WO2023119574A1 - 半導体素子の駆動装置及び駆動方法 - Google Patents

半導体素子の駆動装置及び駆動方法 Download PDF

Info

Publication number
WO2023119574A1
WO2023119574A1 PCT/JP2021/047941 JP2021047941W WO2023119574A1 WO 2023119574 A1 WO2023119574 A1 WO 2023119574A1 JP 2021047941 W JP2021047941 W JP 2021047941W WO 2023119574 A1 WO2023119574 A1 WO 2023119574A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
circuit
semiconductor element
period
short
Prior art date
Application number
PCT/JP2021/047941
Other languages
English (en)
French (fr)
Inventor
陽平 三井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023568950A priority Critical patent/JPWO2023119574A1/ja
Priority to PCT/JP2021/047941 priority patent/WO2023119574A1/ja
Publication of WO2023119574A1 publication Critical patent/WO2023119574A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters

Definitions

  • the present disclosure relates to a driving device and driving method for a semiconductor element.
  • Patent Document 1 International Publication No. 2017/026367 (Patent Document 1) describes a configuration in which a short circuit protection function by an RTC (Real-Time Current Control) circuit is combined with a power switching device of a semiconductor element.
  • the RTC circuit reduces the gate-source voltage of the semiconductor element when the drain current (main circuit current) of the semiconductor element becomes an overcurrent, thereby reducing the drain current.
  • the protection circuit described in Patent Document 1 can operate so that the element is not damaged by the surge voltage by reducing the voltage between the gate and the source when the short-circuit current is large.
  • the current flowing through the semiconductor element during operation of the short circuit protection circuit varies depending on the timing of occurrence of the short circuit and other conditions.
  • the protection circuit described in Patent Document 1 since the content of the protection operation against the occurrence of short-circuit current is constant, there is concern that power loss may occur more than necessary depending on the circumstances of the occurrence of the short-circuit. .
  • the present disclosure has been made to solve the above-described problems, and achieves both securing of protection performance and suppression of unnecessary power loss with respect to the protection function when an abnormality occurs in a semiconductor device. It is intended to
  • a driving device for a semiconductor element in which current flowing from a first main electrode to a second main electrode is controlled according to a voltage of a control electrode, includes a drive circuit, a protection circuit, and a selection circuit.
  • the drive circuit outputs one of a first voltage for turning on the semiconductor element and a second voltage for turning off the semiconductor element to the control electrode in accordance with a gate signal for controlling on/off of the semiconductor element.
  • the protection circuit performs a protection operation to turn off the semiconductor element when an abnormality occurs during the ON period of the semiconductor element.
  • the selection circuit switches the mode of protection operation by the protection circuit according to the driving state of the semiconductor element according to the turn-on command.
  • a method for driving a semiconductor device is provided.
  • a method of driving a semiconductor device in which current flowing from a first main electrode to a second main electrode is controlled according to a voltage of a control electrode, is provided by a method of driving a semiconductor device in which a first main electrode for turning on a semiconductor device is controlled in accordance with a turn-on command for the semiconductor device. a step of outputting a voltage to a control electrode; a step of executing a protection operation of turning off the semiconductor element when an abnormality occurs during an ON period of the semiconductor element; and a step of switching.
  • the protection function when an abnormality occurs in the semiconductor element ensures protection performance and unnecessary power loss. can be compatible with the suppression of
  • FIG. 1 is a block diagram illustrating the configuration of a driving device for a semiconductor element according to an embodiment
  • FIG. 2 is a circuit diagram illustrating a configuration example of a driving device according to Embodiment 1
  • FIG. 4 is an operation waveform diagram when the semiconductor element is turned on by the driving device according to the first embodiment
  • FIG. 5 is a flowchart for explaining control processing of the method for driving the semiconductor device according to the first embodiment
  • FIG. 7 is a circuit diagram illustrating a configuration example of a driving device according to Embodiment 2
  • FIG. 10 is an operation waveform diagram when the semiconductor element is turned on by the driving device according to the second embodiment
  • 10 is a flowchart for explaining control processing of a method for driving a semiconductor element according to Embodiment 2
  • FIG. 11 is a circuit diagram illustrating a configuration example of a driving device according to Embodiment 3;
  • FIG. 10 is an operation waveform diagram when the semiconductor element is turned on by the driving device according to the third embodiment;
  • FIG. 11 is a circuit diagram illustrating a configuration example of a drive device according to Embodiment 4;
  • FIG. 11 is a circuit diagram illustrating a configuration example of a drive device according to Embodiment 5;
  • FIG. 12 is an operation waveform diagram when the semiconductor element is turned on by the driving device according to the fifth embodiment;
  • FIG. 1 is a block diagram for explaining the configuration of a driving device for a semiconductor device according to this embodiment.
  • the drive device 10 controls the on/off of the semiconductor element 5 according to the gate signal Sg.
  • the semiconductor element 5 is composed of a MOSFET, and includes a gate (G) which is a control electrode, a drain (D) which is a first main electrode (high voltage side), and a second main electrode. (low voltage side) with a source (S).
  • G gate
  • D drain
  • S source
  • the current flowing from the first main electrode to the second main electrode is controlled according to the voltage of the control electrode.
  • a MOSFET can be made using a semiconductor substrate such as SiC (silicon carbide), Si, or GaN (gallium nitride), for example.
  • a current Id flowing from the first main electrode (D) to the second main electrode (S) of the semiconductor element 5 (hereinafter, also referred to as “drain current Id”) is the control electrode for the second main electrode (low voltage side). varies depending on the gate-source voltage Vgs (hereinafter also simply referred to as “gate voltage”), which is the voltage of .
  • the semiconductor element 5 is not limited to a MOSFET, and can be composed of an IGBT, a thyristor, or the like as long as it is a switching element in which the current between the main electrodes is controlled according to the voltage of the control electrode.
  • the control electrode is the gate, while the first main electrode is the "collector” and the second main electrode is the "emitter”.
  • the drive device 10 includes a drive circuit 100, a delay circuit 200, a selection circuit 300, and a protection circuit 400.
  • the drive device 10 outputs a drive voltage Vdv to the semiconductor element 5 .
  • the drive circuit 100 receives the gate signal Sg as an input and selects one of a first voltage (on drive voltage) V1 for turning on the semiconductor element 5 and a second voltage (off drive voltage) V2 for turning off the semiconductor element 5. , to the output node Nout electrically connected to the semiconductor element 5 via the gate resistor 6 .
  • the gate signal Sg is set to a logic high level (hereinafter simply referred to as "H level”) during the period when the semiconductor element 5 is turned on, and is set to a logic low level (hereinafter simply referred to as "H level”) during the period when the semiconductor element 5 is turned off. "L level”).
  • H level logic high level
  • H level a logic low level
  • the operation of the drive circuit 100 is also controlled by control signals Sa and Sbd from the protection circuit 400, which will be described later.
  • the delay circuit 200 receives the gate signal Sg and outputs a delayed gate signal Sgd to which a predetermined delay time has been added. Based on the delay gate signal Sgd from the delay circuit 200, the selection circuit 300 outputs selection signals S1 and S2 for switching the mode of protection operation by the protection circuit 400.
  • FIG. 1 A block diagram illustrating an exemplary computing environment in accordance with the present disclosure.
  • the protection circuit 400 has an abnormality detection function of the semiconductor element 5 based on the voltage or current of the first main electrode (drain) of the semiconductor element 5, and outputs control signals Sa and Sbd to the drive circuit 100 when an abnormality is detected. Alternatively, by outputting the third voltage V3 to the output node Nout, a protective operation is performed to prevent the semiconductor element 5 from being damaged by overcurrent.
  • the protection circuit 400 operates based on the selection signals S1 and S2 from the selection circuit 300, and is configured to switch the protection operation according to the driving state of the semiconductor element 5.
  • FIG. As described below, for example, the driving state of the semiconductor element 5 related to protection control can be classified based on the elapsed time from the turn-on start timing at which the gate signal Sg changes from L level to H level.
  • FIG. 2 is a circuit diagram illustrating a specific configuration of the driving device 10A according to the first embodiment.
  • drive device 10A includes drive circuit 100A, delay circuit 200A, selection circuit 300A, and protection circuit 400A.
  • the drive circuit 100A, the delay circuit 200A, the selection circuit 300A, and the protection circuit 400A correspond to examples of the drive circuit 100, the delay circuit 200, the selection circuit 300, and the protection circuit 400 in FIG.
  • the drive circuit 100A includes a switching control circuit 103, resistance elements 104 and 106, and switching elements 105 and 107 that are turned on and off complementarily.
  • a power supply 101 is connected between the power supply node Np and the GND node to generate an ON drive voltage (first voltage V1).
  • a power node Np supplies a first voltage V1.
  • the power supply 102 is connected between the GND node and the negative power supply node Nn to generate a negative bias off drive voltage (second voltage V2). That is, the second voltage V2 is a negative voltage (V2 ⁇ 0).
  • a negative power supply node Nn supplies a second voltage V2.
  • the GND node of the driving device 10A is at the same potential as the source (second main electrode) of the semiconductor element 5.
  • a switching element 105 composed of an N-type transistor and a resistance element 104 constituting an on-gate resistance are connected in series between a power supply node Np and an output node Nout.
  • a switching element 107 composed of a P-type transistor and a resistive element 106 constituting an off-gate resistor are connected in series between a negative power supply node Nn and an output node Nout.
  • the switching control circuit 103 generates the control signal Scn according to the gate signal Sg.
  • the control signal Scn is set to H level during the H level period of the gate signal Sg, and is set to L level during the L level period of the gate signal Sg.
  • the delay circuit 200A has a resistance element 201, a capacitor 202, and a trigger circuit 203.
  • a gate signal Sg is input to an RC circuit composed of a resistance element 201 and a capacitor 202 .
  • a trigger circuit 203 generates a delayed gate signal Sgd according to the output voltage of the RC circuit.
  • the delay gate signal Sgd is a signal obtained by adding a delay time TX according to the RC time constant to the gate signal Sg. That is, the delayed gate signal Sgd changes from the L level to the H level at the timing when the delay time TX has elapsed from the timing when the gate signal Sg changes from the L level to the H level.
  • Delay time TX can be adjusted by the resistance value of resistance element 201 and the capacitance value of capacitor 202 .
  • the selection circuit 300A has an inverting buffer 301 and a non-inverting buffer 302 .
  • the inverting buffer 301 outputs a selection signal S1 obtained by inverting the delayed gate signal Sgd from the delay circuit 200 .
  • the non-inverting buffer 302 outputs a select signal S2 having the same logic level as the delayed gate signal Sgd from the delay circuit 200.
  • the protection circuit 400A includes a logic gate 401 for generating a control signal Sa, a logic gate 402 for generating a control signal Sb, a delay circuit 403 for applying a delay time T1, a soft cutoff circuit 500, and a short circuit detection circuit 600A. including.
  • the short circuit detection circuit 600A includes resistive elements 601, 603, 604, a diode 602, a capacitor 605, and a comparator 609.
  • Resistance element 601 is connected between the drain of semiconductor element 5 and node N1.
  • Resistive element 603 is connected between nodes N1 and N2.
  • Resistance element 604 is connected between node N2 and negative power supply node Nn.
  • a diode 602 is connected between the node N1 and the output node Nout, and has an anode connected to the node N1 and a cathode connected to the output node Nout.
  • Capacitor 605 is connected in parallel with resistance element 604 between node N2 and negative power supply node Nn.
  • a comparator 609 generates a short circuit detection signal Soc based on the result of comparison between the voltage Vsig of the node N2 and the determination voltage Vt from the power supply 608. Specifically, when Vsig>Vt, a short-circuit state in which an overcurrent occurs in semiconductor element 5 is detected, and short-circuit detection signal Soc is set to H level.
  • the second voltage V2 which is a negative voltage
  • the drain-source voltage Vds (hereinafter also simply referred to as "drain voltage”) increases. Therefore, in the short circuit detection circuit 600A, the diode 602 becomes conductive, and the voltage Vsig of the node N2 is clamped to a voltage equivalent to the second voltage V2. Therefore, the state of Vsig ⁇ Vt is maintained, and the short-circuit detection signal Soc is fixed at L level.
  • the node N1 becomes a voltage obtained by dividing the drain voltage of the semiconductor element 5 by the resistance elements 601, 603, and 604, but is clamped to the first voltage V1 by the diode 602.
  • the resistance elements 603 and 604 and the capacitor 605 constitute a "filter circuit" having the potential of the node N1 as an input voltage.
  • the voltage Vsig of the node N2 corresponds to the output voltage of the filter circuit. That is, when the output node Nout is connected to the first voltage V1 and the drain voltage Vds is high, the voltage Vsig increases. Specifically, voltage Vsig rises with a slope according to a time constant (RC time constant) determined by the resistance values of resistance elements 603 and 604 and the capacitance value of capacitor 605 .
  • RC time constant time constant
  • the filter circuit continues to charge the capacitor 608 without stopping the charging as described above.
