WO2023116630A1 - 一种滑动弧等离子体反应器和等离子体转化甲烷的方法 - Google Patents

一种滑动弧等离子体反应器和等离子体转化甲烷的方法 Download PDF

Info

Publication number
WO2023116630A1
WO2023116630A1 PCT/CN2022/140057 CN2022140057W WO2023116630A1 WO 2023116630 A1 WO2023116630 A1 WO 2023116630A1 CN 2022140057 W CN2022140057 W CN 2022140057W WO 2023116630 A1 WO2023116630 A1 WO 2023116630A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
methane
arc plasma
arc
sliding arc
Prior art date
Application number
PCT/CN2022/140057
Other languages
English (en)
French (fr)
Inventor
张婧
徐伟
杨哲
周明川
任君朋
张铁
孙峰
姜杰
孙冰
Original Assignee
中国石油化工股份有限公司
中石化安全工程研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111567220.9A external-priority patent/CN116313715A/zh
Priority claimed from CN202111567211.XA external-priority patent/CN116272756A/zh
Priority claimed from CN202111567218.1A external-priority patent/CN116272758B/zh
Priority claimed from CN202111565360.2A external-priority patent/CN116272753A/zh
Priority claimed from CN202111567216.2A external-priority patent/CN116272757A/zh
Priority claimed from CN202111567219.6A external-priority patent/CN116283477A/zh
Priority claimed from CN202111567199.2A external-priority patent/CN116283471A/zh
Application filed by 中国石油化工股份有限公司, 中石化安全工程研究院有限公司 filed Critical 中国石油化工股份有限公司
Publication of WO2023116630A1 publication Critical patent/WO2023116630A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/04Ethylene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/22Aliphatic unsaturated hydrocarbons containing carbon-to-carbon triple bonds
    • C07C11/24Acetylene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/76Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
    • C07C2/80Processes with the aid of electrical means
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/76Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
    • C07C2/82Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen oxidative coupling
    • C07C2/84Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen oxidative coupling catalytic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles

Definitions

  • the invention relates to the field of energy and chemical industry, in particular to a sliding arc plasma reactor and a method for converting methane by plasma.
  • Plasma methane conversion technology has been studied in China since the 1980s, and has gradually formed a patented technology since 2000.
  • CN100999432A discloses a method for ionic liquid catalytic plasma methane conversion to C2 hydrocarbons, and the patent was terminated in 2015.
  • CN101734620A discloses a method for producing hydrogen from methane-enriched plasma, which was terminated in 2014.
  • Tsinghua University, Taiyuan University of Technology and Xinjiang Tianye Group jointly developed the plasma cracking coal-to-acetylene process (CN203582763U, CN102068953A, CN101734620A, CN101550057A, CN101734995A, CN1613839A), which mainly uses coal as raw material, and natural gas assists in the preparation of acetylene and hydrogen.
  • the gas is hydrogen.
  • Zhejiang University mainly developed a method for online plasma coke cleaning (CN104056828A, CN104056829A), which can be fed with CO 2 or H 2 to remove carbon on the electrode surface. Also developed a rotating arc plasma cracking methane to prepare acetylene (CN103333044A, CN101844744A), the working gas rotates into the discharge gap, and at the same time, it is driven by a magnetic field externally, and cracking occurs in milliseconds.
  • hydrocarbon products formed by plasma conversion of methane are mainly divided into two types, one is mainly ethane and other alkanes, and the other is mainly acetylene.
  • the technology has been industrialized abroad, including four processes: HUELS method, AVCO method, Du Pont method and Bulgarian method.
  • RUEANGJITT N et al. Non-oxidative reforming of methane in a mini-gliding arc discharge reactor: Effects of feed methane concentration, feed flow rate, electrode gap distance, residence time, and catalyst distance[J].Plasma Chem Plasma Process, 2011, 31 (4): 517-534.
  • the main product is acetylene. Under the condition of power of 110-190W, the conversion rate of methane is 40%-50%, and the selectivity of C2H2 is 20%.
  • the purpose of the present invention is to overcome the defect of low conversion efficiency of directional conversion of methane to olefins existing in the prior art.
  • the first aspect of the present invention provides a sliding arc plasma reactor, which comprises a reactor cavity and a sliding arc plasma generator arranged in the reactor cavity;
  • the sliding arc plasma generator comprises at least 2 arc-surface electrodes (3) symmetrically distributed, the discharge surfaces of each arc-surface electrode are arc-surface structures, and the central angle corresponding to the arc-surface electrodes is ⁇ , wherein, 360° ⁇ >5°; each arc-surface electrode is arranged at a position such that a discharge area can be formed between the arc-surface electrodes (3).
  • a second aspect of the present invention provides a method for plasma conversion of methane, the method implemented in the sliding arc plasma reactor described in the first aspect, the method comprising:
  • the reaction gas containing methane is introduced into the sliding arc plasma reactor to carry out methane conversion reaction.
  • the solution provided by the present invention has at least the following advantages:
  • the aforementioned sliding arc plasma reactor provided by the present invention adopts electrodes to form a discharge area, and its discharge arc point is on a curved surface, thereby forming more arc channels and having a stronger reactant conversion capability;
  • the aforementioned sliding arc plasma reactor provided by the present invention can make the raw material gas pass through the discharge area formed by the electrodes more concentratedly, thereby effectively increasing the gas flow rate passing through the discharge area, improving the conversion efficiency of reactants and reducing energy consumption;
  • the aforementioned sliding arc plasma reactor provided by the present invention can realize the one-step conversion of methane to efficiently generate olefins at a higher reactant conversion efficiency, and can maintain the continuous and stable reaction, and compared with the traditional methane to olefins process , no CO2 generation, no risk of explosion, safer and more environmentally friendly.
  • Fig. 1 is a structural schematic diagram of a preferred embodiment of the sliding arc plasma reactor provided by the present invention.
  • Fig. 2 is a structural schematic diagram of another preferred embodiment of the sliding arc plasma reactor provided by the present invention.
  • the first aspect of the present invention provides a sliding arc plasma reactor, which includes a reactor cavity and a sliding arc plasma generator disposed in the reactor cavity;
  • the sliding arc plasma generator includes at least two arc-surface electrodes 3 arranged symmetrically, the discharge surfaces of each of the arc-surface electrodes are arc-surface structures, and the central angle corresponding to the arc-surface electrodes is ⁇ , wherein , 360° ⁇ >5°, preferably 360° ⁇ >10°; each of the arc-shaped electrodes is positioned so that a discharge area can be formed between the arc-shaped electrodes (3).
  • the reactor comprises a reactor inlet 1, a sliding arc plasma generator and a product outlet 5;
  • the sliding arc plasma generator includes at least two arc surface electrodes 3 arranged in a symmetrical distribution, and each of the arc surface electrodes is positioned so that a discharge area can be formed between the arc surface electrodes (3);
  • the sliding arc plasma generator also includes a gas nozzle 2 and a base 6;
  • the arc electrode 3 is arranged on the base 6; the base 6 and/or the arc electrode 3 is provided with the gas nozzle 2, so that the reaction gas can pass through the reactor inlet 1 through the The gas nozzle 2 enters the sliding arc plasma reactor;
  • the central angle corresponding to the arc surface structure of the arc electrode is ⁇ , wherein, 360° ⁇ >5°.
  • the discharge arcing point of the electrode is on the curved surface, which can form a discharge area with more arc channels and has stronger reactant conversion capability.
  • the arc surface structure of the arc surface electrode 3 is a semi-closed arc surface, and the central angle corresponding to the arc surface is ⁇ , and 270°> ⁇ >30°; more preferably, the semi-closed arc surface
  • the central angle ⁇ corresponding to the arc surface is selected from at least one of 180°, 120°, 90°, 72°, and 60°.
  • the arc surface structure of the arc electrode 3 is a fully enclosed arc surface.
  • the inventors found that by using a fully enclosed arc surface structure as the arc surface structure of the arc surface electrode 3 , the conversion efficiency of the reactants of the present invention can be made higher and heat dissipation can be facilitated.
  • the ratio between the length d2 of the discharge area and the height d3 of the reactor cavity satisfies: 1:1.2-1.8.
  • the electrode sliding arc generator is the sliding arc plasma generator; and the center of the base of the sliding arc plasma generator is provided with the gas nozzle, the The gas nozzle communicates with the inlet pipe of the reactor inlet.
  • the central angle corresponding to the arcuate structure of the arcuate electrode 3 is ⁇ , wherein, 360° ⁇ >10°.
  • the sliding arc plasma generator includes two arc surface electrodes 3 or six arc surface electrodes 3 arranged symmetrically.
  • the ratio between the distance between two adjacent gas nozzles 2 and the inner diameter r2 of the gas nozzle satisfies: 1:0.5-1.5.
  • the proportional relationship between the inner diameter r2 of the gas nozzle 2 and the minimum width r3 of the discharge region satisfies: 1:2-8.
  • the reactor of the present invention comprises a reactor inlet, an electrode sliding arc generator, a lower reaction zone and a product outlet;
  • the electrode sliding arc generator includes a gas nozzle, an electrode and a base;
  • the base of the electrode sliding arc generator is provided with at least a plurality of electrodes symmetrically distributed, so that a discharge area can be formed between the electrodes; the electrodes and/or the base are provided with The gas nozzle, so that reaction gas can enter the sliding arc plasma reactor from the reactor inlet through the gas nozzle;
  • Every two electrodes symmetrically distributed correspond to each other so as to be able to discharge
  • the electrode sliding arc generator is an electrode sliding arc generator containing arc surface electrodes and/or a tubular electrode sliding arc generator containing tubular electrodes.
  • the symmetrical distribution is based on the central vertical axis of the base, and the installation position of the electrodes does not affect the discharge.
  • the shape and material of the base there is no special limitation on the shape and material of the base, it can be circular or other various shapes that can realize the foregoing invention object of the present invention, and can be an insulating material or other materials that can realize the foregoing invention of the present invention. Various materials for the purpose of the invention.
  • the center of the base 6 of the sliding arc plasma generator is provided with the gas nozzle 2 , and the gas nozzle 2 communicates with the inlet pipe of the reactor inlet 1 .
  • the gas nozzle 2 is provided in the opposite direction of every two arc-surface electrodes 3 at symmetrical positions, and the gas nozzle 2 communicates with the gas inlet pipe of the reactor inlet 1 .
  • At least a part of the outer surface of the fully enclosed arc-shaped structure is coated with a coating.
  • the coating contains at least two layers of single-layer atomic layer deposition metal oxide thin films stacked, the coating is a semiconductor material, the number of layers of the coating is at least two, and any two adjacent layers are formed.
  • the coating materials for each of the described coatings are different.
  • the number of layers of the coating is at least three.
  • the number of layers of the coating is three, and the coating materials forming the three coatings are different; the dielectric constant of the coating material forming the outermost coating is higher than that of the other coatings.
  • the dielectric constant of the coating material of the above coating is 10-22 C 2 /(N ⁇ M 2 ) higher.
  • the coating material is an organic substance containing metal elements.
  • the semiconductor material is a metal oxide; more preferably, the semiconductor material is selected from Al 2 O 3 , ZrO 2 , SnO 2 , ZnO, HfO 2 , TiO 2 , La 2 O 3 , Ta 2 O 5 , Y 2 O 3 .
  • the outer surface of the fully enclosed arc-shaped structure is coated by atomic layer deposition.
  • the coating step includes: in an atomic layer deposition device,
  • step (1) Repeat step (1) to obtain a coating, each time repeating to form a monolayer atomic layer deposition metal oxide film, by controlling the number of repetitions to adjust the thickness of a coating;
  • the temperature of the metal source tank is 140-160°C
  • the temperature of the reaction chamber is 50-400°C
  • the temperature of the transportation pipeline and the ALD valve is 180-200°C .
  • the reaction chamber and the transport pipeline are evacuated to a pressure of 10-200Pa.
  • the flow rate of the coating carrier gas is 10-200 sccm.
  • the opening time of the ALD valve is 50-2000ms.
  • step (1) it also includes feeding inert gas pulses to clean the reaction chamber; preferably, the cleaning time is 1-200s.
  • the outer surface of the fully enclosed arc-shaped structure is coated by atomic layer deposition, preferably, the step of coating includes: in an atomic layer deposition device,
  • the opening time of the ALD valve is 50-2000ms, so that the coating material enters the reaction chamber, and feeds oxygen, so that the coating The material and oxygen react on the surface of the blade electrode in the reaction chamber to form a coating unit, and the coating unit is a single-layer atomic layer deposition metal oxide film;
  • Steps (1) to (5) are repeated to obtain a coating, and a monolayer atomic layer deposition metal oxide film is formed at each repetition, and the thickness of a coating is adjusted by controlling the number of repetitions;
  • the fully enclosed arc surface is selected from at least one of a tubular shape and a rod shape.
  • the electrode sliding arc generator is the tubular electrode sliding arc generator; and the gas nozzles are arranged in the opposite direction of every two tubular electrodes at symmetrical positions, so The gas nozzle communicates with the inlet pipe of the reactor inlet.
  • the material forming the gas nozzle is at least one selected from conductive materials and insulating materials.
  • the material forming the gas nozzle is an insulating material.
  • the material forming the gas nozzle 2 is a conductive material, and the outlet position of the gas nozzle 2 does not overlap with the arc surface electrode 3 in the vertical direction.
  • the electrical conductivity of the conductive material forming the gas nozzle 2 is >1MS/m, preferably >10MS/m; the thermal conductivity is >10W/(m.°C), preferably >50W/(m.°C).
  • the material forming the electrodes is a conductive material.
  • the conductive material forming the electrode is selected from at least one of 316L stainless steel, tungsten-cerium alloy, nickel-chromium alloy, zinc-copper alloy, copper-chromium alloy, nickel-copper alloy, cobalt-nickel alloy, cobalt-cadmium alloy, and graphite .
  • the material forming the electrodes can also be other conductive materials resistant to high temperature and arc corrosion.
  • the material forming the electrodes can also be other conductive materials resistant to high temperature and arc corrosion.
  • the electrode is connected to the base through a movable connection mechanism, so that the electrode can freely adjust its position in the lower area of the base.
  • the electrodes are connected to the base through a movable connection mechanism, so that the electrodes can be adjusted in vertical and horizontal directions.
  • the movable connection mechanism is vertically connected with the base.
  • the movable connection mechanism can also be non-perpendicularly connected to the base.
  • the electrode is rotatably connected to the movable connection mechanism, so that the electrode can rotate freely to adjust the angle.
  • the electrode is rotatably connected to the movable connection mechanism, so that the electrode can be rotated to adjust the angle with the vertical direction.
  • the included angle ⁇ between the extension lines of the symmetry axes of every two arc-shaped electrodes 3 at symmetrical positions is 5°-160°.
  • the sliding arc plasma reactor is used for methane conversion reaction, and the included angle ⁇ in the extension line of the symmetry axis of every two arc electrodes 3 at symmetrical positions is 10°-90°, more preferably 30°-60° °.
  • the sliding arc plasma reactor provided by the present invention can make the raw material gas pass through the discharge area formed by the electrodes more concentratedly, thereby effectively increasing the gas flow rate passing through the discharge area and improving the conversion efficiency of reactants.
  • the material forming the outer cylinder of the sliding arc plasma reactor is at least one selected from insulating materials, conductive materials, and conductive materials provided with insulating inner linings.
  • the material forming the outer cylinder of the sliding arc plasma reactor is an insulating material or a conductive material provided with an insulating lining.
  • the insulating material forming the outer cylinder is at least one selected from common glass, quartz glass and corundum.
  • the material forming the outer cylinder may also be a conductive material.
  • the shape of the outer cylinder of the sliding arc plasma reactor is not particularly limited, as long as it can provide a closed space for the reactor, it can be cylindrical, rectangular or other aforementioned inventions that can realize the present invention Various shapes of purpose.
  • a lower reaction zone capable of being filled with catalyst is provided downstream of the sliding arc plasma generator.
  • the material forming the lower reaction zone is a metal material.
  • the lower reaction zone is conical, and the conical shape is more conducive to the distribution of the reaction gas.
  • the ratio between the length d2 of the discharge area, the length d4 of the spacer area, and the height d5 of the lower reaction area satisfies: 1: 0.1-0.8: 0.5-1.5; the length d4 of the spacer area represents the discharge area The distance between the bottom of and the top of the lower reaction zone.
  • the sliding arc plasma reactor provided by the present invention can be loaded with a catalyst capable of catalyzing the hydrogenation conversion of alkynes to generate olefins, and the catalyst is preferably loaded in the lower reaction zone of the reactor.
  • the aforementioned sliding arc plasma reactor provided by the present invention can realize the continuous and stable reaction under the higher reactant conversion efficiency, and compared with the traditional methane to olefins process, no CO2 is produced, there is no risk of explosion, and it is safer Environmental friendly.
  • the second aspect of the present invention provides a method for plasma conversion of methane, the method is implemented in the sliding arc plasma reactor described in the first aspect, the method comprising:
  • the reaction gas containing methane is introduced into the sliding arc plasma reactor to carry out methane conversion reaction.
  • the reaction gas containing methane is introduced into the sliding arc plasma reactor through the reactor inlet 1, so that the reaction gas passes through the arc electrode 3 to form The discharge area of the methane conversion reaction is carried out, and the product obtained after the reaction is drawn out of the sliding arc plasma reactor through the product outlet 5.
  • the sliding arc plasma reactor provided by the present invention has no special limitation on the reaction conditions involved in the conversion of methane to olefins, and can be carried out under various conditions involved in the method of plasma conversion methane conventionally used in the art , the Examples section of the present invention exemplarily lists the conditions for converting methane to olefins, which should not be understood by those skilled in the art as limiting the present invention.
  • the sliding arc plasma reactor provided by the present invention has no special limitation on the concentration of methane in the reaction gas at the inlet of the reactor.
  • the concentration of methane in the gas can be 0.01-100% by volume.
  • it can be 5vol%, 10vol%, 15vol%, 20vol%, 25vol%, 30vol%, 35vol%, 40vol%, 45vol%, 50vol%, 55vol%, 60vol%, 65vol% %, 70% by volume, 75% by volume, 80% by volume, 85% by volume, 90% by volume, 95% by volume.
  • the method further includes: after the reaction gas passes through the discharge area formed by the arc-surface electrode 3 , then passes through the lower reaction zone 4 to carry out the methane conversion reaction.
  • the lower reaction zone 4 is a reaction zone that can be provided with a catalyst bed, and the flow rate of the reaction gas containing methane is such that the space velocity when passing through the lower reaction zone in the sliding arc plasma reactor is 1000 -10000h -1 , more preferably 5000-8000h -1 .
  • the conditions of the methane conversion reaction include: the discharge voltage U1 is 1.0-5.0kV, the discharge current is 100-3000mA;
  • the conditions of the methane conversion reaction include: the discharge voltage U1 is 2.0-5.0kV, and the discharge current is 1000-3000mA.
  • the catalyst in the catalyst bed comprises a Ti oxide doped carrier and an active component loaded on the carrier, wherein the active component contains a first active component and a second active component,
  • the first active component is selected from at least one of the non-noble metals of Group VIII and the metals of Group IB
  • the second active component is selected from at least one of the noble metals of Group VIII, in terms of metal elements , the weight ratio of the first active component to the second active component is 0.1-200:1.
  • the molar ratio of L acid to B acid in the Ti oxide-doped support is 0.1-50:1.
  • the Ti oxide-doped carrier is selected from Ti oxide-doped Al 2 O 3 , Ti oxide-doped SiO 2 , Ti oxide-doped MgO, and Ti oxide-doped molecular sieves. at least one.
  • the doping amount of the Ti oxide is 0.1-10 wt%.
  • the first active component is selected from at least one of Cu, Ag, Au, Ni and Fe;
  • the second active component is selected from at least one of Pt, Rh, Pd and Ir.
  • the weight ratio of the first active component to the second active component is 0.1-10:1.
  • the weight ratio of the first active component to the total weight of the catalyst is 0.1-2:100, and the weight of the first active component is calculated by metal element.
  • the reaction gas is a gas obtained by mixing methane and carrier gas.
  • the carrier gas is hydrogen.
  • the intake flow of the methane is 0.5-5.0L/min
