WO2023116161A1 - 真空吸附式加热器 - Google Patents

真空吸附式加热器 Download PDF

Info

Publication number
WO2023116161A1
WO2023116161A1 PCT/CN2022/126520 CN2022126520W WO2023116161A1 WO 2023116161 A1 WO2023116161 A1 WO 2023116161A1 CN 2022126520 W CN2022126520 W CN 2022126520W WO 2023116161 A1 WO2023116161 A1 WO 2023116161A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum adsorption
bumps
wafer
heater according
grooves
Prior art date
Application number
PCT/CN2022/126520
Other languages
English (en)
French (fr)
Inventor
张亚新
荒见淳一
Original Assignee
拓荆科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 拓荆科技股份有限公司 filed Critical 拓荆科技股份有限公司
Publication of WO2023116161A1 publication Critical patent/WO2023116161A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices

Definitions

  • the present application relates to a device for heating a wafer in a semiconductor processing chamber, in particular to a vacuum adsorption heater.
  • the present application also relates to a vacuum adsorption system that can be used in conjunction with a vacuum adsorption heater, and a method for adsorbing a wafer by using the vacuum adsorption system.
  • Wafers or substrates are the bases used to fabricate semiconductor devices.
  • semiconductor devices such as integrated circuits, semiconductor light-emitting devices, etc.
  • a semiconductor processing chamber also called a reaction chamber
  • deposition processing such as chemical vapor deposition (CVD), plasma Volume Enhanced Chemical Vapor Deposition (PECVD), etc.
  • CVD chemical vapor deposition
  • PECVD plasma Volume Enhanced Chemical Vapor Deposition
  • the wafer can be fixed on the heater in the processing chamber by means of vacuum adsorption or the like.
  • the wafer-carrying surface of the heater is in surface contact with the wafer, and uneven contact is likely to occur.
  • the two may not be completely and evenly bonded, and some positions may be suspended or in different positions. There are uneven gaps in the location.
  • vacuum adsorption structure on some vacuum adsorption heaters (such as the through hole on the heating plate, the adsorption pipeline inside the heating plate, etc.) is not easy to process due to its small size, deep depth, etc., and the processing is difficult , Higher processing costs.
  • the existing vacuum adsorption system generally only uses a vacuum pump to suck the gas (air) in the adsorption pipeline inside the heater, thereby controlling the back surface of the wafer (that is, the surface in contact with the wafer carrying surface of the heater). ) and the pressure difference between the front side, so in the process of absorbing and releasing the wafer, only by operating the vacuum pump (or the valve on the vacuum pump line) to control the air pressure in the adsorption line inside the heater, so as to control the back side of the wafer The pressure difference to the front side thereby controls the suction force on the wafer.
  • the purpose of this application is to solve at least one of the above-mentioned problems in the prior art, and to provide an improved vacuum adsorption heater.
  • the heater can make uniform point contact between the wafer placed on the carrying surface and the carrying surface, so that it can not only effectively absorb the wafer during operation, but also prevent the wafer from moving on the heater carrying surface (even if It is in a reaction chamber with large air flow and high pressure), and makes the whole wafer evenly heated, thus improving the product quality of the wafer.
  • the application also provides a vacuum adsorption system.
  • the vacuum adsorption system When the vacuum adsorption system is used to adsorb wafers, the air pressure in the adsorption pipeline inside the heater can be conveniently adjusted during the process of absorbing and releasing wafers, thereby adjusting The pressure difference between the back and the front of the wafer (that is, to adjust the size of the adsorption force) can not only meet the various adsorption needs of the wafer (for example, some processing processes of the wafer require a larger adsorption force, while some processes require a smaller adsorption force).
  • Adsorption force and in the process of releasing the wafer, gas can be introduced to make the pressure on the back of the wafer rise rapidly to be equal to or even greater than the pressure on the front side, so that the adsorption force can be eliminated in a short time to release the wafer, which is beneficial Improve work efficiency.
  • the present application also provides a method for absorbing wafers by using the above-mentioned vacuum adsorption system.
  • the method can effectively achieve the purpose of adjusting the adsorption force for absorbing wafers, thus having a wide range of applications and helping to improve the operation efficiency of wafer processing.
  • a vacuum adsorption heater comprising a heating plate comprising a generally plate-shaped body having an upper surface for carrying a wafer and further comprising: A plurality of grooves extending downward from the upper surface, at least a part of the grooves in the plurality of grooves are in fluid communication with each other; one or more through holes, which communicate with at least one of the plurality of grooves or in fluid communication; and a plurality of bumps on the upper surface for supporting the wafer.
  • each of the bumps is substantially circular, with a diameter of 1.0-3.0 mm and a height less than or equal to 0.2 mm; the distance between adjacent bumps is 3 -20mm.
  • the plurality of grooves include a plurality of annular grooves arranged in concentric circles and radial grooves fluidly connecting the annular grooves, the annular grooves and the The radial grooves have a width of 0.5-1.5mm and a depth of less than or equal to 1.0mm; the distance between adjacent annular grooves is 10-50mm.
  • the diameter of each bump is 1.5-2.5 mm, and the height is less than or equal to 0.1 mm; the distance between adjacent bumps is 5-15 mm; the Both the annular groove and the radial groove have a width of 0.5-1.0mm and a depth of less than or equal to 0.5mm; the distance between adjacent annular grooves is 15-50mm.
  • the width of the annular groove and the radial groove are both 1.0 mm, and the depth is 0.5 mm; and the distance between adjacent annular grooves is 21.5 mm.
  • the diameter of each of the bumps is 2.0 mm, and the height is 0.1 mm; and a plurality of the bumps are distributed along the circumference, thereby forming a plurality of concentric circles, and adjacent ones on the same circumference The distance between the bumps and between adjacent circles is 7mm.
  • the diameter of each of the bumps is 2.0 mm, and the height is 0.1 mm; and a plurality of the bumps are distributed in a triangle, and the distance between adjacent bumps is 10 mm or 5mm.
  • the width of the annular groove and the radial groove are both 1.0mm, and the depth is 0.5mm; and the distance between adjacent annular grooves is 43mm.
  • the diameter of each of the bumps is 2.0 mm, and the height is 0.1 mm; and a plurality of the bumps are distributed along the circumference, thereby forming a plurality of concentric circles, and adjacent ones on the same circumference The distance between the bumps and the distance between adjacent circles are 7mm or 15mm.
  • the diameter of each of the bumps is 2.0 mm, and the height is 0.1 mm; and a plurality of the bumps are distributed in a triangle, and the distance between adjacent bumps is 10 mm or 5mm.
  • the plurality of grooves are substantially uniformly distributed on the upper surface.
  • the plurality of bumps are substantially evenly distributed on the upper surface.
  • the plurality of grooves and the plurality of bumps are substantially evenly distributed on the upper surface.
  • the heating plate further includes a support shaft located under the main body, the support shaft is a hollow structure, and is integrally formed with the main body.
  • the vacuum adsorption heater includes a plurality of sequentially stacked quartz blocks and/or polyether ether ketone blocks located inside the support shaft.
  • the vacuum adsorption heater further includes a heating element located inside the main body and a heating rod electrically connected to the heating element, the heating rod is located inside the support shaft and runs through the quartz block and/or polyetheretherketone block, and can be electrically connected to an external power source.
  • the vacuum adsorption heater further comprises a through hole through said quartz block and/or PEEK block in fluid communication with said through hole and capable of being fluidly coupled to a vacuum pump during operation.
  • the diameter of the through hole is 2-3 mm; the depth of the through hole in each of the quartz blocks or the polyether ether ketone block is 20-25 mm.
  • the body of the heating plate includes only one through hole, the through hole is located at one of the grooves, and the diameter of the through hole is larger than the width of the groove . In some embodiments, the diameter of the through hole is 0.8-1.8 mm.
  • the vacuum adsorption heater further includes a cooling block located outside the support shaft and at least partially surrounding the support shaft.
  • the vacuum adsorption heater further includes a fixing block located outside the cooling block and clamping the cooling block, which is used to fix the vacuum adsorption heater on the machine table.
  • the vacuum adsorption heater further includes a sealing ring between the heating rod and the quartz block and/or polyether ether ketone block.
  • the vacuum adsorption heater further includes a sealing ring on the quartz block and/or the PEEK block around the through hole.
  • FIG. 1 is a schematic perspective view of the overall structure of a vacuum adsorption heater according to some embodiments of the present application
  • FIG. 2 is a top view of the heating plate of the vacuum adsorption heater shown in FIG. 1, which more clearly shows the grooves and protrusions in the upper surface (ie, the surface for carrying the wafer) of the main body of the heating plate.
  • Fig. 2A is an enlarged view at A of Fig. 2, which particularly shows that the through hole on the heating plate is located in the innermost annular groove, and the diameter is greater than the width of the annular groove;
  • Fig. 3 is similar to Fig. 2, and it is also a top view of the heating plate, showing a second distribution of grooves and bumps in the upper surface of the heating plate;
  • Fig. 4 is also similar to Fig. 2, which is also a top view of the heating plate, showing a third distribution mode of grooves and bumps in the upper surface of the heating plate;
  • Figure 5 is also similar to Figure 2, which is also a top view of the heating plate, showing a fourth distribution of grooves and bumps in the upper surface of the heating plate;
  • Fig. 6 is also similar to Fig. 2, which is also a top view of the heating plate, showing a fifth distribution of grooves and bumps in the upper surface of the heating plate;
  • Fig. 7 is also similar to Fig. 2, which is also a top view of the heating plate, showing a sixth distribution mode of grooves and bumps in the upper surface of the heating plate;
  • Fig. 8 is also similar to Fig. 2, which is also a top view of the heating plate, showing the seventh distribution of grooves and bumps in the upper surface of the heating plate;
  • Fig. 9 is a front view of the vacuum adsorption heater shown in Fig. 1, which shows the front structure of the vacuum adsorption heater;
  • Fig. 10 is a B-B cross-sectional view of Fig. 9, which shows the internal structure of the vacuum adsorption heater at the cross-sectional position;
  • Fig. 11 is a left side view of the vacuum adsorption heater shown in Fig. 1, which shows the structure of the side of the heater;
  • Figure 12 is a C-C cross-sectional view of Figure 11, which shows the internal structure of the vacuum adsorption heater at the cross-sectional position;
  • FIG. 12A is an enlarged view of D in FIG. 12, which generally schematically shows the structure of bumps, grooves, and through holes in the vertical direction;
  • Fig. 13 is a schematic structural diagram of a vacuum adsorption system according to some embodiments of the present application.
  • Fig. 1 is a schematic perspective view of the overall structure of a vacuum adsorption heater according to an embodiment of the present application.
  • the vacuum adsorption heater mainly includes a heating plate 10 .
  • the heating plate 10 includes a generally plate-shaped main body 1 and a support shaft 2 located below the main body 1 .
  • the main body 1 has an upper surface 11 for carrying a wafer.
