WO2023116516A1 - 信道信息上报的方法和装置 - Google Patents

信道信息上报的方法和装置 Download PDF

Info

Publication number
WO2023116516A1
WO2023116516A1 PCT/CN2022/138857 CN2022138857W WO2023116516A1 WO 2023116516 A1 WO2023116516 A1 WO 2023116516A1 CN 2022138857 W CN2022138857 W CN 2022138857W WO 2023116516 A1 WO2023116516 A1 WO 2023116516A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay
access network
channel information
information
radio access
Prior art date
Application number
PCT/CN2022/138857
Other languages
English (en)
French (fr)
Inventor
李婷
马瑞琪
陈凯
王潇涵
金黄平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023116516A1 publication Critical patent/WO2023116516A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, to a method and device for reporting channel information.
  • MIMO Multiple-input multiple output
  • radio access network equipment can reduce the interference between multiple users and the interference between multiple signal streams of the same user through precoding technology, thereby improving signal quality and spectrum utilization.
  • the radio access network device may determine the precoding matrix through a precoding matrix indicator (precoding matrix indicator, PMI) fed back by the terminal device.
  • PMI precoding matrix indicator
  • the terminal device may determine a precoding matrix suitable for the downlink channel through channel measurement, and feed back the PMI so that the radio access network device obtains a precoding matrix that is the same as or similar to the precoding vector determined by the terminal device.
  • the multiple wireless access network devices when multiple wireless access network devices cooperate to serve a terminal device (that is, multi-station cooperation), the multiple wireless access network devices form a cooperative set of the terminal device, and the terminal device needs to jointly measure the terminal device Channel information with each radio access network device, and feed back the channel information of each radio access network device in the collaboration set through the PMI.
  • the matching degree between the precoding matrix determined by the radio access network equipment and the channel will affect the signal transmission quality.
  • the precoding matrix is determined according to the channel information fed back by the terminal equipment. Therefore, how to improve the feedback accuracy of channel information is an urgent problem to be solved.
  • the present application provides a method and device for reporting channel information, which can improve the accuracy of PMI feedback, thereby improving the matching degree between the precoding matrix and the channel.
  • a method for reporting channel information includes: a terminal device measures multiple reference signals from multiple radio access network devices, wherein one of the multiple radio access network devices wirelessly accesses The network device sends one of the multiple reference signals; the terminal device determines first delay information and first channel information according to the multiple reference signals, and the first delay information includes the multiple radio access network devices Delay information of some or all of the radio access network devices, the first channel information includes channel information of each radio access network device in the plurality of radio access network devices; the terminal device according to the first delay information Perform delay difference compensation on the first channel information to determine second channel information; the terminal device determines a precoding matrix indicator PMI according to the second channel information, and the PMI is used to indicate the second channel information; the terminal device reports the The first delay information and the PMI.
  • the terminal device uses the first delay information to compensate the delay difference of the first channel information, and determines the second channel information with a smaller delay spread.
  • the smaller the delay spread, the different wireless access networks The smaller the influence of the channel difference of the device on the amplitude and phase of different frequency components, the smaller the selectivity of different frequency components, which can reduce the selectivity of the channel to different frequency components, that is, reduce the frequency selection, so that when the PMI feedback is used for the first
  • the accuracy loss of the PMI feedback channel is small, and the feedback accuracy of the PMI is relatively high, especially When the feedback granularity of the PMI is large, the feedback accuracy of the PMI can be significantly improved based on the technical solution provided by the present application.
  • the feedback accuracy of PMI is improved, a more accurate precoding matrix can be determined, the quality of signal transmission can be improved, and the performance advantage of multi
  • the multiple radio access network devices are radio access network devices in the coordination set.
  • the terminal device determining the first delay information according to the multiple reference signals includes: the terminal device measuring some or all of the multiple reference signals Determining the air interface delay difference of some or all of the reference signals relative to the air interface delay of the first reference signal, the first reference signal being one of the multiple reference signals; the terminal device according to the air interface delay of the multiple reference signals Delay difference, determine the first delay information.
  • the air interface delay difference of some or all of the above reference signals may include the air interface delay difference of other reference signals except the first reference signal, or may include the air interface delay of each of the multiple reference signals Difference, that is, the air interface delay difference of each of the multiple reference signals relative to the first reference signal.
  • the terminal device can determine the air interface delay difference of some or all of the multiple reference signals by measuring the air interface delay of different reference signals relative to the first reference signal, further, according to The air interface delay difference of some or all of the multiple reference signals may determine the first delay information.
  • the air interface delay difference of different reference signals is used as a parameter basis for determining the first delay information, so that the first delay information closer to the actual one can be determined.
  • the first delay information includes an air interface delay difference of the part or all of the reference signals.
  • the first delay information reported by the terminal device may include the air interface delay difference of part or all of the reference signals.
  • the terminal device after the terminal device performs delay difference compensation on the first channel information according to the first delay information, it can ensure that the main paths or the first paths of the channel information of multiple wireless access network devices are aligned, and can determine The second channel information with the smallest delay spread, the smaller the delay spread, the smaller the influence of the channel difference of different wireless access network equipment on the amplitude and phase of different frequency components, the smaller the selectivity of different frequency components, and thus the greater the To a certain extent, the effect of reducing frequency selection is achieved.
  • the PMI when the PMI is used to feed back the second channel information, since the amplitude and phase changes of the channels of different wireless access network devices indicated by the second channel information in the frequency domain are small, the loss of accuracy of the PMI feedback channel is small, The feedback accuracy of the PMI is high, and a more accurate precoding matrix of the downlink channel can be determined, thereby improving the quality of signal transmission and giving full play to the performance advantages of multi-station cooperative transmission.
  • the terminal device determines the first delay information according to the air interface delay difference of the part or all of the reference signals, including: the terminal device determines the first delay information according to the part or all of the reference signals
  • the air interface delay difference of the reference signal and the first mapping table are used to determine the first delay information, wherein the first mapping table is used to indicate the air interface delay difference range of the reference signal and the preset radio access network device delay deviation
  • the first delay information is used to indicate respective delay offsets of multiple radio access network devices corresponding to the part or all of the reference signals.
  • the delay offsets of some or all of the multiple wireless access network devices are determined through the air interface delay difference of the corresponding reference signal and the first mapping table.
  • a certain air interface delay difference range may correspond to a preset delay offset.
  • the first delay information reported by the terminal device may include delay offsets of some or all radio access network devices. Since the delay offset is determined according to the air interface delay difference of the reference signal, after the delay difference compensation is performed on the first channel information according to the first delay information, the channel information of multiple wireless access network devices can be guaranteed Aligning the main path or the first path, or aligning within a certain error range, can determine the second channel information with a small delay expansion, so as to reduce frequency selection as much as possible and improve the feedback accuracy of PMI.
  • the first delay information includes a plurality of index values, and one index value in the plurality of index values is used to indicate that some or all radio access network devices The delay offset of a radio access network device in .
  • the first delay information reported by the terminal device may include multiple index values corresponding to delay offsets of multiple radio access network devices. Since there is no need to report the specific value of the delay offset, signaling overhead can be reduced to a certain extent.
  • the air interface delay difference of the part or all of the reference signals includes the main path of each of the part or all of the reference signals relative to the first reference signal
  • the time delay difference of the main path of the reference signal; or, the air interface delay difference of the part or all of the reference signals includes the time delay of the first path of each reference signal in the part or all of the reference signals relative to the first path of the first reference signal Difference.
  • the first reference signal is the first reference signal received by the terminal device among the multiple reference signals.
  • the terminal device performing delay difference compensation on the first channel information according to the first delay information includes: the terminal device compensating for the first channel information according to the first delay information , performing linear phase compensation on the first channel information in the frequency domain, so that the main paths or the first paths of the channel information of the multiple radio access network devices are aligned.
  • the main path alignment or head path alignment of multiple radio access network devices may include: the main path alignment or head path alignment of multiple radio access network devices, or the main path alignment of multiple radio access network devices Within the preset error range or the head diameter is within the preset error range.
  • the terminal device implements delay difference compensation by performing linear phase compensation on the first channel information, which can ensure the main path alignment or first path alignment of the channel information of multiple wireless access network devices, or, It can ensure that the main path or the first path of the channel information of multiple wireless access network devices is within the preset error range, so that the effect of reducing frequency selection can be achieved to varying degrees.
  • the PMI is used to feed back the second channel information, the feedback accuracy of the PMI is improved, and the wireless access network equipment can determine a more accurate precoding matrix of the downlink channel, thereby improving the quality of signal transmission and giving full play to the performance of multi-station cooperative transmission Advantage.
  • a method for reporting channel information includes: a first radio access network device receiving first delay information and a precoding matrix indication PMI sent by a terminal device, the first delay information including multiple Delay information of some or all of the wireless access network devices in the wireless access network devices, the PMI is used to indicate the second channel information, and the second channel information is the time delay information for the first channel information through the first delay information Determined by delay compensation, the first channel information includes channel information of each access network device in the multiple radio access network devices; the first radio access network device according to the first delay information and the PMI, A first precoding matrix is determined, the first precoding matrix matches the first channel information.
  • the first radio access network device may be any one of the multiple radio access network devices, and may also be a radio access network device outside the cooperative set that forms the terminal device. That is to say, the first radio access network device may or may not send the reference signal to the terminal device, which is not limited in this application.
  • the first channel information is obtained by measuring multiple reference signals received by the terminal device, where the multiple reference signals are in one-to-one correspondence with multiple radio access network devices, where the multiple radio access network One radio access network device among the devices sends one reference signal among the plurality of reference signals.
  • the first radio access network device determines the first precoding matrix that matches the first channel information according to the first delay information and the precoding matrix indicator PMI reported by the terminal device, that is, the first precoding matrix
  • the encoding matrix can match the real channel for transmitting data, and when using the first precoding matrix for data transmission, data transmission performance can be guaranteed, thereby improving the quality of signal transmission and giving full play to the performance advantages of multi-station cooperative transmission.
  • the first radio access network device determines a first precoding matrix according to the first delay information and the PMI, including: the first radio access network The network device obtains the first channel information according to the first delay information, the PMI, the first codebook structure, and the second codebook structure; the first radio access network device obtains the first channel information according to the first channel information precoding matrix.
  • the first radio access network device restores the first channel information through the first codebook structure and the second codebook structure, and combines the first delay information and PMI, and determines the channel information corresponding to the first channel information A matched first precoding matrix, the first precoding matrix can match the real channel for transmitting data, and when using the first precoding matrix for data transmission, the data transmission performance can be guaranteed, so as to give full play to the advantages of multi-station cooperative transmission performance advantage.
  • the first radio access network device obtains the first delay information, the PMI, the first codebook structure, and the second codebook structure according to the first Channel information, including: the first radio access network device obtains the second channel information according to the PMI and the first codebook structure; the first radio access network device obtains the second channel information according to the first delay information, the second The channel information and the second codebook structure obtain the first channel information.
  • the first codebook structure is a multi-station codebook structure applicable to multi-station cooperative scenarios, and the second channel information can be determined by using the first codebook structure, and the form of the first codebook structure is not limited here .
  • the second codebook structure is a newly designed codebook structure, and the second channel information can be restored to the first channel information by using the second codebook structure.
  • first codebook structure and the second codebook structure may be independent of each other, or may be nested together.
  • the first wireless access network device first restores the second channel information through the first codebook structure and PMI, that is, obtains the channel information after delay difference compensation, and then combines the first delay information with The second codebook structure calculates the second channel information to determine the first channel information similar to the real channel information.
  • the second codebook structure includes a delay parameter, the first delay information is used to indicate the value of the delay parameter, and the second channel information is obtained through The first delay information is determined by performing linear phase compensation on the first channel information in the frequency domain; wherein, the first radio access network device according to the first delay information, the second channel information and the second
  • the codebook structure acquiring the first channel information includes: the first radio access network device performing linear phase inverse compensation on the second channel information in the frequency domain according to the second codebook structure and the value of the delay parameter , to determine the first channel information.
  • the second codebook structure includes delay parameters, and the first wireless access network device performs linear
  • the phase reverse compensation can determine the first channel information corresponding to the real channel.
  • the first radio access network device determines a first precoding matrix according to the first delay information and the PMI, including: the first radio access network The network device acquires the second channel information according to the PMI and the first codebook structure; the first radio access network device determines a second precoding matrix according to the second channel information, and the second precoding matrix is related to the first The two channel information matches; the first radio access network device performs delay difference compensation on the second precoding matrix according to the first delay information to determine the first precoding matrix.
  • the first wireless access network device first restores the second channel information through the first codebook structure and PMI, then determines the second precoding matrix that matches the second channel information, and finally according to the terminal device
  • the reported first delay information directly performs delay difference compensation on the second precoding matrix to determine the first precoding matrix that matches the first channel information.
  • the first delay information is determined according to the air interface delay difference of part or all of the reference signals received by the terminal device, and the air interface delay difference of the part or all of the reference signals is The delay difference is determined by measuring the air interface delay of some or all of the multiple reference signals relative to the first reference signal.
  • the first delay information includes an air interface delay difference of the part or all of the reference signals.
  • the first delay information includes an air interface delay difference of each of the multiple reference signals.
  • the first delay information includes a plurality of index values, and one index value in the plurality of index values is used to indicate that some or all radio access network devices
  • the delay offset of one radio access network device, the delay offset of the plurality of radio access network devices is determined according to the air interface delay difference of the part or all of the reference signals and the first mapping table, wherein The first mapping table is used to indicate the mapping relationship between the air interface delay difference range of the reference signal and the preset radio access network device delay offset.
  • the air interface delay difference of the part or all of the reference signals includes the main path of each reference signal in the part or all of the reference signals relative to the first reference signal
  • the time delay difference of the main path of the reference signal; or, the air interface delay difference of the part or all of the reference signals includes the time delay of the first path of each reference signal in the part or all of the reference signals relative to the first path of the first reference signal Difference.
  • the first reference signal is a first reference signal received by the terminal device among the multiple reference signals.
  • a terminal device in a third aspect, includes a processing unit and a sending unit, the processing unit is configured to: measure multiple reference signals from multiple wireless access network devices, wherein the multiple wireless access network devices A radio access network device among the network access devices sends one of the multiple reference signals; determining first delay information and first channel information according to the multiple reference signals, where the first delay information includes the Delay information of each wireless access network device among the multiple wireless access network devices, the first channel information includes channel information of some or all of the multiple wireless access network devices; according to the first The delay information performs delay difference compensation on the first channel information, and determines the second channel information; determines the precoding matrix indication PMI according to the second channel information, and the PMI is used to indicate the second channel information; the sending unit, It is used to report the first delay information and the PMI.
  • the processing unit is specifically configured to: measure an air interface delay of some or all of the multiple reference signals relative to the first reference signal, and determine the The air interface time delay difference of some or all reference signals, the first reference signal is one of the multiple reference signals; the first time delay information is determined according to the air interface time delay difference of the multiple reference signals.
  • the first delay information includes an air interface delay difference of the part or all of the reference signals.
  • the processing unit is specifically configured to: determine the first delay information according to the air interface delay difference of the part or all of the reference signals and the first mapping table, where The first mapping table is used to indicate the mapping relationship between the air interface delay difference range of the reference signal and the preset wireless access network equipment delay offset, and the first delay information is used to indicate the part or all of the reference The delay offset of each radio access network device among the multiple radio access network devices corresponding to the signal.
  • the first delay information includes a plurality of index values, and one index value in the plurality of index values is used to indicate that some or all radio access network devices The delay offset of a radio access network device in .
  • the air interface delay difference of the part or all of the reference signals includes the main path of each reference signal in the part or all of the reference signals relative to the first reference signal
  • the time delay difference of the main path of the reference signal; or, the air interface delay difference of the part or all of the reference signals includes the time delay of the first path of each reference signal in the part or all of the reference signals relative to the first path of the first reference signal Difference.
  • the first reference signal is a first reference signal received by the receiving unit among the plurality of reference signals.
  • the processing unit is specifically configured to: perform linear phase compensation on the first channel information in the frequency domain according to the first delay information, so that the multiple The main path alignment or the first path alignment of the channel information of a radio access network device.
  • the main path alignment or head path alignment of multiple radio access network devices may include: the main path alignment or head path alignment of multiple radio access network devices, or the main path alignment of multiple radio access network devices Within the preset error range or the head diameter is within the preset error range.
  • a wireless access network device in a fourth aspect, includes a receiving unit and a processing unit, the receiving unit is configured to receive the first delay information and the precoding matrix indication PMI sent by the terminal device,
  • the first delay information includes delay information of some or all wireless access network devices among multiple wireless access network devices, and the PMI is used to indicate second channel information, and the second channel information is obtained through the first delay
  • the information is determined by performing delay difference compensation on the first channel information, where the first channel information includes channel information of each access network device in the plurality of wireless access network devices; the processing unit is configured to, according to the first time Determining a first precoding matrix based on the extension information and the PMI, where the first precoding matrix matches the first channel information.
  • the processing unit is specifically configured to: acquire the first codebook structure and the second codebook structure according to the first delay information, the PMI, the first codebook structure, and the second codebook structure Channel information: acquiring the first precoding matrix according to the first channel information.
  • the processing unit is specifically configured to: acquire the second channel information according to the PMI and the first codebook structure; The second channel information and the second codebook structure obtain the first channel information.
  • the second codebook structure includes a delay parameter
  • the first delay information is used to indicate the value of the delay parameter
  • the second channel information is obtained through
  • the first delay information is determined by performing linear phase compensation on the first channel information in the frequency domain; wherein the processing unit is specifically configured to, according to the second codebook structure and the value of the delay parameter, in the frequency domain performing linear phase inverse compensation on the second channel information to determine the first channel information.
  • the processing unit is specifically configured to: acquire the second channel information according to the PMI and the first codebook structure; determine the second channel information according to the second channel information.
  • the first delay information is determined according to the air interface delay difference of part or all of the reference signals received by the terminal device, and the air interface delay difference of the part or all of the reference signals The delay difference is determined by measuring the air interface delay of some or all of the multiple reference signals relative to the first reference signal.
  • the first delay information includes an air interface delay difference of the part or all of the reference signals.
  • the first delay information includes a plurality of index values, and one index value in the plurality of index values is used to indicate that some or all radio access network devices
  • the delay offset of one radio access network device, the delay offset of the plurality of radio access network devices is determined according to the air interface delay difference of the part or all of the reference signals and the first mapping table, wherein The first mapping table is used to indicate the mapping relationship between the air interface delay difference range of the reference signal and the preset radio access network device delay offset.
  • the air interface delay difference of the part or all of the reference signals includes the main path of each reference signal in the part or all of the reference signals relative to the first reference signal
  • the time delay difference of the main path of the reference signal; or, the air interface delay difference of the part or all of the reference signals includes the time delay of the first path of each reference signal in the part or all of the reference signals relative to the first path of the first reference signal Difference.
  • the first reference signal is a first reference signal received by the receiving unit among the multiple reference signals.
  • the beneficial effects of the device described in the fourth aspect can refer to the beneficial effects of the method in the second aspect, which will not be repeated here.
  • a communication device including: at least one processor and a communication interface, the communication interface is used for the communication device to exchange information with other communication devices, when the program instructions in the at least one processor During execution, the communication device is made to execute the method in the foregoing first aspect or any possible implementation manner of the first aspect.
  • the communication device may further include a memory, the memory is coupled to the processor, and the processor is configured to implement the method described in the foregoing first aspect or any possible implementation manner of the first aspect.
  • the memory is used to store instructions and data, and when the processor executes the instructions stored in the memory, the method described in the first aspect or any possible implementation of the first aspect may be implemented .
  • the communication interface may be a transceiver, circuit, bus, module, pin or other types of communication interface.
  • the communication apparatus in the fifth aspect may be a terminal device, or may be a component (such as a chip or a circuit) for a terminal device.
  • the other communication device may be a radio access network device, or may be a component (such as a chip or a circuit, etc.) for the radio access network device.
  • a communication device including: at least one processor and a communication interface, the communication interface is used for the communication device to exchange information with other communication devices, when the program instructions in the at least one processor During execution, the communication device is made to execute the method in the second aspect or any possible implementation manner of the second aspect.
  • the communication device may further include a memory, the memory is coupled to the processor, and the processor is configured to implement the method described in the above second aspect or any possible implementation manner of the second aspect.
  • the memory is used to store instructions and data, and when the processor executes the instructions stored in the memory, it can implement the method described in the above second aspect or any possible implementation of the second aspect .
  • the communication interface may be a transceiver, circuit, bus, module, pin or other types of communication interface.
  • the communications apparatus in the sixth aspect may be a radio access network device, or may be a component (such as a chip or a circuit, etc.) used in a radio access network device.
  • the other communication device may be a terminal device, or may be a component (such as a chip or a circuit, etc.) for a terminal device.
  • a seventh aspect provides a system-on-a-chip, where the system-on-a-chip includes a processor for a terminal device to implement the functions involved in the above-mentioned first aspect or any possible implementation of the first aspect, for example, receiving, sending , or process data and/or information involved in the above methods.
  • the chip system further includes a memory, and the memory is configured to store necessary program instructions and data of the terminal device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • a system-on-a-chip where the system-on-a-chip includes a processor, configured for a wireless access network device to implement the functions involved in the above-mentioned second aspect or any possible implementation manner of the second aspect, for example, Receive, send, or process data and/or information involved in the above methods.
  • the chip system further includes a memory, and the memory is configured to store necessary program instructions and data of the terminal device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • a computer-readable storage medium in which a computer program or instruction is stored, and when the computer program or instruction is executed, any one of the aforementioned first aspect or the first aspect is realized. method in one possible implementation.
  • a computer-readable storage medium is provided, and a computer program or instruction is stored in the computer-readable storage medium.
  • the computer program or instruction is executed, any one of the aforementioned second aspect or the second aspect is realized. method in one possible implementation.
  • a computer program product comprising: computer program code, when the computer program code is run on a computer, the computer is made to execute any one of the first aspect or the first aspect method in one possible implementation.
  • a computer program product comprising: computer program code, when the computer program code is run on a computer, the computer executes any one of the above-mentioned second aspect or the second aspect method in one possible implementation.
  • a thirteenth aspect provides a communication system, including the terminal device described in the third aspect above and the wireless access network device described in the fourth aspect; or the communication system includes the communication device described in the fifth aspect above and the communication device described in the sixth aspect communication device.
  • any communication device, chip system, computer-readable storage medium, or computer program product provided above is used to implement the corresponding method provided above, and therefore, the beneficial effects it can achieve can be Refer to the beneficial effect in the corresponding method, which will not be repeated here.
  • FIG. 1 is a schematic diagram of a communication system to which the present application applies.
  • Fig. 2 is a schematic flowchart of determining a downlink channel precoding matrix.
  • Fig. 3 is a schematic flowchart of a method for reporting channel information provided by the present application.
  • Fig. 4 is a schematic flowchart of another method for reporting channel information provided by the present application.
  • Fig. 5 is a schematic structural diagram of a three-dimensional codebook based on multi-station cooperation in a multi-station cooperation scenario.
  • Fig. 6 is a schematic structural diagram of a multi-station joint codebook applicable to a multi-station cooperative scenario.
  • Fig. 7 is a schematic flowchart of another method for reporting channel information provided by the present application.
  • Fig. 8 is a schematic structural diagram of a terminal device provided by the present application.
  • Fig. 9 is a schematic structural diagram of a communication device provided by the present application.
  • Fig. 10 is a schematic structural diagram of a wireless access network device provided by the present application.
  • Fig. 11 is a schematic structural diagram of another communication device provided by the present application.
  • "for indicating” may include both for direct indicating and for indirect indicating.
  • the indication information When describing a certain indication information for indicating A, it may include that the indication information directly indicates A or indirectly indicates A, but it does not mean that A must be carried in the indication information.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, for example: global system of mobile communication (global system of mobile communication, GSM) system, code division multiple access (code division multiple access, CDMA) system, broadband code division multiple access (wideband code division multiple access, WCDMA) system, general packet radio service (general packet radio service, GPRS), long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE Time Division Duplex (TDD), Universal Mobile Telecommunications System (UMTS), Worldwide Interoperability for Microwave Access (WiMAX) Communication System, Fifth Generation (5G) Mobile communication systems or new radio access technologies (new radio, NR), especially suitable for scenarios that require channel information feedback, such as wireless networks using massive multiple-input multiple-output (M-MIMO) technology, Wireless networks using distributed antenna technology, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • general packet radio service general packet radio service
  • FIG. 1 is a schematic diagram of a communication system 100 applicable to the embodiment of the present application.
  • the communication system 100 may include multiple radio access network devices, for example, the radio access network device 110 , the radio access network device 120 and the radio access network device 130 shown in FIG. 1 .
  • the communication system 100 further includes at least one terminal device, such as the terminal device 140 shown in FIG. 1 .
  • radio access network devices and terminal devices shown in FIG. 1 are only exemplary, and the communication system 100 may further include more radio access network devices and terminal devices.
  • the radio access network device 110 , the radio access network device 120 and the radio access network device 130 can all communicate with the terminal device 140 , and this scenario can also be called multi-site transmission.
  • the radio access network device 110, the radio access network device 120, and the radio access network device 130 may provide services for the terminal device 140 in a cooperative manner.
  • the radio access network device 110 , the radio access network device 120 and the radio access network device 130 may be equivalent to a whole to perform data transmission with the terminal device 140 . That is to say, the radio access network device 110, the radio access network device 120, and the radio access network device 130 may provide services for the terminal device 140 in a manner of multi-station cooperation.
  • terminal equipment in the communication system 100 may also be called user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment user equipment
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • a terminal device can be a device that provides voice/data connectivity to users, for example, a handheld device with a wireless connection function, a vehicle device, etc.; it can be a device in the communication of the Internet of Vehicles, such as a communication terminal on a vehicle, a roadside device, etc.
  • the road side unit (RSU) can be a communication terminal carried on a UAV; it can also be a terminal device in an Internet of Things (IoT) system.
  • IoT Internet of Things
  • the terminal device includes but is not limited to: mobile phone (mobile phone), tablet computer, notebook computer, palmtop computer, mobile internet device (mobile internet device, MID), wearable device, virtual reality (virtual reality, VR) device , augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical surgery, smart grid Wireless terminals in grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, cellular phones, cordless phones, session initiation protocol ( session initiation protocol (SIP) telephone, wireless local loop (wireless local loop, WLL) station, personal digital assistant (personal digital assistant, PDA), handheld device with wireless communication capabilities, computing device, or other processing device connected to a wireless modem Devices, wearable devices, terminal devices in a 5G network or terminal devices in a future evolving public land mobile network (PLMN), etc., are not limited in this embodiment of the present application.
  • PLMN public land mobile network
  • the wireless access network devices may be devices capable of connecting a terminal device to a wireless network.
  • the radio access network device may also be referred to as a radio access network (radio access network, RAN) node, network device, or access network device.
  • the radio access network device may be a base station.
  • the base station in the embodiment of the present application can broadly cover various names in the following, or replace with the following names, such as: node B (NodeB), evolved base station (evolved NodeB, eNB), next generation base station (next generation NodeB) , gNB), relay station, access point, transmission point (transmitting and receiving point, TRP), transmission point (transmitting point, TP), master station (master eNodeB, MeNB), secondary station (secondary eNodeB, SeNB), multi-standard Wireless (multi standard radio, MSR) node, home base station, network controller, access node, wireless node, access point (access point, AP), transmission node, transceiver node, base band unit (BBU), Remote radio unit (RRU), active antenna unit (AAU), radio head (remote radio head, RRH), central unit (central unit, CU), distributed unit (distributed unit, DU), positioning nodes, etc.
  • NodeB node B
  • eNB evolved base
  • a base station may be a macro base station, a micro base station, a relay node, a donor node, or the like, or a combination thereof.
  • a base station may also refer to a communication module, modem or chip used to be set in the aforementioned equipment or device.
  • the base station can also be a network-side device in a 6G network, a device that assumes the function of a base station in a future communication system, and the like.