  • voltage Vsig continues to rise without taking the aforementioned maximum value. Therefore, the determination voltage Vt by the power supply 608 is determined based on the first voltage V1 and the time constant of the filter circuit including the resistance elements 603 and 604 and the capacitor 605 so that Vsig>Vt in the short-circuit state. Note that Vt>Vnml is set in order to prevent erroneous determination of normal switching. As a result, the short circuit detection signal Soc is maintained at the L level during the OFF period of the semiconductor element 5 and during the normal ON period, but changes to the H level when a short circuit occurs during the ON period.
  • the logic gate 401 outputs the AND operation result of the selection signal S1 (the inversion of the delay gate signal Sgd) from the inverting buffer 301 and the short circuit detection signal Soc as the control signal Sa.
  • the logic gate 402 outputs the AND operation result of the selection signal S2 (delayed gate signal Sgd) from the non-inverting buffer 302 and the short-circuit detection signal Soc as the control signal Sb.
  • the delay circuit 403 adds a predetermined delay time T1 to the control signal Sb output from the logic gate 402 to output a control signal Sbd.
  • the control signals Sa and Sbd are input to the switching control circuit 103.
  • the switching control circuit 103 changes the control signal Scn from H level to L level when the control signal Sa or Sbd changes from L level to H level during the H level period of the gate signal Sg.
  • the control signal Sb is input to the soft cutoff circuit 500 .
  • the soft cutoff circuit 500 has a resistor element 501, a diode 502, and a switching element 503 composed of an N-type transistor connected in series between an output node Nout and a negative power supply node Nn.
  • a control signal Sb is input to the gate of the N-type transistor forming the switching element 503 .
  • Diode 502 is connected with the forward direction from output node Nout to negative power supply node Nn.
  • the selection signal Since the selection signal S2 is at L level while S1 is at H level, when the short-circuit detection signal Soc changes to H level, the control signal Sa changes to H level.
  • switching control circuit 103 changes control signal Scn from H level to L level. At this time, since the control signal Sb is maintained at L level, the switching element 503 of the soft cutoff circuit 500 is maintained off.
  • the selection signal S2 is at H level, while the selection signal S1 is at L level.
  • the control signal Sb changes to H level.
  • switching element 503 is turned on to form a discharge path from output node Nout to negative power supply node Nn.
  • a voltage drop occurs in the resistance element 501, and the driving voltage Vdv of the output node Nout drops from the first voltage V1 to the third voltage V3 (V1>V3>V2).
  • the switching control circuit 103 changes the control signal Scn in response to the control signal Sbd being set to H level at the timing when the delay time T1 by the delay circuit 403 has passed since the control signal Sb changed to H level. Change from H level to L level. As a result, the switching element 107 is turned on, and the driving voltage Vdv of the output node Nout changes to the second voltage V2 (V2 ⁇ 0). In this way, the soft cutoff circuit 500 can temporarily lower the drive voltage Vdv to the third voltage V3 by operating according to the control signal Sb during the H level period of the control signal Scn.
  • FIG. 3 shows an operation waveform diagram when the semiconductor element is turned on by the driving device according to the first embodiment.
  • the normal waveforms are indicated by solid lines, and the waveforms when a short circuit occurs are indicated by dotted lines.
  • the turn-on operation is started when the gate signal Sg changes from L level to H level.
  • the driving device 10A outputs the second voltage V2 to the gate of the semiconductor element 5 as the driving voltage Vdv during the OFF period of the semiconductor element 5 up to time t1.
  • the driving voltage Vdv output from the driving device 10A to the gate of the semiconductor element 5 changes to the first voltage V1 in response to the gate signal Sg changing from L level to H level. Accordingly, the gate voltage Vgs rises from the second voltage V2, and after a mirror period in which the voltage rise temporarily stops, further rises to reach the first voltage V1.
  • drain current Id the drain current Id
  • drain voltage Vds the drain voltage Vsig at the short-circuit detection circuit 600A during normal turn-on
  • the drain current Id begins to flow when the gate voltage Vgs rises and exceeds the threshold voltage Vth of the semiconductor element 5, and reaches a steady value around the end of the mirror period.
  • the drain voltage Vds begins to drop at the timing when the drain current Id begins to flow, and drops in proportion to the change rate (dId/dt) of the drain current Id due to the parasitic inductance in the circuit. After that, it further decreases around the end of the mirror period, and becomes a steady state at Vds ⁇ 0.
  • the delay time TX by the delay circuit 200 elapses from time t1. That is, the period from time t1 to t2 corresponds to the turn-on period, and after time t2, the period until the gate signal Sg changes to L level corresponds to the steady-on period.
  • short-circuit detection circuit 600A detects Vsig>Vt and sets short-circuit detection signal Soc (FIG. 2) to H level.
  • Soc short-circuit detection signal
  • the switching element 107 is turned on in the drive circuit 100A, so that the drive voltage Vdv output from the drive device 10A to the gate of the semiconductor element 5 becomes negative as indicated by the dotted line. It changes to the second voltage V2, which is a voltage. As a result, the gate voltage Vgs drops toward the second voltage V2, and the drain current Id also drops. The drain voltage Vds rises due to a surge voltage generated at the timing when the drain current Id turns to decrease, and then becomes the off-state voltage. Thus, during the turn-on period, the semiconductor device 5 is immediately turned off upon detection of a short circuit condition.
  • the switching element 503 is turned on in the soft cutoff circuit 500, so that the drive voltage Vdv output from the driving device 10A to the gate of the semiconductor element 5 changes from the first voltage V1 to the third voltage Vdv. It drops to voltage V3.
  • the gate voltage Vgs is lowered, so that the drain current Id is also lowered.
  • the control signal Sbd input to the switching control circuit 103 changes to H level.
  • the switching element 107 is turned on in the drive circuit 100A, so that the drive voltage Vdv output from the drive device 10A to the gate of the semiconductor element 5 is changed to the second voltage V2 which is a negative voltage. change to As a result, the semiconductor element 5 is turned off, the gate voltage Vgs decreases toward the second voltage V2, and the drain current Id also decreases toward zero.
  • the amount of gate voltage drop at time t5 is suppressed, and the surge voltage can be suppressed by suppressing the drain current Id when turning off the semiconductor element 5 at time t6.
  • the drain current Id short-circuit current
  • the semiconductor element 5 is turned off immediately at the timing (time t5) when the short-circuit state is detected, the surge voltage increases and the drain voltage Vds exceeds the withstand voltage, which may damage the semiconductor element 5. .
  • the surge voltage can be suppressed by applying the soft cutoff circuit 500, so thermal protection in the short circuit state can be performed. Since it is possible to prevent the semiconductor element 5 from being destroyed by the surge voltage generated by the protection operation for , the protection function is ensured.
  • the protection operation turns off the semiconductor element 5 from a state in which the drain current Id is not as large as during the steady-on period. Therefore, by immediately turning off the semiconductor element 5 upon detection of a short-circuit state, the semiconductor element 5 is not destroyed by the surge voltage generated by the protection operation, and power loss (heat generation) generated by the protection operation is suppressed. be able to.
  • the turn-on period corresponds to an example of the "first period”
  • the control of the drive voltage Vdv after time ts corresponds to an example of the "first protection operation”. handle.
  • the steady-on period corresponds to an example of the "second period”
  • the control of the drive voltage Vdv after time t5 corresponds to an example of the "second protection operation”.
  • the delay time TX by the delay circuit 200A corresponds to an embodiment of the "first time”.
  • FIG. 4 shows a flowchart for explaining the control processing of the driving method of the semiconductor element 5 by the driving device 10A.
  • the driving device 10A waits for a turn-off command by the gate signal Sg in step (hereinafter simply referred to as "S") 100 during the OFF period of the semiconductor element 5 when the gate signal Sg is set to L level.
  • S a turn-on command
  • S100 makes a YES determination.
  • the processing after S110 for turning on the semiconductor element 5 is activated.
  • the turn-on command is not detected (NO determination in S100), and the processes after S110 are not started.
  • the drive circuit 100A (FIG. 2) turns on the switching element 105 and turns off the switching element 107 in S110.
  • Vdv be the first voltage V1. Accordingly, the driving device 10A outputs the first voltage V1 to the gate of the semiconductor element 5.
  • the driving device 10A determines whether or not a short-circuit state is detected during the turn-on period from when the turn-on command is received until the delay time TX by the delay circuit 200A elapses.
  • short-circuit detection signal Soc is set to H level by short-circuit detection circuit 600A between times t1 and t2 in FIG. 3, a YES determination is made in S120, and the process proceeds to S170.
  • the driving device 10A turns off the switching element 105 of the driving circuit 100A (FIG. 2) and turns on the switching element 107 to set the driving voltage Vdv to the second voltage V2. Accordingly, the driving device 10A outputs the second voltage V2 to the gate of the semiconductor element 5, thereby turning off the semiconductor element 5.
  • FIG. thus, the operation indicated by the dotted line between times t1 and t2 in FIG. 3 causes the semiconductor element 5 to be immediately turned off in response to the detection of the short circuit condition.
  • the drive device 10A In S120, if the short-circuit state is not detected even after the delay time TX by the delay circuit 200A has elapsed since the turn-on command (NO determination in S120), the drive device 10A generates a turn-off command in S130 and S160. It is determined whether or not a short circuit condition is detected until it is detected.
  • the delay time TX of the delay circuit 200A divides the turn-on period during which the protection operation is switched and the steady-on period according to the elapsed time from the turn-on start.
  • the delay time TX must be set longer than the time Ton required for the drain voltage Vds to drop to zero during normal operation. This required time Ton varies depending on the temperature and the drain current (at steady state), and increases at low temperatures and at high currents. Therefore, by conducting a switching test of the semiconductor element 5, it is possible to set so that TX>Ton is guaranteed.
  • a short-circuit tolerance Tsc [ ⁇ s] is described in a data sheet or the like. Since the short-circuit tolerance Tsc indicates the time margin until the element is destroyed when a short-circuit current flows, it is necessary to set the delay time TX ⁇ Tsc. Therefore, the delay time TX is set to Ton ⁇ TX ⁇ Tsc according to the specifications of the semiconductor device 5 and the switching test.
  • the driving device 10A detects the turn-off command and makes a YES determination in S160. If the short-circuit state is not detected until the turn-off command is detected (NO determination in S130 is maintained), a YES determination is made in S160, and the process proceeds to S170. In this case, the driving device 10A immediately turns off the semiconductor element 5 by outputting the second voltage V2 to the gate of the semiconductor element 5 in response to the turn-off command.
  • a YES determination is made in S130, and the process proceeds to S140.
  • the driving device 10A turns on the switching element 503 of the soft cutoff circuit 500 according to the control signal Sb that is set to H level according to the short circuit detection signal Soc.
  • the operation at time t5 in FIG. 3 is realized, and the driving device 10A can reduce the drain current Id of the semiconductor element 5 by outputting the third voltage V3 to the gate of the semiconductor element 5. .
  • the driving device 10A maintains the driving voltage Vdv at the third voltage during the period corresponding to the times t5 to t6 in FIG. 3 until the delay time T1 by the delay circuit 403 elapses (NO determination in S150).
  • the driving device 10A advances the process to S170, and outputs the second voltage V2 to the gate of the semiconductor element 5, thereby Turn off 5.
  • the delay time T1 by the delay circuit 403 can be set in consideration of this time lag.
  • the drive device 10A it is possible to classify the drive state of the semiconductor element 5 according to the elapsed time from the start of the turn-on operation, and switch between the two types of protection operations described above. Specifically, in the short-circuit protection operation at the time of turn-on, which cuts off a relatively small current, the power loss is reduced by immediately turning off the semiconductor element 5, and the steady-on state, which cuts off a large current. In the short circuit protection operation at time, the semiconductor element 5 can be protected from damage due to surges by applying a soft shutdown. As a result, in the protection function of the semiconductor element against the occurrence of a short-circuit current, it is possible to ensure both protection performance and suppression of unnecessary power loss.
  • FIG. 5 is a circuit diagram illustrating a specific configuration of drive device 10B according to the second embodiment.
  • drive device 10B includes drive circuit 100A, delay circuit 200A, selection circuit 300A, and protection circuit 400B.
  • the drive circuit 100A, the delay circuit 200A, the selection circuit 300A, and the protection circuit 400B correspond to examples of the drive circuit 100, the delay circuit 200, the selection circuit 300, and the protection circuit 400 in FIG.
  • the drive device 10B differs from the drive device 10A shown in FIG. 2 in that it includes a protection circuit 400B instead of the protection circuit 400A.
  • the protection circuit 400B differs from the protection circuit 400A of FIG. 2 in that it includes a short circuit detection circuit 600B instead of the short circuit detection circuit 600A. Therefore, in the driving device 10B according to the second embodiment, the configuration for generating the short circuit detection signal Soc is different from that in the first embodiment (the driving device 10A). It is the same as the first embodiment.
