WO2023116049A1 - 可穿戴设备及测温方法 - Google Patents

可穿戴设备及测温方法 Download PDF

Info

Publication number
WO2023116049A1
WO2023116049A1 PCT/CN2022/116906 CN2022116906W WO2023116049A1 WO 2023116049 A1 WO2023116049 A1 WO 2023116049A1 CN 2022116906 W CN2022116906 W CN 2022116906W WO 2023116049 A1 WO2023116049 A1 WO 2023116049A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
sensing element
wearable device
value
capacitance
Prior art date
Application number
PCT/CN2022/116906
Other languages
English (en)
French (fr)
Inventor
姚超
李辰龙
张宁
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to EP22859448.7A priority Critical patent/EP4224126A4/en
Priority to US18/025,168 priority patent/US20240172944A1/en
Publication of WO2023116049A1 publication Critical patent/WO2023116049A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/20Clinical contact thermometers for use with humans or animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6803Head-worn items, e.g. helmets, masks, headphones or goggles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • A61B5/6815Ear
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • A61B5/6815Ear
    • A61B5/6817Ear canal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6843Monitoring or controlling sensor contact pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7285Specific aspects of physiological measurement analysis for synchronising or triggering a physiological measurement or image acquisition with a physiological event or waveform, e.g. an ECG signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/746Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/42Circuits effecting compensation of thermal inertia; Circuits for predicting the stationary value of a temperature
    • G01K7/427Temperature calculation based on spatial modeling, e.g. spatial inter- or extrapolation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • A61B5/0008Temperature signals