  • the intake flow of the hydrogen is 1.0-5.0L/min
  • the intake flow of the methane is 0.5-2.5L /min
  • the intake flow rate of the hydrogen is 1.0-2.5L/min.
  • the method further includes: first separating the product drawn from the product outlet 5 to obtain olefin products and a first gaseous material containing hydrogen and carrier gas.
  • the first gaseous material is recycled to the sliding arc plasma reactor with or without separation to continue the methane conversion reaction.
  • the first separation condition includes using at least one process selected from membrane separation, cryogenic separation, and pressure swing adsorption to separate the carrier gas and hydrogen from the olefin product.
  • the method further includes: performing a second separation on the system product to obtain carbon diolefins and carbon tetraolefins respectively.
  • the second separation operation includes separating olefin products to obtain ethylene, ethane, C4-olefins and C4-alkanes.
  • the conditions for the second separation include separation by means of a rectification process.
  • Nitrogen gas is introduced into the sliding arc plasma reactor from the reactor inlet to remove the air in the discharge area, and the gas is drawn out from the product outlet. Then, the reactive gas containing methane is introduced into the sliding arc plasma reactor from the reactor inlet, and the high-voltage power supply is connected after the gas flow of the reactive gas is stable, and the plasma discharge field is formed between the electrodes by adjusting the voltage and frequency.
  • the reaction gas sequentially passes through the discharge area formed by the electrodes and the lower reaction area, where ionization and hydrogenation reactions occur respectively, and the product obtained after the reaction is led out of the sliding arc plasma reactor through the product outlet.
  • the reaction gas passes through the discharge area formed by the electrodes, it carries the heat generated by the discharge and the reactants into the lower reaction zone, and the heat can provide the heat required by the catalyst bed in the lower reaction zone, No additional heating of the catalyst bed is required, reducing energy consumption without compromising conversion efficiency.
  • methane conversion rate ethylene selectivity, ethane selectivity, acetylene selectivity, hydrocarbon selectivity above C3 and carbon deposition are calculated according to the following formulas:
  • Methane conversion % (the amount of methane substance before the reaction-the amount of methane substance after the reaction)/the amount of methane substance before the reaction ⁇ 100%;
  • Palladium nitrate is dissolved in deionized water to form palladium nitrate solution (palladium content is 18wt%), copper nitrate is dissolved in deionized water to form copper nitrate solution (copper content is 30wt%), wherein palladium nitrate solution and copper nitrate solution
  • the mixing ratio is that the palladium loading accounts for 0.5% by weight of the catalyst mass, and the copper loading accounts for 1% by weight of the catalyst mass.
  • the TiO 2 -Al 2 O 3 carrier is used, and the two solutions are mixed by an excessive impregnation method and impregnated for 12 hours.
  • Catalyst 1 whose chemical composition is as follows:
  • the content of Pd element is 0.5% by weight, the content of Cu element is 1% by weight, and the balance is TiO 2 -Al 2 O 3 ; the particle size of the active component is 5.4nm, and the ratio of L acid/B acid is 15.6.
  • a sliding arc plasma reactor is used for the methane conversion reaction
  • the electrode sliding arc generator used is a sliding arc plasma generator
  • the electrode used is an arc surface electrode.
  • the reactor includes a reactor inlet, an electrode sliding arc generator, a lower reaction zone and a product outlet, and the electrode sliding arc generator includes a gas nozzle, an electrode, a base and a movable connection mechanism;
  • the base of the electrode sliding arc generator is provided with two symmetrically distributed electrodes, so that a discharge area can be formed between the electrodes;
  • the center of the base is provided with the gas nozzle, the The gas nozzle communicates with the inlet pipe of the reactor inlet, so that the reaction gas can enter the sliding arc plasma reactor from the reactor inlet through the gas nozzle;
  • the electrode is connected to the base through a movable connection mechanism, so that the electrode can be adjusted in the vertical direction and the horizontal direction;
  • the movable connection mechanism is vertically connected to the base;
  • the electrode is connected to the movable connection mechanism There is a rotatable connection between them, so that the electrodes can be rotated to adjust the angle with the vertical direction;
  • the electrode is a semi-closed arc surface electrode, the central angle ⁇ corresponding to the arc surface is 90°, and the material forming the electrode is a zinc-copper alloy (the main composition of the zinc-copper alloy is: copper 60wt%, zinc 37wt%, Titanium 1wt%, graphene 1wt%, other 1wt%);
  • the angle ⁇ in the extension line of the symmetry axis of the two electrodes at the symmetrical position is 77°;
  • the material forming the outer cylinder of the sliding arc plasma reactor is quartz glass
  • the thickness of the catalyst bed is such that the space velocity when passing through the feed gas is 2000h -1 ;
  • the volume of the sliding arc plasma reactor in this embodiment is 3L.
  • the discharge power is adjusted to 300W, the voltage is 3.0kV, the discharge frequency is 22.3kHz, the intake flow is 1L/min of methane, and 3L/min of hydrogen; the height of the catalyst bed in the lower reaction zone of the reactor is 15mm, and the amount of catalyst is 60g;
  • the catalyst is the catalyst 1 prepared in Preparation Example 1;
  • the intake flow rate is 3L/min, replace the oxygen in the reactor, and then pass in the mixed gas
  • intake flow rate is nitrogen gas 2L/min, hydrogen gas 1L/min
  • take flow rate is nitrogen gas 2L/min, hydrogen gas 1L/min
  • turn on the power adjust the voltage and frequency, adjust the voltage to 2.0kV, adjust the frequency to 20kHz, start discharging, and reduce the catalyst in the lower reaction zone for about 3 hours.
  • intake flow rate is methane 1L/min, hydrogen 3L/min
  • turn on the power adjust the voltage and frequency, adjust the voltage to 2.0kV, adjust the frequency to 22.3kHz, start discharging, and then adjust the voltage to the specified 3.0kV
  • the hourly power is 300W, and the reaction is carried out for 8h;
  • the tail gas was analyzed and the results were as follows: methane conversion rate was 47.9%, ethylene selectivity was 88.7%, ethane selectivity was 5.9%, hydrocarbon selectivity above C3 was 5.4%, and there was no obvious carbon deposition.
  • This embodiment uses a sliding arc plasma reactor similar to that of Embodiment 1 to carry out the methane conversion reaction. The difference is that in this embodiment:
  • the electrode is a semi-closed arc surface electrode, the central angle ⁇ corresponding to the arc surface is 120°, and the material forming the electrode is 316L stainless steel;
  • the angle ⁇ in the extension line of the symmetry axis of the two electrodes at the symmetrical position is 46°;
  • the material forming the outer cylinder of the sliding arc plasma reactor is 304 stainless steel with quartz lining;
  • the thickness of the catalyst bed is such that the space velocity when passing through the feed gas is 6000h -1 ;
  • the volume of the sliding arc plasma reactor in this embodiment is 4L.
  • the discharge power is adjusted to 250W, the voltage is 1.8kV, the discharge frequency is 25.5kHz, the intake flow rate is 0.5L/min for methane, and 2L/min for hydrogen;
  • the intake flow rate is 3L/min
  • replace the oxygen in the reactor and then pass into the mixed gas (intake flow rate is nitrogen 2.5L/min, hydrogen 1.5L/min)
  • intake flow rate is nitrogen 2.5L/min, hydrogen 1.5L/min
  • Turn on the power adjust the voltage and frequency, adjust the voltage to 3.0kV, adjust the frequency to 16.3kHz, start discharging, and reduce the catalyst in the lower reaction zone for about 2.5 hours.
  • the intake flow rate is methane 0.5L/min, hydrogen 2L/min
  • the voltage and frequency adjust the voltage to 1.5kV, adjust the frequency to 25.5kHz, start discharging, and then adjust the voltage to the specified 1.8kV, the power at this time is 250W, and the reaction is carried out for 8h.
  • the tail gas was analyzed, and the results were as follows: methane conversion rate was 48.7%, ethylene selectivity was 89.2%, ethane selectivity was 4.7%, hydrocarbon selectivity above C3 was 6.1%, and there was no obvious carbon deposition.
  • This embodiment uses a sliding arc plasma reactor similar to that of Embodiment 1 to carry out the methane conversion reaction. The difference is that in this embodiment:
  • the electrode is a fully enclosed arc surface electrode, and the material forming the electrode is graphite;
  • the angle ⁇ in the extension line of the symmetry axis of the two electrodes at the symmetrical position is 15°;
  • the material forming the outer cylinder of the sliding arc plasma reactor is tempered glass
  • the thickness of the catalyst bed is such that the space velocity when passing through the feed gas is 8000h -1 ;
  • the volume of the sliding arc plasma reactor in this embodiment is 3.3L.
  • the discharge power is adjusted to 280W, the voltage is 3.5kV, the discharge frequency is 17.5kHz, the intake flow rate is 1.75L/min for methane, and 2.3L/min for hydrogen;
  • the intake flow rate is 3L/min
  • the oxygen in the reactor and then pass in the mixed gas (intake flow rate is nitrogen 3L/min, hydrogen 2.5L/min), open Power supply, adjust the voltage and frequency, adjust the voltage to 3.0kV, adjust the frequency to 21.2kHz, start discharging, and reduce the catalyst in the lower reaction zone for about 3.5 hours.
  • the intake flow rate is methane 2.5L/min, hydrogen 2.5L/min
  • the power is 280W
  • the reaction is carried out for 8h.
  • the tail gas was analyzed, and the results were as follows: methane conversion rate was 47.5%, ethylene selectivity was 91.3%, ethane selectivity was 5.6%, hydrocarbon selectivity above C3 was 3.1%, and there was no obvious carbon deposition.
  • This embodiment uses a sliding arc plasma reactor similar to that of Embodiment 1 to carry out the methane conversion reaction. The difference is that in this embodiment:
  • Described electrode is semi-enclosed arc surface electrode, and the central angle ⁇ corresponding to this arc surface is 72 °, and the material that forms described electrode is nickel-chromium alloy (the main composition of nickel-chromium alloy is: iron 10wt%, chromium 17wt%, Aluminum 1wt%, titanium 2wt%, niobium 1wt%, molybdenum 0.5wt%, tungsten 0.1wt%, silicon 0.2wt%, carbon 0.05wt%, zirconium 0.05wt%, the balance is nickel);
  • the angle ⁇ in the extension line of the symmetry axis of the two electrodes at the symmetrical position is 40°;
  • the material forming the outer cylinder of the sliding arc plasma reactor is ceramics
  • the thickness of the catalyst bed is such that the space velocity when passing through the feed gas is 3500h -1 ;
  • the volume of the sliding arc plasma reactor in this embodiment is 5L.
  • the discharge power is adjusted to 350W, the voltage is 4.2kV, the discharge frequency is 25.5kHz, the intake flow is 2.9L/min for methane, and 3.8L/min for hydrogen;
  • the intake flow rate is 2.5L/min
  • the oxygen in the reactor and then pass in the mixed gas (intake flow rate is 2.5L/min for nitrogen, 1.5L/min for hydrogen) , turn on the power, adjust the voltage and frequency, adjust the voltage to 1.6kV, adjust the frequency to 20.4kHz, start discharging, and reduce the catalyst in the lower reaction zone for about 4 hours.
  • the intake flow rate is methane 2.9L/min, hydrogen 3.8L/min
  • the voltage and frequency adjust the voltage to 2.5kV, adjust the frequency to 25.5kHz, start discharging, and then adjust the voltage to The specified 4.2kV, the power at this time is 350W, and the reaction is carried out for 8h.
  • the tail gas is analyzed, and the results are: the methane conversion rate is 48.7%, the ethylene selectivity is 90.5%, the ethane selectivity is 6.7%, the hydrocarbon selectivity above C3 is 2.8%, and there is no obvious carbon deposition.
  • the methane conversion reaction is carried out using a sliding arc plasma reactor, the electrode sliding arc generator used is a tubular electrode sliding arc generator, the electrode used is a tubular electrode, and the electrode material (excluding possible coating) with an average thickness of 2mm.
  • the reactor includes a reactor inlet, an electrode sliding arc generator, a lower reaction zone and a product outlet, and the electrode sliding arc generator includes a gas nozzle, an electrode, a base and a movable connection mechanism;
  • the base of the electrode sliding arc generator is provided with two symmetrically distributed electrodes, so that a discharge area can be formed between the electrodes;
  • the gas nozzle is provided on the opposite direction of the electrodes, The gas nozzle communicates with the inlet pipe of the reactor inlet, so that the reaction gas can enter the sliding arc plasma reactor from the reactor inlet through the gas nozzle;
  • the electrode is connected to the base through a movable connection mechanism, so that the electrode can be adjusted in the vertical direction and the horizontal direction;
  • the movable connection mechanism is vertically connected to the base;
  • the electrode is connected to the movable connection mechanism There is a rotatable connection between them, so that the electrodes can be rotated to adjust the angle with the vertical direction;
  • the gas nozzles are arranged in a staggered manner in the opposite direction of the electrodes;
  • the material that forms described electrode is nickel-copper alloy (the main composition of nickel-copper alloy is: silicon 0.15wt%; Manganese 7.0wt%; Phosphorous 0.15wt%; Nickel 22.0wt%; Cobalt 3.0wt%; Zinc 3.0wt%; Lead 0.20wt%; iron 3.0wt%; rare earth elements 0.15wt%; arsenic 0.006wt%; the balance is copper);
  • the angle ⁇ in the extension line of the symmetry axis of the two electrodes at the symmetrical position is 35°;
  • the material forming the outer cylinder of the sliding arc plasma reactor is quartz glass
  • the thickness of the catalyst bed is such that the space velocity when passing through the feed gas is 2000h -1 ;
  • the volume of the sliding arc plasma reactor in this embodiment is 3L.
  • the discharge power is adjusted to 230W, the voltage is 2.7kV, the discharge frequency is 25.7kHz, the intake flow rate is 1.3L/min for methane and 2.1L/min for hydrogen; the height of the catalyst bed in the lower reaction zone of the reactor is 15mm, and the catalyst bed Consumption is 60g;
  • the catalyst is the catalyst 1 prepared in Preparation Example 1;
  • Nitrogen was introduced into the reactor through the reactor inlet for 30 minutes, the intake flow rate was 3 L/min, the oxygen in the reactor was replaced, and then the mixed gas was introduced (intake flow rate was nitrogen gas 1.8 L/min, hydrogen gas 1.5 L/min), Turn on the power, adjust the voltage and frequency, adjust the voltage to 2.0kV, adjust the frequency to 25.7kHz, start discharging, and reduce the catalyst in the lower reaction zone for about 3.5 hours.
  • the intake flow is methane 1.3L/min, hydrogen 2.1L/min
  • turn on the power adjust the voltage and frequency, adjust the voltage to 2.0kV, adjust the frequency to 25.7kHz, start discharging, and then adjust the voltage to The specified 2.7kV, the power at this time is 230W, and the reaction is 8h;
  • the tail gas was analyzed, and the results were as follows: methane conversion rate was 50.4%, ethylene selectivity was 89.3%, ethane selectivity was 6.5%, hydrocarbon selectivity above C3 was 4.2%, and there was no obvious carbon deposition.
  • This embodiment uses a sliding arc plasma reactor similar to that of Embodiment 5 to carry out the methane conversion reaction. The difference is that in this embodiment:
  • the material forming the electrode is 316L stainless steel
  • the angle ⁇ in the extension line of the symmetry axis of the two electrodes at the symmetrical position is 63°;
  • the material forming the outer cylinder of the sliding arc plasma reactor is 304 stainless steel with quartz lining;
  • the thickness of the catalyst bed is such that the space velocity when passing through the feed gas is 6000h -1 ;
  • the volume of the sliding arc plasma reactor in this embodiment is 4L.
  • the discharge power is adjusted to 257W, the voltage is 1.9kV, the discharge frequency is 14.9kHz, the intake flow rate is 2.1L/min for methane and 2.8L/min for hydrogen;
  • Nitrogen was introduced into the reactor through the reactor inlet for 30 minutes, the intake flow rate was 3L/min, the oxygen in the reactor was replaced, and then the mixed gas was introduced (intake flow rate was 2.2L/min for nitrogen, 2.8L/min for hydrogen), Turn on the power, adjust the voltage and frequency, adjust the voltage to 2.0kV, adjust the frequency to 14.9kHz, start discharging, and reduce the catalyst in the lower reaction zone for about 4.0 hours.
  • the intake flow rate is methane 2.1L/min, hydrogen 2.8L/min
  • the voltage and frequency adjust the voltage to 1.5kV, adjust the frequency to 14.9kHz, start discharging, and then adjust the voltage to The specified 1.9kV, the power at this time is 257W, and the reaction is carried out for 8h.
  • the tail gas was analyzed, and the results were as follows: methane conversion rate was 51.2%, ethylene selectivity was 90.1%, ethane selectivity was 5.4%, hydrocarbon selectivity above C3 was 3.3%, and there was no obvious carbon deposition.
  • This embodiment uses a sliding arc plasma reactor similar to that of Embodiment 5 to carry out the methane conversion reaction. The difference is that in this embodiment:
  • the angle ⁇ in the extension line of the symmetry axis of the two electrodes at the symmetrical position is 85°;
  • the material forming the outer cylinder of the sliding arc plasma reactor is tempered glass
  • the thickness of the catalyst bed is such that the space velocity when passing through the feed gas is 8000h -1 ;
  • the volume of the sliding arc plasma reactor in this embodiment is 3.3L.
  • the discharge power is adjusted to 149W, the voltage is 2.5kV, the discharge frequency is 26.5kHz, the intake flow rate is 1.1L/min for methane, and 1.6L/min for hydrogen;
  • Nitrogen was introduced into the reactor through the reactor inlet for 30 minutes, the intake flow rate was 3 L/min, the oxygen in the reactor was replaced, and then the mixed gas was introduced (intake flow rate was 2.5 L/min for nitrogen, 1.6 L/min for hydrogen), Turn on the power, adjust the voltage and frequency, adjust the voltage to 2.0kV, adjust the frequency to 26.5kHz, start discharging, and reduce the catalyst in the lower reaction zone for about 4.5 hours.
  • the intake flow rate is methane 1.1L/min, hydrogen 1.6L/min
  • the voltage and frequency adjust the voltage to 2kV, adjust the frequency to 26.5kHz, start discharging, and then adjust the voltage to the specified 2.5kV, the power at this time is 149W, and the reaction is carried out for 8h.
  • the tail gas was analyzed, and the results were as follows: methane conversion rate was 52.1%, ethylene selectivity was 88.4%, ethane selectivity was 6.7%, hydrocarbon selectivity above C3 was 4.9%, and there was no obvious carbon deposition.
  • This embodiment uses a sliding arc plasma reactor similar to that of Embodiment 5 to carry out the methane conversion reaction. The difference is that in this embodiment:
  • the outer surfaces of the two electrodes are coated on opposite sides (half of the electrode circumference) and not on the opposite side (the other half of the electrode circumference).
  • the coating is carried out in the manner described in the preferred embodiment above, and the Al 2 O 3 -ZnO-HfO 2 films are coated sequentially from the bottom layer, and the number of single-layer ALD metal oxide films in each coating layer is 100.
  • the tail gas was analyzed, and the results were as follows: methane conversion rate was 52.3%, ethylene selectivity was 93.3%, ethane selectivity was 2.3%, hydrocarbon selectivity above C3 was 4.4%, and there was no obvious carbon deposition.
  • the sliding arc plasma reactor provided by the present invention when used to convert methane to generate olefins, the conversion rate of methane can be significantly improved, the selectivity of ethylene in the product can be improved, and the product can be significantly reduced. carbon. And the reactor provided by the present invention can realize the continuous and stable reaction under the high conversion efficiency of reactants. Compared with the traditional methane-to-olefins process, there is no CO 2 generation, no risk of explosion, and it is safer and more environmentally friendly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本发明涉及能源化工领域,公开了一种滑动弧等离子体反应器和等离子体转化甲烷的方法,该反应器包括反应器腔体和设置在所述反应器腔体中的滑动弧等离子体发生器;所述滑动弧等离子体发生器包括对称分布设置的至少2个弧面电极,使得所述弧面电极之间能够形成放电区域。本发明提供的滑动弧等离子体反应器能够在进行转化甲烷生成烯烃时显著地提高甲烷的转化率,提高产物中乙烯的选择性,显著降低积碳,并且相比传统甲烷制烯烃工艺,无CO 2产生,没有燃爆风险,更加安全环保。

