 2 as a water injection part and a plurality of discharge nozzles 2A at the bottom of a cylindrical separation tower main body 1A, and a discharge part at the top.
  • a discharge pipe 3 is connected.
  • a water collecting plate 4 is arranged above the discharge nozzle 2A of the separation tower main body 1A, and a screen 5 is arranged on the upper end side of the separation tower main body 1A.
  • An anion exchange resin extraction part (not shown) is provided near the middle of the separation tower 1 in the vertical direction, and a cation exchange resin extraction part (not shown) is provided below it.
  • the bottom of the separation tower 1 is provided with an inlet/outlet port, and the upper side of the separation tower 1 is provided with a filling port for used mixed resin, a viewing window, and the like, but these are omitted for convenience of explanation.
  • the space between the water collecting plate 4 and the screen 5 of the separation tower main body 1A is filled with the used mixed ion exchange resin to the extent that it occupies about 40 to 70% by volume.
  • the mixed ion exchange resin in this embodiment is a mixed resin of an anion exchange resin and a cation exchange resin.
  • the ratio (volume ratio) of the anion exchange resin and the cation exchange resin in this mixed ion exchange resin is not particularly limited, but the anion exchange resin: cation exchange resin is about 30:70 to 70:30.
  • the average particle size of the smaller ion exchange resin of these anion exchange resin and cation exchange resin is 50 to 2000 ⁇ m (based on swelling).
  • the anion exchange resin and the cation exchange resin are preferably porous ion exchange resins.
  • the above-mentioned anion exchange resin extraction part and cation exchange resin extraction part are selected according to the filling amount (volume) of the mixed ion exchange resin, the ratio of the anion exchange resin and the cation exchange resin, and the safety factor. Each resin extraction position is set.
  • the screen 5 is 90% or less of the average particle size (based on swelling) of the ion exchange resin having the smaller average particle size among the anion exchange resin and the cation exchange resin. mesh, especially 70-90%. If the mesh size of the screen 5 exceeds 90% of the average particle size, normal ion-exchange resin is likely to be discharged in the backwashing process described later.
  • the used mixed ion exchange resin R packed in the mixed bed ion exchange apparatus is taken out, and the mixed ion exchange resin separation tower 1 is filled from the packing port. Then, water (pure water) is injected from the inlet/outlet at the bottom of the separation tower 1 to fill the inside of the separation tower 1 with water.
  • water pure water
  • the mixed ion exchange resin R occupies about 40 to 70% by volume of the space between the water collecting plate 4 and the screen 5, so that the space between the water collecting plate 4 and the screen 5 spread throughout the space.
  • the fluidized anion exchange resin A and cation exchange resin C flow toward the screen 5 due to the discharge pressure of the water.
  • the mesh size is 90% or less of the average particle size (standard when swollen)
  • normal ion-exchange resin does not pass through the screen 5, and only the ion-exchange resin that has been damaged and has a smaller minor axis passes through the screen 5. Then, it is discharged from the discharge pipe 3.
  • the time of the backwashing step in this upward flow is preferably longer because the crushed ion exchange resin can be removed, but if it is too long, the work efficiency will rather decrease, so it is preferably about 30 to 120 minutes. .
  • the backwashing in the upward flow is performed at a high water flow rate of, for example, LV 10 m / h to 20 m / h and a slow water flow rate of, for example, LV 3 m / h to less than 10 m / h. is one set, and it is preferable to repeat the water passage for one set, particularly two or more sets.
  • the crushed ion-exchange resin floats up due to the stirring effect by adjusting the speed of water passage when water is passed upward in this way, the crushed fine resin is discharged into the discharge pipe at the top of the separation tower 1. 3 can be more reliably and efficiently discharged.
  • the ion exchange resin crushed by backwashing is discharged, the remaining normal ion exchange resin R settles by allowing it to stand still.
  • the anion exchange resin and the cation exchange resin have different specific gravities, they can be separated by specific gravity. Since the cation exchange resin generally has a higher specific gravity, the anion exchange resin settles on the lower side and the cation exchange resin settles on the upper side.
  • the ion exchange resin may be separated by a known method by discharging and injecting pure water from a water inlet provided at the bottom.
  • the separated anion-exchange resin and cation-exchange resin may be extracted from the anion-exchange resin extractor and the cation-exchange resin extractor, respectively, and subjected to the regeneration process in the respective resin regeneration towers.
  • the remaining ion-exchange resin may be taken out and used for the next separation of the mixed resin of the anion-exchange resin and the cation-exchange resin.
  • ion exchange resins are not limited to anion exchange resins and cation exchange resins, but also include catalyst resins in which catalyst metals are supported on these ion exchange resins, boron selective adsorption resins, and the like.
  • the present invention is characterized in that the pre-crushed ion-exchange resin is excluded when separating a plurality of mixed ion-exchange resins, and the subsequent separation step is not particularly limited. Needless to say, it can be applied to various separation methods.
  • Example 1 The ion exchange resin separation tower 1 shown in FIG. was passed at LV 15 m/h for 1 hour. After stopping the flow of water, the separated anion exchange resin and cation exchange resin were each taken out, and the mixing rate of other ion exchange resins was measured. As a result, the mixing rate of the cation exchange resin in the anion exchange resin and the anion exchange resin in the cation exchange resin was 0.01%, respectively. Also, as a result of checking the amount of healthy resin that flowed into the wastewater tank from the separation tower during one hour of water flow, the rate of loss of sound resin from the separation tower 1 was 0%. These results are shown in Table 1 together with the backwash conditions.
  • Example 2 The ion exchange resin separation tower 1 shown in FIG. A cycle of passing water at LV 15 m/h for 15 minutes and then passing water at LV 5 m/h for 15 minutes was repeated twice. After stopping the flow of water, the separated anion exchange resin and cation exchange resin were each taken out, and the mixing rate of other ion exchange resins was measured. As a result, the mixing ratio of the cation exchange resin in the anion exchange resin and the anion exchange resin in the cation exchange resin was 0.005%, respectively. Also, as a result of checking the amount of healthy resin that flowed into the waste water tank from the separation tower 1 during one hour of water flow, the rate of loss of sound resin from the separation tower was 0%. These results are shown in Table 1 together with the backwashing conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