Definitions

  • the present application relates to the technical field of temperature measurement, in particular, to a wearable device capable of measuring a user's temperature and a temperature measurement method applied to the wearable device.
  • body temperature reflects the health status of the human body to a certain extent. Therefore, the measurement results of body temperature, especially the long-term continuous body temperature measurement results, have application significance for menstrual cycle management, biological rhythm regulation, and chronic disease management.
  • the embodiments of the present application provide a wearable device and a temperature measurement method for measuring the temperature of a living body with high temperature measurement accuracy.
  • the first aspect of the embodiments of the present application provides a wearable device for measuring the temperature of a living body.
  • the wearable device includes a first sensing element, a second sensing element and a processor.
  • the first inductive element is used to obtain capacitance.
  • the second sensing element is used to measure the temperature of the first sensing element as the initial temperature.
  • the processor is electrically connected to the first sensing element for reading the capacitance value and judging the contact state of the wearable device according to the capacitance value.
  • the processor is also electrically connected to the second sensing element for reading the initial temperature measured by the second sensing element, and directly takes the initial temperature as the measurement temperature according to the contact state between the first sensing element and the living body, or is the initial temperature.
  • the temperature matches the corresponding temperature compensation value, and the sum of the initial temperature and the temperature compensation value is taken as the measured temperature.
  • an equivalent capacitance is formed between the first sensing element and the skin of the organism to represent the contact state between the wearable device and the organism through the capacitance value of the equivalent capacitance; heat, and the second sensor measures the temperature of the first sensor to initially measure the temperature of the living body; the processor is electrically connected to the first sensor and the second sensor, so as to combine the contact state with the current measured initial
  • the temperature is used as the measured temperature, or matches the corresponding temperature compensation value for the current initial temperature.
  • the wearable device includes a housing, and the housing is provided with an opening.
  • the first inductive element is partly accommodated in the opening so as to be exposed on the surface of the casing through the opening.
  • the first aspect can be used to install the first sensing element, and on the other hand, the first sensing element is exposed from the casing, which is convenient for contact with the user's skin and absorbs user heat.
  • the second sensing element is arranged adjacent to the first sensing element.
  • the first induction element covers the second induction element, and an insulating and thermally conductive material is filled between the first induction element and the second induction element.
  • the second induction element is attached to the first induction element, or an insulating and heat-conducting material is filled between the first induction element and the second induction element to reduce unnecessary heat loss and environmental interference , improving the accuracy of the temperature measured by the second sensing element to the first sensing element.
  • the first inductive element is provided with a receiving hole, and the second inductive element is accommodated in the accommodating hole.
  • the first inductive element by accommodating the second inductive element in the receiving hole formed by the first inductive element, the first inductive element can better cover the second inductive element, and the effect of the second inductive element on the first inductive element is improved.
  • the accuracy of the temperature measurement of the sensor by accommodating the second inductive element in the receiving hole formed by the first inductive element, the first inductive element can better cover the second inductive element, and the effect of the second inductive element on the first inductive element is improved.
  • the wearable device includes a casing.
  • the casing includes an outer surface and an inner surface.
  • the outer surface is provided with a first induction part
  • the inner surface is provided with a second induction part.
  • an insulating and heat-conducting shell is provided between the first sensing element and the second sensing element, so that the first sensing element can be directly disposed on the surface of the wearable device and contact the user's skin.
  • the first induction element has electrical conductivity and thermal conductivity.
  • the first sensing part is made of conductive and thermally conductive materials, so that the first sensing part can quickly receive the heat of the living body to form an equivalent capacitance with the skin of the living body To reach thermal equilibrium, reduce the time to read the initial temperature.
  • the first sensing element is made of metal material.
  • the second sensing element is a temperature sensor.
  • the first sensing element is made of a metal with good electrical and thermal conductivity at the same time, and the temperature sensor is used as the second sensing element.
  • the solution is easy to implement, and the processor can quickly read the temperature.
  • the capacitance value is greater than or equal to the first capacitance threshold, it is determined that the contact state is a touch state, and the initial temperature is used as the measured temperature of the living body.
  • the contact state is judged by the capacitance value of the equivalent capacitance formed by the first sensing element and the skin of the organism, and when the processor judges that the first sensing element and the organism are in a touch state, that is, the first When the sensing element is attached to the living body, the processor considers the currently measured initial temperature as credible data, which can represent the temperature of the living body.
  • the second sensing element is also controlled to start temperature measurement, and the initial temperature is read when the first sensing element reaches a thermal equilibrium state after a preset time.
  • the initial temperature is read only when the first sensing element reaches the contact state with the skin of the living body and the first sensing element reaches a thermal equilibrium state, which further improves the accuracy of temperature measurement by the wearable device .
  • the capacitance value is less than the first capacitance threshold and greater than or equal to the second capacitance threshold, it is judged that the contact state is an approach state, and a corresponding temperature compensation value is matched for the initial temperature, and the initial temperature and The sum of the temperature compensation values is taken as the measured temperature.
  • the processor matches the corresponding temperature compensation value for the initial temperature, and The sum of the initial temperature and the temperature compensation value was taken as the measured temperature of the organism. In this way, the measured temperature of the living body can be calibrated to improve data accuracy.
  • the distance value between the first sensing element and the living body is positively correlated with the temperature compensation value.
  • the relationship between the temperature compensation value and the capacitance value satisfies a preset function, and the processor calculates the temperature compensation value according to the preset function and the obtained capacitance value.
  • the capacitance value has a negative correlation with the temperature compensation value.
  • the wearable device when the capacitance value is less than the second capacitance threshold, it is determined that the space between the first sensing element and the living body is in a suspended state.
  • the wearable device also includes a prompting module, which is configured to output prompting information under the control of the processor when it is determined that the space between the first sensor and the living body is suspended.
  • the prompt module when it is judged that the contact state is a suspended state, that is, when the distance between the first sensor and the skin of the living body is unacceptable, the prompt module is also controlled to remind the user to wear the wearable device tightly so that the first sensor The contact state between the component and the living body is restored to the touch state or the close state, thereby effectively improving the accuracy of temperature measurement.
  • the wearable device further includes an analog-to-digital converter.
  • One end of the analog-to-digital converter is connected to the first sensing element, and the other end is connected to the processor.
  • An analog-to-digital converter is used to convert the capacitance value into a digital quantity.
  • an analog-to-digital converter is set to convert the capacitance value into a digital quantity, so that the contact state is represented by the digital quantity.
  • the functional relationship between the temperature compensation value and the digital quantity is:
  • T com -0.00004(a-5500) 2 +0.0995(a-5500)-61.303
  • T com represents the temperature compensation value
  • a represents the digital quantity
  • the temperature compensation value is calculated through a function between the temperature compensation value and the digital quantity.
  • the second aspect of the embodiment of the present application also provides a temperature measurement method applied to a wearable device. It can effectively improve the accuracy of wearable devices when measuring temperature.
  • the wearable device includes a first sensing element and a second sensing element.
  • the first sensing element is used to obtain the capacitance value; the second sensing element is used to measure the temperature of the first sensing element as the initial temperature.
  • the temperature measurement method includes:
  • the contact state take the initial temperature as the measurement temperature, or match the corresponding temperature compensation value for the initial temperature, and use the sum of the initial temperature and the temperature compensation value as the measurement temperature.
  • the capacitance value is greater than or equal to the first capacitance threshold, it is determined that the contact state is a touch state, and the initial temperature is used as the measured temperature.
  • the capacitance value is less than the first capacitance threshold and greater than or equal to the second capacitance threshold, it is judged that the contact state is an approach state, and a corresponding temperature compensation value is matched for the initial temperature, and the initial temperature and The sum of the temperature compensation values is taken as the measured temperature.
  • the wearable device further includes a prompt module, and when it is judged that the contact state is a suspended state, the prompt module is controlled to output prompt information.
  • the wearable device further includes an analog-digital converter, one end of the analog-digital converter is connected to the first sensor, and the other end is connected to the processor, and the analog-digital converter is used to convert the capacitance value into a digital value ; and the functional relationship between the temperature compensation value and the digital quantity is:
  • T com -0.00004(a-5500) 2 +0.0995(a-5500)-61.303
  • T com represents the temperature compensation value
  • a represents the digital quantity
  • FIG. 1 is a schematic diagram of a hardware structure of a wearable device provided in an embodiment of the present application
  • FIG. 2 is a schematic diagram of a wearable device worn on an ear provided by an embodiment of the present application
  • FIG. 3 is a three-dimensional schematic diagram of the wearable device shown in FIG. 2;
  • Fig. 4 is a sectional view along section line IV-IV of the wearable device shown in Fig. 3;
  • FIG. 5 is an enlarged schematic diagram of area V in the wearable device shown in FIG. 4;
  • FIG. 6 is a schematic structural diagram of a first sensing element in the wearable device shown in FIG. 4;
  • Fig. 7 is a schematic diagram when the wearable device shown in Fig. 4 is in contact with the user's epidermis;
  • Fig. 8 is a schematic diagram when the wearable device shown in Fig. 4 is close to the skin of the user;
  • Fig. 9 is a schematic diagram when the wearable device shown in Fig. 4 and the user's skin are suspended;
  • FIG. 10 is a schematic diagram of a temperature measurement scenario of the wearable device shown in FIG. 2;
  • Fig. 11 is a partial sectional view of a wearable device according to another embodiment of the present application.
  • Wearable device 100 100a; first housing 10; opening 11; second housing 20;
  • Earphone stem 30 third housing 40a; outer surface 41a; inner surface 42a; wireless communication module 110;
  • positioning module 120 processor 130; internal memory 140; power management module 150;
  • battery 160 charging management module 170; audio module 180; speaker 180A; receiver 180B;
  • Electronic device 200 display screen 210 .
  • first”, “second”, and “third” are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, a feature defined as “first”, “second” and “third” may explicitly or implicitly include one or more of these features.
  • a and/or B may indicate: A exists alone, A and B exist simultaneously, and B exists alone, Wherein A and B can be singular or plural.
  • the character "/" generally indicates that the contextual objects are an "or" relationship.
  • references in this application to "one embodiment” or “some embodiments” etc. means that a particular feature, structure or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this application are not necessarily all References to the same embodiment mean “one or more but not all” unless specifically stated otherwise.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.
  • Body temperature is one of the important vital signs of the human body. Long-term body temperature monitoring has application significance for menstrual cycle management, biological rhythm regulation, and chronic disease management. However, the measurement accuracy of the current contact temperature measurement fails to meet the needs of users, and the user experience is poor. Especially when the temperature sensor does not maintain a stable contact state with the organism, the temperature measurement result may be inaccurate.
  • Wearable devices are specific to users for long-term wear and close contact with the human body. In this way, wearable devices combined with contact temperature sensors can provide relatively accurate body temperature changes without the user's perception.
  • some embodiments of the present application provide a wearable device 100 that has a temperature detection function and can provide more accurate temperature measurement data.
  • the wearable device 100 may include a wireless communication module 110, a positioning module 120, a processor 130, an internal memory 140, a power management module 150, a battery 160, a charging management module 170, an audio module 180, a temperature detection module 190, and an antenna 1, etc.
  • the processor 130 may include one or more processing units.
  • the processor 130 may include an application processor (application processor, AP), a modem processor, a graphics processing unit (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), a controller, a video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural network processor (neural-network processing unit, NPU), etc.
  • processor 130 may include one or more interfaces.
  • the interface may include I2C interface, I2S interface, PCM interface, UART interface, MIPI, GPIO interface, SIM card interface, and/or USB interface, etc.
  • the interface connection relationship between the modules shown in the embodiment of the present application is only a schematic illustration, and does not constitute a structural limitation of the wearable device 100 .
  • the wearable device 100 may also adopt different interface connection methods in the above embodiments, or a combination of multiple interface connection methods.
  • the charging management module 170 is configured to receive charging input from the charger.
  • the charger may be a wireless charger or a wired charger.
  • the power management module 150 is used for connecting the battery 160 , the charging management module 170 and the processor 130 .
  • the power management module 150 receives the input of the battery 160 and/or the charging management module 170 to provide power for the processor 130 , the internal memory 140 , the external memory interface and the wireless communication module 110 .
  • the power management module 150 can also be used to monitor parameters such as battery capacity, battery cycle times, and battery health status (leakage, impedance).
  • the wireless communication function of the wearable device 100 can be realized through the antenna 1, the wireless communication module 110, the positioning module 120 and the like.
  • the positioning module 120 can provide positioning technology applied on the wearable device 100 .
  • Positioning technology can include Beidou Navigation Satellite System (BDS), Global Positioning System (GPS), Global Navigation Satellite System (GLONASS), Quasi-Zenith Satellite System (quasi) -Positioning technology for systems such as zenith satellite system (QZSS) and/or satellite based augmentation systems (satellite based augmentation systems (SBAS).
  • BDS Beidou Navigation Satellite System
  • GPS Global Positioning System
  • GLONASS Global Navigation Satellite System
  • quadsi-Zenith Satellite System quadsi-Positioning technology for systems such as zenith satellite system (QZSS) and/or satellite based augmentation systems (satellite based augmentation systems (SBAS).
  • QZSS zenith satellite system
  • SBAS satellite based augmentation systems
  • Internal memory 140 may be used to store one or more computer programs including instructions.
  • the audio module 180 includes a speaker 180A, a receiver 180B, a microphone 180C, an earphone jack 180D, a bone conduction sensor 180E and other electronic components. It can be understood that the wearable device 100 can realize the audio function through the audio module 180 , the speaker 180A, the receiver 180B, the microphone 180C, the earphone interface 180D, the bone conduction sensor 180E and the application processor. Such as music playback, recording, etc.
  • the audio module 180 is used to convert digital audio information into analog audio signal output, and is also used to convert analog audio input into digital audio signal.
  • the audio module 180 may also be used to encode and decode audio signals.
  • the audio module 180 may be set in the processor 130 , or some functional modules of the audio module 180 may be set in the processor 130 .
  • Speaker 180A also called “horn” is used to convert audio electrical signals into sound signals. Wearable device 100 can listen to music through speaker 180A, or listen to hands-free calls.
  • Receiver 180B also called “earpiece” is used to convert audio electrical signals into sound signals.
  • the receiver 180B can be placed close to the human ear to receive the voice.
