WO2023116303A1 - 用于减阻/整流的物体表面结构、制备方法及装置 - Google Patents

用于减阻/整流的物体表面结构、制备方法及装置 Download PDF

Info

Publication number
WO2023116303A1
WO2023116303A1 PCT/CN2022/133126 CN2022133126W WO2023116303A1 WO 2023116303 A1 WO2023116303 A1 WO 2023116303A1 CN 2022133126 W CN2022133126 W CN 2022133126W WO 2023116303 A1 WO2023116303 A1 WO 2023116303A1
Authority
WO
WIPO (PCT)
Prior art keywords
arc
convex
pit
rotatable
fluid
Prior art date
Application number
PCT/CN2022/133126
Other languages
English (en)
French (fr)
Inventor
吴本华
吴剑飞
Original Assignee
淮北康惠电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202123223528.XU external-priority patent/CN217260628U/zh
Priority claimed from CN202111569595.9A external-priority patent/CN114198370A/zh
Priority claimed from CN202111569583.6A external-priority patent/CN114198432A/zh
Application filed by 淮北康惠电子科技有限公司 filed Critical 淮北康惠电子科技有限公司
Publication of WO2023116303A1 publication Critical patent/WO2023116303A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids

Definitions

  • the invention relates to the field of drag reduction and rectification of fluid mechanics, in particular to an object surface structure, preparation method and device for drag reduction/rectification.
  • the method currently adopted is to treat the surface of the object as smooth as possible and as streamlined as possible; Fluid clutter, eddy currents, shock waves and their acting forces on the surface of the object, the current method is to make the surface of the object into a streamline shape, a waverider shape, etc.
  • the effects achieved by these methods are still limited, especially when the relative motion speed of the object is very high, the resistance of the fluid to the object is particularly prominent, the eddy current and the shock wave are particularly prominent, and the energy consumption is relatively large, for example, a high-speed rail with a speed of 300km/h More than 90% of the power is used against air resistance.
  • the inner surface of the object also has the problems of relatively large resistance to the internal fluid, significant clutter, and obvious fluid retention.
  • the method used to reduce this resistance, clutter and eddy current is to use a smooth surface, but the effect is also very limited. , and there is a bottleneck.
  • the present invention aims to provide an object surface structure, preparation method and device for drag reduction/rectification, so as to reduce the mutual resistance between fluids and rectify the fluid on the object surface.
  • the technical solution adopted by the present invention provides an object surface structure for reducing the mutual resistance between the relatively moving object in the fluid and the fluid and rectifying the fluid, including the base surface of the object, and the array on the base surface
  • the arc convex formed by several arc-shaped protrusions is distributed, and the arc convex is: a rotatable animal with an arc-shaped surface in the pit on the base surface is exposed on the arc surface outside the pit, forming a rotatable arc convex; Or it is an arc-shaped object fixed on the base surface or an arc-shaped protruding part integrated with the base surface to form a fixed arc protrusion.
  • the surface structure of several arc-convex objects is arrayed on the base surface to form an arc-convex surface structure;
  • the arc-convex surface structures on the base surface of the arc-convex surface structure are all rotatable arc-convex surface structures , forming a rotatable arc-convex surface structure; or an arc-convex surface structure that is all fixed arc-convex, forming a fixed arc-convex surface structure, or an arc-convex surface structure with both rotatable and fixed arc-convex, forming a mixed arc-convex surface structure.
  • the base surface is a flat or/and smooth surface, or/and streamlined, the base surface is the inner or outer surface of an object, and the inner or outer surface is a hollow surface Or non-hollow surface.
  • the outer surface of the arc convex is a closed structure, and the inside is a solid structure or a hollow structure.
  • the relative height of the highest point of the outer surface of the arc convex relative to the base surface is equal to the base surface, or the difference between the relative heights of adjacent arc protrusions is equal, or the plurality of arc protrusions are combined.
  • the line connecting the highest points is straight or curved or streamlined.
  • the arc convex is one or a combination of matrix, quincunx, matrix supplementary, and quincunx supplementary layouts on the base surface; wherein, the matrix layout refers to each A convex is both the convex unit of each column and the convex unit of each row.
  • the arc convex on the even-numbered row and the arc convex on the odd-numbered row of the described quincunx layout are respectively located on different convex columns, and the matrix complements
  • the layout refers to adding an arc convex that is suitable for the size of the base surface between the adjacent spherical convexes between the four adjacent arc convexes of the matrix layout.
  • the quincunx supplementary layout refers to the quincunx layout Between the three adjacent arc protrusions, an arc protrusion adapted to the size of the base surface between the adjacent arc protrusions is supplemented.
  • the line formed by the projection of the relative movement direction of the fluid relative to the object on the surface of the object is parallel to the arc-convex columns of the matrix, quincunx, matrix supplementary, and quincunx supplementary layouts , perpendicular to the arc-convex row;
  • the relative motion direction refers to the relative motion direction of an object moving in a single direction or the resultant force of multiple directions of force generated by multiple relative motion directions of an object moving in multiple directions direction.
  • the rotatable object is symmetrical about the central axis, the rotatable direction of the rotatable object is a single direction or multiple directions or any direction, and the direction of rotation is consistent with the direction of movement of the fluid relative to the object;
  • the relative motion direction of the fluid relative to the object is the relative motion direction described in claim 7.
  • the shape of the rotatable animal is a sphere, or an ellipsoid, or a cylinder, or a combination of a cylinder and a sphere, or a combination of a cone and a sphere, or a combination of a cone and a cylinder.
  • the shape of the pit is the shape of the remaining structure after the hollow structure enlarged in equal proportions of the rotatable body is cut off by a surface with the same shape as the base surface where the pit is located, or the shape of the inner The cavity is slightly larger than the other hollow-like shapes of the rotatable.
  • the rotatable body is constrained within the well and is rotatable by:
  • the diameter of the external opening of the pit is smaller than the outer diameter of the rotatable object, or/and the surface of the rotatable object and the inner wall of the pit are smoothed, or/and the surface of the rotatable object and the inner wall of the pit are treated
  • a horizontal bar is arranged in the pit perpendicular to the relative movement direction of the fluid and the object, and the cross bar is arranged to pass through the central axis of the pit, and the two ends are in contact with the pit wall while passing through the rotatable object symmetrically
  • the structural relationship of the magnetic levitation interaction force is formed between the pit and the rotatable object, so that the rotatable object is suspended in the ball pit.
  • the shape of the fixed arc convex is any one of a complete ellipsoid, a complete cylinder, a combination of a cylinder and a sphere, a combination of a cone and a sphere, and a combination of a cone and a cylinder.
  • a shape is the shape of any one of the two structures formed by cross-cutting a surface of the same shape as the base surface on which the fixed arc protrusion is located.
  • the rotatable arc protrusions and the fixed arc protrusions are arranged in blocks or cross-mixed on the base surface, and the ratio of the rotatable arc protrusions to all arc protrusions is greater than 0% and less than 100%.
  • the present invention also provides a method for preparing a rotatable arc-convex surface structure, including several optional methods:
  • the method is to make rotatable objects and pits on the surface of the target object to be made with a rotatable arc-convex surface structure according to the specifications of the rotatable objects, the layout of the pits, the specifications and requirements of the pre-designed rotatable objects, or make the rotatable objects and pits at the same time.
  • the restricting mechanism in the pit and the restricting mechanism is placed in the set position in the pit; the rotatable object is placed in the pit, and the rotatable object is smaller than the pit mouth of the rotatable animal, or the restricting mechanism in the pit, or small
  • the size of the pit mouth and the pit restricting mechanism are common, constrained in the pit and can easily rotate around the symmetric axis of the rotatable object.
  • the direction of rotation is opposite or the same as the predetermined direction of travel of the target object in the fluid.
  • the target object The rotatable arc-convex surface structure is prepared; or the surface part of the target object with the rotatable arc-convex surface structure is prepared by one-time molding casting method or 3D printing method.
  • (d) method choose covering A and covering B whose sum of thickness is equal to or slightly greater than the set pit depth, and whose surface shape on one side is consistent with the surface shape of the target part of the target to be covered, respectively Make pits on the two surfaces according to the set pit layout, and the pits on the cover A and the pits at the corresponding positions on the cover B are combined to form a new pit whose specification size is equal to the set pit The specification and size of the pit; or simultaneously make the restricting mechanism in the pit and set the restricting mechanism in the pit; make the rotatable animal according to the set size and requirements; place the rotatable object in the covering A and the pit corresponds to the covering A Between the pits at the position, the cover A and the cover B are merged together, and the rotatable object is limited in the new pit formed by the combination of the pit of the cover A and the pit of the cover B or in the restricting mechanism in the new pit, After confirming that the rotatable animal can easily rotate around the axis of symmetry of
  • the covering in the above method (b), method (c) and method (d) is a set covering module of a uniform size or a covering of a targeted size for the entire surface of the target object or a part of the surface.
  • the fixed arc-convex surface structure and the hybrid arc-convex surface structure adopt the method of directly making the corresponding arc-convex on the surface of the target object or making it on the surface of the covering and then covering the covering on the target object The method of surface preparation.
  • the present invention provides an object surface that can reduce the relative resistance between a relatively moving object and the fluid in a fluid field and rectify the fluid.
  • the surface is any one of the above-mentioned quincunx layout, quincunx supplementary layout, and matrix supplementary layout.
  • the connection line of the highest point of the base surface is referred to as the adjacent convex top connection line here;
  • the parallel plane refers to the surface where the adjacent convex top connection lines are parallel to each other and parallel to the relative motion direction of the object;
  • the slope refers to the is a surface whose connecting lines of adjacent convex tops are parallel to each other and
  • the present invention also provides a device for decelerating relatively moving objects in a fluid.
  • the device includes an inflow channel whose inlet is located on the front surface of the device.
  • the inflow channel forms one or divides into two at the rear end. or a plurality of return channels that are bent and extend toward the front end of the device to form a discharge port on the outer surface of the front end of the device, the diameter of the inlet port and the inner diameter of the front section of the inlet channel are larger than the inner diameter of the rear section of the inlet channel, And greater than the inner diameter of the return channel or the sum of the inner diameters of several return channels, greater than the diameter of the discharge port or the sum of the diameters of several discharge ports; the inlet port of the inlet channel and the discharge port of the return channel are respectively provided with A sliding type inlet cover and a discharge port cover, the sliding cover is fixed at the inlet and the discharge port in a manner parallel to the outer surface of the device, and is opened or closed in a sliding manner; the inlet The
  • the present invention also provides a device for generating a lateral deviation force on a relatively moving object in a fluid, including a body of the device and a fluid channel, where the outer surface of the body is in contact with the fluid and the inner wall surface of the fluid channel is the above-mentioned object surface, and the lines of adjacent arc-convex convex tops on one side surface of the inner wall of the fluid channel are parallel to each other and parallel to the relative motion direction of the object, and this side is referred to as a parallel surface here;
  • the lines of the convex tops of adjacent arcs on the surface of the inner wall are parallel to each other and are not parallel to the relative motion direction of the object, or the lines of the convex tops of adjacent arcs are not parallel to each other, this side is referred to as a slope here;
  • the fluid channel It is a shape in which the area of the cross section becomes smaller gradually after the area of the most front surface is the largest; the area of the inlet port of the fluid channel is larger than
  • the originally closed inlet and outlet housings are opened, and fluid enters and passes through the fluid channel to generate a flow toward the The deviation force in the direction of one side of the slope, when the deviation force reaches and exceeds the original force in the opposite direction, the moving direction of the moving object deviates towards the direction of the slope; manipulate the inlet cover to Adjust and control the size of the inlet opening to adjust and control the amount of fluid entering the fluid channel, and realize the adjustment and control of the deviation force, so as to realize the adjustment and control of the deviation speed of the object; close the inlet cover and a vent housing, said deflecting force disappears, said deflecting behavior terminates;
  • the inclined plane is fixedly arranged above the body to provide an upward deviation force for the relative moving object on which the device is installed, or fixedly arranged below the body to provide a downward deviation force for the relative moving object on which the device is installed, or It is arranged inside a hollow movable cylinder, and the movable cylinder is embedded in a hollow fixed cylinder whose inner diameter is larger than the outer diameter of the movable cylinder in such a way that it can rotate around its own central axis through a bearing on its outer surface.
  • the hoop-shaped gear set on the outer surface of the movable cylinder engages with the circular gear of the rotary machine; the operator operates the rotary machine to drive the circular gear to rotate, and changes and controls the activity by changing and controlling the rotation angle value
  • the rotation angle value of the type cylinder and then change and control the orientation of the fluid passage slope, to achieve the change and control of the lateral deviation direction of the relative moving object installed with the device; the movable cylinder and the fixed cylinder
  • the part where the inner surface of the cylinder is in contact with the fluid in relative motion is the above-mentioned surface of the object.
  • the present invention also provides a fan machine, the fan blades of the fan machine are in the shape of a plurality of blades with the same shape or in the shape of a single helix or a plurality of helixes, wherein two of the blade-shaped fan blades are relatively large
  • the blade surfaces are parallel or nearly parallel curved surfaces. When the curved surfaces are nearly parallel, the thickness of the fan blade at a position closer to the rotation axis is slightly thicker than the thickness of the fan blade at a relatively far position; When working, the direction of fan blade rotation is perpendicular to the relative movement direction of the fluid in the fluid field where the fan machine is located relative to the fan machine.
  • the angle of attack of the air relative to the direction of motion changes gradually from 135° to 180° from the nearest point to the farthest point of the fan blade from the rotation axis, and it is tangential to the circular surface formed by the tail of the fan blade when the fan machine rotates.
  • the angle changes from the nearest point to the farthest point of the fan blade from the rotation axis in a manner that gradually increases from 135° to 180°;
  • the angle of attack between the fan blade and the fluid and the blade rotating surface is a fixed angle value or The angle value can be adjusted in advance or in real time;
  • the surface of the fan blade and other parts of the fan machine in contact with the fluid is the surface of the above-mentioned object, and the rotatable direction of the rotatable arc convex on the surface is multi-directional or Any direction;
  • the fan machine is a passive fan machine used independently or an active fan machine used in combination with a power drive device.
  • the present invention also provides a push flow device, comprising a main channel, the inner wall surface of the main channel is the surface of the above-mentioned object, and the main channel forms an inlet opening facing forward on the outer surface of the front end of the device.
  • the outer surface of the rear end of the device forms a drainage port with an opening facing the rear, or two or more branch drainage channels with inner walls such as the above-mentioned object surface are separated at the rear end of the main channel, and the branch drainage channels are in the
  • the rear end of the device or the surface on both sides of the rear end form a discharge port facing the rear;
  • the central axis in the main channel is provided with an active fan as the above-mentioned fan; when the device is in operation, the active fan rotates to drive the fluid After entering the main passage from the inlet at the front end of the device, it flows along the main passage or the branch discharge passage to the discharge outlets at the rear end or both sides of the rear end of the push flow device and is discharged from the discharge outlets to achieve
  • the present invention also provides a balance device for resisting lateral tilting or lateral overturning of relatively moving objects in a fluid field, which is characterized in that it includes a linear channel with inner walls parallel to each other and to its own central axis and the relative motion direction of the fluid and A circular inner cavity formed by two circular planes parallel to each other and the central axis of the straight channel and wrapped around the circular plane edge, a part of the circular inner cavity near the outer edge A part of the inner cavity of the cavity and the linear channel coincides with the middle position of the inner cavity of the linear channel; the circular inner cavity is provided with a fan machine, and the rotation axis of the fan machine is located on the inner walls of the two parallel circular planes of the circular inner cavity The center point is fixed on one side or both sides of the inner wall; the fan blades of the fan machine are two circular planes parallel to each other and the circular inner cavity, and the distal part from the far end of the rotating shaft is an arc
  • the shape structure surrounded by two circular planes and two arc surfaces surrounding
  • the fan drives the fluid in the circular cavity to rotate together and affect each other.
  • the two speeds tend to be equal, and the fluid rotation of the fan and the circular inner cavity generates angular momentum, which produces a counterbalancing force against the tendency of the device to tilt or flip sideways, keeping the device relatively Balanced; the fan is a passive fan or an active fan.
  • the surface of the object of the present invention adopts an arc-convex structure, which can reduce the resistance and surface friction of the external fluid to the relatively moving object, reduce the fluid clutter, eddy current, shock wave and its acting force on the surface of the object, thereby improving Motion efficiency, reduce the energy consumption of corresponding travel equipment, improve travel efficiency, reduce noise, reduce resonance, and improve the controllability of moving objects.
  • the effect of using a fixed arc-convex surface structure on the surface of an object is better than that of a purely smooth surface in terms of drag reduction, rectification, and heat reduction, and it is worse than the effect of using a rotatable arc-convex surface structure.
  • the manufacturing process of the spherical convex structure is low and the cost is low. From the perspective of cost and economy, when the quality and effect requirements are not too high, a fixed arc convex surface structure can be used, or a fixed arc convex and a rotatable arc can be used. Convex combined surface structure.
  • the working device and control device with the above structure such as the propulsion device, the deceleration device, the attitude control device, the balance device, etc., because the kinetic energy consumption of the fluid is smaller, the utilization rate of the fluid energy is higher, and the action efficiency on the fluid is higher.
  • the control efficiency of the fluid is higher, so the work efficiency is higher, and the control ability and control precision are higher.
  • Fig. 1 is a schematic diagram of a rotatable arc-convex surface structure in which the ball pit is a part of a complete hollow positive sphere, and the rotatable object in the pit is a complete positive sphere;
  • Fig. 2 is the schematic diagram of the spherical arc-convex surface structure of matrix layout
  • Fig. 3 is a schematic diagram of a spherical arc-convex surface structure of a quincunx layout
  • FIG. 4 is a schematic diagram of a spherical arc-convex surface structure in a matrix supplementary layout
  • Fig. 5 is a schematic diagram of a spherical arc-convex surface structure of a plum blossom supplementary layout
  • Fig. 6 is the schematic diagram of the way that ball is limited in the ball pit with pit mouth radius less than the ball pit of ball radius;
  • Fig. 7 is a schematic diagram of a method for reducing ball rotation resistance by setting balls on the inner wall of the ball pit;
  • Fig. 8 is a schematic diagram of a method for reducing the rotational resistance of the ball by arranging bearings on the inner wall of the ball pit;
  • Fig. 9 is a schematic diagram of restricting the ball in the ball pit by a long horizontal bar passing through the ball and passing through the center of the ball;
  • Fig. 10 is a schematic diagram of using two short cross bars to support the outer wall of the ball to limit the ball to the ball pit;
  • Fig. 11 is a schematic diagram of a fixed arc-convex surface structure in which the protrusion is a part of a complete positive sphere;
  • Figure 12 is a side view of the contact surface between the surface and the relative moving air when the relative velocity between the object and the phase air reaches V1 with a spherical convex surface structure in a matrix layout;
  • Fig. 13 is a schematic diagram of the oblique downward view of the contact surface between the parallel surface and the relative moving air of an object with a spherical convex surface structure in a matrix layout when the relative velocity with the phase air reaches V1;
  • Fig. 14 is a vertical top view of the contact surface between the parallel surface and the relative moving air of an object with a spherical convex surface structure in a matrix layout when the relative velocity with the phase air reaches V1;
  • Fig. 15 is a side view of the contact surface between the surface and the relative moving air when the relative velocity between the object with the spherical convex surface and the phase air reaches V1;
  • Fig. 16 is an oblique view of the contact surface between the parallel surface and the relative moving air when the relative velocity between the object with the spherical convex surface structure and the phase air reaches V1;
  • Fig. 17 is a vertical top view of the contact surface between the parallel surface and the relative moving air of the object with the spherical convex surface structure of the matrix supplementary layout when the relative velocity between the object and the phase air reaches V1;
  • Figure 18 is a side view of the contact surface between the surface and the relative moving air when the relative velocity of the object with the spherical convex surface structure of the quincunx layout reaches V2;
  • Fig. 19 is a schematic diagram of the oblique downward view of the contact surface between the parallel surface and the relative moving air when the relative velocity between the object with the spherical convex surface structure of the quincunx arrangement and the phase air reaches V2;
  • Fig. 20 is a vertical top view of the contact surface between the parallel surface and the relative moving air when the relative velocity between the object with the spherical convex surface structure of the quincunx arrangement and the phase air reaches V2;
  • Fig. 21 is a vertical top view of the contact surface between the parallel surface and the relative moving air of the object with the spherical convex surface structure of the quincunx supplementary layout when the relative velocity with the phase air reaches V2;
  • Figure 22 is a schematic diagram of the interaction force between the spherical convex and the air fluid when the relative velocity between the object and the air is less than V1 on the slope of an object with a rotatable spherical convex surface structure in a matrix layout, on a slope with an inclination angle of A ;
  • Fig. 23 is a diagram of the relationship between the rotational speed of the ball in the ball pit and the relative velocity of the ball's rotational speed and the relative velocity of the relative moving air fluid on the inclined surface of an object with a matrix layout and a rotatable spherical convex surface structure whose inclination angle is A;
  • Figure 24 is a slant with a matrix layout of a rotatable spherical convex surface structure on an object with an inclination angle of A, the spherical convex reaches and exceeds V1 at the stage where the relative velocity between the object and the air reaches and exceeds V1, and it is related to the relative motion of the air fluid Schematic diagram of the interaction force between