  • the main body 1 of the heating plate 10 is located in a reaction chamber, and the wafer (not shown in the figure) can be placed on the upper surface 11 of the main body 1 by a transfer device such as a manipulator, and then sucked by vacuum. fixed. After the wafer is fixed, it can be subjected to operations such as deposition processing.
  • the main body 1 of the heating plate 10 and the support shaft 2 located below the main body 1 are formed as one body.
  • both can be made of ceramics, and then they can be integrated into one body by means of adhesion or welding.
  • this integrated structure in the present application not only saves the steps of fixing and sealing the two , and the sealing element between the two is also omitted, and the sealing performance is greatly improved, thus effectively improving the effect of vacuum adsorption.
  • the vacuum adsorption heater further includes a cooling block 50 located outside the support shaft 2 and at least partially surrounding the support shaft 2, and a cooling block 50 located outside the cooling block 50 and clamped The fixed block 60 of the cooling block 50 .
  • the fixing block 60 is used to fix the vacuum adsorption heater on the machine platform.
  • the specific structures of the cooling block 50 and the fixing block 60 can adopt designs known in the art, and will not be repeated here.
  • the vacuum adsorption heater further includes a heating element (not shown in the figure) inside the main body 1 and a heating rod 40 electrically connected to the heating element.
  • the heating element may include, but is not limited to, resistive wire.
  • the heating rod 40 may comprise a material with good electrical conductivity, such as copper, nickel, and the like. The heating element, the heating rod 40 and the electrical connections between them can all adopt designs known in the art, which will not be repeated here.
  • the support shaft 2 is a hollow structure, inside which can accommodate a plurality of sequentially stacked quartz blocks 20 and/or polyether ether ketone (PEEK) blocks 30 .
  • the heating rod 40 is located inside the support shaft 2 and runs through the quartz block 20 and/or the PEEK block 30, and can be electrically connected to an external power source. When the power is turned on, the heating element will generate heat and transfer the heat to the wafer on the main body 1 of the heating plate 10 . The heating rod 40 also generates heat.
  • the quartz block 20 and PEEK block 30 surrounding the heating rod 40 help to maintain little or no heat loss inside the support shaft 2, thereby helping to transfer heat to the wafer for heating it.
  • the quartz block 20 and the PEEK block 30 are also used to achieve electrical insulation between components inside the support shaft 2 .
  • the structure of the main body 1 of the heating plate 10 (especially the upper surface 11 carrying the wafer) is specially designed.
  • the details are as follows.
  • FIG. 2 is a top view of the heating plate 10 shown in FIG. 1
  • FIG. 2A is an enlarged view of A in FIG. 2
  • the main body 1 of the heating plate 10 further has the following structure:
  • the plurality of grooves 12 and the plurality of protrusions 14 are substantially evenly distributed on the upper surface 11 .
  • the plurality of grooves 12 and the plurality of bumps 14 may not be evenly distributed, or one of them may be evenly distributed.
  • the plurality of grooves 12 are substantially evenly distributed, while the plurality of bumps 14 are unevenly distributed (for example, the bumps in the middle part are denser, while the surrounding bumps are sparser);
  • the protrusions 14 are generally evenly distributed, while the grooves 12 are unevenly distributed (for example, the closer to the middle, the denser the grooves, and the farther to the outer periphery, the sparser the grooves).
  • the wafer and the upper surface 11 of the main body of the heating plate can form a uniform point contact, and there can be a uniform gap between the two, that is, These bumps 14 make the contact between the wafer and its carrying surface (that is, the upper surface 11 of the main body 1) more uniform, thus helping to make each part of the wafer receive uniform adsorption force and uniform heating, thereby facilitating the wafer.
  • Round processing helps to ensure the quality of film formation on the surface of the wafer and improve its pass rate.
  • the plurality of grooves 12 includes a plurality of annular grooves 121 arranged in concentric circles and radial grooves 122 connecting the annular grooves 121 in fluid communication. .
  • all radial grooves 122 are in fluid communication with adjacent annular grooves 121 such that all annular grooves 121 and radial grooves 122 are in fluid communication.
  • all grooves 12 are in full fluid communication. Therefore, all the grooves 12 can be vacuumed by vacuuming one groove 12 , so as to provide a suction force for the wafer.
  • the width of the annular groove 121 and the radial groove 122 are both 0.5-1.5mm, and the depth is less than or equal to 1.0mm; the distance between adjacent annular grooves 121 is 10- 50mm. More preferably, the width of the annular groove 121 and the radial groove 122 are both 0.5-1.0 mm, and the depth is less than or equal to 0.5 mm; the distance between adjacent annular grooves 121 is 15-50 mm.
  • the grooves with the above-mentioned size range are not only convenient for processing, but also help to effectively realize the adsorption of the wafer.
  • the figures of the present application show a certain number of annular grooves 121 and radial grooves 122 for illustrative purposes only. It should be appreciated that the heating plate 10 may have any suitable number of annular grooves 121 and radial grooves 122 .
  • the main body 1 may only include one through hole 13, and the through hole 13 is located at one groove 12, such as the innermost annular groove. 121, thus in fluid communication with the annular groove 121, as shown in Figure 2A.
  • the through hole 13 can also be located at other grooves 12 .
  • the diameter of the through hole 13 is larger than the width of the groove 12 , for example, 0.8-1.8 mm. Since the through hole is deep, the through hole 13 with a diameter within this size range is easy to process and can achieve a good adsorption effect. Setting only one through hole 13 also simplifies the processing technology and saves the processing cost.
  • a plurality of through holes 13 may also be provided on the main body 1 .
  • each bump 14 may be substantially circular, but the present application is not limited thereto.
  • the bumps 14 can be directly sintered and formed on the upper surface 11 .
  • the diameter of each bump 14 is 1.0-3.0 mm, and the height is less than or equal to 0.2 mm; the distance between adjacent bumps 14 is 3-20 mm.
  • the bumps with this size range are not only convenient for processing and shaping (such as facilitating the design of the mold of the main body 1 of the heating plate 10 ), but also can effectively achieve uniform contact with the wafer.
  • each bump 14 is 1.5-2.5 mm, and the height is less than or equal to 0.1 mm; the distance between adjacent bumps 14 is 5-15 mm. Bumps with this size range are more conducive to their production processing and also help to provide uniform contact with the wafer.
  • the upper surface 11 of the main body 1 includes seven annular grooves 121 in total. Both the annular groove 121 and the radial groove 122 have a width of 1.0mm and a depth of 0.5mm; and the distance between adjacent annular grooves 121 is 21.5mm. In this type of solution, the annular grooves 121 are relatively dense, so that the adsorption force is more uniform during the working process, and the adsorption effect on the wafer is good.
  • each bump 14 is 2.0mm, and the height is 0.1mm; and a plurality of bumps 14 are distributed along the circumference, thereby forming a plurality of concentric
  • the distance between adjacent bumps 14 on the same circumference and between adjacent circumferences is 7mm. This structure helps to achieve uniform support of the wafer from the circumference.
  • each bump 14 is 2.0mm, and the height is 0.1mm; Three bumps 14 can form an equilateral triangle), and the distance between adjacent bumps 14 is 10mm.
  • each bump 14 is 2.0mm, and the height is 0.1mm; and a plurality of bumps 14 are distributed in a triangle (for example, the nearest Three bumps 14 can form an equilateral triangle), and the distance between adjacent bumps 14 is 5mm.
  • the upper surface 11 of the main body 1 includes four annular grooves 121 in total. Both the annular groove 121 and the radial groove 122 have a width of 1.0 mm and a depth of 0.5 mm; and the distance between adjacent annular grooves 121 is 43 mm.
  • the annular grooves 121 are relatively sparse, and the heating plate 10 with such a structure is more convenient for production and processing, and the mold design and manufacture are more convenient, thus reducing the production cost.
  • each bump 14 is 2.0mm, and the height is 0.1mm; and a plurality of bumps 14 are distributed along the circumference, thereby forming a plurality of concentric
  • the distance between adjacent bumps 14 on the same circumference and between adjacent circumferences is 7 mm. This structure helps to achieve uniform support of the wafer from the circumference.
  • each bump 14 is 2.0mm, and the height is 0.1mm; and a plurality of bumps 14 are distributed along the circumference, thereby forming a plurality of concentric
  • the distance between adjacent bumps 14 on the same circumference and between adjacent circumferences is 15 mm.
  • the bumps 14 are more sparse, thus facilitating processing.
  • each bump 14 is 2.0mm, and the height is 0.1mm; and a plurality of bumps 14 are distributed in a triangle (for example, the nearest Three bumps 14 can form an equilateral triangle), and the distance between adjacent bumps 14 is 10mm.
  • each bump 14 is 2.0mm, and the height is 0.1mm; and a plurality of bumps 14 are triangular distribution (for example, the nearest Three bumps 14 can form an equilateral triangle), and the distance between adjacent bumps 14 is 5 mm.
  • the spacing between adjacent annular grooves 121 is the distance between the corresponding points of two annular grooves, that is, the outermost edge (or centerline or innermost edge) of an annular groove 121 edge) and the corresponding point on the outermost edge (or centerline or innermost edge) of another annular groove 121.
  • the width of a groove refers to the distance between corresponding points on the two edges of the groove, and the depth refers to the distance from the bottom surface of the groove to the top edge of the groove.
  • the distance between adjacent bumps 14 also refers to the distance between corresponding points on two bumps 14 (eg, the centers of the bumps).
  • FIG. 12 is a cross-sectional view showing part of the internal structure of the vacuum adsorption heater
  • FIG. 12A is an enlarged view at D of FIG.
  • the diameter of the through hole 13 is larger than the width of the groove 12 .
  • the diameter of the through hole 13 may be 0.8-1.8 mm. Such size design is not only helpful to the processing of the through hole 13, but also helpful to achieve a good adsorption effect.
  • the vacuum adsorption heater also includes a through hole 131 that runs through the quartz block 20 and/or the PEEK block 30, the upper end of the through hole 131 is in fluid communication with the through hole 13, and the lower end can be fluidly connected during operation. Coupled to a vacuum pump, the vacuum pump can suck the gas in the groove 12 through the pipeline and the through holes 131 and 13, so as to generate a pressure difference between the back and front of the wafer, thereby absorbing the wafer.
  • the diameter of the through hole 131 is 2-3 mm; the depth of the through hole 131 in each quartz block 20 or PEEK block 30 is 20-25 mm. The through hole with this depth and diameter is convenient for processing and production.
  • the vacuum adsorption heater further includes a sealing ring 16 located on the quartz block 20 and/or the PEEK block, around the through hole 131, thereby improving the sealing effect, preventing or reducing gas Give way.
  • the vacuum adsorption heater further includes a sealing ring 15 located between the heating rod 40 and the quartz block 20 and/or the PEEK block 30 .
  • the sealing ring 15 is sleeved on the heating rod 40 and clamped between adjacent quartz blocks 20 and/or PEEK blocks 30 , so it can be firmly fixed.
  • the vacuum adsorption system provided according to the present application and the method for adsorbing wafers by using the vacuum adsorption system are introduced below.
  • the vacuum adsorption system can be used in conjunction with the vacuum adsorption heater described in this specification, and can also be used in conjunction with vacuum adsorption heaters with other structures to adsorb wafers.