Description

一种滑动弧等离子体反应器和等离子体转化甲烷的方法
相关申请的交叉引用
本申请要求2021年12月20日
2021年12月20日
2021年12月20日
2021年12月20日
2021年12月20日
2021年12月20日
2021年12月20日
2021年12月20日
2021年12月20日提交的中国专利申请202111567211.X
202111565360.2
202111567220.9
202111567216.2
202111567218.1
202111565366.X
202111565369.3
202111567199.2
202111567219.6的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明涉及能源化工领域,具体涉及一种滑动弧等离子体反应器和等离子体转化甲烷的方法。
背景技术
等离子体甲烷转化技术在国内从上世纪80年代开始研究,从2000年开始逐渐形成专利技术。
CN100999432A公开了一种离子液体催化等离子体甲烷转化制C2烃的方法,该专利在2015年终止专利权。
CN101734620A公开了一种富甲烷气等离子体制氢气的方法,该专利于2014年终止专利权。
西南化工研究设计院公布了一系列等离子体裂解甲烷的专利技术(CN210367505U、CN109294284A、CN106478332A、CN101921163A),主要针对等离子体转化甲烷制备炭黑或乙炔 与氢气工艺进行开发,更加侧重的是工艺的设计与优化。
清华大学、太原理工大学以及新疆天业集团联合开发了等离子体裂解煤制乙炔工艺(CN203582763U、CN102068953A、CN101734620A、CN101550057A、CN101734995A、CN1613839A),主要使用煤做原料,天然气辅助制备乙炔与氢气,其工作气为氢气。
浙江大学主要针对等离子体在线清焦的方法进行了开发(CN104056828A、CN104056829A),可通入CO 2或H 2,去除电极表面积碳。还开发了一种旋转弧等离子体裂解甲烷制备乙炔(CN103333044A、CN101844744A),工作气体旋转进入放电间隙,同时外部采用磁场驱动,发生毫秒级裂解。
目前,国外的相关研究表明,等离子体转化甲烷形成的烃类产物主要分为两类,一类以乙烷等烷烃为主,一类以乙炔为主。
研究者发现,通过改变进气流量或掺入惰性气体能够调节产物分布。该技术在国外已经实现工业化,其中包括四种工艺:HUELS法、AVCO法、Du Pont法和罗马尼亚法。
通过文献对比发现,利用电弧产生高温裂解天然气生成乙炔,其电能利用率低,每生产1吨乙炔约耗电能13900kWh,占成本50%以上,因此改变反应器结构达到节能降耗的目的,是国外专利文献中进行创新的重点之一。
在上述技术的基础上,后续逐渐开发了一系列“温”等离子体技术以及“冷”等离子体技术,通过改变能量发生形式,降低能耗,并加入催化剂进行耦合作用,定向转化甲烷为目标产物。目前该工艺仍在探索中。
Thanyachotpaiboon等(Conversion of methane to higher hydrocarbons in AC nonequilibrium plasmas[J].AIChE Journal,1998,44(10):2252-7.)在室温下使用DBD放电进行了甲烷转化的研究,并考察了添加He和C 2H 6对甲烷放电转化的影响。单纯CH 4作为反应物时,随放电电压增加(6→11kV),CH 4转化率增加,产物选择性变化不大:产物主要为C 2H 6、C 3H 8;在CH 4流速20mL/min、放电电压11kV时获得的CH 4转化率约23%,产物C 2H 6、C 3H 8、C 4H 10、C 2H 4的选择性分别为40%、15%、5%、2%。
RUEANGJITT N等(Non-oxidative reforming of methane in a mini-gliding arc discharge reactor:Effects of feed methane concentration,feed flow rate,electrode gap distance,residence time,and catalyst distance[J].Plasma Chem Plasma Process,2011,31(4):517-534.)采用刀片式滑动弧转化甲烷,主要产物为乙炔,在功率为110-190W条件下,甲烷转化率为40%-50%,C2H2选择性为20%。
然而等离子体直接转化甲烷制备烯烃目前还未见现有技术报道。
发明内容
本发明的目的是为了克服现有技术存在的定向转化甲烷生成烯烃的转化效率低的缺陷。
为了实现上述目的,本发明第一方面提供一种滑动弧等离子体反应器,该反应器包括反应器腔体和设置在所述反应器腔体中的滑动弧等离子体发生器;
所述滑动弧等离子体发生器包括对称分布设置的至少2个弧面电极(3),各个所述弧面电极的放电面均为弧面结构,且所述弧面电极对应的圆心角为α,其中,360°≥α>5°;各个所述弧面电极的设置位置使得所述弧面电极(3)之间能够形成放电区域。
本发明第二方面提供一种等离子体转化甲烷的方法,该方法在第一方面中所述的滑动弧等离子体反应器中实施,该方法包括:
在等离子放电条件下,将含有甲烷的反应气体引入至所述滑动弧等离子体反应器中进行甲烷转化反应。
与现有技术相比,本发明提供的方案至少具有如下优势:
(1)本发明提供的前述滑动弧等离子体反应器采用电极形成放电区域,其放电成弧点在曲面上,从而形成的电弧通道更多,具有更强的反应物转化能力;
(2)本发明提供的前述滑动弧等离子体反应器能够使原料气更加集中地经过电极形成的放电区域,从而有效增加通过该放电区域的气体流量,提高反应物的转化效率并降低能耗;
(3)本发明提供的前述滑动弧等离子体反应器能够在较高的反应物转化效率下实现甲烷一步转化高效生成烯烃,并可维持反应的持续和稳定进行,并且相比传统甲烷制烯烃工艺,无CO 2产生,没有燃爆风险,更加安全环保。
本发明的其它特征和优点将通过随后的具体实施方式部分予以详细说明。
附图说明
图1为本发明提供的滑动弧等离子体反应器的一种优选的具体实施方式的结构示意图。
图2为本发明提供的滑动弧等离子体反应器的另一种优选的具体实施方式的结构示意图。
附图标记说明
1              反应器入口               2              气体喷嘴
3              电极                     4              下部反应区
5              产物出口                 6              底座
7              活动连接机构
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
以下结合图1和图2对本发明的方案进行详细说明。
如前所述,本发明的第一方面提供了一种滑动弧等离子体反应器,该反应器包括反应器腔体和设置在所述反应器腔体中的滑动弧等离子体发生器;
所述滑动弧等离子体发生器包括对称分布设置的至少2个弧面电极3,各个所述弧面电极的放电面均为弧面结构,且所述弧面电极对应的圆心角为α,其中,360°≥α>5°,优选360°≥α>10°;各个所述弧面电极的设置位置使得所述弧面电极(3)之间能够形成放电区域。
根据一种特别优选的具体实施方式,该反应器包括反应器入口1、滑动弧等离子体发生器和产物出口5;
所述滑动弧等离子体发生器包括对称分布设置的至少2个弧面电极3,各个所述弧面电极的设置位置使得所述弧面电极(3)之间能够形成放电区域;
所述滑动弧等离子体发生器还包括气体喷嘴2和底座6;
所述弧面电极3设置在所述底座6上;所述底座6和/或所述弧面电极3上设置有所述气体喷嘴2,使得反应气体能够由所述反应器入口1经过所述气体喷嘴2进入所述滑动弧等离子体反应器中;
所述弧面电极的弧面结构对应的圆心角为α,其中,360°≥α>5°。
本发明中,所述电极的放电成弧点在曲面上,能够形成电弧通道更多的放电区域,具有更强的反应物转化能力。
优选情况下,所述弧面电极3的所述弧面结构为半封闭弧面,该弧面对应的圆心角为α,且270°>α>30°;更优选地,所述半封闭弧面对应的圆心角α选自180°、120°、90°、72°、60°中的至少一种。
根据一种优选的具体实施方式,所述弧面电极3的所述弧面结构为全封闭弧面。发明人发现,通过应用全封闭弧面结构作为所述弧面电极3的所述弧面结构时,能够使得本发明的反应物的转化效率更高,且利于散热。
优选地,所述放电区域的长度d2与反应器腔体的高度d3之间的比例关系满足:1∶1.2-1.8。
根据一种优选的具体实施方式,所述电极滑动弧发生器为所述滑动弧等离子体发生器;且所述滑动弧等离子体发生器的所述底座的中心设置有所述气体喷嘴,所述气体喷嘴与所述反应器入口的进气管道相通。
优选地,所述弧面电极3的弧面结构对应的圆心角为α,其中,360°≥α>10°。
优选地,所述滑动弧等离子体发生器包括对称分布设置的2个所述弧面电极3或6个所述弧面电极3。
优选地,在各个所述弧面电极3上,相邻两个气体喷嘴2之间的间距与气体喷嘴的内径r2之间的比例关系满足:1∶0.5-1.5。
优选地,所述气体喷嘴2的内径r2与所述放电区域的最小宽度r3之间的比例关系满足:1∶2-8。
根据一种特别优选的具体实施方式,本发明的该反应器包括反应器入口、电极滑动弧发生器、下部反应区和产物出口;
所述电极滑动弧发生器包括气体喷嘴、电极和底座;
其中,所述电极滑动弧发生器的所述底座上设置有对称分布的至少多个所述电极,使得所述电极之间能够形成放电区域;所述电极和/或所述底座上设置有所述气体喷嘴,使得反应气体能够由所述反应器入口经过所述气体喷嘴进入所述滑动弧等离子体反应器中;
对称分布的每2个所述电极的结构彼此对应以能够发生放电;以及
所述电极滑动弧发生器为含有弧面电极的电极滑动弧发生器和/或含有管状电极的管状电极滑动弧发生器。
优选地,本发明中,所述对称分布为以所述底座的中心垂直轴线为基准对称分布,所述电极的安装位置不影响放电。
在本发明中,对所述底座的形状和材料没有特别的限定,可以为圆形或其他能够实现本发明的前述发明目的的各种形状,并且可以为绝缘材料或其他能够实现本发明的前述发明目的的各种材料。
优选情况下,所述滑动弧等离子体发生器的所述底座6的中心设置有所述气体喷嘴2,所述气体喷嘴2与所述反应器入口1的进气管道相通。
优选地,对称位置的每2个所述弧面电极3的相对方向上设置有所述气体喷嘴2,所述气体喷嘴2与所述反应器入口1的进气管道相通。
更优选情况下,所述全封闭弧面结构的外表面的至少一部分涂覆有涂层。
优选地,所述涂层含有层叠设置的至少两个单层原子层沉积金属氧化物薄膜的镀层,所述镀层为半导体材料,所述镀层的层数为至少两层,且形成任意相邻两个所述镀层的涂覆材料不同。
优选地,所述镀层的层数为至少三层。
根据一种优选的具体实施方式,所述镀层的层数为三层,形成三层所述镀层的涂覆材料均不同;形成最外层所述镀层的涂覆材料的介电常数比其他所述镀层的涂覆材料的介电常数高10-22 C 2/(N·M 2)。
优选地,所述涂覆材料为含有金属元素的有机物。
优选地,所述半导体材料为金属氧化物;更优选地,所述半导体材料选自Al 2O 3、ZrO 2、SnO 2、ZnO、HfO 2、TiO 2、La 2O 3、Ta 2O 5、Y 2O 3
优选地,采用原子层沉积法对所述全封闭弧面结构的外表面进行涂覆,优选地,涂覆的步骤包括:在原子层沉积装置中,
(1)在涂覆用载气存在下,开启金属源罐的ALD阀门,所述金属源罐中的涂覆材料进入含有氧气的反应室,以使得所述涂覆材料与氧气在所述反应室中的刀片电极表面发生反应并形成镀层单元,所述镀层单元为单层原子层沉积金属氧化物薄膜;
(2)重复进行步骤(1)以得到一个镀层,每次重复形成一个单层原子层沉积金属氧化物薄膜,通过控制重复次数以调整一个镀层的厚度;
(3)采用另一种涂覆材料通过上述步骤(1)到(2)进行重复操作,以形成另一个镀层。
优选地,在步骤(1)中,所述金属源罐的温度为140-160℃,所述反应室的温度为50-400℃,运输管路及所述ALD阀门的温度为180-200℃。
优选地,在步骤(1)中,将所述反应室和所述运输管路抽真空至压力为10-200Pa。
优选地,在步骤(1)中,所述涂覆用载气的流量为10-200sccm。
优选地,在步骤(1)中,所述ALD阀门的开启时间为50-2000ms。
优选地,在步骤(1)中,还包括通入惰性气体脉冲以对所述反应室进行清洗;优选地,所述清洗的时间为1-200s。
根据一种优选的实施方式,采用原子层沉积法对所述全封闭弧面结构的外表面进行涂覆,优选地,涂覆的步骤包括:在原子层沉积装置中,
(1)在金属源罐中放置涂覆材料,在反应室内放置待涂覆的所述刀片电极;
(2)对所述金属源罐、所述反应室、运输管路及ALD阀门进行加热,所述金属源罐的温度为140-160℃,所述反应室的温度为50-400℃,运输管路及所述ALD阀门的温度为180-200℃,并将所述反应室和所述运输管路抽真空至压力为10-200Pa;
(3)开启所述金属源罐的涂覆用载气,所述涂覆用载气的流量为10-200sccm;
(4)开启所述金属源罐的所述ALD阀门,所述ALD阀门的开启时间为50-2000ms,使得所述涂覆材料进入所述反应室,并通入氧气,以使得所述涂覆材料与氧气在所述反应室中的刀片电极表面发生反应并形成镀层单元,所述镀层单元为单层原子层沉积金属氧化物薄膜;
(5)通过通入惰性气体脉冲对所述反应室进行清洗,所述清洗的时间为1-200s;
(6)重复进行步骤(1)到(5)以得到一个镀层,每次重复形成一个单层原子层沉积金属氧 化物薄膜,通过控制重复次数以调整一个镀层的厚度;
(7)采用另一种涂覆材料通过上述步骤(1)到(6)进行重复操作,以形成另一个镀层。
优选地,所述全封闭弧面选自管状、棒状中的至少一种。
根据另一种优选的具体实施方式,所述电极滑动弧发生器为所述管状电极滑动弧发生器;且对称位置的每2个所述管状电极的相对方向上设置有所述气体喷嘴,所述气体喷嘴与所述反应器入口的进气管道相通。
优选地,形成所述气体喷嘴的材料选自导电材料、绝缘材料中的至少一种。
根据一种优选的具体实施方式,形成所述气体喷嘴的材料为绝缘材料。发明人发现,在该优选情况下,本发明的方案能够更稳定地进行。
根据另一种优选的具体实施方式,形成所述气体喷嘴2的材料为导电材料,且所述气体喷嘴2的出口位置在垂直方向上与所述弧面电极3无重叠。
优选情况下,所述形成所述气体喷嘴2的导电材料的电导率>1MS/m,优选>10MS/m;导热系数>10W/(m.℃),优选>50W/(m.℃)。
优选地,形成所述电极的材料为导电材料。
更优选地,形成所述电极的导电材料选自316L不锈钢、钨铈合金、镍铬合金、锌铜合金、铜铬合金、镍铜合金、钴镍合金、钴镉合金、石墨中的至少一种。形成所述电极的材料还可以为其他耐高温、耐电弧腐蚀的导电材料。形成所述电极的材料还可以为其他耐高温、耐电弧腐蚀的导电材料。
优选地,所述电极通过活动连接机构与所述底座相连接,使得所述电极能够在所述底座的下方区域自由调节位置。
更优选地,所述电极通过活动连接机构与所述底座相连接,使得所述电极能够沿垂直方向和水平方向调节位置。
优选地,所述活动连接机构垂直地与所述底座连接。
更优选地,所述活动连接机构还可以非垂直地与所述底座连接。
优选地,所述电极与所述活动连接机构之间为可转动连接,使得所述电极能够自由转动以调节角度。
更优选地,所述电极与所述活动连接机构之间为可转动连接,使得所述电极能够转动以调节与垂直方向的夹角。
优选地,对称位置的每2个所述弧面电极3的对称轴延长线内夹角θ为5°-160°。
优选地,该滑动弧等离子体反应器用于甲烷转化反应,对称位置的每2个所述弧面电极3的对称轴延长线内夹角θ为10°-90°,更优选为30°-60°。
本发明提供的所述滑动弧等离子体反应器能够使原料气更加集中地经过电极形成的放电区域,从而有效增加通过该放电区域的气体流量,提高反应物的转化效率。
优选地,形成所述滑动弧等离子体反应器的外筒的材料选自绝缘材料、导电材料、设置有绝缘内衬的导电材料中的至少一种。
更优选地,形成所述滑动弧等离子体反应器的外筒的材料为绝缘材料或为设置有绝缘内衬的导电材料。
进一步优选地,形成所述外筒的绝缘材料选自普通玻璃、石英玻璃、刚玉中的至少一种。
本发明中,在避免电极与所述滑动弧等离子体反应器的外筒接触的前提下,形成所述外筒的材料还可以为导电材料。
在本发明中,对所述滑动弧等离子体反应器的外筒的形状没有特别的限定,能够为该反应器提供密闭空间即可,可以为圆柱形、长方形或其他能够实现本发明的前述发明目的的各种形状。
优选地,所述滑动弧等离子体发生器的下游设置有能够装填催化剂的下部反应区。
优选地,形成所述下部反应区的材料为金属材料。
更优选地,所述下部反应区呈锥形,所述锥形更有利于所述反应气体的分布。
优选地,所述放电区域的长度d2、间隔区域的长度d4、下部反应区的高度d5之间的比例关系满足:1∶0.1-0.8∶0.5-1.5;所述间隔区域的长度d4表示放电区域的底部与下部反应区的顶部之间的距离。
本发明提供的所述滑动弧等离子体反应器中可以装填能够催化炔烃加氢转化生成烯烃的催化剂,所述催化剂优选装填在该反应器的所述下部反应区中。
本发明提供的前述滑动弧等离子体反应器能够在较高的反应物转化效率下实现反应的持续和稳定进行,并且相比传统甲烷制烯烃工艺,无CO 2产生,没有燃爆风险,更加安全环保。
如前所述,本发明的第二方面提供一种等离子体转化甲烷的方法,该方法在第一方面中所述的滑动弧等离子体反应器中实施,该方法包括:
在等离子放电条件下,将含有甲烷的反应气体引入至所述滑动弧等离子体反应器中进行甲烷转化反应。
根据一种特别优选的具体实施方式,在等离子放电条件下,将含有甲烷的反应气体通过反应器入口1引入至所述滑动弧等离子体反应器中,使得所述反应气体通过弧面电极3形成的放电区域以进行甲烷转化反应,反应后获得的产物由产物出口5引出所述滑动弧等离子体反应器。
本发明提供的所述滑动弧等离子体反应器对转化甲烷生成烯烃所涉及的反应条件没有特别的限制,可以为本领域内常规采用的等离子体转化甲烷的方法中所涉及的各种条件来进行,本发明的实施例部分示例性地列举了转化甲烷生成烯烃的条件,本领域技术人员不应理解为对本发明的限制。
本发明提供的所述滑动弧等离子体反应器对反应器入口处的反应气体中的甲烷的浓度没有特别的限定,例如气体中甲烷的浓度可以为0.01~100体积%,示例性地,可以为5体积%、10体积%、15体积%、20体积%、25体积%、30体积%、35体积%、40体积%、45体积%、50体积%、55体积%、60体积%、65体积%、70体积%、75体积%、80体积%、85体积%、90体积%、95体积%。
根据另一种优选的具体实施方式,该方法还包括:所述反应气体通过所述弧面电极3形成的放电区域后,再通过下部反应区4以进行甲烷转化反应。
优选地,所述下部反应区4为能够设置有催化剂床层的反应区,所述含有甲烷的反应气体的流量使得通过所述滑动弧等离子体反应器中的下部反应区时的空速为1000-10000h -1,更优选为5000-8000h -1