  • Fig. 25 is a schematic diagram of the contact surface between the object and the air when the relative velocity between the object and the air reaches and exceeds V1 of the spherical convex on the inclined surface of the object with a rotatable spherical convex surface structure in a matrix layout;
  • Fig. 26 is a schematic diagram of the contact surface between the object and the air when the relative velocity between the object and the air reaches and exceeds V2 of the spherical convex of the object with the rotatable spherical convex surface structure of the quincunx layout on the slope;
  • Fig. 27 is a schematic diagram of a rotatable arc-convex surface structure in which the shape of the pit is a part of an ellipsoid, and the rotatable object in the pit is a complete ellipsoid;
  • Fig. 28 is a schematic diagram of a rotatable arc-convex surface structure in the shape of a cylinder in which the rotatable object in the pit is;
  • Fig. 29 is a schematic diagram of a rotatable arc-convex surface structure in which the rotatable object in the pit is a combined shape of a sphere and a cylinder;
  • Fig. 30 is a schematic diagram of the rotatable arc-convex surface structure in which the rotatable object in the pit is a combination of a cone and a cylinder;
  • Fig. 31 is a schematic diagram of a rotatable arc-convex surface structure in which the rotatable object in the pit is a combination of a cone and a sphere;
  • 32A-32D are schematic diagrams of various shapes of the arc convex of the fixed arc convex surface structure
  • Fig. 33 is a schematic diagram of a method for synthesizing a layer of covering with a double-layer covering to make a rotatable spherical convex surface structure
  • Figure 34 is a schematic diagram of a method for making a ball pit on the surface of an object and covering it with a layer of covering to make a rotatable spherical convex surface structure;
  • Figures 35-39 are schematic diagrams of Embodiment 8; in the figure, planes A and E are parallel planes, planes B and C are inclined planes, and planes D and F are curved surface units;
  • Fig. 40 is a schematic diagram of embodiment 9; in Fig. 40, 9-1, inflow channel, 9-2, return flow channel, 9-3, inflow port, 9-4, discharge port, 9-5, inflow Mouth cover, 9-6, drain outlet cover;
  • Figure 41 is a schematic diagram of the device of Example 10;
  • Figure 42 is a schematic diagram of the device of Example 11;
  • Fig. 43 is a schematic diagram of the device of embodiment 12; among Fig. 41-43, 10-1, body, 13-2, fluid channel, 13-3, inlet port cover, 13-4, discharge port cover, 13-5 , movable cylinder, 13-6, fixed cylinder, 13-7, bearing, 13-8, circular hoop gear, 13-9, turning machine;
  • Fig. 44 is a schematic diagram of a multi-blade fan machine in Embodiment 13;
  • Fig. 45 is a schematic diagram of a fan machine with a single spiral fan blade in Embodiment 13;
  • Figure 46 is a schematic diagram of the air pushing device of embodiment 14 of a single channel
  • Figure 47 is a schematic diagram of the air pushing device of Example 14 with a branch drainage channel; in Figures 46-47, 14-1, the main channel; 14-2, the active fan; 14-3, the branch drainage channel;
  • Fig. 48 is a schematic diagram of the balance device of embodiment 15; in Fig. 48, 15-1, a straight channel; 15-2, a circular inner cavity; 15-3, a fan; 15-4, an inlet, 15-5, drain port.
  • a rotatable arc-convex surface structure includes a streamlined base surface 11 of a relatively flat object 1, and the base surface 11 is formed in a matrix as shown in FIG. 2, or There are several arc convexes arranged closely adjacent to each other in a quincunx manner as shown in FIG.
  • the radius is smaller than the radius of the regular hemispherical pit 12 , a spherical, hollow or solid ball 13 is exposed on the spherical surface outside the ball pit 12 ;
  • the spherical arc convex is called spherical convex for short
  • the hemispherical pit is called ball pit 12 for short
  • the rotatable arc convex surface structure is also called the rotatable spherical convex surface structure
  • the sphere 13 is constrained in the following several ways In the ball pit 12, cannot escape and can turn:
  • the hole mouth radius of ball pit 12 is less than the ball radius and the difference between the two exceeds a certain value, or the surface of ball 13 and the inner wall of ball pit 12 are smoothed, or between ball 13 and
  • the surface of the ball pit 12 is coated with lubricant, or several protrusions 14 supporting the ball are arranged on the inner wall of the ball pit 12; the protrusions 14 are protrusions fixed on the wall of the ball pit 12 or as shown
  • a part of the ball body in the micro-pit on the wall of the ball pit 12 is exposed outside the micro-pit and is in contact with the surface of the ball, or it is a bearing 15 arranged in the ball pit 12 as shown in Figure 8
  • the ball on the top this constraint method can make the ball 13 rotate in any direction around itself.
  • a restricting mechanism is provided in the ball pit 12 .
  • a cross bar is arranged perpendicular to the relative movement direction of the fluid 2 and the object 1, the cross bar passes through the central axis of the ball pit 12, and both ends are in contact with the pit wall of the ball pit 12, A long cross bar 16 passing through the sphere 13 symmetry axis simultaneously.
  • the 10 may be two short horizontal bars 17 located between the ball 13 and the wall of the ball pit 12, and the line connecting the two passes through the axis of symmetry of the ball 13 and the central axis of the ball pit 12;
  • the two ends of the bar 16 or the short cross bar 17 or one of the ends are in contact with the wall of the ball pit 12 or/and the surface of the ball 13 in a rotatable and non-movable manner;
  • the straight line rotates in one direction.
  • a fixed arc-convex surface structure includes a streamlined and relatively flat base surface 11 of an object 1, and a fixed arc-convex on the base surface 11;
  • the arc-convex is Hemispherical non-movable and non-rotatable arc-shaped objects 18 that are arranged closely adjacent to each other in a matrix or quincunx manner, or appear on the base surface 11 in a matrix or quincunx manner, and are integrated with the base surface 11,
  • the raised portion 19 of the hemispherical base surface, the fixed arc convex surface structure is also called the fixed spherical convex surface structure.
  • Embodiment 3 A mixed arc-convex surface structure, including a streamlined and relatively flat base surface 11 of the object 1, on which the base surface 11 is arranged closely adjacent to each other in a matrix or in a quincunx manner.
  • the rotating spherical convex and the fixed spherical convex in embodiment 2, the mixed arc-convex surface structure is also called the mixed spherical-convex surface structure.
  • the "matrix layout” described in Embodiments 1-3 refers to the fact that each arc is both the convex unit of each column and the unit of each row; the "quincunx layout” refers to the arcs on the even rows The arc convexes on the convex and odd rows are respectively located on different arc convex columns; the "column” mentioned here refers to the line parallel to the relative motion direction of the object and the fluid; the “row” refers to the line perpendicular to the A line in the direction of relative motion of an object and a fluid.
  • the spherical convexity of embodiment 1-3 can also be arranged on the base surface 11 with the matrix supplementary method shown in Figure 4 or the quincunx supplementary method shown in Figure 5; Between the four adjacent arc convexes, add an arc convex adapted to the size of the base surface between the adjacent spherical convexes.
  • the "quincunx supplementary layout" refers to the three adjacent arc convex An arc convex adapted to the size of the base surface between the adjacent spherical convexes is added between them.
  • Embodiment 1-3 The relative height of the highest point of the spherical convex outer surface relative to the base surface 11 on the parallel surface or inclined surface of the spherical surface structure is equal to the relative height of the base surface 11, and the highest point of the spherical convex surface of the adjacent spherical convex on the curved surface unit
  • the relative height difference relative to the base surface 11 is equal, and the connection line of the highest point of the adjacent spherical convex surface relative to the base surface where the spherical convex is located along the relative motion direction of the object is referred to as the adjacent convex top connection line.
  • the connecting lines of the adjacent convex tops are on the same straight line or curve, and the connecting line between the straight line and the curved line is streamlined.
  • the "parallel plane” here means that the adjacent convex tops of the spherical protrusions on the surface are parallel to each other and parallel to the moving direction of the object relative to the fluid, and the “inclined plane” refers to the relative
  • the lines of adjacent convex tops are parallel to each other and not parallel to the moving direction of the object relative to the fluid; The angle between the line connecting the convex top and the moving direction of the object relative to the fluid is equal to the same direction.
  • the surface structures of Examples 1-3 are collectively referred to as spherical-convex surface structures.
  • the resistance of the fluid is less or significantly less than that of a smooth surface structure.
  • V 1 is the speed of many sports equipment and vehicles in normal operation or normal driving, and when the spherical convex surface structure is a rotatable spherical convex, V 1 is less than or equal to the
  • V 1 is less than or equal to the
  • the contact surface between the parallel surface of the object and the external relative moving air fluid is: the spherical convex surface passing through the base surface of the parallel surface The point farthest from the base surface and perpendicular to the relative movement direction of the object, the arc line segment 131 whose two ends reach the base surface of the object and the adjacent spherical convex surface structure located between the adjacent spherical convex bottoms with a width equal to that of the fixed spherical convex surface structure
  • the pitch of the ball protrusions is equal to the pitch of adjacent ball pits in the same
  • the width of the rectangular base surface 111 is very narrow, and the area is relatively small, and the ratio of the area to the area of the base surface is very small; the arc line segment 131 is only a line segment, so The area is smaller. Therefore, at this time, the contact surface between the parallel surface of the object with a spherical convex surface structure in matrix layout and the external relatively moving air fluid is much smaller than the parallel surface of the object with a smooth surface structure.
  • the contact surface between the spherical convex and the external air fluid on the parallel plane of the object gradually narrows to an arc line segment 131 from the entire front half of the spherical convex exposed surface, and the external air fluid and the foundation
  • the contact surface of the surfaces gradually narrows down to a rectangular base surface 111 from the entire base surface between the spherical protrusions.
  • the contact surface between the parallel surface of the object and the external relative moving air fluid is:
  • the point farthest from the base surface on the large spherical convex surface passing through the parallel surface, and the arc line segment 133 at both ends perpendicular to the relative motion direction of the object that does not reach the object base surface is opposite to the base surface passing through the small spherical convex surface
  • the farthest point and the two ends perpendicular to the relative motion direction of the object do not reach the arc line segment 134 of the object's base surface, and the sum of the arc line segment 133 and the arc line segment 134 is much smaller than the parallel of the object with a smooth surface structure.
  • the object with the spherical convex surface structure of the quincunx layout which is parallel to the parallel plane of the relative motion of the object and the fluid, has an odd-numbered row of spherical convexities in front, which are opposite to the object.
  • the rear odd-numbered row of spherical convexities in the direction of motion is directly in front of the object, and at the same time it is directly above the middle point of the low-lying area between the adjacent spherical convexities of the rear even-numbered row of spherical convexities in the relative movement direction of the object;
  • the front even-numbered row of spherical convexities It is directly in front of the rear even-numbered spherical convexity in the direction of the relative movement of the object, and at the same time it is directly above the middle point of the low-lying area between the adjacent spherical convexities of the rear odd-numbered spherical convexity in the relative movement direction of the object; resulting in
  • the front surface of the backward spherical convex is completely blocked by the forward spherical convex, and the shoulder of the spherical convex which is closer to the base surface is blocked by the forward spher
  • the contact surface between the spherical convex and the external air fluid on the parallel surface gradually shrinks from the entire surface of the exposed front half surface of the spherical convex to an arc line segment 137.
  • This stage is the movement
  • the start-up stage of equipment or vehicles is an abnormal working stage, and the time is relatively short; while the stage of reaching V2 and exceeding and maintaining V2 speed is normal working time, and the time is relatively long.
  • the size of the friction force is proportional to the size of the contact surface, the speed of the relative movement between the object with the spherical convex surface structure of the matrix layout, the quincunx layout, the matrix layout, and the quincunx supplementary layout and the air fluid reaches and When the value exceeds a certain value, the friction force between the parallel surface and the air fluid is significantly reduced compared with the friction force between the parallel surface with a smooth surface structure and the air fluid.
  • the air resistance of the rotatable spherical convex surface structure is smaller than that of the hybrid spherical convex surface structure with the same layout and specifications, and the air resistance of the hybrid spherical convex surface structure is lower than that of the fixed spherical convex surface structure with the same layout and specifications.
  • the front bevel As shown in Figure 12, the part of the rear row of spherical convexities on the front slope of the object with a matrix-style spherical-convex surface structure close to the base surface is blocked by the previous row of spherical convex parts in the direction of the relative movement of the object.
  • V 3 V 3 ⁇ V 1
  • the relative moving air fluid can only touch the upper part of the spherical convex surface, and the spherical convex surface
  • the length of the chord line of the contact surface is proportional to the cosine value of the inclination angle of the front bevel.
  • the contact surface on the spherical convex is the horizontal arc segment at the front of the spherical convex, the horizontal arc line segment at the rear, the left and right sides of the spherical convex and the foundation A spherical surface 132 surrounded by two longitudinal arc line segments that are in contact with each other; before the relative motion speed reaches V1 , as the relative motion speed of the object increases, the contact surface between the external relative motion air fluid and the spherical convex will change from the spherical convex All the spherical convex surfaces in front of the exposed surface facing the moving direction of the air fluid gradually shrink into the spherical surface 132, and the spherical surface 132 continues to shrink until it shrinks into an arc on the spherical convex surface; The entire base surface between them is gradually reduced until it is located between the adjacent spherical convex bottoms of the fixed spherical convex surface structure or between the adjacent
  • the contact surface is: a spherical surface 138 surrounded by the front transverse arc line segment, the rear transverse arc line segment, and the left and right waist two longitudinal arc line segments located on the spherical convex exposed surface.
  • the contact surface between the external relative motion air fluid and the spherical convex faces all the spherical convex surfaces and the spherical convex in front of the air fluid moving direction from the external surface of the spherical convex
  • the base surface therebetween gradually shrinks into a spherical surface 138 and the spherical surface 138 continues to shrink until it shrinks into an arc on the spherical convex surface.
  • the sphere surface of matrix layout, quincunx layout, matrix supplementary layout, and quincunx supplementary layout are smaller than the slope with a smooth surface, wherein the front slope of the object with a rotatable spherical convex surface structure is affected by the air fluid.
  • the friction force of the mixed spherical convex surface structure is smaller than that of the mixed spherical convex surface structure, and the friction force of the mixed spherical convex surface structure subject to the air fluid is smaller than that of the fixed spherical convex surface structure.
  • the rotatable spherical-convex surface structure not only reduces the friction force more significantly than the fixed spherical-convex surface structure, but also has the effect of reducing the impact force of the relative moving air fluid on the front slope.
  • the relative moving air The force F of any contact point on the spherical convex contact surface 132 on the front slope of the fluid and the object can be decomposed into: the force F1 along the spherical convex tangent of the contact point and in the same direction as the relative movement direction of the air and fluid , and a force F2 perpendicular to the tangent and directed towards the object.
  • F1 can be decomposed into: the force F3 that is in the same direction as the relative motion of the air fluid and the force F4 that is perpendicular to the relative motion direction of the external air fluid and away from the object;
  • F2 can be decomposed into: the relative motion direction of the air fluid The same force F5 and force F6 perpendicular to the direction of relative motion of the external air fluid and towards the object.
  • the directions of the acting forces F4 and F6 are opposite, the magnitudes are the same, and they balance and cancel each other; the directions of the acting forces F3 and F5 are the same, and they are superimposed on each other.
  • the force F3 of the fluid on the object at the contact point is zero, which is equivalent to the fact that F3 is completely converted into the rotational force of the sphere at this time; at this time, the external relative air fluid acts on the object at the contact point
  • the resistance of the object with a matrix layout and a rotatable spherical convex surface structure on the slope is only the F5 impact force on the arc L 1 whose value is equal to sin 2 (A) ⁇ F and the friction force of the base surface 112 in the long direction .
  • the speed of the object with the rotatable spherical convex surface structure of the quincunx layout is greater than or equal to V 2 and lasts in this speed range for a certain period of time, it will run to the original contact surface on the slope of the quincunx layout of the rotatable spherical convex structure object.
  • the air fluid particles of 138 are all blocked outside the transverse arc L 2 passing through the center point of the exposed surface of the sphere as shown in Figure 26 and perpendicular to the direction of relative motion.
  • the relative resistance on the slope is only the impact force on the arc L 2 , which is equal to sin 2 (A) ⁇ F, F5. Since the sine values of the supplementary angles are equal, F5 is equal to the sine value of the angle of attack. squared.
  • the air resistance on its parallel plane and front slope is less than that of an object with a smooth surface structure.
  • the drag reduction effect of the rotatable spherical convex surface structure is better than that of the fixed spherical convex surface structure
  • the drag reduction effect of the rotatable spherical convex surface structure of the quincunx layout, matrix supplementary layout, and quincunx supplementary layout is better than that of the matrix layout.
  • the maximum rotatable speed of the ball in the ball pit limits the upper speed limit of the maximum drag reduction effect of the structural object. Smoothing the surface of the ball, or/and applying lubricant in the ball pit, or/and setting up small ball protrusions or balls, or/and making the ball pit and the ball into a magnetic levitation system structure can reduce the distance between the ball and the ball. Mutual resistance between the pits, thereby increasing the maximum rotatable speed of the ball.
  • the air fluid state in the ball pit is also one of the factors that affect the maximum rotatable speed of the ball.
  • the rotatable spherical convex on the front slope on the parallel plane and the angle with the relative motion direction in the range of 0° ⁇ a ⁇ 45°, 135° ⁇ a ⁇ 225°, 315° ⁇ a ⁇ 360°, without lubricant
  • the air entering the ball pit is nearly equal to the air taken out of the ball pit, and the air volume in the ball pit is relatively stable; , the air resistance of the hole to the surface of the ball is getting bigger and bigger, and the air on the surface of the ball is getting looser and expanding, so that more and more air is stripped from the surface of the ball by the hole when entering the ball hole, making the air entering the ball
  • the air in the pit is getting less and less; secondly, with the increase of the speed of the ball, more and more air attached to the surface of the ball is thrown off before reaching the entrance of the ball pit, so the air entering the ball pit is getting more and more and the ball will always take away the air in the ball pit when it turns out of the ball pit, so the air density in the ball pit shows a continuous downward trend.
  • the air can always enter the ball pit through the base surface 111 or 112 at the opening of the ball pit to replenish the air in the ball pit, but as the air flow above the base surface As the relative speed of the object increases, the amount of air supplied to the ball pit will become less and less. In addition, the air in the ball pit will continue to decrease due to the rotation of the ball, resulting in the surface of the object with a matrix layout that can rotate the spherical convex surface structure. The air density in the ball pit continues to decrease, but there will never be a vacuum state, but will always be in a state of relatively low-density air.
  • the rotatable spherical convex surface structure is a quincunx layout and a quincunx supplementary layout
  • the relative motion speed of the object relative to the external air is greater than or equal to V2
  • the rotatable spherical convex surface structure is a matrix supplementary layout
  • the air can no longer touch the base surface, so it cannot enter the ball pit through the opening of the ball pit, so that the air in the ball pit will gradually be lost and become a vacuum state, so that The ball rotates close to zero resistance in a vacuum state, so the maximum speed of the ball can theoretically be infinite.
  • Adjacent surfaces, curved surfaces, inner surfaces of channels There is a certain angle between the adjacent surfaces of the surface of the object that is different from the angle of the relative motion direction of the object, and the angle is the relative motion between the highest point connecting the arc convex on the adjacent surface and the highest point of the base surface and the object The angle of the direction. There is also a certain included angle between the arc convex on the curved surface and the line connecting the highest point of the base surface, and the included angle can be regarded as the included angle of several adjacent surfaces.
  • the energy wave generated by the disturbance mainly propagates away from the surface of the object and tends to attenuate at a relatively fast attenuation speed; for an inner surface with a relatively closed space on the outside of the surface, such as For the inner wall of the pipeline, the energy wave generated by the disturbance will act on all the inner walls of the channel, and the attenuation speed in the channel is relatively slow;
  • the channel of the rotating spherical convex surface structure, the force on the inner surface is sin 2 ( ⁇ ) ⁇ F (where ⁇ is the angle between the adjacent surfaces of the inner surface of the channel, and F is the force that the fluid acts on the surface of the object vertically ).
  • the force on the inner wall of the channel is only as strong as that of the adjacent surfaces and the adjacent adjacent surfaces on the curved surface. It is related to the included angle of the line connecting the convex top of the spherical convex, and has nothing to do with the curvature and bending degree of the channel.
  • Example 8 For an example calculation of the stress on adjacent surfaces, refer to Example 8.
  • the back bevel and the back surface From the point of view of the entire stress system of an object in relative motion in the fluid field, even if there is a thin air area or a relative vacuum area behind the object when the relative motion speed is high, the shape of the rear slope, the back surface, and its relationship with the relative motion
  • the size of the included angle of the direction has a very weak influence on the resistance of the relative moving object, which can be ignored; but the back slope of the arc-convex surface structure object, the back curved surface and the adjacent surface between the adjacent convex top lines
  • the size of the included angle affects the state of the air wave near the rear surface of the object.
  • the dynamic surface refers to the surface of the object whose angle with the direction of relative motion between the fluid changes with time or/and the change of the displacement position of the object.
  • the friction force on the surface of the spherical convex surface structure object with a dynamic surface is related to the spherical convex layout, and the friction force on the surface of the rotatable spherical convex surface structure object of the quincunx layout, quincunx supplementary layout, and matrix supplementary layout is within the range of the object.
  • the relative motion speed When the relative motion speed reaches a certain value, it tends to zero; the fluid impact force on the surface of a rotatable spherical convex surface structure object with a dynamic surface and the dynamic angle variable value of the relative motion direction between the dynamic surface and the fluid have a sinusoidal value proportional to the square of the value.