  • the microphone 180C also called “microphone” or “microphone” is used to convert sound signals into electrical signals.
  • the user can approach the microphone 180C to make a sound through the mouth, and input the sound signal to the microphone 180C.
  • the wearable device 100 may be provided with at least one microphone 180C.
  • the wearable device 100 can be provided with two microphones 180C, which can also implement a noise reduction function in addition to collecting sound signals.
  • the wearable device 100 can also be provided with three, four or more microphones 180C, so as to collect sound signals, reduce noise, identify sound sources, and realize directional recording functions, etc.
  • the bone conduction sensor 180E can acquire vibration signals.
  • the bone conduction sensor can acquire the vibration signal of the vibrating bone mass of the human voice.
  • Bone conduction sensors can also contact the human pulse and receive blood pressure beating signals.
  • the bone conduction sensor can also be disposed in the earphone, combined into a bone conduction earphone.
  • the audio module 180 can analyze the voice signal based on the vibration signal of the vibrating bone mass of the vocal part acquired by the bone conduction sensor, so as to realize the voice function.
  • the application processor can analyze the heart rate information based on the blood pressure beating signal acquired by the bone conduction sensor, and realize the heart rate detection function.
  • the temperature detection module 190 can be used to collect temperature data.
  • the temperature detection module 190 includes a first sensing element 191 and a second sensing element 192.
  • the first sensing element 191 is used to form an equivalent capacitance with the user when the wearable device 100 is close to the skin of the user. In this way, the first sensing element 191 can be used to obtain the capacitance value of the equivalent capacitor.
  • the second sensing element 192 is a temperature sensor for measuring the temperature of the first sensing element 191 .
  • the wearable device 100 may also be provided with an optical sensor (for example, an infrared temperature sensor), a motion sensor (for example, an acceleration sensor, a gyroscope, etc.), a capacitive sensor, and the like.
  • an optical sensor for example, an infrared temperature sensor
  • a motion sensor for example, an acceleration sensor, a gyroscope, etc.
  • a capacitive sensor for example, a capacitive sensor, and the like.
  • the wearable device 100 can perform wearing and taking off detection, so as to determine whether the wearable device 100 is in the wearing state or the taking off (removed) state.
  • the wearable device 100 when the wearable device 100 is provided with an infrared temperature sensor and an acceleration sensor, the infrared temperature sensor can be used to sense the temperature change within a preset time, and whether a wearing action occurs within a preset time can be obtained according to the acceleration sensor. In one aspect, it can be determined whether the wearable device 100 is in the wearing state or the taking off state. For another example, when the wearable device 100 is provided with a capacitive sensor, it can be determined whether the wearable device 100 is in the wearing state or the taking off state through the change of the capacitance value of the capacitive sensor in the process of putting on and taking off the wearable device 100 .
  • the wearable device 100 when the wearable device 100 is in the wearing state, the wearable device 100 is worn on the user's body, such as on the ear or on the wrist.
  • the wearable device 100 When the wearable device 100 is in a detachable state, the wearable device 100 may be stored in a battery box, or placed on a table, a floor, or a sofa, etc., which is not limited in this application.
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the wearable device 100 .
  • the wearable device 100 may include more or fewer components than shown in the illustration, or combine certain components, or separate certain components, or arrange different components.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • the wearable device 100 involved in the embodiment of the present application may include, but is not limited to, smart earphones, smart watches, smart bracelets, smart glasses, mobile phones, virtual reality devices, medical devices and other wearable smart devices (such as chest belt, armband), etc. That is to say, the wearable device 100 may be a mobile terminal such as a smart earphone or a smart watch, or may be a fixed terminal that needs to be worn, such as a large medical device.
  • the process of the wearable device 100 measuring the user's body temperature will be described.
  • the wearable device 100 includes a first casing 10 and a second casing 20 .
  • the first housing 10 is the side of the wearable device 100 close to the human ear during use
  • the second housing 20 is the side of the wearable device 100 away from the human ear during use.
  • the first casing 10 is roughly in the shape of a cover
  • the end of the second casing 20 close to the first casing 10 is also roughly in the shape of a cover.
  • first housing 10 and the second housing 20 are connected to each other to form a roughly spherical housing space for jointly housing earphone components (such as the above-mentioned wireless communication module 110, positioning module 120, processor 130, audio module 180, temperature detection module 190, etc.).
  • jointly housing earphone components such as the above-mentioned wireless communication module 110, positioning module 120, processor 130, audio module 180, temperature detection module 190, etc.
  • the side of the second housing 20 away from the first housing 10 further extends downwards to form an earphone handle 30 .
  • the earphone handle 30 is roughly a hollow tube for receiving other earphone components (such as the battery 160, the charging management module 170, etc.).
  • the temperature detection module 190 is disposed close to the surface of the first casing 10 .
  • the first housing 10 of the wearable device 100 protrudes into the user's concha cavity, so that the temperature detection module 190 contacts the skin in the concha cavity, thereby collecting data of the user. temperature data.
  • the wearable device 100 may break away from the original wearing state due to the user's action or external impact, so that the temperature detection module 190 and the user's skin change from the contact state to the separation state. It affects the accuracy of the temperature data collected by the temperature detection module 190 .
  • the wearable device 100 provided in the embodiment of the present application can also judge the contact state between the wearable device 100 and the user while collecting the user's temperature data, so as to judge whether the temperature data collected by the temperature detection module 190 matches Corresponding temperature compensation value. In this way, the accuracy of the user's temperature data collected by the wearable device 100 can be further improved.
  • the first sensing element 191 is disposed on the surface of the wearable device 100 . In this way, when the wearable device 100 is close to the skin of the human body, the first sensing element 191 forms an equivalent capacitance with the surface of the human body, and receives energy transmitted or radiated by the human body.
  • the first induction element 191 is made of a material with electrical conductivity and thermal conductivity.
  • the first sensing element 191 due to the current induction effect of the human body, when the first sensing element 191 is close to the human body, the first sensing element 191 forms an equivalent capacitance with the surface of the human body. Furthermore, when the first sensing element 191 is close to the human body, the capacitance value of the equivalent capacitance changes due to the change of the distance between the first sensing element 191 and the human body.
  • the first sensing element 191 can receive the heat of the human body.
  • the first sensing element 191 when the first sensing element 191 receives the heat of the human body for a period of time, the first sensing element 191 will reach a thermal equilibrium state, that is, the temperature of the first sensing element 191 is uniform and substantially equal to the temperature of the human body.
  • the temperature of the human body can be characterized by measuring and collecting the temperature of the first sensing element 191 .
  • the second sensing element 192 is a temperature sensor and is disposed close to the first sensing element 191 for measuring the temperature of the first sensing element 191 .
  • the first sensing element 191 can be made of metal material. It can be understood that the metal material has good electrical and thermal conductivity at the same time, which is beneficial to quickly conduct heat and achieve thermal balance, so that the second sensing element 192 can quickly collect the user's temperature data.
  • an opening 11 is defined in the first housing 10 .
  • the first sensing element 191 is disposed close to the inner surface of the first housing 10 and is roughly in the shape of a hat.
  • a protrusion 1911 is formed at one end of the first sensing element 191 .
  • the protrusion 1911 is accommodated in the opening 11 , and the protrusion 1911 has a first height h1 (at least 0.05 mm) relative to the surface of the first housing 10 for better contact with the skin of the user.
  • the protrusion 1911 is disposed corresponding to the opening 11 , and the diameter d1 of the protrusion 1911 is approximately 2.1 mm.
  • the first sensing element 191 is partially exposed on the surface of the first casing 10 through the protrusion 1911 .
  • the protrusion 1911 of the first sensing element 191 can be in contact with the user's skin.
  • a receiving hole is defined on a side of the first sensing element 191 away from the hole 11 to form a receiving space 193 .
  • the accommodating space 193 is used for accommodating the second sensing element 192 .
  • the second sensing element 192 is arranged on the side of the first sensing element 191 away from the user's skin, and the first sensing element 191 covers the second sensing element 192, which is beneficial to reduce external environmental interference, so that the second sensing element 192 is opposite to the first sensing element 192.
  • the temperature measurement of the sensing element 191 is more accurate.
  • An insulating and heat-conducting material (not shown), such as insulating and heat-conducting glue, is also filled between the first induction element 191 and the second induction element 192, for conducting the heat of the first induction element 191 to the second induction element 192 for convenience.
  • the second sensing element 192 measures temperature.
  • the second sensing element 192 can also be disposed adjacent to the first sensing element 191 . In this way, the second sensing element 192 can directly contact the first sensing element 191 to measure the temperature of the first sensing element 191 without filling the insulating and heat-conducting material between the first sensing element 191 and the second sensing element 192 .
  • the first sensing element 191 forms a protrusion 1911, and the protrusion 1911 passes through the opening 11 and directly contacts the user's skin, which can effectively reduce the interference of the environment on the first sensing element 191, so that the first sensing element 191 can quickly reach state of thermal equilibrium.
  • the first sensing element 191 is not limited to the cap shape in this embodiment, and the shape of the first embodiment can be designed accordingly according to the specific structure of the wearable device. It is only necessary to ensure that the first sensing element 191 is disposed close to the skin of the user, and the second sensing element 192 is disposed on the side of the first sensing element 191 away from the skin of the user.
  • the first sensing element 191 can also be a substantially sheet metal
  • the second sensing element 192 is arranged on the side of the first sensing element 191 away from the user's skin
  • the second sensing element 192 is attached to It is set together with the first sensing element 191.
  • the first sensing element 191 can also be directly disposed on the surface of the wearable device 100 so as to directly contact with the skin of the user. It can be understood that it is preferable to select a wearable device with a relatively airtight temperature measurement environment for this design, for example, a wearable device whose temperature measurement environment is the ear cavity, armpit, or under the tongue. In this way, the interference of the environment on the first sensing element 191 can be reduced.
  • the first sensing element 191 and the second sensing element 192 are both disposed on a circuit board 194 (such as a flexible circuit board).
  • the second sensing element 192 can be accommodated in the closed space jointly formed by the first sensing element 191 and the circuit board 194 .
  • the heat of the first sensing element 191 can be enclosed in the closed space to a large extent, which is beneficial to improving the accuracy of the second sensing element 192 when measuring the first sensing element 191 .
  • Several via holes 195 are also formed on the circuit board 194 , so that the first sensing element 191 can extend through the via holes and be connected to the processor 130 .
  • the second sensing element 192 can also be electrically connected to the processor 130 through the via hole 195 through a wire.
  • the processor 130 is electrically connected to the first inductive element 191 for obtaining the capacitance value of the equivalent capacitance formed between the first inductive element 191 and the human body. It can be understood that, according to the capacitance calculation formula, under the condition that other conditions remain unchanged, the smaller the distance between the first sensing element 191 and the human body, the larger the capacitance value of the equivalent capacitance formed by the first sensing element 191 and the human body. In this way, the processor 130 can determine the contact state between the first sensing element 191 and the human body, that is, the distance between the first sensing element 191 and the human body, by acquiring the obtained capacitance value.
  • the processor 130 is also electrically connected to the second sensing element 192 for acquiring temperature data measured by the second sensing element 192 and using it as an initial temperature. It can be understood that when the first sensing element 191 is in close contact with the human body and reaches thermal equilibrium, the temperature of the first sensing element 191 measured by the second sensing element 192 can be regarded as the temperature of the human body. When the first sensing element 191 is set at a distance from the human body, the temperature of the first sensing element 191 measured by the second sensing element 192 actually has a certain error with the temperature of the human body.
  • the processor 130 directly takes the initial temperature as the measured temperature of the user according to the contact state between the first sensing element 191 and the user's skin, or matches the corresponding temperature compensation value for the initial temperature, and uses the sum of the initial temperature and the temperature compensation value as the user's measured temperature. to improve the accuracy of temperature measurement.
  • the contact state between the first sensing member 191 and the user's skin can be divided into three states, such as a touch state, an approach state and a suspension state.
  • the touch state means that the distance between the first sensing element 191 and the user’s skin is between 0 mm and the first distance L1 (for example, 0.05 mm).
  • An inductive element 191 is spaced from the user's skin, and the distance between the first inductive element 191 and the user's skin is greater than the first distance L1 and smaller than the second distance L2 (for example, 3 millimeters);
  • the suspended state means that the first inductive element 191 is set at a distance from the user, and the distance between the first sensing element 191 and the user's skin is greater than or equal to the second distance L2 (for example, 3mm), wherein the second distance L2 is greater than the first distance L1.
  • the distance between the first sensing element 191 and the skin of the user shown in FIG. 9 is a third distance L3, and the third distance L3 is greater than the second distance L2. Since the distance between the first sensing element 191 and the user's skin can be characterized by the change in the capacitance value, it is possible to conduct experiments on the wearable device 100 to obtain the first sensing element 191 at the first distance L1, the second The distance L2 is the corresponding capacitance threshold, so as to determine the contact state between the first sensing element 191 and the user.
  • the wearable device 100 through experiments on the wearable device 100, it is obtained that when the distance between the first sensing element 191 and the user's skin is the first distance L1, the first sensing element 191 and the first sensing element 191 measured by the processor 130 The capacitance value of the equivalent capacitance formed by the user's skin is the first capacitance threshold; when the distance between the first sensing element 191 and the user's skin is the second distance L2, the first sensing element 191 and the user's skin measured by the processor 130 The capacitance value of the formed equivalent capacitance is the second capacitance threshold.
  • the processor 130 determines that the contact state between the first sensing element 191 and the user's skin is a touch state. It can be understood that when the processor 130 confirms that the wearable device 100 is worn on the user's ear through other sensors (such as the infrared temperature sensor and acceleration sensor described above), and the processor 130 determines that the capacitance on the first sensing element 191 is greater than or equal to The first capacitance threshold, that is, when the first sensing element 191 is in contact with the user's skin, the processor 130 controls the second sensing element 192 to start temperature measurement, and when the first sensing element 191 reaches a thermal equilibrium state, the processor 130 starts The temperature value on the second sensing element 192 is read as the initial temperature, so that the real-time read initial temperature is used as the user's real-time measured temperature. In this way, the temperature is read only after the first sensing element 191
  • the temperature of the first sensing element 191 measured by the second sensing element 192 maintains a relatively stable state, for example, the fluctuation of the temperature of the first sensing element 191 is maintained at Within a certain range, it can be considered that the first induction element 191 has reached a thermal equilibrium state. It can be understood that the time taken for the first sensing element 191 to reach the thermal equilibrium state is related to the structure of the first sensing element 191 and the heat conduction path between the first sensing element 191 and the human body. The present application does not limit the fluctuation range of the preset time and temperature.
  • the processing The device 130 judges that the contact state between the first sensing element 191 and the user is the proximity state.