混合イオン交換樹脂の分離塔1は、円筒形の分離塔本体1Aの底部に注水部としての給水管2及び複数の吐出ノズル2Aを有し、頂部には排出部としての排出管3が接続している。この分離塔本体1Aの吐出ノズル2Aの上側には集水板4が配置されているとともに、分離塔本体1Aの上端側にはスクリーン5は配置されている。このスクリーン5は、混合イオン交換樹脂のうち平均粒径が最も小さいイオン交換樹脂の平均粒径の90%以下の網目を有する。このようなイオン交換樹脂の分離塔であれば、混床式イオン交換装置などのイオン交換樹脂を高精度で分離することが可能となる。

Description

混合イオン交換樹脂の分離塔、およびこれを用いた混合イオン交換樹脂の分離方法
 本発明は、純水製造装置などに用いる混床式イオン交換装置などで使用した混合イオン交換樹脂を分離する分離塔、およびこれを用いた混床式イオン交換装置などを構成する混合イオン交換樹脂の分離方法に関する。
 通常、純水製造装置では原水中の不純物を除去して清浄度を高めているが、イオン性の不純物、すなわちアニオン性の不純物とカチオン性の不純物を除去するためにアニオン交換樹脂とカチオン交換樹脂とを混合充填した混床式イオン交換装置が汎用的に用いられている。この混床式イオン交換装置では、イオン交換樹脂はイオン交換容量に相当する量のイオンを除去すると、それ以上のイオン性不純物は除去できずに破過する。そこで、ある程度の水量を処理したら、この混床式イオン交換装置からイオン交換樹脂を回収してそれぞれ分離し、カチオン交換樹脂再生塔、アニオン交換樹脂再生塔でそれぞれ硫酸や苛性ソーダなどにより再生して再度混床式イオン交換装置に充填して再利用することが行われている。
 この混合イオン交換樹脂による処理水質はイオン交換樹脂の再生状態により決定されるが、樹脂の再生状態をより高度に維持するためには、逆再生をできるだけ生じさせない必要がある。逆再生とは、アニオン交換樹脂の混入したカチオン交換樹脂を塩酸や硫酸など酸溶液で再生する際、アニオン交換樹脂がCl形やSO形などに再生され、またカチオン交換樹脂の混入したアニオン交換樹脂を水酸化ナトリウムなどのアルカリ溶液で再生する際、カチオン交換樹脂がNa形などに再生されることである。
 この逆再生を生じさせないためには、2種以上のイオン交換樹脂の混合イオン交換樹脂を再生するとき、カチオン交換樹脂とアニオン交換樹脂とをできるだけ完全に近い状態に分離し、カチオン交換樹脂中へのアニオン交換樹脂の混入、およびアニオン交換樹脂中へのカチオン交換樹脂の混入を極力減少させる必要がある。
 そこで、アニオン交換樹脂とカチオン交換樹脂とを精度よく分離する方法として、復水脱塩塔内で復水脱塩に使用されたイオン交換樹脂(アニオン交換樹脂とカチオン交換樹脂との混合樹脂)をカチオン交換樹脂再生塔内に導入し、下から逆洗水を上向流にて通水することにより、混合状態のイオン交換樹脂を比重差でアニオン交換樹脂とカチオン交換樹脂の上下2層に分離し、次いで上層を構成するアニオン交換樹脂を選択的に引き抜き、アニオン交換樹脂再生塔に移送し、アルカリにより再生を行う。そして、カチオン交換樹脂再生塔内に残ったカチオン交換樹脂は、該カチオン交換樹脂再生塔にて酸により再生することが提案されている(特許文献1,2)。
特開2019-181363号公報 特開2020-75226号公報
 しかしながら、近年、高純度の純水を製造する際に混合イオン交換樹脂を使用した場合に、より高度にアニオン交換樹脂とカチオン交換樹脂とを分離することが要望されているが、特許文献1,2などの従来の分離方法では限界があった。
 本発明は上記課題に鑑みてなされたものであり、混床式イオン交換装置などで使用した混合イオン交換樹脂分離塔を提供することを目的とする。また、本発明は、混床式イオン交換装置などを構成する混合イオン交換樹脂を高精度で分離することの可能な混合イオン交換樹脂の分離方法を提供することを目的とする。