优选情况下,所述甲烷转化反应的条件包括:放电电压U1为1.0-5.0kV,放电电流为100-3000mA;经过对称位置的每2个所述弧面电极3之间的最小间距D2处的反应气体的流量V1与所述放电电压U1之间的比例关系为:V1∶U1=50-100∶1。
优选地,所述甲烷转化反应的条件包括:放电电压U1为2.0-5.0kV,放电电流为1000-3000mA。
优选情况下,经过对称位置的每2个所述弧面电极3之间的最小间距D2处的反应气体的流量V1与所述放电电压U1之间的比例关系为:V1∶U1=50-80∶1,更优选为V1∶U1=60-80∶1。
优选地,所述催化剂床层中的催化剂包括Ti氧化物掺杂载体和负载于所述载体上的活性组分,其中,所述活性组分含有第一活性组分和第二活性组分,所述第一活性组分选自第VIII族的非贵金属和第IB族金属中的至少一种,所述第二活性组分选自第VIII族的贵金属中的至少一种,以金属元素计,所述第一活性组分与第二活性组分的重量比为0.1-200∶1。
更优选地,所述Ti氧化物掺杂载体中的L酸与B酸的摩尔比为0.1-50∶1。
优选地,所述Ti氧化物掺杂载体选自由Ti氧化物掺杂的Al 2O 3、Ti氧化物掺杂的SiO 2、Ti氧化物掺杂的MgO和Ti氧化物掺杂的分子筛中的至少一种。
优选地,在所述Ti氧化物掺杂载体中,以载体的总重量为基准,所述Ti氧化物的掺杂量为0.1-10wt%。
优选地,所述第一活性组分选自Cu、Ag、Au、Ni和Fe中的至少一种;
优选地,所述第二活性组分选自Pt、Rh、Pd和Ir中的至少一种。
优选情况下,以金属元素计,所述第一活性组分与第二活性组分的重量比为0.1-10∶1。
优选地,所述第一活性组分与催化剂总重量的重量比为0.1-2∶100,所述第一活性组分的重量以金属元素计。
根据一种优选的具体实施方式,所述反应气体为甲烷与载气混合得到的气体。
优选地,所述载气为氢气。
优选情况下,所述甲烷的进气流量为0.5-5.0L/min,所述氢气的进气流量为1.0-5.0L/min;更优选地,所述甲烷的进气流量为0.5-2.5L/min,所述氢气的进气流量为1.0-2.5L/min。
根据一种优选的具体实施方式,该方法还包括:将由所述产物出口5引出的产物进行第一分离,以得到烯烃产物和含有氢气和载气的第一气体物料。
优选情况下,将所述第一气体物料经过或者不经过分离而循环回所述滑动弧等离子体反应器中以连续进行所述甲烷转化反应。
优选地,所述第一分离的条件包括采用选自膜分离、深冷分离、变压吸附工艺中的至少一种将载气和氢气与烯烃产物进行分离。
优选地,该方法进一步包括:将所述系统产物进行第二分离,以分别得到碳二烯烃和碳四烯烃。
优选情况下,所述第二分离的操作包括将烯烃产物分离获得乙烯、乙烷、碳四烯烃与碳四烷烃。
更优选地,所述第二分离的条件包括采用精馏工艺进行分离。
以下提供另一种应用本发明前述的滑动弧等离子体反应器转化甲烷生成烯烃的优选的具体实施方式:
从反应器入口向滑动弧等离子体反应器中通入氮气,以清除放电区域中的空气,并将气体从产物出口引出。然后从反应器入口向滑动弧等离子体反应器中通入含有甲烷的反应气体,待反应气体的气流平稳之后接通高压电源,通过调节电压和频率使电极之间形成等离子体放电场。反应气体依次通过电极形成的放电区域和下部反应区,分别发生电离和加氢反应,反应后获得的产物由产物出口引出所述滑动弧等离子体反应器。
本发明中,反应气体通过所述电极形成的放电区域后,携带放电产生的热量及反应物进入所述下部反应区,其热量能够提供所述下部反应区中的催化剂床层所需的热量,不需要对催化剂床层进行额外加热,能够在不影响转化效率的前提下降低能耗。
以下将通过实例对本发明进行详细描述。
以下实例中,在没有特别说明的情况下,涉及到的原料均为市售品。在没有特别说明的情况下,各实例中的其余工艺参数和设备参数均设置为相同。
以下实例中,甲烷转化率、乙烯选择性、乙烷选择性、乙炔选择性、C 3以上烃类选择性和积碳分别根据以下公式计算得到:
甲烷转化率%=(反应前甲烷物质的量-反应后甲烷物质的量)/反应前甲烷物质的量×100%;
烃类(C nH m)产物选择性%=(反应后C nH m物质的量)×n/(反应前甲烷物质的量-反应后甲烷物质的量)×100%,n=2-5的整数;
积碳%=1-烃类(C nH m)产物选择性%,n=2-5的整数。
制备例1
将硝酸钯溶解于去离子水中,形成硝酸钯溶液(钯含量为18wt%),将硝酸铜溶解于去离子水中,形成硝酸铜溶液(铜含量为30wt%),其中硝酸钯溶液和硝酸铜溶液的混合比例以钯负载量占催化剂质量的0.5重量%,铜负载量占催化剂质量的1重量%,采用TiO 2-Al 2O 3载体,采用过量浸渍法,将两种溶液混合,浸渍12h,用旋转蒸发80℃烘干4h,随后放入烘箱120℃进一步烘干8h,随后放入马弗炉,450℃焙烧5h,获得催化剂1,其化学组成如下:
Pd元素含量为0.5重量%,Cu元素含量为1重量%,余量为TiO 2-Al 2O 3;活性组分粒径为5.4nm,L酸/B酸为15.6。
实施例1-4中均采用图1所示的工艺流程进行。
在实施例1-4中,采用滑动弧等离子体反应器进行甲烷转化反应,采用的电极滑动弧发生器为滑动弧等离子体发生器,采用的电极为弧面电极。
实施例1
反应器的具体结构及结构参数如下所示:
该反应器包括反应器入口、电极滑动弧发生器、下部反应区和产物出口,所述电极滑动弧发生器包括气体喷嘴、电极、底座和活动连接机构;
其中,所述电极滑动弧发生器的所述底座上设置有对称分布的2个所述电极,使得所述电极之间能够形成放电区域;所述底座的中心设置有所述气体喷嘴,所述气体喷嘴与所述反应器入口的进气管道相通,使得反应气体能够由所述反应器入口经过所述气体喷嘴进入所述滑动弧等离子体反应器中;
所述电极通过活动连接机构与所述底座相连接,使得所述电极能够沿垂直方向和水平方向调节位置;所述活动连接机构垂直地与所述底座连接;所述电极与所述活动连接机构之间为可转动连接,使得所述电极能够转动以调节与垂直方向的夹角;
所述电极为半封闭弧面电极,该弧面对应的圆心角α为90°,形成所述电极的材料为锌铜合金(锌铜合金的主要组成为:铜60wt%、锌37wt%、钛1wt%,石墨烯1wt%、其它1wt%);
对称位置的2个所述电极的对称轴延长线内夹角θ为77°;
形成所述滑动弧等离子体反应器的外筒的材料为石英玻璃;
所述催化剂床层的厚度使得通过原料气时的空速为2000h -1
本实施例中滑动弧等离子体反应器的容积为3L。
本实施例中滑动弧等离子体反应器的操作条件如下:
放电功率调至300W,电压为3.0kV,放电频率为22.3kHz,进气流量为甲烷1L/min、氢气3L/min;反应器的下部反应区装填催化剂床层的高度为15mm,催化剂的用量为60g;所述催化剂为制备例1中制备得到的催化剂1;
通过反应器入口向反应器内通入氮气30min,进气流量为3L/min,置换反应器内氧气,再通入混合气体(进气流量为氮气2L/min、氢气1L/min),开启电源,调整电压与频率,调节电压至2.0kV,调整频率至20kHz,开始放电,对下部反应区的催化剂进行还原,大约还原3h,催化剂颜色基本变黑,结束还原;关闭电源,再通入混合气体(进气流量为甲烷1L/min、氢气3L/min),开启电源,调整电压与频率,调节电压至2.0kV,调整频率至22.3kHz,开始放电,再将电压调至指定的3.0kV,此时功率为300W,进行反应8h;
对尾气进行分析,结果为:甲烷转化率为47.9%,乙烯选择性为88.7%,乙烷选择性为5.9%,C 3以上烃类选择性为5.4%,无明显积碳。
实施例2
本实施例采用与实施例1相似的滑动弧等离子体反应器进行甲烷转化反应,所不同的是,本实施例中:
所述电极为半封闭弧面电极,该弧面对应的圆心角α为120°,形成所述电极的材料为316L不锈钢;
对称位置的2个所述电极的对称轴延长线内夹角θ为46°;
形成所述滑动弧等离子体反应器的外筒的材料为带石英内衬的304不锈钢;
所述催化剂床层的厚度使得通过原料气时的空速为6000h -1
本实施例中滑动弧等离子体反应器的容积为4L。
本实施例中,放电功率调至250W,电压为1.8kV,放电频率为25.5kHz,进气流量为甲烷0.5L/min、氢气2L/min;
通过反应器入口向反应器内通入氮气30min,进气流量为3L/min,置换反应器内氧气,再通入混合气体(进气流量为氮气2.5L/min、氢气1.5L/min),开启电源,调整电压与频率,调节电压至3.0kV,调整频率至16.3kHz,开始放电,对下部反应区的催化剂进行还原,大约还原2.5h,催化剂颜色基本变黑,结束还原;关闭电源,再通入混合气体(进气流量为甲烷0.5L/min、氢气2L/min),开启电源,调整电压与频率,调节电压至1.5kV,调整频率至25.5kHz,开始放电,再将电压调至指定的1.8kV,此时功率为250W,进行反应8h。
其余均与实施例1中相同。
对尾气进行分析,结果为:甲烷转化率为48.7%,乙烯选择性为89.2%,乙烷选择性为4.7%,C 3以上烃类选择性为6.1%,无明显积碳。
实施例3
本实施例采用与实施例1相似的滑动弧等离子体反应器进行甲烷转化反应,所不同的是,本实施例中:
所述电极为全封闭弧面电极,形成所述电极的材料为石墨;
对称位置的2个所述电极的对称轴延长线内夹角θ为15°;
形成所述滑动弧等离子体反应器的外筒的材料为钢化玻璃;
所述催化剂床层的厚度使得通过原料气时的空速为8000h -1
本实施例中滑动弧等离子体反应器的容积为3.3L。
本实施例中,放电功率调至280W,电压为3.5kV,放电频率为17.5kHz,进气流量为甲烷1.75L/min、氢气2.3L/min;
通过反应器入口向反应器内通入氮气30min,进气流量为3L/min,置换反应器内氧气,再通入混合气体(进气流量为氮气3L/min、氢气2.5L/min),开启电源,调整电压与频率,调节电压至3.0kV,调整频率至21.2kHz,开始放电,对下部反应区的催化剂进行还原,大约还原3.5h,催化剂颜色基本变黑,结束还原;关闭电源,再通入混合气体(进气流量为甲烷2.5L/min、氢气2.5L/min),开启电源,调整电压与频率,调节电压至2.5kV,调整频率至17.5kHz,开始放电,再将电压调至指定的3.5kV,此时功率为280W,进行反应8h。
其余均与实施例1中相同。
对尾气进行分析,结果为:甲烷转化率为47.5%,乙烯选择性为91.3%,乙烷选择性为5.6%,C 3以上烃类选择性为3.1%,无明显积碳。
实施例4
本实施例采用与实施例1相似的滑动弧等离子体反应器进行甲烷转化反应,所不同的是,本实施例中:
所述电极为半封闭弧面电极,该弧面对应的圆心角α为72°,形成所述电极的材料为镍铬合金(镍铬合金的主要组成为:铁10wt%,铬17wt%,铝1wt%,钛2wt%,铌1wt%,钼0.5wt%,钨0.1wt%,硅0.2wt%,碳0.05wt%,锆0.05wt%,余量为镍);
对称位置的2个所述电极的对称轴延长线内夹角θ为40°;
形成所述滑动弧等离子体反应器的外筒的材料为陶瓷;
所述催化剂床层的厚度使得通过原料气时的空速为3500h -1
本实施例中滑动弧等离子体反应器的容积为5L。
本实施例中,放电功率调至350W,电压为4.2kV,放电频率25.5kHz,进气流量为甲烷2.9L/min、氢气3.8L/min;
通过反应器入口向反应器内通入氮气30min,进气流量为2.5L/min,置换反应器内氧气,再通入混合气体(进气流量为氮气2.5L/min、氢气1.5L/min),开启电源,调整电压与频率,调节电压至1.6kV,调整频率至20.4kHz,开始放电,对下部反应区的催化剂进行还原,大约还原4h,催化剂颜色基本变黑,结束还原;关闭电源,再通入混合气体(进气流量为甲烷2.9L/min、氢气3.8L/min),开启电源,调整电压与频率,调节电压至2.5kV,调整频率至25.5kHz,开始放电,再将电压调至指定的4.2kV,此时功率为350W,进行反应8h。
其余均与实施例1中相同。
对尾气进行分析,结果为:甲烷转化率为48.7%,乙烯选择性为90.5%,乙烷选择性为6.7%,C3以上烃类选择性为2.8%,无明显积碳。
实施例5-8中均采用图2所示的工艺流程进行。
在实施例5-8中,采用滑动弧等离子体反应器进行甲烷转化反应,采用的电极滑动弧发生器为管状电极滑动弧发生器,采用的电极为管状电极,电极材料(不包括可能存在的涂层)的平均厚度均为2mm。
实施例5
反应器的具体结构及结构参数如下所示:
该反应器包括反应器入口、电极滑动弧发生器、下部反应区和产物出口,所述电极滑动弧发生器包括气体喷嘴、电极、底座和活动连接机构;
其中,所述电极滑动弧发生器的所述底座上设置有对称分布的2个所述电极,使得所述电极之间能够形成放电区域;所述电极的相对方向上设置有所述气体喷嘴,所述气体喷嘴与所述反应器入口的进气管道相通,使得反应气体能够由所述反应器入口经过所述气体喷嘴进入所述滑动弧等离子体反应器中;
所述电极通过活动连接机构与所述底座相连接,使得所述电极能够沿垂直方向和水平方向调节位置;所述活动连接机构垂直地与所述底座连接;所述电极与所述活动连接机构之间为可转动连接,使得所述电极能够转动以调节与垂直方向的夹角;
在所述电极的相对方向上采用互相交错的方式设置所述气体喷嘴;
形成所述电极的材料为镍铜合金(镍铜合金的主要组成为:硅0.15wt%;锰7.0wt%;磷0.15wt%;镍22.0wt%;钴3.0wt%;锌3.0wt%;铅0.20wt%;铁3.0wt%;稀土元素0.15wt%;砷0.006wt%;余量为铜);
对称位置的2个所述电极的对称轴延长线内夹角θ为35°;
形成所述滑动弧等离子体反应器的外筒的材料为石英玻璃;
所述催化剂床层的厚度使得通过原料气时的空速为2000h -1
本实施例中滑动弧等离子体反应器的容积为3L。
本实施例中滑动弧等离子体反应器的操作条件如下:
放电功率调至230W,电压为2.7kV,放电频率为25.7kHz,进气流量为甲烷1.3L/min、氢气2.1L/min;反应器的下部反应区装填催化剂床层的高度为15mm,催化剂的用量为60g;所述催化剂为制备例1中制备得到的催化剂1;
通过反应器入口向反应器内通入氮气30min,进气流量为3L/min,置换反应器内氧气,再通入混合气体(进气流量为氮气1.8L/min、氢气1.5L/min),开启电源,调整电压与频率,调节电压至2.0kV,调整频率至25.7kHz,开始放电,对下部反应区的催化剂进行还原,大约还原3.5h,催化剂颜色基本变黑,结束还原;关闭电源,再通入混合气体(进气流量为甲烷1.3L/min、氢气2.1L/min),开启电源,调整电压与频率,调节电压至2.0kV,调整频率至25.7kHz,开始放电,再将电压调至指定的2.7kV,此时功率为230W,进行反应8h;
对尾气进行分析,结果为:甲烷转化率为50.4%,乙烯选择性为89.3%,乙烷选择性为6.5%,C 3以上烃类选择性为4.2%,无明显积碳。
实施例6
本实施例采用与实施例5相似的滑动弧等离子体反应器进行甲烷转化反应,所不同的是,本实施例中:
在所述电极的相对方向上采用互相对齐的方式设置所述气体喷嘴;
形成所述电极的材料为316L不锈钢;
对称位置的2个所述电极的对称轴延长线内夹角θ为63°;
形成所述滑动弧等离子体反应器的外筒的材料为带石英内衬的304不锈钢;
所述催化剂床层的厚度使得通过原料气时的空速为6000h -1
本实施例中滑动弧等离子体反应器的容积为4L。
本实施例中,放电功率调至257W,电压为1.9kV,放电频率为14.9kHz,进气流量为甲烷 2.1L/min、氢气2.8L/min;
通过反应器入口向反应器内通入氮气30min,进气流量为3L/min,置换反应器内氧气,再通入混合气体(进气流量为氮气2.2L/min、氢气2.8L/min),开启电源,调整电压与频率,调节电压至2.0kV,调整频率至14.9kHz,开始放电,对下部反应区的催化剂进行还原,大约还原4.0h,催化剂颜色基本变黑,结束还原;关闭电源,再通入混合气体(进气流量为甲烷2.1L/min、氢气2.8L/min),开启电源,调整电压与频率,调节电压至1.5kV,调整频率至14.9kHz,开始放电,再将电压调至指定的1.9kV,此时功率为257W,进行反应8h。
其余均与实施例5中相同。
对尾气进行分析,结果为:甲烷转化率为51.2%,乙烯选择性为90.1%,乙烷选择性为5.4%,C 3以上烃类选择性为3.3%,无明显积碳。
实施例7
本实施例采用与实施例5相似的滑动弧等离子体反应器进行甲烷转化反应,所不同的是,本实施例中:
在所述电极的相对方向上采用互相对齐的方式设置所述气体喷嘴;
形成所述电极的材料为钨铈合金(Ce xY yCs zW mO 3,其中x∶y∶z∶m=0.1∶0.1∶0.5∶1);
对称位置的2个所述电极的对称轴延长线内夹角θ为85°;
形成所述滑动弧等离子体反应器的外筒的材料为钢化玻璃;
所述催化剂床层的厚度使得通过原料气时的空速为8000h -1
本实施例中滑动弧等离子体反应器的容积为3.3L。
本实施例中,放电功率调至149W,电压为2.5kV,放电频率为26.5kHz,进气流量为甲烷1.1L/min、氢气1.6L/min;
通过反应器入口向反应器内通入氮气30min,进气流量为3L/min,置换反应器内氧气,再通入混合气体(进气流量为氮气2.5L/min、氢气1.6L/min),开启电源,调整电压与频率,调节电压至2.0kV,调整频率至26.5kHz,开始放电,对下部反应区的催化剂进行还原,大约还原4.5h,催化剂颜色基本变黑,结束还原;关闭电源,再通入混合气体(进气流量为甲烷1.1L/min、氢气1.6L/min),开启电源,调整电压与频率,调节电压至2kV,调整频率至26.5kHz,开始放电,再将电压调至指定的2.5kV,此时功率为149W,进行反应8h。
其余均与实施例5中相同。
对尾气进行分析,结果为:甲烷转化率为52.1%,乙烯选择性为88.4%,乙烷选择性为6.7%,C 3以上烃类选择性为4.9%,无明显积碳。
实施例8
本实施例采用与实施例5相似的滑动弧等离子体反应器进行甲烷转化反应,所不同的是,本实施例中:
两个电极的外表面的相背面(电极圆周的一半)上设有涂层,而相向面(电极圆周的另一半)上不设置涂层。
涂层采用前文中优选的具体实施方式所述的方式进行,从底层依次涂覆Al 2O 3-ZnO-HfO 2薄膜,每个镀层中的单层原子层沉积金属氧化物薄膜的个数为100个。
其余均与实施例5中相同。
对尾气进行分析,结果为:甲烷转化率为52.3%,乙烯选择性为93.3%,乙烷选择性为2.3%,C 3以上烃类选择性为4.4%,无明显积碳。
由上述结果可以看出,应用本发明提供的滑动弧等离子体反应器进行转化甲烷生成烯烃时能够相对于现有技术显著地提高甲烷的转化率,提高产物中乙烯的选择性,并且显著降低积碳。以及本发明提供的反应器能够在较高的反应物转化效率下实现反应的持续和稳定进行,相比传统甲烷制烯烃工艺,无CO 2产生,没有燃爆风险,更加安全环保。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (24)

