WO2023116361A1 - 全自动无人驾驶远程反向运行的实现方法、设备及介质 - Google Patents

全自动无人驾驶远程反向运行的实现方法、设备及介质 Download PDF

Info

Publication number
WO2023116361A1
WO2023116361A1 PCT/CN2022/135000 CN2022135000W WO2023116361A1 WO 2023116361 A1 WO2023116361 A1 WO 2023116361A1 CN 2022135000 W CN2022135000 W CN 2022135000W WO 2023116361 A1 WO2023116361 A1 WO 2023116361A1
Authority
WO
WIPO (PCT)
Prior art keywords
train
reverse operation
remote
remote reverse
protection area
Prior art date
Application number
PCT/CN2022/135000
Other languages
English (en)
French (fr)
Inventor
蒋文燕
雷贝贝
王燕芩
徐军强
陈亮
宋鹏飞
许桂芝
张亚影
Original Assignee
卡斯柯信号有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 卡斯柯信号有限公司 filed Critical 卡斯柯信号有限公司
Publication of WO2023116361A1 publication Critical patent/WO2023116361A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • B61L23/08Control, warning or like safety means along the route or between vehicles or trains for controlling traffic in one direction only
    • B61L23/14Control, warning or like safety means along the route or between vehicles or trains for controlling traffic in one direction only automatically operated
    • B61L23/16Track circuits specially adapted for section blocking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/04Automatic systems, e.g. controlled by train; Change-over to manual control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/40Handling position reports or trackside vehicle data