  • the short circuit detection circuit 600B includes resistor elements 601, 603, 604, a diode 602, a capacitor 605, a power source 608, and a comparator 609 similar to the short circuit detection circuit 600A (FIG. 2), in addition to a capacitor 606 and an N-type transistor. and a switching element 607 composed of:
  • a capacitor 606 and a switching element 607 are connected in series between the node N2 and the negative power supply node Nn.
  • a selection signal S1 from the selection circuit 300A is input to the gate of the N-type transistor that constitutes the switching element 607 .
  • the capacitance of the node N2 is switched according to whether the switching element 607 is turned on or off. Specifically, during the turn-on period in which switching element 607 is turned on, the sum of the capacitances of capacitors 605 and 606 is added to node N2.
  • the sum of the capacitances of capacitors 605 and 606 in the second embodiment is designed to be equal to the capacitance of capacitor 606 in the first embodiment.
  • the resistor elements 603 and 604 and the capacitor 605 alone or both of the capacitors 605 and 606 form a "filter circuit" that receives the voltage of the node N1 as an input voltage.
  • the time constant of the filter circuit that generates the voltage Vsig of the node N2 from the drain voltage Vds is switched between the turn-on period and the steady-on period so that the time constant of the filter circuit is smaller than the turn-on period during the steady-on period.
  • the slope of the voltage Vsig input to the comparator 609 rising in conjunction with the drain voltage Vds is greater during the steady ON period than during the turn ON period.
  • FIG. 6 shows an operation waveform diagram when the semiconductor element is turned on by the driving device according to the second embodiment.
  • the normal waveforms are indicated by solid lines, and the waveforms when a short circuit occurs are indicated by dotted lines.
  • the short-circuit detection signal Soc (FIG. 5) is set to the H level, and after time t5, the semiconductor element 5 is turned off by applying a soft cutoff in the same manner as after time t5 in FIG. .
  • ⁇ T1 in FIG. 6 is shorter than ⁇ T0 in FIG. 3 due to the difference in the rate of increase of the voltage Vsig. That is, in the second embodiment, as compared with the first embodiment, it is possible to detect the occurrence of a short-circuit state early and activate soft cutoff.
  • FIG. 7 shows a flowchart for explaining the control process of the driving method of the semiconductor element 5 by the driving device 10B according to the second embodiment.
  • the driving device 10B differs in that it further executes the processing of S210 in addition to the control processing by the driving device 10A shown in FIG.
  • the determination in S120 is NO, that is, when the short-circuit state is not detected even after the delay time TX by the delay circuit 200A has elapsed from the start of the turn-on operation
  • the drive device 10B executes S210 and then performs the steps shown in FIG. Similar processing of S130 to S170 is executed.
  • the driving device 10B changes the short-circuit state detection condition by turning off the switching element 607 of the short-circuit detection circuit 600B at the transition timing (time t2 in FIG. 6) from the turn-on period to the steady-on period.
  • the rate of increase of the voltage Vsig in the short-circuit detection circuit 600B is increased. can.
  • the drain voltage Vds increases with a delay of the increase in the drain current Id.
  • the cut-off energy will increase. For this reason, it is desirable to detect the short circuit state as early as possible and suppress the energy required to cut off the short circuit during the steady-on state in which a large current is to be cut off.
  • the filter circuit that generates the input (voltage Vsig) to the comparator 609 of the short-circuit detection circuit 600B is turned on.
  • the configuration for switching the time constant of the filter circuit ie, the rate of increase of the voltage Vsig, is switched by switching the capacitance value added to the node N2.
  • a similar effect can be achieved by switching the value of .
  • FIG. 8 is a circuit diagram illustrating a specific configuration of the driving device 10C according to the third embodiment.
  • drive device 10C includes drive circuit 100A, delay circuit 200A, selection circuit 300A, and protection circuit 400C.
  • the drive circuit 100A, the delay circuit 200A, the selection circuit 300A, and the protection circuit 400C are examples of the drive circuit 100, the delay circuit 200, the selection circuit 300, and the protection circuit 400 in FIG.
  • the drive device 10C differs from the drive device 10A shown in FIG. 2 in that it includes a protection circuit 400C instead of the protection circuit 400A.
  • the protection circuit 400C differs from the protection circuit 400A of FIG. 2 in that it includes a short circuit detection circuit 600C instead of the short circuit detection circuit 600A. Therefore, the driving device 10C according to the third embodiment also differs from the first embodiment (the driving device 10A) in the configuration for generating the short circuit detection signal Soc. , are the same as those in the first embodiment.
  • the short circuit detection circuit 600C includes resistance elements 601, 603, 604, a diode 602, a capacitor 605, and a comparator 609 similar to the short circuit detection circuit 600A (FIG. 2), as well as resistance elements 610 to 612 and an N-type transistor. and a switching element 613 composed of: On the other hand, in the short detection circuit 600C, the power supply 608 in FIG. 2 is not arranged.
  • the resistance element 610 is connected between the power supply node Np and the node N3 where the determination voltage Vt is generated.
  • Resistance element 611 is connected between node N3 and negative power supply node Nn.
  • Resistive element 612 and switching element 613 are connected in series between node N3 and negative power supply node Nn.
  • a selection signal S2 from the selection circuit 300B is input to the gate of the N-type transistor forming the switching element 613 .
  • the short-circuit detection circuit 600C differs from the short-circuit detection circuit 600A in FIG. 2 in that the determination voltage Vt is not a constant voltage from the power supply 608 but is switched between the turn-on period and the steady-on period.
  • the determination voltage Vt is switched by switching the voltage division ratio according to whether the switching element 613 is turned on or off. Specifically, since the switching element 613 is turned off during the turn-on period, the determination voltage Vt is generated by dividing (V1 ⁇ V2) by the resistance elements 610 and 611 .
  • the voltage Vsig input to the comparator 609 (+ terminal) is generated with the same configuration as the short circuit detection circuit 600A in FIG.
  • FIG. 9 shows an operation waveform diagram when the semiconductor element is turned on by the driving device according to the second embodiment.
  • the normal waveforms of the changes in the voltage and current during the turn-on operation according to the gate signal Sg are indicated by solid lines, and the waveforms when a short circuit occurs are indicated by dotted lines. shown.
  • the short circuit detection circuit 600C detects Vsig>Vt.
  • the short-circuit detection signal Soc (FIG. 5) is set to the H level, and after time t5, the semiconductor element 5 is turned off by applying a soft cutoff in the same manner as after time t5 in FIG. be.
  • the driving method of the semiconductor device 5 by the driving device 10C according to the third embodiment uses the same flowchart of FIG. can be realized by turning on the switching element 613 of the short circuit detection circuit 600C in S210.
  • the drain voltage It is possible to increase the detection speed of a short-circuit condition with increasing Vds. As a result, the time until the short-circuit state is detected is shortened. Therefore, as in the second embodiment, the effect of the protection operation for suppressing the interruption energy due to the protection operation during the steady ON period and not destroying the semiconductor element 5. can increase
  • Embodiment 4 As another example of the method of detecting the short circuit state of the semiconductor element 5, a configuration for detecting the short circuit state based on the drain current Id will be described.
  • FIG. 10 is a circuit diagram illustrating the configuration of a drive device 10D according to the fourth embodiment.
  • drive device 10D includes a drive circuit 100A, a delay circuit 200A, a selection circuit 300A and a protection circuit 400D.
  • the drive circuit 100A, the delay circuit 200A, the selection circuit 300A, and the protection circuit 400D correspond to examples of the drive circuit 100, the delay circuit 200, the selection circuit 300, and the protection circuit 400 in FIG.
  • the drive device 10D differs from the drive device 10A shown in FIG. 2 in that it includes a protection circuit 400D instead of the protection circuit 400A.
  • Protection circuit 400D differs from protection circuit 400A in FIG. 2 in that short circuit detection circuit 700 is included instead of short circuit detection circuit 600A.
  • the driving device 10D differs from the first embodiment (the driving device 10A) in the configuration for generating the short-circuit detection signal Soc.
  • the short circuit detection circuit 700 includes a resistive element 702 , an amplifier 703 , a power supply 704 that outputs a determination voltage Vt, and a comparator 705 .
  • a sense cell 701 for detecting drain current is connected in parallel with the semiconductor element 5 .
  • the gate of the sense cell 701 is connected to the gate of the semiconductor element 5, and a sense current Idsn proportional to the drain current Id of the semiconductor element 5 flows through the sense cell 701 (Idsn ⁇ Id).
  • the resistance element 702 is connected in series with the sense cell 701 so that the sense current Idsn passes through it.
  • a sense current Idsn that is, a voltage Vdsn proportional to the drain current Id is generated across the resistance element 702 .
  • Amplifier 703 amplifies voltage Vdsn across resistance element 702 and outputs voltage Vsig. As a result, the voltage Vsig is also proportional to the drain current Id.
  • the resistive element 702 and the amplifier 703 can constitute an embodiment of the "voltage converter".
  • the comparator 705 Similar to the comparator 609 (FIG. 2), the comparator 705 generates the short circuit detection signal Soc based on the comparison result between the voltage Vsig and the determination voltage Vt. As a result, when Vsig>Vt, a short-circuit state in which an overcurrent occurs in the semiconductor element 5 is detected, and the short-circuit detection signal Soc is set to H level.
  • the protection operation in response to short-circuit detection signal Soc is similar to that of the first embodiment, and therefore detailed description will not be repeated.
  • Embodiment 4 is combined with Embodiment 1 to detect a short-circuit state based on the drain current, but Embodiment 3 can also be combined with Embodiment 4.
  • the third and fourth embodiments can be combined by generating the determination voltage Vt in the same manner as in the third embodiment.
  • Embodiment 5 Further, in the first to fourth embodiments, an example of classifying the driving state of the semiconductor element 5 based on the elapsed time from the turn-on start timing has been described, but other parameter values, such as gate voltage (Vgs) or gate From the current, it is also possible to distinguish between the driving state of the semiconductor element 5 related to protection control, that is, between the above-described turn-on period and steady-on period.
  • Vgs gate voltage
  • Vgs gate From the current
  • FIG. 11 is a circuit diagram illustrating a configuration example of a drive device 10E according to the fifth embodiment.
  • drive device 10E includes a drive circuit 100A, a delay circuit 200B, a selection circuit 300A and a protection circuit 400A.
  • the drive circuit 100A, the delay circuit 200B, the selection circuit 300A, and the protection circuit 400B correspond to examples of the drive circuit 100, the delay circuit 200, the selection circuit 300, and the protection circuit 400 in FIG.
  • the drive device 10E differs from the drive device 10A shown in FIG. 2 in that it includes a delay circuit 200B instead of the delay circuit 200A.
  • the delay circuit 200B generates the delay gate signal Sgd equivalent to that in FIG. 2 by a method different from that of the delay circuit 200A.
  • the driving device 10E according to the second embodiment differs from the first embodiment (the driving device 10A) in the configuration for generating the delayed gate signal Sgd for distinguishing between the turn-on period and the steady-on period. The rest of the configuration and the details of the protective operation during the turn-on period and the steady-on period are the same as those of the first embodiment.
  • the delay circuit 200B includes a comparator 215.
  • a comparator 215 outputs a delayed gate signal Sgd based on the comparison result between the gate voltage Vgs of the semiconductor element 5 and a reference value Vst corresponding to the output voltage of the power supply 212 .
  • the delay gate signal Sgd is input to the inverting buffer 301 and the non-inverting buffer 302 of the selection circuit 300A, as in the first embodiment.
  • the comparator 215 sets the delay gate signal Sgd to L level when Vgs ⁇ Vst, and to H level when Vgs>Vst.
  • FIG. 12 shows an operation waveform diagram when the semiconductor element is turned on by the driving device 10E shown in FIG. Solid and dotted waveforms of the drive voltage Vdv, gate voltage Vgs, drain current Id, drain voltage Vds, and voltage Vsig shown in FIG. 12 are the same as those shown in FIG. FIG. 12 differs from FIG. 3 in that transition of the delayed gate signal Sgd according to the gate voltage Vgs is shown.
  • the gate voltage Vgs starts changing from the second voltage V2 toward the first voltage V1 at the turn-on start timing (time t1) and rises to the first voltage V1 after the mirror period. .
  • the circuit operation in each of the turn-on period and the steady-on period is the same as in the first embodiment (driving device 10A) both in the normal state and in the occurrence of the short-circuit state. Therefore, detailed description will not be repeated.
  • the gate voltage Vgs changes due to the charging and discharging of the gate capacitance of the semiconductor element 5 due to the gate current Ig shown in FIG. Therefore, it is also possible to divide the turn-on period and the steady-on period according to the drive state of the semiconductor element 5 .
  • an input voltage proportional to the gate current Ig is input to the comparator 215, and the reference value Vst is set according to the turn-on characteristics of the gate current Ig.
  • the delay circuit 200B shown in FIG. 10 can also be arranged in place of the delay circuit 200A in the second to fourth embodiments, and the fifth embodiment can be combined with the second to fourth embodiments. It is possible.
  • each circuit element described in this embodiment can be arbitrarily configured by at least one of hardware processing and software processing as long as it has equivalent functions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)