  1. 一种滑动弧等离子体反应器,其特征在于,该反应器包括反应器腔体和设置在所述反应器腔体中的滑动弧等离子体发生器;
    所述滑动弧等离子体发生器包括对称分布设置的至少2个弧面电极(3),各个所述弧面电极的放电面均为弧面结构,且所述弧面电极对应的圆心角为α,其中,360°≥α>5°,优选360°≥α>10°;各个所述弧面电极的设置位置使得所述弧面电极(3)之间能够形成放电区域。
  2. 根据权利要求1所述的滑动弧等离子体反应器,其中,所述弧面电极(3)为半封闭的弧面结构,且270°>α>30°;
    优选地,α选自180°、120°、90°、72°、60°中的至少一种。
  3. 根据权利要求1所述的滑动弧等离子体反应器,其中,所述弧面电极(3)为全封闭的弧面结构。
  4. 根据权利要求3所述的滑动弧等离子体反应器,其中,所述弧面电极(3)为棒状电极或空心的管状电极。
  5. 根据权利要求1-4中任意一项所述的滑动弧等离子体反应器,其中,所述放电区域的长度d2与反应器腔体的高度d3之间的比例关系满足:1∶1.2-1.8。
  6. 根据权利要求1-4中任意一项所述的滑动弧等离子体反应器,其中,所述滑动弧等离子体发生器包括对称分布设置的2个所述弧面电极(3)或6个所述弧面电极(3);和/或,
    所述滑动弧等离子体发生器的上部中心位置设有气体喷嘴(2),所述气体喷嘴(2)与所述反应器腔体的反应器入口(1)的进气管道相通。
  7. 根据权利要求1-4中任意一项所述的滑动弧等离子体反应器,其中,对称位置的每2个所述弧面电极(3)的相对方向上设置有至少多个气体喷嘴(2),各个所述气体喷嘴(2)与所述反应器入口(1)的进气管道相通;
    优选地,在各个所述弧面电极(3)上,相邻两个气体喷嘴(2)之间的间距与气体喷嘴的内径r2之间的比例关系满足:1∶0.5-1.5。
  8. 根据权利要求6或7所述的滑动弧等离子体反应器,其中,所述气体喷嘴(2)的内径r2与所述放电区域的最小宽度r3之间的比例关系满足:1∶2-8;
    优选地,形成所述气体喷嘴(2)的材料为导电材料;
    优选地,所述形成所述气体喷嘴(2)的导电材料的电导率>1MS/m,优选>10MS/m;导热系数>10W/(m.℃),优选>50W/(m.℃)。
  9. 根据权利要求1-4中任意一项所述的滑动弧等离子体反应器,其中,各个所述弧面电极(3)均倾斜设置,且对称位置的每2个所述弧面电极(3)的对称轴的延长线形成的内夹角为θ,θ为5°-160°;优选为10°-90°,更优选为30°-60°。
  10. 根据权利要求1-4中任意一项所述的滑动弧等离子体反应器,其中,在所述反应器腔体中,所述滑动弧等离子体发生器的下游设置有能够装填催化剂的下部反应区;
    优选地,所述下部反应区呈锥形;
    优选地,所述放电区域的长度d2、间隔区域的长度d4、下部反应区的高度d5之间的比例关系满足:1∶0.1-0.8∶0.5-1.5;所述间隔区域的长度d4表示放电区域的底部与下部反应区的顶部之间的距离。
  11. 一种等离子体转化甲烷的方法,其特征在于,该方法在权利要求1-10中任意一项所述的滑动弧等离子体反应器中实施,该方法包括:
    在等离子放电条件下,将含有甲烷的反应气体引入至所述滑动弧等离子体反应器中进行甲烷转化反应。
  12. 根据权利要求11所述的方法,其中,所述含有甲烷的反应气体的流量使得通过所述滑动弧等离子体反应器中的下部反应区时的空速为1000-10000h -1,优选为5000-8000h -1
  13. 根据权利要求11或12所述的方法,其中,所述甲烷转化反应的条件包括:放电电压U1为1.0-5.0kV,放电电流为100-3000mA;和/或,
    所述含有甲烷的反应气体经过放电区域的顶部的流量V1与所述放电电压U1之间的比例关系为:V1∶U1=50-100∶1,V1的单位为L/min,U1的单位为kV。
  14. 根据权利要求13所述的方法,其中,所述甲烷转化反应的条件包括:放电电压U1为 2.0-5.0kV,放电电流为1000-3000mA;和/或,
    V1∶U1=50-80∶1,优选地,V1∶U1=60-80∶1。
  15. 根据权利要求11-14中任意一项所述的方法,其中,所述滑动弧等离子体反应器中的下部反应区中装填的催化剂包括Ti氧化物掺杂载体和负载于所述载体上的活性组分;
    所述活性组分含有第一活性组分元素和第二活性组分元素,所述第一活性组分元素选自第VIII族的非贵金属元素和第IB族金属元素中的至少一种;所述第二活性组分元素选自第VIII族的贵金属元素中的至少一种。
  16. 根据权利要求15所述的方法,其中,以金属元素计,所述第一活性组分元素与第二活性组分元素的含量重量比为0.1-200∶1,优选为0.1-10∶1。
  17. 根据权利要求15所述的方法,其中,所述Ti氧化物掺杂载体中的L酸与B酸的摩尔比为0.1-50∶1。
  18. 根据权利要求15所述的方法,其中,所述Ti氧化物掺杂载体选自由Ti氧化物掺杂的Al 2O 3、Ti氧化物掺杂的SiO 2、Ti氧化物掺杂的MgO和Ti氧化物掺杂的分子筛中的至少一种;和/或,
    在所述Ti氧化物掺杂载体中,以载体的总重量为基准,所述Ti氧化物的掺杂量为0.1-10wt%。
  19. 根据权利要求15-18中任意一项所述的方法,其中,所述第一活性组分元素选自Cu、Ag、Au、Ni和Fe中的至少一种;和/或,
    所述第二活性组分元素选自Pt、Rh、Pd和Ir中的至少一种。
  20. 根据权利要求15-19中任意一项所述的方法,其中,在所述催化剂中,以金属元素计的所述第一活性组分元素的含量为0.1-2wt%。
  21. 根据权利要求11-20中任意一项所述的方法,其中,所述含有甲烷的反应气体为含有甲烷与载气的混合物。
  22. 根据权利要求21所述的方法,其中,所述载气为氢气。
  23. 根据权利要求22所述的方法,其中,所述甲烷与所述载气分别通过管线进行进气,且所述甲烷的进气流量为0.5-5.0L/min,所述氢气的进气流量为1.0-5.0L/min;
    优选地,所述甲烷的进气流量为0.5-2.5L/min,所述氢气的进气流量为1.0-2.5L/min。
  24. 根据权利要求11-23中任意一项所述的方法,其中,该方法还包括:将由所述滑动弧等离子体反应器的产物出口(5)引出的产物进行分离,以得到碳二烯烃、碳四烯烃和能够循环至所述滑动弧等离子体反应器的反应器入口(1)的气体物料。
PCT/CN2022/140057 2021-12-20 2022-12-19 一种滑动弧等离子体反应器和等离子体转化甲烷的方法 WO2023116630A1 (zh)