Definitions

  • the invention relates to a train signal control system, in particular to a method, device and medium for realizing fully automatic driverless remote reverse operation.
  • the safe and reliable operation of the train in the fully automatic unmanned driving system depends on the coordinated work of on-board controllers, trackside equipment, and central ATS (Automatic Train Supervision, automatic train supervision) equipment to complete the fully automatic operation of the train.
  • the basis of all this is that there are no faults in the train, operating lines and system communication equipment, and the train can reliably run to the movement authorization terminal designated by the regional controller under the safety protection of the on-board controller.
  • CBTC Communication Base Train Control
  • multiple trains may be tracking and running in the same section. If the preceding train stops in the section due to a fault, the following train will also trigger emergency braking, forcing Stop in the section, and the following train will stop in the section until the fault of the preceding train recovers. When this happens, it is necessary to take necessary safety protection measures, dispatch the driver to board the train, downgrade the driving mode of the train to a manual restricted driving mode, change the activation end of the train head, and make the train run in reverse and exit the section.
  • the on-board signal system only provides speed protection, and the driver is responsible for other operating safety
  • Chinese Patent Publication No. CN_112572536 discloses a kind of realization method of unmanned train reverse jumping function. Specifically: according to the actual situation of the platform, define the reverse jump area and its safe retreat distance for each platform, and calculate the reverse jump protection zone and reverse jump path for each platform according to the safe retreat distance, so as to ensure that the train is running in the reverse direction. There is no risk of collision during the retreat and the train retreat route is determined.
  • This existing patent describes a technical method for re-implementing precise parking of the passing train in the form of a reverse jump after the train stops at the platform in fully automatic unmanned driving, so as to overcome the problem of unmanned trains.
  • the reverse regression problem after passing the bid cannot be realized.
  • it does not mention how to control the unmanned train to automatically run in reverse and exit the section to the area set by the dispatcher when the train stops in the section and cannot pass through the route.
  • Chinese Patent Publication No. CN_109969232 discloses a method for realizing a remote restricted driving mode in a fully automatic operation system. Specifically: when the train loses its location under fully automatic driving, the trackside controller and the train will enter the remote restricted driving mode through related operations in the control center, and the train will be controlled to run automatically to regain the train’s location, thereby restoring full automation drive.
  • This existing patent describes how to let the regional controller and the train enter the remote restricted driving mode to control the train to move forward in a fully automatic operation system after the train loses its position in the section, reacquire the train position, and resume automatic driving.
  • it does not mention how to realize the automatic reverse operation of the train in the remote restricted driving mode and exit the section to the destination set by the dispatcher after the train is forced to stop in the section due to the failure of the preceding train. parking.
  • the purpose of the present invention is to provide a method, device and medium for realizing fully automatic unmanned remote reverse operation in order to overcome the above-mentioned defects in the prior art.
  • Step S1 The regional controller sends the information of train 1 and train 2 to the ATS, where train 1 is the forward train that stops in the section due to a fault, and train 2 is the backward train that will trigger emergency braking and stop in the section;
  • Step S2 The ATS interface displays the status information of train 1 and train 2;
  • Step S3 The dispatching terminal sets the remote reverse operation protection area locking command within the range from platform A to platform B through the ATS;
  • Step S4 ATS generates a remote speed limit mode reverse running protection area locking command for the train according to the remote reverse running protection area locking command set by the dispatching terminal and sends it to the interlocking subsystem;
  • Step S5 After the interlocking subsystem receives the train remote speed limit mode reverse running protection area locking command sent by the ATS, it checks, and when the check is passed, sets the remote reverse running protection area to lock and remote Send the lock status of the operating protection area to the ATS and the area controller;
  • Step S6 The ATS feeds back the locking status of the remote reverse operation protection area to the dispatching terminal;
  • Step S7 the dispatching terminal sets the remote reverse running instruction of the train 2;
  • Step S8 ATS generates a remote reverse running command according to the remote reverse running command of train 2 set by the dispatching terminal and sends it to the on-board controller;
  • Step S9 After receiving the remote reverse operation command sent by the ATS, the on-board controller checks its legitimacy and returns the check result to the ATS;
  • Step S10 the regional controller calculates the end point of the remote reverse operation authorization, and sends the remote reverse operation authorization information to the on-board controller;
  • Step S11 According to the remote reverse operation authorization information, the on-board controller completes the automatic end-change of the train and controls the train 2 to automatically run to platform A, and automatically exits the remote reverse operation mode;
  • Step S12 After the train running 2 runs to platform A and stops, the dispatching terminal sets the remote reverse running protection area unlocking command;
  • Step S13 ATS generates a remote reverse operation protection area unlocking command according to the remote reverse operation protection area unlocking command and sends it to the interlock subsystem;
  • Step S14 After the interlocking subsystem receives the unlocking instruction of the remote reverse running protection area sent by the ATS, it returns the unlocking state of the remote reverse running protection area to the regional controller.
  • the information in step S1 includes the train positioning status, the coordinates of the front and rear of the train, and the identification numbers of the on-board controllers of the front and rear of the train.
  • the state information in step S2 includes fault information of train 1 and location information of train 1 and train 2 .
  • the platform A in the step S3 is the departure platform of the train 1 and the train 2
  • the platform B is the arrival platform of the train 1 and the train 2.
  • the inspection conditions in the step S5 include:
  • the remote reverse running protection zone locking is set.
  • the step S7 specifically includes: the dispatching terminal sets the remote reverse running instruction of the train 2 according to the display on the ATS interface.
  • the remote reverse operation command in step S8 includes the on-board terminal Cab_2 that needs to be activated for the remote reverse operation, and the regional controller ID number associated with the train 2.
  • the ID number of the regional controller associated with the train 2 is calculated according to the train position coordinates.
  • the on-board controller enters the remote reverse operation mode and sends a remote reverse operation request to the regional controller; otherwise, it waits for the manual remote confirmation signal system interlocking state.
  • the calculation of the remote reverse operation authorization end point in the step S10 is specifically:
  • the regional controller After the regional controller receives the remote reverse operation request from the on-board controller, it calculates the remote reverse operation authorization end point in combination with the remote reverse operation protection area lock status provided by the interlock subsystem.
  • the unlocking command of the reverse running protection area in step S12 is set by the ATS.
  • the step S14 further includes: maintaining the remote reverse running protection zone locked for a set time before actually unlocking the range remote reverse running protection zone.
  • the method provides protection for the safe operation of the train when the reverse approach TD cannot be established.
  • an electronic device including a memory and a processor, the memory stores a computer program, and the processor implements the method when executing the program.
  • a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the method is implemented.
  • the present invention has the following advantages:
  • the present invention designs the function of automatic remote reverse running of the train to ensure that the train can still run safely in the event of a failure, and solves the defects in the prior art scheme that the train stops in the section for a long time, which affects normal operation and causes passengers to panic ;