  • Base stations can support networks of the same or different access technologies. The embodiment of the present application does not limit the specific technology and specific equipment form adopted by the radio access network equipment.
  • Base stations can be fixed or mobile.
  • a helicopter or drone can be configured to act as a mobile base station, and one or more cells can move according to the location of the mobile base station.
  • a helicopter or drone may be configured to serve as a device in communication with another base station.
  • the radio access network device in this embodiment of the present application may refer to a CU or a DU, or, the radio access network device includes a CU and a DU.
  • a gNB may also include an Active Antenna Unit (AAU).
  • CU implements some functions of gNB, and DU implements some functions of gNB.
  • CU is responsible for processing non-real-time protocols and services, implementing radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer function.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, realizing the functions of the radio link control (radio link control, RLC) layer, medium access control (medium access control, MAC) layer and physical (physical, PHY) layer.
  • the AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by the DU , or, sent by DU+AAU.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN).
  • FIG. 1 the communication system and communication scenarios shown in FIG. 1 are only exemplary, and the present application is not limited thereto. The embodiments of the present application may be applicable to any communication scenario in which a sending-end device communicates with a receiving-end device.
  • MIMO uses multiple transmitting antennas to transmit signals with the same information through different paths, and at the same time, the receiving device can obtain multiple independently fading signals of the same data symbol, thereby improving the reliability of reception.
  • the spatial diversity of MIMO technology can be used to combat channel fading.
  • the multiple antennas of MIMO provide more degrees of freedom in the space space, and utilize the independence of spatial channels to simultaneously transmit multiple data streams.
  • the spatial multiplexing of MIMO technology can increase the number of transmission streams, expand the system capacity, and increase the transmission rate.
  • the radio access network equipment needs to perform modulation coding and signal precoding before sending data to the user equipment.
  • the precoding technology can not only effectively suppress the interference of multiple users in the MIMO system, but also significantly improve the system capacity while greatly simplifying the algorithm of the receiving end equipment.
  • the sending device (such as a wireless access network device) can process the signal to be sent with the help of a precoding matrix that matches the channel state when the channel state between the sending device and the receiving device is known, so that The precoded signal to be sent is adapted to the channel, thereby reducing the complexity of eliminating the influence between channels for a receiving device (such as a terminal device).
  • the quality of the received signal such as signal to interference plus noise ratio (signal to interference plus noise ratio, SINR) etc.
  • SINR signal to interference plus noise ratio
  • the sending device may also perform precoding in other ways.
  • the channel information such as but not limited to the channel matrix
  • the pre-set precoding matrix or weighting processing method is used for precoding.
  • the channel information such as but not limited to the channel matrix
  • Channel state information (channel state information, CSI)
  • the channel state information CSI is information used to describe the channel properties of the communication link between the receiving end and the sending end reported by the receiving end (such as a terminal device) to the sending end (such as a wireless access network device).
  • CSI includes but is not limited to: precoding matrix indicator (precoding matrix indicator, PMI), rank indicator (rank indication, RI), channel quality indicator (channel quality indicator, CQI), channel state information reference signal (channel state information reference signal, CSI-RS), channel state information reference signal resource indicator (CSI-RS resource indicator, CRI) and layer indicator (layer indicator, LI), etc.
  • the CSI may include one or more items listed above, and may also include other information used to characterize the channel state other than the above-listed information, which is not limited in the present application.
  • the transmitting end In order to obtain a precoding matrix that can be adapted to the channel, the transmitting end usually performs channel estimation in advance by sending a reference signal, and obtains feedback from the receiving end, so as to determine a more accurate precoding matrix for precoding processing on the data to be transmitted .
  • the sending end may be a radio access network device
  • the receiving end may be a terminal device.
  • the reference signal may be a reference signal for downlink channel measurement, for example, a channel state information reference signal (CSI-RS).
  • the terminal device can perform CSI measurement according to the received CSI-RS, and feed back the CSI of the downlink channel to the radio access network device.
  • CSI-RS channel state information reference signal
  • the precoding matrix indication PMI may be used to indicate the precoding matrix, and determine the precoding used when the radio access network device sends data to the terminal device.
  • the precoding matrix may be, for example, a precoding matrix determined by the terminal device based on the channel matrix of each frequency domain unit.
  • the channel matrix may be determined by the terminal device through channel estimation or based on channel reciprocity.
  • the specific method for the terminal device to determine the precoding matrix is not limited to the above, and the specific implementation manner may refer to the prior art, and for the sake of brevity, it is not listed here one by one.
  • the precoding matrix determined by the terminal device may be referred to as a precoding matrix to be fed back, or in other words, a precoding matrix to be reported.
  • the terminal device may indicate the precoding matrix to be fed back through the PMI, so that the radio access network device recovers the precoding matrix based on the PMI.
  • the precoding matrix recovered by the radio access network device based on the PMI may be the same as or similar to the aforementioned precoding matrix to be fed back.
  • the higher the similarity between the precoding matrix determined by the radio access network equipment and the precoding matrix determined by the terminal equipment according to the PMI the more suitable the downlink channel of the precoding matrix determined for data transmission is.
  • the higher the compatibility the higher the quality of signal transmission.
  • the precoding matrix indication PMI can also be used to indicate the channel matrix (also called channel information, etc.). matrix or multi-station channel information).
  • the terminal device may indicate the channel matrix to the radio access network device through the PMI, so that the radio access network device recovers the channel matrix based on the PMI, thereby determining a precoding matrix for data transmission.
  • PMI is only a designation and should not constitute any limitation to this application. This application does not exclude the possibility of defining signaling with other names in future protocols for the same or similar functions.
  • the feedback granularity refers to the frequency-domain feedback granularity of the PMI, that is, the smallest feedback unit of the PMI.
  • the minimum feedback unit of PMI is a PMI subband.
  • a PMI subband consists of several resource blocks (resource blocks, RBs), and each RB consists of multiple resource elements (resource elements, REs).
  • Each PMI sub-band feeds back one PMI.
  • the feedback granularity of PMI is 2 RBs, that is, when the PMI subband contains 2 RBs
  • the terminal device reports a PMI every 2 RBs in the frequency domain, that is, the PMI is used to indicate the corresponding precoding matrix in 2 RBs or channel matrix.
  • the signal received by the receiving end is a composite signal that passes through different paths and has time differences.
  • the different path lengths lead to different arrival times of the signals. Therefore, the signal received by the receiving end includes not only the pulse signal sent by the sending end, but also various delay signals of the pulse signal.
  • This phenomenon that the pulse width of the received signal is extended due to the multipath effect is called delay extension.
  • Delay spread can be defined as the difference between the maximum transmission delay and the minimum transmission delay, that is, the difference between the arrival time of the last resolvable delayed signal and the arrival time of the first delayed signal, which is actually the time of pulse stretching. Delay spread is an important index to measure the quality of multipath propagation channel.
  • the signal received by the receiving end is a composite signal of signals passing through different paths and having time differences.
  • the first path is the first arrival delay signal, that is, the first arrival path;
  • the main path is the signal component with the greatest strength among all delay signals, that is, the strongest path.
  • the codebook structure reflects the relationship between the amount of PMI reported and the fed back precoding matrix or channel information.
  • the terminal device can obtain the channel matrix according to the reference signal measurement, and determine the PMI based on the channel matrix and the codebook structure.
  • the radio access network device can restore the channel matrix according to the PMI and the codebook structure fed back by the terminal device.
  • the CSI-RS identifier (CSI-RS ID) is used to distinguish the CSI-RS received by the terminal device from multiple radio access network devices. Multiple radio access network devices may send CSI-RSs on different resources, or send CSI-RSs on the same resource but different CSI-RS ports. The terminal device can distinguish the CSI-RS sent by multiple radio access network devices according to the resource ID (resource ID) or the CSI-RS port number, and number each CSI-RS, which is the CSI-RS identifier. It should be understood that the CSI-RS logo is only a designation and shall not constitute any limitation to this application.
  • the electromagnetic waves sent from the transmitting antenna at the same time arrive at the receiving antenna along different paths at different times, and are superimposed on the antenna field effect to produce a mixture of multipath components. Since the propagation characteristics of electromagnetic waves at different frequencies are different, the channel response of the signal varies with the frequency, which is manifested as a change in amplitude and phase, which is frequency selectivity. When the difference between the arrival time of the last resolvable delay signal and the first delay signal is larger, that is, the delay spread is larger, the amplitude and phase changes of the channel response are more severe, and the frequency selectivity is stronger.
  • CoMP The coordinated multi-point transmission technology
  • CoMP technology refers to multi-point transmission/reception technology, where multi-point refers to geographically separated multiple antenna access points, which can be used as cells, base stations, Node-B, eNB, distributed antennas, etc. It uses optical fiber-connected antenna nodes to work together to serve users, and several adjacent antenna nodes serve a user at the same time, forming a multi-station cooperation scenario, which can increase the data rate of users.
  • CoMP technologies can be divided into two categories: joint processing technology and cooperative scheduling and beamforming technology.
  • each transmission point in a coordinated cell set shares the data used for transmission by a certain terminal device on the same time-frequency resource.
  • the radio access network device may select all or part of the cells in the coordinated cell set to serve the UE according to the scheduling result and service requirements.
  • all the cells in the coordinated cell set send the same or different data to the terminal device in the same radio resource block, that is, multiple coordinated cells send data to the same terminal device at the same time, and this kind of JP is called Joint transmission (joint transmission, JT).
  • JT Joint transmission
  • JT Joint transmission
  • the wireless access network equipment can use the reciprocity of the uplink channel and the downlink channel to obtain the CSI of the downlink channel through the uplink channel, and then perform signal precoded.
  • the wireless access network device performs downlink precoding according to the CSI fed back by the terminal device to the network device.
  • each transmission node participating in CoMP adopts its own independent precoding scheme, and realizes bit-level combination when receiving signals at the receiving end.
  • the CJT transmission method is adopted, the joint precoding of the transmission nodes participating in CoMP is required. Therefore, the terminal device can regard each transmission node as a whole, jointly measure the channel information of each point and feed it back to the wireless access network device, so as to determine Precoding for transmitting downlink data.
  • FIG. 2 shows a schematic flowchart of determining a downlink channel precoding matrix.
  • the method 200 is interactively executed by a radio access network device and a terminal device, and may specifically include steps S210 to S240.
  • the terminal device measures multiple reference signals.
  • each radio access network device among the multiple radio access network devices may respectively send a reference signal to the terminal device, and in this case, the terminal device may receive multiple reference signals.
  • the multiple reference signals are in one-to-one correspondence with the multiple radio access network devices, where one radio access network device among the multiple radio access network devices sends one reference signal among the multiple reference signals.
  • the multiple radio access network devices form each radio access network device in the coordination set. That is, the multiple radio access network devices can implement multi-station cooperation to jointly provide services for the terminal device.
  • the multiple line access network devices may use CJT or NCJT, which is not limited in this application.
  • the multiple reference signals can be used for channel measurements.
  • the terminal device may measure the channel of each radio access network device in the multiple radio access network devices according to the multiple reference signals, and obtain the channels from the corresponding terminal device to the multiple radio access network devices respectively. respective channel information.
  • the terminal device when the terminal device measures the channel of each radio access network device among the multiple radio access network devices, it may jointly measure the channels of the multiple radio access network devices, or may separately measure the channels of each radio access network device.
  • the channel of the network access device is not limited in this application.
  • the reference signal may be a CSI-RS.
  • the multiple radio access network devices may send CSI-RSs on different resources, or send CSI-RSs on the same resource but different CSI-RS ports.
  • the terminal device performs channel measurement according to the reference signal, and determines CSI.
  • the terminal device can jointly measure the channel from the terminal device to each wireless access network device according to the received multiple reference signals to obtain the CSI .
  • the channel state information may be used to indicate the channel state of each radio access network device among the plurality of radio access network devices.
  • the terminal device can use the reference signal to measure the channels of multiple wireless access network devices, first obtain the multi-station channel information, and then determine the PMI used to indicate the multi-station channel information through the codebook structure and the multi-station channel information , where the codebook structure may be predefined, such as predefined by the 3GPP communication protocol.
  • the multi-station channel information includes channel information from each radio access network device among the multiple radio access network devices to the terminal device.
  • determining the PMI used to indicate the multi-station channel information according to the multi-station channel information may be specified in the 3GPP communication protocol.
  • the 3GPP communication protocol may specify a corresponding algorithm to realize the PMI acquisition of the multi-station channel information.
  • the PMI acquisition of the multi-station channel information means that the terminal device respectively acquires the PMI component corresponding to the channel information from each wireless access network device to the terminal device in multiple wireless access network devices. That is to say, the PMI of the multi-station channel information can comprehensively reflect the PMI components of multiple radio access network devices, and the PMI of the multiple radio access network devices is related to each radio access network device in the multiple radio access network devices Corresponds to the channel information of the terminal equipment.
  • the CSI may include a PMI for indicating a precoding matrix or a channel matrix, and may also include RI, CQI, and the like.
  • the terminal device reports the CSI.
  • the terminal device may send the CSI to each of the multiple radio access network devices respectively.
  • the terminal device may send CSI to one radio access network device among multiple radio access network devices, and if other radio access network devices also need to obtain this information, the first radio access network device may send the CSI forwarded to other wireless access network devices.
  • the terminal device may send CSI to radio access network devices outside the cooperative set, and if the radio access network devices in the cooperative set need to obtain the information, the radio access network devices outside the cooperative set may send the CSI to The CSI is forwarded to the radio access network devices in the coordination set.
  • the first radio access network device shown in FIG. 2 may be any one of the multiple radio access network devices forming the cooperating set of the terminal device, or it may be a device other than the cooperating set constituting the terminal device.
  • Wireless access network equipment That is to say, the first radio access network device may or may not send a reference signal to the terminal device, which is not limited in this embodiment of the present application.
  • the CSI may be carried on the physical uplink resource for transmission to the network device.
  • the physical uplink resource may be, for example, a physical uplink control channel (physical uplink control channel, PUCCH) resource or a physical uplink shared channel (physical uplink share channel, PUSCH) resource, which is not limited in this application.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the CSI may include a PMI used to indicate a precoding matrix or a channel matrix, and may also include RI and CQI.
  • the specific process for the terminal device to send the CSI to the radio access network device may refer to the prior art, and for the sake of brevity, a detailed description of the specific process is omitted here.
  • the first radio access network device determines multi-station channel information according to the CSI and the codebook structure reported by the terminal device.
  • the first wireless access network device may be any one of the multiple wireless access network devices forming the cooperating set of the terminal device, or it may be a wireless access network device other than the cooperating set forming the terminal device. network equipment. That is to say, the first radio access network device may or may not send the reference signal to the terminal device, which is not limited in this embodiment of the present application.
  • the information in the CSI reported by the terminal device corresponds to the parameter information in the codebook structure, for example, the CSI includes the specific values of the parameters in the codebook structure, so that the first radio access network device can use the CSI reported by the terminal device and
  • the selected codebook structure calculates the multi-station channel information, and determines the precoding matrix of the wireless access network equipment transmission data according to the multi-station channel information, so as to send the data to the terminal equipment.
  • the radio access network device determines the precoding matrix of the downlink channel, it can use the precoding matrix to perform data transmission on the corresponding channel.
  • the multi-station channel delay spread leads to serious frequency selectivity of the channel, which makes the feedback accuracy of channel information not high, resulting in the prediction determined by method 200.
  • the matching degree between the encoding matrix and the real channel is not high, which affects the quality of data transmission.
  • each reference signal arrives at the terminal device at different times, resulting in an air interface delay difference between the multiple radio access network devices.
  • the air interface delay difference among the multiple wireless access network devices may be understood as the air interface delay difference existing when the reference signals of different wireless access network devices are transmitted to the terminal device. For example, the time required for the reference signal of the first wireless access network device to be transmitted to a terminal device is t1, and the time required for the reference signal of the second wireless access network device to be transmitted to the terminal device is t2, then the first wireless access network There is an air interface delay difference between the network device and the second wireless access network device, and the difference is t1-t2.
  • the air interface delay difference between the multiple wireless access network devices will lead to delay spread, and the more obvious the delay spread is, the greater the amplitude and phase change of the channel in different frequency components will be, and the selectivity of different frequency components will be greater. Strong, that is, the more serious the frequent selection. The more severe the frequency selection, the greater the loss of accuracy of the PMI feedback channel, and thus the less accurate the precoding matrix determined according to the PMI is.
  • the matching degree between the precoding matrix and the channel affects the quality of signal transmission, and then affects the effect of multi-station cooperation and system performance.
  • FIG. 3 shows a schematic flowchart of a method for reporting channel information provided by an embodiment of the present application.
  • the method 300 shown in FIG. 3 may be executed interactively by a radio access network device and a terminal device.
  • the radio access network device may be, for example, the radio access network device 110 , 120 or 130 in the communication system 100 shown in FIG. 1
  • the terminal device may be, for example, the terminal device 140 in the communication system 100 shown in FIG. 1 .
  • the method 300 includes step S310 to step S360.
  • the terminal device measures multiple reference signals.
  • the terminal device determines first delay information and first channel information according to the multiple received reference signals.
  • the first delay information includes delay information of some or all wireless access network devices among multiple wireless access network devices.
  • the delay information of one wireless access network device can be understood as the arrival of the reference signal of the wireless access network device Delay information of the propagation delay of the terminal device relative to the propagation delay of the first reference signal.
  • the propagation delay of the first reference signal may be understood as the transmission time of the first reference signal from another wireless access network device that sends the reference signal to the terminal device over the air interface.
  • the first channel information includes the channel information of each wireless access network device among the multiple wireless access network devices, and the channel information of the wireless access network device can be understood as information of a wireless channel from a wireless access network device to a terminal device .
  • the first channel information may be obtained by measuring multiple received reference signals by the terminal device.
  • the specific manner of measuring the reference signal to obtain the first channel information may be implemented with reference to an existing solution, and is not specifically limited in this embodiment of the present application.
  • the first delay information may be determined according to an air interface delay of a reference signal.
  • This application considers that there is a time difference between when a wireless access network device sends a signal and when the terminal device receives the signal, and the time for the signal to reach the terminal device through different paths is also different.
  • the air interface delay may be the time when the first path of the reference signal sent by the wireless access network device reaches the terminal device or the time when the main path of the reference signal sent by the wireless access network device reaches the terminal device.
  • the air interface delay can be defined in a narrow sense, that is, it only includes the air interface path propagation delay; it can also be defined in a broad sense, including both the hardware channel delay and the air interface path propagation delay.
  • the air interface delay difference refers to the time difference between two or more wireless access network devices sending signals at the same time, the first path or the main path reaching the terminal device, that is, the difference in air interface delay between two or more wireless access network devices. Further explanation, considering the generalized air interface delay, the air interface delay difference is the air interface path propagation delay difference between wireless access network devices; considering the generalized air interface delay, the air interface delay difference includes the difference between wireless access network devices Propagation delay difference between air interface paths and hardware channel delay difference at the sending end.
  • the terminal device can measure the air interface delay of some or all of the multiple reference signals relative to the first reference signal to obtain the air interface delay difference of the multiple reference signals, and then based on the air interface delay of the multiple reference signals If not, determine the first delay information.
  • the air interface delay difference of the multiple reference signals may include an air interface delay difference of some or all of the multiple reference signals relative to the first reference signal.
  • the air interface delay difference of the multiple reference signals may include a delay difference between the main path of some or all of the multiple reference signals relative to the main path of the first reference signal.
  • the air interface delay difference of the multiple reference signals may include a delay difference between the first path of some or all of the multiple reference signals relative to the first path of the first reference signal.
  • the first reference signal may be any one of the multiple reference signals. It can be understood that the value of the air interface delay difference can be a positive number or a negative number.
  • the value of the air interface delay difference can be directly reported; when the air interface delay difference is a negative number, corresponding signaling is required to indicate that the air interface delay difference is a negative number, for example, you can Use 1 bit to indicate that the delay difference of the air interface is a negative number.
  • the reported air interface delay difference may directly use 1 bit to indicate whether the air interface delay difference is a positive number or a negative number. For example, different values may be used to indicate whether the air interface delay difference is positive or negative. A reported value of 1 indicates that the air interface delay difference is a positive number, and a reported value of 0 indicates that the air interface delay difference is a negative number.
  • different fields may be used to carry the positive air interface delay difference and the negative air interface delay difference.
  • a positive air interface delay difference can be reported in the same field, and a negative air interface delay difference can be reported in another field.
  • the first reference signal may be the first reference signal received by the terminal device among the multiple reference signals.
  • the first reference signal may be a reference signal with the largest identification number among the multiple reference signals or a reference signal with the smallest identification number among the multiple reference signals.
  • each reference signal may have an identification number, such as a CSI-RS identification, and the terminal device may sort the reference signals according to the identification numbers of the reference signals, and determine the first reference signal therefrom.
  • the first reference signal may also be determined in other ways, which is not limited in this application.
  • the terminal device there are multiple manners for the terminal device to determine the first delay information according to air interface delay differences of multiple reference signals.
  • the terminal device may use the air interface delay difference of the multiple reference signals as the first delay information. That is to say, the first delay information may include air interface delay differences of the multiple reference signals.
  • the terminal device may determine the first delay information according to the air interface delay difference of multiple reference signals and the first mapping table.
  • the first mapping table is used to indicate the mapping relationship between the air interface delay difference range of the reference signal and the preset wireless access network device delay offset, and the first delay information is used to indicate the corresponding Delay offsets of some or all of the radio access network devices among the multiple radio access network devices.
  • the first mapping table may indicate a mapping relationship between "air interface delay difference range-delay offset", specifically, multiple air interface delay differences may correspond to the same delay offset.
  • the terminal device may obtain the delay offset corresponding to each radio access network device as the first delay information.
  • the air interface delay difference and delay offset are used to indicate the delay difference of different signals.
  • the air interface delay difference is determined by measuring the receiving time on the air interface, which truly reflects the delay difference of the signal.
  • the delay offset can be understood as an approximate or estimated air interface delay.
  • the first mapping table may be predefined, such as the 3GPP communication protocol predefined, or customized by the terminal device, or sent to the terminal device after the wireless access network device is customized. Not limited.
  • the first mapping table may include indexes of respective preset delay offsets. Therefore, the first delay information may include multiple index values, and the multiple index values are in one-to-one correspondence with delay offsets of multiple radio access network devices.
  • the terminal device only needs to report the index value corresponding to the delay offset of each radio access network device, and does not need to report the specific value of the delay offset, which can reduce signaling overhead.
  • the terminal device may also report only one index value, and the one index value is used in to indicate the delay offsets of the at least two radio access network devices.
  • the radio access network device also needs to know the first mapping table, so as to match the delay offset of the terminal device with Understanding stays the same.
  • Table 1 shows a form of a first mapping table, and the first mapping table may include an index, a range of an air interface delay difference, and a preset delay offset. It should be understood that Table 1 is only illustrative and should not constitute any limitation to the present application.
  • the first mapping table may also include other content, or have other presentation forms.
  • the delay deviation of the second reference signal relative to the first reference signal can be determined according to Table 1.
  • the offset is t2, and its corresponding index is Index2, then the terminal device may directly report the index Index2 to indicate the delay offset of the radio access network device corresponding to the second reference signal.
  • the delay offset of the third reference signal relative to the first reference signal can be determined according to Table 1 is t3, and its corresponding index is Index3, then the terminal device may directly report the index Index3 to indicate the delay offset of the radio access network device corresponding to the third reference signal.
  • three radio access network devices send reference signals to the terminal device, and the reference signals received by the terminal device may include a first reference signal, a second reference signal, and a third reference signal.
  • the terminal device can determine according to the first mapping table shown in Table 1: the delay offset corresponding to the air interface delay difference of the first reference signal is 0, and the air interface time delay of the second reference signal The delay offset corresponding to the delay difference is t2, and the delay offset corresponding to the air interface delay difference of the third reference signal is t3.
  • the first delay information determined by the terminal device may include an index Index1 corresponding to a delay offset of t1 (that is, the delay offset indicated by the index Index1 is t1), an index Index2 corresponding to a delay offset of t2, and The delay offset is Index3 corresponding to t3.
  • three radio access network devices send reference signals to the terminal device, and the reference signals received by the terminal device may include a first reference signal, a second reference signal, and a third reference signal.
  • the terminal device can determine the delay offset corresponding to the air interface delay difference of the second reference signal as t2 according to the first mapping table shown in Table 1, and the air interface time delay of the third reference signal
  • the delay offset corresponding to the delay difference is t3.
  • the first delay information determined by the terminal device may be the index Index2 corresponding to the delay offset of t2 and the index Index3 corresponding to the delay offset of t3.
  • the terminal device may report an indication information to indicate that the first reference signal is the reference reference signal, or the terminal device may directly report that the delay offset of the first reference signal is 0, so that the first radio access network The device determines that the first reference signal is a reference reference signal.
  • the present application may also use other methods to enable the first radio access network device to determine which reference signal the terminal device uses as a reference, which is not limited in this application.
  • the radio access network device may determine the time of each of the multiple radio access network devices according to the first mapping table and the index value included in the first delay information. Delay offset of radio access network equipment.
  • the first delay information determined by the terminal device may include air interface delay differences of multiple reference signals, delay offsets of multiple wireless access network devices, and delay offsets related to multiple wireless access network devices. multiple index values corresponding to the delay offset of the network device, which is not limited in this application.
  • the terminal device performs delay difference compensation on the first channel information according to the first delay information, and determines the second channel information.
  • the first channel information is used to represent a real channel
  • the second channel information is used to represent a channel after delay difference compensation. That is to say, the second channel information is obtained by performing delay difference compensation on the first channel information through the first delay information.
  • the first channel information and the second channel information may be in the form of a channel matrix.
  • the terminal device perform delay difference compensation on the first channel information.
  • the terminal device may perform linear phase compensation on the first channel information in the frequency domain according to the first delay information, so that the main paths or the first paths of the channel information of multiple radio access network devices are aligned, so that Get the second channel information. That is to say, the main paths of the channels represented by the second channel information are aligned or the first paths are aligned.
  • the terminal device may perform linear phase compensation on the first channel information in the frequency domain according to the first delay information, so that the delay difference of the main paths of the channel information of multiple radio access network devices is within the preset It is assumed that the time delay difference of the first path is within the error range or within the preset error range, so as to obtain the second channel information. That is to say, the main path or the first path of the second channel information is within a preset error range.
  • the terminal device may perform multipath component shifting on the first channel information in the time domain according to the first delay information, so that the main paths or first paths of the channel information of multiple radio access network devices are aligned , so as to obtain the second channel information.
  • the terminal device may perform multipath component shifting on the first channel information in the time domain according to the first delay information, so that the delay difference of the main paths of the channel information of multiple wireless access network devices is within Within the preset error range or the delay difference of the head path is within the preset error range.
  • the terminal device After the terminal device performs delay difference compensation on the first channel information according to the first delay information, it can ensure that the delay difference of the main path of the channel information of multiple wireless access network devices is within the preset error range or the first path is aligned If the delay difference is within the preset error range, the second channel information with smaller delay spread can be obtained. In this way, when the second channel information is fed back by the PMI, the feedback accuracy of the PMI is improved.
  • the second channel information with the smallest delay spread can be obtained, and the delay spread
  • the delay spread The smaller it is, the smaller the channel difference of different radio access network devices has on the magnitude and phase of different frequency components, and the less selectivity of different frequency components, which can greatly reduce frequency selection and reduce the accuracy of PMI feedback channels loss, improve the feedback accuracy of PMI.
  • the terminal device determines the PMI according to the second channel information.
  • the PMI is used to indicate the second channel information obtained in step S330.
  • the PMI includes one PMI, and the one PMI corresponds to multiple radio access network devices. That is, the one PMI is used to indicate the channel state of each of the multiple wireless access network devices, or the one PMI is used to indicate the integrated channel state of the multiple wireless access network devices.
  • the terminal device may determine the PMI used to indicate the second channel information according to the second channel information and the first codebook structure.
  • the specific calculation process of the PMI used to indicate the second channel information determined according to the second channel information may be implemented using an existing method, or pre-specified in the 3GPP communication protocol, for example, the corresponding PMI may be specified in the 3GPP communication protocol
  • the algorithm obtains the PMI of the second channel information. This application is not limited to this.
  • the embodiment of the present application does not limit the first codebook structure.
  • the first codebook structure may be an existing codebook structure (such as an existing multi-station joint codebook structure), or a newly designed codebook structure. As long as it can be used to determine the PMI indicating the second channel information.
  • the terminal device reports the first delay information and the PMI.
  • the PMI is used to indicate the second channel information.
  • the first delay information and the PMI are used to determine a first precoding matrix, where the first precoding matrix matches the first channel information.
  • the terminal device may respectively send the first delay information and the PMI to each of the multiple radio access network devices.
  • the terminal device may send the first delay information and PMI to one of the multiple wireless access network devices, and if other wireless access network devices also need to obtain the information, the first wireless access network device may The access network device forwards the first delay information and the PMI to other radio access network devices.
  • the terminal device may send the first delay information and PMI to radio access network devices outside the cooperative set that constitute the terminal device, and if the radio access network devices in the cooperative set need to obtain the information, the cooperative The radio access network devices outside the set forward the first delay information and the PMI to the radio access network devices in the coordination set.