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
CN202111567220.9A CN116313715A (zh) 2021-12-20 2021-12-20 涂覆刀片电极的方法、刀片电极、滑动弧等离子体反应器和等离子体转化甲烷的方法
CN202111565369.3 2021-12-20
CN202111567211.XA CN116272756A (zh) 2021-12-20 2021-12-20 涂覆刀片电极的方法、刀片电极、滑动弧等离子体反应器和等离子体转化甲烷的方法
CN202111567218.1A CN116272758B (zh) 2021-12-20 滑动弧等离子体反应器和等离子体高效转化甲烷的方法
CN202111565366.XA CN116272754B (zh) 2021-12-20 滑动弧等离子体反应器和等离子体转化甲烷生成烯烃的方法
CN202111567211.X 2021-12-20
CN202111567219.6 2021-12-20
CN202111567216.2 2021-12-20
CN202111565366.X 2021-12-20
CN202111567220.9 2021-12-20
CN202111565360.2A CN116272753A (zh) 2021-12-20 2021-12-20 涂覆刀片电极的方法、刀片电极、滑动弧等离子体反应器和等离子体转化甲烷的方法
CN202111567218.1 2021-12-20
CN202111567216.2A CN116272757A (zh) 2021-12-20 2021-12-20 等离子体转化甲烷制备乙炔的方法
CN202111567219.6A CN116283477A (zh) 2021-12-20 2021-12-20 用于等离子体制备烯烃的方法
CN202111567199.2 2021-12-20
CN202111565369.3A CN116272755B (zh) 2021-12-20 滑动弧等离子体反应器和等离子体定向转化甲烷生成烯烃的方法
CN202111567199.2A CN116283471A (zh) 2021-12-20 2021-12-20 利用等离子体技术将烷烃转化为烯烃的方法
CN202111565360.2 2021-12-20

