WO2023116538A1 - 电池和用电装置 - Google Patents

电池和用电装置 Download PDF

Info

Publication number
WO2023116538A1
WO2023116538A1 PCT/CN2022/139143 CN2022139143W WO2023116538A1 WO 2023116538 A1 WO2023116538 A1 WO 2023116538A1 CN 2022139143 W CN2022139143 W CN 2022139143W WO 2023116538 A1 WO2023116538 A1 WO 2023116538A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery cell
battery cells
cells
cell
Prior art date
Application number
PCT/CN2022/139143
Other languages
English (en)
French (fr)
Inventor
何建福
叶永煌
刘倩
金海族
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2023116538A1 publication Critical patent/WO2023116538A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of batteries, in particular to a battery and an electrical device.
  • the battery cell includes an electrode assembly and a casing.
  • the casing has an accommodating cavity, and the electrode assembly is installed in the accommodating cavity.
  • the electrode assembly will expand, so that the electrode assembly has a certain expansion force.
  • a force acts on the housing causing the housing to bulge outward.
  • embodiments of the present application provide a battery and an electrical device, which can reduce the external expansion force of a plurality of battery cells and improve the safety and reliability of the battery.
  • a battery includes a plurality of battery cells arranged in a certain direction, the battery cells include an electrode assembly and a casing, the electrode assembly is placed in the casing, and the plurality of battery cells
  • the body includes a first battery cell and a second battery cell, the first battery cell and the second battery cell are configured so that when the number of electric cycles of the battery is greater than or equal to 100, the full charge of the first battery cell
  • the margin is less than 1, and the full-charge group margin of the second battery cell is greater than 1; the full-charge group margin refers to the maximum capacity of the electrode assembly along the arrangement direction of multiple battery cells when the battery cell is fully charged.
  • the gap between the shell side wall of the second battery cell and the electrode assembly is small, and it is easy to abut against the shell side when the electrode assembly is slightly expanded. wall, and make the shell side wall and the electrode assembly continue to expand outward together.
  • the shell of the second battery cell contacts the shell of the first battery cell during the process of expanding along the arrangement direction of the battery cells, It will squeeze the shell of the first battery cell, and make the squeezed position of the shell of the first battery cell inwardly recessed and deformed, reducing the expansion force between two adjacent battery cells, and making the arrangement more
  • the size of the overall expansion of the whole battery cell along the arrangement direction is small, which in turn leads to the small external expansion force of the whole body composed of multiple battery cells, preventing the battery cells from causing crush damage to other parts of the battery.
  • the electrical connection stability and safety of the battery are improved.
  • the first battery unit is further configured such that when the number of electric cycles of the battery is greater than or equal to 100, the full charge group margin of the first battery unit is greater than or equal to 0.8.
  • the gap between the electrode assembly of the first battery cell and the shell of the first battery cell is small, so as to avoid the energy of the first battery cell
  • the density is too small, and when the expansion occurs, the shell of the first battery cell can be slightly depressed inward to accommodate the expanded part of the second battery cell, while the shell of the first battery cell will not be too depressed inward If there are too many, it will be damaged due to excessive force, which improves the safety of the first battery cell.
  • the second battery cell is further configured such that when the number of electrical cycles of the battery is greater than or equal to 100, the full group margin of the second battery cell is less than or equal to 1.2.
  • the matching group margin is used to measure the overall external expansion force composed of multiple battery cells.
  • the matching group margin is too large, it means that the expansion of all the second battery cells is much larger than that of all the first battery cells.
  • the collocation group margin is greater than or equal to 0.9.
  • the matching group margin is too small, it is easy to cause the total amount of expansion and protrusion of the second battery cell to be much smaller than the maximum total amount of depression that can be produced by the extrusion of the first battery cell. Therefore, by adopting the above scheme, the matching group margin is limited.
  • the degree is greater than or equal to 0.9, so that after the shell of the first battery cell is squeezed to produce a depression, it can contact the electrode assembly of the first battery cell, or the distance between it and the electrode assembly of the first battery cell is relatively small, Therefore, the waste of the space in the first battery cell and the reduction of the energy density of the battery are prevented.
  • the collocation group margin is less than or equal to 1.05.
  • the overall expansion amount and expansion force of multiple battery cells are further limited within a safe range, and the stability of the electrical connection inside the battery and the safety of the battery are improved.
  • the first battery cell is positioned adjacent to the second battery cell.
  • the expansion generated by each second battery cell can be partially accommodated by the first battery cell adjacent to it by inwardly recessing, so that the expansion force of the second battery cell can be more easily released to the casing. In vitro release, thereby reducing the expansion force between adjacent battery cells, and reducing the expansion amount and expansion force of the whole composed of multiple battery cells.
  • first battery cells and second battery cells there are equal numbers of first battery cells and second battery cells.
  • the value of the collocation group margin is converted into the quantity value of the first battery cell and the second battery cell, which is convenient for controlling the value of the collocation group margin in the manufacturing process.
  • the battery further includes two end plates, the two end plates are respectively located at one end of the plurality of battery cells along the arrangement direction, and are arranged adjacent to the second battery cell.
  • the installation gap can be used to accommodate a part of the expansion to reduce the overall Dimensions that expand outward, or, reduce the degree of deformation of the end plate.
  • an electric device including the battery in any one of the above embodiments, and the battery is used to provide electric energy.
  • the expansion force between the multiple battery cells of the battery is small, and the expansion force of the whole composed of multiple battery cells on other parts of the battery is also small, which improves the stability of the electrical connection and the use of the battery. Safety, slowing down the deterioration of the battery's electrical cycle performance.
  • the embodiment of the present application provides a battery including a first battery cell and a second battery cell, and the first battery cell and the second battery cell are configured such that when the number of electric cycles of the battery is greater than or equal to 100, The full-charge group margin of the first battery cell is less than 1, and the full-charge group margin of the second battery cell is greater than 1.
  • the casing of the second battery cell When the battery provided in the embodiment of the present application is in use, when the casing of the second battery cell When it touches the shell of the first battery cell during the process of expansion in the cloth direction, it will squeeze the shell of the first battery cell, and make the squeezed position of the shell of the first battery cell inwardly concave and deformed, reducing the relative
  • the expansion force between two adjacent battery cells makes the overall outward expansion of multiple battery cells arranged along the arrangement direction smaller, which in turn leads to the overall outward expansion of multiple battery cells The force is small, which prevents the battery cell from causing crush damage to other parts of the battery, and improves the stability and safety of the battery's electrical connection.
  • FIG. 1 is a schematic structural view of an electrical device in an embodiment of the present application
  • FIG. 2 is a schematic structural view of a battery in an embodiment of the present application.
  • Fig. 3 is a schematic diagram of the exploded structure of a battery cell in an embodiment of the present application.
  • Fig. 4 is a schematic structural view of the first battery cell when it is fully charged and not squeezed
  • FIG. 5 is a schematic structural view of a second battery cell in a fully charged state
  • FIG. 6 is a schematic structural view of the first battery cell and the second battery cell when the battery is fully charged in an embodiment of the present application;
  • Fig. 13 is a schematic structural diagram of the first battery cell and the second battery cell when the battery is fully charged in another embodiment of the present application;
  • FIG. 14 is a schematic structural view of a battery with end plates in a fully charged state in an embodiment of the present application.
  • Marking description 2, automobile; 200, battery; 210, controller; 220, motor; 300, battery module; 201, first box; 202, second box; 400, battery cell; 410, electrode assembly; 420, shell; 421, housing; 422, end cover; 4221, electrode terminal; 401, first battery cell; 402, second battery cell; 500, end plate.
  • multiple means more than two (including two), and similarly, “multiple groups” means more than two (including two).
  • connection or “connection” of mechanical structures It may refer to a physical connection, for example, a physical connection may be a fixed connection, such as a fixed connection through a fixture, such as a fixed connection through screws, bolts or other fasteners; a physical connection may also be a detachable connection, such as Mutual clamping or clamping connection; the physical connection may also be an integral connection, for example, welding, bonding or integrally formed connection for connection.
  • connection or “connection” of the circuit structure may not only refer to a physical connection, but also an electrical connection or a signal connection, for example, it may be a direct connection, that is, a physical connection, or an indirect connection through at least one intermediate component, As long as the circuit is connected, it can also be the internal connection of two components; besides the signal connection through the circuit, the signal connection can also refer to the signal connection through the media medium, for example, radio waves.
  • the battery cells may include lithium-ion battery cells, lithium-sulfur battery cells, sodium-lithium-ion battery cells, sodium-ion battery cells, or magnesium-ion battery cells, etc., which are not limited in the embodiments of the present application.
  • the battery cell can be in the form of a cylinder, a flat body, a cuboid or other shapes, which is not limited in this embodiment of the present application.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square square battery cells and pouch battery cells, which are not limited in this embodiment of the present application.
  • the battery cell includes a casing, an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive pole piece, a negative pole piece and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative pole pieces.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, and the current collector not coated with the positive electrode active material layer protrudes from the current collector coated with the positive electrode active material layer, The current collector not coated with the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode current collector, and the current collector not coated with the negative electrode active material layer protrudes from the current collector coated with the negative electrode active material layer, The current collector not coated with the negative electrode active material layer is used as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon.
  • the number of positive pole tabs is multiple and stacked together, and the number of negative pole tabs is multiple and stacked together.
  • the material of the spacer may be polypropylene (Polypropylene, PP) or polyethylene (polyethylene, PE).
  • the electrode assembly may be a wound structure or a laminated structure, which is not limited in the embodiment of the present application.
  • the electrode assembly in the battery cell will expand the electrode assembly due to the change of the lattice spacing of the active material of the negative electrode during the lithium ion intercalation process.