Abstract

駆動回路(100)は、半導体素子(5)のオンオフを制御するゲート信号(Sg)に応じて、半導体素子をオンするための第1電圧と、半導体素子をオフするための第2電圧との一方を、半導体素子(5)の制御電極(G)に出力する。保護回路(400)は、半導体素子(5)のオン期間における異常発生時に、半導体素子(5)をターンオフする保護動作を実行する様に構成される。選択回路(300)は、遅延回路(200)によって遅延された遅延ゲート信号(Sgd)を用いて、ゲート信号(Sg)に応じた半導体素子(5)の駆動状態に応じて、保護回路(400)による保護動作の態様を切替えるための選択信号(S1,S2)を出力する。

Description

半導体素子の駆動装置及び駆動方法
 本開示は、半導体素子の駆動装置及び駆動方法に関する。
 IGBT(Insulated Gate Bipolar Transistor)及びMOSFET(Metal Oxide Semiconductor Field Effect Transistor)等の電力用半導体素子を備える電力変換器においてアーム短絡状態が発生すると、電力用半導体素子には、電力変換器の直流リンク電圧が印加された状態で大電流が流れることになる。これにより、半導体素子には、非常に大きな損失(熱)が発生するため、熱破壊する可能性がある。このため、電力変換器の信頼性を確保するためには、半導体素子の発熱量が短絡耐量に達する前に、短絡状態を検知して半導体素子を保護することが必要である。
 一方で、半導体素子の短絡耐量と電力損失には、短絡耐量を大きくすると、通常動作時の電力損失が増加するトレードオフの関係がある。従って、半導体素子の低損失化のためには、駆動回路側の工夫によって、保護可能な範囲を拡大させる必要がある。
 例えば、国際公開第2017/026367号(特許文献1)には、RTC(Real-Time Current Control)回路による短絡保護機能を半導体素子のパワースイッチング装置に組み合わせる構成が記載されている。当該RTC回路は、半導体素子のドレイン電流(主回路電流)が過電流となったときに、半導体素子のゲート・ソース間電圧を低下させることによって、ドレイン電流を絞る様に動作する。
 特許文献1に記載の保護回路は、短絡時の電流が大きい場合には、ゲート・ソース間電圧を絞ることで、サージ電圧によって素子が破損しない様に動作することができる。
国際公開第2017/026367号
 一方で、短絡保護回路の動作時において半導体素子に流れている電流は、短絡が発生するタイミング等の発生状況に依存して異なってくる。これに対して、特許文献1に記載の保護回路では、短絡電流の発生に対する保護動作の内容が一定であるため、短絡の発生状況によっては、必要以上の電力損失が発生することが懸念される。
 本開示は、上述のような課題を解決するためになされたものであり、半導体素子の異常発生時の保護機能について、保護性能の確保と、無用な電力損失の抑制とを両立して実現することを目的としている。
 本開示のある局面によれば、半導体素子の駆動装置が提供される。制御電極の電圧に応じて第1の主電極から第2の主電極に流れる電流が制御される半導体素子の駆動装置は、駆動回路と、保護回路と、選択回路とを備える。駆動回路は、半導体素子のオンオフを制御するゲート信号に応じて、半導体素子をオンするための第1電圧と、半導体素子をオフするための第2電圧との一方を制御電極に出力する。保護回路は、半導体素子のオン期間における異常発生時に半導体素子をターンオフする保護動作を実行する。選択回路は、ターンオン指令に応じた半導体素子の駆動状態に応じて、保護回路による保護動作の態様を切替える。
 本開示の他のある局面によれば、半導体素子の駆動方法が提供される。制御電極の電圧に応じて第1の主電極から第2の主電極に流れる電流が制御される半導体素子の駆動方法は、半導体素子のターンオン指令に応じて、半導体素子をオンするための第1電圧を制御電極に出力するステップと、半導体素子のオン期間における異常発生時に半導体素子をターンオフする保護動作を実行するステップと、ターンオン指令に応じた半導体素子の駆動状態に応じて、保護動作の態様を切替えるステップとを備える。
 本開示によれば、ターンオン指令に応じた半導体素子の駆動状態に応じて、保護動作の態様を切替えることにより、半導体素子の異常発生時の保護機能について、保護性能の確保と、無用な電力損失の抑制とを両立することができる。
本実施の形態に係る半導体素子の駆動装置の構成を説明するブロック図である。 実施の形態1に係る駆動装置の構成例を説明する回路図である。 実施の形態1に係る駆動装置による半導体素子のターンオン時の動作波形図である。 実施の形態1に係る半導体素子の駆動方法の制御処理を説明するフローチャートである。 実施の形態2に係る駆動装置の構成例を説明する回路図である。 実施の形態2に係る駆動装置による半導体素子のターンオン時の動作波形図である。 実施の形態2に係る半導体素子の駆動方法の制御処理を説明するフローチャートである。 実施の形態3に係る駆動装置の構成例を説明する回路図である。 実施の形態3に係る駆動装置による半導体素子のターンオン時の動作波形図である。 実施の形態4に係る駆動装置の構成例を説明する回路図である。 実施の形態5に係る駆動装置の構成例を説明する回路図である。 実施の形態5に係る駆動装置による半導体素子のターンオン時の動作波形図である。
 以下に、本開示の実施の形態について、図面を参照して詳細に説明する。なお、以下では、図中の同一又は相当部分には同一符号を付して、その説明は原則的に繰返さないものとする。
 実施の形態1.
 図1は、本実施の形態に係る半導体素子の駆動装置の構成を説明するブロック図である。
 図1に示される様に、本実施の形態に係る駆動装置10は、ゲート信号Sgに応じて半導体素子5をオンオフ制御する。半導体素子5は、図1の例では、MOSFETで構成されて、制御電極であるゲート(G)と、第1の主電極(高電圧側)であるドレイン(D)と、第2の主電極(低電圧側)であるソース(S)と有する。半導体素子5では、制御電極の電圧に応じて、第1の主電極から第2の主電極に流れる電流が制御される。MOSFETは、例えば、SiC(炭化珪素)、Si,GaN(窒化ガリウム)等の半導体基板を用いて作成することができる。
 半導体素子5の第1主電極(D)から第2の主電極(S)へ流れる電流Id(以下、「ドレイン電流Id」とも称する)は、第2の主電極(低電圧側)に対する制御電極の電圧であるゲート・ソース間電圧Vgs(以下、単に「ゲート電圧」とも称する)に依存して変化する。
 尚、半導体素子5は、MOSFETに限定されず、制御電極の電圧に応じて主電極間の電流が制御されるスイッチング素子であれば、IGBT、サイリスタ等で構成することも可能である。例えば、半導体素子5がIGBTで構成される場合には、制御電極はゲートである一方で、第1の主電極は「コレクタ」であり、第2の主電極は「エミッタ」となる。
 駆動装置10は、駆動回路100と、遅延回路200と、選択回路300と、保護回路400とを備える。駆動装置10は、半導体素子5に対して駆動電圧Vdvを出力する。駆動電圧Vdvによってゲート抵抗6を介して半導体素子5のゲート電圧を制御することにより、半導体素子5のオンオフ制御、及び、短絡電流検知時の保護動作が実現される。
 駆動回路100は、ゲート信号Sgを入力として、半導体素子5をオンするための第1電圧(オン駆動電圧)V1及び半導体素子5をオフするための第2電圧(オフ駆動電圧)V2の一方を、ゲート抵抗6を介して半導体素子5と電気的に接続された出力ノードNoutに出力する。ゲート信号Sgは、半導体素子5をオンさせる期間では論理ハイレベル(以下、単に「Hレベル」と称する)に設定される一方で、半導体素子5をオフさせる期間では論理ローレベル(以下、単に「Lレベル」と称する)に設定される。更に、駆動回路100の動作は、後述する保護回路400からの制御信号Sa,Sbdによっても制御される。
 遅延回路200は、ゲート信号Sgを入力とし、予め定められた遅延時間が付与された、遅延ゲート信号Sgdを出力する。選択回路300は、遅延回路200からの遅延ゲート信号Sgdに基づき、保護回路400による保護動作の態様を切替えるための選択信号S1,S2を出力する。
 保護回路400は、半導体素子5の第1の主電極(ドレイン)の電圧又は電流に基づく、半導体素子5の異常検知機能を有するとともに、異常検知時には、駆動回路100に対する制御信号Sa,Sbdの出力、又は、出力ノードNoutに対する第3電圧V3の出力によって、半導体素子5を過電流による破損から防止するための保護動作を行う。後述する様に、保護回路400は、選択回路300からの選択信号S1,S2に基づいて動作することで、半導体素子5の駆動状態に応じて保護動作を切替える様に構成されている。以下に説明する様に、例えば、ゲート信号SgがLレベルからHレベルに変化したターンオン開始タイミングからの経過時間に基づいて、保護制御に係る半導体素子5の駆動状態を区分することができる。
 図2は、実施の形態1に係る駆動装置10Aの具体的な構成を説明する回路図である。
 図2を参照して、駆動装置10Aは、駆動回路100Aと、遅延回路200Aと、選択回路300Aと、保護回路400Aとを備える。駆動回路100A、遅延回路200A、選択回路300A、及び、保護回路400Aのそれぞれは、図1の駆動回路100、遅延回路200、選択回路300、及び、保護回路400の一例に相当する。
 駆動回路100Aは、スイッチング制御回路103と、抵抗素子104,106と、相補的にオンオフするスイッチング素子105,107とを含む。
 電源101は、オン駆動電圧(第1電圧V1)を発生するために、電源ノードNpとGNDノードとの間に接続される。電源ノードNpは、第1電圧V1を供給する。電源102は、負バイアスのオフ駆動電圧(第2電圧V2)を発生するために、GNDノードと負電源ノードNnの間に接続される。即ち、第2電圧V2は負電圧である(V2<0)。負電源ノードNnは、第2電圧V2を供給する。尚、駆動装置10AのGNDノードは、半導体素子5のソース(第2の主電極)と同電位である。
 N型トランジスタで構成されたスイッチング素子105と、オンゲート抵抗を構成する抵抗素子104とは、電源ノードNp及び出力ノードNoutの間に直列接続される。P型トランジスタで構成されたスイッチング素子107と、オフゲート抵抗を構成する抵抗素子106とは、負電源ノードNn及び出力ノードNoutの間に直列接続される。
 スイッチング制御回路103は、ゲート信号Sgに従って、制御信号Scnを生成する。制御信号Scnは、ゲート信号SgのHレベル期間ではHレベルに設定され、ゲート信号SgのLレベル期間ではLレベルに設定される。
 制御信号Scnは、スイッチング素子105及び107をそれぞれ構成するN型トランジスタ及びP型トランジスタのゲートに入力される。これにより、スイッチング素子105及び107は、相補にオンオフする。具体的には、ゲート信号SgのHレベル期間では、Scn=Hに応じて、スイッチング素子105がオンする一方で、スイッチング素子107がオフする。従って、抵抗素子104(オンゲート抵抗)を経由して、出力ノードNoutが電源ノードNpと接続されることで、駆動装置10Aから出力ノードNoutに出力される駆動電圧Vdvは第1電圧V1となる。
 反対に、ゲート信号SgのLレベル期間では、Scn=Lに応じて、スイッチング素子107がオンする一方で、スイッチング素子105がオフする。従って、抵抗素子106(オフゲート抵抗)を経由して、出力ノードNoutが負電源ノードNnと接続されることで、駆動装置10Aから出力ノードNoutに出力される駆動電圧Vdvは第2電圧V2となる。
 遅延回路200Aは、抵抗素子201、キャパシタ202、及び、トリガ回路203を有する。ゲート信号Sgは、抵抗素子201及びキャパシタ202によるRC回路に入力される。トリガ回路203は、RC回路の出力電圧に応じて、遅延ゲート信号Sgdを生成する。遅延ゲート信号Sgdは、ゲート信号Sgに対して、RC時定数に従う遅延時間TXを付与した信号である。即ち、ゲート信号SgがLレベルからHレベルへ変化するタイミングから、遅延時間TXが経過したタイミングにおいて、遅延ゲート信号Sgdは、LレベルからHレベルへ変化する。遅延時間TXは、抵抗素子201の抵抗値及びキャパシタ202の容量値によって調整することができる。
 選択回路300Aは、反転バッファ301及び非反転バッファ302を有する。反転バッファ301は、遅延回路200からの遅延ゲート信号Sgdを反転した選択信号S1を出力する。非反転バッファ302は、遅延回路200からの遅延ゲート信号Sgdと同一の論理レベルを有する選択信号S2を出力する。即ち、選択信号S1及びS2は、互いに相補の論理レベルを有する。
 保護回路400Aは、制御信号Saを生成する論理ゲート401と、制御信号Sbを生成する論理ゲート402と、遅延時間T1を付与するための遅延回路403と、ソフト遮断回路500と、短絡検知回路600Aとを含む。
 短絡検知回路600Aは、抵抗素子601,603,604、ダイオード602、キャパシタ605、及び、コンパレータ609を含む。抵抗素子601は、半導体素子5のドレインとノードN1との間に接続される。抵抗素子603は、ノードN1及びN2の間に接続される。抵抗素子604は、ノードN2及び負電源ノードNnの間に接続される。
 ダイオード602は、ノードN1及び出力ノードNoutの間に接続されて、ノードN1と接続されたアノード、及び、出力ノードNoutと接続されたカソードを有する。キャパシタ605は、ノードN2及び負電源ノードNnの間に、抵抗素子604と並列に接続される。