Publications (1)

Publication Number Publication Date
WO2023116630A1 true WO2023116630A1 (zh) 2023-06-29

Family

ID=86901340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140057 WO2023116630A1 (zh) 2021-12-20 2022-12-19 一种滑动弧等离子体反应器和等离子体转化甲烷的方法

Country Status (1)

Country Link
WO (1) WO2023116630A1 (zh)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1613839A (zh) 2004-09-17 2005-05-11 太原理工大学 煤、天然气等离子体热解制乙炔工艺及装置
CN100999432A (zh) 2006-12-25 2007-07-18 大连大学 离子液体催化等离子体甲烷转化制c2烃的方法
CN101550057A (zh) 2009-05-08 2009-10-07 清华大学 一种应用于等离子体煤裂解过程的产物急冷方法及装置
CN101734995A (zh) 2008-11-06 2010-06-16 新疆天业(集团)有限公司 一种氢直流电弧等离子体裂解煤生产乙炔的装置及方法
CN101734620A (zh) 2009-12-15 2010-06-16 太原理工大学 一种富甲烷气等离子体制氢气的方法
CN101844744A (zh) 2010-04-13 2010-09-29 浙江大学 协同驱动旋转滑动弧放电等离子体重整甲烷制氢装置
CN101921163A (zh) 2010-08-11 2010-12-22 西南化工研究设计院 脱除等离子体裂解天然气制乙炔中炭黑及高聚物的方法
CN102068953A (zh) 2010-11-18 2011-05-25 清华大学 应用于等离子体煤裂解过程的毫秒级快速冷却装置
CN103333044A (zh) 2013-06-19 2013-10-02 浙江大学 一种旋转弧等离子体裂解工业副产气体制备乙炔的方法
CN203582763U (zh) 2013-09-25 2014-05-07 新疆天业(集团)有限公司 一种等离子体烷烃类气体转化成乙炔的气体混合反应装置
WO2014139664A1 (de) * 2013-03-15 2014-09-18 Al-Ko Therm Gmbh Elektrodeneinrichtung für eine plasmaentladung mit gleitendem lichtbogen
CN104056828A (zh) 2014-05-30 2014-09-24 浙江大学 一种热等离子体反应器的清焦方法
CN104056829A (zh) 2014-05-30 2014-09-24 浙江大学 一种热等离子体反应器的连续清焦方法
CN106478332A (zh) 2016-10-12 2017-03-08 西南化工研究设计院有限公司 一种等离子体裂解焦炉气制乙炔的方法
CN107335386A (zh) * 2016-04-29 2017-11-10 中国科学院大连化学物理研究所 一种催化反应器构型及制备和在无氧条件下催化甲烷直接合成乙烯的方法
CN109294284A (zh) 2018-11-12 2019-02-01 西南化工研究设计院有限公司 一种等离子体裂解富甲烷气制炭黑的方法
CN210367505U (zh) 2019-07-22 2020-04-21 西南化工研究设计院有限公司 一种等离子体裂解富甲烷气制炭黑的工艺系统
US20210121854A1 (en) * 2019-10-29 2021-04-29 University Of Wyoming Ceria-supported metal catalysts and processes

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1613839A (zh) 2004-09-17 2005-05-11 太原理工大学 煤、天然气等离子体热解制乙炔工艺及装置
CN100999432A (zh) 2006-12-25 2007-07-18 大连大学 离子液体催化等离子体甲烷转化制c2烃的方法
CN101734995A (zh) 2008-11-06 2010-06-16 新疆天业(集团)有限公司 一种氢直流电弧等离子体裂解煤生产乙炔的装置及方法
CN101550057A (zh) 2009-05-08 2009-10-07 清华大学 一种应用于等离子体煤裂解过程的产物急冷方法及装置
CN101734620A (zh) 2009-12-15 2010-06-16 太原理工大学 一种富甲烷气等离子体制氢气的方法
CN101844744A (zh) 2010-04-13 2010-09-29 浙江大学 协同驱动旋转滑动弧放电等离子体重整甲烷制氢装置
CN101921163A (zh) 2010-08-11 2010-12-22 西南化工研究设计院 脱除等离子体裂解天然气制乙炔中炭黑及高聚物的方法
CN102068953A (zh) 2010-11-18 2011-05-25 清华大学 应用于等离子体煤裂解过程的毫秒级快速冷却装置
WO2014139664A1 (de) * 2013-03-15 2014-09-18 Al-Ko Therm Gmbh Elektrodeneinrichtung für eine plasmaentladung mit gleitendem lichtbogen
CN103333044A (zh) 2013-06-19 2013-10-02 浙江大学 一种旋转弧等离子体裂解工业副产气体制备乙炔的方法
CN203582763U (zh) 2013-09-25 2014-05-07 新疆天业(集团)有限公司 一种等离子体烷烃类气体转化成乙炔的气体混合反应装置
CN104056828A (zh) 2014-05-30 2014-09-24 浙江大学 一种热等离子体反应器的清焦方法
CN104056829A (zh) 2014-05-30 2014-09-24 浙江大学 一种热等离子体反应器的连续清焦方法
CN107335386A (zh) * 2016-04-29 2017-11-10 中国科学院大连化学物理研究所 一种催化反应器构型及制备和在无氧条件下催化甲烷直接合成乙烯的方法
CN106478332A (zh) 2016-10-12 2017-03-08 西南化工研究设计院有限公司 一种等离子体裂解焦炉气制乙炔的方法
CN109294284A (zh) 2018-11-12 2019-02-01 西南化工研究设计院有限公司 一种等离子体裂解富甲烷气制炭黑的方法
CN210367505U (zh) 2019-07-22 2020-04-21 西南化工研究设计院有限公司 一种等离子体裂解富甲烷气制炭黑的工艺系统
US20210121854A1 (en) * 2019-10-29 2021-04-29 University Of Wyoming Ceria-supported metal catalysts and processes

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALLAH ZAENAB ABD, WHITEHEAD J. CHRISTOPHER: "Plasma-catalytic dry reforming of methane in an atmospheric pressure AC gliding arc discharge", CATALYSIS TODAY, ELSEVIER, AMSTERDAM, NL, vol. 256, 1 November 2015 (2015-11-01), AMSTERDAM, NL , pages 76 - 79, XP093074683, ISSN: 0920-5861, DOI: 10.1016/j.cattod.2015.03.040 *
RUEANGJITT N ET AL.: "Non-oxidative reforming of methane in a mini-gliding arc discharge reactor: Effects of feed methane concentration, feed flow rate, electrode gap distance, residence time, and catalyst distance [J", PLASMA CHEM PLASMA PROCESS, vol. 31, no. 4, 2011, pages 517 - 534, XP019927397, DOI: 10.1007/s11090-011-9299-y
THANYACHOTPAIBOON ET AL.: "Conversion of methane to high hydrocarbons in AC nonequilibrium plasmas [J", AICHE JOURNAL, vol. 44, no. 10, 1998, pages 2252 - 7, XP071000394, DOI: 10.1002/aic.690441014

Similar Documents

Publication Publication Date Title
Di et al. A review on the recent progress, challenges, and perspectives of atmospheric‐pressure cold plasma for preparation of supported metal catalysts
CN104071747B (zh) 一种等离子体甲烷重整制备合成气的方法
CN111278766B (zh) 低温等离子体反应设备和分解硫化氢的方法
CA2787979A1 (en) Plasma reactor for gas to liquid fuel conversion
CN111234864B (zh) 一种低温等离子体辅助的轻质烷烃催化液化方法
WO2019154244A1 (zh) 等离子体反应装置和分解硫化氢的方法
WO2023116630A1 (zh) 一种滑动弧等离子体反应器和等离子体转化甲烷的方法
US20220070993A1 (en) METHOD TO PRODUCE LIGHT HYDROCARBONS BY COx HYDROGENATION IN A DIELECTRIC BARRIER DISCHARGE PLASMA REACTOR SYSTEM
Zou et al. Utilization of carbon dioxide through nonthermal plasma approaches
KR102305813B1 (ko) 원자층 증착법에 의해 금속산화물이 다공성 지지체 표면에 증착된, 플라즈마에 의한 c―h 결합 활성화 촉매 및 이의 용도
RU2414418C2 (ru) Способ получения водорода и углеродных нанотрубок из углеводородного газа
Santos et al. The potential of non-thermal plasmas in the preparation of supported metal catalysts for fuel conversion in automotive systems: A literature overview
Baowei et al. Steam reforming of dimethyl ether by gliding arc gas discharge plasma for hydrogen production
CN114679832B (zh) 一种滑动弧放电等离子体装置及纳米粉体的制备方法
CN116272755A (zh) 滑动弧等离子体反应器和等离子体定向转化甲烷生成烯烃的方法
CN116272759A (zh) 等离子体转化甲烷的方法
CN116272754A (zh) 滑动弧等离子体反应器和等离子体转化甲烷生成烯烃的方法
CN114852996A (zh) 一种电爆炸法制备单壁碳纳米管的系统和方法
WO2021255421A1 (en) Co2 methanation using plasma catalysis
CN116283470A (zh) 等离子体转化甲烷生成乙炔的方法
CN116272757A (zh) 等离子体转化甲烷制备乙炔的方法
CN100516175C (zh) 大气常压液固介质阻挡等离子体煤液化的方法
CN110127600B (zh) 介质阻挡放电分解硫化氢的方法
Yi et al. Plasma-Catalytic Decomposition of Ammonia for Hydrogen Energy
CN101050158B (zh) 微放电裂解天然气制取乙炔的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022909942

Country of ref document: EP

Effective date: 20240710