  • Multi-directional movement refers to the movement of an object in two or more directions or/and in parallel with respect to the fluid.
  • the friction force on the surface of the object with a spherical convex surface structure is the same as that of a unidirectional moving object. See The above description; the size of the impact force on the surface of the rotatable spherical convex surface structure object and: the square of the sine of the angle between the fluid and the lateral movement direction, the sine of the angle of the vertical movement direction proportional to the square of .
  • Example 13 for an example calculation of the force on the surface of an object moving in multiple directions.
  • the arc-convex surface structure is suitable for drag reduction of objects with relatively high speed in fluid field, but not suitable for objects with relatively low speed. Because when the relative speed is low, its drag reduction cannot be exerted; on the other hand, the arc-convex surface structure, especially the rotatable arc-convex surface structure, is more suitable for drag reduction of objects with a relatively large surface area in the fluid field, and is not suitable for For an object with a relatively small surface area, because the smaller the surface area is, the more difficult it is to make arc protrusions on the surface that satisfy a certain number and meet certain size requirements.
  • the sphere of the rotatable spherical convex surface structure in Embodiments 1 and 3 can be replaced by an ellipsoid as shown in Figure 27, or a cylinder as shown in Figure 28, or a combination of a cylinder and a sphere as shown in Figure 29 A combination, or a combination of a cone and a sphere as shown in Figure 30, or a rotatable animal with an arc surface in the shape of a combination of a cone and a cylinder as shown in Figure 31.
  • the ball pit 12 is correspondingly replaced with the shape of the remaining structure after the hollow structure enlarged in proportion to the rotatable object is cut off by a plane parallel to the central axis of the structure, or the inner cavity is slightly larger than the cube shape of the rotatable object or Other hollow shapes;
  • the spherical convexity on the base surface of the fixed spherical convex surface structure in embodiments 2 and 3 can be replaced by complete ellipsoids, complete cylinders, Any one of the combination of cylinder and sphere, the combination of cone and sphere, and the combination of cone and cylinder is the remaining structural shape after being cross-cut by the surface of the basic surface shape where the spherical convexity is fixed ; It also has the function of reducing the relative resistance between the relatively moving object in the fluid and the fluid and rectifying the fluid, so as to meet the requirements of different drag reduction and rectification requirements, different workmanship requirements, different parts of objects or different application environments.
  • Embodiment 4 A preparation method of a rotatable spherical convex surface structure: on the surface of the target object to be manufactured with a rotatable spherical convex surface structure, the specifications of the balls, the layout of the ball pits, the specifications and requirements of the ball pits are determined according to the pre-design Make the ball and the ball pit, or, or make the restricting mechanism in the ball pit at the same time and place the restricting mechanism at the set position in the ball pit; place the ball in the ball pit, and the ball is covered by the pit mouth of the ball pit smaller than the size of the ball , or the restricting mechanism in the ball pit, or the small-sized pit mouth and the restricting mechanism in the pit are limited in the ball pit and can easily rotate around the symmetrical axis of the ball, and the direction of rotation is opposite to the predetermined direction of travel of the target object in the fluid or the same; the preparation is complete.
  • Example 5 A method for preparing a rotatable spherical convex surface structure: select a covering whose surface shape is consistent with the shape and radian of the surface of the part to be covered by the target object, and whose thickness is equal to or slightly greater than the depth of the ball pit, according to Example 4
  • the preparation method is to prepare a covering with a rotatable spherical convex surface structure on the covering, put the side of the covering without the rotatable spherical convex facing the target, and the side with the rotatable spherical convex facing away from the target, covering the The corresponding parts on the surface of the target object are fixed firmly; the preparation work is completed.
  • Example 6 A method for preparing a rotatable spherical convex surface structure: design and determine the specifications of the ball, the layout of the ball pits, and the specifications of the ball pits; then, as shown in Figure 33, select the sum of the thicknesses of the two to be equal to or slightly greater than Set the cover A and cover B with the depth of the ball pit, wherein the surface shape of one side of cover A is consistent with the surface shape of the target part of the target to be covered;
  • the ball pits are made according to the set ball pit layout, and the produced ball pits meet: the ball pits on the covering A and the ball pits on the corresponding positions on the covering B are merged together to form a new ball pit with the specification size equal to the set
  • Example 7 As shown in Figure 34, a method for preparing a rotatable spherical convex surface structure: replace the cover B in Example 6 with the target object, and make a ball pit on the surface of the cover B according to the method in Example 6. Make ball pits on the surface of the target object, and prepare the rotatable spherical convex surface structure of the target object according to the preparation method of the covering assembly in Example 6.
  • the ball in the preparation method of Example 4-7, according to the characteristics and requirements of different objects, can be made of plastic, wood, ceramics, metal and other materials to form a hollow sphere or a solid sphere, and the covering can be made of plastic, rubber, or metal. Soft or hard material.
  • the covering can be made into a targeted size covering for the entire surface of the target or a part of the surface of the target, or a uniform size covering containing only one spherical convex or a specific number of spherical convexes object module.
  • the manufacturing method of the covering module with the uniform number of spherical protrusions and the uniform size is conducive to the assembly line production of coverings, and is also more convenient for installation, replacement and maintenance.
  • the fixed arc-convex surface structure and the hybrid arc-convex surface structure adopt the method of directly making the corresponding spherical convex on the surface of the target object, or making the corresponding spherical convex on the surface of the covering, and then covering the covering with the spherical convex on the target.
  • the method of preparation of the surface of the object is not limited to the above.
  • Embodiment 8 An object surface for reducing the relative resistance between a relatively moving object and the air fluid and rectifying the air fluid on the object surface.
  • Parallel planes such as the inclined plane shown in the B plane in Figure 35 and the C plane in Figure 36, and the curved surface unit shown in the D plane in Figure 37 and the F plane in Figure 38.
  • the surface of each said plane is a rotatable spherical-convex surface structure with a quincunx layout.
  • the number of spherical protrusions on each said plane is not less than 10.
  • the relative height of the highest point of the convex relative to the base surface and the base surface is 1 mm; the angle between the parallel surface on the surface of the object and the front slope is between the parallel surface A and the adjacent front slope B as shown in Figure 35 Shown in the included angles ⁇ 1 and ⁇ 2 of adjacent adjacent convex top connection points, its supplementary angle is equal to 0.5°; the included angle between the adjacent front slopes on the surface of the object is the front slope in Figure 36
  • the included angles ⁇ 3 and ⁇ 4 between B and the front bevel C adjacent to the connecting points of the adjacent convex tops are shown, and its supplementary angle is equal to 0.5°;
  • the included angle between them is as shown in the included angles ⁇ 5 and ⁇ 6 between the adjacent convex top connection points between the front bevel C and the adjacent front curved surface unit D in Figure 37, and its supplementary angle is equal to 0.5°
  • the angle between the parallel plane on the surface of the object and the adjacent front curved surface unit is as shown in Figure 38 between the parallel
  • “Surface unit” refers to the same surface with the same angle between the adjacent convex top lines on the surface as shown in ⁇ 9, ⁇ 10, ⁇ 11, ⁇ 12, ⁇ 13 in Figure 39,
  • the included angle of the same acute angle of the curved surface unit in this embodiment is equal to 0.5°, that is, ⁇ 9, ⁇ 10, ⁇ 11, ⁇ 12, and ⁇ 13 are equal to 179.5°;
  • the included angle between the adjacent convex vertices between, between the rear bevel and the adjacent front curved surface or rear curved surface or between the parallel surfaces, between the rear curved surface and the adjacent parallel surfaces is any value or an obtuse angle
  • the included angle is equal to 179.5°.
  • the relative velocity of the object in the air reaches or exceeds a certain value (the value of the object moving in the air is about 100km / hour), the friction force between all the head-on faces of the object and the air is zero, and when the air reaches the adjacent subsequent outer arc profile from the previous outer arc profile in the relative motion direction of the object, it is close to
  • a device for decelerating a relatively moving object in the air includes an inlet 9-3 located on the front surface of the device, and an inlet channel 9-1 with an opening facing forward .
  • the inflow channel 9-1 forms one or separates two or more bends at its rear end, and extends toward the front end of the device, and forms a return channel on the outer surface of the front end of the device with an opening facing the front discharge port 9-4 9-2, the diameter of the inlet port 9-3 and the inner diameter of the front section of the inlet channel 9-1 are greater than the inner diameter of the rear section of the inlet channel 9-1, and are larger than the inner diameter of the return channel 9-2 or several return channels 9-
  • the flow port 9-4 is respectively provided with a sliding type inlet cover 9-5 and a discharge port cover 9-6, and the sliding type cover is fixed on the inlet port and the discharge
  • the air inlet cover 9-5 and the discharge port cover 9-6 are opened, and the air in relative motion flows from the air inlet 9-3 After entering the inflow channel 9-1 and the return channel 9-2 in sequence, they are discharged from the discharge port 9-4 located at the front end of the object, generating forward reverse thrust. Due to the adoption of the surface structure described in Embodiment 8, it can be seen from the calculation and analysis of Embodiment 8 that when the moving speed of the object is relatively high, the inner walls of the inlet flow channel 9-1 and the return flow channel 9-2 are in contact with the air.
  • the frictional force is zero and the loss of impact force is very small, so the kinetic energy of the air is consumed very little.
  • the stagnation of air in the channel is very small, so the kinetic energy of the discharged air is relatively large, and the relative speed of the relative moving object It is close to proportional, so that a relatively large forward thrust that is close to proportional to the relative moving speed of the object is generated on the relatively moving object, so as to achieve relatively efficient deceleration of the object.
  • the deceleration is achieved by the air flow impacting the external air field, the deceleration effect is relatively efficient and gentle.
  • This embodiment shows that the spherical convex surface structure, especially the rotatable spherical convex surface structure of the plum blossom layout, the plum blossom supplementary layout, and the matrix supplementary layout, not only has the function of reducing drag and rectifying, but also has the controllability of increasing effective resistance and improving braking deceleration and safety effects.
  • a device that generates an upward biasing force on a relatively moving object in an air field includes a device body 10-1 and a fluid channel 10-2, and the outer surface of the device body 10-1 is in contact with the air
  • the fluid contact position and the inner wall surface of the fluid channel 10-2 have the surface structure described in Embodiment 8, and the lines connecting the convex tops of adjacent spherical convexes on the lower surface of the inner wall of the fluid channel 10-2 are parallel to each other, and Parallel to the relative movement direction of the object, the side surface is referred to as a parallel surface; the lines connecting the tops of adjacent spherical convexes on the upper surface are parallel or non-parallel to each other, but the lines adjacent to the tops of the adjacent
  • the angle values of the included angles in the same direction are equal, and are not parallel to the relative motion direction of the object, and the side surface is referred to as a slope; the acute angle of the slope relative to the parallel plane is 30°; the inflow
  • the fluid channel 10-2 When the device exerts an upward force on a relatively moving object or moving equipment on which the device is installed, the originally closed inlet cover 10-3 and outlet cover 10-4 are opened, and the air fluid enters and passes through
  • the fluid channel 10-2 generates an upward force perpendicular to the relative movement direction of the object or equipment on the relative moving object or equipment, and adjusts and controls the incoming fluid by adjusting and controlling the opening size of the inlet housing 10-3
  • the amount of air in the channel 10-2 is used to adjust and control the magnitude of the upward force.
  • the device in this embodiment can realize the effect of efficiently implementing upward direction change on the relatively moving object on which the device is installed. For example, if the device is installed on a car, it can provide an upward force for the car to reduce the friction between the car tires and the ground; if it is installed on an aircraft, it can provide an upward lift for the aircraft to take off or lift upward. The force of flight. Since the inner wall of the channel 10-2 of the device adopts the surface structure described in Embodiment 8, the energy consumption of the moving air fluid in the fluid channel 10-2 is very low, so the efficiency of the force converted to the inclined plane is relatively large. When the traveling speed of the automobile or aircraft is high, a large upward force can be generated; and when the channel inner wall of the device adopts a smooth surface, it is difficult to realize the upward deviation of the present embodiment due to the stagnation of air in the channel. Effect.
  • Embodiment 11 As shown in Figure 42, this embodiment is a corresponding device that changes the slope of the fluid channel 10-2 in embodiment 10 to the lower side and the parallel surface to the upper side; the device of this embodiment can realize the installation A relatively moving body with the device efficiently implements the effect of changing direction downwards. For example, when the speedboat's front part of the hull is in contact with water, when the speedboat is moving fast, the head of the speedboat will generate a large upward force due to the upward buoyancy of the water, resulting in a tendency to overturn, thereby increasing the driving speed of the speedboat. Difficulty, and limit the speedboat's maximum travel speed.
  • the device is installed on the speedboat and the bottom of the speedboat adopts a rotatable arc-convex surface structure, which can effectively prevent the speedboat from turning upside down without increasing or even reducing the energy consumption of the speedboat, thereby improving the stability and travel speed of the speedboat. aspects of performance.
  • Embodiment 12 As shown in Figure 43, in this embodiment, the fluid passage 10-2 in Embodiment 10 is arranged inside the hollow movable cylinder 10-5, and the movable cylinder 10-5 is set outside itself
  • the bearing 10-7 on the surface is embedded in the inside of the hollow fixed cylinder 10-6 whose inner diameter is slightly larger than the outer diameter of the movable cylinder 10-5 in a manner that can rotate around its own central axis.
  • the outer surface of movable cylinder 10-5 is covered with circular hoop gear 10-8, and circular hoop gear 10-8 is meshed with the circular gear of turning machine 10-9.
  • the hoop gear 10-8 is driven to rotate by manipulating the rotation of the turning machine 10-9, and the rotation angle value of the movable cylinder 10-5 is controlled by controlling the rotation angle value, thereby changing and controlling the orientation of the inner slope of the fluid channel 10-2 , to achieve the change and control of the lateral deviation direction of the relative moving object installed with the device.
  • the device can efficiently change the relative moving object installed with the device to any direction perpendicular to the direction of the object. Compared with being installed on, for example, an aircraft, efficient change and control of any direction perpendicular to the forward direction of the aircraft can be realized.
  • Embodiments 10, 11, and 12 illustrate: the spherical convex surface structure, especially the rotatable spherical convex surface structure of the plum blossom layout, the plum blossom supplementary layout, and the matrix supplementary layout, in addition to the effect of drag reduction and rectification, also has the ability to efficiently change or/and control relative motion The direction and attitude of the object's movement, and the effect of improving the control efficiency of the direction and attitude.
  • the fan blades are multiple blades with the same shape as shown in Figure 44 or single or multiple spirals as shown in Figure 45.
  • the two relatively large blade surfaces of the blade-shaped fan blade are curved surfaces that are parallel or nearly parallel to each other.
  • the thickness of the fan blade at a position closer to the rotation axis is slightly thicker than the thickness of the fan blade at a relatively far position; when the fan machine is working, the direction of rotation of the fan blade is perpendicular to the fan machine
  • the relative movement direction of the fluid relative to the fan in the fluid field, the relatively large blade surfaces of the blade-shaped fan blades or the blade surfaces of the helical fan blades are the angle of attack of the relative motion direction of the air and fluid when the fan machine rotates from the fan blades
  • the distance from the closest point to the farthest point from the rotation axis changes gradually from 150° to 180°, and the tangential angle of attack with the circle formed by the tail of the blade when the blade rotates is from the closest point to the farthest point from the blade to the rotation axis
  • the shape of the point changes gradually from 150° to 180°; the angle of attack between the fan blade and the relative motion direction of the air and the angle of attack with the rotating surface of the fan blade can be a fixed
  • the impact force of the air on the fan blade is weakened twice by the rotatable spherical convex of the quincunx arrangement on the horizontal slope and the longitudinal slope of the blade respectively, and the total ratio of the two weakenings is (sin 2 150° ⁇ sin 2 150° ⁇ Ftotal +sin 2 180° ⁇ sin 2 180° ⁇ Ftotal ) ⁇ 2 ⁇ Ftotal ⁇ 100% ⁇ 4.4%, and the force weakening ratio of the fan blade corresponding to the smooth surface is (sin150 ° ⁇ Ftotal +sin180° ⁇ Ftotal ) ⁇ 2 ⁇ Ftotal ⁇ 100% ⁇ 35%; obviously, the force of the fan blade of the fan machine in this embodiment is significantly smaller than that of the corresponding fan blade with a smooth surface.
  • the fan in this embodiment can be an active fan with a driving device, or a passive fan without a driving device.
  • a driving device or a passive fan without a driving device.
  • it is an active fan, because the resistance between it and the air is significantly lower than that of a fan with a smooth surface, its work efficiency on the air can be significantly improved; when it is a passive fan, the work done by the air Efficiency is also significantly improved.
  • an air pushing device includes a main channel 14-1 whose inner wall surface is the surface described in Embodiment 8, and the main channel 14-1 forms an opening facing forward on the outer surface of the front end of the device.
  • An inlet, a discharge port with an opening facing the rear is formed on the outer surface of the rear end of the device, or two or more inner walls are separated at the rear end of the main channel 14-1 as the branch drainage flow of the surface described in Embodiment 8 Road 14-3 and branch drainage channel 14-3 form a drainage port with an opening facing the rear at the rear end position of the device or on both sides of the rear end; the central axis position in the main channel 14-1 is provided with The active fan machine 14-2 of embodiment 13 fan machine.
  • the active fan 14-2 rotates to drive the air into the main channel 14-1 from the inlet at the front end of the device, and then flows along the main channel 14-1 or the branch discharge channel 14-3.
  • the exhaust port located at the rear end or both sides of the rear end of the push flow device flows and is discharged from the discharge port towards the rear, so as to realize the push flow of the air towards the rear end of the device; at the same time, the air is directed towards the front end of the device. thrust, so as to realize the backward push of the air, or the forward push of the device or the equipment installed with the device, so as to form an air push flow device or an air propulsion device.
  • the surface of the part where its outer surface is in contact with the external air is the surface described in Example 8. Since the main channel 14-1 and the branch discharge channel 14-3 of this embodiment adopt the surface of the embodiment 8 and the fan machine of the embodiment 13, referring to the force analysis of the embodiments 8 and 13, it can be concluded that , the propulsion efficiency of the device of this embodiment to air is significantly higher than that of the corresponding device with a smooth surface, so the thrust-to-weight ratio of the device of this embodiment as a propulsion device is significantly higher than that of the corresponding device with a smooth surface.
  • This embodiment illustrates that the spherical convex surface structure, especially the rotatable spherical convex surface structure of the quincunx layout, the quincunx supplementary layout, and the matrix supplementary layout, not only has the function of reducing drag and rectifying, but also has the function of improving the work efficiency of the fluid power device.
  • Embodiment 15 As shown in Figure 48, a balance device for countering the lateral tilt and lateral overturn of a relatively moving object in the air field, including inner walls parallel to each other, parallel to their central axis and the relative movement direction of the air flow
  • the rotation axis of the fan machine 15-3 is located at the central point of the inner wall of the two parallel circular planes of the circular inner chamber 15-2, and is fixed on one or both sides of the inner wall.
  • the fan blades of the fan machine 15-3 are two circular planes parallel to each other, and the tip part parallel to the circular inner cavity 15-2 and far from the rotating shaft is arc-shaped and vertically surrounded by the two circular planes.
  • the surfaces of the blades of the fan machine 15-3 and other parts of the device that are in contact with the relative moving air are the surfaces described in Embodiment 8.
  • the balance device is installed on the moving object or equipment or manufactured integrally with the moving object or equipment in such a way that the central axis of the linear channel 15-1 is parallel to the moving direction of the equipment.
  • the air enters from the front inlet port 15-4 of the balance device straight channel 15-1, flows through the straight channel and is discharged from the rear exhaust port 15-5 , the air produces a thrust to the fan blades of the fan machine 15-3, and when the fan blades of the fan machine 15-3 are pushed to rotate, the air in the circular inner cavity 15-2 is rotated together, and the fan machine 15-3 is connected with the circular inner cavity
  • the mutual influence of the air in interior 15-2 makes the two rotating speeds tend to be equal.
  • the air rotation of the fan machine 15-3 and the circular inner cavity 15-2 generates a corresponding angular momentum, and the angular momentum produces a counterbalancing force against the tendency of the moving object or equipment to tilt and turn sideways, so that all The moving object or equipment is relatively balanced.
  • the moving object or equipment is less likely to be tilted or turned sideways.
  • the linear channel 15-1, the inner wall of the circular inner cavity 15-2, and the surface of the fan blade adopt the surface described in embodiment 8, it can be seen from the force analysis of embodiment 8 that the linear channel, the circular inner cavity
  • the balance device with a relatively large surface area of the fan blade loses little air energy flowing through the linear passage 1 and the circular inner cavity 2 when the moving speed of the object is high, so that the kinetic energy conversion efficiency is higher.
  • the fan blade and the air in the circular inner cavity can rotate more efficiently and at high speed, and the corresponding angular momentum generated is also relatively high, so that relatively high balance force can be provided.
  • Fan machine 15-3 both can adopt above-mentioned passive fan machine, also can adopt active fan machine;
  • the driving device of the active fan is turned on, and the blade of the fan 15-3 rotates or the rotation speed increases, thereby generating the above-mentioned The counterbalancing force or said counterbalancing force rises.
  • the spherical convex surface structure especially the rotatable spherical convex surface structure of the plum blossom layout, the plum blossom supplementary layout, and the matrix supplementary layout, not only has the function of reducing drag and rectifying, but also has the function of providing an opposing side for relatively moving objects or equipment in the fluid field. The effect of the balance force on tilt and sideways rollover.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Prostheses (AREA)

Abstract

用于减阻/整流的物体表面结构、制备方法及装置,物体表面结构包括:物体的基础面,所述基础面上阵列分布有若干个弧面状凸起所形成的弧凸,弧凸为:基础面上凹坑内带有弧形表面的可转动物裸露于凹坑外部的弧面,构成可转动弧凸;或者为固定于基础面上的弧面形物件或者为与基础面一体化结构的弧形凸起部位,构成固定弧凸;布局有若干个所述弧凸的物体表面结构,构成弧凸表面结构。本发明可以降低采用所述表面结构物体在流体中做相对时与外部流体之间的阻力、摩擦力,减少所述物体表面的流体杂波、涡流、激波的量和作用力,从而提高其运动效率,降低对应行进设备的能耗,提高其行进效率、降低噪音、减小共振,提高对运动物体的可控性。

Description

用于减阻/整流的物体表面结构、制备方法及装置 技术领域
本发明涉及流体力学的减阻和整流领域,具体地说是一种用于减阻/整流的物体表面结构、制备方法及装置。
背景技术
为了减少外部环境流体(气流、水流等)对相对运动物体的阻力、相互摩擦力,目前所采用的方法是把物体表面处理得尽可能光滑,且尽可能呈流线形;为了减少高速运动物体的表面的流体杂波、涡流、激波及其作用力,目前采用的方法是把物体表面做成流线形状、乘波体形状等。但这些方法所达到的效果依然有限,特别是当物体的相对运动速度很大时,流体对物体的阻力特别彰显,涡流、激波尤为突出,能耗较大,比如,时速300km/h的高铁90%以上的动力用于对抗空气阻力。同样,物体的内表面也存在着对内部流体的阻力较大、杂波显著以及流体滞留明显的问题,目前减少该阻力及杂波和涡流所使用的方法也是采用光滑面,但效果也非常有限,并存在瓶颈。
另外,现有的诸多与流体相关的行进设备,如飞行器、船舶、潜水器以及各类车辆等所使用做工装置和控制装置,如推进装置、减速装置、姿态调控装置、平衡装置等,其在工作时动力转化效率不高,并依然会产生显著的噪音和震动,这是由于其内外部结构的缺陷所造成的。
发明内容
本发明为解决现有的问题,旨在提供一种用于减阻/整流的物体表面结构、制备方法及装置,以实现减小流体与流体之间相互阻力及对物体表面流体整流。为了达到上述目的,本发明采用的技术方案提供一种用于减小流体中相对运动物体与流体之间相互阻力以及对流体整流的物体表面结构,包括物体的基础面,所述基础面上阵列分布有若干个弧面状凸起所形成的弧凸,所述弧凸为:基础面上凹坑内带有弧形表面的可转动物裸露于凹坑外部的弧面,构成可转动弧凸;或者为固定于基础面上的弧面形物件或者为与基础面一体化结构的弧形凸起部位,构成固定弧凸。
在一些实施例中,基础面上阵列布局有若干个弧凸的物体的表面结构,构成弧凸表面结构;弧凸表面结构的基础面上的弧凸全部为可转动弧凸的弧凸表面结构,构成可转动弧凸表面结构;或全部为固定弧凸的弧凸表面结构,构成固定 弧凸表面结构,或既有可转动弧凸也有固定弧凸的弧凸表面结构,构成混合弧凸表面结构。
在一些实施例中,所述基础面为平整或/并光滑的面、或/并呈流线形,所述基础面为物体的内表面或者外表面,所述内表面或者外表面为镂空面或者非镂空面。
在一些实施例中,弧凸的外表面为密闭结构,内部为实心结构或者空心结构。
在一些实施例中,所述弧凸的外表面相对于基础面的最高点与基础面的相对高度相等,或相邻弧凸的所述相对高度的差相等,或并多个弧凸的所述最高点的连线为直线或曲线或呈流线形。
在一些实施例中,所述弧凸在基础面上呈矩阵式、梅花式、矩阵补充式、梅花补充式布局中的一种或组合;其中,所述矩阵布局指的是基础面上的每个弧凸既是每一列弧凸的单元也是每一行弧凸的单元,所述梅花布局指的偶数行上的弧凸与奇数行上的弧凸分别位于不同的弧凸列上,所述矩阵补充布局指的是在矩阵式布局的四个相邻弧凸之间再补充一个适配于所述相邻球凸之间基础面大小的弧凸,所述梅花补充布局指的是在梅花式布局的三个相邻弧凸之间再补充一个适配于所述相邻弧凸之间基础面大小的弧凸。
在一些实施例中,所述流体相对于物体的相对运动方向投影在所述物体的表面上形成的线与所述矩阵式、梅花式、矩阵补充式、梅花补充式布局的弧凸列相平行、与弧凸行相垂直;所述相对运动方向指的是单一方向运动的物体的相对运动方向或者多个方向运动的物体的多个相对运动方向产生的多个方向作用力的合力所指向的方向。
在一些实施例中,所述可转动物呈中心轴对称,所述可转动物的可转动方向为单一方向或多方向或任意方向,且所述转动方向与流体相对物体的运动方向一致;所述流体相对于物体的相对运动方向为权利要求7所述相对运动方向。在一些实施例中,所述可转动物的形状为正球体、或椭球体、或圆柱体、或圆柱体与球体的结合体、或圆锥体与球体的结合体、或圆锥体与圆柱体的结合体;所述凹坑的形状为,所述可转动物等比例放大后的空心结构被与凹坑所处的基础面相同形状的面切去一分部后剩余结构体的形状,或者内腔略微大于可转动物的其他空心状形状。
在一些实施例中,所述可转动物为以下方式约束在凹坑内、并可以转动:
(a)、所述凹坑的对外开口的口径小于可转动物的外径,或/并可转动物表面 和凹坑内壁光滑处理、或/并在可转动物的表面和凹坑的内壁表面上涂抹润滑剂,或/并在凹坑内坑壁上设置若干个支撑可转动物的支撑件;所述支撑件为固定在凹坑坑壁上不动的固定式凸起物或为设置在凹坑坑壁上的微型凹坑内的微型滚珠,或者为设置在凹坑内的轴承。
或(b)、在凹坑内以垂直于流体与物体的相对运动方向设置横杆,所述横杆为设置在经过凹坑中心轴、两端与凹坑坑壁相接触同时经过可转动物对称轴的一条长横杆,或者为位于可转动物与凹坑坑壁之间、且二者连线经过可转动物对称轴和凹坑的中心轴的两条短横杆;所述长横杆或短横杆的两端或者其中一端与凹坑坑壁或可转动物表面以可转动不可移动的方式接触。
或(c)、凹坑与可转动物之间形成磁悬浮相互作用力的结构关系,使可转动物悬浮于球坑内。
在一些实施例中,所述固定弧凸的形状为完整椭球体、完整圆柱体、圆柱体与球体的结合体、圆锥体与球体的结合体、圆锥体与圆柱体的结合体中的任一一种形状体被与所述固定弧凸所在基础面相同形状的面横切形成的二个结构体的任一一个结构体的形状。
在一些实施例中,所述可转动弧凸与固定弧凸在基础面上分块布局或者交叉混合布局,可转动弧凸占全部弧凸的比例大于0%小于100%。
本发明还提供一种可转动弧凸表面结构的制备方法,包括若干可选择的方法:
(a)方法,在所要制作可转动弧凸表面结构的目标物体表面按照预先设计确定的可转动物的规格、凹坑布局方式、凹坑规格和要求制作可转动物、凹坑,或同时制作凹坑内的限制机构并把限制机构安置在凹坑内的设定位置;把可转动物置放于凹坑内,可转动物被小于可转动物尺寸的凹坑坑口、或凹坑内的限制机构、或小尺寸坑口和坑内限制机构共同,限制于凹坑内并可以绕着所述可转动物的对称轴轻松转动,转动的方向与目标物体在流体中预定的行进方向相反或并相同,目标物的所述可转动弧凸表面结构制备完成;或采取一次性成型铸造法或3D打印法制备带有可转动弧凸表面结构的目标物体表面件。
或(b)方法,选择表面形状与目标物体所要覆盖的部位表面的形状及弧度一致、厚度等于或略微大于凹坑坑深的覆盖物,按照S1在覆盖物上制备一面带有可转动弧凸表面结构的覆盖物,把所述覆盖物无可转动弧凸的一面朝向目标物、有可转动弧凸的一面背向目标物覆盖在目标物体表面的对应部位并固定牢固,所述目标物的可转动弧凸表面结构则制作完成。
或(c)方法,在目标物体表面按设定的凹坑布局方式、凹坑规格和要求制作坑深小于设定坑深的凹坑、或同时制作限制机构并把限制机构设置在凹坑内;选择表面形状与目标物所要覆盖的部位表面的形状及弧度相一致的、厚度等于设定凹坑坑深减去目标物体上制作的凹坑坑深的差值,在所述覆盖物上制作贯穿覆盖物、在覆盖物两面均有凹坑开口且一面坑口的形状和尺寸与目标物上凹坑坑口形状和尺寸完全相同的凹坑,并所述凹坑与目标物体表面制作的凹坑合并一起形成的新凹坑的各项规格尺寸等于设定的凹坑规格尺寸,或同时制作覆盖物上凹坑内的限制机构并把限制机构设置在凹坑内;按设定尺寸和要求制作可转动物;把所述可转动物置于物体凹坑与覆盖物对应位置的凹坑之间,然后把覆盖物覆盖在目标物的设定部位,可转动物被限制在覆盖物凹坑与目标物凹坑合并形成的新凹坑内或新凹坑内的限制机构内,确定可转动物可以绕着所述可转动物的对称轴轻松转动后,把覆盖物与物体表面固定牢靠,所述目标物表面的可转动弧凸表面结构制作完成。
或(d)方法:选择二者厚度之和等于或略大于设定凹坑坑深、一侧表面形状与所要覆盖的目标物的目标部位的表面形状一致的覆盖物A和覆盖物B,分别在二者表面上按照设定的凹坑布局方式制作凹坑,且覆盖物A上的凹坑和覆盖物B上对应位置的凹坑合并在一起形成的新凹坑的规格尺寸等于设定凹坑的规格尺寸;或同时制作凹坑内的限制机构并把限制机构设置在凹坑内;按设定尺寸和要求制作可转动物;把所述可转动物置于覆盖物A凹坑与覆盖物A对应位置的凹坑之间,覆盖物A和覆盖物B合并在一起,可转动物被限制在覆盖物A凹坑与覆盖物B凹坑合并形成的新凹坑内或新凹坑内的限制机构内,确定可转动物可以绕着所述可转动物的对称轴轻松转动后,把二者固定牢靠;然后把合并后形成的带有可转动弧凸的新覆盖物、弧凸裸露高度等于设定高度的一面背朝目标物、覆盖在目标物的目标部位的表面,所述目标物体的可转动弧凸表面结构制作完成。
上述(b)方法、(c)方法、(d)方法中的覆盖物为设定的统一尺寸的覆盖物模块或者为针对目标物全部表面或者部分部位表面的针对性尺寸的覆盖物。在一些实施例中,所述固定式弧凸表面结构、混合式弧凸表面结构采用把所述对应弧凸直接制作在目标物体表面的方法或者制作在覆盖物表面然后把覆盖物覆盖在目标物体表面的方法制备。
本发明提供一种可降低流体场中相对运动物体与流体之间相对阻力以及对流 体整流的物体表面,所述表面为上述的梅花布局、梅花补充布局、矩阵补充布局的任一一种布局的可转动弧凸表面结构,或者为占比大于50%的梅花布局、梅花补充布局、矩阵补充布局的任一一种布局的可转动弧凸与梅花布局、梅花补充布局、矩阵补充布局的任一一种布局的固定弧凸的混合弧凸表面结构,并所述表面包括若干个平行面、斜面和曲面单元,沿着所述物体的相对运动方向的相邻弧凸的弧面相对于弧凸所在基础面的最高点的连线这里简称相邻凸顶连线;所述平行面指的是所述相邻凸顶连线相互平行、且平行于物体相对运动方向的面;所述斜面指的是所述相邻凸顶连线相互平行、且与物体相对运动方向不平行的面;所述曲面单元指的是所述相邻凸顶连线相互不平行且相邻相所述邻凸顶连线与物体相对运动方向的同向夹角相等的面;每个所述平行面、斜面、曲面上的弧凸数量大于等于10个,每个弧凸相对于弧凸所在基础面的最高点与基础面的相对高度大于0.0001m小于1m,每个所述面上的弧凸的形状、体积、表面积相等或者不相等;朝向流体相对运动方向的所述斜面与其相邻的所述曲面或平行面在相邻相连处的相邻所述相邻凸顶连线之间的锐角夹角大于0°小于5°;所述平行面与其相邻的被向流体相对运动方向的所述斜面或被向流体相对运动方向的所述曲面在相邻相连处的相邻所述相邻凸顶连线之间的锐角夹角大于0°小于5°;或并背向被向流体相对运动方向的所述斜面与被向流体相对运动方向的所述曲面在相邻相连处的相邻所述相邻凸顶连线之间的锐角夹角大于0°小于5°;所述曲面上相邻所述相邻凸顶连线之间的钝角夹角大于175°小于180°。
本发明还提供一种用于对流体中相对运动物体减速的装置,所述装置包括进流口位于所述装置前端表面的进流通道,所述进流通道在后端形成一条或者分出二条或多条弯曲并向所述装置前端延伸在所述装置前端外表面形成排流口的回流通道,所述进流口的口径和进流通道的前段内径大于所述进流通道后段内径,并大于回流通道的内径或若干个回流通道内径之和、大于排流口的口径或者若干个排流口口径之和;所述进流通道的进流口和回流通道的排流口分别设置有滑动式进流口外罩和排流口外罩,所述滑动式外罩以平行于所述装置外表面的方式固定于进流口和排流口处、并以滑行的方式打开或关闭;所述进流通道和回流通道的内壁表面为上述的物体表面;所述装置以进流口和排流口面朝流体相对运动方向的方式安装在物体或设备外部或与物体加工成一体化结构;当对相对运动的带有所述减速装置的相对运动物体或设备实施减速时,打开进 流口外罩和排流口外罩,相对运动的流体从进流口顺序进入进流通道和回流通道后从位于物体前端的排流口排出,排出的流体对相对运动物体产生向前的推力,实现前向运动的物体的柔性减速。
本发明还提供一种对流体中相对运动物体产生侧向偏离作用力的装置,包括装置的本体和流体通道,所述本体的外表面与流体接触的部位和流体通道的内壁表面为上述的物体表面,且所述流体通道内壁的一侧表面的相邻弧凸的凸顶连线相互平行且平行于所述物体相对运动方向,该侧面这里简称为平行面;所述平行面正对侧面的内壁表面的相邻弧凸的凸顶连线相互平行且与所述物体相对运动方向不平行,或相邻弧凸的凸顶连线相互不平行,该侧面这里简称为斜面;所述流体通道为横截面的面积在最前端面面积最大往后逐渐变小的形状;所述流体通道的进流口的面积大于排流口的面积,所述进流口和排流口处分别设置有滑动式进流口外罩和排流口外罩,所述滑动式外罩以平行于所述装置的外表面的方式固定于进流口和排流口处并以滑行的方式打开或关闭;
当所述装置对安装有所述装置的相对运动物体实施垂直于相对运动方向的侧向偏离行为时,原本关闭的进流外罩和排流外罩打开,流体进入并穿过流体通道产生朝向所述斜面一侧方向的偏离作用力,当所述偏离力达到和超过该方向反向的原先的作用力时,所述运动物体的运动方向朝着斜面所在的方向发生偏离;操控进流口外罩来调整和控制进流口开口的大小来调整控制进入流体通道内的流体量、实现对偏离作用力大小的调节和控制,从而实现对所述物体偏离速度的调整和控制;关闭进流口外罩和排流口外罩,所述偏离力消失,所述偏离行为终止;
所述斜面固定设置在本体的上方以为安装有所述装置的相对运动物体提供向上的偏离力,或者固定设置在本体的下方以为安装有所述装置的相对运动物体提供向下的偏离力,或者设置在空心的活动式圆柱体的内部,所述活动式圆柱体通过套在自身外表面上的轴承以可以围绕自身中心轴转动的方式内嵌于内径大于活动式圆柱体外径的空心的固定式圆柱体的内表面,套在活动式圆柱体外表面上的圆箍形齿轮与转机的圆形齿轮咬合;操作人员操作转机带动圆形齿轮转动,并通过改变和控制转动角度值来改变和控制活动式圆柱体的转动角度值,进而改变和控制流体通道斜面的朝向,达到对安装有所述装置的相对运动物体的侧向偏离方向的改变和控制;所述圆柱体活动式圆柱体和固定式圆柱体的内表面与相对运动流体接触的部位为上述的物体表面。
本发明还提供一种扇机,扇机的扇叶为形状相同的多个叶片的叶片状或为单个螺旋或多个螺旋的螺旋状,其中,所述叶片状扇叶的两个相对较大的叶面为相互平行或者接近平行的曲面,当为接近平行的曲面时,距离旋转轴较近位置的扇叶部位的厚度略厚于相对较远位置的扇叶部位的厚度;所述扇机工作时扇叶旋转的方向垂直于扇机所在流体场中的流体相对扇机的相对运动方向,叶片状扇叶相对较大的两个叶面或螺旋状扇叶的叶面为与扇机转动时空气相对运动方向的迎角从扇叶距离旋转轴最近点到最远点按照从135°逐渐增加至180°的方式变化并且与扇机旋转时扇叶尾部形成的圆面的切向的迎角从扇叶距离旋转轴最近点到最远点按照从135°逐渐增加至180°的方式变化的形状;所述扇叶与流体、与扇叶旋转面的迎角值为固定角度值或者为可以预先调节或实时调节的角度值;所述扇叶表面及扇机与流体接触的其他部位的表面为上述的物体表面,且所述表面上的可转动弧凸的可转动方向为多向或者任意方向;扇机为独立使用的被动扇机或者为与动力驱动装置相连结合使用的主动扇机。本发明还提供一种推流装置,包括主通道,所述主通道的内壁表面为上述的物体表面且所述主通道在所述装置的前端外表面形成开口朝向前方的进流口、在所述装置的后端外表面形成开口朝向后方的排流口,或者在主通道的后端分出二条或多条内壁如上述的物体表面的分支排流通道并所述分支排流通道在所述装置的后端位置或后端的两侧位置表面形成朝向后方的排流口;在主通道内的中心轴位置设置有如上述扇机的主动扇机;所述装置工作时,主动扇机转动带动流体从位于所述装置前端的进流口进入主通道后沿着主通道或分支排流通道向位于推流装置后端或后端两侧的排流口流动并从排流口排出,实现对流体朝向所述装置后端方向的推动,从而形成推流装置,同时产生对所述装置朝向装置前端方向的推力,实现对所述装置或者安装有所述装置的设备的前向推进,从而形成推进装置;当所述装置作为推进装置使用时,其外表面与外部流体接触的部位表面为上述的物体表面。
本发明还提供一种用于对抗流体场中相对运动物体侧向倾斜或侧向翻转的平衡装置,其特征在于,包括内壁相互平行且平行于自身中心轴并流体的相对运动方向的直线通道和由两个相互平行且平行于直线通道中心轴的圆形平面并包裹在所述圆形平面边缘一圈的圆弧面构成的圆形内腔,所述圆形内腔靠近外缘的一部分内腔与直线通道的一部分内腔重合于直线通道内腔的中间位置;圆形内腔设有扇机,所述扇机的旋转轴位于圆形内腔的两个相互平行的圆形平面 的内壁中心点位置并固定于一侧内壁或两侧内壁上;所述扇机的扇叶为相互平行且平行于圆形内腔的两个圆形平面并距离旋转轴远端的末梢部位为圆弧形的两个圆形平面以及包围在所述两个圆形平面边缘一圈的两个圆弧面围成的形状结构,所述扇叶旋转形成的平面平行于圆形内腔的圆形平面和直线通道的中心轴并扇叶靠近叶尾的一部分叶面经过直线通道;所述扇机为一个或多个,当为多个时,多个所述扇机的扇叶旋转形成的平面在同一个平面上;所述直线通道、圆形内腔、扇机扇叶及所述装置其他与外部相对运动流体接触的部位的表面为上述的物体表面;所述平衡装置以直线通道中心轴平行于设备运动方向的方式安装于运动设备上或者与所述设备制造成一体;当带有所述平衡装置的设备运动时,流体从所述平衡装置直线通道的前方入流口进入,流经直线通道从后方排流口排出,对扇机的扇叶产生推力,推动扇机扇叶转动的同时连带圆形内腔内的流体转动,同时扇机带动圆形内腔内的流体一起转动并相互影响使二者转速趋于相等,扇机和圆形内腔的流体旋转产生角动量,所述角动量对所述设备的侧向倾斜或翻转的趋势产生对抗的平衡力,使所述设备保持相对平衡;所述扇机为被动扇机或主动扇机。
和现有技术相比,本发明的物体表面采用弧凸结构,可以降低外部流体对相对运动物体的阻力、表面摩擦力,减少物体表面的流体杂波、涡流、激波及其作用力,从而提高运动效率,降低对应行进设备的能耗,提高行进效率以及降低噪音、减小共振,提高对运动物体的可控性。
物体表面采用固定式弧凸表面结构比物体纯粹采用光滑面的减阻、整流、降热效果好,比采用可转动弧凸表面结构的效果差,但固定式球凸结构的制造工艺比可转动球凸结构的制造工艺低、成本低,从成本和经济的角度考虑,在质量和效果要求不太高的情况下,可以采用固定式弧凸表面结构,或者采用固定式弧凸与可转动弧凸相结合的表面结构。
采用了上述结构的做工装置和控制装置,比如推进装置、减速装置、姿态调控装置、平衡装置等,由于流体的动能消耗更小、流体能量的利用率更高,对流体的作用效率更高、对流体的控制效率更高,所以做工效率更高、控制能力和控制精度更高。
附图说明
图1为球坑为完整空心正球体的一部分、坑内可转动物为完整正球体形状的可转动弧凸表面结构的示意图;
图2为矩阵布局的球形弧凸表面结构的示意图;
图3为梅花布局的球形弧凸表面结构的示意图;
图4为矩阵补充式布局的球形弧凸表面结构的示意图;
图5为梅花补充式布局的球形弧凸表面结构的示意图;
图6为用坑口半径小于圆球半径的球坑把圆球限制于球坑内的办法示意图;
图7为在球坑内壁设置滚珠来降低圆球转动阻力的办法示意图;
图8为在球坑内壁设置轴承来降低圆球转动阻力的办法示意图;
图9为采用贯穿圆球并经过球心的一条长横杆把圆球限制于球坑内的示意图;
图10为采用二条短横杆支撑于圆球外壁而把圆球限制于球坑内的示意图;
图11为凸起物为完整正球体一部分的固定弧凸表面结构示意图;
图12为带有矩阵布局球凸表面结构的物体在与相空气之间相对速度达到V1时,其表面与相对运动空气的接触面侧视图;
图13为带有矩阵布局球凸表面结构的物体在与相空气之间相对速度达到V1时,其平行面与相对运动空气的接触面的斜下视示意图;
图14为带有矩阵布局球凸表面结构的物体在与相空气之间相对速度达到V1时,其平行面与相对运动空气的接触面的垂直俯视图;
图15为带有矩阵补充式布局球凸表面的物体在与相空气之间相对速度达到V1时,其表面与相对运动空气的接触面的侧视图;
图16为带有矩阵补充布局球凸表面结构的物体在与相空气之间相对速度达到V1时,其平行面与相对运动空气的接触面的斜下视图;
图17为带有矩阵补充式布局球凸表面结构的物体在与相空气之间相对速度达到V1时,其平行面与相对运动空气的接触面的垂直俯视图;
图18为带有梅花布局球凸表面结构的物体在与相空气之间相对速度达到V2时,其表面与相对运动空气的接触面的侧视图;
图19为带有梅花布局球凸表面结构的物体在与相空气之间相对速度达到V2时,其平行面与相对运动空气的接触面的斜下视示意图;
图20为带有梅花布局球凸表面结构物体在与相空气之间相对速度达到V2时,其平行面与相对运动空气的接触面的垂直俯视图;
图21为带有梅花补充布局球凸表面结构的物体在与相空气之间相对速度达到V2时,其平行面与相对运动空气的接触面垂直俯视图;
图22为带有矩阵布局可转动球凸表面结构的物体的倾斜角为A的斜面上,球 凸在物体与空气之间相对速度小于V1的阶段,其与空气流体之间的相互作用力示意图;
图23为带有矩阵布局可转动球凸表面结构的物体的倾斜角为A的斜面上,球坑内圆球的转速变化以及圆球转速与相对运动空气流体的相对速度的相互关系图;
图24为带有矩阵布局的可转动球凸表面结构的物体的倾斜角为A的斜面上,球凸在所述物体与空气之间相对速度到达和超过V1的阶段,其与相对运动空气流体之间的相互作用力示意图;
图25为带有矩阵布局的可转动球凸表面结构的物体的斜面上的球凸,在所述物体与空气之间相对速度到达和超过V1的阶段,其与空气之间接触面示意图;
图26为带有梅花布局的可转动球凸表面结构的物体在斜面上的球凸,在所述物体与空气之间相对速度到达和超过V2的阶段,其与空气之间接触面示意图;
图27为凹坑形状为椭球体的一部分、坑内可转动物为完整椭球体形状的可转动弧凸表面结构的示意图;
图28为凹坑内可转动物为圆柱体形状的可转动弧凸表面结构的示意图;
图29为坑内可转动物为球体与圆柱体结合形状的可转动弧凸表面结构示意图;
图30为坑内可转动物为圆锥体与圆柱体结合状的可转动弧凸表面结构示意图;
图31为坑内可转动物为圆锥体与球体结合状的可转动弧凸表面结构的示意图;
图32A-32D为固定式弧凸表面结构的弧凸的各种形状的示意图;
图33为双层覆盖物合成一层覆盖物制作可转动球凸表面结构的方法示意图;
图34为在物体表面制作球坑、并覆盖一层覆盖物来制作可转动球凸表面结构的方法示意图;
图1-34中,1物体,2空气流体;11基础面,12凹坑,13可转动物,14滚珠,15轴承,16长横杆,17短横杆,18弧面形物件,19弧面形凸起部位;111矩阵布局球凸表面结构物体在其与空气流体之间相对速度达到V1时其平行面上的基础面与相对运动空气流体的接触面,112矩阵布局球凸表面结构物体在其与空气流体之间相对速度达到V1时其斜面上的基础面与相对运动空气流体的接触面,131矩阵布局球凸表面结构物体在其与空气流体之间相对速度达到V1时其平行面上的球凸与相对运动空气流体的接触面,132矩阵布局球凸表面结构物体在其与空气流体之间相对速度小于等于V1阶段其斜面上的球凸与相对运动空气流体的接触面,133矩阵补充式布局球凸表面结构物体在其与空气流 体之间相对速度达到V1时其平行面上的大球凸与相对运动空气流体的接触面,134矩阵补充式布局球凸表面结构物体在其与空气流体之间相对速度达到V1时其平行面上的小球凸与相对运动空气流体的接触面,135矩阵补充式布局球凸表面结构物体在其与空气流体之间相对速度小于等于V1阶段其斜面上的大球凸与相对运动空气流体的接触面,136矩阵补充式布局球凸表面结构物体在其与空气流体之间相对速度小于等于V1阶段其斜面上的小球凸与相对运动空气流体的接触面,137梅花布局球凸表面结构物体在其与空气流体之间相对速度达到V2时其平行上的球凸与相对运动空气流体的接触面,138梅花布局球凸表面结构物体在其与空气流体之间相对速度小于等于V2阶段其斜面上的球凸与相对运动空气流体的接触面。
图35-39为实施例8的示意图;图中,A面、E面为平行面,B面、C面为斜面,D面、F面为曲面单元;
图40为实施例9的示意图;图40中,9-1、进流通道,9-2、回流通道,9-3、进流口,9-4、排流口,9-5、进流口外罩,9-6、排流口外罩;
图41为实施例10装置的示意图;图42为实施例11装置的示意图;
图43为实施例12装置的示意图;图41-43中,10-1、本体,13-2、流体通道,13-3、进流口外罩,13-4、排流口外罩,13-5、活动式圆柱体,13-6、固定式圆柱体,13-7、轴承,13-8、圆箍形齿轮,13-9、转机;
图44为实施例13多扇叶的扇机示意图;
图45为实施例13单一螺旋扇叶的扇机的示意图;
图46为单一通道的实施例14空气推流装置的示意图;
图47为带有分支排流通道的实施例14空气推流装置的示意图;图46-47中,14-1、主通道;14-2、主动扇机;14-3、分支排流通道;
图48为实施例15平衡装置的示意图;图48中,15-1、直线通道;15-2、圆形内腔;15-3、扇机;15-4、进流口,15-5、排流口。
具体实施方式
实施例1如图1所示一种可转动弧凸表面结构,包括呈流线形的相对平整的物体1的基础面11,所述基础面11上以如图2所示的矩阵方式,或者以如图3所示的梅花方式紧密相邻布局有若干个弧凸,所述弧凸为被约束于基础面11上的、半径大小和相对于基础面11的坑深以及开口半径相同的正半球形凹坑12内的、可以以任意方向或单一方向转动的、半径小于正半球形凹坑12的半 径的、正球体形的、空心或实心圆球13裸露于球坑12外部的球面;这里把所述球面形弧凸简称球凸,半球形凹坑简称球坑12,所述可转动弧凸表面结构又称为可转动球凸表面结构;所述圆球13为以下若干种方式约束于球坑12内,不能逃脱并可以转动:
(1)如图6所示,让球坑12的坑口半径小于圆球半径且二者差值超过一定数值,或圆球13的表面和球坑12的内壁光滑处理、或在圆球13和球坑12的表面涂抹润滑剂,或在球坑12内壁上设置若干个支撑圆球的凸起物14;所述凸起物14为固定在球坑12坑壁上凸起物或为如图7所示设置在球坑12坑壁上微型凹坑内一部分珠身裸露于微型凹坑外面,并与圆球表面相接触的微型滚珠,或者为如图8所示设置在球坑12内轴承15上的滚珠;该约束方法可以使圆球13绕着自身做任意方向的转动。
(2)在球坑12内设置限制机构。参见图9,比如在球坑12内以垂直于流体2与物体1的相对运动方向设置横杆,所述横杆为经过球坑12中心轴、两端与球坑12的坑壁相接触、同时经过圆球13对称轴的一条长横杆16。参见图10,或者为位于圆球13与球坑12坑壁之间、且二者连线经过圆球13的对称轴和球坑12的中心轴的两条短横杆17;所述长横杆16或短横杆17的两端或者其中一端与球坑12坑壁或/并圆球13表面以可转动、不可移动的方式接触;该限制方法使圆球13只能绕着横杆所在的直线做单方向转动。
(3)、球坑与圆球13之间形成磁悬浮相互作用力的结构关系,使圆球13悬浮于球坑内;该限制方法不仅可以实现圆球13在球坑12内绕着自身做任意方向转动,还可以最大限度减小圆球13与球坑12坑壁或坑内结构物的摩擦力。
实施例2如图11所示,一种固定弧凸表面结构,包括物体1的呈流线形的相对平整的基础面11,以及所述基础面11上的固定弧凸;所述弧凸为以矩阵方式或梅花方式紧密相邻布局的半球体形的不可移动、不可转动的弧面形物件18,或者为以矩阵或梅花方式出现在基础面11上的、与基础面11为一体化的、半球形的基础面凸起部19,所述固定弧凸表面结构又称为固定球凸表面结构。
实施例3一种混合弧凸表面结构,包括物体1的呈流线形的相对平整的基础面11,所述基础面11上以矩阵或梅花方式紧密相邻布局有实施例1所述的可转动球凸和实施例2的固定式球凸,混合弧凸表面结构又称为混合球凸表面结构。
实施例1-3中所述的“矩阵布局”指的是每个弧凸既是每一列弧凸的单元也是每一行弧凸的单元;所述的“梅花布局”指的是偶数行上的弧凸与奇数行上的 弧凸分别位于不同的弧凸列上;这里所述的“列”指的是平行于物体与流体的相对运动方向的线;所述的“行”指的是垂直于物体与流体的相对运动方向的线。实施例1-3的球凸还可以用图4所示的矩阵补充法或图5所示的梅花补充法布局在基础面11上;所述“矩阵补充布局”指的是在矩阵式布局的四个相邻弧凸之间再补充一个适配于所述相邻球凸之间基础面大小的弧凸,所述“梅花补充布局”指的是在梅花式布局的三个相邻弧凸之间再补充一个适配于所述相邻球凸之间基础面大小的弧凸。
实施例1-3球体表面结构的平行面或者斜面上的球凸的外表面相对于基础面11的最高点与基础面11的相对高度相等,曲面单元上的相邻球凸的球凸面的最高点相对于基础面11的相对高度差相等,并沿着物体相对运动方向的相邻球凸的球面相对于球凸所在基础面的最高点的连线简称相邻凸顶连线,同一列上的所述相邻凸顶连线在同一条直线或曲线上且所述直线与所述曲线的连线呈流线形。这里的“平行面”指的是所述面上的球凸的相邻凸顶连线相互平行且平行于物体相对流体的运动方向,“斜面”指的是所述面上的球凸的相邻凸顶连线相互平行且与物体相对流体的运动方向不平行;所述“曲面单元”指的是所述面上的球凸的相邻凸顶连线相互不平行且相邻所述邻凸顶连线与物体相对流体的运动方向的同向夹角相等。
实施例1-3的表面结构统称为球凸表面结构,采用实施例1-3球凸表面结构的物体在流体中做相对运动时,受到所述流体的阻力小于或者显著小于表面采用光滑面结构的物体在流体中做相对运动所受到的流体阻力,以物体在空气流体中做相对运动为例的原理说明如下:
一、平行面。如图12并结合图13-14所示,带有矩阵式布局球凸表面结构的物体在平行面上的后行球凸被处在所述物体相对运动方向上的前行球凸全部遮挡,随着物体相对运动速度的不断增加,在惯性的作用下,外部空气流体粒子越来越难以到达所述前行球凸和后行球凸之间的低洼区域。当所述相对运动速度达到和超过一定数值V 1(V 1是很多运动设备和交通工具正常运转或者正常行驶时的速度,且当球凸表面结构为可转动球凸时,V 1小于等于可转动球凸表面结构中球坑12内圆球13的可转动速度的上限)时,所述物体的平行面与外部相对运动空气流体的接触面为:经过平行面的基础面上的球凸面上距离基础面相对最远的点、且垂直于物体相对运动方向的、两端到达物体基础面的弧线线段131和位于相邻球凸底部之间、宽度等于固定式球凸表面结构的相邻球 凸的间距或者等于可转动球凸表面结构的同一行相邻球坑的间距、长度等于平行面在运动方向上的长度的长方形基础面111。由于球凸在基础面上紧密相挨布局,所以长方形基础面111的宽度很窄,面积相对很小,进而所述面积占基础面面积的比例很小;弧线线段131仅为一条线段,故面积更小。所以,此时所述矩阵布局球凸表面结构物体的平行面与外部相对运动空气流体的接触面远小于采用平滑表面结构的物体所述平行面。
在速度从零到V 1的阶段,所述物体平行面上的球凸与外部空气流体的接触面,从球凸外露面的全部前半部面逐渐缩小成弧线线段131,外部空气流体与基础面的接触面从球凸之间的全部基础面而逐渐缩小成长方形基础面上111。该阶段为运动设备或者交通工具的启动阶段,为非正常工作阶段,时间相对较短;达到V 1和超过并保持V 1速度运转的阶段为正常工作时间,时间相对较长。如图15并结合图16-17所示,带有矩阵补充式布局的球凸表面结构的物体在相对运动速度达到和超过V 1时,物体平行面与外部相对运动空气流体的接触面为:经过平行面的基础面的大球凸面上距离基础面相对最远的点、且垂直于物体相对运动方向的两端未到达物体基础面的弧线线段133和经过小球凸面上距离基础面相对最远的点、且垂直于物体相对运动方向的两端未到达物体基础面的弧线线段134,所述弧线线段133与弧线线段134之和远小于采用平滑表面结构的物体所述平行面。
如图18并结合图19-20所示,带有梅花式布局的球凸式表面结构的物体,其平行于物体与流体的相对运动的平行面上的前方奇数行球凸,处在物体相对运动方向上的后方奇数行球凸的正前方,同时又处在物体相对运动方向上的后方偶数行球凸的同行相邻球凸之间低洼区域中间点的正上方;前方偶数行的球凸处在物体相对运动方向上的后方偶数行球凸的正前方,同时又处在物体相对运动方向上的后方奇数行球凸的同来相邻球凸之间低洼区域中间点的正上方;导致后行球凸的前方表面被前行球凸全部遮挡,且距离基础面较近的部位球凸肩部被前行球凸遮挡。
在惯性的作用下,当物体的相对运动速度达到和超过一定数值V 2(V 2≈V 1,V 2>V 1,且当球凸表面结构为可转动球凸时,V 2小于等于可转动球凸表面结构中球坑12内圆球13的可转动速度的上限)时,物体平行面与相对运动的外部空气流体与的接触面为:经过平行面的基础面上的球凸面上,距离基础面相对最远的点、且垂直于物体相对运动方向的、两端未到达物体基础面的弧线线 段137,弧线线段137远小于采用平滑表面结构的物体所述平行面。
所述物体相对运动速度从零到V 2的阶段,其平行面上球凸与外部空气流体的接触面从球凸外露面前半部面的全部面逐渐缩小成弧线线段137,该阶段为运动设备或者交通工具的启动阶段,为非正常工作阶段,时间相对较短;而达到V 2和超过并保持V 2速度运转的阶段为正常工作时间,时间相对较长。
如图21所示,采用在梅花补充式布局的球凸表面结构,由于补充的小球凸相对于基础面的相对高度比大球凸低,所以在所述相对运动速度达到和超过一定数值V 2时,外部相对运动空气流体无法接触到小球凸的面,故所述物体的平行面与外部空气流体的接触面仍然为弧线线段137。所述小球凸仅在物体速度从零到V 2的阶段,起到加快外部空气流体与其平行面接触的减少速度的作用。由于摩擦力的大小与接触面的大小成正比,所以带有矩阵布局、梅花布局、矩阵布局式、梅花补充式布局的球凸表面结构的物体在与空气流体之间的相对运动的速度达到和超过一定数值时,其平行面与空气流体之间的摩擦力相对采用平滑表面结构的平行面与空气流体之间的摩擦力显著减小。其中可转动球凸表面结构受到的空气阻力小于同等布局、同等规格的混合球凸表面结构,混合球凸表面结构受到的空气阻力小于同等布局、同等规格的固定球凸表面结构。梅花布局、梅花补充布局、矩阵补充布局的可转动球凸表面结构的物体平行面在所述物体达到一定相对速度值时,其与外部空气流体之间的相互阻力(即摩擦力)会减小为零。
二、前斜面。如图12所示,带有矩阵式布局的球凸式表面结构的物体的前部斜面上的后一行球凸靠近基础面的部位被物体相对运动方向上前一行球凸部分遮挡,在惯性的作用下,当矩阵式布局的球凸式表面结构物体的相对运动速度达到V 3(V 3<V 1)时,相对运动的空气流体只能接触到球凸的上面一部分面,球凸上的接触面的弦线长度与前斜面倾斜角的余弦值成正比,球凸上的接触面为球凸外露面前部的横向弧线线段、后部的横向弧线线段、球凸左右两侧与基础面相接触的两条纵向弧线线段围成的球面132;在所述相对运动速度达到V 1之前,随着物体的相对运动速度的增加,外部相对运动空气流体与球凸的接触面从球凸外露面迎着空气流体运动方向的前面全部球凸面逐渐缩小成所述球面132,并所述球面132继续缩小,直至缩小成球凸面上的的一条弧线;与基础面的接触面从球凸之间的全部基础面逐渐缩小,直至缩小成位于固定式球凸表面结构的相邻球凸底部之间或者位于可转动球凸表面结构相邻球坑之 间、宽度等于固定式球凸表面结构的相邻球凸底部之间,或位于可转动球凸表面结构相邻球坑之间的间距、长度等于斜面在运动方向上的长度的长方形基础面112。
同理,如图15所示,带有矩阵补充式布局的球凸式表面结构的物体在相对运动速度达到V 4(V 4<V 1)时,其前斜面与外部空气流体的接触面为:由大球凸外露面前部横向弧线线段、后部横向弧线线段、左右腰部两条纵向弧线线段所围成的球面135,和小球凸外露面前部的横向弧线线段、后部的横向弧线线段、左右腰部的两条纵向弧线线段围成的球面136。
如图18所示,带有梅花布局的球凸式表面结构的物体的前斜面表面上的球凸中,后一行球凸的正中间靠近基础面的部位、两侧靠近基础面的部位被物体相对运动方向上被前一行球凸遮挡;遮挡面弦线的长度与前斜面倾斜角的余弦值成正比。当所述带有梅花布局的球凸式表面结构的物体相对外部空气流体的相对运动速度达到V 5(V 5<V 2)时,在惯性的作用下,物体前斜面与外部相对运动空气流体的接触面为:由位于球凸外露面的前部横向弧线线段、后部横向弧线线段、左右腰部两条纵向弧线线段围成的球面138。在相对运动速度达到V 2之前,随着物体的相对运动速度的增加,外部相对运动空气流体与球凸的接触面从球凸外露面迎着空气流体运动方向的前部全部球凸面和球凸之间的基础面,逐渐缩小成球面138并所述球面138继续缩小,直至缩小成球凸面上的一条弧线。
当前斜面与物体相对运动方向的锐角夹角相对较小时,梅花补充式布局的球凸式表面结构物体相对外部空气流体的相对运动速度达到V 5时,其前斜面与相对运动空气流体的接触面仍然为所述球面138,当斜面锐角夹角逐渐增大时,相对运动空气流体会逐渐同时接触到大球凸外露球凸面和小球凸外露球凸面以及球凸之间的基础面并继续增大直至接触前斜面所有部位面。当物体前斜面的迎角在0°<a<45°、135°<a<225°、315°<a<360°范围时,矩阵布局、梅花布局、矩阵补充布局、梅花补充布局的球体表面结构的物体在速度达到一定数值时,物体前斜面与相对运动空气流体的接触面及对应的摩擦力小于采用平滑表面的所述倾斜面,其中,可转动球凸表面结构物体前斜面受到空气流体的摩擦力小于混合球凸表面结构,混合球凸表面结构物体前斜面受到空气流体的摩擦力小于固定球凸表面结构的。相对运动空气流体从物体的外部或从迎角为0°≤a<45°、135°<a<225°、315°<a≤360°前斜面到达迎角为 45°≤a≤135°、225°≤a≤315°的前斜面再行向迎角为0°≤a<45°、135°<a<225°、315°<a≤360°的前斜面或平行面或后斜面,会出现空气流体排出速度小于滞留速度的现象,导致空气流体在斜面上积累,从而,当物体前斜面的迎角在45°≤a≤135°、225°≤a≤315°范围时,固定式球凸表面结构不再发挥减阻效果;而可转动球凸表面结构由于具有一定的化解空气流体滞留的能力,所以仍然发挥一定的减阻效果,但减阻效果会随着斜面的迎角在45°≤a≤135°、225°≤a≤315°范围内变大而逐渐下降,直至消失。
另外,可转动球凸表面结构在具有比固定式球凸表面结构更显著减小摩擦力的同时,还具有减少相对运动空气流体对所述前斜面冲击力的作用。如图22所示,矩阵式布局的可转动球凸表面结构物体在其与外部空气流体的相对运动速度小于等于V 1(V 1小于圆球13的可转动速度的上限)阶段,相对运动空气流体与物体前斜面上的球凸接触面132上的任意一接触点的作用力F可以分解为:沿着所述接触点的球凸切线、并方向与空气流体相对运动方向相同的作用力F1,和垂直于所述切线且方向朝向物体方向的作用力F2。进一步地,F1又可以分解为:与空气流体相对运动方向相同的作用力F3和垂直于外部空气流体相对运动方向且背离物体方向的作用力F4;F2又可以分解为:与空气流体相对运动方向相同的作用力F5和垂直于外部空气流体相对运动方向且朝向物体方向的作用力F6。其中,作用力F4与F6的方向相反、大小相同,相互平衡抵消;作用力F3与F5的方向相同,相互叠加,叠加的结果等于F,具体为F3=cos 2(a)×F,F5=sin 2(a)×F,F3+F5=(cos 2(a)+sin 2(a))×F=F,其中,0<a<A,a为空气流体与球凸面的夹角,A为前斜面与物体相对运动方向的夹角;在所述物体相对运动速度小于V 1阶段,并a和A取锐角时,a<A。
如图23所示,在相对运动空气流体的推动下,球坑内圆球的转速不断增大,当空气流体与矩阵布局的可转动球凸表面结构物体的相对运动速度为V 空气,物体前斜面上的球坑内圆球的转速达到V =V 空气÷cos(a)时,圆球转速V 在空气流体相对运动方向的相同方向上的分速度V 球1与空气流体相对物体的运动速度相等——此时相对运动的空气流体粒子与圆球的所述接触点在空气流体的相对运动方向上相互静止,二者之间在空气流体相对运动方向上的相互力为零,外部相对空气流体在所述接触点对所述物体的作用力F3为零,也就相当于F3此时全部被转化为圆球的转动力;此时,外部相对空气流体在所述 接触点对所述物体的作用力只剩下F5,F5=sin 2(a)×F。
如图24所示,当所述矩阵布局的可转动球凸表面结构物体的相对运动速度大于等于V 1时,所述物体的前斜面与相对运动空气流体的接触面为如图25所示的、经过圆球外露面正中心点O、垂直于相对运动方向的横向弧线L 1。此时,a=A(A为前斜面与物体相对运动方向的夹角)、F5=sin 2(A)×F;此时,所述接触面弧线L 1上的面对相对运动空气流体的向外反弹力F4等于相对运动空气流体向物体所在方向对弧线上的接触点的冲击力F6,大于球凸接触面132上除弧线L 1以外的其他所有部位接触点的冲击力F6,从而使得奔向原接触面132的空气流体粒子均被阻挡在如图25所示的垂直弧线L 1的所有切线形成的面以外。此时,带有矩阵布局可转动球凸表面结构的物体在斜面上的阻力只剩下弧线L 1上数值等于sin 2(A)×F的F5冲击力和长方向基础面112的摩擦力。同理,当带有梅花布局的可转动球凸表面结构的物体的速度大于等于V 2、并在该速度范围持续一定时间后,奔向梅花布局可转动球凸结构物体斜面上的原接触面138的空气流体粒子均被阻挡在如图26所示的经过圆球外露面正中心点的、垂直于相对运动方向的横向弧线L 2以外。此时,其斜面上的相对阻力只剩下弧线L 2上的冲击力数值等于sin 2(A)×F的F5,由于互为补角的正弦值相等,所以F5又等于迎角正弦值的平方。
比如,前斜面迎角为150°的列车,在正常行驶速度下,采用矩阵补充布局或梅花布局或梅花补充布局的可转动球凸表面结构的前斜面受到的空气冲击力为sin 2150°×F=sin 230°×F=0.25F,而采用光滑面受到的空气冲击力为sin150°×F=sin 230°×F=0.5F。
综上所述,空气流体场中作相对运动的球凸表面结构的物体,在其相对运动速度满足一定条件下,其平行面上和前斜面受到的空气阻力均小于采用平滑面表面结构的所述物体。其中,可转动球凸表面结构的减阻效果优于固定式球凸表面结构,而梅花布局、矩阵补充布局、梅花补充布局的可转动球凸表面结构的减阻效果优于矩阵布局的可转动球凸表面结构。
另外,对于可转动球凸表面结构来说,球坑内圆球的最大可转动速度限制着所述结构物体的最大减阻效果的速度上限值,通过降低圆球质量、或/并对球坑和圆球表面光滑处理、或/并在球坑内涂抹润滑剂、或/并设置小球凸或滚珠、或/并把球坑与圆球制作成磁悬浮系统结构的方法,可以降低圆球与球坑之间的相互阻力,从而提高圆球的最大可转动速度。
另外,球坑内的空气流体状态也是影响圆球最大可转动速度的因素之一。平行面上以及与相对运动方向的夹角在0°≤a<45°、135°<a<225°、315°<a≤360°范围的前斜面上的可转动球凸,在无润滑剂涂抹或者涂抹后,球坑与圆球之间仍然存有间隙的球坑内的转动的圆球;一方面会把球坑内的空气从球坑坑口的前部推出,另一方面会把一定量的空气从球坑后部入口带入球坑。当圆球转动速度不高时,进入球坑内的空气和带出球坑内的空气接近相等,球坑内的空气量相对稳定;当圆球转速越来越高时,首先,由于球坑入口缝隙狭小,坑口对圆球表面的空气阻力越来越大、圆球表面的空气越来越松动和膨胀,从而越来越多的空气在进入球坑时被坑口从圆球表面剥离掉,使得进入球坑的空气越来越少;其次,随着圆球转速的增加,越来越多的依附在圆球表面的空气在未到达球坑入口之前就被甩掉,从而进入球坑的空气越来越少;而圆球转出球坑时始终会把球坑内的空气带走,如此球坑内的空气密度呈现持续下降的趋势。其中可转动球凸表面结构为矩阵布局时,空气始终可以通过其球坑开口处的基础面111或112进入球坑对球坑的空气进行补给,但随着经过基础面上方的空气流随着物体相对运动速度的增加而增加,向球坑内补给的空气量会越来越少,再加上因圆球转动而导致球坑内空气持续减少的因素,致使矩阵布局可转动球凸表面结构物体表面的球坑内的空气密度持续下降,但始终不会出现真空状态,而是始终处于相对低密度空气的状态。而当可转动球凸表面结构为梅花布局、梅花补充布局,并当所述物体相对外部空气的相对运动速度大于等于V 2时,当可转动球凸表面结构为矩阵补充布局,并且当所述物体相对外部空气的相对运动速度大于等于V 1时,空气不再能够接触到基础面,所以无法通过球坑开口进入球坑,从而球坑内的空气会逐渐流失殆尽变为真空状态,从而让圆球在真空状态下接近零阻力转动,故圆球的最大转速理论上可以实现无穷大。
三、相邻面、曲面、通道内表面。与物体相对运动方向的夹角不同的物体表面的相邻面之间存在着一定的夹角,所述夹角为相邻面上的弧凸相对基础面的最高点连线与物体的相对运动方向的夹角。曲面上的弧凸相对基础面的最高点连线也存在一定的夹角,所述夹角可以看作若干个相邻面的夹角。流体场中,流体从相对运动物体的一个面的相对上空进入另一个面的相对上空时,所述夹角的锐角越大,流体对流体场的扰动越大,其对物体表面附近的流体造成的扰动越小,产生的杂波、涡流以及激波越少、波的能量越小,反之越小。对于外侧为开放空间的外表面来说,所述扰动产生的能量波主要朝着远离物体表面的方 向传播,并趋于衰减、衰减速度相对较快;对于表面外侧为相对封闭空间的内表面比如管道内壁来说,所述扰动产生的能量波会作用到通道的所有内壁上,且在通道内的衰减速度相对较慢;对于内表面为梅花布局、或矩阵补充布局、或梅花补充布局的可转动球凸表面结构的通道,其内表面所受到的力为sin 2(θ)×F(其中θ为通道内表面的所述相邻面的夹角,F为流体垂直作用于物体表面的力)。在通道内表面上的可转动球凸足够多、并所述相邻面的锐角夹角相对较小的情况下,通道内壁所受到的力只与相邻面以及曲面上相邻所述相邻球凸的凸顶连线的夹角有关,与通道的曲率和弯曲程度无关。相邻面受力状况的举例计算参见实施例8。
四、后斜面、后曲面。从流体场中作相对运动的物体的整个受力体系的角度看,即使物体在相对运动速度较高时后面出现空气稀薄区或相对真空区,其后斜面、后曲面的形状以及其与相对运动方向的夹角大小对相对运动物体阻力的影响都极为微弱,可以忽略不计;但弧凸表面结构物体的后斜面、后曲面与相邻面之间的相邻所述相邻凸顶连线的夹角大小影响着物体后部表面附近空气波的状态,所述夹角的锐角夹角越小,所述物体表面附近的空气杂波、涡流、激波越少,空气波的能量越小、扰动能越小,反之越大。所以,球凸表面结构物体的后斜面、后曲面虽然不具有减阻作用,但在后斜面、后曲面与相邻面的相邻所述锐角夹角较小时,具有整流作用。
五、动态面。动态面指的是与流体之间的相对运动方向的夹角随着时间或/并物体位移位置的变化而变化的物体表面。带有动态面的球凸表面结构物体的表面受到的摩擦力与球凸布局有关,梅花布局、梅花补充布局、矩阵补充布局的可转动球凸表面结构物体表面受到的摩擦力在所述物体的相对运动速度达到一定数值时趋于零;有动态面的可转动球凸表面结构物体的表面受到的流体冲击力与动态面与流体之间的相对运动方向的动态夹角角变量值有的正弦值的平方成正比。
六、多方向运动面。多方向运动指的是物体相对于流体作两个或两个以上的方向或/并形式的运动,这种情况下,球凸表面结构物体表面所受到的摩擦力与单向运动物体相同,参见上面的描述;可转动球凸表面结构物体表面所受冲击力的大小与:流体与所述物体之间的横向运动方向的夹角的正弦值的平方、纵行运动方向的夹角的正弦值的平方成正比。多方向运动物体表面受力状况的举例计算参见实施例13。
由上可知,空气流体场中作相对运动的可转动球凸表面结构的物体,在其相对运动速度满足一定条件下,其曲面、相邻面、通道内壁表面在满足一定条件时,相对于光滑面物体,其与流体之间的相互摩擦力、冲击力显著减小或者消失,由摩擦力和冲击力产生的杂波、涡流、激波相应减少、减小或者消失,从而相对于光滑面,空气流体得以整流,由此带来的噪音和自震得以降低。
需要说明的是,弧凸表面结构,特别是可转动弧凸表面结构适用于相对运动速度较大的物体在流体场中减阻,不适用于相对运动速度较小的物体。因为相对速度较低时,其减阻无法发挥出来;另一方面,弧凸表面结构特别是可转动弧凸表面结构更适用于表面面积相对较大的物体在流体场中减阻,不适用于表面面积相对较小的物体,因为表面面积越小,越难以在所述表面上制作出满足一定数量并满足一定尺寸要求的弧凸。当弧凸的数量相对较少时,流体在弧凸面上难以形成线性流层;当弧凸体积相对较小时,弧凸相对于基础面的相对高度会小于物体所在流体场的流体粒子自身的微观活动半径,相对运动的流体粒子就依然会始终与基础面接触,从而失去减阻效果;而且,尺寸太小的可转动物和凹坑之间的尺寸差值更小,不仅所述球坑和圆球更难制作,而且可转动物更难以被限制在凹坑内不脱落或者无法正常转动,从而降低或者失去减阻效果。
实施例1、3中的可转动球凸表面结构的圆球可以替换为如图27所示的椭球体,或如图28所示的圆柱体,或如图29所示的圆柱体与球体的结合体,或如图30所示的圆锥体与球体的结合体,或如图31所示的圆锥体与圆柱体的结合体形状的带有弧面的可转动物。球坑12对应替换为所述可转动物等比例放大后的空心结构被平行于该结构中心轴的平面切去一分部后剩余结构的形状,或者内腔略微大于可转动物的正方体形状或其他空心状形状;实施例2、3中的固定式球凸表面结构基础面上的球凸可以替换为如图32A、32B、32C、32D、32E中所示的完整椭球体、完整圆柱体、圆柱体与球体的结合体、圆锥体与球体的结合体、圆锥体与圆柱体的结合体中的任一一种形状体被固定球凸所在的基础面形状的面横切后剩余的结构形状;同样具有对应减小流体中相对运动物体与流体之间相对阻力和流体整流的作用,以满足不同减阻整流要求、不同做工要求、物体不同部位或不同应用环境的需求。
实施例4一种可转动球凸表面结构的制备方法:在所要制作可转动球凸表面结构的目标物体表面上,按预先设计确定的圆球的规格、球坑布局方式、球坑规格和要求制作圆球和球坑,或、或同时制作球坑内的限制机构并把限制机构安 置在球坑内的设定位置;把圆球置放于球坑内,圆球被小于圆球尺寸的球坑坑口、或球坑内的限制机构、或小尺寸坑口和坑内限制机构共同,限制于球坑内并可以绕着所述圆球的对称轴轻松转动,转动的方向与目标物体在流体中预定的行进方向相反或相同;制备工作完成。
实施例5一种可转动球凸表面结构的制备方法:选择表面形状与目标物体所要覆盖的部位表面的形状及弧度一致、厚度等于或略微大于球坑坑深的覆盖物,按照实施例4的制备方法在覆盖物上制备一面带有可转动球凸表面结构的覆盖物,把所述覆盖物无可转动球凸的一面朝向目标物、有可转动球凸的一面背向目标物、覆盖在目标物体表面的对应部位并固定牢固;制备工作完成。
实施例6一种可转动球凸表面结构的制备方法:设计确定的圆球的规格、球坑布局方式、球坑规格;然后,如图33所示,选择二者厚度之和等于或略大于设定球坑坑深的覆盖物A和覆盖物B,其中,覆盖物A的一侧表面形状与所要覆盖的目标物的目标部位的表面形状一致;分别在覆盖物A和覆盖物B的表面上按照设定的球坑布局方式制作球坑,制作的球坑满足:覆盖物A上的球坑和覆盖物B上对应位置的球坑合并在一起形成的新球坑的规格尺寸等于设定球坑的规格尺寸的条件;或同时制作球坑内的限制机构,并把限制机构设置在球坑内;按设定尺寸和要求制作圆球;把所述圆球置于覆盖物A球坑与覆盖物A对应位置的球坑之间,将覆盖物A和覆盖物B合并在一起,圆球被限制在覆盖物A球坑与覆盖物B球坑合并形成的新球坑内或新球坑内的限制机构内。在确定圆球可以绕着自身对称轴轻松转动后,把二者固定牢固;然后把合并后形成的带有可转动球凸的覆盖物组合体的球凸裸露的一面背向目标物覆盖在目标物的目标部位;制备工作完成。
实施例7如图34所示,一种可转动球凸表面结构的制备方法:把实施例6的覆盖物B替换为目标物体,按照实施例6中在覆盖物B表面制作球坑的方法在目标物表面制作球坑,并按照实施例6中的覆盖物组合体的制备方法制备目标物的可转动球凸表面结构。
在实施例4-7制备方法中,根据不同的目标物特点和需求,圆球可以采用塑料、木材、陶瓷、金属等材料制作成空心球体或实心球体,覆盖物可以采用塑料、橡皮、金属的柔软或硬质的材料。覆盖物既可以制作成针对目标物全部表面的或者为针对目标物部分部位表面的针对性尺寸的覆盖物,也可以制作成只包含一个球凸或者包含统一的特定数量球凸的统一尺寸的覆盖物模块。其中,统一 球凸数量统一尺寸的覆盖物模块的制作方法有利于流水线生产覆盖物,也更方便安装、更换和维护。固定式弧凸表面结构和混合式弧凸表面结构采取直接在目标物体表面制作对应球凸的方法,或者在覆盖物表面制作对应球凸、然后把带有所述球凸的覆盖物覆盖在目标物体表面的方法制备。
实施例8一种用于减小相对运动物体与空气流体之间相对阻力和对物体表面空气流体整流的物体表面,所述物体表面的包括如图35中A面、图38中E面所示的平行面,如图35中B面、图36中C面所示的斜面,如图37中D面、图38中F面所示的曲面单元。平行面、斜面和曲面单元为一个或多个,每一个所述面的表面为梅花布局的可转动球凸表面结构,每一个所述面上的球凸数量不少于10个,可转动球凸相对于基础面的最高点与基础面的相对高度值为1mm;所述物体表面的平行面与前斜面之间的夹角为如图35中平行面A与相邻的前斜面B之间的相邻所述相邻凸顶连点的夹角∠1、∠2所示,其补角等于0.5°;所述物体表面的相邻前斜面之间的夹角为如图36中前斜面B与前斜面C之间的相邻所述相邻凸顶连点的夹角∠3、∠4所示,其补角等于0.5°;所述物体表面的前斜面与相邻前曲面单元之间的夹角为如图37中前斜面C与相邻的前曲面单元D之间的相邻所述相邻凸顶连点的夹角∠5、∠6所示,其补角等于0.5°;所述物体表面的平行面与相邻前曲面单元之间的夹角为如图38中平行面E与相邻的前曲面单元F之间的相邻所述相邻凸顶连点的夹角∠7、∠8所示,其补角等于0.5°;相邻前曲面单元之间或前曲面单元与相邻的平行面之间的相邻所述相邻凸顶连线的锐角夹角等于0.5°。“曲面单元”指的该面上的相邻所述相邻凸顶连线的同向夹角如图39中的∠9、∠10、∠11、∠12、∠13所示相等的面,本实施例的曲面单元的同向锐角夹角等于0.5°,即∠9、∠10、∠11、∠12、∠13等于179.5°;所述表面的相邻后斜面之间、相邻后曲面之间、后斜面与相邻的前曲面或后曲面或与平行面之间、后曲面与相邻的平行面之间的相邻所述相邻凸顶连点的夹角为任意值或者钝角夹角等于179.5°。
当所述物体表面为外表面且所述外表面的外侧为相对开放的空间时,在物体在空气中的相对运动速度达到或超过一定数值(在空气中运动的物体的所述数值大约为100km/小时)的情况下,所述物体的所有迎面与空气之间的摩擦力均为零,空气从物体相对运动方向的前一个外弧型面到达相邻的后一个外弧型面时,贴近表面的空气流对外部空气场冲击力为sin 20.5°×F=sin 20.5°×F≈0.0076F,空气从的物体相对运动方向的前一个内弧型面到达相邻的后一个内 弧型面时,贴近表面的空气流对物体表面的冲击力为sin 20.5°×F=sin 20.5°×F≈0.0076F,其比采用光滑表面结构时的冲击力减少约(1-sin 20.5°)×100%≈99.24%(其中F为等量空气流垂直冲击物体表面的冲击力)。
当物体表面为通道内壁时,在所述通道内的空气流的相对运动速度达到或超过一定数值的情况下,空气流与内壁表面之间的摩擦力为零,因摩擦力带来的空气能的消耗和空气的滞留量为零。空气流对内壁的冲击力为sin 20.5°×F=sin 20.5°×F≈0.0076F,其比采用光滑表面结构的表面的冲击力减少约(1-sin 20.5)×100%≈99.24%。
球凸表面结构的表面上各个面的球凸数量越多、相邻所述相邻凸顶连线的锐角夹角就更容易制作得越小;从上述分析计算可以看出,所述锐角夹角越小,空气对所述物体内表面或外表面或者物体表面外侧的空气场的冲击力越小,从而在对物体表面越小的同时,对表面附近的流体造成的扰动越小,产生的杂波、涡流以及激波越少、波的能量越小,而物体的表面面积越大越能够满足该条件。所以,本实施例表面以及采用本实施例表面以及其他球凸表面结构的下面实施例9-15所产生的减阻效果,均须建立在表面面积相对较大且满足该条件的情况下才更容易实现。
实施例9如图40所示,一种用于对空气中相对运动物体进行减速的装置,包括进流口9-3位于所述装置的前端表面,且开口朝向前方的进流通道9-1。进流通道9-1在其后端形成一条或者分出二条或多条弯曲,并向所述装置前端延伸,在所述装置前端外表面形成开口朝向前方的排流口9-4的回流通道9-2,进流口9-3的口径和进流通道9-1前段的内径大于进流通道9-1后段的内径,且大于回流通道9-2的内径或若干个回流通道9-2内径之和、大于排流口9-4的口径或若干个排流口9-4口径之和;所述进流通道9-1的进流口9-3和回流通道9-2的排流口9-4分别设置有滑动式进流口外罩9-5和排流口外罩9-6,滑动式外罩以平行于所述装置外表面的方式固定于进流口和排流口处,并以滑行的方式打开或关闭。进流通道9-1和回流通道9-2的内壁表面为实施例8所述的表面;所述装置以进流口9-3和排流口9-4朝向流体相对运动方向的方式安装在物体或设备外部或与物体或设备加工成一体化结构。
当对相对运动的带有所述减速装置的相对运动物体或运动设备实施减速时,打开进流口外罩9-5和排流口外罩9-6,相对运动的空气从进流口9-3顺序进入进流通道9-1和回流通道9-2后,从位于物体前端的排流口9-4排出,产生向 前的反推力。由于采用实施例8所述表面结构,从实施例8的计算分析可看出,当所述物体的运动速度相对较高时,进流通道9-1和回流通道9-2的内壁与空气的摩擦力为零、冲击力损耗很小,因此空气动能消耗很少,同时空气在通道内的滞留量很少,所以其排出的空气的动能相对较大、且与所述相对运动物体的相对速度接近成正比,从而对相对运动物体产生较大的、与物体相对运动速度接近成正比的前向推力,实现对所述物体相对高效的减速。又由于减速是以空气流冲击外部空气场的方式实现的减速,所以减速效果既相对高效又柔和。而当本装置的各通道采用光滑表面时,空气会因为与通道内壁之间的摩擦阻力而出现滞留,而且滞留量的上升速度随着物体相对运动速度的增加而增加,最终通道内的空气与通道壁之间出现相对静止。由于滞留在通道的被压缩空气仅在通道的进口和出口附近往外溢出,故溢出的动能很小,从而无法实现减速效果,更不能达到本实施例的减速效果。
本实施例说明,球凸表面结构特别是梅花布局、梅花补充布局、矩阵补充布局的可转动球凸表面结构除具有减阻整流作用外,还具有提高有效阻力、提高制动减速的可控性和安全性的作用。
实施例10如图41所示,一种对空气场中相对运动物体产生向上的偏离作用力的装置,包括装置本体10-1和流体通道10-2,装置本体10-1的外表面与空气流体接触的部位和流体通道10-2的内壁表面为实施例8所述表面结构,且所述流体通道10-2内壁的下侧表面上的相邻球凸的凸顶连线相互平行、且平行于所述物体的相对运动方向,该侧表面简称平行面;上侧表面上的相邻球凸的凸顶连线相互平行或者相互不平行,但相邻所述相邻凸顶连线的同向夹角的角度值相等,并且与所述物体的相对运动方向不平行,该侧表面简称斜面;所述斜面相对于平行面的锐角夹角为30°;流体通道10-2的进流口的面积大于排流口的面积,流体通道10-2的横截面的面积在最前端为最大值,并从最前端向后端逐渐变小;进流口和排流口处分别设置有滑动式的进流口外罩10-3和排流口外罩10-4,滑动式外罩以平行于装置外表面的方式固定于进流口和排流口处,并以滑行的方式打开或关闭。
当所述装置对安装有所述装置的相对运动物体或者运动设备实施向上的作用力时,原本关闭的进流口外罩10-3和排流口外罩10-4打开,空气流体进入并穿过流体通道10-2,对所述相对运动物体或者运动设备产生垂直于物体或设备相对运动方向向上的作用力,并且通过调整和控制进流口外罩10-3的开口大 小来调整和控制进入流体通道10-2内的空气量,以达到调节和控制所述向上作用力大小的目的。当所述向上的作用力相对运动物体或设备原先向下的作用力(比如重力)时,所述运动物体的运动方向发生向上偏离;关闭外罩10-3和外罩10-4,则所述向上的偏离力消失,继而向上的偏离行为终止。
本实施例装置可以实现对安装有所述装置的相对运动物体高效地实施向上改变方向的作用。比如,所述装置安装在汽车上可以为所述汽车提供向上的作用力,起到降低汽车轮胎与地面摩擦力的作用;安装在飞行器上为所述飞行器提供向上的升力,起到起飞或向上飞行的作用力。由于当本装置的通道10-2内壁采用实施例8所述表面结构,运动的空气流体在流体通道10-2内的能耗很低,所以向斜面转化的作用力效率较大,当所述汽车或者飞行器的行进速度较高时,可以产生较大的向上作用力;而当本装置的通道内壁采用光滑表面时,则由于通道内空气的滞留而难以实现本实施例的所述向上偏离的效果。
实施例11如图42所示,本实施例为把实施例10中的流体通道10-2的斜面改为在下侧、平行面改为在上侧的对应装置;本实施例装置可以实现对安装有所述装置的相对运动物体高效地实施向下改变方向的作用。比如,快艇的船身前部下面与水接触的部位在快艇快速行进时,会因水向上的浮力作用,使快艇的头部产生较大的向上仰力,产生翻转趋势,从而增加快艇的驾驶难度,并限制快艇的最大可行进速度。所述装置安装在快艇上面并快艇的船底采用可转动弧凸表面结构,可以在不增加甚至降低快艇的能耗的情况下实现在有效遏制快艇仰翻,从而提高快艇在平稳度和可行进速度方面的性能。
实施例12如图43所示,本实施例为把实施例10中的流体通道10-2设置在空心的活动式圆柱体10-5的内部,活动式圆柱体10-5通过套在自身外表面上的轴承10-7以可以围绕自身中心轴转动的方式内嵌于内径略大于活动式圆柱体10-5的外径的空心固定式圆柱体10-6的内部。活动式圆柱体10-5的外表面上套有圆箍形齿轮10-8,圆箍形齿轮10-8与转机10-9的圆形齿轮咬合。通过操控转机10-9转动带动圆箍形齿轮10-8转动,并通过控制转动角度值来控制活动式圆柱体10-5转动的角度值,进而改变和控制流体通道10-2内斜面的朝向,达到对安装有所述装置的相对运动物体的侧向偏离方向的改变和控制。
所述装置可以实现对安装有所述装置的相对运动物体高效地实施向垂直于所述物体方向的任意方向改变的作用。比安装在如飞行器上,可以实现对垂直与所述飞行器前进方向的任意一个方向的高效改变和控制。
实施例10、11、12说明:球凸表面结构特别是梅花布局、梅花补充布局、矩阵补充布局的可转动球凸表面结构除具有减阻整流作用外,还具有高效改变或/并控制相对运动物体运动方向和姿态、提高方向和姿态的控制效率的作用。
实施例13
一种用于在空气中工作的扇机,扇叶为图44所示的多个形状相同的叶片状或为图45所示的单个螺旋或多个螺旋的螺旋状。其中,所述叶片状扇叶的两个相对较大的叶面为相互平行或者接近平行的曲面。当为接近平行的曲面时,距离旋转轴较近位置的扇叶部位的厚度略厚于相对较远位置的扇叶部位的厚度;所述扇机工作时,扇叶旋转的方向垂直于扇机所在流体场中流体相对扇机的相对运动方向,叶片状扇叶相对较大的两个叶面或螺旋状扇叶的叶面为扇机转动时空气流体相对运动的方向的迎角从扇叶距离旋转轴最近点到最远点按照从150°逐渐增加至180°的方式变化,并且与扇叶转动时扇叶尾部形成的圆的切向迎角从扇叶距离旋转轴最近点到最远点按照从150°逐渐增加至180°的方式变化的形状;所述扇叶与空气相对运动方向的迎角以及与扇叶旋转面的迎角角度值可以为固定角度值,也可以在工作前预先调节或者实时调节;所述扇叶表面和旋转轴与空气接触面为实施例8所述的表面。
在空气的相对流速大于等于一定数值小于圆球的最大转速、并小于扇机扇叶尾端质点的最大可转动角速度的情况下,表面相对较大的扇叶与空气之间的相互摩擦为零;空气对扇叶的冲击力在扇叶横向斜面上和纵向斜面上分别受到所述斜面上梅花布局的可转动球凸的两次削弱,两次削弱的总比例为(sin 2150°×sin 2150°×F +sin 2180°×sin 2180°×F )÷√2÷F ×100%≈4.4%,而采用平滑面对应所述扇叶受力削弱比例为(sin150°×F +sin180°×F )÷√2÷F ×100%≈35%;显然本实施例扇机的扇叶受力显著小于采用平滑面的对应所述扇叶。
本实施例扇机既可以为带有驱动装置的主动扇机,也可以为无驱动装置的被动扇机。当为主动扇机时,由于其与空气之间的阻力相对于平滑面表面的扇机显著降低,所以其对空气的做功效率得以显著提升;当为被动扇机时,则空气对其的做功效率同样显著提升。
实施例14
如图46-47所示,一种空气推流装置,包括内壁表面为实施例8所述表面的主通道14-1,主通道14-1在所述装置的前端外表面形成开口朝向前方的进流口、 在所述装置的后端外表面形成开口朝向后方的排流口,或者在主通道14-1的后端分出二条或多条内壁为实施例8所述表面的分支排流通道14-3并分支排流通道14-3在所述装置的后端位置或后端的两侧位置的表面形成开口朝向后方的排流口;在主通道14-1内的中心轴位置设置有实施例13扇机的主动扇机14-2。所述装置工作时,主动扇机14-2转动、带动空气从位于所述装置前端的进流口进入主通道14-1后,沿着主通道14-1或分支排流通道14-3向位于推流装置后端或后端两侧的排流口流动并从排流口朝向后方排出,实现对空气朝向所述装置后端方向的推流;同时产生对所述装置朝向装置前端方向的推力,从而实现对空气的后向推动、或对所述装置或者安装有所述装置的设备的前向推进,从而形成空气推流装置或者空气推进装置。当所述装置作为空气推进装置使用时,其外表面与外部空气接触的部位表面为实施例8所述表面。由于本实施例的主通道14-1和分支排流通道14-3采用了实施例8的所述表面、采用了实施例13的扇机,参照实施例8、13的受力分析可以得出,本实施例装置对空气的推动效率显著高于采用平滑表面的相应装置,所以该实施例装置作为推进装置使用的推重比显著高于采用平滑表面的相应装置。
本实施例说明:球凸表面结构特别是梅花布局、梅花补充布局、矩阵补充布局的可转动球凸表面结构除具有减阻整流作用外,还具有提高流体动力装置的做工效率的作用。
实施例15如图48所示,一种用于对抗空气场中相对运动物体侧向倾斜和侧向翻转的平衡装置,包括内壁相互平行、且平行于自身中心轴并空气流的相对运动方向的直线通道15-1、和由两个相互平行且平行于直线通道15-1中心轴的圆形平面、以及垂直包裹在所述圆形平面边缘外围一圈的圆弧面构成的圆形内腔15-2。圆形内腔15-2靠近外缘的一部分内腔与直线通道15-1的一部分内腔重合于直线通道15-1的内部中间位置;圆形内腔15-2设有扇机15-3,扇机15-3的旋转轴位于圆形内腔15-2的两个相互平行的圆形平面的内壁中心点位置,并固定于所述内壁一侧或两侧面上。扇机15-3的扇叶为相互平行,且平行于圆形内腔15-2并距离旋转轴远端的末梢部位为圆弧形的两个圆形平面以及垂直包围在所述两个圆形平面边缘外围一圈的两个圆弧面围成的结构;所述扇叶旋转形成的平面平行于圆形内腔15-2的圆形平面并直线通道15-1的中心轴,且靠近叶尾的一部分叶面经过直线通道15-1。扇机15-3为一个或多个;当为多个时,多个扇机15-3的扇叶旋转形成的平面在同一个平面上;直线通 道15-1、圆形内腔15-2、扇机15-3扇叶及与相对运动空气接触的所述装置的其他部位的表面为实施例8所述表面。
所述平衡装置以直线通道15-1中心轴平行于设备运动方向的方式,安装于运动物体或设备上或者与所述运动物体或设备制造成一体。当带有所述平衡装置的运动物体或设备运动时,空气从所述平衡装置直线通道15-1的前方入流口15-4进入、流经直线通道从后方排流口15-5排出的过程,空气对扇机15-3的扇叶产生推力,推动扇机15-3扇叶转动的同时,连带圆形内腔15-2内的空气转动,并扇机15-3与圆形内腔内15-2的空气相互影响使二者转速趋于相等。扇机15-3和圆形内腔15-2的空气旋转产生对应角动量,所述角动量对所述运动物体或设备的侧向倾斜和侧向翻转的趋势产生对抗的平衡力,使所述运动物体或设备相对保持平衡。所述运动物体或设备的行进速度越快,扇机15-3扇叶和圆形内腔15-2内的空气转速越快,其对应角动量值越大,产生的平衡力越大,所述运动物体或设备越不容易发生侧向倾斜或侧向翻转。
由于直线通道15-1的内壁、圆形内腔15-2的内壁、扇叶的表面采用实施例8所述表面,从实施例8的受力分析可以看出,直线通道、圆形内腔和扇叶表面面积相对较大的所述平衡装置在物体行进速度较高的情况下,一方面流经直线通道1和圆形内腔2的空气能损失很少,从而动能转化效率更高,使得扇叶和圆形内腔的空气可以更高效高速转动,产生的对应角动量也相对较高,从而可以实现相对较高的所述平衡力的提供。
扇机15-3既可以采用上述被动扇机,也可以采用主动扇机;当采用主动扇机时,在安装有所述平衡装置的物体与空气的相对速度较低或静止、空气流体对扇叶的推力相对较低或为零、扇叶因空气推力获得转速较低或为零的情况下,开启主动扇机的驱动装置,扇机15-3扇叶转动或转速增加,从而产生所述平衡力或所述平衡力上升。
本实施例说明:球凸表面结构特别是梅花布局、梅花补充布局、矩阵补充布局的可转动球凸表面结构除具有减阻整流作用外,还具有为流体场中相对运动物体或设备提供对抗侧向倾斜和侧向翻转的平衡力的作用。
上面结合附图及实施例描述了本发明的实施方式,实施例给出的结构并不构成对本发明的限制,本领域内熟练的技术人员可依据需要做出调整,在所附权利要求的范围内做出各种变形或修改均在保护范围内。

Claims (20)

  1. 一种用于减小流体中相对运动物体与流体之间相互阻力以及对流体整流的物体表面结构,其特征在于,包括物体(1)的基础面(11),所述基础面(11)上阵列分布有若干个弧面状凸起所形成的弧凸,所述弧凸为:基础面(11)上凹坑(12)内带有弧形表面的可转动物(13)裸露于凹坑(12)外部的弧面,构成可转动弧凸;或者为固定于基础面(11)上的弧面形物件(18)或者为与基础面(11)一体化结构的弧形凸起部位(19),构成固定弧凸。
  2. 根据权利要求1所述表面结构,其特征在于,基础面(11)上阵列布局有若干个弧凸的物体(1)的表面结构,构成弧凸表面结构;弧凸表面结构的基础面(11)上的弧凸全部为可转动弧凸的弧凸表面结构,构成可转动弧凸表面结构,或全部为固定弧凸的弧凸表面结构,构成固定弧凸表面结构,或既有可转动弧凸也有固定弧凸的弧凸表面结构,构成混合弧凸表面结构。
  3. 根据权利要求1所述表面结构,其特征在于,所述基础面(11)为平整或/并光滑的面、或/并呈流线形,所述基础面(11)为物体(1)的内表面或者外表面,所述内表面或者外表面为镂空面或者非镂空面。
  4. 根据权利要求1所述表面结构,其特征在于,所述弧凸的外表面为密闭结构,内部为实心结构或者空心结构。
  5. 根据权利要求1所述表面结构,其特征在于,所述弧凸的外表面相对于基础面(11)的最高点与基础面(11)的相对高度相等,或相邻弧凸的所述相对高度的差相等,或/并多个弧凸的所述最高点的连线为直线或曲线或呈流线形。
  6. 根据权利要求1所述表面结构,其特征在于,所述弧凸在基础面上呈矩阵式、梅花式、矩阵补充式、梅花补充式布局中的一种或组合;其中,所述矩阵布局指的是基础面(11)上的每个弧凸既是每一列弧凸的单元也是每一行弧凸的单元,所述梅花布局指的偶数行上的弧凸与奇数行上的弧凸分别位于不同的弧凸列上,所述矩阵补充布局指的是在矩阵式布局的四个相邻弧凸之间再补充一个适配于所述相邻球凸之间基础面大小的弧凸,所述梅花补充布局指的是在梅花式布局的三个相邻弧凸之间再补充一个适配于所述相邻弧凸之间基础面大小的弧凸。
  7. 根据权利要求6所述表面结构,其特征在于,所述流体(2)相对于物体(1)的相对运动方向投影在所述物体(1)的表面上形成的线与所述矩阵式、梅花式、 矩阵补充式、梅花补充式布局的弧凸列相平行、与弧凸行相垂直;所述相对运动方向指的是单一方向运动的物体的相对运动方向或者多个方向运动的物体的多个相对运动方向产生的多个方向作用力的合力所指向的方向。
  8. 根据权利要求7所述表面结构,其特征在于,所述可转动物(13)呈中心轴对称,所述可转动物(13)的可转动方向为单一方向或多方向或任意方向,且所述转动方向与流体(2)相对物体(1)的运动方向一致;所述流体(2)相对于物体(1)的相对运动方向为权利要求7所述相对运动方向。
  9. 根据权利要求1所述表面结构,其特征在于,所述可转动物(13)的形状为正球体、或椭球体、或圆柱体、或圆柱体与球体的结合体、或圆锥体与球体的结合体、或圆锥体与圆柱体的结合体;所述凹坑(12)的形状为所述可转动物(13)等比例放大后的空心结构被与凹坑(12)所处的基础面(11)相同形状的面切去一分部后剩余结构体的形状,或内腔略微大于可转动物(13)的其他空心状形状。
  10. 根据权利要求9所述表面结构,其特征在于,所述可转动物(13)为以下方式约束在凹坑(12)内、并可以转动:
    (a)、所述凹坑(12)的对外开口的口径小于可转动物(13)的外径,或/并可转动物(13)表面和凹坑(12)内壁光滑处理、或/并在可转动物(13)的表面和凹坑(12)的内壁表面上涂抹润滑剂,或/并在凹坑(12)内坑壁上设置若干个支撑可转动物(13)的支撑件(14);所述支撑件(14)为固定在凹坑(12)坑壁上不动的固定式凸起物或为设置在凹坑(12)坑壁上的微型凹坑内的微型滚珠,或者为设置在凹坑(12)内的轴承(15);
    或(b)、在凹坑(12)内以垂直于流体(2)与物体(1)的相对运动方向设置横杆,所述横杆为设置在经过凹坑(12)中心轴、两端与凹坑(12)坑壁相接触同时经过可转动物(13)对称轴的一条长横杆(16),或者为位于可转动物(13)与凹坑(12)坑壁之间、且二者连线经过可转动物(13)对称轴和凹坑(12)的中心轴的两条短横杆(17);所述长横杆(16)或短横杆(17)的两端或者其中一端与凹坑(12)坑壁或/并可转动物(13)表面以可转动不可移动的方式接触;
    或(c)、凹坑(12)与可转动物(13)之间形成磁悬浮相互作用力的结构关系,使可转动物(13)悬浮于球坑内。
  11. 根据权利要求2所述的表面结构,其特征在于,表面结构中所述固定弧凸的 形状为完整椭球体、完整圆柱体、圆柱体与球体的结合体、圆锥体与球体的结合体、圆锥体与圆柱体的结合体中的任一一种形状体被与所述固定弧凸所在基础面(11)相同形状的面横切形成的二个结构体的任一一个结构体的形状。
  12. 根据权利要求2所述的表面结构,其特征在于,混合弧凸表面结构中所述可转动弧凸与固定弧凸在基础面(11)上分块布局或者交叉混合布局,可转动弧凸占全部弧凸的比例大于0%小于100%。
  13. 一种权利要求1-12任一所述可转动弧凸表面结构的制备方法,其特征在于包括:
    (a)方法,在所要制作可转动弧凸表面结构的目标物体表面按照预先设计确定的可转动物的规格、凹坑布局方式、凹坑规格和要求制作可转动物、凹坑,或同时制作凹坑内的限制机构并把限制机构安置在凹坑内的设定位置;把可转动物置放于凹坑内,可转动物被小于可转动物尺寸的凹坑坑口、或凹坑内的限制机构、或小尺寸坑口和坑内限制机构共同限制于凹坑内并可以绕着所述可转动物的对称轴轻松转动,转动的方向与目标物体在流体中预定的行进方向相反或并相同,目标物的所述可转动弧凸表面结构制备完成;或采取一次性成型铸造法或3D打印法制备带有可转动弧凸表面结构的目标物体表面件;
    或(b)方法,选择表面形状与目标物体所要覆盖的部位表面的形状及弧度一致、厚度等于或略微大于凹坑坑深的覆盖物,所述覆盖物为设定的统一尺寸的覆盖物模块或者为针对目标物全部表面或者部分部位表面的针对性尺寸的覆盖物;按照制备方法(1)在覆盖物上制备一面带有可转动弧凸表面结构的覆盖物,把所述覆盖物无可转动弧凸的一面朝向目标物、有可转动弧凸的一面背向目标物覆盖在目标物体表面的对应部位并固定牢固,所述目标物的可转动弧凸表面结构则制作完成;
    或(c)方法,在目标物体表面按设定的凹坑布局方式、凹坑规格和要求制作坑深小于设定坑深的凹坑、或同时制作限制机构并把限制机构设置在凹坑内;选择表面形状与目标物所要覆盖的部位表面的形状及弧度相一致的、厚度等于设定的凹坑坑深减去目标物体上制作的凹坑坑深的差值的覆盖物,所述覆盖物为设定的统一尺寸的覆盖物模块或者为针对目标物全部表面或者部分部位表面的针对性尺寸的覆盖物;在所述覆盖物上制作贯穿覆盖物本体并在覆盖物两面均有凹坑开口 且一面坑口的形状和尺寸与目标物上凹坑坑口形状和尺寸完全相同的凹坑,并所述凹坑与目标物体表面制作的凹坑合并在一起形成的新凹坑的规格尺寸等于设定的凹坑规格尺寸;按设定尺寸和要求制作可转动物;把所述可转动物置于物体凹坑与覆盖物对应位置的凹坑之间,然后把覆盖物覆盖在目标物的设定部位,可转动物被限制在覆盖物凹坑与目标物凹坑合并形成的新凹坑内或新凹坑内的限制机构内,确定可转动物可以绕着所述可转动物的对称轴轻松转动后,把覆盖物与物体表面固定牢固,所述目标物表面的可转动弧凸表面结构制作完成;
    或(d)方法,选择二者厚度之和等于或略大于设定凹坑坑深的覆盖物A和覆盖物B,所述覆盖物A和覆盖物B为设定的统一尺寸的覆盖物模块或者为针对目标物全部表面或者部分部位表面的针对性尺寸的覆盖物;其中,所述覆盖物A的一侧表面形状与所要覆盖的目标物的目标部位的表面形状一致,分别在二者表面上按照设定的凹坑布局方式制作凹坑,且覆盖物A上的凹坑和覆盖物B上对应位置的凹坑合并在一起形成的新凹坑的规格尺寸等于设定凹坑的规格尺寸;或同时制作凹坑内的限制机构并把限制机构设置在凹坑内;按设定尺寸和要求制作可转动物;把所述可转动物置于覆盖物A凹坑与覆盖物A对应位置的覆盖物B凹坑之间,并把覆盖物A和覆盖物B合并在一起,可转动物被限制在覆盖物A凹坑与覆盖物B凹坑合并形成的新凹坑内或新凹坑内的限制机构内,确定可转动物可以绕着自身对称轴轻松转动后,把二者固定牢固;然后把合并后形成的带有可转动弧凸的覆盖物组合体的弧凸裸露的一面背朝目标物覆盖在目标物的目标部位的表面,所述目标物体的可转动弧凸表面结构制作完成。
  14. 权利要求1-12任一所述表面结构的制备方法,其特征在于,所述固定弧凸表面结构、混合弧凸表面结构采用把所述对应弧凸直接制作在目标物体表面的方法或者制作在覆盖物表面然后把覆盖物覆盖在目标物体表面的方法制备。
  15. 一种用于减小与流体相对运动的物体与流体之间相对阻力以及对物体表面流体整流的物体表面,其特征在于,所述表面为权利要求1-12所述的梅花布局、梅花补充布局、矩阵补充布局的任一一种布局的可转动弧凸表面结构,或占比大于50%的所述布局的可转动弧凸与所述布局的固定弧凸的混合弧凸表面结构,并所述表面包括若干个平行面、斜面和曲面单元,沿着所述物体相对运动方向的相邻弧凸的弧面相对于弧凸所在基础面的最高点的连线这里简称相邻凸顶连线;所 述平行面指的是所述相邻凸顶连线相互平行且平行于物体相对运动方向的面;所述斜面指的是所述相邻凸顶连线相互平行且与物体相对运动方向不平行的面;所述曲面单元指的是所述相邻凸顶连线相互不平行且相邻相所述邻凸顶连线与物体相对运动方向的同向夹角相等的面;每个所述平行面、斜面、曲面上的弧凸数量大于等于10个,每个弧凸相对于弧凸所在基础面的最高点与基础面的相对高度大于0.0001m小于1m,每个所述面上的弧凸的形状、体积、表面积相等或者不相等;朝向流体相对运动方向的所述斜面与其相邻的所述曲面或平行面在相邻相连处的相邻所述相邻凸顶连线之间的锐角夹角大于0°小于5°;所述平行面与其相邻的被向流体相对运动方向的所述斜面或被向流体相对运动方向的所述曲面在相邻相连处的相邻所述相邻凸顶连线之间的锐角夹角大于0°小于5°;或/并背向被向流体相对运动方向的所述斜面与被向流体相对运动方向的所述曲面在相邻相连处的相邻所述相邻凸顶连线之间的锐角夹角大于0°小于5°;所述曲面上相邻所述相邻凸顶连线之间的钝角夹角大于175°小于180°。
  16. 一种用于对流体中相对运动物体减速的装置,其特征在于,所述装置包括进流口(9-3)位于所述装置前端表面且开口朝向前方的进流通道(9-1),所述进流通道(9-1)在后端形成一条或者分出二条或多条弯曲并向所述装置前端延伸在所述装置前端外表面形成开口朝向前方的排流口(9-4)的回流通道(9-2),所述进流口(9-3)的口径和进流通道(9-1)的前段内径大于进流通道9-1后段内径,并大于回流通道(9-2)的内径或若干个回流通道(9-2)内径之和、大于排流口(9-4)的口径或者若干个排流口(9-4)口径之和;所述进流通道(9-1)的进流口(9-3)和回流通道(9-2)的排流口((9-4)分别设置有滑动式进流口外罩(9-5)和排流口外罩(9-6),所述滑动式外罩以平行于所述装置外表面的方式固定于进流口和排流口处并以滑行的方式打开或关闭;所述进流通道(9-1)和回流通道(9-2)的内壁表面为权利要求15所述的物体表面;所述装置以进流口(9-3)和排流口(9-4)朝向流体相对运动方向的方式安装在物体或设备外部或与物体或设备加工成一体化结构;当对相对运动的带有所述减速装置的相对运动物体实施减速时,打开进流口外罩(9-5)和排流口外罩(9-6),相对运动的流体从进流口(9-3)顺序进入进流通道(9-1)和回流通道(9-2)后从位于物体前端的排流口((9-4)排出,排出的流体对相对运动物体产生向前的推力,实 现前向运动的物体的柔性减速。
  17. 一种对流体中相对运动物体产生侧向偏离作用力的装置,其特征在于,包括装置的本体(10-1)和流体通道(10-2),流体通道(10-2)的两侧开放或者密闭,所述本体(10-1)的外表面与流体接触的部位和流体通道(10-2)的内壁表面为权利要求15所述的物体表面,且所述流体通道(10-2)内壁的一侧表面的相邻弧凸的凸顶连线相互平行且平行于所述物体相对运动方向,该侧面这里简称为平行面;所述平行面正对面的内壁表面的相邻弧凸的凸顶连线相互平行或者相互不平行但相邻所述相邻凸顶连线的同向夹角的角度值相等并且与所述物体相对运动方向不平行,该侧面这里简称为斜面;所述流体通道(10-2)为横截面的面积在最前端最大往后逐渐变小的形状;所述流体通道(10-2)的进流口的面积大于排流口的面积,所述进流口和排流口处分别设置有滑动式进流口外罩(10-3)和排流口外罩(10-4),所述滑动式外罩以平行于所述装置外表面的方式固定于进流口和排流口处并以滑行的方式打开或关闭;
    当所述装置对安装有所述装置的相对运动物体实施垂直于相对运动方向的侧向偏离行为时,原本关闭的进流外罩(10-3)和排流外罩(10-4)打开,流体进入并穿过流体通道(10-2)产生垂直于所述物体或运动设备相对运动方向且朝向所述斜面一侧的偏离作用力,当所述偏离力达到和超过该方向反向的原先的作用力时,所述运动物体的运动方向朝着斜面所在的方向发生偏离;操控进流口外罩(10-3)来调整和控制进流口开口的大小来调节和控制进入流体通道(10-2)内的流体量,实现对偏离力大小的调节和控制,从而实现对所述物体偏离速度的调整和控制;关闭进流口外罩(10-3)和排流口外罩(10-4),所述偏离力消失,所述偏离行为终止;
    所述斜面固定设置在本体(10-1)的上方以为安装有所述装置的相对运动物体提供向上的偏离力,或者固定设置在本体(10-1)的下方以为安装有所述装置的相对运动物体提供向下的偏离力,或者设置在空心的活动式圆柱体(10-5)的内部,所述活动式圆柱体(10-5)通过套在自身外表面上的轴承(10-7)以可以围绕自身中心轴转动的方式内嵌于内径略大于活动式圆柱体(10-5)的外径的空心的固定式圆柱体(10-6)的内部,套在活动式圆柱体(10-5)外表面上的圆箍形齿轮(10-8)与转机(10-9)的圆形齿轮咬合;操作人员操作转机(10-9)转 动带动圆形齿轮(10-8)转动,并通过改变和控制转动角度值来改变和控制活动式圆柱体(10-5)的转动角度值来改变和控制流体通道(10-2)斜面的朝向,达到对安装有所述装置的相对运动物体侧向偏离方向的改变和控制;所述圆柱体的活动式圆柱体(10-5)和固定式圆柱体(10-6)的内表面与相对运动流体接触的部位为权利要求15所述的物体表面。
  18. 一种扇机,其特征在于,所述扇机的扇叶为形状相同的多个叶片的叶片状或为单个螺旋或多个螺旋的螺旋状,其中,所述叶片状扇叶的两个相对较大的扇叶面为相互平行或者接近平行的曲面,当为接近平行的曲面时,距离旋转轴较近位置的扇叶部位的厚度略厚于相对较远位置的扇叶部位的厚度;所述扇机工作时扇叶旋转的方向垂直于扇机所在流体场中的流体相对扇机的相对运动方向,叶片状扇叶相对较大的两个叶面或螺旋状扇叶的叶面为与扇机转动时空气相对运动方向的迎角从扇叶距离旋转轴最近点到最远点按照从135°逐渐增加至180°的方式变化,并且与扇机旋转时扇叶尾部形成的圆面的切向的迎角从扇叶距离旋转轴最近点到最远点按照从135°逐渐增加至180°的方式变化的形状;所述扇叶与流体相当运动方向迎角值以及与扇叶旋转面的迎角值为固定角度值,或者为可以预先调节或实时调节的角度值;所述扇叶表面及扇机与流体接触的其他部位的表面为权利要求15所述的物体表面,且所述表面上的可转动弧凸的可转动方向为多向或者任意方向;所述扇机为独立使用的被动扇机或者为与动力驱动装置相连结合使用的主动扇机。
  19. 一种推流装置,其特征在于,包括主通道(14-1),所述主通道(14-1)的内壁表面为权利要求15所述的物体表面且所述主通道(14-1)在所述装置的前端外表面形成开口朝向前方的进流口、在所述装置的后端外表面形成开口朝向后方的排流口,或者在主通道(14-1)的后端分出二条或多条内壁如权利要求15所述的物体表面的分支排流通道(14-3),并所述分支排流通道(14-3)在所述装置的后端位置或后端的两侧位置表面形成开口朝向后方的排流口;在主通道(14-1)内的中心轴位置设置有如权利要求18所述扇机的主动扇机(14-2);所述装置工作时,主动扇机(14-2)转动、带动流体从位于所述装置前端的进流口进入主通道(14-1)并沿着主通道(14-1)或分支排流通道(14-3)向位于推流装置后端或后端两侧的排流口流动并从排流口排出,实现对流体朝向所述装置后 端方向的推动,同时产生对所述装置朝向装置前端方向的推力,实现对所述装置或者安装有所述装置的设备的前向推进的作用,从而对应形成推流装置或者推进装置;当所述装置作为推进装置使用时,其外表面与外部流体接触的部位表面为权利要求15所述的物体表面。
  20. 一种用于对抗流体场中相对运动物体侧向倾斜和侧向翻转的平衡装置,其特征在于,包括内壁相互平行、且平行于自身中心轴并流体的相对运动方向的直线通道(15-1)和由两个相互平行、且平行于直线通道(15-1)中心轴的圆形平面以及垂直包裹在所述圆形平面边缘外围一圈的圆弧面构成的圆形内腔(15-2),所述圆形内腔(15-2)靠近外缘的一部分内腔与直线通道(15-1)的一部分内腔重合于直线通道(15-1)的内部中间位置;圆形内腔(15-2)内设有扇机(15-3),所述扇机(15-3)的旋转轴位于圆形内腔(15-2)的两个相互平行的圆形平面的内壁中心点位置并固定于一侧内壁或两侧内壁上;所述扇机(15-3)的扇叶为相互平行且平行于圆形内腔(15-2)的两个圆形平面并距离旋转轴远端的末梢部位为圆弧形的两个圆形平面以及垂直包围在所述两个圆形平面边缘外围一圈的两个圆弧面围成的形状结构;所述扇叶旋转形成的平面平行于圆形内腔(15-2)的圆形平面并直线通道(15-1)的中心轴,且靠近叶尾的部分叶面经过直线通道(15-1);所述扇机(15-3)为一个或多个,当为多个时,多个所述扇机(15-3)的扇叶旋转形成的平面在同一个平面上;所述直线通道(15-1)、圆形内腔(15-2)、扇机(15-3)扇叶及所述装置与相对运动流体接触的部位的其他表面为权利要求15所述的物体表面;所述平衡装置以直线通道(15-1)中心轴平行于设备运动方向的方式安装于运动设备上或与所述设备制造成一体;当带有所述平衡装置的设备运动时,流体从所述平衡装置直线通道(15-1)的前方入流口(15-4)进入、流经直线通道从后方排流口(15-5)排出,对扇机(15-3)的扇叶产生推力,推动扇机(15-3)扇叶转动的同时连带圆形内腔(15-2)内的流体转动,同时扇机(15-3)带动圆形内腔内(15-2)的流体一起转动并相互影响使二者转速趋于相等,扇机(15-3)和圆形内腔(15-2)的流体旋转产生对应角动量,所述角动量对所述设备的侧向倾斜和侧向翻转的趋势产生对抗的平衡力,使所述设备保持相对平衡;所述扇机(15-3)为被动扇机或主动扇机。
PCT/CN2022/133126 2021-12-21 2022-11-21 用于减阻/整流的物体表面结构、制备方法及装置 WO2023116303A1 (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN202123223528.XU CN217260628U (zh) 2021-12-21 2021-12-21 一种行进装置
CN202123223528.X 2021-12-21
CN202111569583.6 2021-12-21
CN202111569595.9 2021-12-21
CN202123223510.X 2021-12-21
CN202111569595.9A CN114198370A (zh) 2021-12-21 2021-12-21 一种用于整流的物体表面结构及其制备方法
CN202123223510 2021-12-21
CN202111569583.6A CN114198432A (zh) 2021-12-21 2021-12-21 一种减速装置
CN202220818857 2022-04-11
CN202220818860.6 2022-04-11
CN202220818860 2022-04-11
CN202220818857.4 2022-04-11

Publications (1)

Publication Number Publication Date
WO2023116303A1 true WO2023116303A1 (zh) 2023-06-29

Family

ID=86901188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133126 WO2023116303A1 (zh) 2021-12-21 2022-11-21 用于减阻/整流的物体表面结构、制备方法及装置

Country Status (1)

Country Link
WO (1) WO2023116303A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101457767A (zh) * 2008-12-02 2009-06-17 吉林大学 一种与流体相接触的仿生弹性壁表面
CN102777450A (zh) * 2012-07-26 2012-11-14 上海交通大学 新型高速表面减阻结构
CN108556420A (zh) * 2018-03-26 2018-09-21 吉林大学 一种仿生智能自适应动态变构减阻材料及其制备方法
CN109026186A (zh) * 2018-09-13 2018-12-18 中国科学院工程热物理研究所 一种抑制径流涡轮叶顶间隙流损失的多元耦合被动控制技术
CN111634881A (zh) * 2020-06-04 2020-09-08 清华大学 一种制备水下新型展向沟槽微结构减阻表面的方法
EP3799590A1 (en) * 2018-07-09 2021-04-07 Anadolu Universitesi Drag reducing add-on device for side walls of large commercial vehicles
CN114056565A (zh) * 2021-12-21 2022-02-18 淮北康惠电子科技有限公司 一种飞行器
CN114198370A (zh) * 2021-12-21 2022-03-18 淮北康惠电子科技有限公司 一种用于整流的物体表面结构及其制备方法
CN114198432A (zh) * 2021-12-21 2022-03-18 淮北康惠电子科技有限公司 一种减速装置
CN114655325A (zh) * 2022-04-11 2022-06-24 淮北康惠电子科技有限公司 一种行进设备
CN217260628U (zh) * 2021-12-21 2022-08-23 淮北康惠电子科技有限公司 一种行进装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101457767A (zh) * 2008-12-02 2009-06-17 吉林大学 一种与流体相接触的仿生弹性壁表面
CN102777450A (zh) * 2012-07-26 2012-11-14 上海交通大学 新型高速表面减阻结构
CN108556420A (zh) * 2018-03-26 2018-09-21 吉林大学 一种仿生智能自适应动态变构减阻材料及其制备方法
EP3799590A1 (en) * 2018-07-09 2021-04-07 Anadolu Universitesi Drag reducing add-on device for side walls of large commercial vehicles
CN109026186A (zh) * 2018-09-13 2018-12-18 中国科学院工程热物理研究所 一种抑制径流涡轮叶顶间隙流损失的多元耦合被动控制技术
CN111634881A (zh) * 2020-06-04 2020-09-08 清华大学 一种制备水下新型展向沟槽微结构减阻表面的方法
CN114056565A (zh) * 2021-12-21 2022-02-18 淮北康惠电子科技有限公司 一种飞行器
CN114198370A (zh) * 2021-12-21 2022-03-18 淮北康惠电子科技有限公司 一种用于整流的物体表面结构及其制备方法
CN114198432A (zh) * 2021-12-21 2022-03-18 淮北康惠电子科技有限公司 一种减速装置
CN217260628U (zh) * 2021-12-21 2022-08-23 淮北康惠电子科技有限公司 一种行进装置
CN114655325A (zh) * 2022-04-11 2022-06-24 淮北康惠电子科技有限公司 一种行进设备

Similar Documents

Publication Publication Date Title
JP4845892B2 (ja) 波生成装置
CA2767294C (en) Craft and method for assembling craft with controlled spin
CN101137538B (zh) 船舶的船尾结构
CA2822306C (en) Co-axial rotors in a wind turbine and a method of generating energy therefrom
JPH06101622A (ja) 横風型のウィンド・タ−ビン
WO2012028890A1 (en) Wind turbine blades with dimples
JP2003507681A (ja) 流体注入によって力を誘導するための器械
CN101970862B (zh) 具有可控叶片的横向轴流体涡轮机
AU2008320614A1 (en) Wind turbine with vertical axis and wind power plant
WO2023116303A1 (zh) 用于减阻/整流的物体表面结构、制备方法及装置
JP7284685B2 (ja) 円盤型垂直離着陸機
CN114056565A (zh) 一种飞行器
CN108603489B (zh) 风力涡轮机、其应用及在涡轮机中使用的叶片
RU2205774C1 (ru) Водометный движительно-рулевой комплекс
CN107554734A (zh) 一种翼型可控的不对称导管桨
US20160304202A1 (en) Flow diverting lift element
US8963355B2 (en) High-performance wind turbine generator that can be driven in horizontal/vertical axis directions with the use of 3D active intelligent turbine blades
US7238067B2 (en) Variable area pump discharge system
JP5852591B2 (ja) 段差付きサーフェスプロペラ
RU2652423C1 (ru) Летательный аппарат с вертикальным взлетом и посадкой (аппарат - солоухиной е.н.)
RU2534500C1 (ru) Реверсивно-рулевое устройство водометного движителя
KR102399663B1 (ko) 핀틀 어셈블리 및 이를 포함하는 비행체
CA1174910A (en) Water-going vessel
RU2560172C9 (ru) Летательный аппарат с вертикальным взлетом и посадкой (аппарат солоухиной е.н.)
US20170138331A1 (en) Variable area blade turbine and conditioning flow deflectors device and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909619

Country of ref document: EP

Kind code of ref document: A1