  • the present invention locks the remote reverse operation protection area through the interlocking subsystem, and hedging risks and The protection against the risk of side impact with the established approach, protection section, and other locked remote reverse running protection areas outside the area ensures the safety of the reverse running of the train;
  • the present invention uses the remote reverse operation authorization information calculated by the regional controller for the train, and the vehicle-mounted controller controls the automatic operation of the train according to the authorization information, avoiding the safety risk that only the vehicle-mounted controller provides speed protection in the artificially limited driving mode, and improving automation to handle this failure scenario;
  • the interlocking subsystem of the present invention sends the unlocking state of the remote reverse operation protection area to the regional controller, it will delay for a certain period of time before actually unlocking the remote reverse operation protection area.
  • the purpose is to ensure that the regional controller has received the feedback.
  • the reverse running area is actually unlocked only after it is unlocked to the running area, so as to prevent the occurrence of safety accidents caused by the train unlocking the reverse running locked area during the running process due to under-parking.
  • the present invention provides a protection solution for the safe operation of the train when the reverse route TD cannot be established for the train.
  • Fig. 1 is the schematic diagram of train remote reverse running process
  • Fig. 2 is the information interaction diagram of each subsystem in the realization process of train remote reverse operation
  • Fig. 3 is a flow chart of the realization process of train remote reverse running.
  • Step S1 The regional controller sends the information of train 1 and train 2, such as the train positioning status, the coordinates of the front and rear of the train, and the identification numbers of the on-board controllers of the front and rear of the train to the ATS;
  • Step S2 The ATS interface displays the failure of train 1, and the positions of train 1 and train 2;
  • Step S3 the dispatching terminal sets the remote reverse operation protection area locking command within the range from platform A to platform B through the ATS;
  • Step S 4 ATS generates a remote speed limit mode reverse running protection area locking command according to the remote reverse running protection area locking command set by the dispatching terminal and sends it to the interlocking subsystem.
  • Step S5 After the interlock subsystem receives the remote reverse operation protection area locking command sent by the ATS, it needs to check whether the following conditions are met: 1Whether the position of the switch in the remote reverse operation protection area is correct; 2The remote reverse operation protection Whether there is a risk of hedging between the area and the established routes outside the area, and other locked remote reverse operation protection areas; Whether there is a side impact risk in the reverse operation protection area; 4Whether the section in the remote reverse operation protection area is blocked. If all the remote reverse running protection zone locking interlock check conditions are met, the remote reverse running protection zone locking is set, and the remote reverse running protection zone locking status is sent to the ATS and the zone controller.
  • Step S6 The ATS feeds back the locking status of the remote reverse operation protection area to the dispatching terminal;
  • Step S7 the dispatching terminal sets the remote reverse running instruction of the train 2 according to the display on the ATS interface;
  • Step S8 The ATS generates a remote reverse running command according to the remote reverse running command of the train 2 set by the dispatching terminal and sends it to the on-board controller.
  • the remote reverse running command includes: the remote reverse running needs to be activated on the vehicle terminal Cab_2, the train 2 The ID number of the associated area controller, where the ID number of the area controller associated with train 2 is calculated based on the train position coordinates.
  • Step S9 After the vehicle-mounted controller receives the remote reverse operation command sent by the ATS, it checks its legitimacy, and returns the inspection result to the ATS: if the remote reverse operation command is legal, the vehicle-mounted controller enters the remote reverse operation mode, And send a remote reverse operation request to the regional controller; otherwise wait for manual remote confirmation of the interlocking state of the signal system.
  • Step S10 After the regional controller receives the remote reverse operation request from the on-board controller, it calculates the end point of the remote reverse operation authorization in combination with the remote reverse operation protection area lock status provided by the interlock subsystem, and sends the remote reverse operation The operation authorization information is sent to the on-board controller;
  • Step S 11 The on-board controller completes the automatic end-change of the train (changing the on-board active section from Cab_1 to Cab_2) and controls the train 2 to automatically run to platform A according to the remote reverse operation authorization information, and then automatically exits the remote reverse operation mode.
  • Step S12 After the train running 2 runs to platform A and stops, the dispatching terminal sets the remote reverse running protection area unlocking command through the ATS.
  • Step S13 The ATS generates a remote reverse operation protection area unlocking command according to the remote reverse operation protection area unlocking instruction and sends it to the interlocking subsystem.
  • Step S14 After the interlocking subsystem receives the remote reverse operation protection area unlocking instruction sent by the ATS, it returns the remote reverse operation protection area unlocking state to the area controller, and maintains the remote reverse operation protection area after T1 time. Only then will the remote remote reverse operation protection area be truly unlocked.
  • the electronic device of the present invention includes a central processing unit (CPU), which can execute various Appropriate action and handling.
  • CPU central processing unit
  • RAM various programs and data necessary for device operation can also be stored.
  • the CPU, ROM, and RAM are connected to each other through a bus.
  • I/O Input/output
  • I/O interface Multiple components in the device are connected to the I/O interface, including: input units, such as keyboards, mice, etc.; output units, such as various types of displays, speakers, etc.; storage units, such as magnetic disks, optical discs, etc.; and communication units, Such as network card, modem, wireless communication transceiver, etc.
  • the communication unit allows the device to exchange information/data with other devices over a computer network such as the Internet and/or various telecommunication networks.
  • the processing unit executes the various methods and processes described above, such as method steps S 1 -S 14 .
  • method steps S 1 -S 14 may be implemented as a computer software program tangibly embodied on a machine-readable medium, such as a storage unit.
  • part or all of the computer program may be loaded and/or installed on the device via a ROM and/or a communication unit.
  • the CPU may be configured to perform method steps S 1 -S 14 in any other suitable manner (eg, by means of firmware).
  • FPGAs Field Programmable Gate Arrays
  • ASICs Application Specific Integrated Circuits
  • ASSPs Application Specific Standard Products
  • SOCs System on Chips
  • CPLD Complex Programmable Logical device
  • Program codes for implementing the methods of the present invention may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general-purpose computer, a special purpose computer, or other programmable data processing devices, so that the program codes, when executed by the processor or controller, make the functions/functions specified in the flow diagrams and/or block diagrams Action is implemented.
  • the program code may execute entirely on the machine, partly on the machine, as a stand-alone software package partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • a machine-readable medium may be a tangible medium that may contain or store a program for use by or in conjunction with an instruction execution system, apparatus, or device.
  • a machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium.
  • a machine-readable medium may include, but is not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, apparatus, or devices, or any suitable combination of the foregoing.
  • machine-readable storage media would include one or more wire-based electrical connections, portable computer discs, hard drives, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), optical fiber, compact disk read only memory (CD-ROM), optical storage, magnetic storage, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read only memory
  • EPROM or flash memory erasable programmable read only memory
  • CD-ROM compact disk read only memory
  • magnetic storage or any suitable combination of the foregoing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