  • the first sensing element 191 is not in close contact with the user's skin, and the heat transferred from the first sensing element 191 to the second sensing element 192 through the insulating and heat-conducting material is not enough to represent the user's current real body temperature.
  • the processor 130 judges that the contact state between the first sensing element 191 and the user's skin is close, the processor 130 also matches the temperature compensation value for the initial temperature read by the second sensing element 192, and uses the temperature compensation value and the initial temperature as the user's measured temperature.
  • the processor 130 detects that the contact state between the first sensing element 191 and the human body is close, the measured temperature of the human body satisfies the following formula:
  • T T 1 +T com
  • T 1 represents the initial temperature read by the second sensing element 192
  • T com represents the corresponding temperature compensation value
  • the first sensing element 191 contacts or approaches the user's skin to absorb heat, and then the second sensing element 192 measures the temperature of the first sensing element 191 to determine the user's temperature.
  • the closer the first sensing element 191 is to the user's skin the more accurately the temperature measured by the second sensing element 192 can represent the user's temperature, and the smaller the temperature compensation value is required. That is to say, when the first sensing element 191 is in close contact with the user, the distance between the first sensing element 191 and the user's skin is positively correlated with the temperature compensation value.
  • the capacitance value of the equivalent capacitance is negatively correlated with the temperature compensation value. That is, when the first sensing element 191 is in close contact with the human body, the greater the capacitance value of the equivalent capacitance is, the smaller the temperature compensation value is.
  • the processor 130 when the processor 130 detects that the first sensing element 191 is in the proximity state to the user's skin, the processor 130 can further subdivide the proximity state into several states according to different capacitance values, for example, the first A proximity state and a second proximity state. In this way, finer temperature compensation can be further performed on the initial temperature of the approaching state, so as to improve the accuracy of temperature measurement data.
  • the processor 130 determines that the first sensing element 191 is in contact with the user. The status is floating. At this time, it may be considered that the temperature data currently collected by the second sensing element 192 is not credible, and a reminder message is output to the user, for example, reminding the user to wear the wearable device 100 tightly. Until it is detected that the first sensor 191 is in a contact state or close to the user, the user's body temperature data is collected according to the above control process.
  • the wearable device 100 further includes a prompt module.
  • the prompt module can be the audio module 180 .
  • the audio module 180 outputs corresponding audio information under the control of the processor 130 to remind the user to wear the wearable device 100 tightly.
  • the wearable device 100 further includes an analog to digital converter (Analog to Digital Converter, ADC).
  • ADC Analog to Digital Converter
  • the first sensing element 191 is connected to the ADC through a general-purpose input/output (GPIO) interface.
  • the ADC is also electrically connected to the processor 130 .
  • the ADC is used to convert the capacitance value of the equivalent capacitance formed by the first sensing element 191 and the user's skin into a digital value (hereinafter referred to as ADC value), and output it to the processor 130 .
  • ADC value digital value
  • the capacitance value of the equivalent capacitance is related to the distance between the first sensing element 191 and the user's skin
  • the ADC value is related to the distance between the first sensing element 191 and the user's skin. That is, when the distance between the first sensing element 191 and the skin of the user changes, the corresponding ADC value converted and output by the first sensing element 191 also changes synchronously.
  • data of the following table is detected:
  • the corresponding ADC value is 5300.
  • the distance between the first sensing element 191 and the human skin is 3 millimeters, that is, when the contact state between the first sensing element 191 and the human skin is suspended, the corresponding ADC value is 6800.
  • the difference between the ADC values is 1500, resulting in a significant jump.
  • the corresponding ADC value is 6690.
  • the difference between the ADC value in the proximity state and the suspension state is 110, which also produces obvious jumps.
  • the ADC value corresponding to the first sensing element 191 will have a larger value jump as the small distance between the first sensing element 191 and the human skin changes. In this way, the ADC value can very effectively represent the small distance change between the first sensing element 191 and the human skin, which is beneficial to improve the temperature measurement accuracy.
  • the change of the capacitance on the first sensing element 191 can be directly represented by the change of the ADC value, and then the change of the distance between the first sensing element 191 and the skin of the user can be represented.
  • the ADC value-capacitance function may vary from model to model of ADC.
  • the ADC value-capacitance function is
  • c is the capacitance value of the equivalent capacitance formed by the first sensing element 191 and the human body acquired by the processor 130
  • a is the ADC value.
  • the ADC value a is negatively correlated with the capacitance value c. In this way, when the processor 130 judges the contact state between the first sensing element 191 and the human body through the ADC value, it can also judge through the corresponding ADC threshold.
  • the ADC value obtained by the processor 130 is the first ADC threshold ;
  • the ADC value acquired by the processor 130 is the second ADC threshold.
  • the first ADC threshold is smaller than the second ADC threshold.
  • the processor 130 when detecting that the ADC value corresponding to the first sensing element 191 is less than or equal to the first ADC threshold (eg, 5500), the processor 130 determines that the first sensing element 191 is in a contact state with the user's skin. In this way, the processor 130 confirms that the temperature data collected by the second sensing element 192 can be used as the user's body temperature data without matching the corresponding temperature compensation value.
  • the first ADC threshold eg, 5500
  • the processor 130 determines that the first sensing element Part 191 is in close proximity to the user's skin. In this way, the processor 130 confirms that the temperature data collected by the second sensing element 192 matches the corresponding temperature compensation value, so that the temperature data collected by the second sensing element 192 and the temperature compensation value are jointly used as the user's body temperature data.
  • the first ADC threshold e.g, 5500
  • the second ADC threshold e.g. 6750
  • the magnitude of the temperature compensation value is related to the distance between the first sensing element 191 and the skin of the user. It can be seen from the above content that the distance between the first sensing element 191 and the user's skin can be represented by the capacitance value, and the capacitance value can be represented by the ADC value. Therefore, the magnitude of the temperature compensation value can also be represented by the ADC value. Thus, in some embodiments, through several sets of experiments, it can be measured that when the contact state between the first sensing element 191 and the user's epidermis is in the close state, the first sensing element 191 and the user's epidermis are at different distances corresponding to the first sensing element. ADC value, initial temperature value and actual temperature value.
  • the difference between the actual temperature value and the initial temperature value is an ideal temperature compensation value.
  • a function between the ADC value of the first sensing element 191 and the temperature compensation value can be established and stored in the internal memory 140 .
  • the processor 130 calculates the corresponding temperature compensation value by calling the function in the internal memory 140 and the acquired ADC value on the first sensing element 191 .
  • the calculation function of the temperature compensation value may be different due to the structure size and environment of the first sensing element 191 .
  • the application does not limit the calculation function of the temperature compensation value.
  • the wearable device 100 is worn in the concha cavity, and the wearable device 100 has the first sensing element 191 as shown in FIG. 6 for fitting, to obtain the temperature compensation value and the ADC value
  • the relationship satisfies the following formula:
  • T com -0.00004(a-5500) 2 +0.0995(a-5500)-61.303
  • T com represents the temperature compensation value
  • a represents the ADC value corresponding to the first sensing element 191 .
  • T T 1 +T com
  • T is the final measured temperature
  • T 1 is the initial temperature collected by the second sensing element 192
  • T com is the calculated temperature compensation value.
  • the processor 130 determines that the first sensing element 191 and the user's skin are in a suspended state, and the processor 130 confirms that The currently collected initial temperature is unreliable, and the prompt module is controlled to output corresponding prompt information to remind the user to wear the wearable device 100 tightly.
  • the second ADC threshold for example, 6750
  • the wearable device 100 may switch between the touch state and the proximity state several times in a short period of time due to the user's actions. As such, the measured user temperature may be inaccurate.
  • the processor 130 can also obtain the measured temperature measured multiple times within a preset period (for example, ten seconds), and use the preset period The average value of the multiple measured temperatures obtained within the system is used as the final measured temperature reported to the user. In this way, errors caused by contact state switching can be effectively reduced.
  • FIG. 10 is a schematic diagram of a temperature measurement scenario of the wearable device 100 provided by the embodiment of the present application. It can be understood that the wearable device 100 and the electronic device 200 can be connected through Bluetooth, Wi-Fi, near field communication or other means, and the wearable device 100 can transmit the finally obtained measured temperature data to the electronic device 200 . In this way, the user opens the specified application program, and can check the body temperature on the display interface of the corresponding application program.
  • the electronic device 200 includes a display screen 210 .
  • the electronic device 200 when the electronic device 200 displays the user's body temperature data, it can display more data.
  • the display screen 210 may display the real-time body temperature of the user, the average body temperature, the highest body temperature and the lowest body temperature of the user in the last week.
  • the processor 130 when the processor 130 detects that the first sensing element 191 is suspended from the user's skin, the processor 130 can also control the output of prompt information to the electronic device 200 for display on the display screen 210 of the electronic device 200 The prompt message reminds the user to wear the wearable device tightly to facilitate temperature measurement.
  • the wearable device 100 can also regularly play the measured temperature voice to the user through the audio module 180 while measuring the temperature.
  • the user wears two wearable devices 100 at the same time to measure temperature through the left and right ears respectively.
  • the two wearable devices 100 can communicate via Bluetooth, near field communication or Wi-Fi, so as to transmit the temperature data measured by one of the wearable devices 100 to the other wearable device 100 .
  • the measured temperature finally reported to the user is the average temperature of the measured temperatures of the two wearable devices 100 , so as to further improve the accuracy of temperature measurement using the wearable device 100 .
  • one of the wearable devices 100 can be used as the main device, and the other wearable device 100 can be used as the auxiliary device, and the wearable device 100 as the main device can be used to measure temperature.
  • the wearable device 100 as the main device can be used to measure temperature.
  • the power of the wearable device 100 as the main device is exhausted or taken off, the temperature is measured by the wearable device 100 as the secondary device. In this way, the power of the two wearable devices 100 can be effectively saved, and the battery life of the two wearable devices 100 can be extended.
  • the processor 130 of the wearable device 100 may enable the temperature measurement function after detecting that the user performs a corresponding operation.
  • the wearable device 100 further includes an acceleration sensor.
  • the processor 130 can start or stop reading the temperature of the second sensing member 192 according to the tap operation (for example, single tap, double tap, triple tap, etc.) detected by the acceleration sensor, thereby turning on or Turn off the temperature measurement function of the wearable device 100.
  • the processor 130 needs to determine whether the contact state between the first sensing element 191 and the user's skin is a touch state according to the above control process.
  • the prompt module sends a prompt message under the control of the processor 130, so that the contact between the first sensing element 191 and the user's skin is reached.
  • the processor 130 controls the second sensor 192 to start temperature measurement.
  • first distance L1, the second distance L2, the first ADC threshold and the second ADC threshold are only illustrative.
  • the embodiment of the present application does not impose specific limitations on the first distance L1, the second distance L2, the first capacitance threshold, the second capacitance threshold, the first ADC threshold, and the second ADC threshold.
  • the wearable device 100 provided in the embodiment of the present application is not limited to measuring human body temperature.
  • the wearable device 100 provided by the embodiment of the present application, or the wearable device improved based on the inventive idea of the present application can also be used to measure the temperature of other living beings, such as measuring the temperature of pet dogs or cats. temperature measurement.
  • the embodiment of the present application also provides a wearable device 100a.
  • the wearable device 100a also includes a first housing 10, a first sensing element 191a, a second sensing element 192a and a processor 130 (not shown).
  • the structure of the wearable device 100a is substantially the same as that of the wearable device 100, except that the arrangement of the first sensing element 191a and the second sensing element 192a in the wearable device 100a is the same as that of the first sensing element 191 and the second sensing element 192a in the wearable device 100.
  • the two sensing elements 192 are arranged in different ways, and the wearable device 100a further includes a third housing 40a.
  • the first housing 10 of the wearable device 100a is also provided with an opening 11 .
  • the opening 11 is covered with a third housing 40a.
  • the third housing 40a includes an outer surface 41a and an inner surface 42a.
  • the second sensing element 192a is accommodated in the opening 11 .
  • the second sensing element 192a is disposed in close contact with the inner surface 42a.
  • the first sensing element 191a is disposed on the outer surface 41a.
  • the first sensing element 191 a extends to the via hole 195 of the circuit board 194 along one side of the second sensing element 192 a, so as to be electrically connected to the processor 130 through the connecting element 196 (such as a metal shrapnel) on the via hole 195 .
  • the first induction element 191a is a material layer with electrical conductivity and thermal conductivity covering the outer surface 41a of the third housing 40a, such as a metal film.
  • the second sensing element 192a is a temperature sensor.
  • the third housing 40a is made of insulating and heat-conducting material, such as glass. It can be understood that the first sensing element 191a approaches or touches the user's skin, forms an equivalent capacitance with the user's skin, and absorbs heat from the user. The first induction element 191a then conducts heat to the third housing 40a. In this way, the second sensing element 192a can measure the temperature of the first sensing element 191a by measuring the temperature of the third housing 40a.
  • the wearable device 100a obtains the capacitance on the first sensing element 191a to determine the contact state between the first sensing element 191a and the user, which is the same as the judgment method in the wearable device 100, and will not be repeated here.
  • the embodiment of the present application also provides a temperature measurement method applied to a wearable device.
  • the wearable device includes a first sensing element and a second sensing element.
  • the first sensing element has a capacitance.
  • the second sensing element is used to measure the temperature of the first sensing element as the initial temperature.
  • the temperature measurement method includes:
  • Step S1 Obtain the capacitance value of the first sensing element to determine the contact state of the wearable device.
  • Step S2 directly take the initial temperature as the measurement temperature according to the contact state, or match the corresponding temperature compensation value for the initial temperature, and use the sum of the initial temperature and the temperature compensation value as the measurement temperature.
  • step S2 when the capacitance value is greater than or equal to the first capacitance threshold, it is judged that the contact state is a touch state, and the initial temperature is taken as the measurement temperature.
  • the capacitance value is less than the first capacitance threshold and greater than or equal to the second capacitance threshold, it is judged that the contact state is an approaching state, and a corresponding temperature compensation value is matched to the initial temperature, and the sum of the initial temperature and the temperature compensation value is used as the measured temperature.
  • the contact state is a floating state.
  • the wearable device further includes a prompt module, and when it is judged that the contact state is a suspended state, the prompt module is controlled to output prompt information.
  • the wearable device also includes an analog-to-digital converter.
  • One end of the analog-to-digital converter is connected to the first sensing element, and the other end is connected to the processor.
  • the analog-to-digital converter is used to convert the capacitance value of the equivalent capacitor into a digital quantity.
  • the functional relationship between the temperature compensation value and the digital quantity is:
  • T com -0.00004(a-5500) 2 +0.0995(a-5500)-61.303
  • T com represents the temperature compensation value
  • a represents the digital quantity