  • FIG. 13 it schematically shows a vacuum adsorption system according to an embodiment of the present application.
  • This system is used to adsorb and release wafers (in the figure) on the loading surface of the vacuum adsorption heater 200 (for example, the upper surface 11 of the main body 1 of the heating plate 10 shown in FIG. 1 ) in the reaction chamber 100. not shown).
  • the reaction chamber 100 has a pumping port 101; the vacuum adsorption heater 200 has a vent 201 (for example, the vent 201 may be in fluid communication with the through hole 131 shown in FIG. 12).
  • the figure shows that the entire vacuum adsorption heater 200 is located in the reaction chamber 100, in actual products, only a part of the vacuum adsorption heater 200, such as the main body 1 and the heating plate 10 shown in FIG. A part of the support shaft 2 (for example, the part above the cooling block 50 (including the cooling block 50 )) is located in the reaction chamber 100 .
  • the vacuum adsorption system includes:
  • the first pipeline A which is used to fluidly couple the pumping port 101 of the reaction chamber 100 with the vacuum pump 300;
  • the second pipeline B which is used to fluidly couple the vent 201 of the vacuum adsorption heater 200 with the vacuum pump 300;
  • a third line C which is connected to the second line B and used to supply the gas from the gas source 400 to the vacuum adsorption system.
  • the gas in the gas source 400 may be nitrogen, which is relatively cheap and less prone to chemical reactions.
  • other gases such as helium, may also be used.
  • the gas in the gas source 400 can be supplied to the vacuum adsorption system as needed during operation by means of the third pipeline C fluidly coupled with the gas source 400 . Therefore, when using the vacuum adsorption system to adsorb wafers, the adsorption pipeline inside the heater (for example, the through hole 13 and the through hole 131 shown in FIG. 12 ) can be easily adjusted during the process of absorbing and releasing the wafer.
  • the air pressure in the wafer can be used to adjust the pressure difference between the back and the front of the wafer, so as to achieve the purpose of adjusting the size of the adsorption force. It goes without saying that this will help meet the various adsorption needs of the wafer.
  • the processing technology of the wafer requires a large adsorption force
  • only a small amount of gas can be introduced from the gas source 400 or no gas can be introduced to ensure that the vacuum adsorption system produces an adsorption force to the wafer;
  • a larger amount of gas can be introduced into the vacuum adsorption system from the gas source 400 to offset part of the adsorption force generated by the vacuum pump 300 .
  • Another technical effect produced by setting the third pipeline C is: during the process of releasing the wafer, gas can be introduced into the vacuum adsorption system from the gas source 400, thereby supplying the gas to the adsorption pipeline inside the heater , so that the pressure on the back of the wafer rises rapidly to be equal to or even greater than the pressure on the front, so that the adsorption force on the wafer can be eliminated in a short time, thereby releasing the wafer.
  • the solution of the present application greatly improves the working efficiency.
  • a throttle valve TV is arranged on the first pipeline A to control the suction of the gas in the reaction chamber 100 by the vacuum pump 300 .
  • the air pressure Pc in the reaction chamber 100 can be measured by an air pressure measuring device 102 (such as a barometer or a vacuum gauge).
  • the throttle valve TV can be adjusted according to the air pressure Pc in the reaction chamber 100 to control the gas flow in the first pipeline A, thereby controlling the air pressure Pc in the reaction chamber 100 to reach a desired level.
  • a first valve CHCV-1 is arranged on the second pipeline B close to the vent 201, and the third pipeline C is connected to the downstream of the first valve CHCV-1 on the second pipeline B ( That is, the side closer to the vacuum pump 300).
  • a second valve CHCV-2 is arranged on the third pipeline C.
  • an air pressure controller 401 is disposed on the third pipeline C for adjusting the flow rate of the gas supplied to the vacuum adsorption system.
  • the air pressure controller 401 may include a mass flow controller MFM, an adjustable flow valve 402 and an air pressure measuring device 403 (such as a barometer or a vacuum gauge).
  • MFM mass flow controller
  • an adjustable flow valve 402 such as a barometer or a vacuum gauge
  • the second pipeline B is bifurcated into the first manifold B1 and the second manifold B2 downstream of the first valve CHCV-1; the other end of the first manifold B1 is connected to the reaction chamber
  • the third valve CHCV-3 is placed on the first manifold B1; the other end of the second manifold B2 is connected to the vacuum pump 300.
  • the other end of the second manifold line B2 can be connected to the first line A between the vacuum pump 300 and the throttle valve TV.
  • the fourth valve CHCV-4 is disposed on the second manifold B2.
  • an air pressure measurement device 500 (such as a barometer or a vacuum gauge) can also be installed on the second manifold B2 to measure the air pressure Pb in the second manifold B2, which can reflect the adsorption inside the heater. Air pressure in the pipeline.
  • the first valve CHCV-1, the second valve CHCV-2, the third valve CHCV-3 and the fourth valve CHCV-4 are all electromagnetic pneumatic valves, which can be fully opened or closed as required, so that Realize the on-off control of the corresponding pipeline.
  • the use of electromagnetic pneumatic valves can achieve more precise control. In other embodiments, other types of valves may also be used.
  • the present application also provides a method for absorbing wafers by using the above-mentioned vacuum adsorption system.
  • the gas from the gas source 400 can be supplied to the adsorption line inside the heater using the second line B and the third line C , to adjust the pressure difference between the back and front of the wafer.
  • the second pipeline B and the third pipeline C can be used to supply the gas from the gas source 400 into the adsorption pipeline inside the heater, so that the wafer To maintain the required pressure difference between the backside of the wafer and its front side, for example, keep the pressure on the backside of the wafer 30-150Torr less than the pressure on the front side.
  • the second pipeline B and the third pipeline C can be used to supply the gas from the gas source 400 into the adsorption pipeline inside the heater, so that the pressure on the back side of the wafer can be increased to greater than or Equal to the pressure on its front, e.g.
  • the method for absorbing a wafer by using the above-mentioned vacuum adsorption system mainly includes the following steps:
  • Adsorption wafer start the vacuum adsorption system, continuously suck the gas in the adsorption pipeline inside the vacuum adsorption heater 200 through the second pipeline B, so that the pressure on the back of the wafer is kept lower than the pressure on its front, Thereby, the wafer is adsorbed on the carrying surface of the vacuum adsorption heater 200;
  • the above method may also include at least one of the following steps:
  • step (a1) Before step (a), heating the bearing surface of the vacuum adsorption heater 200 (for example, heating to 450-500° C.), and pumping the reaction chamber 100 to a vacuum state by the vacuum pump 300; and
  • step (a2) After step (a) and before step (b), inject gas into the reaction chamber 100 (can pass through other pipelines, not shown in the figure), so that the air pressure Pc in the reaction chamber 100 rises (according to If necessary, Pc can be increased to 200-600 Torr, and the air pressure above the throttle valve TV can reach 200 Torr).
  • step (b) when the pressure Pc in the reaction chamber 100 rises above a threshold value (for example, 100 Torr), step (b) starts.
  • step (b) while using the vacuum pump 300 to continuously suck the gas in the adsorption pipeline inside the vacuum adsorption heater 200 through the second pipeline B, the second pipeline B and the third pipeline C supplies the gas from the gas source 400 into the adsorption line inside the vacuum adsorption heater 200, so that the pressure on the back side of the wafer is kept 30-150 Torr lower than the pressure on the front side.
  • the specific pressure difference can be adjusted according to the needs of wafer adsorption.
  • the throttle valve TV is installed on the first pipeline A; the first valve CHCV-1 is installed near the vent 201 on the second pipeline B; the third pipeline C is connected to the second pipeline Downstream of the first valve CHCV-1 on B, and the second valve CHCV-2 is placed on the third pipeline C; the second pipeline B is branched into the first manifold pipeline downstream of the first valve CHCV-1 B1 and the second manifold B2; the other end of the first manifold B1 is connected to the first pipeline A between the suction port 101 of the reaction chamber 100 and the throttle valve TV, and the third valve CHCV-3 is arranged On the first manifold B1; the other end of the second manifold B2 is connected to the vacuum pump 300 (for example, connected to the first pipeline A between the vacuum pump 300 and the throttle valve TV, as shown in Figure 13 ), the fourth valve CHCV-4 is placed on the second manifold B2.
  • the specific working process of these valves and their corresponding pipelines is as follows:
  • step (a1) the first valve CHCV-1, the second valve CHCV-2, the third valve CHCV-3, and the fourth valve CHCV-4 are all closed, and the throttle valve TV is opened, so that only the first pipeline A is in an open state, whereby the vacuum pump 300 pumps the reaction chamber 100 to a vacuum state.
  • step (a2) the first valve CHCV-1, the second valve CHCV-2, the third valve CHCV-3, and the fourth valve CHCV-4 are all closed, and the throttle valve TV is opened, so that only the first pipeline A is in an open state, whereby the vacuum pump 300 pumps the reaction chamber 100 to a vacuum state.
  • step (b) ie, adsorption of the wafer
  • the first valve CHCV-1, the second valve CHCV-2, and the fourth valve CHCV-4 are all opened, and the third valve CHCV-3 is closed.
  • the vacuum pump 300 continues to suck the gas in the reaction chamber 100 through the first pipeline A, so that the air pressure Pc in the reaction chamber 100 is maintained at a desired level (for example, 200 Torr).
  • the second pipeline B, the second manifold B2 and the third pipeline C are in the open state, so that the vacuum pump 300 sucks the gas in the adsorption pipeline inside the vacuum adsorption heater 200 (that is, the gas of the wafer gas on the back).
  • the gas source 400 can feed gas into the vacuum adsorption system, and the amount of gas fed (ie, the flow rate of the gas in the third pipeline C) can be controlled by adjusting the air pressure controller 401 .
  • the pressure on the back of the wafer is kept 30-150Torr lower than the pressure on the front.
  • the specific pressure difference can be set as required.
  • step (c) ie, releasing the wafer
  • the first valve CHCV-1, the second valve CHCV-2, and the third valve CHCV-3 are all opened, and the fourth valve CHCV-4 is closed.
  • the vacuum pump 300 continues to pump the gas in the reaction chamber 100 through the first pipeline A, so as to maintain the pressure Pc in the reaction chamber 100 at a desired level (for example, 200 Torr).
  • the gas in the reaction chamber 100 can enter the adsorption pipeline inside the vacuum adsorption heater through the first pipeline A, the first manifold pipeline B1 and the second pipeline B, so as to reach the wafer
  • the external gas (such as nitrogen) from the gas source 400 enters the adsorption pipeline inside the vacuum adsorption heater through the third pipeline C and the second pipeline B, thereby reaching the back surface of the wafer.
  • the pressure on the back of the wafer rises rapidly, and the pressure difference between it and the front decreases rapidly, and the flow rate of the gas on the third pipeline C can even be adjusted by adjusting the air pressure controller 401.
  • the pressure on the back of the wafer is increased to be equal to or greater than the pressure on the front, for example, the pressure on the back of the wafer is increased to 5-10Torr greater than the pressure on the front, so as to quickly eliminate the adsorption force, and then quickly release the wafer. round purpose. Obviously, this mode of operation greatly improves the working efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