一种全自动无人驾驶远程反向运行的实现方法,包括:步骤S1:区域控制器发送列车1和列车2的信息给ATS;步骤S2:ATS界面显示列车1和列车2的状态信息;步骤S3:调度终端通过ATS设置站台A到站台B范围内的远程反向运行防护区域锁闭指令;步骤S4:ATS根据调度终端设置的远程反向运行防护区域锁闭指令生成列车远程限速模式反向运行防护区域锁闭命令并发送给联锁子系统;步骤S5:联锁子系统收到ATS发送的列车远程限速模式反向运行防护区域锁闭命令后,进行检查,当检查通过后设置该远程反向运行防护区域锁闭等。与现有技术相比,具有保证了列车反向运行的安全等优点。还提供一种电子设备及可读存储介质。

Description

全自动无人驾驶远程反向运行的实现方法、设备及介质 技术领域
本发明涉及列车信号控制系统,尤其是涉及一种全自动无人驾驶远程反向运行的实现方法、设备及介质。
背景技术
全自动无人驾驶系统中列车的安全、可靠运行,依赖于车载控制器、轨旁设备和中心ATS(Automatic Train Supervision,列车自动监督)等设备的协同工作,共同完成列车的全自动运行,但这一切的基础是列车、运行线路及系统通信设备无任何故障发生,列车能够在车载控制器的安全防护下可靠运行至区域控制器指定的移动授权终点。
CBTC(Communication Base Train Control,基于通信的列车运行控制)模式下,同一区间可能有多辆列车在追踪运行,若前行列车由于发生故障停在区间,后行列车也将触发紧急制动,迫停在区间,在前行列车故障恢复前,后行列车将一直停在区间。当这种情况发生时,需要采取必要的安全防护措施,派遣司机登乘列车,将列车的驾驶模式降级为人工限制驾驶模式,改变列车车头激活端,使列车反向运行退出区间。
在这种故障情况下的常规处理方式有以下缺点:
1、前行列车因故停在区间,迫使该区间中后行列车也实施紧急制动停车,若得不到及时处理,列车将长时间停在区间,影响正常运营;
2、需要采取一系列安全保障措施,才能授权司机由区间登乘列车,效率低下,处理时间较长,且存在一定的人身安全风险;
3、列车长时间停在区间后,容易造成乘客恐慌;
4、司机登车转为人工限制驾驶模式后,车载信号系统仅提供速度防护,其它运行安全由司机人工负责;
5、整个列车营救过程必须依赖于人工现场作业才能实现。
因此,提供一种全自动无人驾驶远程反向运行功能的实现方法能有效的克服上述常规处理方式中存在的缺点。
经过检索,中国专利公开号CN_112572536公开了一种无人驾驶列车反向跳跃功 能的实现方法。具体为:根据站台的实际情况定义每个站台的反向跳跃区域及其安全退行距离,并根据安全退行距离计算每个站台的反向跳跃防护区及反向跳跃路径,以保证列车在反向退行过程中不会发生碰撞风险并确定列车退行路线。
该现有专利阐述了一种在全自动无人驾驶中,列车在站台停站过标后,列车以反向跳跃的方式对过停列车重新实施精准停车的技术方法,以克服无人驾驶列车无法实现过标后的反向退行问题。但是并未提及列车在区间停车后,在无法通过办理进路的情况下,如何控制无人驾驶列车自动反向运行退出区间至调度员设定的区域。
同时中国专利公开号CN_109969232公开了一种全自动运行系统中远程限制驾驶模式实现方法。具体为:当列车在全自动驾驶下因故丢失定位后,通过控制中心相关操作,让轨旁控制器和列车进入远程限制驾驶模式,控制列车自动运行,以重新获得列车定位,从而恢复全自动驾驶。
该现有专利阐述了一种在全自动运行系统中,列车在区间丢失定位后,如何让区域控制器和列车进入远程限制驾驶模式控制列车向前运行,重新获取列车定位,恢复自动驾驶。但是未提及列车因前行列车故障,迫停在区间后,在无法通过办理进路的情况下,如何实现列车在进入远程限制驾驶模式下自动反向运行退出区间至调度员设定目的地停车。
因此如何保证列车在故障情况下仍旧可以安全运行,从而解决现有技术方案中,列车长时间停在区间,影响正常运营,造成乘客恐慌的缺陷,成为需要解决的技术问题。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种全自动无人驾驶远程反向运行的实现方法、设备及介质。
本发明的目的可以通过以下技术方案来实现:
根据本发明的第一方面,提供了一种全自动无人驾驶远程反向运行的实现方法,该方法包括以下步骤:
步骤S1:区域控制器发送列车1和列车2的信息给ATS,其中列车1为由于发生故障停在区间的前行列车,列车2为将触发紧急制动并迫停在区间的后行列车;
步骤S2:ATS界面显示列车1和列车2的状态信息;
步骤S3:调度终端通过ATS设置站台A到站台B范围内的远程反向运行防护区域锁闭指令;
步骤S4:ATS根据调度终端设置的远程反向运行防护区域锁闭指令生成列车远程限速模式反向运行防护区域锁闭命令并发送给联锁子系统;
步骤S5:联锁子系统收到ATS发送的列车远程限速模式反向运行防护区域锁闭命令后,进行检查,当检查通过后设置该远程反向运行防护区域锁闭,并将远程反向运行防护区域锁闭状态发送给ATS和区域控制器;
步骤S6:ATS向调度终端反馈远程反向运行防护区域锁闭状态;
步骤S7:调度终端设置列车2的远程反向运行指令;