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Otolaryngology (AREA)
  • Physiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

一种可穿戴设备(100)及测温方法,涉及温度测量技术领域。可穿戴设备(100)包括第一感应件(191,191a)、第二感应件(192,192a)及处理器(130)。当可穿戴设备(100)靠近生物体时,第一感应件(191,191a)与生物体形成等效电容,且第一感应件(191,191a)接收生物体的热量。第二感应件(192,192a)用于测量第一感应件(191,191a)的温度,以作为初始温度。处理器(130)电连接至第一感应件(191,191a),用于读取等效电容的电容值,并以此判断第一感应件(191,191a)与生物体之间的接触状态,处理器(130)还电连接至第二感应件(192,192a),用于根据接触状态,判断是否为初始温度匹配相应的温度补偿值。可穿戴设备(100)可长期监测生物体温度,并提供较为精确的温度数据。

Description

可穿戴设备及测温方法
相关申请的交叉引用
本申请要求在2021年12月21日提交中国专利局、申请号为202111573033.1、申请名称为“可穿戴设备及测温方法”的专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及温度测量技术领域,具体而言,涉及一种可测量用户温度的可穿戴设备及应用于该可穿戴设备上的测温方法。
背景技术
体温作为人体的生命体征之一,在一定程度上反应了人体的健康状况。因此,体温的测量结果,尤其是长时间的持续体温测量结果,对生理周期管理、生物节律调节、慢病管理等具有应用意义。
目前,人们通常选择在腋下、额头、胸部等位置进行温度测量,以作为体温测量结果。然而,该种体温测量方式的测量精度未能满足用户需求,用户体验较差。
发明内容
有鉴于此,本申请实施例提供一种可穿戴设备及测温方法,用于测量生物体温度,且具有较高的温度测量准确度。
本申请实施例第一方面提供一种可穿戴设备,用于测量生物体的温度。该可穿戴设备包括第一感应件、第二感应件及处理器。其中,第一感应件用于获取电容。第二感应件用于测量第一感应件的温度以作为初始温度。处理器电连接至第一感应件,用于读取该电容值,并根据电容值判断可穿戴设备的接触状态。处理器还电连接至第二感应件,用于读取第二感应件测得的初始温度,并根据第一感应件与生物体之间的接触状态直接将初始温度作为测量温度,或者为初始温度匹配相应的温度补偿值,并将初始温度与温度补偿值之和作为测量温度。
本申请实施例提供的方案中,通过第一感应件与生物体表皮形成等效电容,以通过等效电容的电容值表征可穿戴设备与生物体的接触状态;通过第一感应件接收生物体的热量,且第二感应件测量第一感应件的温度,以初步测量生物体的温度;通过处理器电连接至第一感应件及第二感应件,从而结合接触状态将当前测得的初始温度作为测量温度,或为当前的初始温度匹配对应的温度补偿值。如此,本申请实施例提供的可穿戴设备,相较于现有的接触式测温装置,通过衡量可穿戴设备与生物体表皮的接触状态,进一步校准测量温度,提高数据准确度。
在一种可能的实施方式中,可穿戴设备包括壳体,且壳体开设有开孔。第一感应件部分收容于开孔,以通过开孔露出于壳体表面。
本申请实施例提供的方案中,通过设置开孔收容第一感应件,第一方面可用于安装第一感应件,另一方面使第一感应件露出壳体,方便与用户表皮接触,且吸收用户热量。
在一种可能的实施方式中,第二感应件贴合第一感应件设置。
在一种可能的实施方式中,第一感应件覆盖第二感应件,且第一感应件与第二感应件之间填充有绝缘导热材料。
本申请实施例提供的方案中,通过第二感应件贴合第一感应件设置,或者在第一感应件与第二感应件之间填充绝缘导热材料,降低不必要的热量的流失及环境干扰,提高第二感应件对第一感应件的测量温度的准确度。
在一种可能的实施方式中,第一感应件开设有收容孔,第二感应件收容于收容孔。
本申请实施例提供的方案中,通过将第二感应件收容于第一感应件形成的收容孔中,以使第一感应件更好地覆盖第二感应件,提高第二感应件对第一感应件的测量温度的准确度。
在一种可能的实施方式中,可穿戴设备包括壳体。壳体包括外表面及内表面。外表面设置有第一感应件,内表面设置有第二感应件。如此,第一感应件的热量传导至壳体,第二感应件通过测量壳体的温度以测得第一感应件的温度。
本申请实施例提供的方案中,通过在第一感应件与第二感应件之间设置绝缘导热的壳体,使得第一感应件可直接设置于可穿戴设备的表面,与用户表皮接触。
在一种可能的实施方式中,第一感应件具有导电性及导热性。
本申请实施例提供的方案中,有具有导电性及导热性的材料制成第一感应件,使得第一感应件与生物体表皮形成等效电容的同时,还可快速接收生物体的热量以达到热平衡状态,降低读取初始温度的时间。
在一种可能的实施方式中,第一感应件由金属材料制成。第二感应件为温度传感器。
本申请实施例提供的方案中,由同时具有良好导电性及导热性的金属制成第一感应件,及将温度传感器作为第二感应件,方案容易实施,且可使处理器快速读取到温度。
在一种可能的实施方式中,当电容值大于或等于第一电容阈值时,判断接触状态为触碰状态,并将初始温度作为生物体的测量温度。
本申请实施例提供的方案中,通过第一感应件与生物体表皮形成的等效电容的电容值判断接触状态,并当处理器判断第一感应件与生物体为触碰状态,即第一感应件贴合生物体时,处理器认为当前测得的初始温度为可信数据,可表示生物体的温度。
在一种可能的实施方式中,当接触状态为触碰状态时,还控制第二感应 件开始测温,并于预设时间后当第一感应件达到热平衡状态时,读取初始温度。
本申请实施例提供的方案中,仅当第一感应件与生物体表皮达到触碰状态,且第一感应件达到热平衡状态时,才读取初始温度,进一步提高可穿戴设备测量温度的准确度。
在一种可能的实施方式中,当电容值小于第一电容阈值且大于或等于第二电容阈值时,判断接触状态为接近状态,并为初始温度匹配相应的温度补偿值,且将初始温度及温度补偿值之和作为测量温度。
本申请实施例提供的方案中,当接触状态为接近状态,即第一感应件与生物体表皮之间的距离处于一可接受的距离内,处理器为初始温度匹配相应的温度补偿值,并将初始温度及温度补偿值之和作为生物体的测量温度。如此,可校准生物体的测量温度,提高数据准确度。
在一种可能的实施方式中,第一感应件与生物体之间的距离值,与温度补偿值为正相关关系。且温度补偿值与电容值之间的关系满足一预设函数,处理器根据预设函数及获取到的电容值,计算得到温度补偿值。电容值与温度补偿值为负相关关系。
在一种可能的实施方式中,当电容值小于第二电容阈值时,判断第一感应件与生物体之间为悬空状态。可穿戴设备还包括提示模块,当判断第一感应件与生物体之间为悬空状态,提示模块用于在处理器的控制下输出提示信息。
本申请实施例提供的方案中,当判断接触状态为悬空状态,即第一感应件与生物体表皮之间的距离不可接受时,还控制提示模块提醒用户戴紧可穿戴设备,使第一感应件与生物体之间的接触状态恢复至触碰状态或接近状态,从而有效提高测量温度的准确度。
在一种可能的实施方式中,可穿戴设备还包括模拟数字转换器。模拟数字转换器一端连接至第一感应件,另一端连接至处理器。模拟数字转换器用于将电容值转换为数字量。
本申请实施例提供的方案中,通过设置模拟数字转换器,以将电容值转换为数字量,从而通过数字量表征接触状态。
在一种可能的实施方式中,温度补偿值与数字量的函数关系为:
T com=-0.00004(a-5500) 2+0.0995(a-5500)-61.303
其中,T com表示温度补偿值,a表示数字量。
本申请实施例提供的方案中,通过温度补偿值与数字量之间的函数,计算得到温度补偿值。
本申请实施例第二方面还提供一种测温方法,应用于可穿戴设备。可有效提升可穿戴设备测量温度时的准确度。
在一种可能的实施方式中,可穿戴设备包括第一感应件及第二感应件。 第一感应件用于获取电容值;第二感应件用于测量第一感应件的温度,以作为初始温度。该测温方法包括:
读取第一感应件的电容值,以判断可穿戴设备的接触状态;
根据接触状态将初始温度作为测量温度,或者为初始温度匹配相应的温度补偿值,并将初始温度与温度补偿值之和作为测量温度。
在一种可能的实施方式中,当电容值大于或等于第一电容阈值时,判断接触状态为触碰状态,并将初始温度作为测量温度。
在一种可能的实施方式中,当电容值小于第一电容阈值且大于或等于第二电容阈值时,判断接触状态为接近状态,并为初始温度匹配相应的温度补偿值,且将初始温度及温度补偿值之和作为测量温度。
在一种可能的实施方式中,当电容值小于第二电容阈值时,判断接触状态为悬空状态。
在一种可能的实施方式中,可穿戴设备还包括提示模块,当判断接触状态为悬空状态时,控制提示模块输出提示信息。
在一种可能的实施方式中,可穿戴设备还包括模拟数字转换器,模拟数字转换器一端连接至第一感应件,另一端连接至处理器,模拟数字转换器用于将电容值转换为数字量;且温度补偿值与数字量的函数关系为:
T com=-0.00004(a-5500) 2+0.0995(a-5500)-61.303
其中,T com表示温度补偿值,a表示数字量。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例提供的可穿戴设备的硬件结构示意图;
图2为本申请实施例提供的可穿戴设备佩戴在耳朵上的示意图;
图3为图2所示的可穿戴设备的立体示意图;
图4为沿图3所示可穿戴设备中剖面线Ⅳ-Ⅳ的截面图;
图5为图4所示可穿戴设备中区域V的放大示意图;
图6为图4所示可穿戴设备中第一感应件的结构示意图;
图7为图4所示可穿戴设备与用户表皮处于触碰状态时的示意图;
图8为图4所示可穿戴设备与用户表皮处于接近状态时的示意图;
图9为图4所示可穿戴设备与用户表皮处于悬空状态时的示意图;
图10为图2所示可穿戴设备的一种温度测量场景示意图;
图11为本申请另一实施例提供可穿戴设备的部分截面图。
主要元件符号说明
可穿戴设备100、100a;第一壳体10;开孔11;第二壳体20;
耳机柄30;第三壳体40a;外表面41a;内表面42a;无线通信模块110;
定位模块120;处理器130;内部存储器140;电源管理模块150;
电池160;充电管理模块170;音频模块180;扬声器180A;受话器180B;
麦克风180C;耳机接口180D;骨传导传感器180E;温度检测模块190;
第一感应件191、191a;凸起1911;第二感应件192、192a;
收容空间193;电路板194;过孔195;连接件196;天线1;
电子设备200;显示屏210。
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。当一个元件被认为是“设置于”另一个元件,它可以是直接设置在另一个元件上或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
在本申请实施例中,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者更多个该特征。
本申请实施例记载的数据范围值如无特别说明均应包括端值。本申请实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”。这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请以下各实施例中,“至少一个”、“一个或多个”是指一个或两个以上。术语“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系;例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
而且,在本申请中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构 或特点。由此,在本申请中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施方式及实施方式中的特征可以相互组合。
体温作为人体重要的生命体征之一,长期的体温监测对生理周期管理、生物节律调节、慢病管理等具有应用意义。然而,目前的接触式测温的测量精度未能满足用户需求,用户体验较差。尤其当温度传感器与生物体之间没有保持稳定的接触状态时,可能造成测温结果不精确。
可穿戴设备对于用户具有长期佩戴及与人体紧密接触的特定。如此,可穿戴设备结合接触式温度传感器,可在用户无感知的情况下,提供相对精准的体温变化。
为此,本申请的一些实施例提供一种可穿戴设备100,具有温度检测功能,且可提供较为精准的温度测量数据。
以下介绍本申请实施例涉及的可穿戴设备100的硬件结构。如图1所示,为本申请实施例提供的一种可穿戴设备100的硬件结构示意图。可穿戴设备100可包括无线通信模块110,定位模块120,处理器130,内部存储器140,电源管理模块150,电池160,充电管理模块170,音频模块180、温度检测模块190、及天线1等。
其中,处理器130可以包括一个或多个处理单元。例如:处理器130可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。
在一些实施例中,处理器130可以包括一个或多个接口。接口可以包括I2C接口,I2S接口,PCM接口,UART接口,MIPI,GPIO接口,SIM卡接口,和/或USB接口等。
可以理解的是,本申请实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对可穿戴设备100的结构限定。在本申请另一些实施例中,可穿戴设备100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块170用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。
电源管理模块150用于连接电池160,充电管理模块170与处理器130。电源管理模块150接收电池160和/或充电管理模块170的输入,为处理器130,内部存储器140,外部存储器接口和无线通信模块110等供电。电源管理模块150还可以用于监测电池容量,电池循环次数,电池健康状态(漏电, 阻抗)等参数。
可穿戴设备100的无线通信功能可以通过天线1以及无线通信模块110、定位模块120等实现。
定位模块120可以提供应用在可穿戴设备100上的定位技术。定位技术可以包括基于北斗卫星导航系统(beidou navigation satellite system,BDS),全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)等系统的定位技术。