  • the electrode assembly expands beyond the battery cell The original size of the shell, the battery cell will be in an expanded state.
  • a plurality of battery cells are usually arranged side by side in groups to facilitate their series-parallel connection.
  • the electrode assemblies in each battery cell are almost all A large degree of size expansion occurs.
  • the full charge margin of the battery cells is set to be large, the expansion force of each battery cell to the outside of the casing is relatively large, and it is easy to cause a large gap between the arranged battery cells.
  • the interaction force leads to the rapid deterioration of the cycle performance of the battery cell, which leads to a rapid decline in the service life of the battery.
  • the embodiment of the present application provides a battery, which can reduce the impact of battery cell expansion on battery reliability and safety by arranging battery cells with different full charge margins into groups in the battery. While affecting performance and service life, it reduces the loss of battery capacity so that the battery can have a higher energy density.
  • the batteries in the embodiments of the present application can be applied to various devices that use batteries, such as mobile phones, portable devices, notebook computers, battery cars, electric toys, electric tools, electric vehicles, ships and spacecraft, etc.
  • spacecraft include aircraft , rockets, space shuttles and spaceships, etc., but not limited to.
  • Figure 1 is a schematic structural diagram of an electrical device provided by an embodiment of the present application, and the electrical device is a car 2 as an example for illustration, and the car 2 can be a fuel car, a gas car or a new energy car , New energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles.
  • the car 2 includes a battery 200 , a controller 210 and a motor 220 .
  • the battery 200 is used to supply power to the controller 210 and the motor 220, as the operating power and driving power of the car 2, for example, the battery 200 is used for starting, navigating, and working power requirements of the car 2 during operation.
  • the battery 200 supplies power to the controller 210, and the controller 210 controls the battery 200 to supply power to the motor 220, and the motor 220 receives and uses the power of the battery 200 as the driving power of the car 2, instead or partially replacing fuel oil or natural gas to provide driving for the car 2 power.
  • the battery 200 may include a plurality of battery modules 300 electrically connected to each other and a box body, and the box body includes a first box body 201 and a second box body 202 , wherein the first box body 201 and the second box body 202 are fastened together, and a plurality of battery modules 300 are arranged in the space enclosed by the first box body 201 and the second box body 202 .
  • the first box body 201 and the second box body 202 can be made of aluminum, aluminum alloy or other metal materials. In some embodiments, the first box body 201 and the second box body 202 are hermetically connected.
  • the battery module 300 may include one or more battery cells 400.
  • the plurality of battery cells 400 may be electrically connected in series, in parallel or in parallel. Connect to achieve larger current or voltage, where hybrid refers to a combination of series and parallel.
  • multiple battery cells 400 can be arranged according to predetermined rules. As shown in FIG. 2 , the battery cells 400 can be placed vertically, the height direction of the battery cells 400 is consistent with the Z direction, and the multiple battery cells 400 are arranged side by side along the Y direction.
  • the battery cells 400 can be placed flat, the width direction of the battery cells 400 is consistent with the Z direction, and a plurality of battery cells 400 can be stacked in at least one layer along the Z direction, and each layer includes an arrangement along the X direction or the Y direction. A plurality of battery cells 400.
  • FIG. 3 is an exploded view of a battery cell provided in the embodiment of the present application
  • Figure 4 is a schematic structural view of the first battery cell in a fully charged state
  • Figure 5 is a structure of a second battery cell in a fully charged state
  • FIG. 6 is a schematic structural diagram of a plurality of battery cells in a fully charged state in a battery provided by an embodiment of the present application.
  • the battery 200 provided by the embodiment of the present application includes a plurality of battery cells 400 arranged along a certain direction (shown as the Y direction in the figure), as shown in Fig.
  • the battery cell 400 includes an electrode assembly 410 and a casing 420, and the electrode assembly 410 is placed in the casing 420; as shown in Figure 6, a plurality of battery cells 400 include a first battery cell 401 and The second battery cell 402, the first battery cell 401 and the second battery cell 402 are configured such that when the number of electrical cycles of the battery is greater than or equal to 100, the full charge margin of the first battery cell 401 is less than 1 , the full charge group margin of the second battery cell 402 is greater than 1; the full charge group margin means that when the battery cell 400 is fully charged, along the arrangement direction Y of the plurality of battery cells 400, the electrode assembly 410 The ratio of the largest dimension to the smallest dimension of the housing 420 .
  • the casing 420 includes a housing 421 and an end cover 422.
  • the housing 421 has a housing cavity, and one side of the housing cavity has an opening.
  • One or more electrode assemblies 410 are placed in the housing cavity through the opening.
  • the end cover 422 is connected to the housing cavity.
  • the opening of the housing 421 cooperates to seal the electrode assembly 410 in the housing 421.
  • the end cover 422 is provided with an electrode terminal 4221.
  • the electrode terminal 4221 is used to electrically connect with the electrode assembly 410.
  • the battery cell 400 is connected to the electrode assembly 410 through the electrode terminal 4221.
  • the external device is electrically connected.
  • the shape and size of the case 421 are determined according to the shape and number of the electrode assemblies 410 .
  • both the housing 421 and the end cover 422 are metal, such as aluminum or aluminum alloy, and the housing 421 and the end cover 422 are connected by welding.
  • the height direction, the width direction and the thickness direction of the battery cell 400 are perpendicular to each other, the height direction of the battery cell 400 can refer to the direction in which the electrode terminal 4221 of the battery cell
  • the size of the direction is smaller than or equal to the size of the length direction of the battery cell 400 .
  • the battery cell 400 expands both in the width direction and in the length direction, and generally the expansion in the width direction is greater than the expansion in the length direction.
  • a certain direction may refer to the length direction of the battery cell 400 , that is, the X direction in FIG. 3 , or may be the width direction of the battery cell 400 , that is, the Y direction in FIG. 3 .
  • the expansion of the battery cell 400 in the width direction is generally greater than the expansion of the battery cell 400 in the length direction, so in the embodiment of the present application, the above-mentioned direction is defined as the width direction of the battery cell 400
  • a certain direction may also be defined as the length direction of the battery cell 400 .
  • One electrical cycle of the battery 200 refers to a process in which the battery 200 is charged to a fully charged state and then discharged to a fully charged state.
  • the fully charged state refers to a state in which the state of charge of the battery 200 is greater than 99%
  • the state of fully discharged refers to a state in which the state of charge of the battery 200 is less than 1%.
  • the electrode assembly 410 will shrink or expand along with the charging and discharging process. Normally, the electrode assembly 410 will expand during the charging process, and the electrode assembly 410 will expand during the discharging process. Shrinkage occurs, and the degree of expansion of the electrode assembly 410 is often related to the state of charge of the battery cell 400 . Generally, when the battery cell 400 is fully charged, the expansion of the electrode assembly 410 reaches a peak.
  • the size of the electrode assembly 410 is different from the size of the cavity of the housing 420, and the expansion degree of the electrode assembly 410 of different materials is different during charging, when the battery cell 400 is fully charged, it usually presents two state.
  • the first state is that the expansion of the battery cell 400 is due to the fact that the volume of the electrode assembly 410 is much smaller than the volume of the housing chamber 420 or the expansion of the electrode assembly 410 is small when it is fully charged. Due to the expansion of the assembly 410 itself, the shell 420 does not show a change in volume.
  • the space in the housing cavity of the shell 420 is sufficient to accommodate the volume of the electrode assembly 410 in a fully charged state, that is, in a certain direction, the electrode
  • the outer surface of the assembly 410 does not contact the inner wall of the housing 420 , or although it does touch the side wall of the housing 420 , the abutting force against the side wall of the housing 420 is too small to cause the side wall of the housing 420 to expand and deform outwardly.
  • the ratio of the maximum size of the electrode assembly 410 to the minimum size of the casing 420 is less than 1, that is, the battery cell 400 with the first fully charged state has a full charge margin of less than 1. 1.
  • the battery cell 400 with the first fully charged state is defined as the first battery cell 401 in the embodiment of the present application. Since the inside of the shell of the first battery cell 401 is not supported by the electrode assembly, when When the side wall of the shell of the first battery cell 401 is subjected to a large external force, it may be deformed inwardly.
  • the second state is due to the small difference between the volume of the electrode assembly 410 and the volume of the housing cavity 420 or the expansion of the electrode assembly 410 when it is fully charged, resulting in a small When expanding, it is easy to abut against the side wall of the shell 420, and make the side wall of the shell 420 and the electrode assembly 410 continue to expand and protrude outward together.
  • the ratio of the maximum size of the electrode assembly 410 to the minimum size of the casing 420 is greater than 1, that is, the battery cell 400 with the second fully charged state has a full charge margin greater than 1. 1.
  • the battery cell 400 having the second fully charged state is defined as the second battery cell 402 in the embodiment of the present application.
  • the number of the first battery cells 401 and the number of the second battery cells 402 are not limited, as long as any one of the battery cells 400 satisfies the requirement that when the number of electric cycles of the battery is greater than or equal to 100, If the full charge group margin is less than 1, it can be considered that there is a first battery cell 401 in the battery. Similarly, as long as there is any battery cell 400 that satisfies the requirement of full charge when the number of electric cycles of the battery is greater than or equal to 100. If the charging margin is greater than 1, it can be considered that there is a second battery cell 402 in the battery.
  • the first battery cell 401 and the second battery cell 402 are used to distinguish the first battery cell 401 and the second battery cell 402 after the number of electric cycles of the battery 200 is greater than or equal to 100 times.
  • the condition of the second battery cell 402 makes the distinction between the first battery cell 401 and the second battery cell 402 more accurate.
  • the first battery unit 401 is further configured such that when the number of electric cycles of the battery is greater than or equal to 100, the full charge margin of the first battery unit 401 is greater than or equal to 0.8.
  • the gap between the electrode assembly of the first battery cell 401 and the casing of the first battery cell 401 is small, and the first battery cell 401
  • the electrode assembly can be relatively stably fixed in the shell of the first battery cell, and will not shake greatly during use, thereby ensuring the stability of the electrical connection of the first battery cell 401.
  • the shell of the first battery cell 401 can also be slightly recessed inward to accommodate the expanded and protruding part of the second battery cell 402, and the shell of the first battery cell 401 will not Too much inward depression will cause excessive force and damage. Therefore, the above solution enables the first battery cell 401 to achieve the effect of reducing the overall expansion amount and expansion force of the plurality of battery cells on the basis of ensuring its own electrical connection stability and safety.
  • the second battery cell 402 is further configured such that when the number of electrical cycles of the battery is greater than or equal to 100, the full charge margin of the second battery cell 402 is less than or equal to 1.2.
  • the full charge group margin of the second battery cell 402 to be less than or equal to 1.2, the occurrence of the above unfavorable situations can be prevented, or the probability of the above unfavorable situations can be reduced, and the service life and safety of use of the second battery cell 402 can be improved. sex.
  • the battery includes two first battery cells 401 and three second battery cells 402, and the two first battery cells 401 are fully charged when the number of electrical cycles of the battery is greater than or equal to 100 and are fully charged.
  • the matching group margin is used to measure the overall external expansion force composed of multiple battery cells.
  • the matching group margin is too large, it means that the expansion and protrusion of all the second battery cells 402 is much larger than that of all the first battery cells.
  • 401 can produce the largest amount of depression after being squeezed, which leads to the fact that the expansion and protrusion of the second battery cell 402 cannot be completely offset by the depression of the first battery cell 401, resulting in the composition of multiple battery cells The overall expansion amount and expansion force are too large.
  • the collocation group margin is greater than or equal to 0.9.
  • the matching group margin When the matching group margin is too small, it means that the amount of swelling and protrusion of all the second battery cells 402 is much smaller than the maximum amount of depression that can be produced by the extrusion of all the first battery cells 401, for example, in a possible situation , all the second battery cells 402 contained in the battery have expanded to the largest volume in the fully charged state, but there is still a gap in which the electrode assembly of the first battery cell 401 is not in contact with the inner wall of the shell where the recess is the largest. However, this causes a large idle space in the housing of the first battery cell 401 , resulting in a waste of space in the battery, and the existence of this space also reduces the energy density of the first battery cell 401 .
  • the matching group margin to be greater than or equal to 0.9, after the shell of the first battery cell 401 is squeezed to produce a depression, it can contact the electrode assembly of the first battery cell 401, or contact with the electrode assembly of the first battery cell 401.
  • the distance between the electrode assemblies is small, so as to prevent the waste of space in the first battery cell 401 and the reduction of the energy density of the battery.
  • the collocation group margin is less than or equal to 1.05.
  • the expansion amount and expansion force of the whole composed of multiple battery cells are further limited within a safe range, and the stability of the electrical connection inside the battery and the safety of the battery are improved.
  • Experiment 1 Select five second battery cells 402, the full charge margin of each second battery cell 402 is 1.11, and all belong to ternary battery cells, and the five second battery cells 402 are placed along the Arranged in the width direction of itself. Five second battery cells 402 were connected in series, and after 1000 electrical cycles, the bulk energy density and expansion force of the five battery cells were measured. The arrangement state of multiple battery cells in Experiment 1 is shown in FIG. 7 .
  • Experiment 2 Select one first battery cell 401 and four second battery cells 402, the full charge margin of one first battery cell 401 is 0.9, and the full charge margin of four second battery cells 402 The degree is 1.11, and the first battery cell 401 and the second battery cell 402 belong to the ternary battery cell, and one first battery cell 401 and four second battery cells 402 are arranged along their own width direction , and there are two second battery cells 402 on both sides of the first battery cell 401 .
  • Five battery cells were connected in series, and after 1000 electrical cycles, the volumetric energy density and expansion force of the whole composed of five battery cells were measured.
  • the arrangement state of multiple battery cells in Experiment 2 is shown in FIG. 8 .
  • Experiment 3 Select two first battery cells 401 and three second battery cells 402, the full charge group margins of the two first battery cells 401 are both 0.9, and the full charge margins of the three second battery cells 402
  • the charging margins are both 1.11, and both the first battery cell 401 and the second battery cell 402 are ternary battery cells, and the two first battery cells 401 and the three second battery cells 402 are They are arranged in the width direction so that the first battery cells 401 and the second battery cells 402 are adjacent to each other.
  • Five battery cells were connected in series, and after 1000 electrical cycles, the volumetric energy density and expansion force of the whole composed of five battery cells were measured.
  • the arrangement state of multiple battery cells in Experiment 3 is shown in FIG. 9 .
  • Experiment 4 Select three first battery cells 401 and two second battery cells 402, the full charge group margins of the three first battery cells 401 are all 0.9, and the full charge margins of the two second battery cells 402
  • the charging margin is 1.11, and both the first battery cell 401 and the second battery cell 402 belong to the ternary battery cell, and the three first battery cells 401 and the two second battery cells 402 are They are arranged in the width direction, and make the first battery cells 401 and the second battery cells 402 adjacent to each other.
  • Five battery cells were connected in series, and after 1000 electrical cycles, the volumetric energy density and expansion force of the whole composed of five battery cells were measured.
  • the arrangement state of multiple battery cells in Experiment 4 is shown in FIG. 10 .
  • Experiment 5 Select three first battery cells 401 and two second battery cells 402, the full charge group margins of the three first battery cells 401 are all 0.9, and the full charge margins of the two second battery cells 402
  • the charging margin is 1.11, and both the first battery cell 401 and the second battery cell 402 belong to the ternary battery cell, and the three first battery cells 401 and the two second battery cells 402 are
  • the three first battery cells 401 are arranged in a width direction, and the two second battery cells 402 are arranged in a row. Five battery cells were connected in series, and after 1000 electrical cycles, the volumetric energy density and expansion force of the whole composed of five battery cells were measured.
  • the arrangement state of multiple battery cells in Experiment 5 is shown in FIG. 11 .
  • Experiment 6 Select five first battery cells 401, each of which has a full charge group margin of 0.9, and all belong to ternary battery cells, and connect the five first battery cells 401 along the Arranged in the width direction of itself. Five first battery cells 401 were connected in series, and after 1000 electrical cycles, the volumetric energy density and expansion force of the whole composed of five battery cells were measured. The arrangement state of multiple battery cells in Experiment 6 is shown in FIG. 12 .
  • the first battery cell 401 and the second battery cell 402 are arranged adjacent to each other.
  • each second battery cell 402 can be offset by the adjacent first battery cell 401 by inwardly recessing, so that the expansion force of the second battery cell 402 is faster. is released, thereby reducing the expansion force between adjacent battery cells, and reducing the expansion amount and expansion force of the whole composed of multiple battery cells.
  • the number of first battery cells 401 and the number of second battery cells 402 are equal.
  • the value of the collocation group margin is converted into the quantity value of the first battery cell 401 and the second battery cell 402 , which is convenient for controlling the value of the collocation group margin in the manufacturing process.
  • the first battery cells 401 of the same type and parameters have the same or a small difference in the full charge margin when the number of electric cycles is greater than or equal to 100 times, which is about 0.8.
  • the second battery cell 402 of the parameter is equal to or less than the full charge group margin when the number of electric cycles is greater than or equal to 100, which is about 1.2.
  • the value of the matching group margin of the battery can be within the predictable range close to 1, without the need for personnel to check the first battery cell 401 in the process of assembling the battery. Calculate and match with the quantity of the second battery cells 402 to obtain a matching group margin that meets requirements. Therefore, the above solution greatly simplifies the assembly process of the battery, and makes the margin of the matching group of the battery more controllable.
  • the battery further includes two end plates 500 , the two end plates 500 are respectively located at one end of the plurality of battery cells along the arrangement direction, and are adjacent to the second battery cell 402 set up.
  • the material of the end plate 500 can be a metal material, such as aluminum, aluminum alloy, etc.
  • the end plate 500 of the metal material can resist the expansion force of the plurality of battery cells 400 during the charging and discharging process.
  • the material of the end plate 500 can also be non-metallic material, such as polycarbonate-ABS resin composite material (PC-ABS), polypropylene (PP), fusible polytetrafluoroethylene (FPA), etc., the end plate of non-metallic material 500 can prevent a short circuit between the end plate 500 itself and the battery cell 400 .
  • the end plate 500 can also be a composite body of metal material and non-metal material, for example, a layer of non-metal material is compounded on the outer layer of metal material.
  • the expansion force of the multiple battery cells 400 during the charging and discharging process is resisted by the two end plates 500, and the multiple battery cells 400 are limited within a certain range, so that the structure of the battery 200 is more stable.
  • the end plate 500 is a component used to resist the dimensional expansion of the plurality of battery cells 400 along the direction of their arrangement during the charging and discharging cycle.
  • the end plate 500 is used in conjunction with the side plates to limit the plurality of battery cells 400 to
  • the overall structure of the battery 200 is more stable.
  • the two battery cells 402 are arranged adjacent to each other. After the second battery cell 402 expands, the gap becomes smaller or disappears, so as to reduce the outward deformation of the end plate 500, thereby reducing the overall The degree to which a dimension expands out of deformation.
  • an electric device including the battery in any one of the above embodiments, and the battery is used to provide electric energy.
  • the expansion force between the multiple battery cells that make up the battery is small, and the expansion force of the whole composed of multiple battery cells on other parts of the battery is also small, which improves the electrical connection stability of the battery and It is safe to use and slows down the deterioration of the electric cycle performance of the battery.
  • the embodiments of the present application provide a battery including a first battery cell and a second battery cell, the first battery cell and the second battery cell are configured such that the number of electric cycles of the battery is greater than or When equal to 100 times, the full charge group margin of the first battery cell is less than 1, and the full charge group margin of the second battery cell is greater than 1, so that when the battery provided in the embodiment of the present application is in use, when the second battery cell After the casing of the body contacts the casing of the first battery cell during the process of expanding along the arrangement direction, it will squeeze the casing of the first battery cell, and make the pressed position of the casing of the first battery cell inward
  • the concave deformation reduces the expansion force between two adjacent battery cells, and makes the overall outward expansion of multiple battery cells arranged in a certain direction smaller, which in turn leads to the formation of multiple battery cells.
  • the overall external expansion force is small, which prevents the battery cell from causing crush damage to other parts of the battery, and improves the stability and safety of the battery's electrical connection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请涉及电池的技术领域,尤其涉及一种电池和用电装置。其中,电池包括多个沿某一方向排布的电池单体,电池单体包括电极组件和外壳,电极组件放置于外壳中,多个电池单体包括第一电池单体和第二电池单体,第一电池单体和第二电池单体被配置为在电池的电循环次数大于或等于100次时,第一电池单体的满充群裕度小于1,第二电池单体的满充群裕度大于1;满充群裕度是指电池单体在满充状态时,沿多个电池单体的排布方向,电极组件的最大尺寸与外壳的最小尺寸的比值。鉴于上述问题,本申请实施例提供的电池能够减小多个电池单体组成的整体对外的膨胀力,防止电池单体对电池的其他部件造成挤压损伤,使得电池的电连接稳定性和安全性都得到了提升。

Description

电池和用电装置
相关申请的交叉引用
本申请要求享有2021年12月23日提交的名称为“电池和用电装置”的中国专利申请(202111608056.1)的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,特别是涉及一种电池和用电装置。
背景技术
电池单体包括电极组件和外壳,外壳具有容纳腔,电极组件装设在容纳腔内,在进行充放电的过程中,电极组件会发生膨胀,由此使得电极组件具有一定的膨胀力,该膨胀力作用在外壳上,使得外壳向外产生凸起。
当一个电池包含的电池单体的数量较多时,将导致多个电池单体同时膨胀时的总的膨胀量较大,电池的与多个电池单体相邻的其他部件所需要承受的膨胀力也更大,甚至可能在巨大的膨胀力下断裂或破损,使得电池的可靠性和安全性也随之降低。
发明内容
鉴于上述问题,本申请实施例提供了一种电池和用电装置,其能够减小多个电池单体组成的整体对外的膨胀力,提升电池的安全性和可靠性。
根据本申请实施例的一个方面,提供了一种电池,电池包括多个沿某一方向排布的电池单体,电池单体包括电极组件和外壳,电极组件放置于外壳中,多个电池单体包括第一电池单体和第二电池单体,第一电池单体和第二电池单体被配置为在电池的电循环次数大于或等于100次时,第一电池单体的满充群裕度小于1,第二电池单体的满充群裕度大于1;满充群裕度是指电池单体在满充状态时,沿多个电池单体的排布方向,电极组件的最大尺寸与外壳的最小尺寸的比值。
通过采用上述方案,当电池的电循环次数大于或等于100次时,通过使第一电池单体的满充群裕度小于1,使得第一电池单体的外壳侧壁和电极组件之间的间隙较大,当电极组件的膨胀程度在一定范围内时,电极组件的外侧表面未接触到外壳的内壁,或者虽然接触到了外壳的侧壁,但是所产生的膨胀力较小,使得第一电池单体的外壳未向外膨胀变形或向外膨胀变形的程度较小,当第一电池单体的外壳侧壁受到较大的外界作用力时,甚至会向内凹陷变形。通过使第二电池单体的满充群裕度大于1,使得第二电池单体的外壳侧壁和电极组件之间的间隙较小,在电极组件发生较小膨胀 时就容易抵接外壳侧壁,并使外壳侧壁和电极组件一起继续向外膨胀。在包括有第一电池单体和第二电池单体的电池中,当第二电池单体的外壳在沿电池单体的排布方向膨胀的过程中接触到第一电池单体的外壳后,会挤压第一电池单体的外壳,并使第一电池单体的外壳的被挤压位置向内凹陷变形,减小相邻两个电池单体之间的膨胀力,并使得排列的多个电池单体组成的整体沿排布方向向外膨胀的尺寸较小,进而导致多个电池单体组成的整体对外的膨胀力较小,防止电池单体对电池的其他部件造成挤压损伤,使得电池的电连接稳定性和安全性都得到了提升。
在一些实施例中,第一电池单体还被配置为在电池的电循环次数大于或等于100次时,第一电池单体的满充群裕度大于或等于0.8。
通过采用上述方案,在沿多个电池单体的排布方向上,第一电池单体的电极组件与第一电池单体的外壳之间的间隙较小,以避免第一电池单体的能量密度过小,并且在发生膨胀时,第一电池单体的外壳能够向内少量地凹陷以容纳第二电池单体膨胀凸出的部分,同时第一电池单体的外壳不会向内凹陷过多而造成自身受力过大而破损,提高了第一电池单体的安全性。
在一些实施例中,第二电池单体还被配置为在电池的电循环次数大于或等于100次时,第二电池单体的满充群裕度小于或等于1.2。
第二电池单体的满充群裕度过大时,容易使第二电池单体的外壳在满充状态下向外凸起过多而导致破裂,并且第二电池单体的电极组件也会由于膨胀力过大而导致电循环性能恶化加剧。因此,通过采用上述方案,限定第二电池单体的满充群裕度小于或等于1.2,能够防止以上不良情况的发生,或降低以上不良情况发生的概率,提高第二电池单体的使用寿命和使用安全性。
在一些实施例中,电池具有搭配群裕度F,F=F 3/A,且F≤1.1;其中,F 3为在电池的电循环次数大于或等于100次时,电池内所有电池单体的满充群裕度之和,A为电池内电池单体的总数量。
通过采用上述方案,搭配群裕度用于衡量多个电池单体组成的整体对外的膨胀力,当搭配群裕度过大时,说明全部第二电池单体膨胀凸出的量远大于全部第一电池单体受挤压可产生的最大凹陷的量,由此导致的多个电池单体组成的整体的膨胀量和膨胀力过大,因此,限定搭配群裕度F≤1.1,能够防止多个电池单体组成的整体的膨胀量和膨胀力过大而对电池的其他部件造成挤压损伤,从而提升电池内部的电连接稳定性和电池的安全性。
在一些实施例中,搭配群裕度大于或等于0.9。
当搭配群裕度过小时,容易造成第二电池单体膨胀凸出的总量远小于第一电池单体受挤压可产生的最大凹陷总量,因此,通过采用上述方案,限定搭配群裕度大于或等于0.9,使得第一电池单体的外壳受挤压产生凹陷以后,能够接触到第一电池单体的电极组件,或者与第一电池单体的电极组件之间的间距较小,从而防止造成第一电池单体内空间的浪费和导致电池能量密度的降低。
在一些实施例中,搭配群裕度小于或等于1.05。
通过采用上述方案,进一步将多个电池单体组成的整体的膨胀量和膨胀力限定 在安全范围内,提高电池内部的电连接稳定性和电池的安全性。
在一些实施例中,第一电池单体与第二电池单体相邻设置。
通过采用上述方案,每个第二电池单体产生的膨胀量均能够被与之相邻的第一电池单体通过向内凹陷而容纳一部分,使得第二电池单体的膨胀力更容易向壳体外释放,从而降低相邻电池单体之间的膨胀力,并降低多个电池单体组成的整体的膨胀量和膨胀力。
在一些实施例中,第一电池单体和第二电池单体的数量相等。
通过采用上述方案,将搭配群裕度的值转化成第一电池单体和第二电池单体的数量值,方便在制造过程中控制搭配群裕度的值。
在一些实施例中,电池还包括两个端板,两个端板分别位于多个电池单体沿排布方向的一端,并与第二电池单体相邻设置。
在电池进行组装时,端板与多个电池单体之间通常存在有装配间隙,通过采用上述方案,在第二电池单体发生膨胀后,安装间隙可以用于容纳一部分的膨胀量以减少整体向外膨胀的尺寸,或者,降低端板变形的程度。
根据本申请实施例的另一方面,提供了一种用电装置,包括上述任一实施例中的电池,电池用于提供电能。
通过采用上述方案,电池的多个电池单体之间的膨胀力较小,并且多个电池单体组成的整体对电池的其他部件的膨胀力也较小,提高了电池的电连接稳定性和使用安全性,减缓了电池的电循环性能恶化的速度。
本申请实施例通过提供一种包括第一电池单体和第二电池单体的电池,第一电池单体和第二电池单体被配置为在电池的电循环次数大于或等于100次时,第一电池单体的满充群裕度小于1,第二电池单体的满充群裕度大于1,本申请实施例提供的电池在使用时,当第二电池单体的外壳在沿排布方向膨胀的过程中接触到第一电池单体的外壳后,会挤压第一电池单体的外壳,并使第一电池单体的外壳的被挤压位置向内凹陷变形,减小相邻两个电池单体之间的膨胀力,并使得沿排布方向排列的多个电池单体组成的整体向外膨胀的尺寸较小,进而导致多个电池单体组成的整体为对外的膨胀力较小,防止电池单体对电池的其他部件造成挤压损伤,使得电池的电连接稳定性和安全性都得到了提升。
上述说明仅是本申请实施例技术方案的概述,为了能够更清楚了解本申请实施例的技术手段,而可依照说明书的内容予以实施,并且为了让本申请实施例的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一实施例中用电装置的结构示意图;
图2为本申请一实施例中电池的结构示意图;
图3为本申请一实施例中电池单体的爆炸结构示意图;
图4为第一电池单体在满充状态且未受挤压时的结构示意图;
图5为第二电池单体在满充状态时的结构示意图;
图6为本申请一实施例中电池在满充状态下时第一电池单体和第二电池单体的结构示意图;
图7为实验1中五个电池单体的排列状态示意图;
图8为实验2中五个电池单体的排列状态示意图;
图9为实验3中五个电池单体的排列状态示意图;
图10为实验4中五个电池单体的排列状态示意图;
图11为实验5中五个电池单体的排列状态示意图;
图12为实验6中五个电池单体的排列状态示意图;
图13为本申请另一实施例中的电池在满充状态下时第一电池单体和第二电池单体的结构示意图;
图14为本申请一实施例中的带有端板的电池在满充状态下的结构示意图。
在附图中,附图并未按照实际的比例绘制。
标记说明:2、汽车;200、电池;210、控制器;220、马达;300、电池模块;201、第一箱体;202、第二箱体;400、电池单体;410、电极组件;420、外壳;421、壳体;422、端盖;4221、电极端子;401、第一电池单体;402、第二电池单体;500、端板。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
本申请的说明书和权利要求书及附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖而不排除其它的内容。单词“一”或“一个”并不排除存在多个。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语“实施例”并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。 本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的电池或用电装置的具体结构进行限定。例如,在本申请的描述中,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,诸如X方向、Y方向以及Z方向等用于说明本实施例的电池或用电装置的各构件的操作和构造的指示方向的表述不是绝对的而是相对的,且尽管当电池包的各构件处于图中所示的位置时这些指示是恰当的,但是当这些位置改变时,这些方向应有不同的解释,以对应所述改变。
此外,本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序,可以明示或者隐含地包括一个或者更多个该特征。
在本申请的描述中,除非另有说明,“多个”的含义是指两个以上(包括两个),同理,“多组”指的是两组以上(包括两组)。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,机械结构的“相连”或“连接”可以是指物理上的连接,例如,物理上的连接可以是固定连接,例如通过固定件固定连接,例如通过螺丝、螺栓或其它固定件固定连接;物理上的连接也可以是可拆卸连接,例如相互卡接或卡合连接;物理上的连接也可以是一体地连接,例如,焊接、粘接或一体成型形成连接进行连接。电路结构的“相连”或“连接”除了可以是指物理上的连接,还可以是指电连接或信号连接,例如,可以是直接相连,即物理连接,也可以通过中间至少一个元件间接相连,只要达到电路相通即可,还可以是两个元件内部的连通;信号连接除了可以通过电路进行信号连接外,也可以是指通过媒体介质进行信号连接,例如,无线电波。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
本申请中,电池单体可以包括锂离子电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方体方形电池单体和软包电池单体,本申请实施例对此也不限定。
电池单体包括外壳、电极组件和电解液,电极组件由正极极片、负极极片和隔离件组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离件的材质可以为聚丙烯(Polypropylene,PP)或聚乙烯(polyethylene,PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池单体中的电极组件在充放电循环的过程中由于负极的活性物质在锂离子嵌入的过程中晶格的间距发生变化,会使得电极组件产生膨胀,当电极组件膨胀的尺寸超出电池单体外壳的原始尺寸,电池单体就会呈现膨胀的状态。
在电池中,通常将多个电池单体并排成组以便于对其进行串并联,在电池的充放电循环中,特别是电池处于满充状态时,各个电池单体中的电极组件几乎都产生较大程度的尺寸膨胀,当电池单体的满充群裕度都设置得较大时,各个电池单体向壳体外的膨胀力较大,容易使得排列的电池单体间产生较大的相互作用力导致电池单体循环性能快速恶化,从而导致电池的使用寿命快速下降。并且,当多个排列成组的电池单体发生膨胀时,由于膨胀尺寸的累加,会使得整体的尺寸变化较大,容易对电池的其他部件如电连接部件、冷却部件等形成挤压,从而影响其他部件功能的正常发挥,导致电池的可靠性和安全性降低,形成安全隐患。
基于上述问题,申请人发现,采用具有较小满充群裕度的电池单体组成电池可以缓解由于电池单体尺寸膨胀造成的电池性能下降,但是,将满充群裕度设置得较小,会对电池的电容量造成影响,使得电池的能量密度有所下降。
有鉴于此,本申请实施例提供了一种电池,其通过使具有不同的满充群裕度的电池单体排列成组于电池中,从而能够在降低电池单体膨胀对电池可靠性、安全性及使用寿命造成影响的同时,降低电池的电容量的损失,以使电池能够具有较高的能量密度。
本申请实施例中的电池可以适用于各种使用电池的装置,例如,手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等,但不限于此。
如图1所示,图1为本申请一实施例提供的一种用电装置的结构示意图,以用电装置为汽车2为例进行说明,汽车2可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。汽车2包括电池200、控制器210和马达220。电池200用于向控制器210和马达220供电,作为汽车 2的操作电源和驱动电源,例如,电池200用于汽车2的启动、导航和运行时的工作用电需求。例如,电池200向控制器210供电,控制器210控制电池200向马达220供电,马达220接收并使用电池200的电力作为汽车2的驱动电源,替代或部分地替代燃油或天然气为汽车2提供驱动动力。
如图2所示,为了使得电池200达到较高的功能以满足使用需求,电池200可以包括相互电连接的多个电池模块300和箱体,箱体包括第一箱体201和第二箱体202,其中,第一箱体201和第二箱体202相互扣合,多个电池模块300排布在第一箱体201和第二箱体202围合形成的空间内。第一箱体201和第二箱体202可由铝、铝合金或其它金属材料制成。在一些实施例中,第一箱体201和第二箱体202密封连接。
如图2所示,电池模块300可以包括一个或多个电池单体400,当电池模块300包括多个电池单体400时,多个电池单体400可以通过串联、并联或混联的方式电连接以实现较大的电流或电压,其中,混联是指串联和并联的组合。另外,多个电池单体400可以按照预定规则排列,如图2所示,电池单体400可立放,电池单体400的高度方向与Z方向一致,多个电池单体400沿Y方向并排设置;或者,电池单体400可以平放,电池单体400的宽度方向与Z方向一致,多个电池单体400沿Z方向可以堆叠至少一层,每一层包括沿X方向或Y方向排列的多个电池单体400。
图3为本申请实施例提供的一种电池单体的爆炸图,图4为第一电池单体在满充状态下的结构示意图,图5为第二电池单体在满充状态下的结构示意图,图6为本申请实施例提供的一种电池中多个电池单体在满充状态下的结构示意图。如图3、图4、图5和图6所示,本申请实施例提供的电池200包括多个沿某一方向(图中以Y方向示出)排布的电池单体400,如图3、图4和图5所示,电池单体400包括电极组件410和外壳420,电极组件410放置于外壳420中;如图6所示,多个电池单体400包括第一电池单体401和第二电池单体402,第一电池单体401和第二电池单体402被配置为在电池的电循环次数大于或等于100次时,第一电池单体401的满充群裕度小于1,第二电池单体402的满充群裕度大于1;满充群裕度是指电池单体400在满充状态时,沿多个电池单体400的排布方向Y,电极组件410的最大尺寸与外壳420的最小尺寸的比值。
如图3所示,外壳420包括壳体421和端盖422,壳体421具有容纳腔,容纳腔一侧具有开口,一个或多个电极组件410通过开口放置于容纳腔内,端盖422与壳体421的开口相配合而将电极组件410密封在壳体421内,端盖422上设置有电极端子4221,电极端子4221用于与电极组件410电连接,电池单体400通过电极端子4221与外部装置电连接。壳体421的形状和大小根据电极组件410的形状和数量而定。
在一些实施例中,壳体421和端盖422均为金属,例如铝或铝合金,壳体421和端盖422通过焊接连接。
本申请实施例中,电池单体400的高度方向、宽度方向和厚度方向两两垂直,电池单体400的高度方向可以指电池单体400的电极端子4221引出的方向,电池 单体400的宽度方向的尺寸小于或者等于电池单体400的长度方向的尺寸。电池单体400在使用过程中,沿宽度方向和长度方向均会有膨胀,且一般沿宽度方向的膨胀量大于沿长度方向的膨胀量。
某一方向可以指电池单体400的长度方向,即图3中的X方向,也可以是电池单体400的宽度方向,即图3中的Y方向。考虑到满充状态下,电池单体400在宽度方向的膨胀量一般大于电池单体400沿长度方向上的膨胀量,因此本申请实施例中定义上述某一方向为电池单体400的宽度方向,当然,在本申请其他实施例中,也可以定义某一方向为电池单体400的长度方向。
电池200的一次电循环是指电池200充电至满充状态再放电至满放状态的一次过程。其中,满充状态是指电池200的荷电状态大于99%的状态,满放状态是指电池200的荷电状态小于1%的状态。
电池单体400在使用过程中,电极组件410会随着充放电进程而发生收缩或膨胀,通常情况下,在充电过程中,电极组件410会发生膨胀,在放电过程中,电极组件410则会发生收缩,电极组件410的膨胀程度往往与电池单体400的荷电状态相关,通常情况下,在电池单体400为满充状态时,电极组件410的膨胀量达到巅峰。
由于电极组件410的大小和外壳420的容纳腔的大小不同,且不同材质的电极组件410在充电时的膨胀程度有所差异,所以当电池单体400处于满充状态时,通常会呈现出两种状态。
如图4所示,第一种状态是由于电极组件410的体积远小于外壳420的容纳腔的容积或者电极组件410在满充时的膨胀量较小,导致电池单体400的膨胀仅在于电极组件410本身的膨胀,外壳420并没有呈现出体积上的变化,此种状态下,外壳420的容纳腔内的空间足以容纳电极组件410在满充状态下的体积,即在某一方向上,电极组件410的外侧表面未接触到外壳420的内壁,或者虽然接触到了外壳420的侧壁,但是对外壳420的侧壁的抵接力较小,不足以使得外壳420的侧壁向外膨胀变形。此时沿多个电池单体的排布方向,电极组件410的最大尺寸与外壳420的最小尺寸的比值小于1,即具有第一种满充状态的电池单体400的满充群裕度小于1,将具有第一种满充状态的电池单体400定义为本申请实施例中的第一电池单体401,由于第一电池单体401的外壳内部没有受到电极组件的支撑,因此,当第一电池单体401的外壳侧壁受到较大的外界作用力时,可能会向内凹陷变形。
如图5所示,第二种状态是由于电极组件410的体积与外壳420的容纳腔的容积相差较小或者电极组件410在满充时的膨胀量较大,导致在电极组件410发生较小的膨胀时就容易抵接外壳420侧壁,并使外壳420的侧壁和电极组件410一起继续向外膨胀凸出。此时沿多个电池单体的排布方向,电极组件410的最大尺寸与外壳420的最小尺寸的比值大于1,即具有第二种满充状态的电池单体400的满充群裕度大于1,将具有第二种满充状态的电池单体400定义为本申请实施例中的第二电池单体402。当第二电池单体402的外壳侧壁向外凸出的过程中接触到第一电池单体401时,可能在较大的膨胀力下使第一电池单体401的外壳侧壁发生内凹。
本申请实施例中对第一电池单体401的数量和第二电池单体402的数量均不做限定,只要有任意一个电池单体400满足在电池的电循环次数大于或等于100次时,其满充群裕度小于1,即可认为该电池中存在第一电池单体401,同样的,只要有任意一个电池单体400满足在电池的电循环次数大于或等于100次时,其满充群裕度大于1,即可认为该电池中存在第二电池单体402。
需要强调的是,由于不同的电池单体400在满充状态下的膨胀程度会有所差异,且随着电池200的电循环次数的增加,不同电池单体400之间的这种差异逐渐增大。因此,本申请实施例通过将电池200的电循环次数大于或等于100次后的第一电池单体401和第二电池单体402的满充群裕度值作为区分第一电池单体401和第二电池单体402的条件,使得对第一电池单体401和第二电池单体402的区分更加准确。
如图6所示,在包括有第一电池单体401和第二电池单体402的电池中,当第二电池单体402的外壳在沿多个电池单体的排布方向膨胀的过程中接触到第一电池单体401的外壳后,会挤压第一电池单体401的外壳,并使第一电池单体401的外壳的被挤压位置向内凹陷变形,减小相邻两个电池单体之间的膨胀力,并使得多个电池单体组成的整体向外膨胀的尺寸较小,进而导致多个电池单体组成的整体为对外的膨胀力较小,防止电池单体对电池的其他部件造成挤压损伤,使得电池的电连接稳定性和安全性都得到了提升。
在一些实施例中,第一电池单体401还被配置为在电池的电循环次数大于或等于100次时,第一电池单体401的满充群裕度大于或等于0.8。
通过采用上述方案,在沿多个电池单体的排布方向上,第一电池单体401的电极组件与第一电池单体401的外壳之间的间隙较小,第一电池单体401的电极组件在第一电池单体的外壳内能够相对稳固的固定,在使用的过程中不会发生大幅度的晃动,从而保证了第一电池单体401的电连接的稳定性,在此基础上,当电池处于满充状态时,第一电池单体401的外壳还能够向内进行少量的凹陷以容纳第二电池单体402膨胀凸出的部分,并且第一电池单体401的外壳不会向内凹陷过多而造成自身受力过大而破损。因此,上述方案使得第一电池单体401在保证自身的电连接稳定性和安全性的基础上达到了减小多个电池单体组成的整体的膨胀量和膨胀力的效果。
在一些实施例中,第二电池单体402还被配置为在电池的电循环次数大于或等于100次时,第二电池单体402的满充群裕度小于或等于1.2。
第二电池单体402的满充群裕度过大时,容易使第二电池单体402的外壳在满充状态下向外凸起过多而导致外壳与端盖的焊接位置撕裂,并且第二电池单体402的电极组件也会由于膨胀力过大而导致电循环性能恶化加剧。
因此,通过限定第二电池单体402的满充群裕度小于或等于1.2能够防止以上不良情况的发生,或降低以上不良情况发生的概率,提高第二电池单体402的使用寿命和使用安全性。
在一些实施例中,电池具有搭配群裕度F,F=F 3/A,且F≤1.1;其中,F 3为在电池的电循环次数大于或等于100次时,电池内所有电池单体的满充群裕度之和,A 为电池内电池单体的总数量。
例如,电池包括两个第一电池单体401和三个第二电池单体402,两个第一电池单体401在电池的电循环次数大于或等于100次且为满充状态时的满充群裕度分别为0.8和0.9,三个第二电池单体402在电池的电循环次数大于或等于100次且为满充状态时的满充群裕度分别为1.1、1.2和1.3,则F 3=0.8+0.9+1.1+1.2+1.3=5.3,A=5,电池的搭配群裕度F=5.3/5=1.06。
搭配群裕度用于衡量多个电池单体组成的整体对外的膨胀力,当搭配群裕度过大时,说明全部第二电池单体402膨胀凸出的量远大于全部第一电池单体401受挤压后可产生最大凹陷的量,这导致第二电池单体402的膨胀凸出量无法全部通过第一电池单体401的凹陷量而抵消,由此导致的多个电池单体组成的整体的膨胀量和膨胀力过大。
通过限定搭配群裕度F≤1.1,能够防止多个电池单体组成的整体的膨胀量和膨胀力过大而对电池的其他部件造成挤压损伤,从而提升电池内部的电连接稳定性和电池的安全性。
在一些实施例中,搭配群裕度大于或等于0.9。
当搭配群裕度过小时,说明全部第二电池单体402膨胀凸出的量远小于全部第一电池单体401受挤压可产生的最大凹陷的量,例如,在一种可能的情况中,电池中所包含的全部的第二电池单体402在满充状态下均已经膨胀至体积最大,但是依然存在第一电池单体401的电极组件与外壳的凹陷量最大处的内壁未接触的情况,这使得第一电池单体401的壳体内存在较大的闲置空间,造成电池内空间的浪费,该空间的存在也导致第一电池单体401的能量密度降低。
因此通过限定搭配群裕度大于或等于0.9,使得第一电池单体401的外壳受挤压产生凹陷以后,能够接触到第一电池单体401的电极组件,或者与第一电池单体401的电极组件之间的间距较小,从而防止造成第一电池单体401内空间的浪费和导致电池能量密度的降低。
在一些实施例中,搭配群裕度小于或等于1.05。
通过采用上述方案,进一步将多个电池单体组成的整体的膨胀量和膨胀力限定在安全范围内,提高电池内部的电连接稳定性和电池的安全性。
为了验证第一电池单体401和第二电池单体402的数量及排列顺序对多个电池单体组成的整体的体积能量密度和膨胀力的影响,本申请实施例进行了如下实验:
实验1:选取五个第二电池单体402,每个第二电池单体402的满充群裕度均为1.11,且均属于三元电池单体,将五个第二电池单体402沿自身宽度方向排列。将五个第二电池单体402串联连接,在1000次电循环之后,测量五个电池单体组成的整体的体积能量密度和膨胀力。实验1中多个电池单体的排列状态如图7所示。
实验2:选取一个第一电池单体401和四个第二电池单体402,一个第一电池单体401的满充群裕度为0.9,四个第二电池单体402的满充群裕度均为1.11,且第一电池单体401和第二电池单体402均属于三元电池单体,将一个第一电池单体401 和四个第二电池单体402沿自身宽度方向上排列,并使第一电池单体401两侧各有两个第二电池单体402。将五个电池单体串联连接,在1000次电循环之后,测量五个电池单体组成的整体的体积能量密度和膨胀力。实验2中多个电池单体的排列状态如图8所示。
实验3:选取两个第一电池单体401和三个第二电池单体402,两个第一电池单体401的满充群裕度均为0.9,三个第二电池单体402的满充群裕度均为1.11,且第一电池单体401和第二电池单体402均属于三元电池单体,将两个第一电池单体401和三个第二电池单体402沿自身宽度方向排列,并使第一电池单体401和第二电池单体402处于相邻的位置。将五个电池单体串联连接,在1000次电循环之后,测量五个电池单体组成的整体的体积能量密度和膨胀力。实验3中多个电池单体的排列状态如图9所示。
实验4:选取三个第一电池单体401和两个第二电池单体402,三个第一电池单体401的满充群裕度均为0.9,两个第二电池单体402的满充群裕度均为1.11,且第一电池单体401和第二电池单体402均属于三元电池单体,将三个第一电池单体401和两个第二电池单体402沿自身宽度方向上排列,并使第一电池单体401和第二电池单体402处于相邻的位置。将五个电池单体串联连接,在1000次电循环之后,测量五个电池单体组成的整体的体积能量密度和膨胀力。实验4中多个电池单体的排列状态如图10所示。
实验5:选取三个第一电池单体401和两个第二电池单体402,三个第一电池单体401的满充群裕度均为0.9,两个第二电池单体402的满充群裕度均为1.11,且第一电池单体401和第二电池单体402均属于三元电池单体,将三个第一电池单体401和两个第二电池单体402沿自身宽度方向上排列,并使三个第一电池单体401连续排列,两个第二电池单体402连续排列。将五个电池单体串联连接,在1000次电循环之后,测量五个电池单体组成的整体的体积能量密度和膨胀力。实验5中多个电池单体的排列状态如图11所示。
实验6:选取五个第一电池单体401,每个第一电池单体401的满充群裕度均为0.9,且均属于三元电池单体,将五个第一电池单体401沿自身宽度方向排列。将五个第一电池单体401串联连接,在1000次电循环之后,测量五个电池单体组成的整体的体积能量密度和膨胀力。实验6中多个电池单体的排列状态如图12所示。
将以上6组实验的实验数据记录在下表中。
Figure PCTCN2022139143-appb-000001
通过以上实验数据可以看出,第一电池单体401的数量在总的电池单体中占比越大,多个电池单体组成的整体的体积能量密度越小,膨胀力也越小;通过实验4和实验5的数据可以看出,当第一电池单体401的数量在总的电池单体中占比相等的情况下,第一电池单体401和第二电池单体402相邻设置的情况下的多个电池单体的总的膨胀力小于所有第一电池单体401连续设置且所有第二电池单体402连续设置的情况下的多个电池单体的总的膨胀力。
可以理解的是,在每个第一电池单体401的满充群裕度相等,且每个第二电池单体402的满充群裕度相等的情况下,第一电池单体401的数量在总的电池单体中占比越多,意味着电池的搭配群裕度越小,由此得出,电池的搭配群裕度越小,电池的能量密度越小,且电池的膨胀力越小。当电池的搭配群裕度不变时,电池的体积能量密度不变,但是即使电池的体积能量密度不变,电池的膨胀力会由于电池的排列状态不同而改变。
因此,为了在电池的体积能量密度不变的情况下降低电池的膨胀力,如图13所示,在一些实施例中,第一电池单体401与第二电池单体402相邻设置。
通过采用上述方案,每个第二电池单体402产生的膨胀量均能够被与之相邻的第一电池单体401通过向内凹陷而抵消,使得第二电池单体402的膨胀力更快的得到释放,从而降低相邻电池单体之间的膨胀力,并降低多个电池单体组成的整体的膨胀量和膨胀力。
如图13所示,在一些实施例中,第一电池单体401和第二电池单体402的数量相等。
通过采用上述方案,将搭配群裕度的值转化成第一电池单体401和第二电池单体402的数量值,方便在制造过程中控制搭配群裕度的值。例如,在电池的制造过程中,同一种类型和参数的第一电池单体401在电循环次数大于或等于100次时的满充群裕度相等或相差较小,约为0.8,同一种类型和参数的第二电池单体402在电循环次数大于或等于100次时的满充群裕度相等或相差较小,约为1.2,这时,只需要将相同数量的第一电池单体401和第二电池单体402进行组装形成电池,便能够使电池的搭配群裕度的值在接近于1的可预期的范围内,而无需人员在装配电池的过程中对第一电池单体401和第二电池单体402的数量进行计算和匹配,以得出符合要求的搭配群裕度。因此,上述方案大大简化了电池的组装工艺,使得电池的搭配群裕度的可控性更强。
如图14所示,在一些实施例中,电池还包括两个端板500,两个端板500分别位于多个电池单体沿排布方向的一端,并与第二电池单体402相邻设置。
端板500的材质可以为金属材料,例如铝、铝合金等,金属材料的端板500能够抵抗多个电池单体400在充放电过程的膨胀力。端板500的材质还可以是非金属材料,例如聚碳酸酯-ABS树脂复合材料(PC-ABS)、聚丙烯(PP)、可熔性聚四氟乙烯(FPA)等,非金属材料的端板500能够防止端板500自身与电池单体400之间发生短路。端板500还可以是金属材料与非金属材料的复合体,例如,在金属材质的外层复合一层非金属材料。
通过两块端板500来抵抗多个电池单体400在充放电过程的膨胀力,并将多个电池单体400限制在一定范围内,使得电池200的结构更加稳定。
端板500是用于抵抗多个电池单体400在充放电循环过程中沿其排列方向的尺寸膨胀的部件,端板500和侧板搭配使用以对多个电池单体400进行限位,以使电池200的整体结构更加稳定。在电池200的组装过程中,端板500与多个电池单体400之间容易存在有安装间隙,该部分间隙可以用于容纳一部分的电池单体400的膨胀变形量,将端板500与第二电池单体402设置为相邻,第二电池单体402膨胀后该间隙变小或消失,以减小端板500向外产生的形变,从而减小多个电池单体400成组后整体尺寸向外变形扩展的程度。
根据本申请实施例的另一方面,提供了一种用电装置,包括上述任一实施例中的电池,电池用于提供电能。
通过采用上述方案,组成电池的多个电池单体之间的膨胀力较小,并且多个电池单体组成的整体对电池的其他部件的膨胀力也较小,提高了电池的电连接稳定性和使用安全性,减缓了电池的电循环性能恶化的速度。
综上所述,本申请实施例通过提供一种包括第一电池单体和第二电池单体的电池,第一电池单体和第二电池单体被配置为在电池的电循环次数大于或等于100次时,第一电池单体的满充群裕度小于1,第二电池单体的满充群裕度大于1,使得本申请实施例提供的电池在使用时,当第二电池单体的外壳在沿排布方向膨胀的过程中接触到第一电池单体的外壳后,会挤压第一电池单体的外壳,并使第一电池单体的外壳的被挤压位置向内凹陷变形,减小相邻两个电池单体之间的膨胀力,并使得沿某一方向排列的多个电池单体组成的整体向外膨胀的尺寸较小,进而导致多个电池单体组成的整体为对外的膨胀力较小,防止电池单体对电池的其他部件造成挤压损伤,使得电池的电连接稳定性和安全性都得到了提升,在此基础上,电池也能保证较高的能量密度。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (10)

  1. 一种电池,包括:
    多个沿某一方向排布的电池单体,所述电池单体包括电极组件和外壳,所述电极组件放置于所述外壳中,所述多个电池单体包括第一电池单体和第二电池单体,
    所述第一电池单体和所述第二电池单体被配置为在所述电池的电循环次数大于或等于100次时,所述第一电池单体的满充群裕度小于1,所述第二电池单体的满充群裕度大于1,
    所述满充群裕度是指电池单体在满充状态时,沿所述多个电池单体的排布方向,所述电极组件的最大尺寸与所述外壳的最小尺寸的比值。
  2. 根据权利要求1所述的电池,其中,所述第一电池单体还被配置为在所述电池的电循环次数大于或等于100次时,所述第一电池单体的满充群裕度大于或等于0.8。
  3. 根据权利要求1或2所述的电池,其中,所述第二电池单体还被配置为在所述电池的电循环次数大于或等于100次时,所述第二电池单体的满充群裕度小于或等于1.2。
  4. 根据权利要求1-3中任一项所述的电池,其中,所述电池具有搭配群裕度F,F=F 3/A,且F≤1.1;
    其中,F 3为在所述电池的电循环次数大于或等于100次时,所述电池内所有电池单体的满充群裕度之和,A为所述电池内电池单体的总数量。
  5. 根据权利要求4所述的电池,其中,所述搭配群裕度大于或等于0.9。
  6. 根据权利要求4或5所述的电池,其中,所述搭配群裕度小于或等于1.05。
  7. 根据权利要求1-6中任一项所述的电池,其中,所述第一电池单体与所述第二电池单体相邻设置。
  8. 根据权利要求1-7中任一项所述的电池,其中,所述第一电池单体和所述第二电池单体的数量相等。
  9. 根据权利要求1-8中任一项所述的电池,其中,所述电池还包括两个端板,所述两个端板分别位于所述多个电池单体沿排布方向的一端,并与所述第二电池单体相邻设置。
  10. 一种用电装置,包括权利要求1-9中任一项所述的电池,所述电池用于提供电能。
PCT/CN2022/139143 2021-12-23 2022-12-14 电池和用电装置 WO2023116538A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111608056.1 2021-12-23
CN202111608056.1A CN115832561A (zh) 2021-12-23 2021-12-23 电池和用电装置

Publications (1)

Publication Number Publication Date
WO2023116538A1 true WO2023116538A1 (zh) 2023-06-29

Family

ID=85515514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139143 WO2023116538A1 (zh) 2021-12-23 2022-12-14 电池和用电装置

Country Status (2)

Country Link
CN (1) CN115832561A (zh)
WO (1) WO2023116538A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180137308A (ko) * 2017-06-16 2018-12-27 삼성에스디아이 주식회사 배터리 모듈
CN112534631A (zh) * 2018-08-06 2021-03-19 三洋电机株式会社 电源装置以及具有该电源装置的车辆
CN112768748A (zh) * 2021-04-07 2021-05-07 江苏时代新能源科技有限公司 电池单体、电池、用电设备及制备电池单体的方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4578933B2 (ja) * 2004-10-21 2010-11-10 日立マクセル株式会社 非水電解液二次電池の製造方法
KR101254692B1 (ko) * 2010-10-15 2013-04-15 주식회사 엘지화학 안정성이 향상된 이차 전지
CN106207016B (zh) * 2015-05-04 2018-12-04 宁德时代新能源科技股份有限公司 动力电池
CN111384332A (zh) * 2018-12-29 2020-07-07 宁德时代新能源科技股份有限公司 电池模组以及电池包
CN112349962B (zh) * 2019-08-08 2021-11-09 宁德时代新能源科技股份有限公司 锂离子电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180137308A (ko) * 2017-06-16 2018-12-27 삼성에스디아이 주식회사 배터리 모듈
CN112534631A (zh) * 2018-08-06 2021-03-19 三洋电机株式会社 电源装置以及具有该电源装置的车辆
CN112768748A (zh) * 2021-04-07 2021-05-07 江苏时代新能源科技有限公司 电池单体、电池、用电设备及制备电池单体的方法和装置

Also Published As

Publication number Publication date
CN115832561A (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
WO2022105010A1 (zh) 电池单体、电池及用电装置
WO2023050969A1 (zh) 一种电池单体、电池及用电装置
WO2022188323A1 (zh) 用于密封通孔的密封组件、制备电池单体的方法和装置
WO2024093100A1 (zh) 电极极片、电极组件、电池单体、电池和用电设备
WO2023004823A1 (zh) 卷绕式电极组件、电池单体、电池及用电设备
WO2023065923A1 (zh) 电池单体、电池和用电设备
WO2023134479A1 (zh) 电池和用电设备
WO2023030399A1 (zh) 泄压装置、电池单体、电池及用电设备
US20230238540A1 (en) Electrode assembly, battery cell, battery, and method and device for manufacturing electrode assembly
WO2023207402A1 (zh) 顶盖组件、电池单体、电池及用电设备
WO2024060618A1 (zh) 电极组件、电池单体、电池及用电设备
WO2023273390A1 (zh) 集流构件、电池单体、电池以及用电装置
KR102308423B1 (ko) 형상 기억 합금체가 형성되어 있는 탑 캡을 구비하는 전지셀
WO2023004833A1 (zh) 电池单体、电池、用电装置及制备电池单体的方法和设备
WO2023130266A1 (zh) 电池单体、电池、用电装置、制备电池单体的方法和装置
WO2023159847A1 (zh) 电池单体、电池及用电装置
WO2023116538A1 (zh) 电池和用电装置
WO2023160034A1 (zh) 电池箱体上盖、电池箱体、电池及用电设备
WO2023060656A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023133748A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
WO2023173429A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2023155133A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023155208A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2022126547A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023116539A1 (zh) 电池和用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909852

Country of ref document: EP

Kind code of ref document: A1