步骤S8:ATS根据调度终端设置的列车2的远程反向运行指令生成远程反向运行命令并发送给车载控制器;
步骤S9:车载控制器收到ATS发送的远程反向运行命令后,检查其合法性,并将检查结果返回给ATS;
步骤S10:区域控制器计算远程反向运行授权终点,并将远程反向运行授权信息发送给车载控制器;
步骤S11:车载控制器根据远程反向运行授权信息,完成列车自动换端并控制列车2自动运行至站台A,并自动退出远程反向运行模式;
步骤S12:调度终端在列车运行2运行到站台A停车后,设置远程反向运行防护区域解锁指令;
步骤S13:ATS根据远程反向运行防护区域解锁指令生成远程反向运行防护区域解锁命令并发送给联锁子系统;
步骤S14:联锁子系统收到ATS发送的远程反向运行防护区域解锁指令后,向区域控制器返回远程反向运行防护区域解锁状态。
作为优选的技术方案,所述的步骤S1中的信息包括列车定位状态、车头及车尾坐标、车头及车尾的车载控制器识别号。
作为优选的技术方案,所述的步骤S2中状态信息包括列车1的故障信息,及列车1和列车2的位置信息。
作为优选的技术方案,所述的步骤S3中的站台A为列车1和列车2的出发站台,站台B为列车1和列车2的到达站台。
作为优选的技术方案,所述的步骤S5中的检查条件包括:
①远程反向运行防护区域内道岔位置是否正确;
②远程反向运行防护区域与区域外已建立的进路、其它已锁闭远程反向运行防护区域是否存在对冲风险;
③远程反向运行防护区域与区域外已建立的进路、保护区段、其它已锁闭远程反向运行防护区域是否存在侧冲风险;
④远程反向运行防护区域内区段的是否被封锁。
作为优选的技术方案,若所有远程反向运行防护区域锁闭联锁检查条件都满足,才设置该远程反向运行防护区域锁闭。
作为优选的技术方案,所述的步骤S7具体为:调度终端根据ATS界面的显示,设置列车2的远程反向运行指令。
作为优选的技术方案,所述的步骤S8中的远程反向运行命令包括远程反向运行需要激活的车载端Cab_2、列车2关联的区域控制器ID号。
作为优选的技术方案,所述的列车2关联的区域控制器ID号根据列车位置坐标计算得到。
作为优选的技术方案,所述的步骤S9中的检查其合法性具体为:
若远程反向运行命令合法,车载控制器进入远程反向运行模式,并向区域控制器发送远程反向运行请求;否则等待人工远程确认信号系统联锁状态。
作为优选的技术方案,所述的步骤S10中的计算远程反向运行授权终点具体为:
区域控制器收到车载控制器的远程反向运行请求后,结合联锁子系统提供的远程反向运行防护区域锁闭状态,计算远程反向运行授权终点。
作为优选的技术方案,所述的步骤S12中的反向运行防护区域解锁指令通过ATS来设置。
作为优选的技术方案,所述的步骤S14还包括:维持远程反向运行防护区域锁闭设定时间后才真正解锁程远程反向运行防护区域。
作为优选的技术方案,该方法为列车在反向进路TD无法建立的情况下,提供了列车可安全运行的防护。
根据本发明的第二方面,提供了一种电子设备,包括存储器和处理器,所述存储器上存储有计算机程序,所述处理器执行所述程序时实现所述的方法。
根据本发明的第三方面,提供了一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现所述的方法。
与现有技术相比,本发明具有以下优点:
1、本发明设计了通过列车自动远程反向运行功能,保证列车在故障情况下仍旧可以安全运行,解决了现有技术方案中,列车长时间停在区间,影响正常运营,造成乘客恐慌的缺陷;
2、本发明通过联锁子系统将远程反向运行防护区域进行锁闭,对反向运行防护区域与与区域外已建立的进路、其它已锁闭远程反向运行防护区域的对冲风险和与区域外已建立的进路、保护区段、其它已锁闭远程反向运行防护区域的侧冲风险的防护,保证了列车反向运行的安全;
3、本发明通过区域控制器为列车计算的远程反向运行授权信息、车载控制器根据授权信息控制列车自动运行,避免了人工限制驾驶模式下仅车载控制器提供速度防护存在的安全风险,提高了处理此故障场景的自动化;
4、本发明联锁子系统在给区域控制器发送远程反向运行防护区域解锁状态后,还延时一定时间后才真正解锁远程反向运行防护区域,目的在于确保区域控制器已收到反向运行区域解锁状态后才真正解锁反向运行区域,防止列车因停车欠标还在运行过程中解锁反向运行锁闭区域而导致安全事故的发生。
5、本发明为列车在反向进路TD无法建立的情况下,提供了列车可以安全运行的防护解决方案。
附图说明
图1为列车远程反向运行过程示意图;
图2是列车远程反向运行实现过程中各子系统信息交互图;
图3是列车远程反向运行实现过程的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的 所有其他实施例,都应属于本发明保护的范围。
如图1和图2所示,全自动无人驾驶运行中,列车1和列车2,都从站台A出发开往站台B,若前行列车1由于发生故障停在区间,后行列车2也将触发紧急制动,迫停在区间,在列车1故障恢复前,列车2只能一直停在区间。当这种情况发生时,需要采取必要的安全防护措施,派遣司机登乘列车,将列车2改为人工限制驾驶模式,改变列车2车头激活端,使列车2反向运行退出区间。为了解决上述情况下,鉴于采取常规处理方式存在的缺点,本发明提出了一种全自动无人驾驶远程反向运行功能的实现方法,具体过程如下:
步骤S 1:区域控制器发送列车1、列车2的信息,如列车定位状态、车头及车尾坐标、车头及车尾的车载控制器识别号给ATS;
步骤S 2:ATS界面显示列车1故障,及列车1和列车2的位置;
步骤S 3:调度终端通过ATS设置站台A到站台B范围内的远程反向运行防护区域锁闭指令;
步骤S 4:ATS根据调度终端设置的远程反向运行防护区域锁闭指令生成列车远程限速模式反向运行防护区域锁闭命令并发送给联锁子系统。
步骤S 5:联锁子系统收到ATS发送的远程反向运行防护区域锁闭命令后,需检查以下条件是否满足:①远程反向运行防护区域内道岔位置是否正确;②远程反向运行防护区域与区域外已建立的进路、其它已锁闭远程反向运行防护区域是否存在对冲风险;③远程反向运行防护区域与区域外已建立的进路、保护区段、其它已锁闭远程反向运行防护区域是否存在侧冲风险;④远程反向运行防护区域内区段的是否被封锁。若所有远程反向运行防护区域锁闭联锁检查条件都满足,则设置该远程反向运行防护区域锁闭,并将远程反向运行防护区域锁闭状态发送给ATS和区域控制器。
步骤S 6:ATS向调度终端反馈远程反向运行防护区域锁闭状态;
步骤S 7:调度终端根据ATS界面的显示,设置列车2的远程反向运行指令;
步骤S 8:ATS根据调度终端设置的列车2的远程反向运行指令生成远程反向运行命令并发送给车载控制器,远程反向运行命令包括:远程反向运行需要激活的车载端Cab_2、列车2关联的区域控制器ID号,其中列车2关联的区域控制器ID号根据列车位置坐标计算得到。
步骤S 9:车载控制器收到ATS发送的远程反向运行命令后,检查其合法性,并 将检查结果返回给ATS:若远程反向运行命令合法,车载控制器进入远程反向运行模式,并向区域控制器发送远程反向运行请求;否则等待人工远程确认信号系统联锁状态。
步骤S 10:区域控制器收到车载控制器的远程反向运行请求后,结合联锁子系统提供的远程反向运行防护区域锁闭状态,计算远程反向运行授权终点,并将远程反向运行授权信息发送给车载控制器;
步骤S 11:车载控制器根据远程反向运行授权信息,完成列车自动换端(将车载激活段由Cab_1换成Cab_2)并控制列车2自动运行至站台A,然后自动退出远程反向运行模式。
步骤S 12:调度终端在列车运行2运行到站台A停车后,通过ATS设置远程反向运行防护区域解锁指令。
步骤S 13:ATS根据远程反向运行防护区域解锁指令生成远程反向运行防护区域解锁命令并发送给联锁子系统。
步骤S 14:联锁子系统收到ATS发送的远程反向运行防护区域解锁指令后,向区域控制器返回远程反向运行防护区域解锁状态,并维持远程反向运行防护区域锁闭T1时间后才真正解锁程远程反向运行防护区域。
以上是关于方法实施例的介绍,以下通过电子设备及存储介质实施例,对本发明所述方案进行进一步说明。
本发明电子设备包括中央处理单元(CPU),其可以根据存储在只读存储器(ROM)中的计算机程序指令或者从存储单元加载到随机访问存储器(RAM)中的计算机程序指令,来执行各种适当的动作和处理。在RAM中,还可以存储设备操作所需的各种程序和数据。CPU、ROM以及RAM通过总线彼此相连。输入/输出(I/O)接口也连接至总线。
设备中的多个部件连接至I/O接口,包括:输入单元,例如键盘、鼠标等;输出单元,例如各种类型的显示器、扬声器等;存储单元,例如磁盘、光盘等;以及通信单元,例如网卡、调制解调器、无线通信收发机等。通信单元允许设备通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据。
处理单元执行上文所描述的各个方法和处理,例如方法步骤S 1~S 14。例如,在一些实施例中,方法步骤S 1~S 14可被实现为计算机软件程序,其被有形地包含于机 器可读介质,例如存储单元。在一些实施例中,计算机程序的部分或者全部可以经由ROM和/或通信单元而被载入和/或安装到设备上。当计算机程序加载到RAM并由CPU执行时,可以执行上文描述的方法步骤S 1~S 14的一个或多个步骤。备选地,在其他实施例中,CPU可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行方法步骤S 1~S 14
本文中以上描述的功能可以至少部分地由一个或多个硬件逻辑部件来执行。例如,非限制性地,可以使用的示范类型的硬件逻辑部件包括:现场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、片上系统(SOC)、复杂可编程逻辑设备(CPLD)等等。
用于实施本发明的方法的程序代码可以采用一个或多个编程语言的任何组合来编写。这些程序代码可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器或控制器,使得程序代码当由处理器或控制器执行时使流程图和/或框图中所规定的功能/操作被实施。程序代码可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。
在本发明的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (16)