内部存储器140可以用于存储一个或多个计算机程序,该一个或多个计算机程序包括指令。
音频模块180包括扬声器180A,受话器180B,麦克风180C,耳机接口180D、骨传导传感器180E等电子器件。可以理解,可穿戴设备100可以通过音频模块180,扬声器180A,受话器180B,麦克风180C,耳机接口180D,骨传导传感器180E以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块180用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块180还可以用于对音频信号编码和解码。在一些实施例中,音频模块180可以设置于处理器130中,或将音频模块180的部分功能模块设置于处理器130中。
扬声器180A,也称“喇叭”,用于将音频电信号转换为声音信号。可穿戴设备100可以通过扬声器180A收听音乐,或收听免提通话。
受话器180B,也称“听筒”,用于将音频电信号转换成声音信号。当可穿戴设备100接听电话或语音信息时,可以通过将受话器180B靠近人耳接听语音。
麦克风180C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风180C发声,将声音信号输入到麦克风180C。可穿戴设备100可以设置至少一个麦克风180C。在另一些实施例中,可穿戴设备100可以设置两个麦克风180C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,可穿戴设备100还可以设置三个,四个或更多麦克风180C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
骨传导传感器180E可以获取振动信号。在一些实施例中,骨传导传感器可以获取人体声部振动骨块的振动信号。骨传导传感器也可以接触人体脉搏,接收血压跳动信号。在一些实施例中,骨传导传感器也可以设置于耳机中,结合成骨传导耳机。音频模块180可以基于骨传导传感器获取的声部振动骨块的振动信号,解析出语音信号,实现语音功能。应用处理器可以基于骨传导传感器获取的血压跳动信号解析心率信息,实现心率检测功能。
温度检测模块190可用于采集温度数据。温度检测模块190包括第一感 应件191及第二感应件192。其中,第一感应件191用于当可穿戴设备100靠近用户表皮时,与用户形成一等效电容。如此,第一感应件191可用于获取该等效电容的电容值。第二感应件192为一温度传感器,用于测量第一感应件191的温度。
可穿戴设备100上还可以设置光学传感器(例如,红外测温传感器)、运动传感器(例如,加速度传感器、陀螺仪等)和电容式传感器等。
可以理解,基于上述任一种或多种传感器,可穿戴设备100可以进行佩戴摘下检测,以确定可穿戴设备100处于佩戴状态还是摘下(取下)状态。
例如,当可穿戴设备100上设置有红外测温传感器和加速度传感器时,可以通过红外测温传感器感受预设时间内温度的变化,根据加速度传感器得到预设时间内是否发生佩戴动作,结合这两方面可以确定出可穿戴设备100是处于佩戴状态还是摘下状态。又例如,当可穿戴设备100上设置有电容式传感器时,通过可穿戴设备100戴上和摘下过程中电容式传感器的电容值的变化可以判定可穿戴设备100是处于佩戴状态还是摘下状态。
应该理解的是,可穿戴设备100处于佩戴状态时,可穿戴设备100佩戴在用户身上,例如耳朵上或手腕上。可穿戴设备100处于摘下状态时,可穿戴设备100可以是存放在电池盒中,也可以是放置在桌子上、地板上或沙发上等,本申请不做限定。
可以理解的是,本申请实施例示意的结构并不构成对可穿戴设备100的具体限定。在本申请另一些实施例中,可穿戴设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
可以理解,本申请实施例涉及的可穿戴设备100可以包括,但不限于,智能耳机、智能手表、智能手环、智能眼镜、手机、虚拟现实设备、医疗设备及其他可穿戴智能设备(例如胸带、臂带)等。也就是说,可穿戴设备100可以是类似智能耳机、智能手表等的移动终端,亦可以是一些需要穿戴的,类似大型医疗设备等的固定终端。
现以可穿戴设备100为智能耳机为例,对可穿戴设备100测量用户体温的过程进行说明。
请一并参阅图2及图3,可穿戴设备100包括第一壳体10及第二壳体20。其中,第一壳体10为可穿戴设备100在使用时靠近人耳的一侧,第二壳体20为可穿戴设备100在使用时远离人耳的一侧。第一壳体10大致呈罩形,第二壳体20靠近第一壳体10的一端亦大致呈罩形。如此,第一壳体10与第二壳体20互相连接,共同形成一大致呈球形的收容空间,用于共同收容耳机组件(例如上述的无线通信模块110,定位模块120,处理器130、音频模块180、温度检测模块190等)。
在一些实施例中,第二壳体20远离第一壳体10的一侧还向下延伸,形成耳机柄30。耳机柄30大致为一中空筒,用于收容其他耳机组件(例如电池160、充电管理模块170等)。
请一并参阅图2至图4,温度检测模块190靠近第一壳体10的表面设置。如此,当可穿戴设备100佩戴在用户的耳朵时,可穿戴设备100的第一壳体10伸入用户的耳甲腔内,使得温度检测模块190与耳甲腔内的皮肤接触,从而采集用户温度数据。
然而,用户在佩戴可穿戴设备100后,有可能因用户的动作或外部撞击等原因,可穿戴设备100脱离原有佩戴状态,使得温度检测模块190与用户的皮肤从接触状态转为分离状态,影响温度检测模块190采集的温度数据的精确度。
为此,本申请实施例提供的可穿戴设备100,在采集用户温度数据的同时,还可同时判断可穿戴设备100与用户的接触状态,从而判断是否为温度检测模块190采集到的温度数据匹配对应的温度补偿值。如此,可进一步提高可穿戴设备100采集的用户温度数据的精确性。
请一并参阅图4及图5,在一些实施例中,第一感应件191设置于可穿戴设备100的表面。如此,当可穿戴设备100靠近人体皮肤时,第一感应件191与人体表面共同形成一等效电容,并接收人体传递或辐射的能量。
在一些实施例中,第一感应件191由具有导电性及导热性的材料制成。如此,第一方面,由于人体的电流感应效应,第一感应件191靠近人体时,第一感应件191与人体表面形成一等效电容。进而使得第一感应件191与人体靠近时,等效电容的电容值因第一感应件191与人体的距离的变化而产生变化。第二方面,当可穿戴设备100靠近或接触人体皮肤时,第一感应件191可接收人体热量。如此,当第一感应件191在接收人体热量一段时间后,第一感应件191将达到热平衡状态,即第一感应件191的温度均匀且大致等于人体温度。在这种情况下,通过测量采集第一感应件191的温度,即可表征人体的温度。
第二感应件192为一温度传感器,且靠近第一感应件191设置,用于测量第一感应件191的温度。
在一些实施例中,第一感应件191可由金属材料制成。可以理解,金属材料同时具有良好的导电性及导热性,有利于快速传导热量,达到热平衡,以使第二感应件192快速采集到用户的温度数据。
请继续参阅图2,图4至图6,在一些实施例中,第一壳体10上还开设有一开孔11。第一感应件191贴合第一壳体10的内表面设置,且大致呈帽型。第一感应件191一端形成有凸起1911。凸起1911收容于开孔11,且凸起1911相对第一壳体10的表面具有第一高度h1(至少0.05毫米),以更好与用户表皮接触。凸起1911对应开孔11设置,且凸起1911的直径d1大致为2.1mm。如此,第一感应件191通过凸起1911部分露出于第一壳体10表面。当可穿戴设备100佩戴在用户耳朵时,第一感应件191的凸起1911可与用户的皮肤接触。
第一感应件191远离开孔11的一侧还开设有收容孔,以形成收容空间193。收容空间193用于收容第二感应件192。如此,第二感应件192设置于 第一感应件191远离用户表皮的一侧,且第一感应件191覆盖第二感应件192,有利于减少外部环境干扰,使得第二感应件192对第一感应件191的温度测量更加准确。第一感应件191与第二感应件192之间还填充有绝缘导热材料(图未示),例如绝缘导热胶,用于将第一感应件191的热量传导至第二感应件192,以方便第二感应件192测量温度。
可以理解,在一些实施例中,第二感应件192亦可贴合第一感应件191设置。如此,第二感应件192可通过直接与第一感应件191接触,以测量第一感应件191的温度,而不需在第一感应件191与第二感应件192之间填充绝缘导热材料。
可以理解,第一感应件191通过形成凸起1911,且凸起1911穿过开孔11直接与用户表皮接触,可有效降低环境对第一感应件191的干扰,使第一感应件191快速达到热平衡状态。
可以理解,在其他实施例中,第一感应件191不局限于本实施例中的帽形,第一实施例的形状可以根据具体的可穿戴设备的结构而进行相应的设计。只需确保第一感应件191靠近用户表皮设置,且第二感应件192设置于第一感应件191远离用户表皮的一侧即可。例如,在一些实施例中,第一感应件191亦可以为一大致呈片状的金属,第二感应件192设置于第一感应件191远离用户表皮的一侧,且第二感应件192贴合第一感应件191设置。
可以理解,在其他实施例中,第一感应件191亦可直接设置在可穿戴设备100的表面,以与用户表皮直接接触。可以理解,优先选择温度测量环境较为密闭的可穿戴设备进行此种设计,例如温度测量环境为耳腔、腋下、舌下等的可穿戴设备。如此,可降低环境对第一感应件191的干扰。
请继续参阅图5,第一感应件191及第二感应件192均设置于电路板194(例如柔性电路板)上。如此,第二感应件192可收容于第一感应件191及电路板194共同形成的封闭空间内。如此,可较大程度地将第一感应件191的热量封闭在封闭空间内,有利于提升第二感应件192测量第一感应件191时的精度。电路板194上还形成有若干过孔195,如此,第一感应件191可延伸至穿过过孔,与处理器130连接。第二感应件192亦可通过导线穿过过孔195,电连接至处理器130。
可以理解,处理器130电连接至第一感应件191,用于获取第一感应件191与人体形成的等效电容的电容值。可以理解,根据电容的计算公式,在其他条件不变的情况下,第一感应件191与人体之间的距离越小,第一感应件191与人体形成的等效电容的电容值越大。如此,处理器130可通过获取得到的电容值的大小,判断第一感应件191与人体的接触状态,即第一感应件191与人体之间的距离。
处理器130还电连接至第二感应件192,用于获取第二感应件192测得的温度数据,并将其作为初始温度。可以理解,当第一感应件191与人体贴合接触,且达到热平衡状态时,第二感应件192测得的第一感应件191的温度,即可认为是人体的温度。当第一感应件191与人体间隔设置,那么此时 第二感应件192测得的第一感应件191的温度,实际上与人体的温度还存在一定的误差。如此,处理器130根据第一感应件191与用户表皮的接触状态直接将初始温度作为用户的测量温度,或者为初始温度匹配对应的温度补偿值,并将初始温度及温度补偿值之和作为用户的测量温度,以提高温度测量的精确性。
可以理解,在一些实施例中,第一感应件191与用户皮肤的接触状态可分为三种状态,例如触碰状态,接近状态及悬空状态。
其中,请一并参阅图7至图9,触碰状态是指第一感应件191与用户表皮之间的距离介于0毫米与第一距离L1(例如0.05mm)之间接近状态是指第一感应件191与用户皮肤间隔设置,且第一感应件191与用户皮肤之间的距离大于第一距离L1,小于第二距离L2(例如3毫米)的状态;悬空状态是指第一感应件191与用户间隔设置,且第一感应件191与用户皮肤之间的距离大于或等于第二距离L2(例如3毫米)的状态,其中,第二距离L2大于第一距离L1。例如,图9所示的第一感应件191与用户表皮的距离为第三距离L3,且第三距离L3大于第二距离L2。由于第一感应件191与用户表皮之间的距离可以通过电容值的大小变化表征,如此,可通过对可穿戴设备100进行实验,以获取得到第一感应件191处于第一距离L1、第二距离L2时相应的电容阈值,从而判断第一感应件191与用户之间的接触状态。
例如,在一些实施例中,通过对可穿戴设备100进行实验,得到当第一感应件191与用户表皮之间的距离为第一距离L1时,处理器130测得的第一感应件191与用户表皮形成的等效电容的电容值为第一电容阈值;当第一感应件191与用户表皮之间的距离为第二距离L2时,处理器130测得的第一感应件191与用户表皮形成的等效电容的电容值为第二电容阈值。
如此,当处理器130获取到的等效电容的电容值大于或等于第一电容阈值,处理器130判断第一感应件191与用户皮肤的接触状态为触碰状态。可以理解,当处理器130通过其他传感器(例如上文记载的红外测温传感器及加速度传感器)确认可穿戴设备100佩戴在用户耳朵,且处理器130确定第一感应件191上的电容大于或等于第一电容阈值,即第一感应件191与用户的皮肤处于触碰状态时,处理器130控制第二感应件192开始测温,并于第一感应件191达到热平衡状态时,处理器130开始读取第二感应件192上的温度值作为初始温度,从而以实时读取到的初始温度作为用户的实时测量温度。如此,使得第一感应件191达到热平衡状态后才读取温度,使得温度测量更加准确。
可以理解,在一些实施例中,当第二感应件192测得的第一感应件191的温度保持一个较稳定的状态时,例如第一感应件191的温度的波动在预设时间内维持在一定范围内时,即可认为第一感应件191达到热平衡状态。可以理解,第一感应件191达到热平衡状态的用时与第一感应件191的结构,及第一感应件191与人体之间的导热路径有关。本申请不对预设时间及温度的波动范围进行限制。
可以理解,当处理器130确认可穿戴设备100还佩戴在用户耳朵上,且处理器130获取到第一感应件191上的电容大于或等于第二电容阈值,并小于第一电容阈值时,处理器130判断第一感应件191与用户的接触状态为接近状态。如此,第一感应件191并未与用户皮肤紧密接触,第一感应件191通过绝缘导热材料传递给第二感应件192的热量,亦不足以表示用户当前的真实体温。因此,处理器130判断第一感应件191与用户皮肤的接触状态处于接近状态时,处理器130还为通过第二感应件192读取到的初始温度匹配温度补偿值,并以该温度补偿值及初始温度之和作为用户的测量温度。
即当处理器130检测到第一感应件191与人体的接触状态为接近状态时,人体的测量温度满足以下公式:
T=T 1+T com
其中,T 1表示通过第二感应件192读取到的初始温度,T com表示对应的温度补偿值。