 コンパレータ609は、ノードN2の電圧Vsigと、電源608による判定電圧Vtとの比較結果に基づき、短絡検知信号Socを生成する。具体的には、Vsig>Vtのときに、半導体素子5に過電流が発生する短絡状態が検知されて、短絡検知信号SocがHレベルに設定される。
 半導体素子5のオフ期間では、出力ノードNoutには負電圧である第2電圧V2が供給される一方で、ドレイン・ソース間電圧Vds(以下、単に「ドレイン電圧」とも称する)は上昇する。このため、短絡検知回路600Aでは、ダイオード602が導通して、ノードN2の電圧Vsigは、第2電圧V2と同等の電圧にクランプされることになる。このため、Vsig<Vtの状態が維持されて、短絡検知信号SocはLレベルに固定される。
 半導体素子5のターンオン直後では、出力ノードNoutには正電圧である第1電圧V1が供給される。このため、短絡検知回路600Aでは、ノードN1は、半導体素子5のドレイン電圧を抵抗素子601,603,604によって分圧した電圧となるが、ダイオード602によって、第1電圧V1にクランプされる。抵抗素子603,604、及び、キャパシタ605によって、ノードN1の電位を入力電圧とする「フィルタ回路」が構成される。このとき、ノードN2の電圧Vsigは、当該フィルタ回路の出力電圧に相当する。つまり、出力ノードNoutが第1電圧V1に接続され、かつ、ドレイン電圧Vdsが高い状態では、電圧Vsigは上昇する。具体的には、電圧Vsigは、抵抗素子603,604の抵抗値、及び、キャパシタ605の容量値で決まる時定数(RC時定数)に従う傾きで上昇する。
 半導体素子5のドレイン電圧(Vds)は、正常なターンオン状態では、ほぼゼロ(素子の定常オン電圧)となるためノードN1の電圧もゼロ付近まで低下する。このため、上記フィルタ回路では、キャパシタ605は充電が止まり、その後、キャパシタ605の放電が開始される。このため、ノードN2の電圧Vsigは、キャパシタ605の充電終了時の値(正常値Vnml)を極大値として低下する様に推移する。
 一方で、短絡状態の発生によりドレイン電圧Vdsが高い状態が継続する場合には、上記フィルタ回路では、上述の様にキャパシタ608の充電が止まることなく、充電状態が継続されることで、ノードN2の電圧Vsigは、上述した極大値を取ることなく上昇を続ける。従って、電源608による判定電圧Vtは、第1電圧V1と、抵抗素子603,604及びキャパシタ605によるフィルタ回路の時定数とに基づき、短絡状態でVsig>Vtとなる様に定められる。尚、正常なスイッチング時との誤判定を防止するため、Vt>Vnmlに設定される。この結果、短絡検知信号Socは、半導体素子5のオフ期間、及び、正常なオン期間ではLレベルに維持される一方で、オン期間に短絡状態が発生するとHレベルに変化する。
 論理ゲート401は、反転バッファ301からの選択信号S1(遅延ゲート信号Sgdの反転)と、短絡検知信号Socとの論理積(AND)演算結果を、制御信号Saとして出力する。論理ゲート402は、非反転バッファ302からの選択信号S2(遅延ゲート信号Sgd)と、短絡検知信号Socとの論理積(AND)演算結果を、制御信号Sbとして出力する。遅延回路403は、論理ゲート402が出力した制御信号Sbに、予め定められた遅延時間T1付与した制御信号Sbdを出力する。
 制御信号Sa及びSbdは、スイッチング制御回路103に入力される。スイッチング制御回路103は、ゲート信号SgのHレベル期間において、制御信号Sa又はSbdがLレベルからHレベルに変化すると、制御信号ScnをHレベルからLレベルに変化させる。制御信号Sbは、ソフト遮断回路500に入力される。
 ソフト遮断回路500は、出力ノードNout及び負電源ノードNnの間に直列接続された、抵抗素子501、ダイオード502、及び、N型トランジスタで構成されたスイッチング素子503を有する。スイッチング素子503を構成するN型トランジスタのゲートには、制御信号Sbが入力される。ダイオード502は、出力ノードNoutから負電源ノードNnへ向かう方向を順方向として接続される。
 短絡検知信号SocがLレベルのときには、制御信号Sa,Sb,Sbdは、全てLレベルに固定される。これに対して、短絡検知信号SocがLレベルからHレベルに変化すると、当該変化のタイミングに応じて、制御信号Sa及びSbの一方がHレベルに変化する一方で、制御信号Sa及びSbの他方はLレベルに維持される。
 具体的には、ゲート信号SgがLレベルからHレベルに変化するターンオン開始タイミングから、遅延回路200Aによる遅延時間TXが経過するまでの期間内(以下、「ターンオン期間」と称する)では、選択信号S1がHレベルである一方で、選択信号S2はLレベルなので、短絡検知信号SocがHレベルに変化すると、制御信号SaがHレベルに変化する。これに応じて、スイッチング制御回路103は、制御信号ScnをHレベルからLレベルに変化させる。このとき、制御信号SbはLレベルに維持されているので、ソフト遮断回路500のスイッチング素子503は、オフに維持される。
 これに対して、ターンオン開始タイミングから遅延時間TXの経過後の期間内(以下、「定常オン期間」と称する)では、選択信号S2がHレベルである一方で、選択信号S1はLレベルなので、短絡検知信号SocがHレベルに変化すると、制御信号SbがHレベルに変化する。これに応じて、ソフト遮断回路500では、スイッチング素子503がオンされることにより、出力ノードNoutから負電源ノードNnへの放電経路が形成される。これにより、抵抗素子501に電圧降下が生じることで、出力ノードNoutの駆動電圧Vdvは、第1電圧V1から第3電圧V3(V1>V3>V2)に低下する。
 スイッチング制御回路103は、制御信号SbがHレベルに変化してから、遅延回路403による遅延時間T1が経過したタイミングにおいて、制御信号SbdがHレベルに設定されるのに応じて、制御信号ScnをHレベルからLレベルに変化させる。これにより、スイッチング素子107がオンされることにより、出力ノードNoutの駆動電圧Vdvは、第2電圧V2(V2<0)に変化する。この様に、ソフト遮断回路500は、制御信号ScnのHレベル期間において、制御信号Sbに応じて動作することで、駆動電圧Vdvを一時的に第3電圧V3に低下することができる。
 図3には、実施の形態1に係る駆動装置による半導体素子のターンオン時の動作波形図が示される。図3では、ゲート信号Sgに応じたターンオン動作時における電圧及び電流の変化について、正常時の波形が実線で示されるとともに、短絡発生時の波形が点線で示される。
 図3を参照して、時刻t1において、ゲート信号SgがLレベルからHレベルに変化することでターンオン動作が開始される。駆動装置10Aは、時刻t1までの半導体素子5のオフ期間では、第2電圧V2を駆動電圧Vdvとして、半導体素子5のゲートに出力する。
 時刻t1では、ゲート信号SgがLレベルからHレベルに変化するのに応じて、駆動装置10Aから半導体素子5のゲートに出力される駆動電圧Vdvは、第1電圧V1に変化する。これに応じて、ゲート電圧Vgsは、第2電圧V2から上昇し、電圧の上昇が一時的に止まるミラー期間の後、更に上昇して、第1電圧V1まで達する。
 まず実線の波形図により、正常なターンオン時のドレイン電流Id、ドレイン電圧Vds、及び、短絡検知回路600Aでの電圧Vsigについて説明する。
 ドレイン電流Idは、ゲート電圧Vgsが上昇して、半導体素子5の閾値電圧Vthを超えると流れ始め、上記ミラー期間の終了前後で定常値に達する。ドレイン電圧Vdsは、ドレイン電流Idが流れ始めたタイミングから低下を始め、回路中の寄生インダクタンスによって、ドレイン電流Idの変化率(dId/dt)に比例して低下する。その後、ミラー期間の終了前後からさらに低下して、Vds≒0で定常状態となる。
 電圧Vsigは、時刻t1以降では、駆動電圧Vdv=V1、かつ、高Vds状態であるため、キャパシタ605の充電に応じて上昇する。そして、ミラー期間の終了後では、ドレイン電圧Vdsの低下に連動して、電圧Vsigは、0に向けて低下する。
 時刻t2では、時刻t1から遅延回路200による遅延時間TXが経過する。即ち、時刻t1~t2はターンオン期間に相当し、時刻t2以降は、ゲート信号SgがLレベルに変化するまでの期間が、定常オン期間に相当する。
 まず、ターンオン期間内で半導体素子5に短絡状態が発生したときの動作を、時刻t1~t2間の点線の波形図によって説明する。短絡状態が発生すると、ドレイン電流Idは、ミラー期間の終了後にも増加を続ける。又、ドレイン電圧Vdsは、正常時の様に低下しないため、電圧Vsigは、ミラー期間の終了後にも上昇を続ける。この結果、時刻tsにおいて、短絡検知回路600Aは、Vsig>Vtを検知して、短絡検知信号Soc(図2)をHレベルに設定する。上述した様に、ターンオン期間では、短絡検知信号SocがHレベルに変化すると、スイッチング制御回路103に入力される制御信号SaがHレベルに変化する。
 これに応じて、時刻tsでは、駆動回路100Aにおいて、スイッチング素子107がオンされることで、駆動装置10Aから半導体素子5のゲートに出力される駆動電圧Vdvは、点線で示される様に、負電圧である第2電圧V2に変化する。これにより、ゲート電圧Vgsは、第2電圧V2に向けて低下し、ドレイン電流Idも低下する。ドレイン電圧Vdsは、ドレイン電流Idが低下に転じるタイミングで発生するサージ電圧によって上昇した後、オフ時の電圧となる。この様に、ターンオン期間では、半導体素子5は、短絡状態の検知に応じて即座にターンオフされる。
 次に、定常オン期間内で半導体素子5に短絡状態が発生したときの動作を、時刻t3~t6間の点線の波形図によって説明する。
 半導体素子5のゲートに対して駆動電圧Vdv=V1の出力が継続される下、時刻t3より短絡状態が発生してドレイン電流Idが上昇した後、ドレイン電圧Vdsも上昇を始める。これに応じて、時刻t4より、電圧VsigはVdsと連動して上昇し、時刻t4からΔT0が経過した時刻t5において、短絡検知回路600Aは、Vsig>Vtを検知して、短絡検知信号Soc(図2)をHレベルに設定する。上述した様に、定常オン期間では、短絡検知信号SocがHレベルに変化すると、ソフト遮断回路500に入力される制御信号SbがHレベルに変化する。
 これに応じて、時刻t5では、ソフト遮断回路500において、スイッチング素子503がオンされることで、駆動装置10Aから半導体素子5のゲートに出力される駆動電圧Vdvは、第1電圧V1から第3電圧V3に低下する。これに応じて、ゲート電圧Vgsが低下することで、ドレイン電流Idも低下する。更に、時刻t5から遅延回路403による遅延時間T1が経過した時刻t6において、スイッチング制御回路103に入力される制御信号SbdがHレベルに変化する。
 これに応じて、時刻t6では、駆動回路100Aにおいて、スイッチング素子107がオンされることで、駆動装置10Aから半導体素子5のゲートに出力される駆動電圧Vdvは、負電圧である第2電圧V2に変化する。これにより、半導体素子5はターンオフされて、ゲート電圧Vgsが第2電圧V2に向けて低下するとともに、ドレイン電流Idも0に向けて低下する。
 この際に、ドレイン電圧Vdsには、ドレイン電流Idが低下に転じるタイミングである時刻t5及びt6においてサージ電圧が発生する。しかしながら、短絡状態が検知された時刻t5以降では、ゲート電圧を一時的に第3電圧V3に低下した後に、半導体素子5をターンオフするため、短絡状態が検知された時刻t5において、即座に半導体素子5をターンオフする場合と比較すると、サージ電圧を大幅に抑制することができる。
 具体的には、時刻t5におけるゲート電圧の低下量を抑えるとともに、時刻t6で半導体素子5をターンオフする際のドレイン電流Idが抑制されることで、サージ電圧を抑制することができる。
 定常オン期間において、半導体素子5のドレイン電圧をモニタして短絡状態を検知する場合には、図3にも示した様に、ドレイン電流Id(短絡電流)が、ターンオン期間での短絡発生時よりも大きいレベルまで達していることが想定される。このため、短絡状態が検知されたタイミング(時刻t5)において、即座に半導体素子5をターンオフすると、サージ電圧が大きくなってドレイン電圧Vdsが耐圧を超えることで、半導体素子5が破損する虞がある。
 実施の形態1に係る駆動装置10Aでは、定常オン期間での短絡状態の検知時には、ソフト遮断回路500を適用することでサージ電圧を抑制することができるので、これにより、短絡状態での熱保護のための保護動作により発生するサージ電圧によって、半導体素子5が破壊されることを防止できるので、保護機能が確保される。
 一方で、ターンオン期間での短絡状態の検知時には、ドレイン電流Idが定常オン期間ほど大きくない状態から半導体素子5をターンオフする保護動作となる。従って、短絡状態の検知に応じて即座に半導体素子5をターンオフすることで、保護動作により生じるサージ電圧によって半導体素子5を破壊することなく、保護動作によって発生する電力損失(発熱量)を抑制することができる。
 この様に、本実施の形態では、ターンオン期間は「第1の期間」の一実施例に対応し、時刻ts以降での駆動電圧Vdvの制御は「第1の保護動作」の一実施例に対応する。同様に、定常オン期間は「第2の期間」の一実施例に対応し、時刻t5以降での駆動電圧Vdvの制御は「第2の保護動作」の一実施例に対応する。又、遅延回路200Aによる遅延時間TXは「第1の時間」の一実施例に対応する。
 図4には、駆動装置10Aによる半導体素子5の駆動方法の制御処理を説明するフローチャートが示される。