  1. 一种全自动无人驾驶远程反向运行的实现方法,其特征在于,该方法包括以下步骤:
    步骤S1:区域控制器发送列车1和列车2的信息给ATS,其中列车1为由于发生故障停在区间的前行列车,列车2为将触发紧急制动并迫停在区间的后行列车;
    步骤S2:ATS界面显示列车1和列车2的状态信息;
    步骤S3:调度终端通过ATS设置站台A到站台B范围内的远程反向运行防护区域锁闭指令;
    步骤S4:ATS根据调度终端设置的远程反向运行防护区域锁闭指令生成列车远程限速模式反向运行防护区域锁闭命令并发送给联锁子系统;
    步骤S5:联锁子系统收到ATS发送的列车远程限速模式反向运行防护区域锁闭命令后,进行检查,当检查通过后设置该远程反向运行防护区域锁闭,并将远程反向运行防护区域锁闭状态发送给ATS和区域控制器;
    步骤S6:ATS向调度终端反馈远程反向运行防护区域锁闭状态;
    步骤S7:调度终端设置列车2的远程反向运行指令;
    步骤S8:ATS根据调度终端设置的列车2的远程反向运行指令生成远程反向运行命令并发送给车载控制器;
    步骤S9:车载控制器收到ATS发送的远程反向运行命令后,检查其合法性,并将检查结果返回给ATS;
    步骤S10:区域控制器计算远程反向运行授权终点,并将远程反向运行授权信息发送给车载控制器;
    步骤S11:车载控制器根据远程反向运行授权信息,完成列车自动换端并控制列车2自动运行至站台A,并自动退出远程反向运行模式;
    步骤S12:调度终端在列车运行2运行到站台A停车后,设置远程反向运行防护区域解锁指令;
    步骤S13:ATS根据远程反向运行防护区域解锁指令生成远程反向运行防护区域解锁命令并发送给联锁子系统;
    步骤S14:联锁子系统收到ATS发送的远程反向运行防护区域解锁指令后,向区域控制器返回远程反向运行防护区域解锁状态。
  2. 根据权利要求1所述的一种全自动无人驾驶远程反向运行的实现方法,其特征在于,所述的步骤S1中的信息包括列车定位状态、车头及车尾坐标、车头及车尾的车载控制器识别号。
  3. 根据权利要求1所述的一种全自动无人驾驶远程反向运行的实现方法,其特征在于,所述的步骤S2中状态信息包括列车1的故障信息,及列车1和列车2的位置信息。
  4. 根据权利要求1所述的一种全自动无人驾驶远程反向运行的实现方法,其特征在于,所述的步骤S3中的站台A为列车1和列车2的出发站台,站台B为列车1和列车2的到达站台。
  5. 根据权利要求1所述的一种全自动无人驾驶远程反向运行的实现方法,其特征在于,所述的步骤S5中的检查条件包括:
    ①远程反向运行防护区域内道岔位置是否正确;
    ②远程反向运行防护区域与区域外已建立的进路、其它已锁闭远程反向运行防护区域是否存在对冲风险;
    ③远程反向运行防护区域与区域外已建立的进路、保护区段、其它已锁闭远程反向运行防护区域是否存在侧冲风险;
    ④远程反向运行防护区域内区段的是否被封锁。
  6. 根据权利要求5所述的一种全自动无人驾驶远程反向运行的实现方法,其特征在于,若所有远程反向运行防护区域锁闭联锁检查条件都满足,才设置该远程反向运行防护区域锁闭。
  7. 根据权利要求1所述的一种全自动无人驾驶远程反向运行的实现方法,其特征在于,所述的步骤S7具体为:调度终端根据ATS界面的显示,设置列车2的远程反向运行指令。
  8. 根据权利要求1所述的一种全自动无人驾驶远程反向运行的实现方法,其特征在于,所述的步骤S8中的远程反向运行命令包括远程反向运行需要激活的车载端Cab_2、列车2关联的区域控制器ID号。
  9. 根据权利要求8所述的一种全自动无人驾驶远程反向运行的实现方法,其特征在于,所述的列车2关联的区域控制器ID号根据列车位置坐标计算得到。
  10. 根据权利要求1所述的一种全自动无人驾驶远程反向运行的实现方法,其特 征在于,所述的步骤S9中的检查其合法性具体为:
    若远程反向运行命令合法,车载控制器进入远程反向运行模式,并向区域控制器发送远程反向运行请求;否则等待人工远程确认信号系统联锁状态。
  11. 根据权利要求1所述的一种全自动无人驾驶远程反向运行的实现方法,其特征在于,所述的步骤S10中的计算远程反向运行授权终点具体为:
    区域控制器收到车载控制器的远程反向运行请求后,结合联锁子系统提供的远程反向运行防护区域锁闭状态,计算远程反向运行授权终点。
  12. 根据权利要求1所述的一种全自动无人驾驶远程反向运行的实现方法,其特征在于,所述的步骤S12中的反向运行防护区域解锁指令通过ATS来设置。
  13. 根据权利要求1所述的一种全自动无人驾驶远程反向运行的实现方法,其特征在于,所述的步骤S14还包括:维持远程反向运行防护区域锁闭设定时间后才真正解锁程远程反向运行防护区域。
  14. 根据权利要求13所述的一种全自动无人驾驶远程反向运行的实现方法,其特征在于,该方法为列车在反向进路TD无法建立的情况下,提供了列车可安全运行的防护。
  15. 一种电子设备,包括存储器和处理器,所述存储器上存储有计算机程序,其特征在于,所述处理器执行所述程序时实现如权利要求1~14中任一项所述的方法。
  16. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述程序被处理器执行时实现如权利要求1~14中任一项所述的方法。
PCT/CN2022/135000 2021-12-21 2022-11-29 全自动无人驾驶远程反向运行的实现方法、设备及介质 WO2023116361A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111568685.6 2021-12-21
CN202111568685.6A CN114261432B (zh) 2021-12-21 2021-12-21 全自动无人驾驶远程反向运行的实现方法、设备及介质