可以理解,在本申请实施例中,通过第一感应件191接触或靠近用户表皮吸收热量,再通过第二感应件192测量第一感应件191的温度,从而确定用户温度。显然,当第一感应件191越接近用户表皮,第二感应件192测得的温度越可以准确表征用户温度,需要的温度补偿值也就越小。也就是说,当第一感应件191与用户的接触状态为接近状态时,第一感应件191和用户表皮之间的距离与温度补偿值的大小为正相关关系。又因为第一感应件191和用户表皮之间的距离,与等效电容的电容值的大小为负相关关系(根据电容计算公式可知),如此,当第一感应件191与人体的接触状态为接近状态时,等效电容的电容值的大小与温度补偿值的大小为负相关关系。即当第一感应件191与人体的接触状态为接近状态时,等效电容的电容值越大,温度补偿值越小。可以理解,在一些实施例中,可通过若干组实验,测得第一感应件191与用户表皮的接触状态为接近状态时,第一感应件191与用户表皮在不同距离下相应的电容值,初始温度值及实际温度值。可以理解,实际温度值与初始温度值之差为理想温度补偿值。通过对上述若干组实验数据中,电容值与理想温度补偿值的拟合,可建立电容值与温度补偿值之间的函数,并存储于内部存储器140中。如此,处理器130通过调取内部存储器140中的函数及获取到的等效电容的电容值,计算得到相应的温度补偿值。
可以理解,在一些实施例中,当处理器130检测到第一感应件191与用户表皮处于接近状态时,处理器130还可根据不同的电容值进一步将接近状态细分为若干状态,例如第一接近状态及第二接近状态。如此,可进一步对接近状态的初始温度进行更精细的温度补偿,以提高温度测量数据的精确度。
当处理器130确认可穿戴设备100还佩戴在用户耳朵上,且处理器130获取到第一感应件191上的电容小于第二电容阈值时,处理器130判断第一感应件191与用户的接触状态为悬空状态。此时,可认为第二感应件192当前采集到的温度数据不可信,并向用户输出提醒信息,例如,提醒用户戴紧 可穿戴设备100。直到检测到第一感应件191与用户处于触碰状态或接近状态时,再依上述控制过程,采集用户体温数据。
在一些实施例中,可穿戴设备100还包括提示模块。例如,提示模块可为音频模块180。如此,当处理器130判断第一感应件191与用户表皮处于悬空状态时,音频模块180在处理器130控制下输出对应的音频信息,提醒用户紧佩戴可穿戴设备100。
可以理解,处理器130确认可穿戴设备100为取下状态时,则不会执行上述检测第一感应件191与用户皮肤之间的接触状态的操作。
在一些实施例中,可穿戴设备100还包括模拟数字转换器(Analog to Digital Converter,ADC)。第一感应件191通过通用型输入输出(General-purpose input/output,GPIO)接口连接至ADC。ADC还电连接至处理器130。ADC用于将第一感应件191与用户表皮形成的等效电容的电容值转换为数字量(下文以ADC值代称),并输出至处理器130。可以理解,等效电容的电容值和第一感应件191与用户表皮之间的距离有关,如此,ADC值的大小和第一感应件191与用户表皮之间的距离有关。即当第一感应件191与用户表皮之间的距离发生变化时,第一感应件191经由ADC转换输出的对应的ADC值也同步发生变化。
例如,在一些实施例中,检测到如下表的数据:
Figure PCTCN2022116906-appb-000001
根据上表,例如,当第一感应件191与人体表皮之间的距离为0毫米,即第一感应件191与人体表皮之间的接触状态为触碰状态时,对应的ADC值为5300。当第一感应件191与人体表皮之间的距离为3毫米,即第一感应件191与人体表皮之间的接触状态为悬空状态时,对应的ADC值为6800,触碰状态与悬空状态下的ADC值相差1500,产生了明显跳变。同样地,当第一感应件191与人体表皮之间的距离为0.5毫米,即第一感应件191与人体表皮之间的接触状态为接近状态时,对应的ADC值为6690。该接近状态下与悬空状态下的ADC值相差110,也产生了明显的跳变。显然,第一感应件191对应的ADC值随着第一感应件191与人体表皮之间的微小距离的变化,会产生数值较大的跳变。如此,ADC值可以非常有效地表示第一感应件191与人体表皮之间的微小距离变化,有利于提高温度测量精度。
在一些实施例中,可直接通过ADC值的变化表征第一感应件191上的电容变化,进而表征第一感应件191与用户表皮之间的距离变化。
可以理解,ADC值-电容函数可根据ADC的型号的不同而不同。例如,在一些实施例中,当采用一特定型号的ADC时,ADC值-电容函数为
Figure PCTCN2022116906-appb-000002
可以理解,上述函数中,c为处理器130获取的第一感应件191与人体形成的等效电容的电容值,a为ADC值。且根据上述函数,ADC值a与电容值c呈负相关的关系。如此,当处理器130通过ADC值判断第一感应件191与人体的接触状态时,亦可以通过相应的ADC阈值进行判断。
例如,在一些实施例中,通过对可穿戴设备100进行实验,得到当第一感应件191与用户表皮之间的距离为第一距离L1时,处理器130获取的ADC值为第一ADC阈值;当第一感应件191与用户表皮之间的距离为第二距离L2时,处理器130获取的ADC值为第二ADC阈值。其中,第一ADC阈值小于第二ADC阈值。
在一些实施例中,当检测到与第一感应件191对应的ADC值小于或等于第一ADC阈值(例如5500)时,处理器130判断第一感应件191与用户皮肤处于触碰状态。如此,处理器130确认通过第二感应件192采集到的温度数据可作为用户的体温数据,而不需匹配对应的温度补偿值。
在一些实施例中,当检测到与第一感应件191对应的ADC值大于第一ADC阈值(例如5500),且小于或等于第二ADC阈值(例如6750)时,处理器130判断第一感应件191与用户皮肤处于接近状态。如此,处理器130确认为第二感应件192采集到的温度数据匹配对应的温度补偿值,以将第二感应件192采集到的温度数据及温度补偿值,共同作为用户的体温数据。
可以理解,温度补偿值的大小和第一感应件191与用户表皮的距离有关。而由上述内容可知,第一感应件191与用户表皮的距离可由电容值的大小表征,电容值的大小又可由ADC值的大小表征。因此,温度补偿值的大小亦可由ADC值表征。如此,在一些实施例中,可通过若干组实验,测得第一感应件191与用户表皮的接触状态为接近状态时,第一感应件191与用户表皮在不同距离下第一感应件相应的ADC值、初始温度值及实际温度值。可以理解,实际温度值与初始温度值之差为理想温度补偿值。通过对上述若干组实验数据中,ADC值与理想温度补偿值的拟合,可建立第一感应件191的ADC值与温度补偿值之间的函数,并存储于内部存储器140中。处理器130通过调取内部存储器140中的函数及获取到的第一感应件191上的ADC值,计算得到相应的温度补偿值。
可以理解,温度补偿值的计算函数可因第一感应件191的结构大小及环境的不同而不同。本申请不对温度补偿值的计算函数进行限制。例如,在一些实施例中,以可穿戴设备100佩戴在耳甲腔内,及可穿戴设备100具有如图6所示的第一感应件191进行拟合,得到温度补偿值与ADC值之间的关系满足以下公式:
T com=-0.00004(a-5500) 2+0.0995(a-5500)-61.303
其中,T com表示温度补偿值,a表示与第一感应件191对应的ADC值。
如此,当第一感应件191与用户处于接近状态时,用户的体温数据
T=T 1+T com
其中,T为最终的测量温度,T 1为第二感应件192采集到的初始温度,T com为计算得到的温度补偿值。
在一些实施例中,当检测到与第一感应件191对应的ADC值大于第二ADC阈值(例如6750)时,处理器130判断第一感应件191与用户皮肤处于悬空状态,处理器130确认当前采集的初始温度不可信,并控制提示模块输出对应的提示信息,以提醒用户紧戴可穿戴设备100。
可以理解,当用户一边活动(例如行走或跑步),一边佩戴可穿戴设备100时,可穿戴设备100可能因用户的动作,短时间内在触碰状态与接近状态之间多次切换。如此,可能使测得的用户温度不准确。为了提高可穿戴设备100测量温度的准确性,在一些实施例中,处理器130还可通过获取在一预设周期(例如十秒)内多次测得的测量温度,并以该预设周期内获取到的多次测量温度的平均值作为上报给用户的最终测量温度。如此,可有效降低因接触状态切换带来的误差。
请继续参阅图10,图10为本申请实施例提供的可穿戴设备100的一种温度测量场景的示意图。可以理解,可穿戴设备100与电子设备200可通过蓝牙、Wi-Fi、近场通信或其他方式连接,可穿戴设备100可将最终得到的测量温度数据传输至电子设备200。如此,用户打开指定应用程序,可以在对应的应用程序的显示界面上查看体温。
可以理解,电子设备200包括显示屏210。在一些实施例中,相较于可穿戴设备100,电子设备200在显示用户的体温数据时,可以显示更多的数据。例如,显示屏210上可以显示用户的实时体温,用户最近一周内的平均体温、最高体温与最低体温。在一些实施例中,当处理器130检测到第一感应件191与用户表皮处于悬空状态时,处理器130还可控制输出提示信息至电子设备200,以在电子设备200的显示屏210上显示提示信息,提醒用户戴紧可穿戴设备,方便测温。
可以理解,在一些实施例中,可穿戴设备100还可一边测量温度,一边通过音频模块180,定时将测得的温度语音播放给用户。
可以理解,在一些实施例中,用户同时佩戴两可穿戴设备100,以分别通过左右耳进行测温。两可穿戴设备100可通过蓝牙、近场通信或Wi-Fi进行通信,以将其中一可穿戴设备100测得的温度数据传送至另一可穿戴设备100。如此,最终上报给用户的测量温度为两可穿戴设备100的测量温度的平均温度,以进一步提高使用可穿戴设备100测量温度时的精度。
在一些实施例中,当用户同时佩戴两可穿戴设备100,还可以其中一可穿戴设备100作为主设备,另一可穿戴设备100作为副设备,且先通过作为主设备的可穿戴设备100测量温度。当作为主设备的可穿戴设备100的电量 耗尽或者取下时,再通过作为副设备的可穿戴设备100测量温度。如此,可有效节省两可穿戴设备100的电量,延长两可穿戴设备100的续航时间。
可以理解,在一些实施例中,可穿戴设备100的处理器130可在检测到用户执行对应操作后再开启测温功能。例如,在一些实施例中,可穿戴设备100还包括加速度传感器。在可穿戴设备100的操作期间,处理器130可根据加速度传感器检测到的轻击操作(例如,单击、双击、三击等)开始或停止读取第二感应件192的温度,从而开启或关闭可穿戴设备100的测温功能。当用户开启可穿戴设备100的测温功能后,处理器130还需依照上述控制过程判断第一感应件191与用户表皮之间的接触状态是否为触碰状态。当处理器130判断第一感应件191与用户表皮之间的接触状态不是触碰状态时,提示模块在处理器130控制下发出提示信息,以使第一感应件191与用户表皮之间达到触碰状态后,处理器130控制第二感应件192开始测温。
可以理解,上述提及的第一距离L1、第二距离L2、第一ADC阈值及第二ADC阈值的具体数值,仅为示例性说明。本申请实施例不对上述的第一距离L1、第二距离L2、第一电容阈值、第二电容阈值、第一ADC阈值及第二ADC阈值进行具体的限制。
可以理解,本申请实施例提供的可穿戴设备100,不局限于对人类测温。在某些场景下,本申请实施例提供的可穿戴设备100,或基于本申请发明思想所改进的可穿戴设备,亦可以用于对其他生物进行温度测量,例如对宠物狗或宠物猫等进行测温。
请继续参阅图11,本申请实施例还提供一种可穿戴设备100a。可穿戴设备100a亦包括第一壳体10,第一感应件191a、第二感应件192a及处理器130(图未示)。可穿戴设备100a与可穿戴设备100的结构大致相同,区别在于可穿戴设备100a中,第一感应件191a与第二感应件192a的设置方式,与可穿戴设备100中第一感应件191及第二感应件192的设置方式不同,且可穿戴设备100a还包括第三壳体40a。
在一些实施例,可穿戴设备100a的第一壳体10上亦开设有开孔11。开孔11覆盖有第三壳体40a。第三壳体40a包括外表面41a及内表面42a。第二感应件192a收容于开孔11中。且第二感应件192a贴合内表面42a设置。第一感应件191a设置于外表面41a。且第一感应件191a沿第二感应件192a的一侧,延伸至电路板194的过孔195上,从而通过过孔195上的连接件196(例如金属弹片)电连接至处理器130。
在一些实施例中,第一感应件191a为覆盖在第三壳体40a外表面41a的具有导电性及导热性的材料层,例如金属薄膜。第二感应件192a为温度传感器。第三壳体40a由绝缘导热材料制成,例如玻璃。可以理解,第一感应件191a靠近或接触用户表皮,与用户表皮形成一等效电容,且吸收用户热量。第一感应件191a继而还将热量传导至第三壳体40a。如此,第二感应件192a通过测量第三壳体40a的温度,可测得第一感应件191a的温度。
可以理解,可穿戴设备100a通过获取第一感应件191a上的电容,以判 断第一感应件191a与用户的接触状态的过程,与可穿戴设备100中的判断方法相同,在此不再赘述。
本申请实施例还提供一种应用于可穿戴设备的测温方法。其中,可穿戴设备包括第一感应件及第二感应件。第一感应件具有一电容值。第二感应件用于测量第一感应件的温度,以作为初始温度。该测温方法包括:
步骤S1:获取所述第一感应件的电容值,以判断可穿戴设备的接触状态。
步骤S2:根据接触状态直接将初始温度作为测量温度,或者为初始温度匹配相应的温度补偿值,并将初始温度与温度补偿值之和作为测量温度。
其中,在步骤S2中,当电容值大于或等于第一电容阈值时,判断接触状态为触碰状态,并将初始温度作为测量温度。
当电容值小于第一电容阈值且大于或等于第二电容阈值时,判断接触状态为接近状态,并为初始温度匹配相应的温度补偿值,且将初始温度及温度补偿值之和作为测量温度。
当电容值小于第二电容阈值时,判断接触状态为悬空状态。
在一些实施例中,可穿戴设备还包括提示模块,当判断接触状态为悬空状态时,控制提示模块输出提示信息。
在一些实施例中,可穿戴设备还包括模拟数字转换器。模拟数字转换器一端连接至第一感应件,另一端连接至处理器。模拟数字转换器用于将等效电容的电容值转换为数字量。且温度补偿值与数字量的函数关系为:
T com=-0.00004(a-5500) 2+0.0995(a-5500)-61.303
其中,T com表示温度补偿值,a表示数字量。
可以理解,上述技术方案不局限应用于耳机中,在其他实施例中,上述技术方案亦可实施于其他可穿戴设备中,例如智能手表或运动手环等可穿戴设备。
可以理解,以上实施方式仅用以说明本申请的技术方案而非限制,尽管参照以上较佳实施方式对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换都不应脱离本申请技术方案的精神和范围。