 駆動装置10Aは、ゲート信号SgがLレベルに設定される半導体素子5のオフ期間では、ステップ(以下、単に「S」と表記する)100により、ゲート信号Sgによるターンオフ指令を待機する。ゲート信号SgがLレベルからHレベルに変化すると、ターンオン指令を検知して、S100はYES判定とされる。これにより、半導体素子5をターンオンするためのS110以降の処理が起動される。一方で、ゲート信号SgがLレベルの間、ターンオン指令は検知されず(S100がNO判定)、S110以降の処理は起動されない。
 駆動装置10Aは、ターンオンが指示されると(S100のYES判定時)、S110により、駆動回路100A(図2)のスイッチング素子105をオンする一方で、スイッチング素子107をオフすることにより、駆動電圧Vdvを第1電圧V1とする。これにより、駆動装置10Aは、半導体素子5のゲートに対して第1電圧V1を出力する。
 その後、駆動装置10Aは、S120では、ターンオン指令から遅延回路200Aによる遅延時間TXが経過するまでのターンオン期間において、短絡状態が検知されるか否かを判定する。図3の時刻t1~t2の間に、短絡検知回路600Aによって短絡検知信号SocがHレベルに設定されると、S120はYES判定とされて、処理は、S170に進められる。
 駆動装置10Aは、S170では、駆動回路100A(図2)のスイッチング素子105をオフする一方で、スイッチング素子107をオンすることにより、駆動電圧Vdvを第2電圧V2とする。これにより、駆動装置10Aは、半導体素子5のゲートに対して第2電圧V2を出力することで、半導体素子5をターンオフする。この様に、図3において時刻t1~t2間に点線で示した動作により、半導体素子5は、短絡状態の検知に応答して、即座にターンオフされる。
 駆動装置10Aは、S120において、ターンオン指令から遅延回路200Aによる遅延時間TXが経過しても短絡状態が検知されなかった場合(S120のNO判定時)には、S130及びS160により、ターンオフ指令が生成されるまでの間、短絡状態が検出されるか否かを判定する。
 図3の時刻t2まで短絡状態が検知されない場合、即ち、短絡検知回路600Aによる短絡検知信号SocがLレベルに維持される場合には、S120がNO判定とされる。この様に、遅延回路200Aによる遅延時間TXによって、ターンオン開始からの経過時間に応じて、保護動作が切替えられるターンオン期間及び定常オン期間が区分される。当該遅延時間TXは、正常動作時にドレイン電圧Vdsがゼロに低下するまでに要する時間Tonよりも長く設定する必要がある。この所要時間Tonは、温度及びドレイン電流(定常時)に依存して変化し、低温、かつ、大電流のときに大きくなる。従って、半導体素子5のスイッチング試験を実施することにより、TX>Tonが保証される様に設定することができる。
 又、半導体素子5のスペックの1つとして、短絡耐量Tsc[μs]がデータシート等に記載される。短絡耐量Tscは、短絡電流が流れた際に素子破壊に至るまでの時間余裕を示すので、遅延時間TX<Tscに設定する必要がある。従って、遅延時間TXは、半導体素子5のスペック及びスイッチング試験によって、Ton<TX<Tscに設定される。
 駆動装置10Aは、ゲート信号SgがHレベルからLレベルに変化すると、ターンオフ指令を検知して、S160をYES判定とする。ターンオフ指令が検知されるまで短絡状態が検知されない(S130のNO判定が維持される)場合には、S160がYES判定とされて、処理はS170へ進められる。この場合には、駆動装置10Aは、ターンオフ指令に応答して、半導体素子5のゲートに第2電圧V2を出力することで、半導体素子5を即座にターンオフする。
 これに対して、ターンオフ指令が検知される前の定常オン期間中に短絡状態が検知されると、S130がYES判定とされて、処理は、S140に進められる。駆動装置10Aは、S140では、短絡検知信号Socに応じてHレベルに設定される制御信号Sbに応じて、ソフト遮断回路500のスイッチング素子503をオンする。これにより、図3の時刻t5での動作が実現されて、駆動装置10Aは、半導体素子5のゲートに第3電圧V3を出力することで、半導体素子5のドレイン電流Idを低下することができる。
 駆動装置10Aは、遅延回路403による遅延時間T1が経過するまで、(S150のNO判定時)、図3の時刻t5~t6に相当する期間において、駆動電圧Vdvは第3電圧に維持する。そして、駆動装置10Aは、遅延回路403による遅延時間T1が経過すると(S150のYES判定時)、S170に処理を進めて、半導体素子5のゲートに第2電圧V2を出力することで、半導体素子5をターンオフする。
 この様に、定常オン期間に短絡状態が検知された場合には、半導体素子5のゲートに出力される電圧を、第3電圧V3に低下させることでドレイン電流Idを低下する期間を設けた後で、第2電圧V2によって半導体素子5をターンオフする、ソフト遮断が適用される。
 この際に、駆動装置10Aが駆動電圧Vdvを第3電圧V3に低下させてから、半導体素子5のゲート電圧Vgsが第3電圧V3に低下するまでには、ゲート容量を放電するためのタイムラグが発生する。このため、遅延回路403による遅延時間T1は、このタイムラグを考慮して設定することができる。
 この様に、実施の形態1に係る駆動装置10Aによれば、ターンオン動作開始からの経過時間によって半導体素子5の駆動状態を区分して、上述した2種類の保護動作を切替えることができる。具体的には、比較的小電流を遮断することになるターンオン時の短絡保護動作では、半導体素子5を即座にターンオフすることで電力損失を低減するとともに、大電流を遮断することになる定常オン時での短絡保護動作では、ソフト遮断の適用によりサージによる破損から半導体素子5を保護することができる。これにより、短絡電流の発生に対する半導体素子の保護機能について、保護性能の確保と、無用な電力損失の抑制とを両立することができる。
 実施の形態2.
 図5は、実施の形態2に係る駆動装置10Bの具体的な構成を説明する回路図である。
 図5を参照して、駆動装置10Bは、駆動回路100Aと、遅延回路200Aと、選択回路300Aと、保護回路400Bとを備える。駆動回路100A、遅延回路200A、選択回路300A、及び、保護回路400Bのそれぞれは、図1の駆動回路100、遅延回路200、選択回路300、及び、保護回路400の一例に相当する。
 即ち、駆動装置10Bは、図2に示された駆動装置10Aと比較して、保護回路400Aに代えて、保護回路400Bを備える点で異なる。保護回路400Bは、図2の保護回路400Aと比較して、短絡検知回路600Aに代えて、短絡検知回路600Bを含む点で異なる。従って、実施の形態2に係る駆動装置10Bでは、短絡検知信号Socを生成するための構成が実施の形態1(駆動装置10A)とは異なる一方で、短絡検知信号Socに応じた保護動作は、実施の形態1と同様である。
 短絡検知回路600Bは、短絡検知回路600A(図2)と同様の、抵抗素子601,603,604、ダイオード602、キャパシタ605、電源608、及び、コンパレータ609に加えて、キャパシタ606と、N型トランジスタで構成されたスイッチング素子607とを更に含む。
 キャパシタ606及びスイッチング素子607は、ノードN2及び負電源ノードNnの間に直列接続される。スイッチング素子607を構成するN型トランジスタのゲートには、選択回路300Aからの選択信号S1が入力される。上述の様に、選択信号S1は、遅延ゲート信号Sgdの反転信号であるため、ターンオン期間(図3の時刻t1~t2)においてHレベルに設定される一方で、定常オン期間(図3の時刻t2以降)ではLレベルに設定される。従って、スイッチング素子607は、ターンオン期間(S1=Hレベル)でオンする一方で、定常オン期間(S1=Lレベル)ではオフする。
 短絡検知回路600Bでは、スイッチング素子607のオンオフに応じて、ノードN2の容量が切替えられる。具体的には、スイッチング素子607がオンされるターンオンオン期間では、キャパシタ605及び606の容量の和が、ノードN2に付加される。実施の形態2におけるキャパシタ605及び606の容量の和は、実施の形態1でのキャパシタ606の容量と同等に設計される。
 一方で、スイッチング素子607がオフされる定常オン期間では、キャパシタ606の容量のみが、ノードN2に付加される。従って、ノードN2の容量は、定常オン期間では、ターンオン期間よりも小さくなる。この様に、短絡検知回路600Bでは、抵抗素子603,604と、キャパシタ605のみ、又は、キャパシタ605及び606の両方とによって、ノードN1の電圧を入力電圧とする「フィルタ回路」が構成される。
 短絡検知回路600Bでは、ドレイン電圧Vdsから、ノードN2の電圧Vsigを生成するフィルタ回路の時定数が、定常オン期間ではターンオン期間よりも小さくなる様に、ターンオン期間及び定常オン期間で切替えられる。この結果、短絡状態の発生時に、ドレイン電圧Vdsに連動して、コンパレータ609に入力される電圧Vsigが上昇する傾きも、定常オン期間では、ターンオン期間よりも大きくなる。
 図6には、実施の形態2に係る駆動装置による半導体素子のターンオン時の動作波形図が示される。図6においても、図3と同様に、ゲート信号Sgに応じたターンオン動作時における電圧及び電流の変化について、正常時の波形が実線で示されるとともに、短絡発生時の波形が点線で示される。
 図6においても、ターンオン動作が開始される時刻t1からターンオン期間が終了する時刻t2までの動作波形は、図3と同様である。
 一方で、ターンオン期間が終了した時刻t2以降では、短絡検知回路600Bにおいてスイッチング素子607がオフされることにより、ドレイン電圧Vdsの上昇に対する電圧Vsigの上昇速度が高くなる。
 このため、図3と同様に、時刻t3より短絡状態が発生してドレイン電流Id(点線)が上昇した後、ドレイン電圧Vds(点線)も上昇を始めると、時刻t4より、電圧VsigはVdsと連動して上昇する。時刻t4からΔT1が経過した時刻t5において、短絡検知回路600Bは、Vsig>Vtを検知する。
 これにより、短絡検知信号Soc(図5)がHレベルに設定されることで、時刻t5以降では、図3での時刻t5以降と同様に、ソフト遮断を適用して半導体素子5がターンオフされる。
 図6及び図3の比較から理解される様に、電圧Vsigの上昇速度の違いに起因して、図6でのΔT1は、図3のΔT0よりも短くなる。即ち、実施の形態2では、実施の形態1と比較して、短絡状態の発生を早期に検出して、ソフト遮断を起動することが可能となる。
 図7には、実施の形態2に係る駆動装置10Bによる半導体素子5の駆動方法の制御処理を説明するフローチャートが示される。
 図7を図4と参照して、駆動装置10Bは、図3に示された駆動装置10Aによる制御処理に加えて、S210の処理を更に実行する点で異なる。駆動装置10Bは、S120のNO判定時、即ち、ターンオン動作の開始から遅延回路200Aによる遅延時間TXが経過しても短絡状態が検知されなかった場合には、S210を実行した後に、図3と同様のS130~S170の処理を実行する。
 駆動装置10Bは、S210では、ターンオン期間から定常オン期間への遷移タイミング(図6の時刻t2)において、短絡検知回路600Bのスイッチング素子607をオフすることによって、短絡状態の検知条件を変更する。これにより、定常オン期間でのS130による短絡状態の検出では、短絡検知回路600Bでの電圧Vsigの上昇速度が高められるので、実施の形態1と比較して、早期に短絡状態を検知することができる。
 上述の様に、半導体素子5のドレイン電圧に基づいて短絡状態を検出する方式では、ドレイン電流Idの増大に遅れてドレイン電圧Vdsが上昇するため、短絡状態の検知タイミングでは、ドレイン電流Idが大きくなって、遮断するエネルギーが増大することが懸念される。このため、大電流を遮断することになる定常オン時では、なるべく早期に短絡状態を検出して、遮断するエネルギーを抑制することが望ましい。
 実施の形態2に係る駆動装置によれば、ターンオン動作開始からの経過時間に応じて区分される定常オン期間では、短絡検知回路600Bのコンパレータ609への入力(電圧Vsig)を生成するフィルタ回路の時定数を小さくすることで、ドレイン電圧Vdsの上昇に対する短絡状態の検出速度を上昇することができる。これにより、短絡状態を検出するまでの時間が短くなるので、定常オン期間の保護動作による遮断エネルギーを抑制して、半導体素子5を破壊しないための保護動作の効果を高めることができる。
 尚、図6の例では、ノードN2に付加される容量値を切替えることで、フィルタ回路の時定数、即ち、電圧Vsigの上昇速度を切替える構成を説明したが、抵抗素子等の他の受動素子の値の切替えによって、同様の効果を奏することも可能である。
 実施の形態3.
 図8は、実施の形態3に係る駆動装置10Cの具体的な構成を説明する回路図である。
 図8を参照して、駆動装置10Cは、駆動回路100Aと、遅延回路200Aと、選択回路300Aと、保護回路400Cとを備える。駆動回路100A、遅延回路200A、選択回路300A、及び、保護回路400Cのそれぞれは、図1の駆動回路100、遅延回路200、選択回路300、及び、保護回路400の一例に相当する。
 即ち、駆動装置10Cは、図2に示された駆動装置10Aと比較して、保護回路400Aに代えて、保護回路400Cを備える点で異なる。保護回路400Cは、図2の保護回路400Aと比較して、短絡検知回路600Aに代えて、短絡検知回路600Cを含む点で異なる。従って、実施の形態3に係る駆動装置10Cについても、短絡検知信号Socを生成するための構成が実施の形態1(駆動装置10A)とは異なる一方で、短絡検知信号Socに応じた保護動作は、実施の形態1と同様である。
 短絡検知回路600Cは、短絡検知回路600A(図2)と同様の、抵抗素子601,603,604、ダイオード602、キャパシタ605、及び、コンパレータ609に加えて、抵抗素子610~612と、N型トランジスタで構成されたスイッチング素子613とを更に含む。一方で、短絡検知回路600Cでは、図2での電源608は配置されない。
 抵抗素子610は、電源ノードNpと、判定電圧Vtが生成されるノードN3との間に接続される。抵抗素子611は、ノードN3及び負電源ノードNnとの間に接続される。抵抗素子612及びスイッチング素子613は、ノードN3及び負電源ノードNnの間に直列接続される。スイッチング素子613を構成するN型トランジスタのゲートには、選択回路300Bからの選択信号S2が入力される。上述の様に、選択信号S2は、遅延ゲート信号Sgdと同相であるため、ターンオン期間(図3の時刻t1~t2)においてLレベルに設定される一方で、定常オン期間(図3の時刻t2以降)ではHレベルに設定される。従って、スイッチング素子613は、定常オン期間(S2=Hレベル)でオンする一方で、ターンオン期間(S2=Lレベル)ではオフする。
 短絡検知回路600Cは、図2の短絡検知回路600Aと比較すると、判定電圧Vtが、電源608からの一定電圧ではなく、ターンオン期間及び定常オン期間で切替えられる点が異なる。
 短絡検知回路600Cでは、スイッチング素子613のオンオフに応じて、分圧比を切替えることによって、判定電圧Vtが切替えられる。具体的には、ターンオン期間では、スイッチング素子613はオフされるため、抵抗素子610及び611によって、(V1-V2)を分圧することで、判定電圧Vtが生成される。
 これに対して、定常オン期間では、スイッチング素子613がオンされるため、抵抗素子610と、並列接続された抵抗素子611及び612の合成抵抗とで(V1-V2)を分圧することで、判定電圧Vtが生成される。ここで、抵抗素子611及び612の合成抵抗は、抵抗素子611の抵抗値よりも低いため、定常オン期間では、ターンオン期間よりも判定電圧Vtが低く設定されることが理解される。
 一方、短絡検知回路600Cにおいて、コンパレータ609(+端子)に入力される電圧Vsigは、図2の短絡検知回路600Aと同様の構成によって生成される。
 図9には、実施の形態2に係る駆動装置による半導体素子のターンオン時の動作波形図が示される。図9においても、図3及び図6と同様に、ゲート信号Sgに応じたターンオン動作時における電圧及び電流の変化について、正常時の波形が実線で示されるとともに、短絡発生時の波形が点線で示される。
 図9においても、ターンオン動作が開始される時刻t1からターンオン期間が終了する時刻t2までの動作波形は、図3及び図6と同様である。
 一方で、ターンオン期間が終了した時刻t2以降では、短絡検知回路600Cにおいてスイッチング素子613がオンされることにより、判定電圧Vtが低下される。
 このため、図3と同様に、時刻t3より短絡状態が発生してドレイン電流Id(点線)が上昇した後、ドレイン電圧Vds(点線)も上昇を始めると、時刻t4より、電圧VsigはVdsと連動して、図3と同様の傾きで上昇する。そして、低下された判定電圧Vtの下で、時刻t4からΔT1が経過した時刻t5において、短絡検知回路600Cは、Vsig>Vtを検知する。
 これにより、短絡検知信号Soc(図5)がHレベルに設定されることで、時刻t5以降では、図3での時刻t5以降と同様に、ソフト遮断を適用して、半導体素子5がターンオフされる。
 図8及び図3の比較から理解される様に、判定電圧Vtを低下することにより、図8でのΔT1は、図6でのΔT1と同様に、図3のΔT0よりも短くなる。即ち、実施の形態3においても、実施の形態1と比較して、短絡状態の発生を早期に検知して、ソフト遮断を起動することが可能となる。
 実施の形態3に係る駆動装置10Cによる半導体素子5の駆動方法は、実施の形態2と同様の図7のフローチャートを用いて、ターンオン期間から定常オン期間への遷移タイミング(図6の時刻t2)でのS210において、短絡検知回路600Cのスイッチング素子613をオンすることで実現できる。
 これにより、S210において、判定電圧Vtをターンオン期間よりも低くする様に、短絡状態の検知条件を変更することにより、定常オン期間でのS130による短絡状態の検知では、実施の形態1と比較して、早期に短絡状態を検知することができる。
 この様に、実施の形態3によれば、ターンオン動作開始からの経過時間によって区分された定常オン期間では、短絡検知回路600Cのコンパレータ609へ入力される判定電圧Vtを低下することで、ドレイン電圧Vdsの上昇に対する短絡状態の検出速度を上昇することができる。これにより、短絡状態を検出するまでの時間が短くなるので、実施の形態2と同様に、定常オン期間の保護動作による遮断エネルギーを抑制して、半導体素子5を破壊しないための保護動作の効果を高めることができる。
 尚、図8の例では、抵抗素子による分圧比によって判定電圧を切替える構成を説明したが、同様に判定電圧を切替えることが可能であれば、任意の構成を適用して同様の効果を奏することが可能である。
 実施の形態4.
 実施の形態4では、半導体素子5の短絡状態の検知手法の他の例として、ドレイン電流Idに基づいて短絡状態を検知するための構成について説明する。
 図10は、実施の形態4に係る駆動装置10Dの構成を説明する回路図である。
 図10を参照して、駆動装置10Dは、駆動回路100Aと、遅延回路200Aと、選択回路300Aと、保護回路400Dとを備える。駆動回路100A、遅延回路200A、選択回路300A、及び、保護回路400Dのそれぞれは、図1の駆動回路100、遅延回路200、選択回路300、及び、保護回路400の一例に相当する。
 即ち、駆動装置10Dは、図2に示された駆動装置10Aと比較して、保護回路400Aに代えて、保護回路400Dを備える点で異なる。保護回路400Dは、図2の保護回路400Aと比較して、短絡検知回路600Aに代えて、短絡検知回路700を含む点で異なる。
 即ち、実施の形態4に係る駆動装置10Dでは、短絡検知信号Socを生成するための構成が実施の形態1(駆動装置10A)とは異なる。短絡検知回路700は、抵抗素子702と、増幅器703と、判定電圧Vtを出力する電源704と、コンパレータ705とを含む。
 更に、実施の形態4では、半導体素子5と並列に、ドレイン電流を検出するためのセンスセル701が接続される。センスセル701のゲートは、半導体素子5のゲートと接続されており、センスセル701には、半導体素子5のドレイン電流Idに比例したセンス電流Idsnが流れる(Idsn<Id)。
 抵抗素子702は、センス電流Idsnが通過する様に、センスセル701と直列接続される。これにより、抵抗素子702の両端には、センス電流Idsn、即ち、ドレイン電流Idに比例した電圧Vdsnが生じる。増幅器703は、抵抗素子702の両端の電圧Vdsnを増幅して、電圧Vsigを出力する。この結果、電圧Vsigについても、ドレイン電流Idに比例する。この様に、抵抗素子702及び増幅器703によって、「電圧変換部」の一実施例を構成することができる。
 コンパレータ705は、コンパレータ609(図2)と同様に、電圧Vsig及び判定電圧Vtの比較結果に基づき、短絡検知信号Socを生成する。これにより、Vsig>Vtのときに、半導体素子5に過電流が発生する短絡状態が検知されて、短絡検知信号SocがHレベルに設定される。短絡検知信号Socに応じた保護動作は、実施の形態1と同様でので、詳細な説明は繰り返さない。
 図10では、実施の形態1に対して、ドレイン電流に基づいて短絡状態を検知する実施の形態4を組み合わせたが、実施の形態3についても、実施の形態4と組み合わせることが可能である。
 即ち、図10の短絡検知回路700において、判定電圧Vtを、実施の形態3と同様に生成することで、実施の形態3及び4を組み合わせることが可能である。
 実施の形態5.
 又、実施の形態1~4では、ターンオン開始タイミングからの経過時間に基づいて、半導体素子5の駆動状態を区分する例を説明したが、他のパラメータ値、例えば、ゲート電圧(Vgs)又はゲート電流から、保護制御に係る半導体素子5の駆動状態の区分、即ち、上述のターンオン期間と定常オン期間とを区別することも可能である。
 図11は、実施の形態5に係る駆動装置10Eの構成例を説明する回路図である。
 図11を参照して、駆動装置10Eは、駆動回路100Aと、遅延回路200Bと、選択回路300Aと、保護回路400Aとを備える。駆動回路100A、遅延回路200B、選択回路300A、及び、保護回路400Bのそれぞれは、図1の駆動回路100、遅延回路200、選択回路300、及び、保護回路400の一例に相当する。
 即ち、駆動装置10Eは、図2に示された駆動装置10Aと比較して、遅延回路200Aに代えて、遅延回路200Bを備える点で異なる。遅延回路200Bは、遅延回路200Aとは異なる手法で、図2と同等の遅延ゲート信号Sgdを生成する。実施の形態2に係る駆動装置10Eでは、ターンオン期間と定常オン期間とを区分するための遅延ゲート信号Sgdを生成するための構成が、実施の形態1(駆動装置10A)とは異なる一方で、それ以外の構成、及び、ターンオン期間及び定常オン期間での保護動作の内容は、実施の形態1と同様である。
 遅延回路200Bは、コンパレータ215を含む。コンパレータ215は、半導体素子5のゲート電圧Vgsと、電源212の出力電圧相当の基準値Vstとの比較結果に基づき、遅延ゲート信号Sgdを出力する。遅延ゲート信号Sgdは、実施の形態1と同様に、選択回路300Aの反転バッファ301及び非反転バッファ302に入力される。
 コンパレータ215によって、遅延ゲート信号Sgdは、Vgs≦VstのときにはLレベルに設定される一方で、Vgs>VstのときにはHレベルに設定される。
 図12には、図11に示された駆動装置10Eによる半導体素子のターンオン時の動作波形図が示される。図12に示された、駆動電圧Vdv、ゲート電圧Vgs、ドレイン電流Id、ドレイン電圧Vds、及び、電圧Vsigの実線及び点線の波形は、図3と同様である。図12は、図3と比較して、ゲート電圧Vgsに応じた遅延ゲート信号Sgdの推移が示される点が異なる。
 図12を参照して、ゲート電圧Vgsは、ターンオンの開始タイミング(時刻t1)において、第2電圧V2から第1電圧V1へ向けて変化を始め、ミラー期間を経て、第1電圧V1まで上昇する。
 コンパレータ215に入力される基準値Vstを、ゲート電圧Vgsの定常オン状態での電圧8(即ち、第1電圧V1)よりも少し低い値に設定することで、実施の形態1~4と同様に、ターンオン期間と定常オン期間とを区別することが可能となる。上述の通り、実施の形態5に係る駆動装置10Eにおいて、ターンオン期間及び定常オン期間の各々での回路動作は、正常時及び短絡状態の発生時ともに、実施の形態1(駆動装置10A)と同様であるので、詳細な説明は繰り返さない。
 尚、ゲート電圧Vgsは、図10に示されたゲート電流Igによる半導体素子5のゲート容量の充放電によって変化するので、図11に示されたゲート電圧Vgsの推移に対応するゲート電流Igの変化から、半導体素子5の駆動状態に応じて、ターンオン期間及び定常オン区間を区分することも可能である。この場合には、ゲート電流Igに比例した入力電圧がコンパレータ215に入力され、基準値Vstは、ゲート電流Igのターンオン時の特性に従って設定される。
 図10に示した、遅延回路200Bは、実施の形態2~4においても、遅延回路200Aに代えて配置することが可能であり、実施の形態5は、実施の形態2~4と組み合わせることも可能である。
 この様に、以上で説明した複数の実施の形態について、明細書内で言及されていない組み合わせを含めて、不整合や矛盾が生じない範囲内で、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている点についても、確認的に記載する。
 又、実施の形態1~5で例示した、図1の駆動回路100、遅延回路200、選択回路300、及び、保護回路400の構成例について、各回路の少なくとも一部の機能については、同等の動作が可能であるプログラムを持つFPGA(Field Programmable Gate Array)等のIC(Integrated Circuit)によって構成することも可能である。即ち、本実施の形態で説明した各回路要素については、同等の機能を有する限り、ハードウェア処理及びソフトウェア処理の少なくとも一方によって、任意に構成することが可能である。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 5 半導体素子、10,10A~10E 駆動装置、100,100A,100D 駆動回路、101,102,608,704 電源、103,103D スイッチング制御回路、105,107,503,607,613 スイッチング素子、200,200A,403 遅延回路、203 トリガ回路、300,300A,300B 選択回路、301 反転バッファ、302 非反転バッファ、400,400A~400D 保護回路、401,402 論理ゲート、500 ソフト遮断回路、502,602 ダイオード、600A~600C,700 短絡検知回路、609,705 コンパレータ、701 センスセル、703 増幅器、Id ドレイン電流、Idsn センス電流、N1~N3 ノード、Ng ゲートノード、Nn 負電源ノード、Np 電源ノード、S1,S2 選択信号、Sa,Sb,Sbd,Sc,Scn 制御信号、Sg ゲート信号、Sgd 遅延ゲート信号、Soc 短絡検知信号、T1,TX 遅延時間、V1 第1電圧、V2 第2電圧、V3 第3電圧、Vds ドレイン電圧、Vdv 駆動電圧、Vgs ゲート電圧、Vt 判定電圧。

Claims (15)

  1.  制御電極の電圧に応じて第1の主電極から第2の主電極に流れる電流が制御される半導体素子の駆動装置であって、
     前記半導体素子のオンオフを制御するゲート信号に応じて、前記半導体素子をオンするための第1電圧と、前記半導体素子をオフするための第2電圧との一方を前記制御電極に対して出力するための駆動回路と、
     前記半導体素子のオン期間における異常発生時に前記半導体素子をターンオフする保護動作を実行するための保護回路と、
     ターンオン指令に応じた前記半導体素子の駆動状態に応じて、前記保護回路による前記保護動作の態様を切替える選択回路とを備える、駆動装置。
  2.  前記選択回路は、前記オン期間において、前記ゲート信号に応じて前記半導体素子のターンオンが開始されたタイミングからの経過時間が予め定められた第1の時間以下であるときには第1の保護動作を実行する一方で、前記経過時間が前記第1の時間を超えると第2の保護動作を実行する様に、前記保護回路に対して選択信号を出力し、
     前記保護回路は、前記選択信号によって前記第1の保護動作が指示される第1の期間では、前記半導体素子の異常検知に応じて、前記第2電圧を前記制御電極に出力する様に前記駆動回路を制御する一方で、前記選択信号によって前記第2の保護動作が指示される第2の期間では、前記半導体素子の異常検知に応じて、前記制御電極に対して第3電圧が出力される期間が設けられた後に、前記第2電圧を前記制御電極に出力する様に前記駆動回路を制御し、
     前記第3電圧は、前記第1電圧及び前記第2電圧の間の電圧である、請求項1記載の駆動装置。
  3.  前記選択回路は、前記オン期間において、前記制御電極の電圧又は電流が予め定められた基準値に達するまでは第1の保護動作を実行する一方で、前記制御電極の電圧又は電流が前記基準値に達した後では第2の保護動作を実行する様に、前記保護回路に対して選択信号を出力し、
     前記保護回路は、前記選択信号によって前記第1の保護動作が指示される第1の期間では、前記半導体素子の異常検知に応じて、前記第2電圧を前記制御電極に出力する様に前記駆動回路を制御する一方で、前記選択信号によって前記第2の保護動作が指示される第2の期間では、前記半導体素子の異常検知に応じて、前記制御電極に対して第3電圧が出力される期間が設けられた後に、前記第2電圧を前記制御電極に出力する様に前記駆動回路を制御し、
     前記第3電圧は、前記第1電圧及び前記第2電圧の間の電圧である、請求項1記載の駆動装置。
  4.  前記保護回路は、
     前記制御電極からの抵抗素子を経由した放電経路を形成するためのソフト遮断回路を含み、
     前記保護回路は、前記第2の保護動作において、前記半導体素子の異常検知に応じて前記ソフト遮断回路を作動させて前記放電経路を形成することで前記制御電極に対して前記第3電圧が出力される期間を設ける、請求項2又は3に記載の駆動装置。
  5.  前記保護回路は、
     前記第1の主電極の電流又は電圧に基づいて前記半導体素子の短絡状態を検知する短絡検知回路を含み、
     前記保護回路は、前記短絡検知回路によって前記短絡状態が検知されると、前記半導体素子の異常を検知して、前記選択回路からの前記選択信号に応じた前記第1の保護動作又は前記第2の保護動作を実行する、請求項2~4のいずれか1項に記載の駆動装置。
  6.  前記短絡検知回路は、
     前記第1の主電極の電圧の分圧電圧が生成されるノードの電圧を入力電圧とするフィルタ回路と、
     前記フィルタ回路の出力電圧及び判定電圧を比較するコンパレータとを有し、
     前記短絡検知回路は、前記出力電圧が前記判定電圧よりも高いときに前記短絡状態を検知する、請求項5記載の駆動装置。
  7.  前記フィルタ回路の時定数は、前記第2の期間では前記第1の期間よりも小さくなる様に、前記選択回路からの前記選択信号に応じて切替えられる、請求項6記載の駆動装置。
  8.  前記短絡検知回路は、
     前記第1の主電極の電流に応じた電圧を出力する電流電圧変換部と、
     前記電流電圧変換部の出力電圧及び判定電圧を比較するコンパレータとを有し、
      前記短絡検知回路は、前記出力電圧が前記判定電圧よりも高いときに前記短絡状態を検知する、請求項5記載の駆動装置。
  9.  前記判定電圧は、前記第2の期間では前記第1の期間よりも低くなる様に、前記選択回路からの前記選択信号に応じて切替えられる、請求項6又は8に記載の駆動装置。
  10.  前記短絡検知回路は、前記第2の期間における、前記第1の主電極の電流又は電圧の上昇に対する前記短絡状態の検知速度が、前記第1の期間における前記検知速度よりも高くなる様に構成される、請求項5記載の駆動装置。
  11.  制御電極の電圧に応じて第1の主電極から第2の主電極に流れる電流が制御される半導体素子の駆動方法であって、
     前記半導体素子のターンオン指令に応じて、前記半導体素子をオンするための第1電圧を前記制御電極に出力するステップと、
     前記半導体素子のオン期間における異常発生時に前記半導体素子をターンオフする保護動作を実行するステップと、
     前記ターンオン指令に応じた前記半導体素子の駆動状態に応じて、前記保護動作の態様を切替えるステップとを備える、駆動方法。
  12.  前記保護動作を実行するステップは、
     前記オン期間のうちの、前記半導体素子のオンオフを制御するゲート信号に応じて前記半導体素子のターンオンが開始されたタイミングからの経過時間が予め定められた第1の時間以下である第1の期間において、前記半導体素子の異常検知に応じて、前記半導体素子をオフするための第2電圧を前記制御電極に出力する第1の保護動作を実行するステップと、
     前記オン期間のうちの、前記経過時間が前記第1の時間を超える第2の期間において、前記半導体素子の異常検知に応じて、前記制御電極に対して第3電圧が出力される期間を設けた後に、前記第2電圧を前記制御電極に出力する第2の保護動作を実行するステップとを含み、
     前記第3電圧は、前記第1電圧及び前記第2電圧の間の電圧である、請求項11記載の駆動方法。
  13.  前記保護動作を実行するステップは、
     前記オン期間のうちの、前記制御電極の電圧又は電流が予め定められた基準値に達するまでの第1の期間において、前記半導体素子の異常検知に応じて、前記半導体素子をオフするための第2電圧を前記制御電極に出力する第1の保護動作を実行するステップと、
     前記オン期間のうちの、前記制御電極の電圧又は電流が前記基準値に達した後の第2の期間において、前記半導体素子の異常検知に応じて、前記制御電極に対して第3電圧が出力される期間を設けた後に、前記第2電圧を前記制御電極に出力する第2の保護動作を実行するステップとを含み、
     前記第3電圧は、前記第1電圧及び前記第2電圧の間の電圧である、請求項11記載の駆動方法。
  14.  前記保護動作を実行するステップは、
     前記第1の主電極の電流又は電圧に基づいて前記半導体素子の短絡状態を検知するステップを含み、
     前記短絡状態が検知されると、前記半導体素子の異常が検知されて、前記第1の保護動作又は前記第2の保護動作が実行される、請求項12又は13に記載の駆動方法。
  15.  前記保護動作を実行するステップは、
     前記第1の期間の終了時において、前記第1の主電極の電流又は電圧の上昇に対する前記短絡状態の検知速度を上昇するステップを更に含む、請求項14記載の駆動方法。
PCT/JP2021/047941 2021-12-23 2021-12-23 半導体素子の駆動装置及び駆動方法 WO2023119574A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023568950A JPWO2023119574A1 (ja) 2021-12-23 2021-12-23
PCT/JP2021/047941 WO2023119574A1 (ja) 2021-12-23 2021-12-23 半導体素子の駆動装置及び駆動方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/047941 WO2023119574A1 (ja) 2021-12-23 2021-12-23 半導体素子の駆動装置及び駆動方法

Publications (1)

Publication Number Publication Date
WO2023119574A1 true WO2023119574A1 (ja) 2023-06-29

Family

ID=86901776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047941 WO2023119574A1 (ja) 2021-12-23 2021-12-23 半導体素子の駆動装置及び駆動方法

Country Status (2)

Country Link
JP (1) JPWO2023119574A1 (ja)
WO (1) WO2023119574A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06276073A (ja) * 1993-01-21 1994-09-30 Hitachi Ltd Igbtの過電流保護装置
JP2012023899A (ja) * 2010-07-15 2012-02-02 Fuji Electric Co Ltd 電力用半導体素子のゲート駆動回路
JP2013240210A (ja) * 2012-05-16 2013-11-28 Denso Corp 駆動対象スイッチング素子の駆動装置
JP2015032984A (ja) * 2013-08-02 2015-02-16 株式会社 日立パワーデバイス 半導体素子の駆動装置およびそれを用いた電力変換装置
WO2017098624A1 (ja) * 2015-12-10 2017-06-15 三菱電機株式会社 半導体デバイス駆動回路
WO2018203422A1 (ja) * 2017-05-01 2018-11-08 三菱電機株式会社 半導体素子の駆動装置および電力変換装置
JP2021083195A (ja) * 2019-11-18 2021-05-27 富士電機株式会社 電圧制御型電力用半導体素子の駆動回路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06276073A (ja) * 1993-01-21 1994-09-30 Hitachi Ltd Igbtの過電流保護装置
JP2012023899A (ja) * 2010-07-15 2012-02-02 Fuji Electric Co Ltd 電力用半導体素子のゲート駆動回路
JP2013240210A (ja) * 2012-05-16 2013-11-28 Denso Corp 駆動対象スイッチング素子の駆動装置
JP2015032984A (ja) * 2013-08-02 2015-02-16 株式会社 日立パワーデバイス 半導体素子の駆動装置およびそれを用いた電力変換装置
WO2017098624A1 (ja) * 2015-12-10 2017-06-15 三菱電機株式会社 半導体デバイス駆動回路
WO2018203422A1 (ja) * 2017-05-01 2018-11-08 三菱電機株式会社 半導体素子の駆動装置および電力変換装置
JP2021083195A (ja) * 2019-11-18 2021-05-27 富士電機株式会社 電圧制御型電力用半導体素子の駆動回路

Also Published As

Publication number Publication date
JPWO2023119574A1 (ja) 2023-06-29

Similar Documents

Publication Publication Date Title
JP6949160B2 (ja) 動的タイミングでの多ステージゲートオフ切り替え
KR101662471B1 (ko) 구동 보호 회로, 반도체 모듈 및 자동차
CN105577153B (zh) 半导体装置
US8040162B2 (en) Switch matrix drive circuit for a power element
US10084390B2 (en) Power converter, short circuit protection circuit, and control method
US9698654B2 (en) Soft shutdown for isolated drivers
CN108809059B (zh) 半导体元件的驱动装置
CN112838746A (zh) 具有集成米勒钳位器的栅极驱动器
CN109375087B (zh) 一种具有高速检测igbt短路故障的保护电路与方法
US8363440B2 (en) Power conversion circuit having off-voltage control circuit
JP2009225506A (ja) 電力変換器
JP2003284318A (ja) 電力用半導体素子の駆動回路
US11545972B2 (en) Overcurrent protection circuit for switching element turned on and off based on control voltage
US10033370B2 (en) Circuit and method for driving a power semiconductor switch
JP7047898B2 (ja) スイッチング装置及びスイッチング装置の制御方法
CN112821723A (zh) 电压控制型电力用半导体元件的驱动电路
WO2023119574A1 (ja) 半導体素子の駆動装置及び駆動方法
US20220209645A1 (en) Driving apparatus
JP6706876B2 (ja) パワーモジュール
JP2004119842A (ja) 電力用半導体素子の駆動回路
US20240283443A1 (en) Switching element drive circuit
US11115017B2 (en) Driving apparatus and switching apparatus
WO2022123977A1 (ja) 電圧制御型半導体素子の駆動装置
WO2024047868A1 (ja) ゲート駆動装置
US20230053929A1 (en) Driving apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969009

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023568950

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202427044252

Country of ref document: IN