 上記目的に鑑み、本発明は第一に、2種以上のイオン交換樹脂の混合イオン交換樹脂を分離する混合イオン交換樹脂の分離塔であって、前記2種以上のイオン交換樹脂のうち平均粒径が最も小さいイオン交換樹脂の平均粒径の90%以下の網目のスクリーンを分離塔の上部に設置し、該分離塔の底部に注水部を有するとともに前記スクリーンの上側に排出部を有する、混合イオン交換樹脂の分離塔を提供する(発明1)。
 かかる発明(発明1)によれば、アニオン交換樹脂とカチオン交換樹脂などを混合した混合イオン交換樹脂における各イオン交換樹脂の分離精度を向上させることができる。これは以下のような作用による。すなわち、混合イオン交換樹脂の各イオン交換樹脂を比重分離しても分離精度に限界がある要因について本発明者らが検討した結果、混合イオン交換樹脂を再利用するためには、上向流で通水して比重差による沈降速度の違いを利用して分離するのが一般的であるが、破砕した樹脂が多く含まれる場合、破砕した樹脂は沈降速度が変化するため、必ずしも比重分離できないためであることがわかった。そこで、分離塔の上側に使用する樹脂よりも小さい孔径のスクリーンを設け、分離塔に上向流で通水することにより、破砕した細かな樹脂はスクリーンを抜けるが、通常の樹脂はスクリーンによりとどまるようにすることで、分離塔上部の排出部から破砕したイオン交換樹脂のみを排出することができ、これにより混合樹脂の分離精度を向上させることができる。
 上記発明(発明1)においては、前記2種以上のイオン交換樹脂の混合イオン交換樹脂が、少なくともアニオン交換樹脂及びカチオン交換樹脂をそれぞれ1種類以上含むことが好ましい(発明2)。
 かかる発明(発明2)によれば、アニオン交換樹脂及びカチオン交換樹脂との混合樹脂は汎用的に用いられており、両者は比重の相違を利用して分離しやすいので発明1の分離塔を適用するのに好適である。
 上記発明(発明2)においては、前記混合イオン交換樹脂の分離塔が上部にアニオン交換樹脂抜出部を有するとともに該アニオン交換樹脂抜出部よりも下方にカチオン交換樹脂抜出部を有することが好ましい(発明3)。
 かかる発明(発明3)によれば、一般にアニオン交換樹脂とカチオン交換樹脂とでは、アニオン交換樹脂の方が比重は小さいので、破砕した樹脂を除去して比重分離した際にはアニオン交換樹脂は上側にカチオン交換樹脂は下側に沈降する。そこで、の後、上側のアニオン交換樹脂抜出部からアニオン交換樹脂を、下側のカチオン交換樹脂抜出部からカチオン交換樹脂をそれぞれ精度よく取り出すことができる。
 また、本発明は第二に、2種以上のイオン交換樹脂の混合イオン交換樹脂を分離する混合イオン交換樹脂の分離塔の上部に該2種以上のイオン交換樹脂の混合イオン交換樹脂のうち平均粒径が最も小さいイオン交換樹脂の平均粒径の90%以下の網目のスクリーンを設置し、該分離塔の底部に注水部を有するとともに前記スクリーンの上側に外部に連通した排出部を有する混合イオン交換樹脂の分離塔に使用済の前記2種以上のイオン交換樹脂の混合イオン交換樹脂を充填し、前記注水部より上向流で通水して破損した使用済のイオン交換樹脂を排出部より外部に排出した後、残存する複数の使用済のイオン交換樹脂を分離する、混合イオン交換樹脂の分離方法を提供する(発明4)。
 かかる発明(発明4)によれば、分離塔の上側に使用する樹脂よりも小さい孔径のスクリーンを設け、上向流で通水することにより、破損していない通常の樹脂はスクリーン下部にとどまり、破砕した細かな樹脂のみがスクリーンを抜けるので、分離塔上部の排出部から破砕した樹脂を排出した後、複数種のイオン交換樹脂を比重分離することことで分離精度を向上させることができる。
 上記発明(発明4)においては、前記2種以上のイオン交換樹脂の混合イオン交換樹脂が、少なくともアニオン交換樹脂及びカチオン交換樹脂をそれぞれ1種類以上含むことが好ましい(発明5)。
 かかる発明(発明5)によれば、アニオン交換樹脂及びカチオン交換樹脂との混合樹脂は汎用的に用いられており、両者は比重の相違を利用して分離しやすいので発明1の分離塔を適用するのに好適である。
 上記発明(発明4,5)においては、前記平均粒径が最も小さいイオン交換樹脂の平均粒径が50~2000μmであることが好ましい(発明6)。特に上記発明(発明4~6)においては、前記2種以上のイオン交換樹脂の混合イオン交換樹脂が、ポーラス型イオン交換樹脂であることが好ましい(発明7)。
 かかる発明(発明6,7)によれば、平均粒径が最も小さいイオン交換樹脂の平均粒径をこのような範囲とすることで、破砕した樹脂を平均粒径90%以下の網目のスクリーンから好適に分離することができる。
 上記発明(発明4~7)においては、前記上向流での通水が、早い通水速度で所定時間通水する工程とそれより遅い通水速度で所定時間通水する工程とを1セットとして、その通水を1セット以上繰り返すことが好ましい(発明8)。
 かかる発明(発明8)によれば、混合イオン交換樹脂の分離塔に上向流で通水する際の通水速度に緩急をつけることにより混合イオン交換樹脂の攪拌効果が生じ、この攪拌効果により破砕したイオン交換樹脂が上部に舞い上がるので、破砕した細かな樹脂を分離塔上部の排出部からより確実に効率よく排出することができる。
 本発明の混合イオン交換樹脂の分離塔によれば、2種以上のイオン交換樹脂の混合イオン交換樹脂のうち平均粒径が最も小さいイオン交換樹脂の平均粒径の90%以下の網目のスクリーンを分離塔の上部に設置しているので、破砕した細かな樹脂はスクリーンを抜けるが、通常の樹脂はスクリーン下部にとどまるようにすることで、分離塔上部の排出部から破砕した樹脂のみを排出することができ、これにより混合樹脂の分離精度を向上させることができる。
本発明の一実施形態による混合イオン交換樹脂の分離塔を示す概略図である。 前記実施形態による混合イオン交換樹脂の分離塔による逆洗工程を示す概略図である。 前記実施形態による混合イオン交換樹脂の分離塔による逆洗工程を示す拡大図である。 比較例1(従来)の混合イオン交換樹脂の分離塔を示す概略図である。
 以下、本発明の混合イオン交換樹脂の分離塔の一実施形態について添付図面を参照にして詳細に説明する。
〔混合イオン交換樹脂の分離塔〕
 図1は、本発明の一実施形態による混合イオン交換樹脂の分離塔を示している。図1において、混合イオン交換樹脂の分離塔1は、円筒形の分離塔本体1Aの底部に注水部としての給水管2及び複数の吐出ノズル2Aが設けられていて、頂部には排出部としての排出管3が接続している。この分離塔本体1Aの吐出ノズル2Aの上側には集水板4が配置されているとともに、分離塔本体1Aの上端側にはスクリーン5が配置されている。なお、分離塔1内の上下方向の中間付近にはアニオン交換樹脂抜出部(図示せず)が設けられ、それよりも下方にカチオン交換樹脂抜出部(図示せず)が設けられている。また、分離塔1の底部には注排水口が設けられているとともに、側面上側には使用済みの混合樹脂の充填口や覗き窓などが設けられているが、これらは説明の便宜上省略する。
 そして、分離塔本体1Aの集水板4とスクリーン5との間の空間には、約40~70容積%を占める程度に使用済の混合イオン交換樹脂が充填される。本実施形態において混合イオン交換樹脂は、アニオン交換樹脂及びカチオン交換樹脂の混合樹脂である。この混合イオン交換樹脂におけるアニオン交換樹脂及びカチオン交換樹脂の割合(容積比)は、特に制限はないがアニオン交樹脂:カチオン交換樹脂=30:70~70:30程度である。また、これらアニオン交樹脂及びカチオン交換樹脂の平均粒径は小さい方のイオン交換樹脂で平均粒径が50~2000μm(膨潤時基準)であることが好ましい。さらには、アニオン交樹脂及びカチオン交換樹脂は、ポーラス型イオン交換樹脂であることが好ましい。なお、前述したアニオン交換樹脂抜出部とカチオン交換樹脂抜出部とは、この混合イオン交換樹脂の充填量(容積)と、アニオン交換樹脂及びカチオン交換樹脂の割合と、安全率とに応じてそれぞれの樹脂抜出位置が設定される。
 上述したような混合イオン交換樹脂の分離塔1において、スクリーン5は、アニオン交換樹脂及びカチオン交換樹脂のうち平均粒径が小さい方のイオン交換樹脂の平均粒径(膨潤時基準)の90%以下の網目であり、特に70~90%である。スクリーン5の網目が平均粒径の90%を超えると、後述する逆洗工程において、正常なイオン交換樹脂が排出されやすくなる一方、70%より小さいと破砕した樹脂の除去率が十分でなくなる。
〔混合イオン交換樹脂の分離方法〕
 次に前述したような構成を有する本実施形態の混合イオン交換樹脂の分離塔1を用いた混合イオン交換樹脂の分離方法について説明する。
 まず、混床式イオン交換装置内に充填されている使用済の混合イオン交換樹脂Rを取り出して、混合イオン交換樹脂の分離塔1に充填口から充填する。そして、分離塔1の底部の注排水口から水(純水)を注入して分離塔1内を水で満たす。
 次に逆洗工程として、複数の吐出ノズル2Aから水(純水)を吐出して上向流で通水し、使用済みのイオン交換樹脂Rを逆洗する。このとき図2に示すように混合イオン交換樹脂Rは、集水板4とスクリーン5との間の空間の約40~70容積%を占めているので、集水板4とスクリーン5との間の空間全体に拡散する。このとき図3に示すように水の吐出圧により流動床化したアニオン交換樹脂A及びカチオン交換樹脂Cがスクリーン5に向けて流動するが、スクリーン5は、平均粒径が小さい方のイオン交換樹脂の平均粒径(膨潤時基準)の90%以下の網目であるので、正常なイオン交換樹脂はスクリーン5を透過せず、破損して短径が小さくなったイオン交換樹脂のみがスクリーン5を通過して排出管3から排出される。
 この上向流での逆洗工程の時間は、長い方が破砕したイオン交換樹脂が除去できて好ましいが、長すぎるとかえって作業効率が低下するため、30分~120分程度とするのが好ましい。特に、上述したような逆洗時間において、上向流での逆洗を例えばLV10m/h~20m/h程度の早い通水速度と、例えばLV3m/h~10m/h未満の遅い通水速度とを1セットとして、その通水を1セット、特に2セット以上繰り返すことが好ましい。このように上向流で通水する際の通水速度に緩急をつけることにより、攪拌効果により破砕したイオン交換樹脂が上部に舞い上がるので、破砕した細かな樹脂を分離塔1の上部の排出管3からより確実に効率よく排出することができる。
 このようにして、逆洗により破砕したイオン交換樹脂を排出したら、静置することで残存する正常なイオン交換樹脂Rは沈降する。このときアニオン交換樹脂とカチオン交換樹脂とは比重が異なるので比重分離することができる。一般にカチオン交換樹脂の方が比重は大きいので、アニオン交換樹脂が下側でカチオン交換樹脂が上側に沈降する。なお、逆洗後、底部に設けた注排水口から純水の排出、注入を行って、公知の方法によりイオン交換樹脂の分離工程を別途行ってもよい。そして、分離したアニオン交換樹脂及びカチオン交換樹脂は、アニオン交換樹脂抜出部とカチオン交換樹脂抜出部からそれぞれ抜き出して、それぞれの樹脂の再生塔により再生工程を行えばよい。なお、アニオン交換樹脂及びカチオン交換樹脂の分離精度の向上のために安全率を考慮してアニオン交換樹脂及びカチオン交換樹脂の分離境界から所定の範囲の樹脂は分離せず残存させるのが好ましいが。この残存させたイオン交換樹脂は、取り出して次回のアニオン交換樹脂とカチオン交換樹脂の混合樹脂の分離時に利用すればよい。
 以上、本発明について添付図面を参照にして前記実施形態に基づき説明してきたが、本発明は前記実施形態に限定されず、種々の変更実施が可能である。例えば、前記実施形態においては、アニオン交換樹脂とカチオン交換樹脂の2種類の樹脂の場合について説明したが、異なるグレードあるいは性状のアニオン交換樹脂とカチオン交換樹脂を複数種用いた場合にも適用可能である。さらに本発明において、イオン交換樹脂とは、アニオン交換樹脂及びカチオン交換樹脂に限らず、これらのイオン交換樹脂に触媒金属を担持させた触媒樹脂や、ホウ素選択制吸着樹脂なども含む。また、本発明は、複数種の混合イオン交換樹脂を分離するに際し、事前に破砕したイオン交換樹脂を排除することを特徴とするものであり、その後の分離工程については特に制限はなく、公知の種々の分離方法に適用できることはいうまでもない。
 以下の具体的実施例により本発明をさらに詳細に説明する。
[実施例1]
 図1に示すイオン交換樹脂の分離塔1に、アニオン交換樹脂とカチオン交換樹脂との混合樹脂(アニオン交換樹脂:カチオン交換樹脂=50:50(容積比))を2m充填し、上向流でLV15m/hで1時間通水した。通水停止後、分離したアニオン交換樹脂とカチオン交換樹脂をそれぞれ抜き取って他のイオン交換樹脂の混入率を測定した。その結果、アニオン交換樹脂中のカチオン交換樹脂およびカチオン交換樹脂中のアニオン交換樹脂の混入率はそれぞれ0.01%であった。また、1時間の通水時に分離塔から排水槽に流入した健全な樹脂量を確認した結果、分離塔1からの健全な樹脂の損失割合は0%であった。これらの結果を逆洗条件とともに表1に示す。
[実施例2]
 図1に示すイオン交換樹脂の分離塔1に、アニオン交換樹脂とカチオン交換樹脂との混合樹脂(アニオン交換樹脂:カチオン交換樹脂=50:50(容積比))を2m充填し、上向流でLV15m/hで15分通水し、その後LV5m/hで15分通水するサイクルを2回繰り返した。通水停止後、分離したアニオン交換樹脂とカチオン交換樹脂をそれぞれ抜き取って他のイオン交換樹脂の混入率を測定した。その結果、アニオン交換樹脂中のカチオン交換樹脂およびカチオン交換樹脂中のアニオン交換樹脂の混入率はそれぞれ0.005%であった。また、1時間の通水時に分離塔1から排水槽に流入した健全な樹脂量を確認した結果、分離塔からの健全な樹脂の損失割合はお0%であった。これらの結果を逆洗条件とともに表1にあわせて示す。
[比較例1]
 図4に示すようにスクリーン5を有しない混合イオン交換樹脂の分離塔1に、アニオン交換樹脂とカチオン交換樹脂の混合樹脂(アニオン交換樹脂:カチオン交換樹脂=50:50(容積比))を2m充填し、上向流でLV5m/hで1時間通水した。通水停止後、分離したアニオン交換樹脂とカチオン交換樹脂をそれぞれ抜き取って混入率を測定した。その結果、アニオン交換樹脂中のカチオン交換樹脂およびカチオン交換樹脂中のアニオン交換樹脂の混入率はそれぞれ0.1%であった。また、1時間の通水時に分離塔1から排水槽に流入した健全な樹脂量を確認した結果、分離塔からの健全な樹脂の損失割合は0%であった。
[比較例2]
 図4に示すようにスクリーン5を有しない混合イオン交換樹脂の分離塔1に、アニオン交換樹脂とカチオン交換樹脂との混合樹脂(アニオン交換樹脂:カチオン交換樹脂=50:50(容積比))を2m充填し、上向流でLV15m/hで1時間通水した。通水停止後、分離したアニオン交換樹脂とカチオン交換樹脂をそれぞれ抜き取って混入率を測定した。その結果、アニオン交換樹脂中のカチオン交換樹脂およびカチオン交換樹脂中のアニオン交換樹脂の混入率はそれぞれ0.2%であった。また、1時間の通水時に分離塔から排水槽に流入した健全な樹脂量を確認した結果、分離塔1からの健全な樹脂の損失割合は10%であった
Figure JPOXMLDOC01-appb-T000001
1 混合イオン交換樹脂の分離塔1
1A 分離塔本体
2 給水管
2A 吐出ノズル
3 排出管
4 集水板
5 スクリーン
R 混合イオン交換樹脂
A アニオン交換樹脂
C カチオン交換樹脂

Claims (8)

  1.  2種以上のイオン交換樹脂の混合イオン交換樹脂を分離する混合イオン交換樹脂の分離塔であって、
     前記2種以上のイオン交換樹脂のうち平均粒径が最も小さいイオン交換樹脂の平均粒径の90%以下の網目のスクリーンを分離塔の上部に設置し、
     該分離塔の底部に注水部を有するとともに前記スクリーンの上側に排出部を有する、混合イオン交換樹脂の分離塔。
  2.  前記2種以上のイオン交換樹脂の混合イオン交換樹脂が、少なくともアニオン交換樹脂及びカチオン交換樹脂をそれぞれ1種類以上含む、請求項1に記載の混合イオン交換樹脂の分離塔。
  3.  前記混合イオン交換樹脂の分離塔が上部にアニオン交換樹脂抜出部を有するとともに該アニオン交換樹脂抜出部よりも下方にカチオン交換樹脂抜出部を有する、請求項2に記載の混合イオン交換樹脂の分離塔。
  4.  2種以上のイオン交換樹脂の混合イオン交換樹脂を分離する混合イオン交換樹脂の分離塔の上部に該2種以上のイオン交換樹脂の混合イオン交換樹脂のうち平均粒径が最も小さいイオン交換樹脂の平均粒径の90%以下の網目のスクリーンを設置し、該分離塔の底部に注水部を有するとともに前記スクリーンの上側に外部に連通した排出部を有する混合イオン交換樹脂の分離塔に使用済の前記2種以上のイオン交換樹脂の混合イオン交換樹脂を充填し、
     前記注水部より上向流で通水して破損した使用済のイオン交換樹脂を排出部より外部に排出した後、残存する複数の使用済のイオン交換樹脂を分離する、混合イオン交換樹脂の分離方法。
  5.  前記2種以上のイオン交換樹脂の混合イオン交換樹脂が、少なくともアニオン交換樹脂及びカチオン交換樹脂をそれぞれ1種類以上含む、請求項4に記載の混合イオン交換樹脂の分離方法。
  6.  前記平均粒径が最も小さいイオン交換樹脂の平均粒径が50~2000μmである、請求項4又は5に記載の混合イオン交換樹脂の分離方法。
  7.  前記2種以上のイオン交換樹脂の混合イオン交換樹脂が、ポーラス型イオン交換樹脂である、請求項4~6のいずれか1項に記載の混合イオン交換樹脂の分離方法。
  8.  前記上向流での通水が、早い通水速度で所定時間通水する工程とそれより遅い通水速度で所定時間通水する工程とを1セットとして、その通水を1セット以上繰り返す、請求項4~7のいずれか1項に記載の混合イオン交換樹脂の分離方法。
PCT/JP2022/034176 2021-12-23 2022-09-13 混合イオン交換樹脂の分離塔、およびこれを用いた混合イオン交換樹脂の分離方法 WO2023119747A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-209423 2021-12-23
JP2021209423A JP7184152B1 (ja) 2021-12-23 2021-12-23 混合イオン交換樹脂の分離塔、およびこれを用いた混合イオン交換樹脂の分離方法

Publications (1)

Publication Number Publication Date
WO2023119747A1 true WO2023119747A1 (ja) 2023-06-29

Family

ID=84327902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034176 WO2023119747A1 (ja) 2021-12-23 2022-09-13 混合イオン交換樹脂の分離塔、およびこれを用いた混合イオン交換樹脂の分離方法

Country Status (3)

Country Link
JP (1) JP7184152B1 (ja)
TW (1) TW202334039A (ja)
WO (1) WO2023119747A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4626963B1 (ja) * 1969-05-02 1971-08-05
JPS5511089A (en) * 1978-05-11 1980-01-25 Belco Pollution Control Corp Method of regenerating mixed resin bed used for purifying condensed water
JPS55124548A (en) * 1979-03-20 1980-09-25 Japan Organo Co Ltd Separating fine cation-exchange resin mixing into anion-exchange resin
JP2010042395A (ja) * 2008-03-05 2010-02-25 Mitsubishi Chemicals Corp アニオン交換樹脂、マクロポーラス型アニオン交換樹脂の製造方法、脱塩装置、発電所用復水脱塩装置、および懸濁性金属腐蝕生成物の除去方法
WO2012157448A1 (ja) * 2011-05-17 2012-11-22 オルガノ株式会社 イオン交換装置
JP2013081906A (ja) * 2011-10-11 2013-05-09 Mitsubishi Rayon Co Ltd イオン交換処理水製造装置およびイオン交換処理水製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626963B2 (ja) 2004-11-15 2011-02-09 パラマウントベッド株式会社 サイドレールを備えたベッド
JP5511089B2 (ja) 2011-05-19 2014-06-04 パナソニック株式会社 アンテナ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4626963B1 (ja) * 1969-05-02 1971-08-05
JPS5511089A (en) * 1978-05-11 1980-01-25 Belco Pollution Control Corp Method of regenerating mixed resin bed used for purifying condensed water
JPS55124548A (en) * 1979-03-20 1980-09-25 Japan Organo Co Ltd Separating fine cation-exchange resin mixing into anion-exchange resin
JP2010042395A (ja) * 2008-03-05 2010-02-25 Mitsubishi Chemicals Corp アニオン交換樹脂、マクロポーラス型アニオン交換樹脂の製造方法、脱塩装置、発電所用復水脱塩装置、および懸濁性金属腐蝕生成物の除去方法
WO2012157448A1 (ja) * 2011-05-17 2012-11-22 オルガノ株式会社 イオン交換装置
JP2013081906A (ja) * 2011-10-11 2013-05-09 Mitsubishi Rayon Co Ltd イオン交換処理水製造装置およびイオン交換処理水製造方法

Also Published As

Publication number Publication date
JP7184152B1 (ja) 2022-12-06
TW202334039A (zh) 2023-09-01
JP2023094132A (ja) 2023-07-05

Similar Documents

Publication Publication Date Title
US4648976A (en) Integral water demineralizer system and method
TWI483778B (zh) Ion exchange device
US4176056A (en) Cyclic operation of a bed of mixed ion exchange resins
WO2023119747A1 (ja) 混合イオン交換樹脂の分離塔、およびこれを用いた混合イオン交換樹脂の分離方法
US4085042A (en) Solid-fluid contacting process
RU2206520C1 (ru) Способ очистки воды от растворенных и нерастворенных примесей
JP3162614B2 (ja) 高流速逆洗型イオン交換塔の再生方法
JP2607544B2 (ja) 上昇流再生に用いるイオン交換塔
JP2940651B2 (ja) 純水製造装置
JP7214426B2 (ja) 糖液の精製装置および精製方法
JP2742976B2 (ja) 混床式イオン交換装置並びにこの混床式イオン交換装置を使用した純水及び超純水の製造方法
JP3837762B2 (ja) イオン交換樹脂の分離、再生方法
JP4315385B2 (ja) イオン交換塔
JP7214427B2 (ja) 糖液の精製装置および精製方法
JP2013081906A (ja) イオン交換処理水製造装置およびイオン交換処理水製造方法
JP3162616B2 (ja) 向流式イオン交換塔の再生方法
JP3907012B2 (ja) 向流再生式イオン交換装置とその再生方法
WO2024075500A1 (ja) 混合イオン交換樹脂のアニオン交換樹脂とカチオン交換樹脂との分離再生方法
JP2742975B2 (ja) イオン交換装置の再生方法
KR100499644B1 (ko) 복수탈염설비의 이온교환수지 분리/재생 방법 및 장치
JP3162615B2 (ja) 向流式イオン交換塔の再生方法
KR100602458B1 (ko) 복수탈염설비 외부재생시 중성수지를 사용하지 않는수지분리방법
JPH0768254A (ja) 純水製造装置、及び同装置の再生方法
JP4356987B2 (ja) 復水脱塩処理方法と装置及びその充填層の形成方法
JP3674368B2 (ja) 純水製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910473

Country of ref document: EP

Kind code of ref document: A1