  • the first radio access network device shown in FIG. 3 may be one of the multiple radio access network devices forming the cooperating set of the terminal device, or it may be a radio access network device outside the cooperating set. . That is to say, the first radio access network device may or may not send the reference signal to the terminal device, which is not limited in this embodiment of the present application.
  • the first delay information reported by the terminal device includes delay information of some or all of the multiple wireless access network devices.
  • the terminal device can determine that there is a correspondence between the delay information and the reference signal, therefore, when the first radio access network device receives the delay information,
  • the correspondence between the delay information and the radio access network device may be determined according to the correspondence between the delay information and the reference signal, and the correspondence between the reference signal and the radio access network device .
  • the first delay information and PMI reported by the terminal device may be carried on the physical uplink resource.
  • the physical uplink resource may be, for example, a PUCCH resource or a PUSCH resource, which is not limited in this application.
  • the terminal device may report the first delay information and the PMI together, or separately, which is not specifically limited in this embodiment of the present application.
  • the first radio access network device determines a first precoding matrix according to the first delay information and the PMI.
  • the first precoding matrix matches the first channel information. That is to say, the radio access network device needs to obtain a precoding matrix that matches a real channel.
  • radio access network device determines the first precoding matrix.
  • the first radio access network device may acquire the first channel information first, and then acquire the first precoding matrix that matches the first channel information.
  • the first radio access network device first obtains original channel information, and then determines a matching precoding matrix according to the original channel information.
  • the first radio access network device may obtain the first channel information according to the first delay information, the PMI, the first codebook structure, and the second codebook structure, and then obtain the first precoding matrix according to the first channel information .
  • the first radio access network device obtains the second channel information according to the PMI and the first codebook structure; then obtains the first channel information according to the first delay information, the second channel information and the second codebook structure; and then obtains the first channel information according to the The first channel information acquires a first precoding matrix.
  • the first radio access network device may first obtain the second precoding matrix that matches the second channel information, and then obtain the first precoding matrix that matches the first channel information according to the second precoding matrix. matrix.
  • the first radio access network device first obtains the second precoding matrix that matches the delay-compensated channel information, and then obtains the first precoding matrix that matches the original channel information according to the second precoding matrix. matrix.
  • the first radio access network device may obtain the second channel information according to the PMI and the first codebook structure, then determine the second precoding matrix that matches the second channel information according to the second channel information, and then determine the second precoding matrix according to the first codebook structure.
  • the delay information and the second precoding matrix are used to obtain the first precoding matrix.
  • the first precoding matrix determined by the first wireless access network device is a joint precoding matrix of multiple wireless access network devices, that is, the first precoding matrix determined by the first wireless access network device is combined with multiple The channels of the wireless access network devices are matched, and the first precoding matrix is used for the multiple wireless access network devices to send data respectively.
  • the first radio access network device may determine a precoding matrix that matches its own channel from the first precoding matrix, and Data is transmitted according to the precoding matrix.
  • the first radio access network device may also send corresponding precoding matrices to other radio access network devices according to the determined first precoding matrix, and send data according to the corresponding precoding matrix.
  • the radio access network device may send the corresponding precoding matrix to each radio access network device in the cooperative set , and transmit data according to the corresponding precoding matrix.
  • the terminal device uses the first delay information to compensate the delay difference of the first channel information, and obtains the second channel information with a smaller delay spread.
  • the smaller the delay spread, the different radio access network devices The smaller the influence of the channel difference on the amplitude and phase of different frequency components, the smaller the selectivity of different frequency components, which can reduce the selectivity of the channel to different frequency components, that is, reduce the frequency selection.
  • the PMI since the amplitude and phase changes of the channels of different radio access network devices indicated by the second channel information in the frequency domain are small, the accuracy loss of the PMI feedback channel is small, and the PMI The feedback accuracy is higher.
  • the accuracy of PMI feedback can be significantly improved.
  • the feedback of the PMI is improved, and a more accurate precoding matrix of the downlink channel can be obtained, so that the performance advantage of multi-station cooperative transmission can be fully utilized.
  • the radio access network device obtains the first precoding matrix matching the first channel information according to the first delay information and the precoding matrix indication PMI reported by the terminal device, so as to obtain the first precoding matrix matching the real channel of the transmission data.
  • the precoding matrix can guarantee data transmission performance, so as to give full play to the performance advantages of multi-station cooperative transmission.
  • FIG. 4 is a schematic flow chart of another method for reporting channel information provided by an embodiment of the present application.
  • the method 400 includes steps S410 to S480, wherein, steps S410 to S450 are the same as steps S310 to S350 in the method 300
  • steps S460 to S480 can be understood as an implementation of step S360 in the method 300, which can be executed by the first radio access network device, and the first radio access network device among the plurality of radio access network devices
  • the first radio access network device is, for example, the radio access network device 110, 120 or 130 shown in FIG. 1 .
  • the terminal device measures the reference signal.
  • the terminal device determines first delay information and first channel information according to the multiple received reference signals.
  • the terminal device performs delay difference compensation on the first channel information according to the first delay information, and determines the second channel information.
  • the terminal device determines the PMI according to the second channel information.
  • the terminal device reports the first delay information and the PMI.
  • the first radio access network device determines second channel information according to the PMI and the first codebook structure.
  • the PMI indicates the second channel information.
  • the second channel information is obtained by compensating the delay difference of the first channel information through the first delay information, and the first channel information is obtained by measuring multiple references received by the terminal equipment.
  • the real channel information obtained by the signal.
  • This step is to determine the channel information after delay compensation.
  • the first codebook structure may be an existing codebook structure or a newly designed codebook structure, which is not limited in the present application, as long as the first codebook structure can be used to determine the second channel information.
  • the structure of the first codebook is exemplarily described below in conjunction with FIG. 5 and FIG. 6 .
  • Fig. 5 shows a three-dimensional codebook structure based on multi-station cooperation in a multi-station cooperation scenario.
  • This codebook structure is suitable for the CJT transmission mode between multiple wireless access network devices.
  • the terminal device needs to jointly measure the channel information between the terminal device and each wireless access network device, and feed back the joint measurement results back to the wireless access network. network access equipment.
  • H represents the channel between the wireless access network device and the terminal device;
  • S is the spatial beam, that is, several discrete Fourier transform (DFT) ) base or the Kronecker product of several DFT bases at both ends of the transceiver;
  • F is the frequency domain beam, that is, several DFT bases in the frequency domain sub-band dimension;
  • C is the corresponding superposition coefficient of the selected spatial domain beam and frequency domain beam.
  • DFT discrete Fourier transform
  • the dimension of H is P*N i , P is the product of the measured CSI-RS port number N TX and the receiving antenna port number N RX ; N 3 is the number of frequency domain units; S i is the selected spatial beam, each Select L beams for each polarization direction; F i selects frequency domain beams, and selects M frequency domain beams in total.
  • the information carried in the CSI may include: large-scale information ⁇ , spatial beam S, frequency domain beam F, and superposition coefficient C corresponding to the selected spatial domain beam and frequency domain beam.
  • the radio access network device may determine the multi-station channel information according to the information carried in the CSI and the codebook structure shown in FIG. 5 .
  • the codebook structure shown in Figure 5 can be used to restore the three
  • the channel information of one wireless access network device, the channel H i between the terminal device and three wireless access network devices is shown in formula (1).
  • H i represents the channel from wireless access network device i to user equipment, including large-scale information and small-scale information, where ⁇ i is large-scale information, and small-scale information includes spatial domain beam S i , frequency domain beam F i , all The space domain beam and the frequency domain beam are selected corresponding to the stacking coefficient C i .
  • FIG. 6 shows another multi-station joint codebook structure adapted to a multi-station cooperative scenario. This codebook structure is applicable to the transmission mode using CJT between multiple stations.
  • H i represents the channel between the wireless access network device and the terminal device, and its dimension is (N TX * NSB ) ⁇ N RX ;
  • N TX represents the measured CSI- The number of RS ports;
  • N SB represents the number of frequency domain units;
  • N RX represents the number of receiving antenna ports of the terminal equipment;
  • Bi is the base of the joint frequency domain of the transmitting end, which is composed of N i basis vectors;
  • R i is the independent base of the receiving end , consists of M i basis vectors;
  • ⁇ i C i is the stacking coefficient containing large-scale information.
  • the terminal device can specify the airspace-frequency domain joint base of the transmitter according to the space-frequency domain feature space of the downlink channel, and report the airspace-frequency domain joint base of the transmitter through CSI in a long period, and report the superposition coefficient in a short period.
  • the information carried in the CSI may include: base B combined in the frequency domain at the transmitting end, base R independent at the receiving end, and superposition coefficient ⁇ C of large-scale information.
  • the radio access network device may determine the multi-station channel information according to the information carried in the CSI and the codebook structure shown in FIG. 4 .
  • the above two codebook structures are applicable to the multi-station cooperative scenario, and the information carried in the CSI is also different according to the selected codebook structure, and the CSI can be used to indicate specific values of parameters in the codebook structure.
  • codebook structures are only illustrative, and cannot limit the scope of the present application.
  • present application can also use other codebook structures applicable to multi-station cooperation scenarios to determine multi-station channel information, which will not be described in detail here.
  • the first codebook structure is used to recover the channel information reported by the terminal device by using the PMI fed back by the terminal device. Since in step S450, the PMI reported by the terminal device is used to indicate the second channel information, that is, the channel information after delay compensation, so in this step, the first radio access network device uses the first codebook structure and the PMI, What is calculated is the second channel information.
  • the first radio access network device determines first channel information according to the second channel information, the first delay information, and the second codebook structure.
  • This step is to determine the original (or real) channel information.
  • the first channel information determined by the first wireless access network device is the same or approximately the same as the first channel information determined by the terminal device in S420.
  • the second codebook structure is used to restore the second channel information to the first channel information.
  • the second codebook structure corresponds to the reverse process of the process performed by the terminal device in step S430.
  • the terminal device performs delay difference compensation on the first channel information according to the first delay information to obtain second channel information; then in step S470, the first wireless access network device needs to
  • the second codebook structure is used to perform reverse compensation for the delay difference (or called the reverse process of the delay difference compensation, the reverse process of the delay difference compensation, etc.) on the second channel information to obtain the first channel information.
  • step S430 the terminal device performs linear phase compensation on the first channel information in the frequency domain by using the first delay information to obtain the second channel information; then in step S470, the first wireless access network device According to the second codebook structure and the first time delay information, linear phase inverse compensation can be performed on the second channel information in the frequency domain to obtain the first channel information.
  • the second codebook structure may be a newly designed codebook structure, where the second codebook structure may include a delay parameter.
  • the first delay information may indicate the value of the delay parameter.
  • the second codebook structure may be as shown in formula 3. It should be understood that formula 3 is only an example and shall not constitute any limitation to the present application.
  • channel after decompensation is the compensated channel, and are the channel components corresponding to each receiving antenna port of each terminal device, and the dimension is N TX ⁇ N SB , where N TX represents the number of ports measured by CSI-RS, N SB represents the number of frequency domain units, and f k represents the kth frequency The frequency point of the domain unit, ⁇ n represents the delay offset of the nth radio access network device.
  • the above real multi-station channel corresponds to the first channel information, and specifically may include a real channel of each radio access network device in multiple radio access network devices.
  • the above decompensated channel can be understood as a channel component of a real multi-station channel, which is the same as or similar to a real channel of a radio access network device.
  • the above-mentioned compensated channel may be understood as a channel component of the compensated multi-station channel, specifically, a channel of a wireless access network device after delay difference compensation.
  • the multiple compensated channels correspond to the second channel information, and specifically may include a channel after delay difference compensation of each wireless access network device among the multiple wireless access network devices.
  • the first codebook structure and the second codebook structure may be used separately, for example, the first codebook structure is used first, and then the second codebook structure is used. For example, step S460 is executed first, and then step S470 is executed. Among them, the second channel information can be output separately.
  • the first codebook structure and the second codebook structure can also be used nested together, that is, in form, the first codebook structure and the second codebook structure are a total codebook structure .
  • step S460 and step S470 can be executed synchronously, or combined into one step, that is, the first radio access network device acquires the first channel according to the first delay information, PMI, first codebook structure and second codebook structure information.
  • the first radio access network device determines a precoding matrix according to the first channel information.
  • the first precoding matrix matches the first channel information, and the first precoding matrix may include precoding matrices of multiple radio access network devices. After acquiring the first precoding matrix, the first radio access network device may determine the precoding matrix to be used to precode the data to be transmitted, so as to perform data transmission.
  • the specific process of obtaining the first precoding matrix according to the first channel information may refer to the prior art, and for the sake of brevity, detailed description of the specific process is omitted here.
  • the wireless access network device restores the first channel information by using the first codebook structure and the second codebook structure combined with the first delay information and PMI, and can obtain more accurate information before delay difference compensation Authentic channel information.
  • the wireless network device can immediately obtain a precoding matrix that can better match the real channel for data transmission, which can ensure data transmission performance, thereby giving full play to the performance advantages of multi-station cooperative transmission.
  • FIG. 7 shows a schematic flowchart of another method for reporting channel information provided by an embodiment of the present application.
  • the method 700 includes step S710 to step S780.
  • step S710 to step S750 correspond one-to-one to step S310 to step S350 in method 300, and only a brief description is given here.
  • steps S760 to S780 can be understood as an implementation of step S360 in the method 300, which can be executed by the first radio access network device, and the first radio access network device among the plurality of radio access network devices
  • the first radio access network device is, for example, the radio access network device 110, 120 or 130 shown in FIG. 1 .
  • the terminal device measures the reference signal.
  • the terminal device determines first delay information and first channel information according to the multiple received reference signals.
  • the terminal device performs delay difference compensation on the first channel information according to the first delay information, and determines the second channel information.
  • the terminal device determines the PMI according to the second channel information.
  • the terminal device reports the first delay information and the PMI.
  • the first radio access network device determines second channel information according to the PMI and the first codebook structure.
  • This step is to determine the channel information after delay compensation.
  • the step S760 is the same as the step S460 in the method 600, for details, reference may be made to the relevant description of S460, and for brevity, details are not repeated here.
  • the first radio access network device determines a second precoding matrix according to the second channel information.
  • the second precoding matrix matches the second information.
  • This step is to determine a precoding matrix that matches the compensated channel information.
  • the specific process of obtaining the second precoding matrix according to the second channel information may refer to the prior art, and for the sake of brevity, a detailed description of the specific process is omitted here.
  • the first radio access network device performs delay difference compensation on the second precoding matrix according to the first delay information to obtain the first precoding matrix.
  • the first precoding matrix matches the first channel information.
  • This step is to determine a precoding matrix that matches the original channel information.
  • the first radio access network device performs delay difference compensation on the second precoding matrix according to the first delay information, which may be performed according to a corresponding precoding algorithm.
  • the specific precoding algorithm is not limited here, as long as the precoding delay difference compensation effect can be achieved and the first precoding matrix matching the first channel information can be obtained.
  • the precoding algorithm includes a delay parameter, and the first delay information may be used to indicate a value of the delay parameter.
  • the terminal device uses the first delay information to perform linear phase compensation on the first channel information in the frequency domain, then when performing delay difference compensation on the second precoding, the precoding algorithm used It should be able to restore the parameters related to delay compensation in the second precoding.
  • the delay difference used by the first radio access network device to compensate the delay difference for the second precoding matrix according to the first delay information corresponds to the first delay information reported by the terminal device, so as to match
  • the first channel information ensures data transmission performance.
  • the wireless access network device restores the second channel information through the first codebook structure and PMI, and then determines the second precoding matrix that matches the second channel information, and finally according to the first time information reported by the terminal device
  • the delay information directly performs delay difference compensation on the second precoding matrix to obtain the first precoding matrix matching the first channel information.
  • the radio access network device can obtain the precoding matrix matching the real channel without obtaining real channel information, which can ensure data transmission performance.
  • the present application also provides a method for reporting channel information, including:
  • the first radio access network device sends the fourth reference signal to the terminal device.
  • the first radio access network device receives the first delay information and the PMI sent by the terminal device.
  • the first delay information includes delay information of each radio access network device among the plurality of radio access network devices.
  • the PMI is used to indicate the second channel information, and the second channel information is obtained by performing delay difference compensation on the first channel information through the first delay information.
  • the first channel information is obtained by measuring multiple reference signals received by the terminal device, where the multiple reference signals correspond to multiple radio access network devices one by one, and the multiple reference signals include a fourth reference signal.
  • the first channel information includes channel information of each access network device among the multiple wireless access network devices.
  • the first delay information and the PMI are used to determine a first precoding matrix, and the first precoding matrix matches the first channel information.
  • the first radio access network device may also perform step S360 in method 300, steps S460-S480 in method S400, steps S760-S780 in method 700, and related Optional embodiment.
  • step S360 in method 300
  • steps S460-S480 in method S400
  • steps S760-S780 in method 700
  • related Optional embodiment for details, reference may be made to relevant descriptions above, and details are not repeated here for brevity.
  • FIG. 8 is a schematic structural diagram of a terminal device provided by an embodiment of the present application. It may be the terminal device mentioned above, for example, it may be a specific example of the terminal device 140 shown in FIG. 1 .
  • the terminal device 800 includes: a processing unit 810 and a sending unit 820 .
  • the processing unit 810 is used for:
  • Measuring a plurality of reference signals from a plurality of radio access network devices wherein one radio access network device of the plurality of radio access network devices sends one of the plurality of reference signals.
  • first delay information includes delay information of some or all of the multiple wireless access network devices
  • first The channel information includes channel information of each radio access network device in the plurality of radio access network devices.
  • the sending unit 820 is configured to report the first delay information and the PMI.
  • the processing unit 810 is specifically configured to: measure an air interface delay of some or all of the multiple reference signals relative to the first reference signal to obtain an air interface delay difference of the part or all of the reference signals,
  • the first reference signal is one of the multiple reference signals; the first delay information is determined according to the air interface delay difference of the multiple reference signals.
  • the first delay information includes an air interface delay difference of the part or all of the reference signals.
  • the processing unit 810 is specifically configured to: determine the first delay information according to the air interface delay difference of the part or all of the reference signals and the first mapping table, where the first mapping table is used to indicate the air interface of the reference signal The mapping relationship between the delay difference range and the preset radio access network device delay offset, the first delay information is used to indicate that each of the multiple radio access network devices corresponding to the part or all of the reference signals Delay offset of a radio access network device.
  • the first delay information includes a plurality of index values, and one index value in the plurality of index values is used to indicate a delay deviation of one radio access network device in the part or all radio access network devices. displacement.
  • the air interface delay difference of the part or all of the reference signals includes a time delay difference between the main path of each reference signal in the part or all of the reference signals relative to the main path of the first reference signal; or, the part or all of the reference signals Or the air interface delay difference of all the reference signals includes the time delay difference of the first path of each reference signal in the part or all of the reference signals relative to the first path of the first reference signal.
  • the first reference signal is the first reference signal received by the receiving unit among the plurality of reference signals.
  • the processing unit 810 is specifically configured to: perform linear phase compensation on the first channel information in the frequency domain according to the first delay information, so that the main paths of the channel information of the multiple wireless access network devices Alignment or Head Radius Alignment.
  • FIG. 9 is a schematic structural block diagram of a communication device 900 provided by an embodiment of the present application.
  • the communication apparatus 900 may be the terminal device described in FIG. 5 , FIG. 6 or FIG. 7 , and specifically may be a specific example of the terminal device 140 in FIG. 1 .
  • the communication apparatus 900 may be used to implement the above steps performed by the terminal device, such as the method in FIG. 5 , FIG. 6 or FIG. 7 . To avoid redundancy, the description will not be repeated.
  • the apparatus 900 may adopt the hardware architecture shown in FIG. 9 .
  • the device may include a processor 910 and a transceiver 920 , and optionally, the device may further include a memory 930 .
  • the processor 910, transceiver 920 and memory 930 communicate with each other through internal connection paths.
  • the relevant functions implemented by the determining unit 820 and the compensating unit 830 in FIG. 8 may be implemented by the processor 910
  • the related functions implemented by the receiving unit 810 and the sending unit 840 may be implemented by the processor 910 controlling the transceiver 920 .
  • the processor 910 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (application-specific integrated circuit, ASIC), a dedicated processor, or one or more An integrated circuit for implementing the technical solution of the embodiment of the present application.
  • a processor may refer to one or more devices, circuits, and/or processing cores for processing data such as computer program instructions.
  • it may be a baseband processor or a central processing unit.
  • the baseband processor can be used to process the communication protocol and communication data
  • the central processor can be used to control the device (such as wireless access network equipment, terminal equipment, or chip, etc.) that configures time domain resources, and execute software programs , to process data for software programs.
  • the processor 910 may include one or more processors, for example, one or more central processing units (central processing unit, CPU).
  • CPU central processing unit
  • the processor may be a single Core CPU, also can be multi-core CPU.
  • the transceiver 920 is used to transmit and receive data and/or signals, and to receive data and/or signals.
  • the transceiver may include a transmitter for transmitting data and/or signals and a receiver for receiving data and/or signals.
  • the memory 930 includes, but is not limited to, random access memory (random access memory, RAM), read-only memory (read-only memory, ROM), erasable programmable memory (erasable programmable read only memory, EPROM), read-only CD-ROM (compact disc read-only memory, CD-ROM), the memory 930 is used to store related instructions and data.
  • random access memory random access memory
  • ROM read-only memory
  • EPROM erasable programmable memory
  • CD-ROM compact disc read-only memory
  • the memory 930 is used to store program codes and data of the terminal device, and may be a separate device or integrated in the processor 910 .
  • the processor 910 is configured to control the transceiver to perform information transmission with the radio access network device.
  • the processor 910 is configured to control the transceiver to perform information transmission with the radio access network device.
  • FIG. 9 only shows a simplified design of the communication device 900 .
  • the device can also include other necessary components, including but not limited to any number of transceivers, processors, controllers, memories, etc., and all terminal equipment that can implement this application are protected by this application. within range.
  • the apparatus 900 may be a chip, for example, a communication chip that may be used in a terminal device to implement related functions of the processor 910 in the terminal device.
  • the chip can be a field programmable gate array for realizing relevant functions, an application-specific integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, a microcontroller, or a programmable controller or other integrated chips.
  • the chip may optionally include one or more memories for storing program codes, which enable the processor to implement corresponding functions when the codes are executed.
  • Fig. 10 is a schematic structural diagram of a radio access network device provided by the present application.
  • the wireless access network device may be the wireless access network device mentioned above, such as the first wireless access network device, for example, it may be a specific example of the wireless access network device 110, 120 or 130 shown in FIG. 1 .
  • the radio access network device 1000 includes: a receiving unit 1010 and a processing unit 1020 .
  • the receiving unit 1010 is configured to receive the first delay information and the precoding matrix indication PMI sent by the terminal device.
  • the first delay information includes delay information of each radio access network device in multiple wireless access network devices, and the PMI is used to indicate second channel information, and the second channel information is obtained through the first delay information It is obtained by performing delay difference compensation on the first channel information, where the first channel information includes channel information of some or all of the access network devices among the plurality of wireless access network devices.
  • the processing unit 1020 is configured to determine a first precoding matrix according to the first delay information and the PMI.
  • the first precoding matrix matches the first channel information.
  • the processing unit 1020 is specifically configured to: acquire the first channel information according to the first delay information, the PMI, the first codebook structure, and the second codebook structure; acquire the first channel information according to the first channel information.
  • a precoding matrix is specifically configured to: acquire the first channel information according to the first delay information, the PMI, the first codebook structure, and the second codebook structure; acquire the first channel information according to the first channel information.
  • the processing unit 1020 is specifically configured to: obtain the second channel information according to the PMI and the first codebook structure; obtain the second channel information according to the first delay information, the second channel information and the second codebook structure First channel information.
  • the second codebook structure includes a delay parameter
  • the first delay information is used to indicate the value of the delay parameter
  • the second channel information is transmitted to the The first channel information is obtained by performing linear phase compensation
  • the processing unit 1020 is specifically configured to, according to the second codebook structure and the value of the delay parameter, perform linear phase inversion on the second channel information in the frequency domain compensation to obtain the first channel information.
  • the processing unit 1020 is specifically configured to: acquire the second channel information according to the PMI and the first codebook structure; determine a second precoding matrix according to the second channel information, the second precoding matrix and the The second channel information matches; performing delay difference compensation on the second precoding matrix according to the first delay information to obtain the first precoding matrix.
  • the first delay information is determined according to the air interface delay difference of some or all reference signals received by the terminal device, and the air interface delay difference of the part or all reference signals is determined by measuring the time delay difference of the multiple reference signals The time delay of part or all of the reference signals relative to the air interface of the first reference signal is obtained.
  • the first delay information includes an air interface delay difference of the part or all of the reference signals.
  • the first delay information includes a plurality of index values, and one index value in the plurality of index values is used to indicate a delay deviation of one radio access network device in the part or all radio access network devices.
  • offset the delay offset of the plurality of radio access network devices is determined according to the air interface delay difference of some or all of the reference signals and the first mapping table, where the first mapping table is used to indicate the air interface of the reference signal A mapping relationship between a delay difference range and a preset radio access network device delay offset.
  • the air interface delay difference of the part or all of the reference signals includes a time delay difference between the main path of each reference signal in the part or all of the reference signals relative to the main path of the first reference signal; or, the part or all of the reference signals Or the air interface delay difference of all the reference signals includes the time delay difference of the first path of each reference signal in the part or all of the reference signals relative to the first path of the first reference signal.
  • the first reference signal is the first reference signal received by the receiving unit 1010 among the multiple reference signals.
  • FIG. 11 is a schematic structural block diagram of a communication device 1100 provided by an embodiment of the present application.
  • the communications apparatus 1100 may be the first radio access network device described in FIG. 5 , FIG. 6 or FIG. 7 .
  • the communication apparatus 1100 may be used to implement the above steps performed by the radio access network device, such as the first radio access network device, such as the method in FIG. 5 , FIG. 6 or FIG. 7 . To avoid redundancy, the description will not be repeated.
  • the apparatus 1100 may adopt the hardware architecture shown in FIG. 11 .
  • the apparatus may include a processor 1110 and a transceiver 1120 , and optionally, the apparatus may further include a memory 1130 .
  • the processor 1110, transceiver 1120 and memory 1130 communicate with each other through internal connection paths.
  • the related functions implemented by the determining unit 1020 in FIG. 10 may be implemented by the processor 1110
  • the related functions implemented by the receiving unit 1010 may be implemented by the processor 1110 controlling the transceiver 1120 .
  • the processor 1110 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (application-specific integrated circuit, ASIC), a dedicated processor, or one or more An integrated circuit for implementing the technical solution of the embodiment of the present application.
  • a processor may refer to one or more devices, circuits, and/or processing cores for processing data such as computer program instructions.
  • it may be a baseband processor or a central processing unit.
  • the baseband processor can be used to process the communication protocol and communication data
  • the central processor can be used to control the device (such as wireless access network equipment, terminal equipment, or chip, etc.) that configures time domain resources, and execute software programs , to process data for software programs.
  • the processor 1110 may include one or more processors, such as one or more central processing units (central processing unit, CPU).
  • processors such as one or more central processing units (central processing unit, CPU).
  • CPU central processing unit
  • the CPU may be a single Core CPU, also can be multi-core CPU.
  • the transceiver 1120 is used to transmit and receive data and/or signals, and to receive data and/or signals.
  • the transceiver may include a transmitter for transmitting data and/or signals and a receiver for receiving data and/or signals.
  • the memory 1130 includes, but is not limited to, random access memory (random access memory, RAM), read-only memory (read-only memory, ROM), erasable programmable memory (erasable programmable read only memory, EPROM), read-only CD-ROM (compact disc read-only memory, CD-ROM), the memory 830 is used to store related instructions and data.
  • random access memory random access memory
  • RAM random access memory
  • ROM read-only memory
  • erasable programmable memory erasable programmable read only memory
  • EPROM erasable programmable read only memory
  • CD-ROM compact disc read-only memory
  • the memory 1130 is used to store program codes and data of radio access network equipment, and may be a separate device or integrated in the processor 810 .
  • the processor 1110 is configured to control the transceiver to perform information transmission with the terminal device.
  • the processor 1110 is configured to control the transceiver to perform information transmission with the terminal device.
  • FIG. 11 only shows a simplified design of the communication device 1100 .
  • the device can also include other necessary components, including but not limited to any number of transceivers, processors, controllers, memories, etc., and all radio access network devices that can implement this application are included in this within the scope of the application.
  • the apparatus 1100 may be a chip, for example, a communication chip that may be used in a radio access network device, and is used to implement related functions of the processor 1110 in the radio access network device.
  • the chip can be a field programmable gate array for realizing relevant functions, an application-specific integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, a microcontroller, or a programmable controller or other integrated chips.
  • the chip may optionally include one or more memories for storing program codes, which enable the processor to implement corresponding functions when the codes are executed.
  • a computer-readable storage medium on which instructions are stored, and when the instructions are executed, the methods of the terminal device and/or the radio access network device in the foregoing method embodiments are executed.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种信道信息上报的方法和装置。该方法包括:终端设备测量来自多个无线接入网设备的多个参考信号(S310),并根据该多个参考信号确定第一时延信息和第一信道信息(S320);根据该第一时延信息对该第一信道信息进行时延补偿,确定第二信道信息(S330);根据该第二信道信息确定预编码矩阵PMI(S340),该PMI用于指示该第二信道信息;上报该第一时延信息和该PMI(S350)。上述技术方案中,终端设备利用第一时延信息对第一信道信息进行时延差补偿,可以得到时延扩展较小的第二信道信息,时延扩展越小,不同频率分量的幅度相位变化也就越小,PMI反馈精度损失也就越小,也就能够提高PMI反馈精度,从而使无线接入网设备得到更加精确的预编码矩阵。

Description

信道信息上报的方法和装置
本申请要求于2021年12月20日提交中国专利局、申请号为202111564938.2、申请名称为“信道信息上报的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种信道信息上报的方法和装置。
背景技术
多输入多输出(multiple-input multiple output,MIMO)技术是指在发射端和接收端分别使用多个发射天线和接收天线,使信号通过发射端与接收端的多个天线传送和接收,其对系统的频谱效率起到至关重要的作用。采用MIMO技术时,无线接入网设备可以通过预编码技术减小多用户之间的干扰以及同一用户的多个信号流之间的干扰,从而提高信号质量和频谱利用率。
无线接入网设备可以通过终端设备反馈的预编码矩阵指示(precoding matrix indicator,PMI)确定预编码矩阵。例如,终端设备可以通过信道测量等方式确定与下行信道相适配的预编码矩阵,并通过反馈PMI使得无线接入网设备获得与终端设备所确定的预编码向量相同或相近的预编码矩阵。特别地,当多个无线接入网设备协作为一个终端设备进行服务(即多站协作)时,该多个无线接入网设备组成该终端设备的协作集,终端设备需要联合测量该终端设备与各个无线接入网设备之间的信道信息,并通过PMI反馈协作集中的各个无线接入网设备的信道信息。
无线接入网设备确定的预编码矩阵与信道的匹配度会影响信号的传输质量。而预编码矩阵是根据终端设备反馈的信道信息确定的。因此,如何提高信道信息的反馈精度是亟待解决的问题。
发明内容
本申请提供一种信道信息上报的方法和装置,能够提高PMI反馈精度,从而提高预编码矩阵与信道的匹配度。
第一方面,提供了一种信道信息上报的方法,该方法包括:终端设备测量来自多个无线接入网设备的多个参考信号,其中该多个无线接入网设备中的一个无线接入网设备发送该多个参考信号中的一个参考信号;该终端设备根据该多个参考信号确定第一时延信息和第一信道信息,该第一时延信息包括该多个无线接入网设备中部分或全部无线接入网设备的时延信息,该第一信道信息包括该多个无线接入网设备中每个无线接入网设备的信道信息;该终端设备根据该第一时延信息对该第一信道信息进行时延差补偿,确定第二信道信息;该终端设备根据该第二信道信息确定预编码矩阵指示PMI,该PMI用于指示该第二信道信息;该终端设备上报该第一时延信息和该PMI。
在本申请提供的方案中,终端设备利用第一时延信息对第一信道信息进行时延差补偿,确定时延扩展较小的第二信道信息,时延扩展越小,不同无线接入网设备的信道差异对不同频率分量的幅度相位影响越小,不同频率分量的选择性就越小,也就能够降低信道对不同频率分量的选择性,即降低频选,从而使得当利用PMI反馈第二信道信息时,由于第二信道信息所指示的不同无线接入网设备的信道在频域上的幅度相位变化较小,使得PMI反馈信道的精度损失较小,PMI的反馈精度较高,特别是在PMI的反馈粒度较大时,基于本申请提供的技术方案,可以显著提高PMI的反馈精度。PMI的反馈精度提高,可以确定更加准确的预编码矩阵,能够提高信号传输的质量,充分发挥多站协作传输的性能优势。
可选地,该多个无线接入网设备为协作集中的无线接入网设备。
结合第一方面,在第一方面的某些实现方式中,该终端设备根据该多个参考信号确定第一时延信息,包括:该终端设备测量该多个参考信号中的部分或全部参考信号相对于第一参考信号的空口时延,确定该部分或全部参考信号的空口时延差,该第一参考信号是该多个参考信号中的一个;该终端设备根据该多个参考信号的空口时延差,确定该第一时延信息。
应理解,上述部分或全部参考信号的空口时延差可以包括除第一参考信号之外的其他参考信号的空口时延差,或者可以包括多个参考信号中的每个参考信号的空口时延差,即多个参考信号中的每个参考信号相对于第一参考信号的空口时延差。
在本申请提供的方案中,终端设备通过测量不同参考信号相对于第一参考信号的空口时延,可以确定该多个参考信号中的部分或全部参考信号的空口时延差,进一步地,根据多个参考信号中的部分或全部参考信号的空口时延差可以确定第一时延信息。本申请实施例中以不同参考信号的空口时延差作为确定第一时延信息的参数依据,可以确定更接近实际的第一时延信息。在利用第一时延信息对第一信道信息进行时延差补偿时,确定的第二信道信息的时延扩展小。
结合第一方面,在第一方面的某些实现方式中,第一时延信息包括该部分或全部参考信号的空口时延差。
在本申请提供的方案中,终端设备上报的第一时延信息可以包括部分或全部参考信号的空口时延差。在这种情况下,终端设备根据该第一时延信息对第一信道信息进行时延差补偿后,可以保证多个无线接入网设备的信道信息的主径对齐或首径对齐,能够确定时延扩展最小的第二信道信息,时延扩展越小,不同无线接入网设备的信道差异对不同频率分量的幅度相位影响越小,不同频率分量的选择性就越小,从而能较大程度上达到降低频选的作用。这样,当利用PMI反馈第二信道信息时,由于第二信道信息所指示的不同无线接入网设备的信道在频域上的幅度相位变化较小,从而使得PMI反馈信道的精度损失较小,PMI的反馈精度较高,可以确定更加准确的下行信道的预编码矩阵,从而能够提高信号传输的质量,充分发挥多站协作传输的性能优势。
结合第一方面,在第一方面的某些实现方式中,该终端设备根据该部分或全部参考信号的空口时延差,确定该第一时延信息,包括:该终端设备根据该部分或全部参考信号的空口时延差和第一映射表,确定该第一时延信息,其中该第一映射表用于指示参考信号的空口时延差范围和预设的无线接入网设备时延偏移量之间的映射关系,该第一时延信息用于指示与该部分或全部参考信号对应的多个无线接入网设备各自的时延偏移量。
应理解,该多个无线接入网设备中部分或全部无线接入网设备的时延偏移量,是通过相应的参考信号的空口时延差以及第一映射表确定。可选地,一定的空口时延差范围可以对应一个预设的时延偏移量。
在本申请提供的方案中,终端设备上报的第一时延信息可以包括部分或全部无线接入网设备的时延偏移量。由于时延偏移量是根据参考信号的空口时延差确定的,当根据该第一时延信息对第一信道信息进行时延差补偿后,可以保证多个无线接入网设备的信道信息的主径对齐或首径对齐,或者在一定误差范围内对齐,能够确定时延扩展较小的第二信道信息,以尽可能地降低频选,提高PMI的反馈精度。
结合第一方面,在第一方面的某些实现方式中,该第一时延信息包括多个索引值,该多个索引值中的一个索引值用于指示该部分或全部无线接入网设备中的一个无线接入网设备的时延偏移量。
在本申请提供的方案中,终端设备上报的第一时延信息可以包括与多个无线接入网设备的时延偏移量对应的多个索引值。由于无需上报时延偏移量的具体数值,在一定程度上可以减少信令开销。
结合第一方面,在第一方面的某些实现方式中,该部分或全部参考信号的空口时延差包括该部分或全部参考信号中的每个参考信号的主径相对于该第一参考信号的主径的时延差;或者,该部分或全部参考信号的空口时延差包括该部分或全部参考信号中的每个参考信号的首径相对于该第一参考信号的首径的时延差。
结合第一方面,在第一方面的某些实现方式中,该第一参考信号为该多个参考信号中第一个被终端设备接收的参考信号。
结合第一方面,在第一方面的某些实现方式中,该终端设备根据该第一时延信息对该第一信道信息进行时延差补偿,包括:该终端设备根据该第一时延信息,在频域上对该第一信道信息进行线性相位补偿,以使该多个无线接入网设备的信道信息的主径对齐或首径对齐。
应理解,多个无线接入网设备的主径对齐或首径对齐,可以包括:多个无线接入网设备的主径对齐或首径对齐,或者,多个无线接入网设备的主径在预设误差范围内或首径在预设误差范围内。在频域上对该第一信道信息进行线性相位补偿,可以降低频选,从而提高PMI的反馈精度。
在本申请提供的方案中,终端设备通过对第一信道信息进线性相位补偿,实现时延差补偿,可以保证多个无线接入网设备的信道信息的主径对齐或首径对齐,或者,可以保证多个无线接入网设备的信道信息的主径或首径在预设误差范围内,从而可以在不同程度上达到降低频选的作用。当利用PMI反馈第二信道信息时,PMI的反馈精度得到提高,无线接入网设备可以确定更加准确的下行信道的预编码矩阵,从而能够提高信号传输的质量,充分发挥多站协作传输的性能优势。
第二方面,提供了一种信道信息上报的方法,该方法包括:第一无线接入网设备接收终端设备发送的第一时延信息和预编码矩阵指示PMI,该第一时延信息包括多个无线接入网设备中部分或全部无线接入网设备的时延信息,该PMI用于指示第二信道信息,该第二信道信息是通过该第一时延信息对第一信道信息进行时延差补偿确定的,该第一信道信息包括该多个无线接入网设备中每个接入网设备的信道信息;该第一无线接入网设备根据该第一时延信息和该PMI,确定第一预编码矩阵,该第一预编码矩阵与该第一信道信息相 匹配。
应理解,第一无线接入网设备可以是该多个无线接入网设备中的任意一个,还可以是组成该终端设备的协作集之外的无线接入网设备。也就是说,该第一无线接入网设备可以向终端设备发送参考信号,也可以不向终端设备发送参考信号,本申请对此不作限定。
可选地,该第一信道信息是通过测量该终端设备接收到的多个参考信号得到的,该多个参考信号与多个无线接入网设备一一对应,其中该多个无线接入网设备中的一个无线接入网设备发送该多个参考信号中的一个参考信号。
在本申请提供的方案中,第一无线接入网设备根据终端设备上报的第一时延信息和预编码矩阵指示PMI确定与第一信道信息相匹配的第一预编码矩阵,即第一预编码矩阵能够与传输数据的真实信道相匹配,在利用第一预编码矩阵进行数据传输时,可以保证数据传输性能,从而能够提高信号传输的质量,充分发挥多站协作传输的性能优势。
结合第二方面,在第二方面的某些实现方式中,该第一无线接入网设备根据该第一时延信息和该PMI,确定第一预编码矩阵,包括:该第一无线接入网设备根据该第一时延信息、该PMI、第一码本结构和第二码本结构,获取该第一信道信息;该第一无线接入网设备根据该第一信道信息获取该第一预编码矩阵。
在本申请提供的方案中,第一无线接入网设备通过第一码本结构和第二码本结构,并结合第一时延信息和PMI恢复第一信道信息,确定与第一信道信息相匹配的第一预编码矩阵,该第一预编码矩阵能够与传输数据的真实信道相匹配,在利用第一预编码矩阵进行数据传输时,可以保证数据传输性能,从而充分发挥多站协作传输的性能优势。
结合第二方面,在第二方面的某些实现方式中,该第一无线接入网设备根据该第一时延信息、该PMI、第一码本结构和第二码本结构,获取该第一信道信息,包括:该第一无线接入网设备根据该PMI和该第一码本结构获取该第二信道信息;该第一无线接入网设备根据该第一时延信息、该第二信道信息和该第二码本结构获取该第一信道信息。
应理解,该第一码本结构是适用于多站协作场景下的多站码本结构,利用该第一码本结构可以确定第二信道信息,在此对第一码本结构的形式不作限定。
应理解,该第二码本结构是新设计的码本结构,利用该第二码本结构可以将该第二信道信息恢复成第一信道信息。
还应理解,第一码本结构和第二码本结构可以是相互独立的,也可以为嵌套在一起的。
在本申请提供的方案中,第一无线接入网设备首先通过第一码本结构和PMI恢复第二信道信息,即获得进行时延差补偿后的信道信息,再通过第一时延信息结合第二码本结构对第二信道信息进行计算确定与真实信道信息相似的第一信道信息。
结合第二方面,在第二方面的某些实现方式中,该第二码本结构包括时延参数,该第一时延信息用于指示该时延参数的值,该第二信道信息是通过该第一时延信息在频域上对该第一信道信息进行线性相位补偿确定的;其中,该第一无线接入网设备根据该第一时延信息、该第二信道信息和该第二码本结构获取该第一信道信息,包括:该第一无线接入网设备根据该第二码本结构和该时延参数的值,在频域上对该第二信道信息进行线性相位反补偿,确定该第一信道信息。
在本申请提供的方案中,第二码本结构中包括时延参数,第一无线接入网设备根据第二码本结构和时延参数的值,在频域上对第二信道信息进行线性相位反补偿,能够确定与真实信道对应的第一信道信息。
结合第二方面,在第二方面的某些实现方式中,该第一无线接入网设备根据该第一时延信息和该PMI,确定第一预编码矩阵,包括:该第一无线接入网设备根据该PMI和第一码本结构,获取该第二信道信息;该第一无线接入网设备根据该第二信道信息,确定第二预编码矩阵,该第二预编码矩阵与该第二信道信息相匹配;该第一无线接入网设备根据该第一时延信息对该第二预编码矩阵进行时延差补偿,确定该第一预编码矩阵。
在本申请提供的方案中,第一无线接入网设备首先通过第一码本结构和PMI恢复第二信道信息,再确定与第二信道信息相匹配的第二预编码矩阵,最后根据终端设备上报的第一时延信息直接对第二预编码矩阵进行时延差补偿确定与第一信道信息相匹配的第一预编码矩阵。
结合第二方面,在第二方面的某些实现方式中,该第一时延信息是根据该终端设备接收的部分或全部参考信号的空口时延差确定的,该部分或全部参考信号的空口时延差通过测量该多个参考信号中的部分或全部参考信号相对于第一参考信号的空口时延确定。
结合第二方面,在第二方面的某些实现方式中,该第一时延信息包括该部分或全部参考信号的空口时延差。
具体地,该第一时延信息包括该多个参考信号中的每个参考信号的空口时延差。
结合第二方面,在第二方面的某些实现方式中,该第一时延信息包括多个索引值,该多个索引值中的一个索引值用于指示该部分或全部无线接入网设备中的一个无线接入网设备的时延偏移量,该多个无线接入网设备的时延偏移量是根据该部分或全部参考信号的空口时延差和第一映射表确定,其中该第一映射表用于指示参考信号的空口时延差范围和预设的无线接入网设备时延偏移量之间的映射关系。
结合第二方面,在第二方面的某些实现方式中,该部分或全部参考信号的空口时延差包括该部分或全部参考信号中的每个参考信号的主径相对于该第一参考信号的主径的时延差;或者,该部分或全部参考信号的空口时延差包括该部分或全部参考信号中的每个参考信号的首径相对于该第一参考信号的首径的时延差。
结合第二方面,在第二方面的某些实现方式中,该第一参考信号为该多个参考信号中第一个被该终端设备接收的参考信号。
第三方面,提供了一种终端设备,该终端设备包括处理单元和发送单元,该处理单元,用于:测量来自多个无线接入网设备的多个参考信号,其中所述多个无线接入网设备中的一个无线接入网设备发送所述多个参考信号中的一个参考信号;根据该多个参考信号确定第一时延信息和第一信道信息,该第一时延信息包括该多个无线接入网设备中每个无线接入网设备的时延信息,该第一信道信息包括该多个无线接入网设备中部分或全部无线接入网设备的信道信息;根据该第一时延信息对该第一信道信息进行时延差补偿,确定第二信道信息;根据该第二信道信息确定预编码矩阵指示PMI,该PMI用于指示该第二信道信息;该发送单元,用于上报该第一时延信息和该PMI。
结合第三方面,在第三方面的某些实现方式中,该处理单元,具体用于:测量该多个参考信号中的部分或全部参考信号相对于第一参考信号的空口时延,确定该部分或全部参考信号的空口时延差,该第一参考信号是该多个参考信号中的一个;根据该多个参考信号的空口时延差,确定该第一时延信息。
结合第三方面,在第三方面的某些实现方式中,该第一时延信息包括该部分或全部参考信号的空口时延差。
结合第三方面,在第三方面的某些实现方式中,该处理单元具体用于:根据该部分或全部参考信号的空口时延差和第一映射表,确定该第一时延信息,其中该第一映射表用于指示参考信号的空口时延差范围和预设的无线接入网设备时延偏移量之间的映射关系,该第一时延信息用于指示该部分或全部参考信号对应的多个无线接入网设备中每个无线接入网设备的时延偏移量。
结合第三方面,在第三方面的某些实现方式中,该第一时延信息包括多个索引值,该多个索引值中的一个索引值用于指示该部分或全部无线接入网设备中的一个无线接入网设备的时延偏移量。
结合第三方面,在第三方面的某些实现方式中,该部分或全部参考信号的空口时延差包括该部分或全部参考信号中的每个参考信号的主径相对于该第一参考信号的主径的时延差;或者,该部分或全部参考信号的空口时延差包括该部分或全部参考信号中的每个参考信号的首径相对于该第一参考信号的首径的时延差。
结合第三方面,在第三方面的某些实现方式中,该第一参考信号为该多个参考信号中第一个被该接收单元接收的参考信号。
结合第三方面,在第三方面的某些实现方式中,该处理单元具体用于:根据该第一时延信息,在频域上对该第一信道信息进行线性相位补偿,以使该多个无线接入网设备的信道信息的主径对齐或首径对齐。
应理解,多个无线接入网设备的主径对齐或首径对齐,可以包括:多个无线接入网设备的主径对齐或首径对齐,或者,多个无线接入网设备的主径在预设误差范围内或首径在预设误差范围内。
其中第三方面所述装置的有益效果可以参考第一方面方法的有益效果,在此不再赘述。
第四方面,提供了一种无线接入网设备,该无线接入网设备包括接收单元和处理单元,该接收单元,用于接收终端设备发送的第一时延信息和预编码矩阵指示PMI,该第一时延信息包括多个无线接入网设备中部分或全部无线接入网设备的时延信息,该PMI用于指示第二信道信息,该第二信道信息是通过该第一时延信息对第一信道信息进行时延差补偿确定的,该第一信道信息包括该多个无线接入网设备中每个接入网设备的信道信息;该处理单元,用于根据该第一时延信息和该PMI,确定第一预编码矩阵,该第一预编码矩阵与该第一信道信息相匹配。
结合第四方面,在第四方面的某些实现方式中,该处理单元具体用于:根据该第一时延信息、该PMI、第一码本结构和第二码本结构,获取该第一信道信息;根据该第一信道信息获取该第一预编码矩阵。
结合第四方面,在第四方面的某些实现方式中,该处理单元具体用于:根据该PMI和该第一码本结构获取该第二信道信息;根据该第一时延信息、该第二信道信息和该第二码本结构获取该第一信道信息。
结合第四方面,在第四方面的某些实现方式中,该第二码本结构包括时延参数,该第一时延信息用于指示该时延参数的值,该第二信道信息是通过该第一时延信息在频域上对该第一信道信息进行线性相位补偿确定的;其中,该处理单元具体用于,根据该第二码本结构和该时延参数的值,在频域上对该第二信道信息进行线性相位反补偿,确定该第一信道信息。
结合第四方面,在第四方面的某些实现方式中,该处理单元具体用于:根据该PMI和第一码本结构,获取该第二信道信息;根据该第二信道信息,确定第二预编码矩阵,该第二预编码矩阵与该第二信道信息相匹配;根据该第一时延信息对该第二预编码矩阵进行时延差补偿,确定该第一预编码矩阵。
结合第四方面,在第四方面的某些实现方式中,该第一时延信息是根据该终端设备接收的部分或全部参考信号的空口时延差确定的,该部分或全部参考信号的空口时延差通过测量该多个参考信号中的部分或全部参考信号相对于第一参考信号的空口时延确定。
结合第四方面,在第四方面的某些实现方式中,该第一时延信息包括该部分或全部参考信号的空口时延差。
结合第四方面,在第四方面的某些实现方式中,该第一时延信息包括多个索引值,该多个索引值中的一个索引值用于指示该部分或全部无线接入网设备中的一个无线接入网设备的时延偏移量,该多个无线接入网设备的时延偏移量是根据该部分或全部参考信号的空口时延差和第一映射表确定,其中该第一映射表用于指示参考信号的空口时延差范围和预设的无线接入网设备时延偏移量之间的映射关系。
结合第四方面,在第四方面的某些实现方式中,该部分或全部参考信号的空口时延差包括该部分或全部参考信号中的每个参考信号的主径相对于该第一参考信号的主径的时延差;或者,该部分或全部参考信号的空口时延差包括该部分或全部参考信号中的每个参考信号的首径相对于该第一参考信号的首径的时延差。
结合第四方面,在第四方面的某些实现方式中,该第一参考信号为该多个参考信号中第一个被该接收单元接收的参考信号。
其中第四方面所述装置的有益效果可以参考第二方面方法的有益效果,在此不再赘述。
第五方面,提供了一种通信装置,包括:至少一个处理器和通信接口,所述通信接口用于所述通信装置与其他通信装置进行信息交互,当程序指令在所述至少一个处理器中执行时,使得所述通信装置执行上述第一方面或第一方面中任一种可能实现方式中的方法。
可选地,所述通信装置还可以包括存储器,所述存储器与所述处理器耦合,所述处理器用于实现上述第一方面或第一方面的任一种可能的实现方式中描述的方法。示例性地,所述存储器用于存储指令和数据,所述处理器执行所述存储器中存储的指令时,可以实现上述第一方面或第一方面的任一种可能的实现方式中描述的方法。
可选地,通信接口可以为收发器、电路、总线、模块、管脚或其它类型的通信接口。
可选地,第五方面的通信装置可以为终端设备,或者可以为用于终端设备的部件(例如芯片或者电路等)。其他通信装置可以为无线接入网设备,或者可以为用于无线接入网设备的部件(例如芯片或者电路等)。
第六方面,提供了一种通信装置,包括:至少一个处理器和通信接口,所述通信接口用于所述通信装置与其他通信装置进行信息交互,当程序指令在所述至少一个处理器中执行时,使得所述通信装置执行上述第二方面或第二方面中任一种可能实现方式中的方法。
可选地,所述通信装置还可以包括存储器,所述存储器与所述处理器耦合,所述处理器用于实现上述第二方面或第二方面的任一种可能的实现方式中描述的方法。示例性地,所述存储器用于存储指令和数据,所述处理器执行所述存储器中存储的指令时,可以实现上述第二方面或第二方面的任一种可能的实现方式中描述的方法。
可选地,通信接口可以为收发器、电路、总线、模块、管脚或其它类型的通信接口。
可选地,第六方面的通信装置可以为无线接入网设备,或者可以为用于无线接入网设备的部件(例如芯片或者电路等)。其他通信装置可以为终端设备,或者可以为用于终端设备的部件(例如芯片或者电路等)。
第七方面,提供了一种芯片系统,该芯片系统包括处理器,用于终端设备实现上述第一方面或第一方面的任一种可能的实现方式中所涉及的功能,例如,接收,发送,或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第八方面,提供了一种芯片系统,该芯片系统包括处理器,用于无线接入网设备实现上述第二方面或第二方面的任一种可能的实现方式中所涉及的功能,例如,接收,发送,或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第九方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被执行时,实现前述第一方面或第一方面的任一种可能的实现方式中的方法。
第十方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被执行时,实现前述第二方面或第二方面的任一种可能的实现方式中的方法。
第十一方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面或第一方面中任一种可能实现方式中的方法。
第十二方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第二方面或第二方面中任一种可能实现方式中的方法。
第十三方面,提供一种通信系统,包括上述第三方面描述的终端设备和第四方面描述无线接入网设备;或者该通信系统包括上述第五方面描述的通信装置和第六方面描述的通信装置。
可以理解的是,上述提供的任一种通信装置、芯片系统、计算机可读存储介质或计算机程序产品等均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考对应的方法中的有益效果,此处不再赘述。
附图说明
图1是本申请适用的通信系统的示意图。
图2是一种确定下行信道预编码矩阵的示意性流程图。
图3是本申请提供的一种信道信息上报的方法的示意性流程图。
图4是本申请提供的另一种信道信息上报的方法的示意性流程图。
图5是一种基于多站协作场景下的多站联合的三维码本结构示意图。
图6是一种适用于多站协作场景下的多站联合码本结构示意图。
图7是本申请提供的又一种信道信息上报的方法的示意性流程图。
图8是本申请提供的一种终端设备的示意性结构图。
图9是本申请提供的一种通信装置的示意性结构图。
图10是本申请提供的一种无线接入网设备的示意性结构图。
图11是本申请提供的另一种通信装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。另外,在本申请的实施例中,“第一”、“第二”以及各种数字编号只是为了描述方便进行的区分,并不用来限制本申请实施例的范围。下文各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,“210”、“510”、“610”等字样仅为了描述方便作出的标识,并不是对执行步骤的次序进行限定。
在本申请中,“用于指示”可以包括用于直接指示和用于间接指示。当描述某一指示信息用于指示A时,可以包括该指示信息直接指示A或间接指示A,而并不代表该指示信息中一定携带有A。在本申请实施例中,“当……时”、“在……的情况下”、“若”以及“如果”等描述均指在某种客观情况下设备会做出相应的处理,并非是限定时间,且也不要求设备在实现时一定要有判断的动作,也不意味着存在其它限定。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)移动通信系统或新无线接入技术(new radio,NR),尤其适用于需要信道信息反馈的场景,例如应用大规模阵列天线(massive multiple-input multiple-output,M-MIMO)技术的无线网络、应用分布式天线技术的无线网络等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例的通信系统。
图1是适用于本申请实施例的通信系统100的示意图。如图1所示,该通信系统100可以包括多个无线接入网设备,例如图1所示的无线接入网设备110、无线接入网设备120和无线接入网设备130。该通信系统100还包括至少一个终端设备,例如图1所示的终端设备140。
应理解,图1中示出的无线接入网设备和终端设备的数量仅仅是示例性的,通信系统 100中还可以包括更多的无线接入网设备和终端设备。
无线接入网设备和终端设备之间可以进行通信。如图1所示,无线接入网设备110、无线接入网设备120和无线接入网设备130均可以与终端设备140进行通信,这种场景也可以称为多站点传输。在一些场景下,无线接入网设备110、无线接入网设备120和无线接入网设备130可以通过协作的方式为终端设备140提供服务。对于终端设备140而言,无线接入网设备110、无线接入网设备120和无线接入网设备130可以等效为一个整体与终端设备140进行数据传输。也就是说,无线接入网设备110、无线接入网设备120和无线接入网设备130之间可以采用多站协作的方式为终端设备140提供服务。
应理解,该通信系统100中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等;可以是车联网通信中的设备,例如车辆上载的通信终端、路边单元(road side unit,RSU);可以是无人机上载有的通信终端;还可以是物联网(internet of things,IoT)系统中的终端设备。
示例性的,终端设备包括但不限于:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
应理解,该通信系统100中的无线接入网设备(例如无线接入网设备110、120和130)可以是能够将终端设备接入到无线网络的设备。该无线接入网设备还可以称为无线接入网(radio access network,RAN)节点、网络设备、接入网设备。示例性的,该无线接入网设备可以是基站。
本申请实施例中的基站可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站(master eNodeB,MeNB)、辅站(secondary eNodeB,SeNB)、多制式无线(multi standard radio,MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(access point,AP)、传输节点、收发节点、基带单元(base band unit,BBU)、射频拉远单元(remote radio unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。 基站还可以是6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不作限定。
基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其他示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。
在一些部署中,本申请实施例中的无线接入网设备可以是指CU或者DU,或者,无线接入网设备包括CU和DU。gNB还可以包括有源天线单元(AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、介质接入控制(medium access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备。
应理解,图1所示的通信系统和通信场景仅仅是示例性的,本申请并未限定于此。本申请实施例可以适用于发送端设备和接收端设备通信的任何通信场景。
为便于理解本申请实施例,下面首先对本申请中涉及的若干术语进行简单介绍。
1.MIMO技术
MIMO技术的主要作用是提供空间分集或空间复用增益。MIMO利用多根发射天线将具有相同信息的信号通过不同的路径发射出去,同时接收端设备可以获取同一个数据符号的多个独立衰落的信号,从而提高的接收可靠性。MIMO技术的空间分集可以用来对抗信道衰落。MIMO的多天线提供了更多的空域自由度,利用空间信道的独立性,同时传输多个数据流。MIMO技术的空间复用可以提高传输流数,扩大系统容量,提升传输速率。采用MIMO技术时,无线接入网设备向用户设备发送数据前,需要进行调制编码及信号预编码。
2.预编码技术
预编码技术不仅能够有效抑制MIMO系统中的多个用户干扰,而且能在大大简化接收端设备算法的同时显著提升系统容量。具体来说,发送设备(如无线接入网设备)可以在已知发送设备与接收设备之间的信道状态的情况下,借助与信道状态相匹配的预编码矩阵来对待发送信号进行处理,使经过预编码的待发送信号与信道相适配,从而降低接收设备(如终端设备)消除信道间影响的复杂度。通过对待发送信号进行预编码处理,能够提升接收信号的质量(例如信号与干扰加噪声比(signal to interference plus noise ratio,SINR)等)。因此,采用预编码技术,可以实现发送设备与多个接收设备在相同的时频资源上传输,也就是实现了多用户多输入多输出(multiple user multiple input multiple output,MU-MIMO)。
应理解,有关预编码技术的相关描述仅为便于理解而示例,并非用于限制本申请实施例的保护范围。在具体实现过程中,发送设备还可以通过其他方式进行预编码。例如,在 无法获知信道信息(例如但不限于信道矩阵)的情况下,采用预先设置的预编码矩阵或者加权处理方式进行预编码等。为了简洁,其具体内容本文不再赘述。
3.信道状态信息(channel state information,CSI)
信道状态信息CSI为接收端(如终端设备)向发送端(如无线接入网设备)上报的用于描述接收端与发送端之间的通信链路的信道属性的信息。CSI包括但不限于:预编码矩阵指示(precoding matrix indicator,PMI)、秩指示(rank indication,RI)、信道质量指示(channel quality indicator,CQI)、信道状态信息参考信号(channel state information reference signal,CSI-RS)、信道状态信息参考信号资源指示(CSI-RS resource indicator,CRI)以及层指示(layer indicator,LI)等。
应理解,以上列举的CSI的具体内容仅为示例性说明,不应对本申请构成任何限定。CSI可以包括上文所列举的一项或多项,也可以包括除上述列举之外的其他用于表征信道状态的信息,本申请对此不作限定。
发送端为了获取能够与信道相适配的预编码矩阵,通常通过发送参考信号的方式来预先进行信道估计,获取接收端的反馈,从而确定出较为准确的预编码矩阵以对待发送数据进行预编码处理。具体地,该发送端可以为无线接入网设备,接收端可以为终端设备。该参考信号可以为用于下行信道测量的参考信号,例如,信道状态信息参考信号(CSI-RS)。终端设备可以根据接收到的CSI-RS,进行CSI测量,并向无线接入网设备反馈下行信道的CSI。
4.预编码矩阵指示PMI
预编码矩阵指示PMI可用于指示预编码矩阵,确定用于无线接入网设备向终端设备发送数据时的预编码。该预编码矩阵例如可以是终端设备基于各个频域单元的信道矩阵确定的预编码矩阵。该信道矩阵可以是终端设备通过信道估计等方式或者基于信道互易性确定。但应理解,终端设备确定预编码矩阵的具体方法并不限于上文所述,具体实现方式可参考现有技术,为了简洁,这里不再一一列举。
终端设备所确定的预编码矩阵可以称为待反馈的预编码矩阵,或者说,待上报的预编码矩阵。终端设备可以通过PMI指示该待反馈的预编码矩阵,以便于无线接入网设备基于PMI恢复出该预编码矩阵。无线接入网设备基于该PMI恢复出的预编码矩阵可以与上述待反馈的预编码矩阵相同或相近似。在下行信道测量中,无线接入网设备根据PMI确定出的预编码矩阵与终端设备所确定的预编码矩阵的近似度越高,其确定出的用于数据传输的预编码矩阵下行信道的适配性越高,信号的传输质量越高。
预编码矩阵指示PMI也可用于指示信道矩阵(亦可称为信道信息等),在多站协作场景下,PMI可用于指示多个无线接入网设备的信道矩阵(也可以称为多站信道矩阵或多站信道信息)。终端设备可以通过PMI向无线接入网设备指示信道矩阵,以便于无线接入网设备基于PMI恢复出该信道矩阵,从而确定出用于数据传输的预编码矩阵。
应理解,PMI仅为一种命名,不应对本申请构成任何限定。本申请并不排除在未来的协议中定义其他名称的信令以用于相同或相似功能的可能。
5.反馈粒度
在本申请中,反馈粒度指的是PMI的频域反馈粒度,即PMI最小反馈单元。PMI的最小反馈单元是一个PMI子带。一个PMI子带有若干个资源块(resource block,RB)组成,每个RB有多个资源单元(resource element,RE)组成。每个PMI子带反馈一个PMI。 例如,当PMI的反馈粒度为2个RB,即PMI子带包含2个RB时,终端设备在频域上每2个RB上报一个PMI,即PMI用于指示2个RB内对应的预编码矩阵或信道矩阵。
6.时延扩展
考虑多径传播环境,在实际传输中,接收端接收到的信号是经过不同路径且有时间差异的合成信号。各路径长度不同使得信号到达时间不同,因此接收端接收的信号中不仅含有发送端发送的脉冲信号,还包含有该脉冲信号的各个时延信号。这种由于多径效应使接收信号脉冲宽度扩展的现象,称为时延扩展。时延扩展可以定义为最大传输时延和最小传输时延的差值,即最后一个可分辨的时延信号与第一个时延信号到达时间的差值,实际上就是脉冲展宽的时间。时延扩展是衡量多径传播信道质量的一个重要指标。
7.主径、首径
在多径传播环境下,接收端接收到的信号是经过不同路径、有时间差异的各个信号的合成信号。首径为第一个到达的时延信号,即第一条到达径;主径为所有时延信号中强度最大的信号分量,即最强径。
8.码本结构
码本结构反映了PMI上报量与所反馈的预编码矩阵或信道信息之间的关系。终端设备可以根据参考信号测量得到信道矩阵,并基于信道矩阵和码本结构确定PMI。无线接入网设备可以根据终端设备反馈的PMI和码本结构恢复出该信道矩阵。
9.CSI-RS标识
CSI-RS标识(CSI-RS ID)用于区分终端设备接收到的来自多个无线接入网设备的CSI-RS。多个无线接入网设备可以在不同的资源上发送CSI-RS,也可以在同一个资源但不同的CSI-RS端口上发送CSI-RS。终端设备可以根据资源标识(resource ID)或者CSI-RS端口号来区分多个无线接入网设备发送的CSI-RS,并对各CSI-RS进行编号,即为CSI-RS标识。应理解,CSI-RS标识仅为一种命名,不应对本申请构成任何限定。
10.频率选择性
考虑多径传播环境,同一时刻从发送天线发出的电磁波沿不同路径在不同时间到达接收天线,在天线场效应上叠加而产生了多径分量的混合。由于不同的频率的电磁波传播特性是不一样的,信号随着频率的变化,其信道响应不同,表现为幅度相位的变化,即为频率选择性。当最后一个可分辨的时延信号与第一个时延信号到达时间的差值越大,即时延扩展越大时,信道响应的幅度相位变化越剧烈,频率选择性越强。
11.协作多点传输技术(coordinated multi-point,CoMP)
协作多点传输技术CoMP是通过多小区MIMO技术来解决小区间干扰的问题,其基本思想是利用空间信道的特性来实现信号的传输。CoMP技术是指多点发射/接收技术,这里的多点是指地理上分离的多个天线接入点,可以用作小区、基站、Node-B、eNB、分布式天线等。它利用光纤连接的天线节点协同在一起为用户服务,相邻的几个天线节点同时为一个用户服务,形成多站协作场景,可以提高用户的数据率。按照传输方案的不同,可以将CoMP技术分为两类:联合处理技术和协同调度、波束赋形技术。在联合处理技术(JP-CoMP)中,协作小区集中各个传输点在同一份时频资源上共享用于某个终端设备传输的数据。无线接入网设备根据调度结果和业务需求,可以选择协作小区集内的所有或部分小区为该UE服务。在JP方案中,协作小区集内的全部小区在相同的无线资源块中发送相同或者不同的数据到终端设备,即多个协作小区在同一时刻发送数据到同一个终端设 备,称这种JP为联合传输方式(joint transmission,JT)。联合传输(JT)的方式有两种:相干联合传输(coherent joint transmission,CJT)和非相干联合传输(non-coherent joint transmission,NCJT)。
在TDD系统中,由于上行信道和下行信道使用相同的带宽,具有互易性,无线接入网设备可以利用上行信道和下行信道的互易性,通过上行信道获取下行信道的CSI,进而进行信号预编码。而在FDD系统中,由于上下行频带的间隔远大于相干带宽,因此上下行信道不具有完整的互易性,无法直接利用上行信道信息来做准确的下行预编码。在传统FDD系统中,无线接入网设备依据终端设备向网络设备反馈的CSI进行下行预编码。采用NCJT的传输方式时,参与CoMP的各传输节点采用各自独立的预编码方案,在接收端接收信号时实现比特级合并。采用CJT的传输方式时,需要参与CoMP的各传输节点联合预编码,因此,终端设备可以将各传输节点看成一个整体,联合测量各点的信道信息并反馈给无线接入网设备,从而确定用于传输下行数据的预编码。
图2示出了一种确定下行信道预编码矩阵的示意性流程图,该方法200由无线接入网设备终端设备交互执行,具体可以包括步骤S210至步骤S240。
S210,终端设备测量多个参考信号。
具体地,多个无线接入网设备中的每个无线接入网设备可以分别向终端设备发送参考信号,这样的话,终端设备可以接收多个参考信号。该多个参考信号与该多个无线接入网设备一一对应,其中该多个无线接入网设备中的一个无线接入网设备发送该多个参考信号中的一个参考信号。
可选地,该多个无线接入网设备组成协作集中的各个无线接入网设备。即该多个无线接入网设备可以实现多站协作,共同为该终端设备提供服务。该多个线接入网设备可以采用CJT,也可以采用NCJT,本申请对此不作限定。
该多个参考信号可以用于信道测量。具体地,终端设备可以根据该多个参考信号测量该多个无线接入网设备中的每个无线接入网设备的信道,并得到相应的终端设备分别到该多个无线接入网设备的各自的信道信息。
可选地,终端设备测量该多个无线接入网设备中的每个无线接入网设备的信道时,可以联合测量该多个无线接入网设备的信道,也可以单独测量每个无线接入网设备的信道,本申请对此不作限定。
可选地,该参考信号可以为CSI-RS。该多个无线接入网设备可以在不同的资源上发送CSI-RS,也可以在同一个资源但不同的CSI-RS端口上发送CSI-RS。
S220,终端设备根据参考信号进行信道测量,确定CSI。
可选地,当有多个无线接入网设备向终端设备分别发送参考信号时,终端设备可以根据接收到的多个参考信号联合测量该终端设备到各个无线接入网设备的信道,得到CSI。其中,该信道状态信息可以用于指示多个无线接入网设备中每个无线接入网设备的信道状态。
具体地,终端设备可以利用参考信号对多个无线接入网设备的信道进行测量,先得到多站信道信息,然后通过码本结构和多站信道信息,确定用于指示多站信道信息的PMI,其中码本结构可以是预先定义的,如3GPP通信协议预定义。这里,多站信道信息包括多个无线接入网设备中每个无线接入网设备到终端设备的信道信息。
应理解,根据多站信道信息确定用于指示多站信道信息的PMI可以是在3GPP通信协 议中规定的,例如,3GPP通信协议中可以规定相应的算法实现多站信道信息的PMI获取。本申请对此不作限定。在这里多站信道信息的PMI获取是指终端设备分别获取多个无线接入网设备中每个无线接入网设备到终端设备的信道信息对应的PMI分量。也就是说,多站信道信息的PMI可以综合反映多个无线接入网设备的PMI分量,该多个无线接入网设备的PMI与多个无线接入网设备中每个无线接入网设备到终端设备的信道信息相对应。
可选地,CSI可以包括用于指示预编码矩阵或信道矩阵的PMI,还可以包括RI和CQI等。
S230,终端设备上报CSI。
在该步骤中,终端设备可以分别向多个无线接入网设备中的每个无线接入网设备发送CSI。或者,终端设备可以向多个无线接入网设备中的一个无线接入网设备发送CSI,如果其他无线接入网设备也需要获取该信息的话,可以由该第一无线接入网设备将CSI转发给其他无线接入网设备。或者,终端设备可以向该协作集之外的无线接入网设备发送CSI,如果该协作集中的无线接入网设备需要获取该信息的话,可以由该协作集之外的无线接入网设备将CSI转发给该协作集中的无线接入网设备。
因此,图2中示出的第一无线接入网设备可以是组成该终端设备的协作集的多个无线接入网设备中的任意一个,还可以是组成该终端设备的协作集之外的无线接入网设备。也就是说,该第一无线接入网设备可以向该终端设备发送参考信号,也可以不向该终端设备发送参考信号,本申请实施例对此不作限定。
应理解,该CSI可以承载在物理上行资源上以传输给网络设备。该物理上行资源例如可以是物理上行控制信道(physical uplink control channel,PUCCH)资源或物理上行共享信道(physical uplink share channel,PUSCH)资源,本申请对此不作限定。
应理解,CSI可以包括用于指示预编码矩阵或信道矩阵的PMI,还可以包括RI和CQI等。
还应理解,终端设备向无线接入网设备发送CSI的具体过程可以参考现有技术,为了简洁,这里省略对该具体过程的详细说明。
S240,第一无线接入网设备根据终端设备上报的CSI以及码本结构确定多站信道信息。
在该步骤中,第一无线接入网设备可以是组成该终端设备的协作集的多个无线接入网设备中的任意一个,还可以是组成该终端设备的协作集之外的无线接入网设备。也就是说,该第一无线接入网设备可以向终端设备发送参考信号,也可以不向终端设备发送参考信号,本申请实施例对此不作限定。
应理解,终端设备上报的CSI中的信息与码本结构中的参数信息对应,例如CSI中包括码本结构中参数的具体数值,这样第一无线接入网设备可以根据终端设备上报的CSI以及选择的码本结构计算得到多站信道信息,并根据多站信道信息确定无线接入网设备传输数据的预编码矩阵,以向终端设备发送数据。
应理解,根据选择的码本结构不同,计算过程也会不同。具体计算过程可以参考现有技术,为了简洁,这里省略对该具体过程的详细说明。
应理解,确定预编码矩阵以及传输数据的具体过程可以参考现有技术,为了简洁,这里省略对该具体过程的详细说明。
经过上述方法200,无线接入网设备在确定了下行信道的预编码矩阵之后,便可以利 用预编码矩阵在相应的信道上进行数据传输。但是在多站协作场景下,当PMI的频域反馈粒度较大时,多站信道时延扩展导致信道的频率选择性比较严重,使得信道信息的反馈精度不高,导致方法200所确定的预编码矩阵与真实信道的匹配度不高,影响了数据传输的质量。
具体来说,当多个无线接入网设备给同一个终端设备发送参考信号时,各参考信号到达终端设备的时间不同,导致该多个无线接入网设备之间存在空口时延差。该多个无线接入网设备之间存在空口时延差可以理解为不同无线接入网设备的参考信号传输到终端设备所存在的空口时延差。例如,第一无线接入网设备的参考信号传输到一个终端设备需要的时间是t1,第二无线接入网设备的参考信号传输到该终端设备需要的时间是t2,则第一无线接入网设备和第二无线接入网设备之间存在空口时延差,差值为t1-t2。该多个无线接入网设备之间的空口时延差会导致时延扩展,其中时延扩展越明显,信道在不同频率分量的幅度相位变化也就越大,不同频率分量的选择性就越强,即频选越严重。频选越严重会导致PMI反馈信道的精度损失越大,因而根据PMI所确定的预编码矩阵也就越不准确。预编码矩阵与信道的匹配度影响了信号传输的质量,进而影响了多站协作的效果以及系统性能。
因此,需要提供一种信道信息上报的方法,以提高PMI的反馈精度,从而提高下行信道的预编码矩阵的准确性,使能更有效的进行多站协作。
图3示出了本申请实施例提供的一种信道信息上报的方法的示意性流程图。图3所示方法300可以由无线接入网设备和终端设备交互执行。该无线接入网设备例如可以为图1所示通信系统100中的无线接入网设备110、120或130,终端设备例如可以为图1所示通信系统100中的终端设备140。该方法300包括步骤S310至步骤S360。
S310,终端设备测量多个参考信号。
此步骤可以参考S210,此处不再赘述。
S320,终端设备根据接收到的多个参考信号确定第一时延信息和第一信道信息。
第一时延信息包括多个无线接入网设备中部分或全部无线接入网设备的时延信息,一个无线接入网设备的时延信息可以理解为该无线接入网设备的参考信号到终端设备的传播时延相对于第一参考信号的传播时延的时延信息。其中第一参考信号的传播时延可以理解为第一参考信号从发送该参考信号的另一个无线接入网设备在空口传输到该终端设备的时间。
第一信道信息包括多个无线接入网设备中每个无线接入网设备的信道信息,该无线接入网设备的信道信息可以理解为一个无线接入网设备到终端设备的无线信道的信息。第一信道信息可以是通过终端设备测量所接收到的多个参考信号得到的。测量参考信号以得到第一信道信息的具体方式可以参考现有方案执行,本申请实施例不作具体限定。
在一些实施例中,该第一时延信息可以根据参考信号的空口时延确定。本申请考虑到无线接入网设备发送信号到终端设备接收到信号存在时间差,且信号经不同路径到达终端设备的时间也不一样。空口时延可以是无线接入网设备发送的参考信号的首径到达终端设备的时间或者是无线接入网设备发送的参考信号的主径到达终端设备的时间。空口时延可以是狭义的,即仅包括空口路径传播时延;也可以是广义的,既包含硬件通道时延,也包含空口路径传播时延。
空口时延差指的是两个或多个无线接入网设备同时发送信号,首径或者主径到达终端 设备的时间差,即两个或多个无线接入网设备空口时延的差值。进一步说明,考虑广义的空口时延,则空口时延差为无线接入网设备之间的空口路径传播时延差;考虑广义的空口时延,则空口时延差包含无线接入网设备之间的空口路径传播时延差以及发送端硬件通道时延差。
例如,终端设备可以测量多个参考信号中的部分或全部参考信号相对于第一参考信号的空口时延,得到多个参考信号的空口时延差,然后根据该多个参考信号的空口时延差,确定该第一时延信息。
可选地,该多个参考信号的空口时延差可以包括该多个参考信号中的部分或全部参考信号相对于第一参考信号的空口时延差。
在一个实施例中,该多个参考信号的空口时延差可以包括该多个参考信号中的部分或全部参考信号的主径相对于第一参考信号的主径的时延差。
在另一个实施例中,该多个参考信号的空口时延差可以包括该多个参考信号中的部分或全部参考信号的首径相对于第一参考信号的首径的时延差。
本申请实施例中,第一参考信号可以为该多个参考信号中的任意一个。可以理解的是,空口时延差的值可以为正数,也可以为负数。
在一个示例中,当空口时延差为正数时,可以直接上报空口时延差的数值;当空口时延差为负数时,需要相应的信令指示空口时延差是负数,例如,可以通过1bit指示该空口时延差为负数。
在一个示例中,上报的空口时延差可以直接通过1bit指示该空口时延差为正数还是负数。例如,可以通过不同的值来表示空口时延差正负,上报数值1指示该空口时延差为正数,上报数值0指示该空口时延差为负数。
在一个示例中,在上报空口时延差时可以利用不同的字段来承载正空口时延差和负空口时延差。例如,空口时延差为正数的可以放在同一个字段中进行上报,空口时延差为负数的可以放在另一个字段中进行上报。
需要说明的是,空口时延差的正负还可以利用其它方法进行指示,本申请在此不作过多限定。
例如,该第一参考信号可以为该多个参考信号中第一个被终端设备接收的参考信号。
又例如,该第一参考信号可以是该多个参考信号中标识号最大的参考信号或为该多个参考信号中标识号最小的参考信号。具体地,每个参考信号可以具有标识号,例如CSI-RS标识,终端设备可以按照参考信号的标识号对参考信号进行排序,并从中确定第一参考信号。
需要说明的是,第一参考信号还可以是通过其他方式进行确定,本申请对此不作限定。
本申请实施例中,终端设备根据多个参考信号的空口时延差确定第一时延信息的方式有多种。
作为一个示例,终端设备可以将该多个参考信号的空口时延差作为第一时延信息。也就是说,该第一时延信息可以包括该多个参考信号的空口时延差。
作为另一个示例,终端设备可以根据多个参考信号的空口时延差和第一映射表,确定第一时延信息。其中第一映射表用于指示参考信号的空口时延差范围和预设的无线接入网设备时延偏移量之间的映射关系,第一时延信息用于指示多个参考信号对应的多个无线接入网设备中部分或全部无线接入网设备的时延偏移量。
也就是说,第一映射表可以指示“空口时延差范围-时延偏移量”之间的映射关系,具体地,多个空口时延差可以对应同一时延偏移量。终端设备根据得到的多个参考信号的空口时延差以及该第一映射表,可以得到各个无线接入网设备对应的时延偏移量,以作为第一时延信息。
实际上,空口时延差、时延偏移量均用于指示不同信号的时延差异,空口时延差是通过测量空口上的接收时间而确定的,其真实反映了信号的时延差异,而时延偏移量可以理解为是近似或估计的空口时延。
本申请实施例中,第一映射表可以是预定义的,例如3GPP通信协议预定义,或者终端设备自定义的,或者是无线接入网设备自定义后发送给终端设备的,本申请对此不作限定。
可选地,该第一映射表中可以包括各个预设的时延偏移量的索引。因此,该第一时延信息可以包括多个索引值,该多个索引值与多个无线接入网设备的时延偏移量一一对应。
这样的话,终端设备只需要上报各个无线接入网设备的时延偏移量对应的索引值即可,无需上报时延偏移量的具体值,可以减少信令开销。
当然,在其他实施例中,如果该多个无线接入网设备中有至少两个无线接入网设备的时延偏移量相同,终端设备也可以只上报一个索引值,该一个索引值用于指示该至少两个无线接入网设备的时延偏移量。
需要说明的是,在利用索引值指示无线接入网设备的时延偏移量的方案中,无线接入网设备也需要获知该第一映射表,以和终端设备对时延偏移量的理解保持一致。
为方便理解,表1示出了一种第一映射表的形式,该第一映射表可以包括索引、空口时延差的范围以及预设的时延偏移量。应理解,表1仅为示例性说明,不应对本申请构成任何限定。第一映射表还可以包括其他内容,或者具有其他表现形式。
表1
索引 空口时延差范围 时延偏移量
索引1(Index1) [0,T1) t1
索引2(Index2) [T1,T2) t2
索引3(Index3) [T2,T3) t3
…… …… ……
参考表1,例如,若确定第二参考信号相对第一参考信号的空口时延差在[T1,T2)的范围内,依据表1可以确定第二参考信号相对第一参考信号的时延偏移量为t2,其对应的索引为Index2,则终端设备可以直接上报索引Index2,以指示与该第二参考信号对应的无线接入网设备的时延偏移量。
又例如,若确定第三参考信号相对于第一参考信号的空口时延差在[T2,T3)的范围内,依据表1可以确定第三参考信号相对第一参考信号的时延偏移量为t3,其对应的索引为Index3,则终端设备可以直接上报索引Index3,以指示与该第三参考信号对应的无线接入网设备的时延偏移量。
作为一个示例,例如有三个无线接入网设备向终端设备发送参考信号,终端设备接收到的参考信号可以包括第一参考信号、第二参考信号、第三参考信号。若以第一参考信号为基准,终端设备根据表1所示的第一映射表可以确定:第一参考信号的空口时延差对应 的时延偏移量为0、第二参考信号的空口时延差对应的时延偏移量为t2、第三参考信号的空口时延差对应的时延偏移量为t3。终端设备所确定的第一时延信息可以包括时延偏移量为t1对应的索引Index1(即索引Index1指示的时延偏移量为t1)、时延偏移量为t2对应的索引Index2和时延偏移量为t3对应的索引Index3。
作为另一个示例,例如有三个无线接入网设备向终端设备发送参考信号,终端设备接收到的参考信号可以包括第一参考信号、第二参考信号、第三参考信号。若以第一参考信号为基准,则终端设备根据表1所示的第一映射表可以确定第二参考信号的空口时延差对应的时延偏移量为t2,第三参考信号的空口时延差对应的时延偏移量为t3。终端设备所确定的第一时延信息可以时延偏移量为t2对应的索引Index2和时延偏移量为t3对应的索引Index3。此外,终端设备可以上报一个指示信息,用于指示第一参考信号为基准参考信号,或者,终端设备可以直接上报第一参考信号的时延偏移量为0,以使第一无线接入网设备确定该第一参考信号为基准参考信号。
应理解,本申请还可以利用其它方式使第一无线接入网设备确定终端设备以哪一个参考信号为基准,本申请在此不作限定。
终端设备上报第一时延信息到无线接入网设备后,无线接入网设备可以根据第一映射表以及第一时延信息所包括的索引值,确定多个无线接入网设备中每个无线接入网设备的时延偏移量。
综上,终端设备确定的第一时延信息可以包括多个参考信号的空口时延差,也可以包括多个无线接入网设备的时延偏移量,还可以包括与多个无线接入网设备的时延偏移量对应的多个索引值,本申请对此不作限定。
S330,终端设备根据第一时延信息对第一信道信息进行时延差补偿,确定第二信道信息。
本申请实施例中,第一信道信息用于表征真实的信道,第二信道信息用于表征经过时延差补偿后的信道。也就是说,第二信道信息是通过第一时延信息对第一信道信息进行时延差补偿得到的。
可选地,第一信道信息和第二信道信息可以为信道矩阵形式。
终端设备对第一信道信息进行时延差补偿的方式有多种。
作为一个示例,终端设备可以根据第一时延信息,在频域上对第一信道信息进行线性相位补偿,以使多个无线接入网设备的信道信息的主径对齐或首径对齐,从而得到第二信道信息。也就是说,第二信道信息所表征的信道的主径是对齐的或首径是对齐的。
作为另一个示例,终端设备可以根据第一时延信息,在频域上对第一信道信息进行线性相位补偿,以使多个无线接入网设备的信道信息的主径的时延差在预设误差范围内或首径的时延差在预设误差范围内,从而得到第二信道信息。也就是说,第二信道信息的主径或首径是在预设误差范围内。
作为又一个示例,终端设备可以根据第一时延信息,在时域上对第一信道信息进行多径分量搬移,以使多个无线接入网设备的信道信息的主径对齐或首径对齐,从而得到第二信道信息。
作为再一个示例,终端设备可以根据第一时延信息,在时域上对第一信道信息进行多径分量搬移,以使多个无线接入网设备的信道信息的主径的时延差在预设误差范围内或首径的时延差在预设误差范围内。
终端设备根据该第一时延信息对第一信道信息进行时延差补偿后,可以保证多个无线接入网设备的信道信息的主径的时延差在预设误差范围内或首径对齐的时延差在预设误差范围内,能够得到时延扩展较小的第二信道信息,这样当利用PMI反馈第二信道信息时,PMI的反馈精度提高。
特别地,当对第一信道信息进行时延差补偿使得多个无线接入网设备的信道信息的主径对齐或首径对齐时,能够得到时延扩展最小的第二信道信息,时延扩展越小,不同无线接入网设备的信道差异对不同频率分量的幅度相位影响越小,不同频率分量的选择性就越小,从而能较大程度地降低频选,减小PMI反馈信道的精度损失,提高PMI的反馈精度。
S340,终端设备根据第二信道信息确定PMI。
该PMI用于指示在步骤S330中得到的第二信道信息。
可选地,该PMI包括一个PMI,该一个PMI与多个无线接入网设备对应。即该一个PMI用于指示该多个无线接入网设备中的每个无线接入网设备的信道状态,或者说该一个PMI用于指示该多个无线接入网设备的综合信道状态。
终端设备可以根据第二信道信息和第一码本结构,确定用于指示第二信道信息的PMI。
应理解,根据第二信道信息确定用于指示第二信道信息的PMI具体计算过程可以是利用现有方法实现的,或者预先在3GPP通信协议中规定的,例如,3GPP通信协议中可以规定相应的算法获取第二信道信息的PMI。本申请对此不作限定。
本申请实施例对第一码本结构不作限定,该第一码本结构可以为现有的码本结构(如现有的多站联合码本结构),也可以为新设计的码本结构,只要是能够用于确定指示第二信道信息的PMI即可。
S350,终端设备上报第一时延信息和PMI。
如上述内容所述,该PMI用于指示第二信道信息。该第一时延信息和PMI用于确定第一预编码矩阵,该第一预编码矩阵与第一信道信息相匹配。
在该步骤中,终端设备可以分别向多个无线接入网设备中的每个无线接入网设备发送第一时延信息和PMI。或者,终端设备可以向多个无线接入网设备中的一个无线接入网设备发送第一时延信息和PMI,如果其他无线接入网设备也需要获取该信息的话,可以由该第一无线接入网设备将第一时延信息和PMI转发给其他无线接入网设备。或者,终端设备可以向组成该终端设备的协作集之外的无线接入网设备发送第一时延信息和PMI,如果该协作集中的无线接入网设备需要获取该信息的话,可以由该协作集之外的无线接入网设备将第一时延信息和PMI转发给该协作集中的无线接入网设备。
因此,图3中示出的第一无线接入网设备可以是组成该终端设备的协作集的多个无线接入网设备中的一个,还可以是该协作集之外的无线接入网设备。也就是说,该第一无线接入网设备可以向终端设备发送参考信号,也可以不向终端设备发送参考信号,本申请实施例对此不作限定。
应理解,终端设备上报的第一时延信息包括多个无线接入网设备中部分或全部无线接入网设备的时延信息。以其中一个无线接入网设备的时延信息为例,终端设备可以确定该时延信息与参考信号之间存在对应关系,因此,当第一无线接入网设备接收到该时延信息时,可以根据该时延信息与参考信号之间的对应关系,以及该参考信号与该无线接入网设备之间的对应关系,确定出该时延信息与该无线接入网设备之间的对应关系。
可选地,终端设备上报的第一时延信息和PMI可以承载在物理上行资源上。该物理上行资源例如可以是PUCCH资源或PUSCH资源,本申请对此不作限定。
在该步骤中,终端设备可以将第一时延信息和PMI一起上报,也可以分开上报,本申请实施例不作具体限定。
终端设备向无线接入网设备发送PMI的具体过程可以参考现有技术,为了简洁,这里省略对该具体过程的详细说明。
S360,第一无线接入网设备根据第一时延信息和PMI确定第一预编码矩阵。
该第一预编码矩阵与第一信道信息相匹配。也就是说,无线接入网设备需获取与真实的信道相匹配的预编码矩阵。
无线接入网设备确定第一预编码矩阵的方式有多种。
作为一个示例,第一无线接入网设备可以先获取第一信道信息,然后再获取与第一信道信息相匹配的第一预编码矩阵。
即,第一无线接入网设备先获取原始的信道信息,再根据原始的信道信息确定与之匹配的预编码矩阵。
例如,第一无线接入网设备可以根据第一时延信息、PMI、第一码本结构和第二码本结构,获取第一信道信息,然后再根据第一信道信息获取第一预编码矩阵。
具体地,第一无线接入网设备根据PMI和第一码本结构获取第二信道信息;然后根据第一时延信息、第二信道信息和第二码本结构获取第一信道信息;再根据第一信道信息获取第一预编码矩阵。
关于该示例,下文将结合附图4进行详细介绍,在此暂不详述。
作为另一个示例,第一无线接入网设备可以先获取与第二信道信息相匹配的第二预编码矩阵,然后再根据第二预编码矩阵获取与第一信道信息相匹配的第一预编码矩阵。
即,第一无线接入网设备先获取与时延补偿后的信道信息相匹配的第二预编码矩阵,然后再根据该第二预编码矩阵获取与原始的信道信息相匹配的第一预编码矩阵。
例如,第一无线接入网设备可以根据PMI和第一码本结构获取第二信道信息,然后根据第二信道信息,确定与第二信道信息相匹配的第二预编码矩阵,之后根据第一时延信息和第二预编码矩阵,得到第一预编码矩阵。
关于该示例,下文将结合附图7进行详细介绍,在此暂不详述。
本申请实施例中,第一无线接入网络设备确定的第一预编码矩阵是多个无线接入网设备联合预编码矩阵,即第一无线接入网络设备确定的第一预编码矩阵与多个无线接入网设备的信道相匹配,该第一预编码矩阵用于该多个无线接入网设备分别发送数据。
若第一无线接入网设备是协作集中多个无线接入网设备中的一个,第一无线接入网设备可以从第一预编码矩阵中确定与自己的信道相匹配的预编码矩阵,并根据该预编码矩阵发送数据。此外,第一无线接入网设备还可以根据确定出的第一预编码矩阵,分别向其他无线接入网设备发送对应的预编码矩阵,并根据相应的预编码矩阵发送数据。
若第一无线接入网设备是组成该终端设备的协作集之外的无线接入网设备,该无线接入网设备可以分别向协作集内的各个无线接入网设备发送对应的预编码矩阵,并根据相应的预编码矩阵发送数据。
在本申请实施例中,终端设备利用第一时延信息对第一信道信息进行时延差补偿,得到时延扩展较小的第二信道信息,时延扩展越小,不同无线接入网设备的信道差异对不同 频率分量的幅度相位影响越小,不同频率分量的选择性就越小,也就能够降低信道对不同频率分量的选择性,即降低频选。这样当利用PMI反馈第二信道信息时,由于第二信道信息所指示的不同无线接入网设备的信道在频域上的幅度相位变化较小,从而使得PMI反馈信道的精度损失较小,PMI的反馈精度较高。特别是在PMI的反馈粒度较大时,基于本申请提供的技术方案,可以显著提高PMI的反馈精度。PMI的反馈精提高,可以得到更加准确的下行信道的预编码矩阵,从而能够充分发挥多站协作传输的性能优势。此外,无线接入网设备根据终端设备上报的第一时延信息和预编码矩阵指示PMI得到与第一信道信息相匹配的第一预编码矩阵,从而能够得到与传输数据的真实信道相匹配的预编码矩阵,可以保证数据传输性能,从而充分发挥多站协作传输的性能优势。
图4是本申请实施例提供的另一种信道信息上报的方法的示意性流程图,该方法400包括步骤S410至步骤S480,其中,步骤S410至步骤S450与方法300中的步骤S310至步骤S350一一对应,在此仅做简要说明,具体内容可参考方法300中对相关步骤的描述,为了简洁,在此不再赘述。另外,步骤S460至步骤S480可以理解为方法300中步骤S360的一种实现方式,其可以由第一无线接入网设备执行,该第一无线接入网设备该多个无线接入网设备中的一个,该第一无线接入网设备例如为图1中示出的无线接入网设备110、120或130。
S410,终端设备测量参考信号。
S420,终端设备根据接收到的多个参考信号确定第一时延信息和第一信道信息。
S430,终端设备根据第一时延信息对第一信道信息进行时延差补偿,确定第二信道信息。
S440,终端设备根据第二信道信息确定PMI。
S450,终端设备上报第一时延信息和PMI。
S460,第一无线接入网设备根据PMI和第一码本结构确定第二信道信息。
该PMI指示的是第二信道信息,第二信道信息是通过第一时延信息对第一信道信息进行时延差补偿得到的,而第一信道信息是通过测量终端设备接收到的多个参考信号得到的真实的信道信息。
该步骤即为确定经过时延补偿后的信道信息。
第一码本结构可以是现有的码本结构,也可以是新设计的码本结构,本申请对此不作限定,该第一码本结构只要能用于确定第二信道信息即可。为了方便理解,下面结合图5和图6对第一码本结构进行示例性的说明。
图5示出了一种基于多站协作场景下的多站联合的三维码本结构。该码本结构适用于多个无线接入网设备之间采用CJT的传输方式,终端设备需要联合测量终端设备到各无线接入网设备之间的信道信息,并将联合测量结果反馈回无线接入网设备。
如图5所示,在该码本结构中,H表示无线接入网设备与终端设备之间的信道;S为空域波束,即为发端维度的若干离散傅里叶变换(discrete fourier transform,DFT)基底或收发两端若干DFT基底的克罗内克积;F为频域波束,即为频域子带维度的若干DFT基底;C为所选的空域波束和频域波束对应叠加系数。其中,H的维度是P*N i,P为测量的CSI-RS端口数N TX与接收天线端口数N RX的乘积;N 3为频域单元个数;S i为选择的空域波束,每个极化方向选择L个波束;F i为选择频域波束,共选择M个频域波束。
示例性的,CSI中携带的信息可以包括:大尺度信息α、空域波束S、频域波束F以 及所选空域波束和频域波束对应叠加系数C。无线接入网设备可以根据CSI中携带的信息以及图5所示码本结构确定多站信道信息。
示例性的,假设有三个无线接入网设备同时为一个终端设备提供服务,并且三个无线接入网设备之间采用CJT的传输方式,则可以利用如图5所示的码本结构恢复三个无线接入网设备的信道信息,终端设备到三个无线接入网设备间的信道H i如公式(1)所示。
Figure PCTCN2022138857-appb-000001
其中,H i表示无线接入网设备i到用户设备的信道,包括大尺度信息和小尺度信息,其中α i为大尺度信息,小尺度信息包含空域波束S i、频域波束F i、所选空域波束和频域波束对应叠加系数C i
图6示出了另一种适应于多站协作场景下的多站联合码本结构。该码本结构适用于多站间采用CJT的传输方式。
如图6所示,在该码本结构中,H i表示无线接入网设备与终端设备之间的信道,其维度是(N TX*N SB)×N RX;N TX表示测量的CSI-RS端口数;N SB表示频域单元个数;N RX表示终端设备接收天线端口数;B i为发射端频域联合的基底,由N i个基向量组成;R i为接收端独立的基底,由M i个基向量组成;α iC i为包含大尺度信息的叠加系数。
在应用中,终端设备可以根据下行信道空域频域特征空间指定发射端空域频域联合基底,并通过CSI长周期上报发射端空域频域联合基底,短周期上报叠加系数。
示例性的,CSI中携带的信息可以包括:发射端频域联合的基底B、接收端独立的基底R以及大尺度信息的叠加系数αC。无线接入网设备可以根据CSI中携带的信息以及图4所示码本结构确定多站信道信息。
示例性的,假设有三个无线接入网设备同时为一个终端设备提供服务,并采用CJT的传输方式,则采用如图6所示的码本结构时,终端设备到三个无线接入网设备间的信道H i如公式(2)所示。
Figure PCTCN2022138857-appb-000002
应理解,上述两种码本结构适用于多站协作场景,根据选择的码本结构不同,CSI中携带的信息也相应不同,CSI可以用于指示码本结构中的参数的具体值。
需要说明的是,上述两种码本结构仅为示例性说明,并不能限制本申请的范围。本申请还可以利用其它适用于多站协作场景下的码本结构确定多站信道信息,在此不再一一详述。
本申请实施例中,该第一码本结构用于利用终端设备反馈的PMI,来恢复出终端设备所上报的信道信息。由于步骤S450中,终端设备上报的PMI用于指示第二信道信息,即经过时延补偿后的信道信息,因此在该步骤中,第一无线接入网设备利用第一码本结构和 PMI,计算得到的是第二信道信息。
在该步骤中,利用PMI和第一码本结构计算出第二信道信息的具体过程可以参考现有技术,为了简洁,这里省略对该具体过程的详细说明。
S470,第一无线接入网设备根据第二信道信息、第一时延信息以及第二码本结构确定第一信道信息。
该步骤即为确定原始(或真实)的信道信息。
在该步骤中,第一无线接入网设备确定的第一信道信息与终端设备在S420中确定的第一信道信息相同或近似相同。
本申请实施例中,该第二码本结构用于将第二信道信息恢复为第一信道信息。或者可以理解为,该第二码本结构与步骤S430中终端设备所执行的过程的逆过程对应。换言之,在步骤S430中,终端设备根据第一时延信息对第一信道信息进行时延差补偿,得到第二信道信息;则在步骤S470中,第一无线接入网设备需要根据第一时延信息,利用第二码本结构对第二信道信息进行时延差反补偿(或称时延差补偿的逆过程、时延差补偿的反过程等),以得到第一信道信息。
示例性的,若在步骤S430中,终端设备通过第一时延信息在频域上对第一信道信息进行线性相位补偿得到第二信道信息;则在步骤S470中,第一无线接入网设备可以根据第二码本结构和第一时延信息,在频域上对第二信道信息进行线性相位反补偿,得到第一信道信息。
本申请实施例中,第二码本结构可以为新设计的码本结构,其中,该第二码本结构中可以包括时延参数。该第一时延信息可以指示该时延参数的值。
作为示例而非限定,该第二码本结构可以如公式3所示,应理解,公式3仅为示例,不应对本申请构成任何限定。
Figure PCTCN2022138857-appb-000003
其中,
Figure PCTCN2022138857-appb-000004
为真实多站信道,
Figure PCTCN2022138857-appb-000005
反补偿后的信道,
Figure PCTCN2022138857-appb-000006
为补偿后的信道,
Figure PCTCN2022138857-appb-000007
Figure PCTCN2022138857-appb-000008
均为每个终端设备接收天线端口对应的信道分量,维度为N TX×N SB,其中N TX表示CSI-RS测量的端口数,N SB表示频域单元个数,f k表示第k个频域单元的频点,τ n表示第n个无线接入网设备的时延偏移量。
需要说明的是,上述真实多站信道对应于第一信道信息,具体可以包括多个无线接入网设备中每个无线接入网设备的真实信道。上述反补偿后的信道可以理解为真实多站信道的一个信道分量,与某个无线接入网设备的真实信道相同或相近。上述补偿后的信道可以理解为经过补偿后的多站信道的一个信道分量,具体为某个无线接入网络设备的经过时延差补偿后的信道。多个补偿后的信道对应第二信道信息,具体可以包括多个无线接入网设备中每个无线接入网设备的经过时延差补偿后的信道。
本申请实施例中,第一码本结构与第二码本结构可以是分开使用的,例如先使用第一码本结构,后使用第二码本结构。例如先执行步骤S460,后执行步骤S470。其中第二信 道信息可以单独输出。
在其他一些实施例中,第一码本结构和第二码本结构也可以是嵌套在一起使用,即在形式上,第一码本结构和第二码本结构为一个总的码本结构。这样,步骤S460和步骤S470可以同步执行,或者合并为一个步骤,即第一无线接入网设备根据第一时延信息、PMI、第一码本结构和第二码本结构,获取第一信道信息。
S480,第一无线接入网设备根据第一信道信息确定预编码矩阵。
该第一预编码矩阵与第一信道信息相匹配,第一预编码矩阵可以包含多个无线接入网设备的预编码矩阵。在获取到第一预编码矩阵后,第一无线接入网设备可以从中确定要使用的预编码矩阵对要传输的数据进行预编码,以进行数据传输。
该步骤中,根据第一信道信息获取第一预编码矩阵的具体过程可以参考现有技术,为了简洁,这里省略对该具体过程的详细说明。
本申请实施例中,无线接入网设备通过第一码本结构和第二码本结构,并结合第一时延信息和PMI恢复第一信道信息,可以得到更精确到时延差补偿前的真实信道信息。相应地,无线网络设备可以即获得能够与传输数据的真实信道更匹配的预编码矩阵,可以保证数据传输性能,从而充分发挥多站协作传输的性能优势。
图7示出了本申请实施例提供的又一种信道信息上报的方法的示意性流程图。该方法700包括步骤S710至步骤S780。其中,步骤S710至步骤S750与方法300中的步骤S310至步骤S350一一对应,在此仅做简要说明,具体内容可参考方法300中对相关步骤的描述,为了简洁,在此不再赘述。另外,步骤S760至步骤S780可以理解为方法300中步骤S360的一种实现方式,其可以由第一无线接入网设备执行,该第一无线接入网设备该多个无线接入网设备中的一个,该第一无线接入网设备例如为图1中示出的无线接入网设备110、120或130。
S710,终端设备测量参考信号。
S720,终端设备根据接收到的多个参考信号确定第一时延信息和第一信道信息。
S730,终端设备根据第一时延信息对第一信道信息进行时延差补偿,确定第二信道信息。
S740,终端设备根据第二信道信息确定PMI。
S750,终端设备上报第一时延信息和PMI。
S760,第一无线接入网设备根据PMI和第一码本结构确定第二信道信息。
该步骤即为确定经过时延补偿后的信道信息。该步骤S760与方法600中的步骤S460相同,具体可以参考S460的相关描述,为简洁,在此不再赘述。
S770,第一无线接入网设备根据第二信道信息,确定第二预编码矩阵。
该第二预编码矩阵与该第二信息相匹配。
该步骤即为确定与补偿后的信道信息相匹配的预编码矩阵。
在该步骤中,根据第二信道信息获取第二预编码矩阵的具体过程可以参考现有技术,为了简洁,这里省略对该具体过程的详细说明。
S780,第一无线接入网设备根据第一时延信息对第二预编码矩阵进行时延差补偿,得到第一预编码矩阵。
该第一预编码矩阵与第一信道信息相匹配。
该步骤即为确定与原始的信道信息相匹配的预编码矩阵。
在该步骤中,第一无线接入网设备根据第一时延信息对第二预编码矩阵进行时延差补偿,可以是根据相应的预编码算法进行的。此处不对具体的预编码算法进行限定,只要能够达成预编码时延差补偿效果,获取与第一信道信息相匹配的第一预编码矩阵即可。其中,该预编码算法包括时延参数,该第一时延信息可以用于指示时延参数的值。在具体实现中,若终端设备是利用第一延时信息在频域上对第一信道信息进行线性相位补偿的话,则在对第二预编码进行时延差补偿时,所使用的预编码算法应能对第二预编码中与时延补偿的相关参数进行恢复。
还应理解,第一无线接入网设备根据第一时延信息对第二预编码矩阵进行时延差补偿时所利用的时延差与终端设备上报的第一时延信息相对应,以匹配第一信道信息,保证数据传输性能。
本申请实施例中,无线接入网设备通过第一码本结构和PMI恢复第二信道信息,再确定与第二信道信息相匹配的第二预编码矩阵,最后根据终端设备上报的第一时延信息直接对第二预编码矩阵进行时延差补偿得到与第一信道信息相匹配的第一预编码矩阵。无线接入网设备无需获取真实的信道信息即可获取与真实的信道相匹配的预编码矩阵,可以保证数据传输性能。
在一些实施例中,本申请还提供了一种信道信息上报的方法,包括:
第一无线接入网设备向终端设备发送第四参考信号。
第一无线接入网设备接收终端设备发送的第一时延信息和PMI。
其中,第一时延信息包括多个无线接入网设备中每个无线接入网设备的时延信息。
PMI用于指示第二信道信息,第二信道信息是通过第一时延信息对第一信道信息进行时延差补偿得到的。第一信道信息是通过测量终端设备接收到的多个参考信号得到的,多个参考信号与多个无线接入网设备一一对应,且多个参考信号包括第四参考信号。
第一信道信息包括多个无线接入网设备中每个接入网设备的信道信息。
第一时延信息和PMI用于确定第一预编码矩阵,第一预编码矩阵与第一信道信息相匹配。
可选地,在该方法中,第一无线接入网设备还可以执行方法300中的步骤S360、方法S400中的步骤S460-S480、方法700中的步骤S760-S780,以及各个步骤中相关的可选的实施例。具体可参考上文相关描述,为简洁,在此不再赘述。
上文结合图1至图7详细的描述了本申请实施例的方法实施例,下面结合图8至图11,详细描述本申请实施例的装置实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图8是本申请实施例提供的一个终端设备的示意性结构图。可以是上文提及的终端设备,例如可以为图1所示的终端设备140的一个具体的例子。终端设备800包括:处理单元810和发送单元820。
处理单元810,用于:
测量来自多个无线接入网设备的多个参考信号,其中所述多个无线接入网设备中的一个无线接入网设备发送所述多个参考信号中的一个参考信号。
根据该多个参考信号确定第一时延信息和第一信道信息,该第一时延信息包括该多个无线接入网设备中部分或全部无线接入网设备的时延信息,该第一信道信息包括该多个无线接入网设备中每个无线接入网设备的信道信息。
根据该第一时延信息对该第一信道信息进行时延差补偿,得到第二信道信息;根据该第二信道信息确定预编码矩阵指示PMI,该PMI用于指示该第二信道信息;
发送单元820,用于上报该第一时延信息和该PMI。
可选地,该处理单元810,具体用于:测量该多个参考信号中的部分或全部参考信号相对于第一参考信号的空口时延,得到该部分或全部参考信号的空口时延差,该第一参考信号是该多个参考信号中的一个;根据该多个参考信号的空口时延差,确定该第一时延信息。
可选地,该第一时延信息包括该部分或全部参考信号的空口时延差。
可选地,处理单元810具体用于:根据该部分或全部参考信号的空口时延差和第一映射表,确定该第一时延信息,其中该第一映射表用于指示参考信号的空口时延差范围和预设的无线接入网设备时延偏移量之间的映射关系,该第一时延信息用于指示该部分或全部参考信号对应的多个无线接入网设备中每个无线接入网设备的时延偏移量。
可选地,该第一时延信息包括多个索引值,该多个索引值中的一个索引值用于指示该部分或全部无线接入网设备中的一个无线接入网设备的时延偏移量。
可选地,该部分或全部参考信号的空口时延差包括该部分或全部参考信号中的每个参考信号的主径相对于该第一参考信号的主径的时延差;或者,该部分或全部参考信号的空口时延差包括该部分或全部参考信号中的每个参考信号的首径相对于该第一参考信号的首径的时延差。
可选地,该第一参考信号为该多个参考信号中第一个被该接收单元接收的参考信号。
可选地,处理单元810具体用于:根据该第一时延信息,在频域上对该第一信道信息进行线性相位补偿,以使该多个无线接入网设备的信道信息的主径对齐或首径对齐。
图9是本申请实施例提供的通信装置900的示意性结构框图。该通信装置900可以为图5、图6或图7中所述的终端设备,具体可以为图1中终端设备140的一个具体的例子。通信装置900可用于实现上文中的由终端设备执行的步骤,例如图5、图6或图7的方法。为避免冗余,不再重复描述。
该装置900可以采用如图9所示的硬件架构。该装置可以包括处理器910和收发器920,可选地,该装置还可以包括存储器930。该处理器910、收发器920和存储器930通过内部连接通路互相通信。图8中的确定单元820和补偿单元830所实现的相关功能可以由处理器910来实现,接收单元810和发送单元840所实现的相关功能可以由处理器910控制收发器920来实现。
可选地,处理器910可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),专用处理器,或一个或多个用于执行本申请实施例技术方案的集成电路。或者,处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对配置时域资源的装置(如,无线接入网设备、终端设备、或芯片等)进行控制,执行软件程序,处理软件程序的数据。
可选地,该处理器910可以包括是一个或多个处理器,例如包括一个或多个中央处理单元(central processing unit,CPU),在处理器是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该收发器920用于发送和接收数据和/或信号,以及接收数据和/或信号。该收发器可以包括发射器和接收器,发射器用于发送数据和/或信号,接收器用于接收数据和/或信号。
该存储器930包括但不限于是随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程存储器(erasable programmable read only memory,EPROM)、只读光盘(compact disc read-only memory,CD-ROM),该存储器930用于存储相关指令及数据。
存储器930用于存储终端设备的程序代码和数据,可以为单独的器件或集成在处理器910中。
具体地,所述处理器910用于控制收发器与无线接入网设备进行信息传输。具体可参见方法实施例中的描述,在此不再赘述。
可以理解的是,图9仅仅示出了通信装置900的简化设计。在实际应用中,该装置还可以分别包含必要的其他元件,包含但不限于任意数量的收发器、处理器、控制器、存储器等,而所有可以实现本申请的终端设备都在本申请的保护范围之内。
在一种可能的设计中,该装置900可以是芯片,例如可以为可用于终端设备中的通信芯片,用于实现终端设备中处理器910的相关功能。该芯片可以为实现相关功能的现场可编程门阵列,专用集成芯片,系统芯片,中央处理器,网络处理器,数字信号处理电路,微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选的可以包括一个或多个存储器,用于存储程序代码,当所述代码被执行时,使得处理器实现相应的功能。
图10是本申请提供的一个无线接入网设备的示意性结构图。无线接入网设备可以是上文提及的无线接入网设备,如第一无线接入网设备,例如可以为图1所示的无线接入网设备110、120或130的一个具体的例子。无线接入网设备1000包括:接收单元1010和处理单元1020。
接收单元1010,用于接收终端设备发送的第一时延信息和预编码矩阵指示PMI。
该第一时延信息包括多个无线接入网设备中每个无线接入网设备的时延信息,该PMI用于指示第二信道信息,该第二信道信息是通过该第一时延信息对第一信道信息进行时延差补偿得到的,该第一信道信息包括该多个无线接入网设备中部分或全部接入网设备的信道信息。
处理单元1020,用于根据该第一时延信息和该PMI,确定第一预编码矩阵。该第一预编码矩阵与该第一信道信息相匹配。
可选地,处理单元1020具体用于:根据该第一时延信息、该PMI、第一码本结构和第二码本结构,获取该第一信道信息;根据该第一信道信息获取该第一预编码矩阵。
可选地,处理单元1020具体用于:根据该PMI和该第一码本结构获取该第二信道信息;根据该第一时延信息、该第二信道信息和该第二码本结构获取该第一信道信息。
可选地,该第二码本结构包括时延参数,该第一时延信息用于指示该时延参数的值,该第二信道信息是通过该第一时延信息在频域上对该第一信道信息进行线性相位补偿得到的;其中,该处理单元1020具体用于,根据该第二码本结构和该时延参数的值,在频域上对该第二信道信息进行线性相位反补偿,得到该第一信道信息。
可选地,处理单元1020具体用于:根据该PMI和第一码本结构,获取该第二信道信息;根据该第二信道信息,确定第二预编码矩阵,该第二预编码矩阵与该第二信道信息相匹配;根据该第一时延信息对该第二预编码矩阵进行时延差补偿,得到该第一预编码矩阵。
可选地,该第一时延信息是根据该终端设备接收的部分或全部参考信号的空口时延差确定的,该部分或全部参考信号的空口时延差通过测量该多个参考信号中的部分或全部参考信号相对于第一参考信号的空口时延得到。
可选地,该第一时延信息包括该部分或全部参考信号的空口时延差。
可选地,该第一时延信息包括多个索引值,该多个索引值中的一个索引值用于指示该部分或全部无线接入网设备中的一个无线接入网设备的时延偏移量,该多个无线接入网设备的时延偏移量是根据该部分或全部参考信号的空口时延差和第一映射表确定,其中该第一映射表用于指示参考信号的空口时延差范围和预设的无线接入网设备时延偏移量之间的映射关系。
可选地,该部分或全部参考信号的空口时延差包括该部分或全部参考信号中的每个参考信号的主径相对于该第一参考信号的主径的时延差;或者,该部分或全部参考信号的空口时延差包括该部分或全部参考信号中的每个参考信号的首径相对于该第一参考信号的首径的时延差。
可选地,该第一参考信号为该多个参考信号中第一个被该接收单元1010接收的参考信号。
图11是本申请实施例提供的通信装置1100的示意性结构框图。该通信装置1100可以为图5、图6或图7中所述的第一无线接入网设备。通信装置1100可用于实现上文中的由无线接入网设备,例如第一无线接入网设备执行的步骤,例如图5、图6或图7的方法。为避免冗余,不再重复描述。
该装置1100可以采用如图11所示的硬件架构。该装置可以包括处理器1110和收发器1120,可选地,该装置还可以包括存储器1130。该处理器1110、收发器1120和存储器1130通过内部连接通路互相通信。图10中的确定单元1020所实现的相关功能可以由处理器1110来实现,接收单元1010所实现的相关功能可以由处理器1110控制收发器1120来实现。
可选地,处理器1110可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),专用处理器,或一个或多个用于执行本申请实施例技术方案的集成电路。或者,处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对配置时域资源的装置(如,无线接入网设备、终端设备、或芯片等)进行控制,执行软件程序,处理软件程序的数据。
可选地,该处理器1110可以包括是一个或多个处理器,例如包括一个或多个中央处理单元(central processing unit,CPU),在处理器是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该收发器1120用于发送和接收数据和/或信号,以及接收数据和/或信号。该收发器可以包括发射器和接收器,发射器用于发送数据和/或信号,接收器用于接收数据和/或信号。
该存储器1130包括但不限于是随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程存储器(erasable programmable read only memory,EPROM)、只读光盘(compact disc read-only memory,CD-ROM),该存储器830用于存储相关指令及数据。
存储器1130用于存储无线接入网设备的程序代码和数据,可以为单独的器件或集成在处理器810中。
具体地,所述处理器1110用于控制收发器与终端设备进行信息传输。具体可参见方法实施例中的描述,在此不再赘述。
可以理解的是,图11仅仅示出了通信装置1100的简化设计。在实际应用中,该装置还可以分别包含必要的其他元件,包含但不限于任意数量的收发器、处理器、控制器、存储器等,而所有可以实现本申请的无线接入网设备都在本申请的保护范围之内。
在一种可能的设计中,该装置1100可以是芯片,例如可以为可用于无线接入网设备中的通信芯片,用于实现无线接入网设备中处理器1110的相关功能。该芯片可以为实现相关功能的现场可编程门阵列,专用集成芯片,系统芯片,中央处理器,网络处理器,数字信号处理电路,微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选的可以包括一个或多个存储器,用于存储程序代码,当所述代码被执行时,使得处理器实现相应的功能。
作为本实施例的另一种形式,提供一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中终端设备和/或无线接入网设备的方法。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的 介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (40)

  1. 一种信道信息上报的方法,其特征在于,包括:
    终端设备测量来自多个无线接入网设备的多个参考信号,其中所述多个无线接入网设备中的一个无线接入网设备发送所述多个参考信号中的一个参考信号;
    所述终端设备根据所述多个参考信号确定第一时延信息和第一信道信息,所述第一时延信息包括所述多个无线接入网设备中部分或全部无线接入网设备的时延信息,所述第一信道信息包括所述多个无线接入网设备中每个无线接入网设备的信道信息;
    所述终端设备根据所述第一时延信息对所述第一信道信息进行时延差补偿,确定第二信道信息;
    所述终端设备根据所述第二信道信息确定预编码矩阵指示PMI,所述PMI用于指示所述第二信道信息;
    所述终端设备上报所述第一时延信息和所述PMI。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备根据所述多个参考信号确定第一时延信息,包括:
    所述终端设备测量所述多个参考信号中的部分或全部参考信号相对于第一参考信号的空口时延,确定所述部分或全部参考信号的空口时延差,所述第一参考信号是所述多个参考信号中的一个;
    所述终端设备根据所述多个参考信号的空口时延差,确定所述第一时延信息。
  3. 根据权利要求2所述的方法,其特征在于,所述第一时延信息包括所述部分或全部参考信号的空口时延差。
  4. 根据权利要求2所述的方法,其特征在于,所述终端设备根据所述部分或全部参考信号的空口时延差,确定所述第一时延信息,包括:
    所述终端设备根据所述部分或全部参考信号的空口时延差和第一映射表,确定所述第一时延信息,其中所述第一映射表用于指示参考信号的空口时延差范围和预设的无线接入网设备时延偏移量之间的映射关系,所述第一时延信息用于指示与所述部分或全部参考信号对应的多个无线接入网设备各自的时延偏移量。
  5. 根据权利要求4所述的方法,其特征在于,所述第一时延信息包括多个索引值,所述多个索引值中的一个索引值用于指示所述部分或全部无线接入网设备中的一个无线接入网设备的时延偏移量。
  6. 根据权利要求2至5中任一项所述的方法,其特征在于,
    所述部分或全部参考信号的空口时延差包括所述部分或全部参考信号中的每个参考信号的主径相对于所述第一参考信号的主径的时延差;或者,
    所述部分或全部参考信号的空口时延差包括所述部分或全部参考信号中的每个参考信号的首径相对于所述第一参考信号的首径的时延差。
  7. 根据权利要求2至6中任一项所述的方法,其特征在于,所述第一参考信号为所述多个参考信号中第一个被所述终端设备接收的参考信号。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述终端设备根据所述第一时延信息对所述第一信道信息进行时延差补偿,包括:
    所述终端设备根据所述第一时延信息,在频域上对所述第一信道信息进行线性相位补偿,以使所述多个无线接入网设备的信道信息的主径对齐或首径对齐。
  9. 一种信道信息上报的方法,其特征在于,包括:
    第一无线接入网设备接收终端设备发送的第一时延信息和预编码矩阵指示PMI,所述第一时延信息包括多个无线接入网设备中部分或全部无线接入网设备的时延信息,所述PMI用于指示第二信道信息,所述第二信道信息是通过所述第一时延信息对第一信道信息进行时延差补偿确定的,所述第一信道信息包括所述多个无线接入网设备中每个接入网设备的信道信息;
    所述第一无线接入网设备根据所述第一时延信息和所述PMI,确定第一预编码矩阵,所述第一预编码矩阵与所述第一信道信息相匹配。
  10. 根据权利要求9所述的方法,其特征在于,所述第一无线接入网设备根据所述第一时延信息和所述PMI,确定第一预编码矩阵,包括:
    所述第一无线接入网设备根据所述第一时延信息、所述PMI、第一码本结构和第二码本结构,获取所述第一信道信息;
    所述第一无线接入网设备根据所述第一信道信息获取所述第一预编码矩阵。
  11. 根据权利要求10所述的方法,其特征在于,所述第一无线接入网设备根据所述第一时延信息、所述PMI、第一码本结构和第二码本结构,获取所述第一信道信息,包括:
    所述第一无线接入网设备根据所述PMI和所述第一码本结构获取所述第二信道信息;
    所述第一无线接入网设备根据所述第一时延信息、所述第二信道信息和所述第二码本结构获取所述第一信道信息。
  12. 根据权利要求11所述的方法,其特征在于,所述第二码本结构包括时延参数,所述第一时延信息用于指示所述时延参数的值,所述第二信道信息是通过所述第一时延信息在频域上对所述第一信道信息进行线性相位补偿确定的;其中,
    所述第一无线接入网设备根据所述第一时延信息、所述第二信道信息和所述第二码本结构获取所述第一信道信息,包括:
    所述第一无线接入网设备根据所述第二码本结构和所述时延参数的值,在频域上对所述第二信道信息进行线性相位反补偿,确定所述第一信道信息。
  13. 根据权利要求9所述的方法,其特征在于,所述第一无线接入网设备根据所述第一时延信息和所述PMI,确定第一预编码矩阵,包括:
    所述第一无线接入网设备根据所述PMI和第一码本结构,获取所述第二信道信息;
    所述第一无线接入网设备根据所述第二信道信息,确定第二预编码矩阵,所述第二预编码矩阵与所述第二信道信息相匹配;
    所述第一无线接入网设备根据所述第一时延信息对所述第二预编码矩阵进行时延差补偿,确定所述第一预编码矩阵。
  14. 根据权利要求9至13中任一项所述的方法,其特征在于,所述第一时延信息是根据所述终端设备接收的部分或全部参考信号的空口时延差确定的,所述部分或全部参考信号的空口时延差通过测量所述多个参考信号中的部分或全部参考信号相对于第一参考信号的空口时延确定。
  15. 根据权利要求14所述的方法,其特征在于,所述第一时延信息包括所述部分或全部参考信号的空口时延差。
  16. 根据权利要求14所述的方法,其特征在于,所述第一时延信息包括多个索引值,所述多个索引值中的一个索引值用于指示所述部分或全部无线接入网设备中的一个无线接入网设备的时延偏移量,所述多个无线接入网设备的时延偏移量是根据所述部分或全部参考信号的空口时延差和第一映射表确定,其中所述第一映射表用于指示参考信号的空口时延差范围和预设的无线接入网设备时延偏移量之间的映射关系。
  17. 根据权利要求14至16中任一项所述的方法,其特征在于,
    所述部分或全部参考信号的空口时延差包括所述部分或全部参考信号中的每个参考信号的主径相对于所述第一参考信号的主径的时延差;或者,
    所述部分或全部参考信号的空口时延差包括所述部分或全部参考信号中的每个参考信号的首径相对于所述第一参考信号的首径的时延差。
  18. 根据权利要求14至17中任一项所述的方法,其特征在于,所述第一参考信号为所述多个参考信号中第一个被所述终端设备接收的参考信号。
  19. 一种终端设备,其特征在于,包括:
    处理单元,用于:
    测量来自多个无线接入网设备的多个参考信号,其中所述多个无线接入网设备中的一个无线接入网设备发送所述多个参考信号中的一个参考信号;
    根据所述多个参考信号确定第一时延信息和第一信道信息,所述第一时延信息包括所述多个无线接入网设备中部分或全部无线接入网设备的时延信息,所述第一信道信息包括所述多个无线接入网设备中每个无线接入网设备的信道信息;
    根据所述第一时延信息对所述第一信道信息进行时延差补偿,确定第二信道信息;
    根据所述第二信道信息确定预编码矩阵指示PMI,所述PMI用于指示所述第二信道信息;
    发送单元,用于上报所述第一时延信息和所述PMI。
  20. 根据权利要求19所述的终端设备,其特征在于,所述处理单元,具体用于:
    测量所述多个参考信号中的部分或全部参考信号相对于第一参考信号的空口时延,确定所述部分或全部参考信号的空口时延差,所述第一参考信号是所述多个参考信号中的一个;
    根据所述多个参考信号的空口时延差,确定所述第一时延信息。
  21. 根据权利要求20所述的终端设备,其特征在于,所述第一时延信息包括所述部分或全部参考信号的空口时延差。
  22. 根据权利要求20所述的终端设备,其特征在于,所述处理单元具体用于:
    根据所述部分或全部参考信号的空口时延差和第一映射表,确定所述第一时延信息,其中所述第一映射表用于指示参考信号的空口时延差范围和预设的无线接入网设备时延偏移量之间的映射关系,所述第一时延信息用于指示与所述部分或全部参考信号对应的多个无线接入网设备各自的时延偏移量。
  23. 根据权利要求22所述的终端设备,其特征在于,所述第一时延信息包括多个索引值,所述多个索引值中的一个索引值用于指示所述部分或全部无线接入网设备中的一个无线接入网设备的时延偏移量。
  24. 根据权利要求20至23中任一项所述的终端设备,其特征在于,
    所述部分或全部参考信号的空口时延差包括所述部分或全部参考信号中的每个参考 信号的主径相对于所述第一参考信号的主径的时延差;或者,
    所述部分或全部参考信号的空口时延差包括所述部分或全部参考信号中的每个参考信号的首径相对于所述第一参考信号的首径的时延差。
  25. 根据权利要求20至24中任一项所述的终端设备,其特征在于,所述第一参考信号为所述多个参考信号中第一个被所述接收单元接收的参考信号。
  26. 根据权利要求19至25中任一项所述的终端设备,其特征在于,所述处理单元具体用于:
    根据所述第一时延信息,在频域上对所述第一信道信息进行线性相位补偿,以使所述多个无线接入网设备的信道信息的主径对齐或首径对齐。
  27. 一种无线接入网设备,其特征在于,包括:
    接收单元,用于接收终端设备发送的第一时延信息和预编码矩阵指示PMI,所述第一时延信息包括多个无线接入网设备中部分或全部无线接入网设备的时延信息,所述PMI用于指示第二信道信息,所述第二信道信息是通过所述第一时延信息对第一信道信息进行时延差补偿确定的,所述第一信道信息包括所述多个无线接入网设备中每个接入网设备的信道信息;
    处理单元,用于根据所述第一时延信息和所述PMI,确定第一预编码矩阵,所述第一预编码矩阵与所述第一信道信息相匹配。
  28. 根据权利要求27所述的无线接入网设备,其特征在于,所述处理单元具体用于:
    根据所述第一时延信息、所述PMI、第一码本结构和第二码本结构,获取所述第一信道信息;
    根据所述第一信道信息获取所述第一预编码矩阵。
  29. 根据权利要求28所述的无线接入网设备,其特征在于,所述处理单元具体用于:
    根据所述PMI和所述第一码本结构获取所述第二信道信息;
    根据所述第一时延信息、所述第二信道信息和所述第二码本结构获取所述第一信道信息。
  30. 根据权利要求29所述的无线接入网设备,其特征在于,所述第二码本结构包括时延参数,所述第一时延信息用于指示所述时延参数的值,所述第二信道信息是通过所述第一时延信息在频域上对所述第一信道信息进行线性相位补偿确定的;其中,
    所述处理单元具体用于,根据所述第二码本结构和所述时延参数的值,在频域上对所述第二信道信息进行线性相位反补偿,确定所述第一信道信息。
  31. 根据权利要求27所述的无线接入网设备,其特征在于,所述处理单元具体用于:
    根据所述PMI和第一码本结构,获取所述第二信道信息;
    根据所述第二信道信息,确定第二预编码矩阵,所述第二预编码矩阵与所述第二信道信息相匹配;
    根据所述第一时延信息对所述第二预编码矩阵进行时延差补偿,确定所述第一预编码矩阵。
  32. 根据权利要求27至31中任一项所述的无线接入网设备,其特征在于,所述第一时延信息是根据所述终端设备接收的部分或全部参考信号的空口时延差确定的,所述部分或全部参考信号的空口时延差通过测量所述多个参考信号中的部分或全部参考信号相对于第一参考信号的空口时延确定。
  33. 根据权利要求32所述的无线接入网设备,其特征在于,所述第一时延信息包括所述部分或全部参考信号的空口时延差。
  34. 根据权利要求32所述的无线接入网设备,其特征在于,所述第一时延信息包括多个索引值,所述多个索引值中的一个索引值用于指示所述部分或全部无线接入网设备中的一个无线接入网设备的时延偏移量,所述多个无线接入网设备的时延偏移量是根据所述部分或全部参考信号的空口时延差和第一映射表确定,其中所述第一映射表用于指示参考信号的空口时延差范围和预设的无线接入网设备时延偏移量之间的映射关系。
  35. 根据权利要求32至34中任一项所述的无线接入网设备,其特征在于,
    所述部分或全部参考信号的空口时延差包括所述部分或全部参考信号中的每个参考信号的主径相对于所述第一参考信号的主径的时延差;或者,
    所述部分或全部参考信号的空口时延差包括所述部分或全部参考信号中的每个参考信号的首径相对于所述第一参考信号的首径的时延差。
  36. 根据权利要求32至35中任一项所述的无线接入网设备,其特征在于,所述第一参考信号为所述多个参考信号中第一个被所述接收单元接收的参考信号。
  37. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于执行存储器中存储的计算机程序,使得所述通信装置执行如权利要求1至8中任一项所述的方法,或者执行如权利要求9至18中任一项所述的方法。
  38. 一种计算机可读存储介质,其特征在于,存储有计算机可执行指令,当所述计算机可执行指令在计算机上运行时,使得所述计算机执行如权利要求1至8中任一项所述的方法,或者执行如权利要求9至18中任一项所述的方法。
  39. 一种通信芯片,其特征在于,所述通信芯片与存储器相连或者所述通信芯片包括所述存储器,用于读取并执行所述存储器中存储的软件程序,以执行如权利要求1至8中任一项所述的方法,或者执行如权利要求9至18中任一项所述的方法。
  40. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码被运行时,实现如权利要求1至8中任一项所述的方法,或者实现如权利要求9至18中任一项所述的方法。
PCT/CN2022/138857 2021-12-20 2022-12-14 信道信息上报的方法和装置 WO2023116516A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111564938.2 2021-12-20
CN202111564938.2A CN116318292A (zh) 2021-12-20 2021-12-20 信道信息上报的方法和装置

Publications (1)

Publication Number Publication Date
WO2023116516A1 true WO2023116516A1 (zh) 2023-06-29

Family

ID=86787436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138857 WO2023116516A1 (zh) 2021-12-20 2022-12-14 信道信息上报的方法和装置

Country Status (2)

Country Link
CN (1) CN116318292A (zh)
WO (1) WO2023116516A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117787A (zh) * 2013-01-29 2013-05-22 北京邮电大学 一种协同多天线系统中的自适应比特分配方法及装置
CN103259582A (zh) * 2012-02-17 2013-08-21 中兴通讯股份有限公司 一种多点协同传输预编码方法、终端及基站
CN103458522A (zh) * 2012-05-31 2013-12-18 富士通株式会社 一种多点协作传输系统中传输点集合的选择方法和装置
CN106685623A (zh) * 2016-11-28 2017-05-17 上海华为技术有限公司 一种时延补偿方法、用户设备及基站
US20180351621A1 (en) * 2016-01-07 2018-12-06 Chao Wei Enhanced csi feedback for fd-mimo

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103259582A (zh) * 2012-02-17 2013-08-21 中兴通讯股份有限公司 一种多点协同传输预编码方法、终端及基站
CN103458522A (zh) * 2012-05-31 2013-12-18 富士通株式会社 一种多点协作传输系统中传输点集合的选择方法和装置
CN103117787A (zh) * 2013-01-29 2013-05-22 北京邮电大学 一种协同多天线系统中的自适应比特分配方法及装置
US20180351621A1 (en) * 2016-01-07 2018-12-06 Chao Wei Enhanced csi feedback for fd-mimo
CN106685623A (zh) * 2016-11-28 2017-05-17 上海华为技术有限公司 一种时延补偿方法、用户设备及基站

Also Published As

Publication number Publication date
CN116318292A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
US20230122302A1 (en) Measurement reporting method and apparatus
US20220263560A1 (en) Channel state information reporting method and communications apparatus
WO2022048593A1 (zh) 信道测量的方法和装置
US10505779B2 (en) Method and apparatus for obtaining downlink channel information and network side device
CN112751598B (zh) 一种预编码矩阵的处理方法和通信装置
WO2021081847A1 (zh) 一种信道测量方法和通信装置
WO2022068624A1 (zh) 一种解调参考信号的发送方法、接收方法及通信装置
US20240154706A1 (en) Channel phase calibration method and related apparatus
US20240030981A1 (en) Channel state information feedback method and communication apparatus
US20230318677A1 (en) Channel information feedback method and communication apparatus
WO2021159309A1 (zh) 一种信道测量方法和通信装置
WO2023165458A1 (zh) 信道状态信息的反馈方法和通信装置
US20230019630A1 (en) Update Method and Communications Apparatus
WO2017127987A1 (zh) 下行信道状态信息的获取方法和装置
WO2023116516A1 (zh) 信道信息上报的方法和装置
EP4106246A1 (en) Channel state information feedback method and communication apparatus
US10944457B2 (en) Measurement method, and apparatus
WO2023202338A1 (zh) 信息传输方法、装置、终端、网络侧设备及介质
WO2022267899A1 (zh) 一种信道状态信息反馈方法及通信装置
WO2023011570A1 (zh) 一种信道信息反馈的方法及通信装置
WO2022227976A1 (zh) 通信方法和通信装置
WO2023160692A1 (zh) 一种通信方法及通信装置
WO2022213780A1 (zh) 信息传输方法及装置
WO2024067251A1 (zh) 一种通信方法及相关设备
WO2024036205A2 (en) Codebook report design to support dynamic multi-trp coherent joint transmission operation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909830

Country of ref document: EP

Kind code of ref document: A1