本申请涉及一种真空吸附式加热器,其包括:加热盘,加热盘包括大体为盘状的主体,主体具有用于承载晶圆的上表面且进一步包括:自上表面向下延伸的多个凹槽,多个凹槽中的至少一部分凹槽彼此流体连通;一或多个通孔,其与所述多个凹槽中的至少一者流体连通;以及位于上表面上的多个凸点,其用于支撑所述晶圆。该加热器能够使得放置于承载表面上的晶圆与承载表面之间形成均匀的点接触,因而在操作过程中不仅能够有效地吸附晶圆,防止晶圆在加热器承载表面上发生移动,而且使得整个晶圆均匀受热,因而提高了晶圆的产品质量。

Description

真空吸附式加热器 技术领域
本申请涉及一种用于在半导体处理腔室中对晶圆进行加热的装置,尤其涉及一种真空吸附式加热器。本申请还涉及可与真空吸附式加热器配合使用的真空吸附系统、以及利用真空吸附系统吸附晶圆的方法。
背景技术
晶圆或基板是用于制备半导体装置的基底。为了制备半导体装置(例如集成电路、半导体发光装置等),需要将晶圆或基板放置于半导体处理腔室(也称反应腔室)进行加热及沉积处理(例如,化学气相沉积(CVD)、等离子体增强化学气相沉积(PECVD)等),以在晶圆或基板的表面沉积薄膜。在处理过程中,可通过真空吸附等方式将晶圆固定在处理腔室内的加热器上。
然而,现有的真空吸附式加热器、真空吸附系统及其吸附方法存在诸多缺点。
例如,加热器的晶圆承载表面和晶圆之间是面接触,容易产生接触不均匀。例如,由于承载表面及晶圆自身的表面粗糙度及其加工误差等原因,当将晶圆放置于承载表面上时,二者可能不能完全地、均匀地贴合,可能有些位置悬空或者在不同位置存在不均匀的间隙。
在这种情况下,一方面可能导致加热器加热时晶圆的各个位置受热不均,因而加热效果不佳,甚至影响晶圆的合格率;另一方面,可能会导致在操作过程中,对晶圆的真空吸附力不够,吸附效果不好;甚至晶圆有可能在承载表面上发生移动,尤其是在气流量大、压力高的处理腔室内,晶圆移动的可能性更大。
另外,有些真空吸附式加热器上的真空吸附结构(例如加热盘上的通孔、加热盘内部的吸附管路等)由于其尺寸过小、深度较深等原因而不易加工,加工难度较大、加工成本较高。
此外,现有的真空吸附系统一般仅通过真空泵来抽吸加热器内部的吸附管路中的气体(空气),借此控制晶圆的背面(即,与加热器的晶圆承载表面接触的面)与正面的 压力差,因此在吸附及释放晶圆的过程中,仅可通过操作真空泵(或真空泵管路上的阀门)来控制加热器内部的吸附管路中的气压,从而控制晶圆的背面与正面的压力差借此控制对晶圆的吸附力。然而,这种方式非常不便于(甚至无法)根据需要调节对晶圆的吸附力;并且,在释放晶圆的过程中,只能通过关闭真空泵(或真空泵管路上的阀门)、同时让反应腔室内的气体自动流动至加热器内部的吸附管路中直至晶圆的背面,来使得晶圆背面的压力达到与正面压力大致相同,从而释放晶圆,这整个过程耗时较长,因而降低了作业效率。
因此,有必要对现有技术中的真空吸附式加热器、真空吸附系统以及利用真空吸附系统吸附晶圆的方法进行改进,以解决上述技术问题。
发明内容
本申请的目的旨在至少解决上述现有技术中的问题之一,而提供一种改进的真空吸附式加热器。该加热器能够使得放置于承载表面上的晶圆与承载表面之间形成均匀的点接触,因而在操作过程中不仅能够有效地吸附晶圆,防止晶圆在加热器承载表面上发生移动(即使是在气流量大、压力高的反应腔室内),而且使得整个晶圆均匀受热,因而提高了晶圆的产品质量。
同时,本申请还提供一种真空吸附系统,利用该真空吸附系统吸附晶圆时,在吸附及释放晶圆的过程中,均可方便地调节加热器内部的吸附管路中的气压,从而调节晶圆背面与正面的压力差(即调节吸附力的大小),因而不仅能够满足晶圆的各种吸附需要(例如晶圆的有些处理工艺需要较大的吸附力,而有些工艺需要较小的吸附力),而且在释放晶圆的过程中,可以通入气体使晶圆背面的压力快速上升至等于甚至大于其正面的压力,因而能在短时间内消除吸附力而释放晶圆,有利于提高作业效率。
本申请还提供了利用上述真空吸附系统吸附晶圆的方法,该方法能够有效地实现调节吸附晶圆的吸附力的目的,因而适用范围广泛,并且有助于提高处理晶圆的作业效率。
本申请的一些实施例提供了一种真空吸附式加热器,其包括加热盘,所述加热盘包括大体为盘状的主体,所述主体具有用于承载晶圆的上表面且进一步包括:自所述上表面向下延伸的多个凹槽,所述多个凹槽中的至少一部分所述凹槽彼此流体连通;一或多个通孔,其与所述多个凹槽中的至少一者流体连通;以及位于所述上表面上的多个凸点, 其用于支撑所述晶圆。
在本申请的某些实施例中,每一所述凸点大体为圆形,其直径为1.0-3.0mm,且高度小于或等于0.2mm;相邻的所述凸点之间的间距为3-20mm。
在本申请的某些实施例中,所述多个凹槽包括多个呈同心圆布置的环形凹槽和将所述环形凹槽流体连通的径向凹槽,所述环形凹槽和所述径向凹槽的宽度均为0.5-1.5mm、深度均小于或等于1.0mm;相邻的所述环形凹槽之间的间距为10-50mm。
在本申请的某些实施例中,每一所述凸点的直径为1.5-2.5mm,且高度小于或等于0.1mm;相邻的所述凸点之间的间距为5-15mm;所述环形凹槽和所述径向凹槽的宽度均为0.5-1.0mm、深度均小于或等于0.5mm;相邻的所述环形凹槽之间的间距为15-50mm。
在本申请的某些实施例中,所述环形凹槽和所述径向凹槽的宽度均为1.0mm,深度均为0.5mm;且相邻的所述环形凹槽之间的间距为21.5mm。在一实施例中,每一所述凸点的直径为2.0mm,且高度为0.1mm;且多个所述凸点沿圆周分布,从而构成多个同心圆,位于同一圆周上的相邻的所述凸点之间以及相邻圆周之间的间距为7mm。在另一实施例中,每一所述凸点的直径为2.0mm,且高度为0.1mm;且多个所述凸点呈三角形分布,相邻的所述凸点之间的间距为10mm或5mm。
在本申请的另外某些实施例中,所述环形凹槽和所述径向凹槽的宽度均为1.0mm,深度均为0.5mm;且相邻的所述环形凹槽之间的间距为43mm。在一实施例中,每一所述凸点的直径为2.0mm,且高度为0.1mm;且多个所述凸点沿圆周分布,从而构成多个同心圆,位于同一圆周上的相邻的所述凸点之间的间距以及相邻圆周之间为7mm或15mm。在另一实施例中,每一所述凸点的直径为2.0mm,且高度为0.1mm;且多个所述凸点呈三角形分布,相邻的所述凸点之间的间距为10mm或5mm。
在本申请的某些实施例中,所述多个凹槽在所述上表面上大体上均匀分布。
在本申请的某些实施例中,所述多个凸点在所述上表面上大体上均匀分布。
在本申请的某些实施例中,所述多个凹槽和所述多个凸点在所述上表面上均大体上均匀分布。
在本申请的某些实施例中,所述加热盘进一步包括位于所述主体下方的支撑轴,所述支撑轴为空心结构,且与所述主体形成为一体。
在本申请的某些实施例中,该真空吸附式加热器包括位于所述支撑轴内部的多个依次层叠的石英块和/或聚醚醚酮块。
在一些实施例中,该真空吸附式加热器进一步包括位于所述主体内部的加热元件和与所述加热元件电连接的加热棒,所述加热棒位于所述支撑轴的内部且贯穿所述石英块和/或聚醚醚酮块,并能够与外界电源电连接。
在一些实施例中,该真空吸附式加热器进一步包括贯穿所述石英块和/或聚醚醚酮块的贯通孔,其与所述通孔流体连通,且能够在操作期间流体耦合到真空泵。在一些实施例中,所述贯通孔的直径为2-3mm;每一所述石英块或所述聚醚醚酮块中的所述贯通孔的深度为20-25mm。
在一些实施例中,所述加热盘的所述主体上仅包括一个通孔,所述通孔位于所述凹槽的一者处,并且,所述通孔的直径大于所述凹槽的宽度。在一些实施例中,所述通孔的直径为0.8-1.8mm。
在一些实施例中,所述真空吸附式加热器进一步包括位于所述支撑轴外部且至少部分环绕所述支撑轴的冷却块。
在一些实施例中,所述真空吸附式加热器进一步包括位于所述冷却块外部并夹持所述冷却块的固定块,其用于将所述真空吸附式加热器固定于机台上。
在一些实施例中,所述真空吸附式加热器进一步包括位于所述加热棒与所述石英块和/或聚醚醚酮块之间的密封圈。
在一些实施例中,所述真空吸附式加热器进一步包括位于所述石英块和/或聚醚醚酮块上、所述贯通孔周围的密封圈。
附图说明
为了更清楚地说明本申请的具体实施方式及所产生的技术效果,下面结合附图阐述本申请的具体实施例。为了表达清楚及便于图面的布置,这些附图并非完全按比例绘制,例如,有些图被放大以示出局部的细节,而有些被缩小以示出整体结构。为了清楚起见,附图可能并未示出给定设备或装置的全部组件。最后,在整个说明书和附图中,使用相同的附图标记来表示相同特征。其中:
图1是根据本申请某些实施例的真空吸附式加热器整体结构的立体示意图;
图2是图1所示的真空吸附式加热器的加热盘的俯视图,其更清楚地示出了该加热盘的主体的上表面(即,用于承载晶圆的表面)中凹槽和凸点的第一种分布方式;
图2A是图2的A处放大视图,其特别示出了加热盘上的通孔位于最内圈的环形凹槽中,且直径大于该环形凹槽的宽度;
图3类似于图2,其也为加热盘的俯视图,示出了加热盘的上表面中凹槽和凸点的第二种分布方式;
图4也类似于图2,其也为加热盘的俯视图,示出了加热盘的上表面中凹槽和凸点的第三种分布方式;
图5也类似于图2,其也为加热盘的俯视图,示出了加热盘的上表面中凹槽和凸点的第四种分布方式;
图6也类似于图2,其也为加热盘的俯视图,示出了加热盘的上表面中凹槽和凸点的第五种分布方式;
图7也类似于图2,其也为加热盘的俯视图,示出了加热盘的上表面中凹槽和凸点的第六种分布方式;
图8也类似于图2,其也为加热盘的俯视图,示出了加热盘的上表面中凹槽和凸点的第七种分布方式;
图9是图1所示的真空吸附式加热器的主视图,其示出了该真空吸附式加热器的正面的结构;
图10为图9的B-B剖视图,其示出了剖视位置处的该真空吸附式加热器的内部结构;
图11是图1所示的真空吸附式加热器的左视图,其示出了该加热器的侧面的结构;
图12为图11的C-C剖视图,其示出了剖视位置处的该真空吸附式加热器的内部结构;
图12A为图12的D处放大视图,其大体示意性地示出了凸点、凹槽、通孔在垂直方向的结构;以及
图13为根据本申请某些实施例的真空吸附系统的结构示意图。
具体实施方式
下面结合附图具体描述本申请的实施例。通过参考附图来阅读关于下面具体实施例的描述,就更容易理解本申请的各个方面。需要说明的是,这些实施例仅仅是示例性的,其仅用于解释、说明本申请的技术方案,而并非对本申请的限制。本领域技术人员在这些实施例的基础上,可以作出各种变型和变换(例如改变加热盘的主体的上表面中的凹槽和凸点的尺寸和/或布局等)。所有以等同方式变换获得的技术方案均属于本申请的保护范围。
本说明书中所使用的各种部件的名称仅出于说明的目的,并不具备限定作用,不同厂商可使用不同的名称来指代具备相同功能的部件。
真空吸附式加热器
图1是根据本申请一种实施例的真空吸附式加热器的整体结构的立体示意图。如图1中所示,该真空吸附式加热器主要包括加热盘10。加热盘10包括大体为盘状的主体1和位于主体1下方的支撑轴2。
如图1中所示,主体1具有用于承载晶圆的上表面11。在工作过程中,加热盘10的主体1位于一反应腔室内,可通过机械手等传送装置将晶圆(图中未示出)放置于主体1的上表面11,然后通过真空吸附的方式将其固定。在将晶圆固定后,可对其进行沉积处理等操作。
参见图1并结合图9-12,在本申请的一些实施例中,加热盘10的主体1和位于主体1下方的支撑轴2形成为一体。例如,二者可均由陶瓷制成,然后通过粘附或焊接等方式将二者形成为一体。与采用分体结构(即,主体和支撑轴以可拆卸的方式组装在一起)的加热盘相比,本申请中这种形成为一体的结构不仅省去了将二者安装固定和密封的步骤,而且也省去了二者之间的密封元件,并且密封性能大大改善,因而有效提升了真空吸附的效果。
继续参见图1和图9-12,在外部结构上,该真空吸附式加热器还进一步包括位于支撑轴2外部且至少部分环绕支撑轴2的冷却块50、以及位于冷却块50外部并夹持冷却块50的固定块60。固定块60用于将该真空吸附式加热器固定于机台上。冷却块50和固定块60的具体结构均可采用本领域已知的设计,此处不再赘述。
就内部结构而言,该真空吸附式加热器进一步包括位于主体1内部的加热元件(图中未示出)和与加热元件电连接的加热棒40。加热元件可包括但不限于电阻丝。加热棒40可包括导电良好的材料,例如铜、镍等。加热元件、加热棒40及它们之间的电连接均可采用本领域已知的设计,此处不再赘述。
如图10和12所示,支撑轴2为空心结构,其内部可容纳多个依次层叠的石英块20和/或聚醚醚酮(PEEK)块30。加热棒40位于支撑轴2的内部且贯穿所述石英块20和/或PEEK块30,并能够与外界电源电连接。当接通电源时,加热元件会发热,并将热量传递给加热盘10的主体1上的晶圆。加热棒40也会产生热量。环绕加热棒40的石英块20和PEEK块30有助于保持支撑轴2内部的热量基本不散失或散失很少,从而有助于将热量传递至晶圆,以对其进行加热。石英块20和PEEK块30还用于实现支撑轴2内部各组件之间的电绝缘。
在本申请中,对加热盘10的主体1(尤其是承载晶圆的上表面11)的结构进行了特别设计。具体如下所述。
参见图1、图2和图2A,其中图2是图1中所示的加热盘10的俯视图,图2A为图2的A处放大视图。在本申请中,加热盘10的主体1进一步具有如下结构:
◆自上表面11向下延伸的多个凹槽12,这些凹槽12中的至少一部分凹槽12彼此流体连通;
◆一或多个通孔13,其与至少一个凹槽12流体连通的;以及
◆位于上表面11上的多个凸点14,其用于支撑晶圆。
在本申请所给出的一些实施例中,多个凹槽12和多个凸点14在上表面11上均大体上均匀分布。本领域技术人员理解,多个凹槽12和多个凸点14也可以不是均匀分布,或者其中的一者均匀分布。例如,在某些实施例中,多个凹槽12大体上均匀分布,而多个凸点14不均匀分布(例如中间部分的凸点较密集,而周围的凸点较稀疏);在某些实施例中,多个凸点14大体上均匀分布,而多个凹槽12不均匀分布(例如越 靠近中间部分,凹槽越密集,而越往外周,凹槽越稀疏)。
与现有技术不同,在本申请中,由于上表面11具有凸点14,因而晶圆与加热盘的主体的上表面11可形成均匀的点接触,二者之间可具有均匀的间隙,即,这些凸点14使得晶圆与其承载表面(即主体1的上表面11)之间接触更加均匀,因而有助于使晶圆的各个部分受到均匀的吸附力以及均匀的加热,从而方便对晶圆的加工,有助于保证晶圆表面的成膜质量及提高其合格率。
在本申请的一些实施例中,如图1和图2中所示,多个凹槽12包括多个呈同心圆布置的环形凹槽121和将环形凹槽121流体连通的径向凹槽122。在一个实施例中,所有的径向凹槽122均将相邻的环形凹槽121流体连通,从而所有的环形凹槽121和径向凹槽122均流体连通。因此,所有的凹槽12均完全地流体连通。因此,通过对一个凹槽12抽吸真空即可实现对所有的凹槽12抽吸真空,从而提供对晶圆的吸附力。
在本申请的一些实施例中,环形凹槽121和径向凹槽122的宽度均为0.5-1.5mm、深度均小于或等于1.0mm;相邻的环形凹槽121之间的间距为10-50mm。更优选地,环形凹槽121和径向凹槽122的宽度均为0.5-1.0mm、深度均小于或等于0.5mm;相邻的环形凹槽121之间的间距为15-50mm。具有上述尺寸范围的凹槽既便于加工,又有助于有效地实现对晶圆的吸附。仅出于示例性说明的目的,本申请的附图展示了特定数量的环形凹槽121和径向凹槽122。应了解,加热盘10可具有任意合适数量的环形凹槽121和径向凹槽122。
进一步,如图2和2A中所示,在本申请的一些实施例中,主体1上可仅包括一个通孔13,该通孔13位于一个凹槽12处,例如位于最内侧的环形凹槽121上,因而与该环形凹槽121流体连通,如图2A中所示。在其他实施例中,该通孔13也可位于其他的凹槽12处。另外,如图2A中所示,该通孔13的直径大于凹槽12的宽度,例如可为0.8-1.8mm。由于通孔较深,直径在该尺寸范围内的通孔13便于加工,且能够达到很好的吸附效果。只设置一个通孔13也减化了加工工艺,节省了加工成本。在其他实施例中,主体1上也可设置多个通孔13。
在本申请的一些实施例中,如图中所示,每一凸点14可大体为圆形,但本申请并不限于此。在制作加热盘1的主体10时,凸点14可直接烧结成形在上表面11上。在一些实施例中,每一凸点14的直径为1.0-3.0mm,且高度小于或等于0.2mm;相邻的凸 点14之间的间距为3-20mm。具有该尺寸范围的凸点既便于加工成形(例如便于加热盘10的主体1的模具的设计),又能够有效地实现与晶圆的均匀接触。优选地,每一凸点14的直径为1.5-2.5mm,且高度小于或等于0.1mm;相邻的凸点14之间的间距为5-15mm。具有该尺寸范围的凸点更加有助于其生产加工,也有助于提供与晶圆的均匀接触。
为了达到更优的技术效果,在设计加热盘10的主体1的上表面11的结构时,需要考虑凹槽12的分布和凸点14的分布的搭配,下面将结合附图描述几种示例性的方案。应理解,凹槽12和凸点14的分布方式并不限于这几种方案。
在第一类方案中,如图2-4所示,主体1的上表面11共包括7个环形凹槽121。环形凹槽121和径向凹槽122的宽度均为1.0mm,深度均为0.5mm;且相邻的环形凹槽121之间的间距为21.5mm。在这类方案中,环形凹槽121较为密集,因而使得工作过程中吸附力更均匀,对晶圆的吸附效果好。
在这类方案的第一个实施例中,如图2所示,每一凸点14的直径为2.0mm,且高度为0.1mm;且多个凸点14沿圆周分布,从而构成多个同心圆,位于同一圆周上的相邻的凸点14之间以及相邻圆周之间的间距为7mm。这种结构有助于实现从周向上对晶圆的均匀支撑。
在这类方案的第二个实施例中,如图3所示,每一凸点14的直径为2.0mm,且高度为0.1mm;且多个凸点14呈三角形分布(例如,距离最近的三个凸点14可构成等边三角形),相邻的凸点14之间的间距为10mm。
在这类方案的第三个实施例中,如图4所示,每一凸点14的直径为2.0mm,且高度为0.1mm;且多个凸点14呈三角形分布(例如,距离最近的三个凸点14可构成等边三角形),相邻的凸点14之间的间距为5mm。
在第二类方案中,如图5-8所示,主体1的上表面11共包括4个环形凹槽121。环形凹槽121和径向凹槽122的宽度均为1.0mm,深度均为0.5mm;且相邻的环形凹槽121之间的间距为43mm。在这类方案中,环形凹槽121较为稀疏,具有这样的结构的加热盘10更便于生产加工,模具设计及制造更方便,因而降低了生产成本。
在这类方案的第一个实施例中,如图5所示,每一凸点14的直径为2.0mm,且高度为0.1mm;且多个凸点14沿圆周分布,从而构成多个同心圆,位于同一圆周上的相邻的凸点14之间以及相邻圆周之间的间距为7mm。这种结构有助于实现从周向上对晶 圆的均匀支撑。
在这类方案的第二个实施例中,如图6所示,每一凸点14的直径为2.0mm,且高度为0.1mm;且多个凸点14沿圆周分布,从而构成多个同心圆,位于同一圆周上的相邻的凸点14之间以及相邻圆周之间的间距为15mm。在这种结构中,凸点14更为稀疏,因而便于加工。
在这类方案的第三个实施例中,如图7所示,每一凸点14的直径为2.0mm,且高度为0.1mm;且多个凸点14呈三角形分布(例如,距离最近的三个凸点14可构成等边三角形),相邻凸点14之间的间距为10mm。
在这类方案的第四个实施例中,如图8所示,每一凸点14的直径为2.0mm,且高度为0.1mm;且多个凸点14呈三角形分布(例如,距离最近的三个凸点14可构成等边三角形),相邻凸点14之间的间距为5mm。
本领域技术人员能够理解:相邻的环形凹槽121之间的间距是两个环形凹槽的相应点之间的距离,即,一环形凹槽121的最外边缘(或中心线或最内边缘)上的相应点与另一环形凹槽121的最外边缘(或中心线或最内边缘)上的相应点之间的距离。凹槽的宽度是指凹槽的两个边缘上的相应点之间的距离,深度是指从凹槽的底面到凹槽顶部边缘之间的距离。同理,相邻凸点14之间的间距也是指两个凸点14上的相应点(例如凸点的圆心)之间的距离。
进一步参见图12及图12A,图12为示出该真空吸附式加热器的部分内部结构的剖视图,图12A为图12的D处放大图,其特别示出加热盘10的主体1上的凸点14、凹槽12、通孔13在垂直方向的结构。如图12A中所示,通孔13的直径大于凹槽12的宽度。在一些实施例中,通孔13的直径可为0.8-1.8mm。这样的尺寸设计既有助于通孔13的加工,又有助于达到良好的吸附效果。
如图12中所示,该真空吸附式加热器还包括贯穿石英块20和/或PEEK块30的贯通孔131,该贯通孔131的上端与通孔13流体连通,且下端能够在操作期间流体耦合到真空泵,从而真空泵可通过管路及该贯通孔131、通孔13抽吸凹槽12内的气体,使晶圆背面与正面产生压力差,借此吸附晶圆。在一些实施例中,贯通孔131的直径为2-3mm;每一石英块20或PEEK块30中的贯通孔131的深度为20-25mm。具有该深度及直径的贯通孔便于加工生产。
为了提高吸附效果,如图12中所示,该真空吸附式加热器进一步包括位于石英块20和/或PEEK块上、贯通孔131周围的密封圈16,从而提高了密封效果,防止或减少气体泄露。
此外,如图12中所示,该真空吸附式加热器还包括位于加热棒40与石英块20和/或PEEK块30之间的密封圈15。该密封圈15套设于加热棒40上,并夹持于相邻的石英块20和/或PEEK块30之间,因而能够牢固地固定。
真空吸附系统及吸附晶圆的方法
下面介绍根据本申请所提供的真空吸附系统以及利用该真空吸附系统吸附晶圆的方法。该真空吸附系统既可以与本说明书所描述的真空吸附式加热器配合使用,也可以与具有其他结构的真空吸附式加热器配合使用,以用于吸附晶圆。
参见图13,其示意性地示出了根据本申请一种实施例的真空吸附系统。该系统用于吸附及释放位于反应腔室100内的、真空吸附式加热器200的承载表面(例如,图1所示的加热盘10的主体1的上表面11)上的晶圆(图中未示)。反应腔室100具有抽气口101;真空吸附式加热器200具有通气口201(例如,通气口201可与图12所示的贯通孔131流体连通)。虽然图中示出整个真空吸附式加热器200均位于反应腔室100内,但在实际产品中,可能仅真空吸附式加热器200的一部分,例如图1所示的加热盘10的主体1和支撑轴2的一部分(例如冷却块50以上(含冷却块50)的部分),位于反应腔室100内。
如图13中所示,该真空吸附系统包括:
◆第一管路A,其用于将反应腔室100的抽气口101与真空泵300流体耦合;
◆第二管路B,其用于将真空吸附式加热器200的通气口201与真空泵300流体耦合;及
◆第三管路C,其连接至第二管路B且用于将来自气体源400的气体供应到所述真空吸附系统。在一些实施例中,气体源400内的气体可以是氮气,氮气相较而言价格更低廉,而且不易发生化学反应。在其他实施例中,也可以采用其他气体,例如氦气。
根据本申请的实施例,可以借助与气体源400流体耦合的第三管路C在操作过程中根据需要将气体源400中的气体供应到真空吸附系统中。因此,利用该真空吸 附系统吸附晶圆时,在吸附及释放晶圆的过程中,均可方便地调节加热器内部的吸附管路(例如,图12所示的通孔13以及贯通孔131)中的气压,借此调节晶圆背面与正面的压力差,从而达到调节吸附力的大小的目的。不言而喻,这样将有助于满足晶圆的各种吸附需要。例如,当晶圆的处理工艺需要较大的吸附力时,可以仅从气体源400通入较小量的气体或不通入气体,以保证真空吸附系统产生对晶圆的吸附力;而在需要较小的吸附力的工艺中,则可从气体源400向真空吸附系统中通入较大量的气体,以抵销真空泵300产生的部分吸附力。
设置第三管路C所产生的另一个技术效果是:在释放晶圆的过程中,可以从气体源400向真空吸附系统内部通入气体,从而将气体供应到加热器内部的吸附管路中,使晶圆背面的压力快速上升至等于甚至大于其正面的压力,因而能在短时间内消除对晶圆的吸附力,从而释放晶圆。与现有技术中仅仅依靠关闭真空吸附系统、而让反应腔室内的气体自动流动到晶圆背面的方案相比,本申请的这种方案大大提高了作业效率。
下面进一步描述根据本申请的一些实施例的真空吸附系统的结构。
参见图13,在真空吸附系统中,第一管路A上安置有节流阀TV,以控制真空泵300对反应腔室100内气体的抽吸。在一些实施例中,可通过气压测量装置102(例如气压计或真空计)来测量反应腔室100内的气压Pc。可根据反应腔室100内的气压Pc调节节流阀TV以控制第一管路A中的气体流量,进而控制反应腔室100内的气压Pc达到所需的水平。
如图13中所示,第二管路B上靠近通气口201处安置有第一阀门CHCV-1,第三管路C连接至第二管路B上的第一阀门CHCV-1的下游(即更靠近真空泵300的一侧)。第三管路C上安置有第二阀门CHCV-2。在一实施例中,第三管路C上安置有气压控制器401以用于调节供应至真空吸附系统的气体的流量。如图中所示,气压控制器401可包括质量流量控制器MFM、可调流量阀402和气压测量装置403(例如气压计或真空计)。本领域技术人员应了解,气压控制器401不限于图中所示的结构,现有的气压控制器或具有类似功能的装置均可用于作为气压控制器401。
进一步参见图13,第二管路B在第一阀门CHCV-1的下游分叉为第一歧管路B1和第二歧管路B2;第一歧管路B1的另一端连接到反应腔室100的抽气口101和节流阀 TV之间的第一管路A上,第三阀门CHCV-3安置于第一歧管路B1上;第二歧管路B2的另一端连接到真空泵300。在一实施例中,第二歧管路B2的另一端可连接到真空泵300和节流阀TV之间的第一管路A上。第四阀门CHCV-4安置于第二歧管路B2上。在一实施例中,第二歧管路B2上还可安置气压测量装置500(例如气压计或真空计),以测量第二歧管路B2中的气压Pb,其可反映加热器内部的吸附管路中的气压。
在一些实施例中,第一阀门CHCV-1、第二阀门CHCV-2、第三阀门CHCV-3和第四阀门CHCV-4均为电磁气动阀,其可以根据需要完全地打开或关闭,从而实现对相应管路的通断的控制。采用电磁气动阀能够实现更精密的控制。在其他实施例中,也可以采用其他类型的阀门。
本申请还提供了利用上述真空吸附系统吸附晶圆的方法。简言之,在该方法中,在吸附和/或释放晶圆的过程中,可利用第二管路B和第三管路C将来自气体源400的气体供应到加热器内部的吸附管路中,以调节晶圆的背面与正面的压力差。
根据本申请的一些实施例,在吸附晶圆的过程中,可利用第二管路B和第三管路C将来自气体源400的气体供应到加热器内部的吸附管路中,使晶圆的背面与其正面保持所需的压力差,例如,使晶圆的背面的压力保持比其正面的压力小30-150Torr。在释放晶圆的过程中,可利用第二管路B和第三管路C将来自气体源400的气体供应到加热器内部的吸附管路中,使晶圆背面的压力升高至大于或等于其正面的压力,例如,使晶圆背面的压力升高至比其正面的压力大5-10Torr。此时吸附力完全消除且在晶圆的背面有一定推力,因而可以轻松地将晶圆移至下一工位。
整体而言,根据本申请的一些实施例,利用上述真空吸附系统吸附晶圆的方法主要包括如下步骤:
(a)放置晶圆:在真空吸附系统处于关闭状态(即,第二管路B和第三管路C均处于关断状态)时,将晶圆放置于反应腔室100内的真空吸附式加热器200的承载表面上;
(b)吸附晶圆:启动真空吸附系统,通过第二管路B持续地抽吸真空吸附式加热器200内部的吸附管路中的气体,使晶圆背面的压力保持小于其正面的压力,从而将晶圆吸附在真空吸附式加热器200的承载表面上;以及
(c)释放晶圆:在对晶圆处理完毕后,停止抽吸真空吸附式加热器200内部的吸附 管路中的气体,并且利用第二管路B和第三管路C将来自气体源400的气体供应到真空吸附式加热器200内部的吸附管路中,以使得晶圆背面的压力升高至等于或大于其正面的压力,以释放晶圆。
在一些实施例中,上述方法还可包括如下步骤中的至少一者:
(a1)在步骤(a)之前,加热真空吸附式加热器200的承载表面(例如,加热至450-500℃),并通过真空泵300将反应腔室100抽吸至真空状态;及
(a2)在步骤(a)之后、步骤(b)之前,向反应腔室100内注入气体(可通过其他管路,图中未示出),使反应腔室100内的气压Pc上升(根据需要,可以使Pc上升至200~600Torr,节流阀TV上方的气压均能达到200Torr)。
在本申请的一个实施例中,在步骤(a2)中,当反应腔室100内的气压Pc上升到超过阈值(例如100Torr)时,开始步骤(b)。在步骤(b)中,在利用真空泵300通过第二管路B持续地抽吸真空吸附式加热器200内部的吸附管路中的气体的同时,可通过第二管路B和第三管路C将来自气体源400的气体供应到真空吸附式加热器200内部的吸附管路中,从而使晶圆背面的压力保持比其正面的压力小30-150Torr。具体的压力差可根据晶圆吸附的需要进行调节。
如前所述,第一管路A上安置有节流阀TV;第二管路B上靠近通气口201处安置有的第一阀门CHCV-1;第三管路C连接至第二管路B上的第一阀门CHCV-1的下游,且第三管路C上安置有第二阀门CHCV-2;第二管路B在第一阀门CHCV-1的下游分叉为第一歧管路B1和第二歧管路B2;第一歧管路B1的另一端连接到反应腔室100的抽气口101和节流阀TV之间的第一管路A上,第三阀门CHCV-3安置于第一歧管路B1上;第二歧管路B2的另一端连接到真空泵300(例如,连接到真空泵300和节流阀TV之间的第一管路A上,如图13中所示),第四阀门CHCV-4安置于第二歧管路B2上。这些阀及其相应的管路具体的工作过程如下:
在步骤(a1)中,第一阀门CHCV-1、第二阀门CHCV-2、第三阀门CHCV-3、和第四阀门CHCV-4均关闭,节流阀TV打开,从而仅第一管路A处于通路状态,借此真空泵300将反应腔室100抽吸至真空状态。在步骤(a)(即,放置晶圆)以及步骤(a2)中,这些阀仍然保持这样的状态。
在步骤(b)(即,吸附晶圆)中,第一阀门CHCV-1、第二阀门CHCV-2、和第四阀门CHCV-4均打开,第三阀门CHCV-3关闭。真空泵300仍通过第一管路A持续抽吸 反应腔室100内的气体,使反应腔室100内的气压Pc维持在所需水平(例如200Torr)。此时,第二管路B、第二歧管路B2以及第三管路C处于通路状态,借此真空泵300抽吸真空吸附式加热器200内部的吸附管路中的气体(即晶圆的背面的气体)。同时,气体源400可向真空吸附系统通入气体,通入的气体的量(即第三管路C中的气体的流量)可通过调节气压控制器401来控制。在真空泵300通过第二管路B和第二歧管路B2从真空吸附式加热器200的吸附管路中抽吸的气体、以及气体源400通过第三管路C向该吸附管路中通入气体的共同作用下,使晶圆背面的压力保持比其正面的压力小30-150Torr。具体的压力差可根据需要进行设定。
在步骤(c)(即,释放晶圆)中,第一阀门CHCV-1、第二阀门CHCV-2、和第三阀门CHCV-3均打开,第四阀门CHCV-4关闭。真空泵300仍通过第一管路A持续抽吸反应腔室100内的气体,使反应腔室100内的气压Pc维持在所需水平(例如200Torr)。此时,一方面,反应腔室100内的气体可通过第一管路A、第一歧管路B1以及第二管路B进入真空吸附式加热器内部的吸附管路中,从而到达晶圆的背面,另一方面,来自气体源400的外部气体(例如氮气)通过第三管路C以及第二管路B进入到真空吸附式加热器内部的吸附管路中,从而达到晶圆的背面。由于这两方面的气体的作用,使晶圆背面的压力快速上升,其与正面的压力差快速地减小,甚至可通过调节气压控制器401来调节第三管路C上的气体的流量,而使得晶圆背面的压力升高至等于或大于其正面的压力,例如,使得晶圆背面的压力升高至比其正面的压力大5-10Torr,从而达到快速消除吸附力,进而快速释放晶圆的目的。显然,这种操作方式大大提高了作业效率。
本申请的技术内容及技术特点已由上述相关实施例加以描述,然而上述实施例仅为实施本申请的范例。熟悉本领域的技术人员仍可能基于本申请的教示及揭示而作种种不背离本申请精神的替换及修饰。因此,本申请已公开的实施例并未限制本申请的范围。相反地,不脱离本申请的精神及范围的修改及均等设置均包括于本申请的范围内。

Claims (22)

  1. 一种真空吸附式加热器,其包括:
    加热盘(10),所述加热盘(10)包括大体为盘状的主体(1),所述主体(1)具有用于承载晶圆的上表面(11)且进一步包括:
    自所述上表面(11)向下延伸的多个凹槽(12),所述多个凹槽(12)中的至少一部分所述凹槽(12)彼此流体连通;
    一或多个通孔(13),其与所述多个凹槽(12)中的至少一者流体连通;以及
    位于所述上表面(11)上的多个凸点(14),其用于支撑所述晶圆。
  2. 根据权利要求1所述的真空吸附式加热器,其中每一所述凸点(14)大体为圆形,其直径为1.0-3.0mm,且高度小于或等于0.2mm;相邻的所述凸点(14)之间的间距为3-20mm。
  3. 根据权利要求2所述的真空吸附式加热器,其中:所述多个凹槽(12)包括多个呈同心圆布置的环形凹槽(121)和将所述环形凹槽(121)流体连通的径向凹槽(122),所述环形凹槽(121)和所述径向凹槽(122)的宽度均为0.5-1.5mm、深度均小于或等于1.0mm;相邻的所述环形凹槽(121)之间的间距为10-50mm。
  4. 根据权利要求3所述的真空吸附式加热器,其中:
    每一所述凸点(14)的直径为1.5-2.5mm,且高度小于或等于0.1mm;相邻的所述凸点(14)之间的间距为5-15mm;
    所述环形凹槽(121)和所述径向凹槽(122)的宽度均为0.5-1.0mm、深度均小于或等于0.5mm;相邻的所述环形凹槽(121)之间的间距为15-50mm。
  5. 根据权利要求4所述的真空吸附式加热器,其中:
    所述环形凹槽(121)和所述径向凹槽(122)的宽度均为1.0mm,深度均为0.5mm;且相邻的所述环形凹槽(121)之间的间距为21.5mm。
  6. 根据权利要求5所述的真空吸附式加热器,其中:
    每一所述凸点(14)的直径为2.0mm,且高度为0.1mm;且
    多个所述凸点(14)沿圆周分布,从而构成多个同心圆,位于同一圆周上的相邻的所述凸点(14)之间以及相邻圆周之间的间距为7mm。
  7. 根据权利要求5所述的真空吸附式加热器,其中:
    每一所述凸点(14)的直径为2.0mm,且高度为0.1mm;且
    多个所述凸点(14)呈三角形分布,相邻的所述凸点(14)之间的间距为10mm或5mm。
  8. 根据权利要求4所述的真空吸附式加热器,其中:
    所述环形凹槽(121)和所述径向凹槽(122)的宽度均为1.0mm,深度均为0.5mm;且相邻的所述环形凹槽(121)之间的间距为43mm。
  9. 根据权利要求8所述的真空吸附式加热器,其中:
    每一所述凸点(14)的直径为2.0mm,且高度为0.1mm;且
    多个所述凸点(14)沿圆周分布,从而构成多个同心圆,位于同一圆周上的相邻的所述凸点(14)之间以及相邻圆周之间的间距为7mm或15mm。
  10. 根据权利要求8所述的真空吸附式加热器,其中:
    每一所述凸点(14)的直径为2.0mm,且高度为0.1mm;且
    多个所述凸点(14)呈三角形分布,相邻的所述凸点(14)之间的间距为10mm或5mm。
  11. 根据权利要求1所述的真空吸附式加热器,其中:所述多个凹槽(12)和/或所述多个凸点(14)在所述上表面(11)上大体上均匀分布。
  12. 根据权利要求1所述的真空吸附式加热器,其中:所述加热盘(10)进一步包括位于所述主体(1)下方的支撑轴(2),所述支撑轴(2)为空心结构,且与所述主体(1)形成为一体。
  13. 根据权利要求12所述的真空吸附式加热器,其进一步包括位于所述支撑轴(2)内部的多个依次层叠的石英块(20)和/或聚醚醚酮块(30)。
  14. 根据权利要求13所述的真空吸附式加热器,其进一步包括位于所述主体(1)内部的加热元件和与所述加热元件电连接的加热棒(40),所述加热棒(40)位于所述支撑轴(2)的内部且贯穿所述石英块(20)和/或聚醚醚酮块(30),并能够与外界电源电连接。
  15. 根据权利要求13所述的真空吸附式加热器,其进一步包括贯穿所述石英块(20)和/或聚醚醚酮块(30)的贯通孔(131),其与所述通孔(13)流体连通,且能够在操作期间流体耦合到真空泵。
  16. 根据权利要求1所述的真空吸附式加热器,其中所述主体(1)上仅包括一个通孔(13),所述通孔(13)位于所述凹槽(12)的一者处,且其直径大于所述凹槽(12)的宽度。
  17. 根据权利要求16所述的真空吸附式加热器,其中所述通孔(13)的直径为0.8-1.8mm。
  18. 根据权利要求15所述的真空吸附式加热器,其中所述贯通孔(131)的直径为2-3mm;每一所述石英块(20)或所述聚醚醚酮块(30)中的所述贯通孔(131)的深度为20-25mm。
  19. 根据权利要求12所述的真空吸附式加热器,其进一步包括位于所述支撑轴(2)外部且至少部分环绕所述支撑轴(2)的冷却块(50)。
  20. 根据权利要求19所述的真空吸附式加热器,其进一步包括位于所述冷却块 (50)外部并夹持所述冷却块(50)的固定块(60),其用于将所述真空吸附式加热器固定于机台上。
  21. 根据权利要求14所述的真空吸附式加热器,其进一步包括位于所述加热棒(40)与所述石英块(20)和/或聚醚醚酮块(30)之间的密封圈(15)。
  22. 根据权利要求15所述的真空吸附式加热器,其进一步包括位于所述石英块(20)和/或聚醚醚酮块上、所述贯通孔(131)周围的密封圈(16)。
PCT/CN2022/126520 2021-12-22 2022-10-20 真空吸附式加热器 WO2023116161A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111579514.3A CN116387176A (zh) 2021-12-22 2021-12-22 真空吸附式加热器
CN202111579514.3 2021-12-22

Publications (1)

Publication Number Publication Date
WO2023116161A1 true WO2023116161A1 (zh) 2023-06-29

Family

ID=86901216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126520 WO2023116161A1 (zh) 2021-12-22 2022-10-20 真空吸附式加热器

Country Status (3)

Country Link
CN (1) CN116387176A (zh)
TW (1) TW202341342A (zh)
WO (1) WO2023116161A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020189940A1 (en) * 2001-06-14 2002-12-19 Applied Materials, Inc. Substrate support with multilevel heat transfer mechanism
CN101243542A (zh) * 2005-08-17 2008-08-13 应用材料股份有限公司 具有焊接板和加热器的基材支撑件
US20090235866A1 (en) * 2008-03-21 2009-09-24 Ngk Insulators, Ltd. Ceramic heater
US20170045828A1 (en) * 2014-04-30 2017-02-16 Asml Netherlands B.V. Support table for a lithographic apparatus, lithographic apparatus and device manufacturing method
CN113223991A (zh) * 2020-02-04 2021-08-06 日本碍子株式会社 静电卡盘加热器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020189940A1 (en) * 2001-06-14 2002-12-19 Applied Materials, Inc. Substrate support with multilevel heat transfer mechanism
CN101243542A (zh) * 2005-08-17 2008-08-13 应用材料股份有限公司 具有焊接板和加热器的基材支撑件
US20090235866A1 (en) * 2008-03-21 2009-09-24 Ngk Insulators, Ltd. Ceramic heater
US20170045828A1 (en) * 2014-04-30 2017-02-16 Asml Netherlands B.V. Support table for a lithographic apparatus, lithographic apparatus and device manufacturing method
CN113223991A (zh) * 2020-02-04 2021-08-06 日本碍子株式会社 静电卡盘加热器

Also Published As

Publication number Publication date
TW202341342A (zh) 2023-10-16
CN116387176A (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
CN102308381B (zh) 非接触性基板处理
TWI676708B (zh) 具有傳導性控制之化學沉積設備
KR102620633B1 (ko) 왕복식 회전 cvd 장치 및 응용 방법
US20140209596A1 (en) Electrostatic chuck with concentric cooling base
WO2023116159A1 (zh) 真空吸附系统及方法
WO2015138094A1 (en) Wafer rotation in a semiconductor chamber
TW201448109A (zh) 具有多個獨立邊緣區域的多區域加熱之靜電吸座
CN102217055B (zh) 衬底处理方法及衬底处理装置
JP2013531364A (ja) 共通のリソースを有するプロセスチャンバ及びその使用方法
US20120329000A1 (en) Substrate processing apparatus, substrate processing method, program and computer storage medium
WO2023116161A1 (zh) 真空吸附式加热器
TWI769366B (zh) 處理烘箱中擴展電漿用的電漿擴展裝置和系統及方法
KR20210089787A (ko) 온도에 민감한 프로세스들을 위해 열적 커플링이 개선된 정전 척
WO2020196179A1 (ja) 成膜装置、成膜方法、および成膜システム
TW201906066A (zh) 用於高溫處理腔室的靜電吸座
CN113862643A (zh) 原子层沉积装置及其匀流机构
WO2023174045A1 (zh) 薄膜沉积装置
TW202111152A (zh) 化學氣相沉積設備、泵浦襯套及化學氣相沉積方法
US11211265B2 (en) Heat treatment apparatus and heat treatment method
TW202325890A (zh) 用以改善基板溫度分布的薄膜沉積機台
KR101464202B1 (ko) 기판 처리 장치
JP2020193379A (ja) ステージ構造体、基板処理装置及びステージ構造体の制御方法
US20240068101A1 (en) Substrate processing apparatus
WO2020209067A1 (ja) 成膜装置、成膜方法、および成膜システム
CN214361683U (zh) 气相沉积晶圆气动控制结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909479

Country of ref document: EP

Kind code of ref document: A1