Publications (1)

Publication Number Publication Date
WO2023116361A1 true WO2023116361A1 (zh) 2023-06-29

Family

ID=80828472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135000 WO2023116361A1 (zh) 2021-12-21 2022-11-29 全自动无人驾驶远程反向运行的实现方法、设备及介质

Country Status (2)

Country Link
CN (1) CN114261432B (zh)
WO (1) WO2023116361A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114261432B (zh) * 2021-12-21 2024-03-29 卡斯柯信号有限公司 全自动无人驾驶远程反向运行的实现方法、设备及介质
CN115366948B (zh) * 2022-08-11 2023-08-18 卡斯柯信号有限公司 基于列车自动防护的列车位置异常管理方法、设备及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160304107A1 (en) * 2015-04-17 2016-10-20 Electro-Motive Diesel, Inc. Autonomous reset system
CN109677459A (zh) * 2018-11-12 2019-04-26 浙江众合科技股份有限公司 一种无人驾驶下列车退行安全防护方法
CN110936987A (zh) * 2019-11-25 2020-03-31 卡斯柯信号有限公司 一种城市轨道交通列车全自动折返控制方法
CN111806523A (zh) * 2020-06-30 2020-10-23 通号城市轨道交通技术有限公司 Fzl300型全自动运行系统
CN113650657A (zh) * 2021-09-23 2021-11-16 天津津航计算技术研究所 一种全自动列车反向运行防护控制方法
CN114261432A (zh) * 2021-12-21 2022-04-01 卡斯柯信号有限公司 全自动无人驾驶远程反向运行的实现方法、设备及介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170151969A1 (en) * 2015-12-01 2017-06-01 Laird Technologies, Inc. Systems and methods for safety locking of operator control units for remote control machines
CN107054413B (zh) * 2016-12-21 2019-08-16 交控科技股份有限公司 一种轨道交通全自动驾驶精简方法及系统
KR20190036288A (ko) * 2017-09-27 2019-04-04 한국철도기술연구원 패싱 백 방식을 이용한 자율주행 열차의 운행 제어 장치 및 방법
CN109159801B (zh) * 2018-09-18 2020-11-10 交控科技股份有限公司 一种全自动列车的正线进站过标向后跳跃锁闭的方法
CN110758484B (zh) * 2019-10-29 2021-04-27 交控科技股份有限公司 列车自动驾驶方法、vobc、tias、区域控制器
CN112319559A (zh) * 2020-10-12 2021-02-05 北京市轨道交通建设管理有限公司 列车停车方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160304107A1 (en) * 2015-04-17 2016-10-20 Electro-Motive Diesel, Inc. Autonomous reset system
CN109677459A (zh) * 2018-11-12 2019-04-26 浙江众合科技股份有限公司 一种无人驾驶下列车退行安全防护方法
CN110936987A (zh) * 2019-11-25 2020-03-31 卡斯柯信号有限公司 一种城市轨道交通列车全自动折返控制方法
CN111806523A (zh) * 2020-06-30 2020-10-23 通号城市轨道交通技术有限公司 Fzl300型全自动运行系统
CN113650657A (zh) * 2021-09-23 2021-11-16 天津津航计算技术研究所 一种全自动列车反向运行防护控制方法
CN114261432A (zh) * 2021-12-21 2022-04-01 卡斯柯信号有限公司 全自动无人驾驶远程反向运行的实现方法、设备及介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU JIANG, XIE KUN: "Optimum Scheme of Overlap Releasing in Urban Rail Transit CBTC System", URBAN MASS TRANSIT, vol. 20, no. 8, 10 August 2017 (2017-08-10), CN , pages 55 - 58, XP093075498, ISSN: 1007-869X, DOI: 10.16037/j.1007-869x.2017.08.012 *

Also Published As

Publication number Publication date
CN114261432A (zh) 2022-04-01
CN114261432B (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
WO2023116361A1 (zh) 全自动无人驾驶远程反向运行的实现方法、设备及介质
WO2021082256A1 (zh) 列车自动驾驶方法、vobc、tias、区域控制器
CN110775101B (zh) 轨道交通信号系统全自动运行下的远程rm运行控制方法
CN107878513B (zh) 一种无人驾驶列车失位救援方法
CN110758485B (zh) 列车自动驾驶的方法、车载控制器、tias、设备和介质
CN106585674A (zh) 一种列车动态测试的全自动防护方法及系统
CN110949455B (zh) 一种基于移动闭塞的重载铁路保护区段处理方法和装置
CN113650657B (zh) 一种全自动列车反向运行防护控制方法
WO2022188391A1 (zh) 基于便携式安全终端的轨道交通资源处理方法及系统
CN112506168B (zh) 带安全防护的轨道交通全自动运行控制系统动态测试方法
CN113401184A (zh) 远程限速运行控制方法、装置、电子设备及存储介质
CN111776014A (zh) 列车的人员疏散方法
CN112124360A (zh) 道岔冲突防护方法、its、ivoc及vbtc系统
CN111845854A (zh) 基于通信的列车的退行防护方法及系统
CN115257862A (zh) 一种全自动运行安全疏散方法
DK3036146T3 (en) OPERATION OF A SKIN VEHICLE
CN116443082B (zh) 相邻轨旁资源管理器间脱轨防护方法、装置、设备及介质
CN115923881A (zh) 用于tacs系统的列车故障救援管理方法、设备及介质
CN115366948A (zh) 基于列车自动防护的列车位置异常管理方法、设备及介质
CN113415312A (zh) 基于fao的列车动态测试下道岔控制方法和装置
JP2001128302A (ja) 列車の運転保安方法
JP6725998B2 (ja) 踏切制御装置
CN115892143B (zh) 一种无线闭塞中心及其控制列车进站防护方法
CN115709750A (zh) 一种用于tacs系统的乘客疏散管理方法及装置
WO2024109398A1 (zh) 列车安全防护方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909676

Country of ref document: EP

Kind code of ref document: A1