Claims (21)

  1. 一种可穿戴设备,其特征在于,所述可穿戴设备包括:
    第一感应件,用于获取电容值;
    第二感应件,用于测量所述第一感应件的温度,以作为初始温度;
    处理器,电连接所述第一感应件,所述处理器用于读取所述电容值,并根据所述电容值判断所述可穿戴设备的接触状态;
    所述处理器还电连接所述第二感应件,用于读取所述初始温度,并根据所述接触状态直接将所述初始温度作为测量温度,或者为所述初始温度匹配相应的温度补偿值,并将所述初始温度与所述温度补偿值之和作为测量温度。
  2. 根据权利要求1所述的可穿戴设备,其特征在于:所述可穿戴设备包括壳体,所述壳体开设有开孔,所述第一感应件部分收容于所述开孔,以通过所述开孔露出于所述壳体表面。
  3. 根据权利要求1所述的可穿戴设备,其特征在于:所述可穿戴设备包括壳体,所述壳体包括外表面及内表面,所述外表面设置有所述第一感应件,所述内表面设置有所述第二感应件,所述第一感应件的热量传导至所述壳体,所述第二感应件通过测量所述壳体的温度以测得所述第一感应件的温度。
  4. 根据权利要求1-2任一项所述的可穿戴设备,其特征在于:所述第二感应件贴合所述第一感应件设置。
  5. 根据权利要求1-2任一项所述的可穿戴设备,其特征在于:所述第一感应件覆盖所述第二感应件,且所述第一感应件与所述第二感应件之间填充有绝缘导热材料。
  6. 根据权利要求5所述的可穿戴设备,其特征在于:所述第一感应件开设有收容孔,所述第二感应件收容于所述收容孔。
  7. 根据权利要求1-6任一项所述的可穿戴设备,其特征在于:所述第一感应件具有导电性及导热性。
  8. 根据权利要求1-6任一项所述的可穿戴设备,其特征在于:所述第一感应件由金属材料制成,所述第二感应件为温度传感器。
  9. 根据权利要求1所述的可穿戴设备,其特征在于:当所述电容值大于或等于第一电容阈值时,判断所述接触状态为触碰状态,并将所述初始温度作为所述测量温度。
  10. 根据权利要求9所述的可穿戴设备,其特征在于:当所述接触状态为所述触碰状态时,控制所述第二感应件开始测温,并于预设时间后当所述第一感应件达到热平衡状态时,读取所述初始温度。
  11. 根据权利要求10所述的可穿戴设备,其特征在于:当所述电容值小于所述第一电容阈值且大于或等于第二电容阈值时,判断所述接触状态为接近状态,并为所述初始温度匹配相应的温度补偿值,且将所述初始温度及所述温度补偿值之和作为所述测量温度。
  12. 根据权利要求11所述的可穿戴设备,其特征在于:所述温度补偿值与所述电容值之间的关系满足一预设函数,根据所述预设函数及获取到的所述电容值,计算得到所述温度补偿值,所述电容值与所述温度补偿值为负相关关系。
  13. 根据权利要求11所述的可穿戴设备,其特征在于:当所述电容值小于所述第二电容阈值时,判断所述接触状态为悬空状态,所述可穿戴设备还包括提示模块,当所述接触状态为所述悬空状态,所述提示模块输出提示信息。
  14. 根据权利要求1所述的可穿戴设备,其特征在于:所述可穿戴设备还包括模拟数字转换器,所述模拟数字转换器一端连接至所述第一感应件,另一端连接至所述处理器,所述模拟数字转换器用于将所述电容值转换为数字量,并输出至所述处理器。
  15. 根据权利要求14所述的可穿戴设备,其特征在于:所述温度补偿值与所述数字量的函数关系为:
    T com=-0.00004(a-5500) 2+0.0995(a-5500)-61.303
    其中,T com表示所述温度补偿值,a表示所述数字量。
  16. 一种测温方法,应用于可穿戴设备,其特征在于,所述可穿戴设备包括第一感应件及第二感应件,所述第一感应件用于获取电容值;所述第二感应件用于测量所述第一感应件的温度,以作为初始温度;所述测温方法包括:
    读取所述第一感应件的电容值,以判断所述可穿戴设备的接触状态;
    根据所述接触状态将所述初始温度作为测量温度,或者为所述初始温度匹配相应的温度补偿值,并将所述初始温度与所述温度补偿值之和作为所述测量温度。
  17. 根据权利要求16所述的测温方法,其特征在于:当所述电容值大于或等于第一电容阈值时,判断所述接触状态为触碰状态,并将所述初始温度作为所述测量温度。
  18. 根据权利要求17所述的测温方法,其特征在于:当所述电容值小于所述第一电容阈值且大于或等于第二电容阈值时,判断所述接触状态为接近状态,并为所述初始温度匹配相应的温度补偿值,且将所述初始温度及所述 温度补偿值之和作为所述测量温度。
  19. 根据权利要求18所述的测温方法,其特征在于:当所述电容值小于所述第二电容阈值时,判断所述接触状态为悬空状态。
  20. 根据权利要求19所述的测温方法,其特征在于:所述可穿戴设备还包括提示模块,当判断所述接触状态为所述悬空状态时,控制所述提示模块输出提示信息。
  21. 根据权利要求16所述的测温方法,其特征在于:所述可穿戴设备还包括模拟数字转换器,所述模拟数字转换器一端连接至所述第一感应件,另一端连接至处理器,所述模拟数字转换器用于将所述电容值转换为数字量;且所述温度补偿值与所述数字量的函数关系为:
    T com=-0.00004(a-5500) 2+0.0995(a-5500)-61.303
    其中,T com表示所述温度补偿值,a表示所述数字量。
PCT/CN2022/116906 2021-12-21 2022-09-02 可穿戴设备及测温方法 WO2023116049A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22859448.7A EP4224126A4 (en) 2021-12-21 2022-09-02 WEARABLE DEVICE AND METHOD FOR MEASURING TEMPERATURE
US18/025,168 US20240172944A1 (en) 2021-12-21 2022-09-02 Wearable device and temperature measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111573033.1A CN116295943B (zh) 2021-12-21 2021-12-21 可穿戴设备及测温方法
CN202111573033.1 2021-12-21

Publications (1)

Publication Number Publication Date
WO2023116049A1 true WO2023116049A1 (zh) 2023-06-29

Family

ID=86832823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116906 WO2023116049A1 (zh) 2021-12-21 2022-09-02 可穿戴设备及测温方法

Country Status (4)

Country Link
US (1) US20240172944A1 (zh)
EP (1) EP4224126A4 (zh)
CN (1) CN116295943B (zh)
WO (1) WO2023116049A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104378707A (zh) * 2014-11-04 2015-02-25 青岛歌尔声学科技有限公司 一种耳机及具有体温监控功能的穿戴类电子产品
US20170049335A1 (en) * 2015-08-19 2017-02-23 Logitech Europe, S.A. Earphones with biometric sensors
CN108810788A (zh) * 2018-06-12 2018-11-13 歌尔科技有限公司 一种无线耳机的佩戴情况检测方法、装置及无线耳机
CN111366175A (zh) * 2020-04-20 2020-07-03 深圳市科奈信科技有限公司 一种无线耳机及其佩戴状态的检测方法、装置及存储介质
CN111417042A (zh) * 2020-03-17 2020-07-14 重庆邮电大学 一种兼具实时耳温监测功能的无线耳机系统
CN111565342A (zh) * 2020-04-24 2020-08-21 维沃移动通信有限公司 耳机以及耳机的体温检测方法
CN213043825U (zh) * 2020-09-23 2021-04-23 南昌欧菲显示科技有限公司 穿戴式电子设备及无线耳机

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6090050A (en) * 1998-07-16 2000-07-18 Salix Medical, Inc. Thermometric apparatus and method
CN202842494U (zh) * 2012-10-12 2013-04-03 大唐国际发电股份有限公司重庆分公司 具有佩戴监测和人员定位功能的智能安全帽
US20140266694A1 (en) * 2013-03-15 2014-09-18 Samuel Greyson McCluskey Body Temperature Warning System
CN104083152B (zh) * 2014-07-17 2016-05-18 上海翰临电子科技有限公司 一种人体体温监测方法及体温监测系统
US9770185B2 (en) * 2014-08-06 2017-09-26 Verily Life Sciences Llc Sharing a single electrode between skin resistance and capacitance measurements
CN104633860A (zh) * 2015-01-29 2015-05-20 上海翰临电子科技有限公司 一种基于用户人体体温变化的室温调节方法
CN105549701B (zh) * 2015-12-09 2019-05-14 Oppo广东移动通信有限公司 用于移动终端的温度补偿方法、装置和移动终端
JP6771975B2 (ja) * 2016-07-20 2020-10-21 株式会社クラベ 静電容量検知線及びその応用品
KR20180016866A (ko) * 2016-08-08 2018-02-20 엘지전자 주식회사 와치타입 단말기
WO2020191594A1 (zh) * 2019-03-25 2020-10-01 深圳市汇顶科技股份有限公司 可穿戴设备、佩戴检测方法及存储介质
CN110750131A (zh) * 2019-09-18 2020-02-04 维沃移动通信有限公司 温度控制方法、装置、终端设备及存储介质
CN111854966A (zh) * 2020-07-16 2020-10-30 广东小天才科技有限公司 温度测量方法、装置、可穿戴设备和介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104378707A (zh) * 2014-11-04 2015-02-25 青岛歌尔声学科技有限公司 一种耳机及具有体温监控功能的穿戴类电子产品
US20170049335A1 (en) * 2015-08-19 2017-02-23 Logitech Europe, S.A. Earphones with biometric sensors
CN108810788A (zh) * 2018-06-12 2018-11-13 歌尔科技有限公司 一种无线耳机的佩戴情况检测方法、装置及无线耳机
CN111417042A (zh) * 2020-03-17 2020-07-14 重庆邮电大学 一种兼具实时耳温监测功能的无线耳机系统
CN111366175A (zh) * 2020-04-20 2020-07-03 深圳市科奈信科技有限公司 一种无线耳机及其佩戴状态的检测方法、装置及存储介质
CN111565342A (zh) * 2020-04-24 2020-08-21 维沃移动通信有限公司 耳机以及耳机的体温检测方法
CN213043825U (zh) * 2020-09-23 2021-04-23 南昌欧菲显示科技有限公司 穿戴式电子设备及无线耳机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4224126A4 *

Also Published As

Publication number Publication date
CN116295943A (zh) 2023-06-23
CN116295943B (zh) 2024-02-23
US20240172944A1 (en) 2024-05-30
EP4224126A4 (en) 2024-05-22
EP4224126A1 (en) 2023-08-09

Similar Documents

Publication Publication Date Title
US10575086B2 (en) System and method for sharing wireless earpieces
US20220386878A1 (en) Body Temperature Measurement Method, Electronic Device, and Computer-Readable Storage Medium
US9241668B2 (en) Peripheral physiology inspection apparatus and peripheral auxiliary apparatus of smart phone
TW201714460A (zh) 具有生物識別感測之耳塞
US10645479B1 (en) In-ear NFMI device with bone conduction Mic communication
US10212505B2 (en) Multi-point multiple sensor array for data sensing and processing system and method
US11717219B2 (en) Biological information measuring apparatus and biological information measuring system
CN213426407U (zh) 具备配戴检测功能的骨传导扬声器及骨传导耳机
US11869505B2 (en) Local artificial intelligence assistant system with ear-wearable device
US20230051613A1 (en) Systems and methods for locating mobile electronic devices with ear-worn devices
CN204971260U (zh) 头戴式电子设备
WO2023116049A1 (zh) 可穿戴设备及测温方法
WO2019199706A1 (en) In-ear wireless device with bone conduction mic communication
CN113509145B (zh) 睡眠风险监测方法、电子设备及存储介质
CN114286219B (zh) 耳机声道的配置方法、耳机组件和计算机可读存储介质
WO2022135145A1 (zh) 测量生理参数的方法及电子设备
AU2021102658A4 (en) Intelligent earphone system for remote health monitoring using artificial intelligence
CN213213815U (zh) 一种实时体温监测的蓝牙耳机系统
CN209497577U (zh) 一种具有高精度心率测量功能的蓝牙耳机
CN114431891A (zh) 监测睡眠的方法和相关电子设备
WO2023179484A1 (zh) 一种耳机
EP4350311A1 (en) Wearable electronic apparatus, body temperature measurement method, and wearable electronic device
JP3245920U (ja) 多機能骨伝導イヤホン
KR102571607B1 (ko) 생체 정보 측정 기능이 포함된 무선 이어버드 충전 케이스
CN212544031U (zh) 一种体温检测装置及其耳机

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022859448

Country of ref document: EP

Effective date: 20230227

WWE Wipo information: entry into national phase

Ref document number: 18025168

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE