WO2022135145A1 - 测量生理参数的方法及电子设备 - Google Patents

测量生理参数的方法及电子设备 Download PDF

Info

Publication number
WO2022135145A1
WO2022135145A1 PCT/CN2021/136277 CN2021136277W WO2022135145A1 WO 2022135145 A1 WO2022135145 A1 WO 2022135145A1 CN 2021136277 W CN2021136277 W CN 2021136277W WO 2022135145 A1 WO2022135145 A1 WO 2022135145A1
Authority
WO
WIPO (PCT)
Prior art keywords
physiological parameter
data
physiological
data related
characteristic data
Prior art date
Application number
PCT/CN2021/136277
Other languages
English (en)
French (fr)
Inventor
彭家辉
黄曦
邱凌志
吴莲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US18/258,710 priority Critical patent/US20240041333A1/en
Priority to EP21909142.8A priority patent/EP4241664A4/en
Publication of WO2022135145A1 publication Critical patent/WO2022135145A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14542Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/165Evaluating the state of mind, e.g. depression, anxiety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/361Detecting fibrillation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/364Detecting abnormal ECG interval, e.g. extrasystoles, ectopic heartbeats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4812Detecting sleep stages or cycles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6803Head-worn items, e.g. helmets, masks, headphones or goggles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6898Portable consumer electronic devices, e.g. music players, telephones, tablet computers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7221Determining signal validity, reliability or quality
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7285Specific aspects of physiological measurement analysis for synchronising or triggering a physiological measurement or image acquisition with a physiological event or waveform, e.g. an ECG signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/7435Displaying user selection data, e.g. icons in a graphical user interface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0266Operational features for monitoring or limiting apparatus function
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]

Definitions

  • the present application relates to the field of electronic devices, and more particularly, to a method and electronic device for measuring physiological parameters.
  • wearable devices can not only act as a clock, but also measure the user's physiological parameters.
  • wearable devices can measure physiological parameters such as atrial fibrillation, premature beats, and arteriosclerosis.
  • the present application provides a method and electronic device for measuring physiological parameters, which can measure multiple physiological parameters of a user at one time, with simple user operation, high measurement efficiency and better user experience.
  • a first aspect provides a method for measuring a physiological parameter, the method being applied to an electronic device including a physiological parameter sensor, the method comprising: displaying an interface for measuring a physiological parameter, the interface for measuring a physiological parameter including a plurality of physiological parameters identification; receiving an operation of measuring a physiological parameter, the operation of measuring a physiological parameter comprising an operation of selecting a first physiological parameter identification and a second physiological parameter identification, the first physiological parameter identification and the second physiological parameter identification are respectively the multiple The physiological parameter identification in the physiological parameter identification; according to the operation of measuring the physiological parameter, the first physiological parameter and the second physiological parameter of the measured object are measured by the physiological parameter sensor.
  • the measurement of the corresponding physiological parameter can be accomplished through the physiological parameter sensor.
  • the embodiments of the present application do not limit the types of physiological parameter sensors and the types of physiological parameters.
  • the physiological parameter sensor may include at least one of the following: an accelerometer (ACC) sensor; a photoplethysmography (PPG) sensor; an electrocardiogram (ECG) sensor.
  • ACC accelerometer
  • PPG photoplethysmography
  • ECG electrocardiogram
  • the physiological parameters may be physiological parameters related to arrhythmia characteristics, physiological parameters related to blood vessel characteristics, physiological parameters related to blood oxygen characteristics, physiological parameters related to pressure characteristics, sleep, and the like.
  • physiological parameters related to arrhythmia characteristics may be atrial fibrillation, premature beats, heart rate, and the like.
  • a physiological parameter related to vascular properties may be arteriosclerosis.
  • the embodiments of the present application do not limit the manner in which the first physiological parameter identifier and the second physiological parameter identifier are displayed on the physiological parameter measurement interface respectively.
  • the first physiological parameter identification and the second physiological parameter identification may be displayed on the measuring physiological parameter interface in a combined manner.
  • the first physiological parameter and the second physiological parameter are displayed in a menu option in the measuring physiological parameter interface.
  • the first physiological parameter identification and the second physiological parameter identification may be separately displayed in the measuring physiological parameter interface in a separate manner.
  • the first physiological parameter identification and the second physiological parameter identification are respectively displayed in two menu item options in the interface for measuring physiological parameters.
  • the operation of measuring the physiological parameter further includes an operation of selecting at least one physiological parameter identification other than the first physiological parameter identification and the second physiological parameter identification.
  • the user selects the identifiers of the first physiological parameter and the second physiological parameter to be measured by selecting the identifiers of the first physiological parameter and the second physiological parameter to be measured through the identifiers of multiple physiological parameters displayed on the measurement physiological parameter interface, and can measure the first physiological parameter of the measured object.
  • the measurement is performed with the second physiological parameter, so that multiple physiological parameters of the user can be measured at one time, the measurement efficiency is high, the user operation is simple, and the user experience is better.
  • the first physiological parameter and the second physiological parameter of the measured object are measured by the physiological parameter sensor in response to the operation of measuring the physiological parameter Physiological parameters, including: collecting data of the measured object through the physiological parameter sensor according to the operation of measuring the physiological parameters; respectively extracting data related to the first physiological parameter and data related to the first physiological parameter from the collected data. the data related to the second physiological parameter; obtain the first physiological parameter according to the data related to the first physiological parameter; obtain the first physiological parameter according to the data related to the second physiological parameter Two physiological parameters.
  • the data of the measured object is firstly collected through the physiological parameter sensor, and then the data related to the first physiological parameter and the second physiological parameter are respectively extracted from the collected data.
  • the data related to the second physiological parameter can respectively obtain the corresponding physiological parameter according to the data related to the corresponding physiological parameter, realize the simultaneous measurement of multiple physiological parameters, the measurement efficiency is high, the user operation is simple, and the user experience is better.
  • the extracted data related to the first physiological parameter and the extracted data related to the second physiological parameter are partially or completely the same.
  • the extracted data related to the first physiological parameter and the extracted data related to the second physiological parameter are all the same, which can be understood as the type of the data related to the first physiological parameter and the data related to the second physiological parameter.
  • the kinds are the same, and the data volume of the data related to the first physiological parameter and the data volume of the data related to the second physiological parameter are the same.
  • the same part of the extracted data related to the first physiological parameter and the extracted data related to the second physiological parameter can be understood as the type of the data related to the first physiological parameter and the difference of the data related to the second physiological parameter.
  • the types are the same, and the data volume of the data related to the first physiological parameter and the data volume of the data related to the second physiological parameter are different.
  • the method further includes: Determine whether the data meets the requirements of data quality; if the data does not meet the requirements of data quality, re-collect the data of the measured object through the physiological parameter sensor, and use the re-collected data to The data is updated until the data meets the data quality requirements.
  • the method further includes: displaying prompt information, where the prompt information is used to prompt the user
  • the electronic device is properly worn and/or used to prompt the user to operate the electronic device correctly.
  • the obtaining the first physiological parameter according to the data related to the first physiological parameter includes: according to the data related to the first physiological parameter Physiological parameter-related data, extract feature data related to the first physiological parameter; determine whether the feature data related to the first physiological parameter meets the requirements for analyzing the first physiological parameter; When the characteristic data of the first physiological parameter meets the requirement for analyzing the first physiological parameter, the first physiological parameter is obtained according to the characteristic data related to the first physiological parameter.
  • the judging and the characteristic data of the first physiological parameter meet the requirements for analyzing the first physiological parameter, including: judging and the first physiological parameter. Whether the characteristic data of a physiological parameter meets the requirements for analyzing the first physiological parameter; if the characteristic data of the first physiological parameter meets the requirements for analyzing the first physiological parameter, determine the Whether the amount of data corresponding to the characteristic data of the first physiological parameter meets the requirements for analyzing the first physiological parameter; In the case of the requirement of analysis, obtaining the first physiological parameter according to the characteristic data related to the first physiological parameter, including: when the data volume corresponding to the characteristic data of the first physiological parameter satisfies In the case of a request for analyzing the first physiological parameter, the first physiological parameter is obtained according to the characteristic data related to the first physiological parameter.
  • the method further includes: analyzing the first physiological parameter.
  • the data processing is performed with the characteristic data of the first physiological parameter; in the case that the characteristic data of the first physiological parameter meets the requirement of analyzing the first physiological parameter, it is determined that the Whether the amount of data corresponding to the characteristic data of a physiological parameter meets the requirements for analyzing the first physiological parameter includes: analyzing the first physiological parameter after the processed characteristic data corresponding to the first physiological parameter meets the requirements for analyzing the first physiological parameter. In the case of the requirement of the first physiological parameter, it is judged whether the data amount corresponding to the characteristic data of the first physiological parameter satisfies the requirement of analyzing the first physiological parameter.
  • the obtaining the second physiological parameter according to the data related to the second physiological parameter includes: according to the data related to the second physiological parameter Physiological parameter-related data, extract feature data related to the second physiological parameter; determine whether the feature data related to the second physiological parameter meets the requirements for analyzing the second physiological parameter; When the characteristic data of the second physiological parameter meets the requirements for analyzing the second physiological parameter, the second physiological parameter is obtained according to the characteristic data related to the second physiological parameter.
  • determining whether the characteristic data of the second physiological parameter and the second physiological parameter meet the requirements for analyzing the second physiological parameter includes: Whether the characteristic data of the second physiological parameter meets the requirements for analyzing the second physiological parameter; in the case where the characteristic data of the second physiological parameter meets the requirements for analyzing the second physiological parameter, determine the Whether the amount of data corresponding to the characteristic data of the second physiological parameter meets the requirements for analyzing the second physiological parameter; In the case of the requirement of analysis, obtaining the second physiological parameter according to the characteristic data related to the second physiological parameter, including: when the data volume corresponding to the characteristic data of the second physiological parameter satisfies In the case of a request for analyzing the second physiological parameter, the second physiological parameter is obtained according to the characteristic data related to the second physiological parameter.
  • the method further includes: analyzing the second physiological parameter.
  • the data processing is performed with the characteristic data of the second physiological parameter; in the case where the characteristic data of the second physiological parameter meets the requirement for analyzing the second physiological parameter, it is determined that the Whether the amount of data corresponding to the characteristic data of the second physiological parameter meets the requirements for analyzing the second physiological parameter includes: analyzing the second physiological parameter after the processed characteristic data corresponding to the second physiological parameter meets the requirements for analyzing the second physiological parameter. In the case of the request of the second physiological parameter, it is judged whether the data amount corresponding to the characteristic data of the second physiological parameter satisfies the requirement of analyzing the second physiological parameter.
  • the method further includes: displaying the first physiological parameter and the second physiological parameter of the measured object.
  • the displaying the first physiological parameter and the second physiological parameter of the measured object includes: after measuring the first physiological parameter , displaying the first physiological parameter; after measuring the second physiological parameter, displaying the second physiological parameter.
  • the displaying the first physiological parameter and the second physiological parameter of the measured object includes: after measuring the first physiological parameter and After the second physiological parameter, the first physiological parameter and the second physiological parameter are displayed.
  • a method for measuring a physiological parameter is provided, the method is applied to an electronic device including a physiological parameter sensor, and the method includes: collecting, through the physiological parameter sensor, a measurement of a measured object related to a first physiological parameter obtain the first physiological parameter according to the data related to the first physiological parameter; detect the operation of measuring the second physiological parameter, and the second physiological parameter is different from the first physiological parameter; In response to the operation, a measurement message is sent to the second application, the measurement message including the data related to the first physiological parameter.
  • the user uses the first application to measure the first physiological parameter of the measured object
  • the collected data related to the first physiological parameter can also be used as the data for obtaining the second physiological parameter
  • the data related to the first physiological parameter is sent to the second application, so that the second application can obtain the second physiological parameter without collecting the data related to the second physiological parameter, so as to be compatible with the current
  • the method further includes: according to the The data related to the first physiological parameter determines the second physiological parameter.
  • the data related to the first physiological parameter includes data related to the second physiological parameter.
  • the data related to the first physiological parameter includes data related to the second physiological parameter
  • the type of data related to the first physiological parameter includes the type of data related to the second physiological parameter
  • the type of data related to the first physiological parameter includes the type of data related to the second physiological parameter
  • the data volume of the related data includes the data volume of the data related to the second physiological parameter.
  • the type of data indicates whether the data is PPG data, the data is ECG data, and/or the data is ACC data.
  • the data related to the physiological parameter includes ACC data, PPG data, and ECG data. And data related to physiological parameters should be collected for 30 seconds.
  • the physiological parameter is a physiological parameter related to blood vessel characteristics
  • the data related to the physiological parameter includes ACC data, PPG data, and ECG data. And data related to physiological parameters should be collected for 60 seconds.
  • the data related to the physiological parameter includes ACC data and PPG data. And data related to physiological parameters should be collected for 20 seconds.
  • the data related to the physiological parameter includes ACC data and PPG data. And data related to physiological parameters should be collected for 60 seconds.
  • the first physiological parameter may be a physiological parameter related to arrhythmia characteristics
  • the second physiological parameter may be a physiological parameter related to blood oxygen characteristics.
  • the first physiological parameter may be a physiological parameter related to blood vessel characteristics
  • the second physiological parameter may be a physiological parameter related to arrhythmia characteristics, a physiological parameter related to blood oxygen characteristics, or a physiological parameter related to pressure characteristics.
  • the first physiological parameter may be a physiological parameter related to pressure characteristics
  • the second physiological parameter may be a physiological parameter related to blood oxygen characteristics.
  • the method before the detecting operation of measuring the second physiological parameter, the method further includes: displaying or playing reminder information, where the reminder information is used to remind Whether to measure the second physiological parameter.
  • a method for measuring a physiological parameter comprising: receiving a measurement message from a first application, the measurement message including data related to the first physiological parameter; data to obtain a second physiological parameter, where the second physiological parameter is different from the first physiological parameter.
  • the second application does not need to collect data related to the second physiological parameter, but only needs to obtain the second physiological parameter according to the data related to the first physiological parameter obtained from the first application, which realizes data multiplexing and has high measurement efficiency. , the user experience is better.
  • a system in a fourth aspect, includes a first application and a second application, wherein the first application is used to collect data related to a first physiological parameter of a measured object; the first application The first application is further configured to obtain the first physiological parameter according to the data related to the first physiological parameter; the first application is further configured to detect the operation of measuring the second physiological parameter, the second physiological parameter The parameter is different from the first physiological parameter; the first application is further configured to, in response to the operation, send a measurement message to the second application, where the measurement message includes the first physiological parameter data; the second application is configured to obtain the second physiological parameter according to the data related to the first physiological parameter.
  • the user uses the first application to measure the first physiological parameter of the measured object
  • the collected data related to the first physiological parameter can also be used as the data for obtaining the second physiological parameter
  • the data related to the first physiological parameter is sent to the second application, so that the second application can obtain the second physiological parameter without collecting the data related to the second physiological parameter, which realizes the data sharing. Multiplexing, high measurement efficiency, and better user experience.
  • the first physiological parameter after the first physiological parameter is obtained according to the data related to the first physiological parameter, the first physiological parameter is An application is further configured to: determine the second physiological parameter according to the data related to the first physiological parameter.
  • the first application before the first application is further used for detecting the operation of measuring the second physiological parameter, the first application is further used for: Display or play reminder information, where the reminder information is used to remind whether to measure the second physiological parameter.
  • an apparatus in a fifth aspect, is provided, the apparatus is included in an electronic device, and the apparatus has any one of the above-mentioned first to third aspects, or some implementation manners of the first to third aspects function of an implementation.
  • the functions can be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • an electronic device comprising: one or more processors; a memory; and one or more computer programs. Wherein, one or more computer programs are stored in the memory, the one or more computer programs comprising instructions. When the instructions are executed by the electronic device, the electronic device is caused to perform the method of measuring a physiological parameter in any one of the above-mentioned first to third aspects, or some implementations of the first to third aspects.
  • a computer program product comprising instructions, which, when the computer program product is run on an electronic device, causes the electronic device to perform the above-mentioned first to third aspects, or the first to third aspects A method of measuring a physiological parameter in any of certain implementations of an aspect.
  • a computer-readable storage medium comprising instructions, which, when the instructions are executed on an electronic device, cause the electronic device to perform the above-mentioned first to third aspects, or the first to third aspects A method of measuring a physiological parameter in any of certain implementations of an aspect.
  • the above computer program code may be stored in whole or in part on the first storage medium, where the first storage medium may be packaged with the processor or separately packaged with the processor, which is not implemented in this embodiment of the present application. Specific restrictions.
  • a chip in a ninth aspect, includes a processor and a data interface, the processor reads instructions stored in a memory through the data interface, and executes the above-mentioned first to third aspects, or the first A method of measuring a physiological parameter in any one of certain implementations of the aspect to the third aspect.
  • the chip may further include a memory, in which instructions are stored, the processor is configured to execute the instructions stored in the memory, and when the instructions are executed, the The processor is configured to perform the method of measuring a physiological parameter of the first to third aspects, or any one of some implementations of the first to third aspects.
  • FIG. 1 is a schematic diagram of a hardware structure of a wearable device according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a structure of a wearable device provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a graphical user interface of a wearable device according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a graphical user interface of a wearable device according to another embodiment of the present application.
  • FIG. 5 is a schematic diagram of a graphical user interface of a wearable device provided by yet another embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a measurement method provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a measurement method provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a measurement method provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a measurement method provided by another embodiment of the present application.
  • FIG. 10 is an exemplary structural diagram of an example of a wearable device provided by an embodiment of the present application.
  • FIG. 11 is an exemplary structural diagram of another example of a wearable device provided by an embodiment of the present application.
  • FIG. 12 is an exemplary structural diagram of another example of a wearable device provided by an embodiment of the present application.
  • FIG. 13 is an exemplary structural diagram of another example of a wearable device provided by an embodiment of the present application.
  • FIG. 14 is an exemplary structural diagram of an example of a system provided by an embodiment of the present application.
  • At least one involved in the embodiments of the present application includes one or more; wherein, multiple refers to greater than or equal to two.
  • words such as “first” and “second” are only used for the purpose of distinguishing the description, and should not be understood as indicating or implying relative importance, nor should it be understood as indicating or implied order.
  • references to "one embodiment” or “some embodiments” or the like described in the embodiments of the present application mean that a particular feature, structure or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically emphasized otherwise.
  • the terms “including”, “including”, “having” and their variants mean “including but not limited to” unless specifically emphasized otherwise.
  • the methods provided in the embodiments of the present application may be applied to electronic devices, which may be wearable electronic devices (also referred to as wearable devices), such as watches, bracelets, headphones, helmets (such as virtual reality helmets), etc., or It is a non-wearable device, such as a portable electronic device with ECG and/or PPG detection function, such as a mobile phone, tablet computer, laptop computer, etc.
  • portable electronic devices include, but are not limited to, carry-on Or portable electronic devices with other operating systems.
  • the above-mentioned electronic device may not be a portable electronic device, but a desktop computer capable of detecting ECG and/or PPG, etc., which is not limited in the embodiment of the present application.
  • the following embodiments of the present application are described by taking the electronic device as a wearable device as an example.
  • FIG. 1 is a schematic functional block diagram of a wearable device provided by an embodiment of the present application.
  • the wearable device 100 may be a smart watch or a smart bracelet or the like.
  • the wearable device 100 may include a processor 110 , an input device 120 , a sensor module 130 , a memory 140 and a power supply module 150 .
  • the components shown in FIG. 1 do not constitute a specific limitation on the wearable device 100, and the wearable device 100 may also include more or less components than those shown, or combine some components, or separate some components. components, or a different arrangement of components.
  • the processor 110 may include one or more processing units, for example, the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processor (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU) Wait. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • the controller may be the nerve center and command center of the wearable device 100 . The controller can generate an operation control signal according to the instruction operation code and timing signal, and complete the control of fetching and executing instructions.
  • a memory may also be provided in the processor 110 for storing instructions and data.
  • the memory in processor 110 is cache memory. This memory may hold instructions or data that have just been used or recycled by the processor 110 . If the processor 110 needs to use the instruction or data again, it can be directly called from the memory, which avoids repeated access, reduces the waiting time of the processor 110, and thus improves the efficiency of the wearable device 100.
  • the input device 120 is used to provide user input, which can be a mechanical device.
  • the user contacts the input device 120, so that the input device 120 rotates, translates or tilts to realize the user input, so as to realize the startup (for example, power on or off) of the wearable device 100,
  • the function or operation of determining or adjusting a signal eg, adjusting the volume level, etc.
  • the user input in this embodiment of the present application may be operations such as rotation, translation, and inclination performed by the user on the input device 120 .
  • wearable device 100 may include one or more input devices 120 .
  • the sensor module 130 may include one or more sensors, for example, may include a PPG sensor 130A, a pressure sensor 130B, a capacitive sensor 130C, an acceleration sensor 130D, a touch sensor 130E, and the like. It should be understood that FIG. 1 is only an example of several sensors. In practical applications, the wearable device 100 may also include more or less sensors, or use other sensors with the same or similar functions to replace the above-listed sensors, etc. etc., which are not limited in the embodiments of the present application.
  • the PPG sensor 130A can be used to detect the heart rate, that is, the number of heartbeats per unit time.
  • the PPG sensor 130A may include a light transmitting unit and a light receiving unit.
  • the light sending unit can irradiate the light beam into the human body (such as blood vessels), the light beam is reflected/refracted in the human body, and the reflected/refracted light is received by the light receiving unit to obtain an optical signal. Since the light transmittance changes during the fluctuation of blood, the emitted/refracted light changes, and the light signal detected by the PPG sensor 130A also changes.
  • the PPG sensor 130A can convert the optical signal into an electrical signal, and determine the heart rate corresponding to the electrical signal.
  • the pressure sensor 130B can be used to detect the pressure value between the human body and the wearable device 100 .
  • the pressure sensor 130B is used to sense pressure signals, and can convert the pressure signals into electrical signals.
  • Capacitance sensor 130C can be used to detect capacitance between two electrodes to achieve specific functions.
  • the capacitance sensor 130C can be used to detect the capacitance between the human body and the wearable device 100, the capacitance can reflect whether the contact between the human body and the wearable device is good, and can be applied to electrocardiogram (Electrocardiography, ECG) detection, wherein, The human body can be used as an electrode.
  • ECG Electrocardiography
  • the wearable device 100 may refer to the capacitance detected by the capacitance sensor 130C when generating the ECG.
  • the acceleration sensor 130D can be used to detect the magnitude of the acceleration of the wearable device 100 in various directions (generally three axes).
  • the wearable device 100 is a wearable device. When the user wears the wearable device 100, the wearable device 100 moves under the driving of the user, so the acceleration in various directions detected by the acceleration sensor 130D can reflect the motion state of the human body.
  • the touch sensor 130E can be disposed on the display screen, and the touch sensor 130E and the display screen form a touch screen, also called "touch screen".
  • the touch sensor 130E is used to detect a touch operation on or near it.
  • the touch sensor 130E may communicate the detected touch operation to the processor 110 to determine the touch event type.
  • Visual output associated with touch operations can be provided through the display.
  • the touch sensor 130E can also be disposed on the surface of the display screen, which is different from the position where the display screen is located.
  • the memory 140 may be used to store computer executable program code including instructions.
  • the processor 110 executes various functional applications and data processing of the wearable device 100 by executing the instructions stored in the memory.
  • the memory 140 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (universal flash storage, UFS), etc., which are not limited in the embodiments of the present application.
  • the power supply module 150 can supply power to various components in the wearable device 100, such as the processor 110, the sensor module 130, and the like.
  • the power supply module 150 may be a battery or other portable power element.
  • the wearable device 100 may also be connected with a charging device (for example, through a wireless or wired connection), and the power supply module 150 may receive power input from the charging device to store power in a battery.
  • the wearable device 100 further includes a display screen 160 .
  • the display screen 160 includes a display panel.
  • the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active-matrix organic light-emitting diode or an active-matrix organic light-emitting diode (active-matrix organic light).
  • LED liquid crystal display
  • OLED organic light-emitting diode
  • AMOLED organic light-emitting diode
  • FLED flexible light-emitting diode
  • Miniled MicroLed, Micro-oLed
  • quantum dot light-emitting diode quantum dot light emitting diodes, QLED
  • a touch sensor may be provided in the display screen to form a touch screen, which is not limited in the embodiments of the present application. It can be understood that in some embodiments, the wearable device 100 may include the display screen 160 or may not include the display screen 160. For example, when the wearable device 100 is a wristband, the display screen may or may not be included. When 100 is a watch, a display can be included.
  • the wearable device 100 may further include an audio device 170 , and the audio device 170 may include a device that can receive or output sound signals, such as a microphone, a speaker, or an earpiece.
  • the audio device 170 may include a device that can receive or output sound signals, such as a microphone, a speaker, or an earpiece.
  • Horns also called “speakers” are used to convert audio electrical signals into sound signals.
  • the wearable device 100 can listen to music through a speaker, or listen to a hands-free call.
  • Earpieces also called “receivers” are used to convert audio electrical signals into sound signals.
  • the wearable device 100 answers a call or a voice message, the voice can be answered by placing the receiver close to the human ear.
  • Microphones also known as “microphones” and “microphones" are used to convert sound signals into electrical signals. When making a call or sending a voice message, the user can make a sound through the human mouth close to the microphone, and input the sound signal into the microphone.
  • the wearable device 100 may be provided with at least one microphone. In other embodiments, the wearable device 100 may be provided with two microphones, which can implement a noise reduction function in addition to collecting sound signals. In some other embodiments, the wearable device 100 may also be provided with three, four or more microphones to collect sound signals, reduce noise, identify sound sources, and implement directional recording functions.
  • the wearable device 100 may have a wireless communication function.
  • the wearable device 100 may further include a wireless communication module 181 , a mobile communication module 182 , one or more antennas 1 and one or more antennas 2 .
  • the wearable device 100 can implement the wireless communication function through the antenna 1 , the antenna 2 , the wireless communication module 181 , and the mobile communication module 182 .
  • the wireless communication module 181 may provide a wireless communication solution applied on the wearable device 100 following various network communication protocols or communication technologies.
  • the network communication protocol may include wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), Bluetooth (BT), global navigation satellite system (global navigation satellite system) satellite system, GNSS), frequency modulation (frequency modulation, FM), near field communication technology (near field communication, NFC), infrared technology (infrared, IR) and other communication protocols.
  • WLAN wireless local area networks
  • BT wireless fidelity
  • BT global navigation satellite system
  • GNSS global navigation satellite system
  • frequency modulation frequency modulation, FM
  • NFC near field communication technology
  • infrared technology infrared, IR
  • the wearable device 100 can establish a Bluetooth connection with other electronic devices such as a mobile phone through the Bluetooth protocol.
  • the wireless communication module 181 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 181 receives electromagnetic waves via the antenna 1 , frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 181 can also receive the signal to be sent from the processor 110 , perform frequency modulation on the signal, amplify the signal, and then convert it into an electromagnetic wave for radiation through the antenna 1 .
  • the wireless communication module 181 can be coupled with one or more antennas 1, so that the wearable device 100 can communicate with the network and other devices through wireless communication technology.
  • the mobile communication module 182 may provide a wireless communication solution applied on the wearable device 100 following various network communication protocols or communication technologies.
  • the network communication protocol may be various wired or wireless communication protocols, such as Ethernet, global system for mobile communications (GSM), general packet radio service (GPRS), code Code Division Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Time-Division Code Division Multiple Access (TD-SCDMA), Long Term Evolution (long term evolution, LTE), voice over Internet protocol (voice over Internet protocol, VoIP), a communication protocol that supports network slicing architecture, or any other suitable communication protocol.
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • TD-SCDMA Time-Division Code Division Multiple Access
  • LTE Long Term Evolution
  • VoIP voice over Internet protocol
  • the wearable device 100 can establish a wireless communication connection with other electronic devices such as mobile phones through the WCDMA communication protocol.
  • the mobile communication module 182 may include at least one filter, switch, power amplifier, low noise amplifier (LNA), and the like. In some other embodiments, at least part of the functional modules of the mobile communication module 182 may be provided in the processor 110 . In other embodiments, at least part of the functional modules of the mobile communication module 182 may be provided in the same device as at least part of the modules of the processor 110 .
  • LNA low noise amplifier
  • the mobile communication module 182 can receive electromagnetic waves from the antenna 2, filter, amplify, etc. the received electromagnetic waves, and transmit them to the modulation and demodulation processor for demodulation.
  • the mobile communication module 182 can also amplify the signal modulated by the modulation and demodulation processor, and then convert it into electromagnetic waves for radiation through the antenna 2 .
  • the mobile communication module 182 can be coupled with one or more antennas 2 so that the wearable device 100 can communicate with the network and other devices through wireless communication technology.
  • the wearable device further includes an electrode set 190 including at least two electrodes.
  • the electrode set 190 may be disposed on one or more outer surfaces of the wearable device 100.
  • One or more processors 110 may monitor voltages or signals received by electrode sets 190 .
  • electrodes may be used to provide ECG functionality for wearable device 100 . For example, when the user touches the first electrode and the second electrode on the wearable device 100, the wearable device 100 can provide a 2-lead ECG function, that is, the wearable device 100 can detect the first electrical signal and the second electrode according to the first electrode and the second electrode. The detected second electrical signal results in an ECG signal.
  • the wearable device 100 can provide a 3-lead ECG function, that is, the wearable device 100 can The signal, the second electrical signal detected by the second electrode, and the third electrical signal detected by the third electrode result in an ECG signal.
  • the following embodiments of the present application mainly take the wearable device 100 including two electrodes as an example.
  • FIG. 2 is a schematic structural diagram of a wearable device 100 provided by an embodiment of the present application.
  • the wearable device 100 may be a smart watch or a smart bracelet.
  • the wearable device 100 includes a main body 101 and two wristbands 102 (a partial area of the wristbands 102 is shown in FIG. 2 ).
  • the wristband 102 may be fixedly connected or movably connected to the main body 101, and the wristband 102 may be wrapped around the wrist, arm, leg or other parts of the body to fix the wearable device 100 on the user's body.
  • the main body 101 may include a casing 1010 and a cover 1011, the casing 1010 enclosing the cover 1011, for example, the casing 1010 includes a groove provided at the top end, the cover 1011 is received in the groove, and the edge of the cover 1011 abuts and is fixed to the casing 1010 The grooves are formed on the surface of the main body 101 .
  • the interior of the structure formed by the casing 1010 and the cover 1011 has an accommodating space, which can accommodate the combination of one or more components shown in FIG. 1 and not shown, so as to realize various functions of the wearable device 100 .
  • the main body 101 further includes an input device 120 , the accommodating space in the structure formed by the cover 1011 and the housing 1010 can accommodate part of the input device 120 , and the exposed part of the input device 120 is convenient for the user to touch.
  • the cover 1011 is used as the surface of the main body 101 and can be used as a protection plate for the main body 101 to prevent the components contained in the casing 1010 from being exposed and damaged.
  • cover 1011 may be transparent.
  • the cover 1011 may comprise a crystal, such as a sapphire crystal, or the cover 1011 may be formed of glass, plastic or other materials.
  • the cover 1011 may be a display screen 160 through which a user may interact with the wearable device 100 .
  • display screen 160 may receive user input and, in response to the user input, make corresponding output, for example, the user may select (or otherwise) turn on by touching or pressing at a graphical location on display screen 160 , edit the graph, etc.
  • the input device 120 is attached to the outside of the housing 1010 and extends to the inside of the housing 1010 . It can be understood that the rotatable input device 120 may be referred to as a button, and in the embodiment where the wearable device 100 is a watch, the rotatable input device 120 may be the crown of the watch, and the input device 120 may be referred to as a crown.
  • the housing 1010 may be fabricated from various materials, including but not limited to plastics, metals, alloys, and the like.
  • the housing 1010 is provided with a mounting hole matched with the input device 120 to accommodate a part of the structure of the input device 120 .
  • the input device 120 is not limited to the structure shown in FIG. 2 , and any mechanical component that can receive user input can be used as the input device 120 in this embodiment of the present application.
  • the input device 120 of the wearable device 100 can be a button 1201 .
  • the button 1201 can be used as an example of the input device 120 , and the button 1201 can be installed on the side 10101 of the housing 1010 .
  • the button 1201 may be referred to as the crown.
  • the input device 120 of the wearable device 100 may be a button 1202 .
  • the button 1202 may be used as another example of the input device 120 , and the button 1202 may allow the user to press the button 1202 to move the button 1202 such as translation or tilt. to realize the user's mobile input.
  • the keys 1202 may be mounted on the side surface 10101 of the housing 1010, a part of the keys 1202 is exposed, and the other part extends from the side surface of the housing 1010 toward the interior of the housing 1010 (not shown in the figure).
  • the key 1202 can also be arranged on the head 12011 of the button 1201, and the rotation input can also be realized while the movement input can be realized.
  • the keys 1202 may also be disposed on the top surface of the main body 101 on which the display screen 160 is installed.
  • the input device 120 may include a button 1201 and a key 1202 , and the button 1201 and the key 1202 may be provided on the same surface of the housing 1010 , for example, both provided on the same surface of the housing 1010 On the side, the button 1201 and the key 1202 may also be disposed on different surfaces of the housing 1010, which is not limited in the embodiment of the present application. It is understood that the input device 120 may include one or more keys 1202 and may also include one or more buttons 1201 .
  • the wearable device can not only act as a clock, but also detect the physiological parameters of the user.
  • the user can measure various physiological parameters through the physiological parameter sensor of the wearable device.
  • the embodiments of the present application do not limit the types of physiological parameter sensors and the types of physiological parameters.
  • the physiological parameter sensor may include, but is not limited to, at least one of the following: ACC sensor; PPG sensor; ECG sensor.
  • physiological parameters may include atrial fibrillation, premature beats, heart rate, arteriosclerosis, blood oxygen, sleep, stress, and the like.
  • the user When the user wants to measure multiple physiological parameters, the user needs to implement the measurement of multiple physiological parameters through multiple application programs (Application, App) corresponding to the multiple physiological parameters on the wearable device.
  • Application, App Application, App
  • the operation is cumbersome and the user experience is not good.
  • the embodiment of the present application provides a measurement method 200, and the measurement method 200 is applied to a wearable device.
  • the measurement method 200 the user can measure multiple physiological parameters at one time through one APP, the measurement efficiency is high, and the user experience is better.
  • GUI graphical user interface
  • FIG. 3 is a schematic diagram of a GUI change of a wearable device provided by an embodiment of the present application.
  • the icon of the application 1 is displayed on the display interface of the wearable device 100 .
  • the application 1 is the name of the application for measuring physiological parameters as an example for description.
  • the names of the applications for measuring physiological parameters are not limited in the embodiments of the present application.
  • the display interface of the wearable device 100 displays the icons of one or more other applications in addition to the icons of the application 1 .
  • a physiological parameter measurement interface may be displayed on the display interface of the wearable device 100, and the physiological parameter measurement interface includes a plurality of physiological parameter identifiers.
  • a plurality of physiological parameter identifiers may be displayed in the measurement physiological parameter interface in a separate manner.
  • multiple physiological parameter identifiers may be displayed in multiple menu item options in the interface for measuring physiological parameters, respectively.
  • This embodiment of the present application does not limit the number of physiological parameters included in each menu option.
  • each menu option includes an identification of a physiological parameter. That is, the menu option “Heart Rate”, “Blood Pressure”, “ECG” and “Blood Saturation” are displayed on the display interface.
  • the user can change the menu options displayed on the display interface through operation 1 .
  • operation 1 may be an operation in which the user slides up and down on the display interface.
  • operation 1 may be an operation in which the user rotates the input device 120 .
  • the user selects the identification of the physiological parameter to be measured from multiple menu options.
  • the user can select a menu option corresponding to the physiological parameter to be measured from multiple menu options through operation 2 .
  • operation 2 may be an operation of the user long pressing the menu option corresponding to the physiological parameter to be measured. For example, as shown in (c) of FIG. 3 .
  • operation 2 may be a voice operation for the user to input the physiological parameter to be measured.
  • the embodiment of the present application does not limit the specific presentation form of the menu option corresponding to the physiological parameter to be measured selected by the user on the display interface of the wearable device.
  • the menu option corresponding to the physiological parameter to be measured selected by the user is highlighted and displayed.
  • the “heart rate” menu option and the “blood saturation” menu option selected by the user are highlighted.
  • the wearable device After the user selects the menu option corresponding to the physiological parameter to be measured, the wearable device starts to measure the physiological parameter selected by the user.
  • the wearable device may start to measure the physiological parameter selected by the user within a preset time.
  • the measuring physiological parameter interface further includes a control for starting the measurement of the physiological parameter selected by the user. After the user selects the menu option corresponding to the physiological parameter to be measured, the user can click the control. So that the wearable device starts to measure the physiological parameters selected by the user.
  • the GUI of the wearable device changes when the wearable device starts to measure the heart rate and blood saturation selected by the user.
  • the wearable device can measure the heart rate and blood saturation selected by the user through the following method 200 .
  • the specific measurement process reference may be made to the related description in the method 200 below, and details are not repeated here.
  • the wearable device in the process of measuring the physiological parameter selected by the user, may remind the user of the measurement progress of the physiological parameter in an order of increasing duration of the measured physiological parameter.
  • the embodiment of the present application does not limit the form of how to remind the user about the progress of the wearable device measuring the physiological parameter of the user.
  • the wearable device may remind the user on the display interface of the wearable device that the wearable device measures the progress of the user's physiological parameters. For example, as shown in (d) of FIG. 3 , the wearable device may display a reminder message of "heart rate measurement is in progress, blood saturation measurement will be performed later" on the display interface of the wearable device. For example, as shown in (f) of FIG. 3 , the wearable device may display a reminder message of "heart rate measurement has been completed, and blood saturation measurement is in progress" on the display interface of the wearable device.
  • the wearable device when the wearable device measures the physiological parameters selected by the user, the wearable device can remind the user to wear the wearable device correctly and/or use the corresponding physiological parameters of the wearable device (for example, heart rate and blood saturation) correctly. ) measurement function.
  • physiological parameters of the wearable device for example, heart rate and blood saturation
  • a measurement result corresponding to the measured physiological parameters is output.
  • the wearable device may output a measurement result corresponding to the measured physiological parameter after completing the measurement of one physiological parameter of the user.
  • the embodiment of the present application does not limit the manner of outputting the measured physiological parameter.
  • the wearable device displays the measured physiological parameter on a display interface of the wearable device.
  • the wearable device may only output the measurement result corresponding to the currently measured physiological parameter of the user after completing the measurement of one physiological parameter of the user.
  • the wearable device can not only output the measurement result corresponding to the currently measured physiological parameter of the user after completing the measurement of a physiological parameter of the user, but also output the current measurement of the physiological parameter. At least one of the measurement results corresponding to the measured physiological parameter of the user. After completing the measurement of all the physiological parameters of the user, the wearable device finally outputs the measurement results corresponding to all the physiological parameters selected by the user that need to be measured.
  • the wearable device measures the user's heart rate first, and then measures the user's blood saturation. That is, the wearable device outputs the user's heart rate measurement result first, and then outputs the user's blood saturation measurement result.
  • the user's heart rate is displayed on the display interface of the wearable device.
  • the user's heart rate and the user's blood saturation are displayed on the display interface of the wearable device.
  • the wearable device may output the measured physiological parameters after measuring the physiological parameters of all users.
  • the embodiment of the present application does not limit the manner of outputting the measured physiological parameter.
  • the wearable device displays the measured physiological parameter on a display interface of the wearable device.
  • This embodiment of the present application does not limit the number of physiological parameter measurement results that are finally output.
  • the wearable device may finally output measurement results corresponding to all the physiological parameters selected by the user that need to be measured.
  • the wearable device finally outputs the measurement result corresponding to the heart rate and the measurement result corresponding to the blood saturation selected by the user.
  • FIG. 4 is a schematic diagram of a GUI change of a wearable device provided by another embodiment of the present application.
  • the difference is that the physiological parameter identifiers in FIG. 4 can be displayed in the interface for measuring physiological parameters in a combined manner.
  • the identification of the plurality of physiological parameters may be displayed in a menu option in the Measure Physiological Parameter interface in this manner.
  • each menu option in Figure 4 includes the identification of multiple physiological parameters.
  • the first menu option includes the identification of three physiological parameters, “atrial fibrillation”, “premature beats” and “arteriosclerosis”.
  • the second menu option includes the identification of 2 physiological parameters "heart rate” and "blood pressure”.
  • This embodiment of the present application does not limit the combination of multiple physiological parameters included in each menu option.
  • the combination of multiple physiological parameters included in each menu option may be configured by the wearable device system.
  • the combination of multiple physiological parameters included in each menu option may be set by the user through corresponding setting options. Users can set multiple physiological parameters that they want to combine through this option setting.
  • each menu option in FIG. 4 also includes a control for the user to select the menu option.
  • the circular controls displayed in the menu option "AF+Pm+arteriosclerosis" and "Heart Rate+Blood Pressure” respectively.
  • the menu option selected by the user is specifically presented in the form that the control corresponding to the menu option selected by the user displays the selected state.
  • the circular control corresponding to the menu option "heart rate + blood pressure + arteriosclerosis" selected by the user is displayed in the form of " ⁇ ".
  • the type of data collected is the same, the amount of data collected is different.
  • the types of data collected are both PPG data and ECG data.
  • PPG data and ECG data need to be collected for 30 seconds
  • PPG data and ECG data need to be collected for 60 seconds. Therefore, for the measurement of certain physiological parameters, some of the collected data can be reused.
  • the measurement of each physiological parameter in the existing wearable device is independent of each other, users will not share data when measuring multiple physiological parameters, resulting in a long measurement time and poor user experience.
  • the embodiment of the present application also provides a measurement method 300, which is applied to a wearable device.
  • a measurement method 300 which is applied to a wearable device.
  • the multiplexing of data collected by multiple physiological parameter APPs can be realized, the measurement efficiency is high, and the user Better experience.
  • FIG. 5 a schematic diagram of GUI changes of the wearable device during the process of measuring multiple physiological parameters by a user through multiple APPs according to an embodiment of the present application is described.
  • FIG. 5 is a schematic diagram of a GUI change of a wearable device provided by another embodiment of the present application.
  • the display interface of the wearable device 100 displays menu options “Blood Saturation”, “Heart Rate”, “Sleep” and “Exercise”.
  • the wearable device starts to measure the user's heart rate.
  • the wearable device may measure the heart rate selected by the user through the following method 300 .
  • the specific measurement process reference may be made to the related description in the following method 300, and details are not repeated here.
  • the wearable device may remind the user to properly wear the wearable device and/or use the heart rate measurement function of the wearable device correctly.
  • the wearable device After the wearable device completes the measurement of the user's heart rate, the wearable device outputs a measurement result of measuring the user's heart rate.
  • the wearable device displays the measured heart rate of the user on the display interface.
  • the wearable device after the wearable device completes the measurement of the user's heart rate, the wearable device further determines that in the current process of measuring the heart rate, the data collected can also be used as the data collected when measuring blood pressure, and the wearable device can also remind the user Whether to open the blood pressure APP.
  • the wearable device displays "whether to open the blood pressure APP" on the display interface
  • the user determines to open the blood pressure APP.
  • the heart rate APP will send the collected data to the blood pressure APP, and the blood pressure APP will analyze the received data to obtain the user's blood pressure, and output the user's blood pressure. For example, as shown in (d) of FIG. 5 .
  • FIG. 3 to FIG. 5 has introduced schematic diagrams of GUI changes of the wearable device during the process of measuring multiple physiological parameters by the user according to the embodiment of the present application.
  • FIG. 6 and FIG. 7 the measurement method provided by the embodiment of the present application is introduced.
  • FIG. 6 is a schematic flowchart of a method 200 for measuring a physiological parameter provided by an embodiment of the present application.
  • the method 200 includes:
  • S210 Determine multiple physiological parameters to be measured.
  • the wearable device can determine a plurality of physiological parameters to be measured by receiving the user's operation of measuring the physiological parameters.
  • the wearable device may display a physiological parameter measurement interface on a display interface of the wearable device, where the physiological parameter measurement interface includes a plurality of physiological parameter identifiers.
  • the wearable device may determine a plurality of physiological parameters to be measured through operations identified by at least two physiological parameters selected by the user.
  • the embodiments of the present application do not limit the manner in which the multiple physiological parameter identifiers are displayed in the physiological parameter measurement interface respectively.
  • a plurality of physiological parameter identifiers may be displayed on the physiological parameter measurement interface in a separate manner.
  • a plurality of physiological parameter identifiers are respectively displayed in a plurality of menu item options in the interface for measuring physiological parameters. For example, as shown in (b) of FIG. 3 , a physiological parameter identification is displayed in each menu item option in the interface for measuring physiological parameters. In another achievable manner, a plurality of physiological parameter identifiers may be displayed in the measurement physiological parameter interface in a combined manner.
  • one menu option displays the identifiers of at least two physiological parameters, and another menu option includes the identifier of at least one physiological parameter.
  • each menu option includes identifiers of at least two physiological parameters. For example, as shown in (b) of FIG. 4 , two physiological parameter identifiers are displayed in each menu item option in the interface for measuring physiological parameters.
  • the embodiment of the present application does not limit the physiological parameter identifiers displayed in a combined manner among the multiple physiological parameter identifiers, and specifically which physiological parameter identifiers are.
  • the physiological parameter identifications displayed in combination among the plurality of physiological parameter identifications may be system-configured.
  • the physiological parameter identifiers displayed in a combined manner among the multiple physiological parameter identifiers may be set by the user through corresponding setting options.
  • the physiological parameter 1 and the physiological parameter 2 may be displayed in a combined manner.
  • some data are the same or all the data are the same.
  • the existence of all the same data can be understood as the type of extracted data related to physiological parameter 1 and the extracted data related to physiological parameter 2.
  • the types of related data are the same, and the data volume of the extracted data related to the physiological parameter 1 is the same as the data volume of the extracted data related to the physiological parameter 2 .
  • the types of data related to physiological parameters may be ACC data types, PPG data types, and/or ECG data types.
  • the types of extracted data related to arrhythmia characteristics are ACC data, PPG data, and ECG data, and the amount of data to extract data related to arrhythmia characteristics is 30 The amount of data per second of data related to arrhythmia characteristics.
  • the types of data related to blood vessel characteristics are extracted from ACC data, PPG data, and ECG data, and the amount of data to extract data related to blood vessel characteristics is the amount of data to extract data related to blood vessel characteristics for 60 seconds.
  • the types of extracted data related to the blood oxygen characteristics are ACC data and PPG data, and the amount of data to be extracted for the data related to the blood oxygen characteristics is the amount of data to extract the data related to the blood oxygen characteristics for 20 seconds.
  • the types of data related to the pressure characteristics to be extracted are ACC data and PPG data, and the amount of data to extract the data related to the pressure characteristics is the amount of data to extract the data related to the pressure characteristics for 60 seconds.
  • physiological parameter 1 and physiological parameter 2 one may be atrial fibrillation and the other may be premature beats.
  • the existence of part of the same data can be understood as the type of data related to physiological parameter 1 and the data related to physiological parameter 2
  • the types are the same, and the data volume of the data related to the physiological parameter 1 and the data volume of the data related to the physiological parameter 2 are different.
  • physiological parameter 1 and physiological parameter 2 one may be arrhythmia characteristics, and the other may be blood oxygen characteristics.
  • the physiological parameter 1 and the physiological parameter 2 one may be the pressure characteristic, and the other may be the blood oxygen characteristic.
  • This embodiment of the present application does not limit how the user selects at least two physiological parameter identifiers.
  • the user selects the first physiological parameter identifier and the second physiological parameter identifier, then the first physiological parameter identifier and the second physiological parameter identifier selected by the user are selected.
  • the two physiological parameter identifiers are the two physiological parameters to be measured.
  • the first physiological parameter identification and the second physiological parameter identification are respectively the physiological parameter identifications among the plurality of physiological parameter identifications.
  • the user can select multiple physiological parameters to be measured through multiple operations.
  • the user clicks the "heart rate” menu option and the “blood saturation” menu option respectively, and selects two physiological parameters to be measured, namely heart rate and blood saturation.
  • the user can select multiple physiological parameters to be measured through one operation. For example, as shown in (c) of FIG. 4 , the user clicks the “heart rate + blood pressure” menu option, and selects two physiological parameters to be measured, ie, heart rate and blood pressure.
  • the wearable device may measure the plurality of physiological parameters.
  • the wearable device After determining the plurality of physiological parameters to be measured, the wearable device starts to measure the plurality of physiological parameters selected by the user within a preset time.
  • the measuring physiological parameter interface further includes a control for starting the measurement of the physiological parameter selected by the user. After determining the multiple physiological parameters to be measured, the user can click the control to wear the device. Begin to measure the physiological parameter selected by the user.
  • the wearable device when the wearable device measures the physiological parameter selected by the user, the wearable device may remind the user to properly wear the wearable device and/or correctly use the corresponding physiological parameter measurement function of the wearable device.
  • S220 collect data related to multiple physiological parameters.
  • a device eg, a physiological parameter sensor
  • a plurality of physiological parameters include physiological parameters related to arrhythmia characteristics, and the wearable device needs to turn on the ACC sensor, the PPG sensor and the ECG sensor.
  • blood oxygen characteristics are included in multiple physiological parameters, and the wearable device needs to turn on the ACC sensor and the PPG sensor.
  • the ACC sensor collects the magnitude of the acceleration of the wearable device in all directions.
  • the PPG sensor collects the light signal reflected by the user's skin, and obtains the PPG signal according to the light signal.
  • the ECG sensor collects the electrical signal of each electrode in the electrode group set on the wearable device, and obtains the ECG signal according to the electrical signal.
  • S230 Determine whether the quality of the collected data meets corresponding data quality requirements.
  • the wearable device may collect data related to the plurality of physiological parameters through a device of the wearable device related to the plurality of physiological parameters to be measured.
  • the wearable device may be connected with other devices, and data related to the plurality of physiological parameters can be collected by means of the other devices related to the plurality of physiological parameters to be measured.
  • S230 specifically includes S231 to S238.
  • the types of data collected for measuring physiological parameters are also different.
  • the collected data types including the PPG data type and the ECG data type.
  • the collected data type includes the PPG data type
  • S231 and S233 need to be executed.
  • the collected data type includes the ECG data type
  • S234 and S236 need to be executed.
  • the wearing state of the wearable device includes whether the user wears the wearable device, whether the user wears the wearable device correctly, and the like.
  • S240 is performed when the wearing state of the wearable device is normal and/or the collected PPG data meets the requirements for collecting PPG characteristic data.
  • the wearing state of the wearable device is abnormal may be understood as the user not wearing the wearable device and/or the user not wearing the wearable device correctly.
  • the wearing state of the wearable device being normal may be understood as the user wearing the wearable device and/or the user wearing the wearable device correctly.
  • the requirements for collecting the PPG feature data include that the waveform corresponding to the collected PPG data is smooth, has no burrs, and the interval between the peaks and troughs of the waveform corresponding to the collected PPG data satisfies preset conditions, and the like.
  • the wearable device can remind the user to wear the wearable device correctly by displaying reminder information on the display interface.
  • the reminder information may be the information of "please wear it one finger away from the wrist bone".
  • the wearable device may further display on the display interface a schematic diagram indicating that the user is wearing the wearable device correctly.
  • the wearable device can use a voice assistant to remind the user to wear the wearable device correctly.
  • the ECG lead state of the wearable device includes a state in which the ECG of the wearable device is not in a lead state, and a state in which the ECG of the wearable device is in a lead state.
  • the ECG lead status of the wearable device can be judged based on whether a loop is formed between the electrode set and the user. When a loop is formed between the electrode set and the user, the ECG of the wearable device is considered to be in a lead state. In the case where no loop is formed between the electrode set and the user, it is considered that the ECG of the wearable device is not in a lead state.
  • the ECG lead state of the wearable device When the ECG lead state of the wearable device is that the ECG of the wearable device is not in a lead state and/or the collected ECG data does not meet the requirements for collecting ECG feature data, execute S236, and cyclically execute S220, S234, and S235, Until the ECG lead state of the wearable device is a state in which the ECG of the wearable device is in leads and/or the collected ECG data meets the requirements for collecting ECG characteristic data.
  • S240 is performed when the ECG lead state of the wearable device is a state in which the ECG of the wearable device is in leads and/or the collected ECG data meets the requirements for collecting ECG characteristic data.
  • the requirements for collecting the ECG feature data include that the waveform corresponding to the collected ECG data is smooth and free of burrs.
  • the wearable device can remind the user to operate the wearable device correctly by displaying reminder information on the display interface.
  • the reminder message may be the message "Please touch the ECG electrodes with your finger”.
  • the wearable device may also display a schematic diagram on the display interface indicating that the user operates the wearable device correctly.
  • the wearable device may use a voice assistant to remind the user to operate the wearable device correctly.
  • S237 and S238 can be performed regardless of the type of data being collected.
  • the user when there is a valid value in the data collected by the ACC, it can be considered that the user is in a motion state. In the case that the data collected by the ACC are all invalid values, it can be considered that the user is in a non-exercise state.
  • a valid value is a value other than 0; an invalid value is 0.
  • the wearable device may remind the user to keep still by displaying reminder information on the display interface.
  • the reminder information may be "please keep still” information.
  • the wearable device may use a voice assistant to remind the user to remain still.
  • the characteristic data can be understood as the characteristic data obtained by calling the corresponding physiological parameter data algorithm.
  • the collected data includes data collected through the ACC
  • characteristic data corresponding to the data is extracted.
  • the data collected by the ACC is recorded as the ACC data
  • the characteristic data corresponding to the data collected by the ACC is recorded as the ACC characteristic data
  • the collected data includes data collected by the PPG sensor
  • the characteristic data corresponding to the data is extracted.
  • the data collected by the PPG sensor is recorded as PPG data
  • the characteristic data corresponding to the data collected by the PPG sensor is recorded as PPG characteristic data
  • the collected data includes data collected by the ECG sensor, then according to the data collected by the ECG sensor, characteristic data corresponding to the data is extracted.
  • the data collected by the ECG sensor is recorded as ECG data
  • the characteristic data corresponding to the data collected by the ECG sensor is recorded as ECG characteristic data
  • the user needs to measure two physiological parameters, heart rate and blood saturation.
  • the characteristic data related to the heart rate and the characteristic data related to the blood saturation need to be acquired respectively.
  • the heart rate-related feature data includes ACC feature data and PPG feature data, or the heart rate-related feature data includes ACC feature data and ECG feature data.
  • the characteristic data related to blood saturation includes ACC characteristic data and PPG characteristic data.
  • the user needs to measure two physiological parameters, heart rate and blood pressure.
  • the characteristic data related to the heart rate and the characteristic data related to the blood pressure need to be acquired respectively.
  • the feature data related to blood pressure includes ACC feature data and PPG feature data.
  • FIG. 8 it is a schematic flowchart of analyzing two physiological parameters.
  • S260 includes S261, S262a to S266a, and S262b to S266b.
  • S261 extract the characteristic data related to each physiological parameter obtained in S250, respectively.
  • each physiological parameter is analyzed separately according to the characteristic data related to each physiological parameter.
  • the process of analyzing each physiological parameter is independent of each other and does not interfere with each other.
  • S262a according to the characteristic data related to the physiological parameter 1 distributed in S261, determine whether the characteristic data related to the physiological parameter 1 meets the requirements for analyzing the physiological parameter 1.
  • the requirement for analyzing the physiological parameter 1 may be the standard requirement for the measurement of atrial fibrillation.
  • the deviation between the peak value and the trough value of the waveform corresponding to the PPG data does not exceed a preset value.
  • the physiological parameter 1 cannot be analyzed.
  • prompt information for prompting that the physiological parameter cannot be obtained may be output. And/or, S263a may be performed, namely discarding the collected characteristic data related to the physiological parameter 1.
  • the data processing may be performing data restoration.
  • the collected characteristic data related to physiological parameter 1 can be denoised, so as to restore the collected characteristic data related to physiological parameter 1.
  • S264a is executable. In other embodiments, S264a may not be performed.
  • characteristic data related to arrhythmia characteristics needs to be collected for 30 seconds.
  • characteristic data related to the vascular physiological parameter needs to be collected for 60 seconds.
  • characteristic data related to the blood oxygen characteristic needs to be collected for 20 seconds.
  • characteristic data related to the pressure characteristic needs to be collected for 60 seconds.
  • the physiological parameter 1 cannot be analyzed.
  • prompt information for prompting that the physiological parameter cannot be obtained may be output. And/or, S263a may be performed, namely discarding the collected characteristic data related to the physiological parameter 1.
  • the characteristic data related to the physiological parameter 1 is input into the analysis model of the physiological parameter 1, and the analysis result of the physiological parameter 1 can be obtained.
  • the specific process of analyzing the physiological parameter 2 is similar to the specific process of analyzing the physiological parameter 1 .
  • S262b to S266b reference may be made to the descriptions of the above-mentioned S262a to S266a, which will not be repeated here.
  • physiological parameter 1 and physiological parameter 2 are used as an example to describe S260 in detail, that is, in S261 , two pieces of data related to the physiological parameters are distributed.
  • N N is greater than 2
  • N pieces of characteristic data related to the physiological parameters will be distributed.
  • the N physiological parameters need to be analyzed independently, that is, a process similar to S262a to S266a needs to be performed according to each of the N physiological parameters.
  • each time an analysis result of a physiological parameter is obtained the analysis result of the physiological parameter may be output.
  • the analysis results of the plurality of physiological parameters may be output after the analysis results of the plurality of physiological parameters are obtained.
  • This embodiment of the present application provides another measurement method 300 .
  • the measurement method 300 is applied to a wearable device.
  • the App corresponding to other physiological parameters can be called to output the analysis results of other physiological parameters.
  • the multiplexing of the data collected by multiple physiological parameter APPs can be realized, the measurement efficiency is high, and the user experience is better.
  • FIG. 9 is a schematic flowchart of a measurement method 300 provided by an embodiment of the present application.
  • the method 300 includes:
  • the present application does not limit the manner of enabling the function of measuring the physiological parameter a.
  • data related to arrhythmia characteristics include ACC data, PPG data, and ECG data.
  • data related to vascular physiological parameters includes ACC data, PPG data, and ECG data.
  • the data related to the blood oxygen characteristic includes ACC data and PPG data.
  • the data related to the pressure characteristic includes ACC data and PPG data.
  • each physiological parameter corresponds to a maximum measurement duration.
  • the maximum measurement duration corresponding to the arrhythmia characteristic is 30 seconds.
  • the maximum measurement duration corresponding to the vascular physiological parameter and the pressure characteristic is both 60 seconds.
  • the maximum measurement duration corresponding to the blood oxygen characteristic is 20 seconds.
  • S320 and S330 are repeatedly performed until the maximum measurement duration for measuring the physiological parameter a is reached.
  • the collected data is input into the analysis model of the physiological parameter a, and the analysis result of the physiological parameter a can be obtained.
  • the analysis result of the physiological parameter a may be output through the display interface of the electronic device.
  • the heart rate value is displayed on the display interface of the electronic device.
  • the analysis result of the physiological parameter b (another example of the second physiological parameter) can also be obtained.
  • the data related to the physiological parameter a collected in S320 is also The data to be collected when analyzing the physiological parameter b. That is, the data volume of the data related to the physiological parameter a collected in S320 satisfies the data volume of the data that needs to be collected when analyzing the physiological parameter b; and the data types of the data related to the physiological parameter a collected in S320 include: The type of data to be collected when analyzing the physiological parameter b.
  • the physiological parameter a may be a physiological parameter related to arrhythmia characteristics
  • the physiological parameter b may be a physiological parameter related to blood oxygen characteristics.
  • the physiological parameter a may be a physiological parameter related to a vascular physiological parameter
  • the physiological parameter b may be a physiological parameter related to arrhythmia characteristics, a physiological parameter related to blood oxygen characteristics, or a physiological parameter related to pressure characteristics.
  • the physiological parameter a may be a physiological parameter related to pressure characteristics
  • the physiological parameter b may be a physiological parameter related to blood oxygen characteristics.
  • prompt information for prompting whether to measure the physiological parameter b may be output.
  • prompt information may be used to prompt whether to measure the physiological parameter b on the display interface of the electronic device.
  • the collected data related to the heart rate can also be used for the analysis of the blood pressure (an example of the physiological parameter b), as shown in FIG. 5(c), on the display interface of the watch
  • the prompt message "Whether to open the blood pressure APP for blood pressure measurement" is displayed.
  • a control for measuring the physiological parameter b, and/or a control for not measuring the physiological parameter b may be displayed on the display interface of the electronic device. According to the operation of the user by clicking the corresponding control, it is determined whether the physiological parameter b needs to be measured.
  • the display interface of the watch in addition to the prompt message “whether to open the blood pressure APP for blood pressure measurement”, the display interface of the watch also displays a “Yes” control and a “No” control. According to the operation of the user selecting the "Yes” control, it is determined that the physiological parameter b needs to be measured. According to the user's operation of selecting the "No” control, it is determined that the physiological parameter b does not need to be measured.
  • the execution subject is the App corresponding to the measurement of the physiological parameter a.
  • the App corresponding to measuring physiological parameter a sends a measurement message to the App corresponding to measuring physiological parameter b, where the measurement message includes data related to physiological parameter a collected by the App corresponding to measuring physiological parameter a, and the measurement message is used to request Analysis of the physiological parameter b.
  • the App corresponding to the measurement of the physiological parameter b can obtain the analysis result of the physiological parameter b according to the measurement message.
  • the App corresponding to the measured physiological parameter b inputs the data related to the physiological parameter a collected by the App corresponding to the measured physiological parameter a included in the measurement message into the physiological parameter b analysis model, and an analysis result of the physiological parameter b can be obtained.
  • the App corresponding to measuring the physiological parameter b may further process the data in the measurement message, and then obtain the analysis result of the physiological parameter b according to the processed data.
  • the App corresponding to measuring the physiological parameter b can output the analysis result of the physiological parameter b through the display interface of the electronic device.
  • the blood pressure value is displayed on the display interface of the electronic device.
  • FIG. 10 is a schematic block diagram of an apparatus provided by an embodiment of the present application. It should be understood that the apparatus 1000 may perform the method 200 shown in FIGS. 6-8 .
  • the apparatus 1000 includes:
  • a display unit 1010 configured to display a physiological parameter measurement interface, where the physiological parameter measurement interface includes a plurality of physiological parameter identifiers;
  • the communication unit 1020 is configured to receive an operation of measuring a physiological parameter.
  • the operation of measuring a physiological parameter includes an operation of selecting a first physiological parameter identification and a second physiological parameter identification, and the first physiological parameter identification and the second physiological parameter identification are respectively a plurality of physiological parameters.
  • the processing unit 1030 is configured to measure the first physiological parameter and the second physiological parameter of the measured object through the physiological parameter sensor according to the operation of measuring the physiological parameter.
  • the processing unit 1030 is further specifically configured to: collect the data of the measured object through the physiological parameter sensor according to the operation of measuring the physiological parameter; respectively extract the data related to the first physiological parameter and the data related to the second physiological parameter from the collected data.
  • the processing unit 1030 is further configured to: determine whether the data meets the requirements of data quality; if the data does not meet the requirements of data quality, re-collect the data of the measured object through the physiological parameter sensor, and re-collect the data.
  • Data Update the data until the data meets the data quality requirements.
  • the processing unit 1030 is further specifically configured to: extract feature data related to the first physiological parameter according to data related to the first physiological parameter; determine whether the feature data related to the first physiological parameter satisfies the requirements for the first physiological parameter The requirements for analyzing the parameters; if the characteristic data related to the first physiological parameters meet the requirements for analyzing the first physiological parameters, the first physiological parameters are obtained according to the characteristic data related to the first physiological parameters.
  • the processing unit 1030 is further specifically configured to: determine whether the characteristic data related to the first physiological parameter meets the requirements for analyzing the first physiological parameter; In the case of the requirement for analysis, it is judged whether the amount of data corresponding to the characteristic data of the first physiological parameter meets the requirement for analyzing the first physiological parameter; if the amount of data corresponding to the characteristic data of the first physiological parameter In the case of a request for analyzing the physiological parameter, the first physiological parameter is obtained according to the characteristic data related to the first physiological parameter.
  • the processing unit 1030 is further specifically configured to: perform data processing on the characteristic data related to the first physiological parameter; after the processed characteristic data related to the first physiological parameter meets the requirements for analyzing the first physiological parameter In this case, it is determined whether the amount of data corresponding to the characteristic data of the first physiological parameter meets the requirement for analyzing the first physiological parameter.
  • the processing unit 1030 is further specifically configured to: extract feature data related to the second physiological parameter according to the data related to the second physiological parameter; determine whether the feature data related to the second physiological parameter satisfies the requirements for the second physiological parameter The requirements for analyzing the parameters; if the characteristic data of the second physiological parameters meet the requirements for analyzing the second physiological parameters, the second physiological parameters are obtained according to the characteristic data related to the second physiological parameters.
  • the processing unit 1030 is further specifically configured to: determine whether the characteristic data related to the second physiological parameter meets the requirements for analyzing the second physiological parameter; In the case of the requirement for analysis, it is judged whether the amount of data corresponding to the characteristic data of the second physiological parameter meets the requirement for analyzing the second physiological parameter; if the amount of data corresponding to the characteristic data of the second physiological parameter In the case of a request for analyzing the physiological parameter, the second physiological parameter is obtained according to the characteristic data related to the second physiological parameter.
  • the processing unit 1030 is further specifically configured to: perform data processing on the characteristic data related to the second physiological parameter; after the processed characteristic data related to the second physiological parameter meets the requirements for analyzing the second physiological parameter In this case, it is determined whether the amount of data corresponding to the characteristic data of the second physiological parameter meets the requirement for analyzing the second physiological parameter.
  • the display unit 1010 is further configured to: display the first physiological parameter and the second physiological parameter of the measured object.
  • the display unit 1010 is further specifically configured to: after measuring the first physiological parameter, display the first physiological parameter; after measuring the second physiological parameter, display the second physiological parameter.
  • the display unit 1010 is further specifically configured to: after measuring the first physiological parameter and the second physiological parameter, display the first physiological parameter and the second physiological parameter.
  • the physiological parameter sensor includes at least one of the following: an ACC sensor; a PPG sensor; an ECG sensor.
  • the physiological parameters include at least one of the following: atrial fibrillation; premature beats; heart rate; arteriosclerosis; blood oxygen; sleep; pressure.
  • the extracted data related to the first physiological parameter and the extracted data related to the second physiological parameter are partially or completely the same.
  • FIG. 11 is a schematic block diagram of an apparatus provided by an embodiment of the present application. It should be understood that the apparatus 1100 may perform the method 300 shown in FIG. 9 .
  • the apparatus 1100 includes:
  • a processing unit 1110 configured to collect data related to the first physiological parameter of the measured object through the physiological parameter sensor;
  • the processing unit 1110 is further configured to obtain the first physiological parameter according to the data related to the first physiological parameter;
  • the processing unit 1110 is further configured to detect an operation of measuring a second physiological parameter, where the second physiological parameter is different from the first physiological parameter;
  • the communication unit 1120 is configured to, in response to the operation, send a measurement message to the second application, where the measurement message includes the data related to the first physiological parameter.
  • the processing unit 1110 is further configured to obtain the first physiological parameter according to the data related to the first physiological parameter
  • the processing unit 1110 is further configured to: determine the first physiological parameter according to the data related to the first physiological parameter Two physiological parameters.
  • FIG. 12 is a schematic block diagram of an apparatus provided by an embodiment of the present application. It should be understood that the apparatus 1200 may perform the method 300 shown in FIG. 9 .
  • the apparatus 1200 includes:
  • a communication unit 1210 configured to receive a measurement message from the first application, where the measurement message includes data related to the first physiological parameter
  • the processing unit 1220 is configured to obtain the second physiological parameter according to the data related to the first physiological parameter.
  • FIG. 13 is a schematic diagram of a hardware structure of a wearable device provided by an embodiment of the present application.
  • the electronic device 1100 shown in FIG. 13 includes one or more memories 1110 , one or more processors 1120 , and a display 1130 .
  • the one or more memory stores 1110 store one or more computer programs including instructions.
  • the instructions when executed by one or more processors 1120, cause the electronic device 1100 to perform the method 200 or the method 300 in the above-described embodiments.
  • the processor 1120 includes a central processing unit (Central Processing Unit, CPU) and a neural-network processing unit (Neural-network Processing Unit, NPU).
  • CPU Central Processing Unit
  • NPU neural-network Processing Unit
  • the electronic device 1100 is caused to execute the method 200 or the method 300 in the above embodiments.
  • the NPU may execute the solution of obtaining the first physiological parameter according to the data related to the first physiological parameter in the above method 200 .
  • the display 1230 is used to display information.
  • the display 1230 is used to display the first physiological parameter, the second physiological parameter, etc. in the above-mentioned embodiment.
  • FIG. 14 is a schematic block diagram of a system 1400 according to an embodiment of the present application. As shown in Figure 14, the system 1400 includes:
  • the first application 1410 is used to collect data related to the first physiological parameter of the measured object
  • the first application 1410 is further configured to obtain the first physiological parameter according to the data related to the first physiological parameter;
  • the first application 1410 is further configured to detect an operation of measuring a second physiological parameter, where the second physiological parameter is different from the first physiological parameter;
  • the first application 1410 is further configured to send a measurement message to the second application in response to the operation, where the measurement message includes data related to the first physiological parameter;
  • the second application 1420 is configured to obtain the second physiological parameter according to the data related to the first physiological parameter.
  • the first application 1410 is further used for obtaining the first physiological parameter according to the data related to the first physiological parameter
  • the first application 1410 is further used for: according to the data related to the first physiological parameter data to determine a second physiological parameter.
  • Embodiments of the present application further provide a chip, where the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit may be a processor, a microprocessor or an integrated circuit integrated on the chip.
  • the chip can execute the methods in the above method embodiments.
  • the embodiments of the present application further provide a computer-readable storage medium, on which instructions are stored, and when the instructions are executed, the methods in the foregoing method embodiments are performed.
  • the embodiments of the present application further provide a computer program product including an instruction, when the instruction is executed, the method in the foregoing method embodiment is performed.
  • the memory may include a read-only memory and a random access memory, and provide instructions and data to the processor.
  • a portion of the processor may also include non-volatile random access memory.
  • the processor may also store device type information.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Pulmonology (AREA)
  • Optics & Photonics (AREA)
  • Hospice & Palliative Care (AREA)
  • Child & Adolescent Psychology (AREA)
  • Developmental Disabilities (AREA)
  • Educational Technology (AREA)
  • Psychology (AREA)
  • Social Psychology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Human Computer Interaction (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Vascular Medicine (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

一种测量生理参数的方法及电子设备,电子设备可以是集成了ACC传感器、PPG传感器和/或ECG传感器的穿戴设备,方法通过一个测量生理参数软件,可以一次性测量用户的多个生理参数,例如,可以一次性测量房颤、早搏、心率、动脉硬化和血氧中的至少两种生理参数,方法测量效率高,且用户操作简单,用户体验较好。

Description

测量生理参数的方法及电子设备
本申请要求于2020年12月22日提交中国专利局、申请号为202011529749.7、申请名称为“测量生理参数的方法及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备领域,更具体地,涉及一种测量生理参数的方法及电子设备。
背景技术
随着电子设备的发展,用户对电子设备的功能要求越来越高。例如,穿戴设备不仅可以作为时钟,还可以测量用户的生理参数。例如,穿戴设备可以测量房颤、早搏、动脉硬化等生理参数。
现有的电子设备,用户想要测量多个生理参数时,需要针对每个生理参数测量一次,操作比较繁琐,用户体验不佳。此外,各个生理参数的测量是相互独立的,不会进行数据共享,导致测量时间较长,用户体验不佳。
发明内容
本申请提供了一种测量生理参数的方法及电子设备,可以一次性测量用户的多个生理参数,且用户操作简单,测量效率高,用户体验较好。
第一方面,提供了一种测量生理参数的方法,所述方法应用于包括生理参数传感器的电子设备中,所述方法包括:显示测量生理参数界面,所述测量生理参数界面包括多个生理参数标识;接收测量生理参数的操作,所述测量生理参数的操作包括选取第一生理参数标识和第二生理参数标识的操作,所述第一生理参数标识和第二生理参数标识分别为所述多个生理参数标识中的生理参数标识;根据所述测量生理参数的操作,通过所述生理参数传感器测量被测对象的第一生理参数和第二生理参数。
应理解,通过生理参数传感器可以完成相应的生理参数的测量。
本申请实施例对生理参数传感器的种类和生理参数的种类不作限定。
示例性的,生理参数传感器可以包括以下至少一项:加速度计(accelerometer,ACC)传感器;光电容积脉搏波(photo plethysmo graphy,PPG)传感器;心电图(Electrocardiography,ECG)传感器。
示例性的,生理参数可以是与心律失常特性相关的生理参数、与血管特性相关的生理参数、与血氧特性相关的生理参数、与压力特性相关的生理参数、睡眠等。
例如,与心律失常特性相关的生理参数可以是房颤、早搏、心率等。
例如,与血管特性相关的生理参数可以是动脉硬化。
本申请实施例对第一生理参数标识和第二生理参数标识分别在测量生理参数界面中 显示方式不作限定。
在一种可实现的方式中,第一生理参数标识和第二生理参数标识可以以组合的方式显示在测量生理参数界面中。
示例性的,第一生理参数和第二生理参数在测量生理参数界面中的一个菜单选项中显示。
在另一种可实现的方式中,第一生理参数标识和第二生理参数标识可以以单独的方式分别显示在测量生理参数界面中。
示例性的,第一生理参数标识和第二生理参数标识分别在测量生理参数界面中的两个菜单项选项中显示。
可选的,所述测量生理参数的操作还包括选取除第一生理参数标识和第二生理参数标识之外的至少一个生理参数标识的操作。在本申请实施例中,用户通过在测量生理参数界面上显示的多个生理参数的标识,选取需要测量的第一生理参数和第二生理参数的标识,可以对被测对象的第一生理参数和第二生理参数进行测量,从而可以一次性测量用户的多个生理参数,测量效率高,且用户操作简单,用户体验较好。
结合第一方面,在第一方面的某些实现方式中,所述响应于所述测量生理参数的操作,通过所述生理参数传感器测量被测对象的所述第一生理参数和所述第二生理参数,包括:根据所述测量生理参数的操作,通过所述生理参数传感器采集所述被测对象的数据;从采集的所述数据中分别提取与所述第一生理参数相关的数据和与所述第二生理参数相关的数据;根据所述与所述第一生理参数相关的数据,得到所述第一生理参数;根据所述与所述第二生理参数相关的数据,得到所述第二生理参数。在对被测对象的第一生理参数和第二生理参数进行测量的过程中,先通过生理参数传感器采集被测对象的数据,再从采集的数据中分别提取与第一生理参数相关的数据和与第二生理参数相关的数据,从而可以分别根据与相应生理参数相关的数据,得到相应生理参数,实现多个生理参数同时进行测量,测量效率高,且用户操作简单,用户体验较好。
在一种可实现的方式中,提取的所述与所述第一生理参数相关的数据和提取的所述与所述第二生理参数相关的数据部分相同或全部相同。
示例性的,提取的与第一生理参数相关的数据和提取的与第二生理参数相关的数据全部相同可以理解为与第一生理参数相关的数据的种类和与第二生理参数相关的数据的种类相同,以及与第一生理参数相关的数据的数据量和与第二生理参数相关的数据的数据量相同。
示例性的,提取的与第一生理参数相关的数据和提取的与第二生理参数相关的数据部分相同可以理解为与第一生理参数相关的数据的种类和与第二生理参数相关的数据的种类相同,以及与第一生理参数相关的数据的数据量和与第二生理参数相关的数据的数据量不相同。
从通过生理参数传感器采集被测对象的数据中,可以一次性得到多个与生理参数相关的数据,从而实现了数据的复用,测量效率高,用户体验较好。
结合第一方面,在第一方面的某些实现方式中,在所述根据所述测量生理参数的操作,通过所述生理参数传感器采集所述被测对象的数据之后,所述方法还包括:判断所述数据是否满足数据质量的要求;在所述数据不满足所述数据质量的要求的情况下,通过所述生 理参数传感器重新采集所述被测对象的数据,将所述重新采集的数据更新所述数据,直到所述数据满足所述数据质量的要求。
示例性的,可以通过采集的被测对象的数据,以及结合电子设备的佩戴状态、ECG导联状态或用户的运动状态中的至少一项,去判断数据是否满足数据质量的要求。
对通过生理参数传感器采集的数据进行是否满足数据质量的要求的判断,并在采集的数据不满足数据质量的要求的情况下,通过生理参数传感器重新采集被测对象的数据,直到数据满足数据质量的要求,从而可以提高生理参数的测量的准确率。
结合第一方面,在第一方面的某些实现方式中,在所述数据不满足所述数据质量的要求的情况下,所述方法还包括:显示提示信息,所述提示信息用于提示用户正确佩戴所述电子设备和/或用于提示用户正确操作所述电子设备。
结合第一方面,在第一方面的某些实现方式中,所述根据所述与所述第一生理参数相关的数据,得到所述第一生理参数,包括:根据所述与所述第一生理参数相关的数据,提取与所述第一生理参数相关的特征数据;判断与所述第一生理参数的特征数据是否满足对所述第一生理参数进行分析的要求;在所述与所述第一生理参数的特征数据满足对所述第一生理参数进行分析的要求的情况下,根据所述与所述第一生理参数相关的特征数据,得到所述第一生理参数。
结合第一方面,在第一方面的某些实现方式中,所述判断与所述第一生理参数的特征数据是否满足对所述第一生理参数进行分析的要求,包括:判断与所述第一生理参数的特征数据是否满足对所述第一生理参数进行分析的要求;在与所述第一生理参数的特征数据满足对所述第一生理参数进行分析的要求的情况下,判断所述与所述第一生理参数的特征数据对应的数据量是否满足对所述第一生理参数进行分析的要求;在所述与所述第一生理参数的特征数据满足对所述第一生理参数进行分析的要求的情况下,根据所述与所述第一生理参数相关的特征数据,得到所述第一生理参数,包括:在所述与所述第一生理参数的特征数据对应的数据量满足对所述第一生理参数进行分析的要求的情况下,根据所述与所述第一生理参数相关的特征数据,得到所述第一生理参数。
结合第一方面,在第一方面的某些实现方式中,在所述与所述第一生理参数的特征数据满足对所述第一生理参数进行分析的要求之后,所述方法还包括:对所述与所述第一生理参数的特征数据进行数据处理;在与所述第一生理参数的特征数据满足对所述第一生理参数进行分析的要求的情况下,判断所述与所述第一生理参数的特征数据对应的数据量是否满足对所述第一生理参数进行分析的要求,包括:在处理后的与所述第一生理参数的特征数据满足对所述第一生理参数进行分析的要求的情况下,判断所述与所述第一生理参数的特征数据对应的数据量是否满足对所述第一生理参数进行分析的要求。
结合第一方面,在第一方面的某些实现方式中,所述根据所述与所述第二生理参数相关的数据,得到所述第二生理参数,包括:根据所述与所述第二生理参数相关的数据,提取与所述第二生理参数相关的特征数据;判断与所述第二生理参数的特征数据是否满足对所述第二生理参数进行分析的要求;在所述与所述第二生理参数的特征数据满足对所述第二生理参数进行分析的要求的情况下,根据所述与所述第二生理参数相关的特征数据,得到所述第二生理参数。
结合第一方面,在第一方面的某些实现方式中,所述判断与所述第二生理参数的特征 数据是否满足对所述第二生理参数进行分析的要求,包括:判断与所述第二生理参数的特征数据是否满足对所述第二生理参数进行分析的要求;在与所述第二生理参数的特征数据满足对所述第二生理参数进行分析的要求的情况下,判断所述与所述第二生理参数的特征数据对应的数据量是否满足对所述第二生理参数进行分析的要求;在所述与所述第二生理参数的特征数据满足对所述第二生理参数进行分析的要求的情况下,根据所述与所述第二生理参数相关的特征数据,得到所述第二生理参数,包括:在所述与所述第二生理参数的特征数据对应的数据量满足对所述第二生理参数进行分析的要求的情况下,根据所述与所述第二生理参数相关的特征数据,得到所述第二生理参数。
结合第一方面,在第一方面的某些实现方式中,在所述与所述第二生理参数的特征数据满足对所述第二生理参数进行分析的要求之后,所述方法还包括:对所述与所述第二生理参数的特征数据进行数据处理;在与所述第二生理参数的特征数据满足对所述第二生理参数进行分析的要求的情况下,判断所述与所述第二生理参数的特征数据对应的数据量是否满足对所述第二生理参数进行分析的要求,包括:在处理后的与所述第二生理参数的特征数据满足对所述第二生理参数进行分析的要求的情况下,判断所述与所述第二生理参数的特征数据对应的数据量是否满足对所述第二生理参数进行分析的要求。
结合第一方面,在第一方面的某些实现方式中,在所述根据所述测量生理参数的操作,通过所述生理参数传感器测量被测对象的所述第一生理参数和所述第二生理参数之后,所述方法还包括:显示所述被测对象的所述第一生理参数和所述第二生理参数。
结合第一方面,在第一方面的某些实现方式中,所述显示所述被测对象的所述第一生理参数和所述第二生理参数包括:在测量完所述第一生理参数之后,显示所述第一生理参数;在测量完所述第二生理参数之后,显示所述第二生理参数。
结合第一方面,在第一方面的某些实现方式中,所述显示所述被测对象的所述第一生理参数和所述第二生理参数包括:在测量完所述第一生理参数和所述第二生理参数之后,显示所述第一生理参数和所述第二生理参数。
第二方面,提供了一种测量生理参数的方法,所述方法应用于包括生理参数传感器的电子设备中,所述方法包括:通过所述生理参数传感器采集被测对象的与第一生理参数相关的数据;根据所述与第一生理参数相关的数据,得到所述第一生理参数;检测对第二生理参数进行测量的操作,所述第二生理参数和所述第一生理参数不相同;响应于所述操作,向第二应用发送测量消息,所述测量消息包括所述与第一生理参数相关的数据。
当用户使用第一应用对被测对象的第一生理参数进行测量时,若采集的与第一生理参数相关的数据也可以作为得到第二生理参数的数据,则在检测到对被测对象的第二生理参数进行测量时,将与第一生理参数相关的数据发送给第二应用,以便第二应用无需采集与第二生理参数相关的数据,就可以得到第二生理参数,从而可以兼容现有的测量生理参数的应用,实现了数据的复用,测量效率高,用户体验较好。
结合第二方面,在第二方面的某些实现方式中,所述在根据所述与第一生理参数相关的数据,得到所述第一生理参数之后,所述方法还包括:根据所述与第一生理参数相关的数据,确定所述第二生理参数。
与第一生理参数相关的数据包括与第二生理参数相关的数据。
其中,与第一生理参数相关的数据包括与第二生理参数相关的数据可以理解为与第一 生理参数相关的数据的种类包括与第二生理参数相关的数据的种类,以及与第一生理参数相关的数据的数据量包括与第二生理参数相关的数据的数据量。
示例性的,数据的种类指示是数据是PPG数据、数据是ECG数据和/或数据是ACC数据。
示例性的,当生理参数是与心律失常特性相关的生理参数时,与生理参数相关的数据包括ACC数据、PPG数据、ECG数据。且应当采集30秒的生理参数相关的数据。
示例性的,当生理参数是与血管特性相关的生理参数时,与生理参数相关的数据包括ACC数据、PPG数据、ECG数据。且应当采集60秒的生理参数相关的数据。
示例性的,当生理参数是与血氧特性相关的生理参数时,与生理参数相关的数据包括ACC数据、PPG数据。且应当采集20秒的生理参数相关的数据。
示例性的,当生理参数是与压力特性相关的生理参数时,与生理参数相关的数据包括ACC数据、PPG数据。且应当采集60秒的生理参数相关的数据。
例如,第一生理参数可以是与心律失常特性相关的生理参数,第二生理参数可以是与血氧特性相关的生理参数。又例如,第一生理参数可以是与血管特性相关的生理参数,第二生理参数可以是与心律失常特性相关的生理参数、与血氧特性相关的生理参数或与压力特性相关的生理参数。又例如,第一生理参数可以是与压力特性相关的生理参数,第二生理参数可以是与血氧特性相关的生理参数。
结合第二方面,在第二方面的某些实现方式中,在所述检测对第二生理参数进行测量的操作之前,所述方法还包括:显示或播放提醒信息,所述提醒信息用于提醒是否对所述第二生理参数进行测量。
第三方面,提供了一种测量生理参数的方法,所述方法包括:从第一应用接收测量消息,所述测量消息包括与第一生理参数相关的数据;根据所述与第一生理参数相关的数据,得到第二生理参数,所述第二生理参数和所述第一生理参数不相同。
第二应用无需采集与第二生理参数相关的数据,只需根据从第一应用获取的与第一生理参数相关的数据,就可以得到第二生理参数,实现了数据的复用,测量效率高,用户体验较好。
第四方面,提供了一种系统,所述系统包括第一应用和第二应用,其中,所述第一应用,用于采集被测对象的与第一生理参数相关的数据;所述第一应用,还用于根据所述与第一生理参数相关的数据,得到所述第一生理参数;所述第一应用,还用于检测对第二生理参数进行测量的操作,所述第二生理参数和所述第一生理参数不相同;所述第一应用,还用于响应于所述操作,向所述第二应用发送测量消息,所述测量消息包括所述与第一生理参数相关的数据;所述第二应用,用于根据所述与第一生理参数相关的数据,得到所述第二生理参数。
当用户使用第一应用对被测对象的第一生理参数进行测量时,若采集的与第一生理参数相关的数据也可以作为得到第二生理参数的数据,则在检测到对被测对象的第二生理参数进行测量时,将与第一生理参数相关的数据发送给第二应用,从而第二应用无需采集与第二生理参数相关的数据,就可以得到第二生理参数,实现了数据的复用,测量效率高,用户体验较好。
结合第四方面,在第四方面的某些实现方式中,在所述第一应用,还用于根据所述与 第一生理参数相关的数据,得到所述第一生理参数之后,所述第一应用,还用于:根据所述与第一生理参数相关的数据,确定所述第二生理参数。
结合第四方面,在第四方面的某些实现方式中,在所述所述第一应用,还用于检测对第二生理参数进行测量的操作之前,所述第一应用,还用于:显示或播放提醒信息,所述提醒信息用于提醒是否对所述第二生理参数进行测量。
第五方面,提供了一种装置,所述装置包含在电子设备中,所述装置具有实现上述第一方面至第三方面、或第一方面至第三方面的某些实现方式中的任意一种实现方式的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第六方面,提供了一种电子设备,包括:一个或多个处理器;存储器;以及一个或多个计算机程序。其中,一个或多个计算机程序被存储在存储器中,一个或多个计算机程序包括指令。当指令被电子设备执行时,使得电子设备执行上述第一方面至第三方面、或第一方面至第三方面的某些实现方式中的任意一种实现方式中的测量生理参数的方法。
第七方面,提供了一种包含指令的计算机程序产品,当所述计算机程序产品在电子设备上运行时,使得所述电子设备执行上述第一方面至第三方面、或第一方面至第三方面的某些实现方式中的任意一种实现方式中的测量生理参数的方法。
第八方面,提供了一种计算机可读存储介质,包括指令,当所述指令在电子设备上运行时,使得所述电子设备执行上述第一方面至第三方面、或第一方面至第三方面的某些实现方式中的任意一种实现方式中的测量生理参数的方法。
需要说明的是,上述计算机程序代码可以全部或者部分存储在第一存储介质上,其中第一存储介质可以与处理器封装在一起的,也可以与处理器单独封装,本申请实施例对此不作具体限定。
第九方面,提供了一种芯片,所述芯片包括处理器与数据接口,所述处理器通过所述数据接口读取存储器上存储的指令,执行上述第一方面至第三方面、或第一方面至第三方面的某些实现方式中的任意一种实现方式中的测量生理参数的方法。
可选地,作为一种实现方式,所述芯片还可以包括存储器,所述存储器中存储有指令,所述处理器用于执行所述存储器上存储的指令,当所述指令被执行时,所述处理器用于执行第一方面至第三方面、或第一方面至第三方面的某些实现方式中的任意一种实现方式中的任意一种实现方式中的测量生理参数的方法。
附图说明
图1为本申请一实施例提供的穿戴设备的硬件结构的示意图。
图2为本申请一实施例提供的穿戴设备的结构的示意图。
图3为本申请一实施例提供的穿戴设备的图形用户界面的示意图。
图4为本申请另一实施例提供的可穿戴设备的图形用户界面的示意图。
图5为本申请又一实施例提供的可穿戴设备的图形用户界面的示意图。
图6为本申请一实施例提供的测量方法的流程示意图。
图7为本申请一实施例提供的测量方法的流程示意图。
图8为本申请一实施例提供的测量方法的流程示意图。
图9为本申请另一实施例提供的测量方法的流程示意图。
图10是本申请实施例提供的一例穿戴设备的示例性结构图。
图11是本申请实施例提供的另一例穿戴设备的示例性结构图。
图12是本申请实施例提供的又一例穿戴设备的示例性结构图。
图13是本申请实施例提供的又一例穿戴设备的示例性结构图。
图14是本申请实施例提供的一例系统的示例性结构图。
具体实施方式
下面将结合本申请以下实施例中的附图,对本申请实施例中的技术方案进行详尽描述。
本申请实施例涉及的至少一个,包括一个或者多个;其中,多个是指大于或者等于两个。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请实施例中,“一个或多个”是指一个、两个或两个以上;“和/或”,描述关联对象的关联关系,表示可以存在三种关系;例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
在本申请实施例中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
本申请实施例提供的方法可以应用于电子设备,该电子设备可以是穿戴式电子设备(也称为穿戴设备),比如手表、手环、耳机、头盔(比如虚拟现实头盔)等等,还可以是非穿戴式设备,比如具有ECG和/或PPG检测功能的便携式电子设备,比如手机、平板电脑、笔记本电脑等。便携式电子设备的示例性实施例包括但不限于搭载
Figure PCTCN2021136277-appb-000001
Figure PCTCN2021136277-appb-000002
或者其它操作系统的便携式电子设备。应当理解的是,上述电子设备也可以不是便携式电子设备,而是能够检测ECG和/或PPG的台式计算机等,本申请实施例不限定。本申请以下实施例以电子设备是穿戴设备为例进行描述。
图1是本申请一实施例提供的穿戴设备的示意性功能框图。示例性地,穿戴设备100可以是智能手表或智能手环等。参考图1,示例性地,穿戴设备100可以包括处理器110、输入设备120、传感器模块130、存储器140和供电模块150。可以理解的是,图1所示的部件并不构成对穿戴设备100的具体限定,穿戴设备100还可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。其中,控制器可以是穿戴设备100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。在另一些实施例中,处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用,避免了重复存取,减少了处理器110的等待时间,因而提高了穿戴设备100的效率。
输入设备120用于提供用户输入,可以是机械设备,用户接触输入设备120,使得输入设备120发生旋转、平移或倾斜以实现用户输入,以实现穿戴设备100的启动(例如,开机或关机)、确定或调节信号(例如,调节音量的大小)等的功能或操作。
可以理解,本申请实施例的用户输入可以是用户对输入设备120做旋转、平移以及倾斜等操作。
还可以理解,穿戴设备100可包括一个或多个输入设备120。
传感器模块130可以包括一个或多个传感器,例如,可以包括PPG传感器130A、压力传感器130B、电容传感器130C、加速度传感器130D、触摸传感器130E等。应理解,图1仅是列举了几种传感器的示例,在实际应用中,穿戴设备100还可以包括更多或很少的传感器,或者使用其他具有相同或类似功能的传感器替换上述列举的传感器等等,本申请实施例不作限定。
PPG传感器130A,可以用于检测心率,即单位时间内的心跳次数。在一些实施例中,PPG传感器130A可以包括光发送单元和光接收单元。光发送单元可以将光束照射到人体(比如血管)中,光束在人体中发生反射/折射,反射/折射光被光接收单元接收,得到光信号。由于血液在波动的过程中,透光率发生变化,所以发射/折射光是变化的,PPG传感器130A检测到的光信号也是变化的。PPG传感器130A可以将光信号转换成电信号,确定该电信号对应的心率。
压力传感器130B,可以用于检测人体与穿戴设备100之间的压力值。压力传感器130B用于感受压力信号,可以将压力信号转换成电信号。压力传感器130B的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等,本申请实施例不做限定。
电容传感器130C,可以用于检测两个电极之间的电容,以实现特定功能。
在一些实施例中,电容传感器130C可用于检测人体与穿戴设备100之间的电容,该电容可以反映人体与穿戴设备之间的是否接触良好,可应用于心电图(Electrocardiography,ECG)检测,其中,人体可作为一个电极。当电容传感器130C设置于穿戴设备上的电极时,电容传感器130C可以检测人体与电极之间的电容。当电容传感器130C检测到的电容过大或过小时,说明人体与电极接触较差;当电容传感器130C检测到的电容适中时,说明人体与电极接触较好。由于人体与电极之间的接触是否良好会影响电极检测电信号, 进而影响ECG的生成,所以穿戴设备100在生成ECG时,可以参考电容传感器130C检测到的电容。
加速度传感器130D,可以用于检测穿戴设备100在各个方向上(一般为三轴)加速度的大小。穿戴设备100是可穿戴式设备,用户佩戴穿戴设备100时,穿戴设备100在用户的带动下运动,所以加速度传感器130D检测到的在各个方向的加速度大小,可以反映人体的运动状态。
触摸传感器130E,可以设置于显示屏,由触摸传感器130E与显示屏组成触摸屏,也称“触控屏”。触摸传感器130E用于检测作用于其上或附近的触摸操作。触摸传感器130E可以将检测到的触摸操作传递给处理器110,以确定触摸事件类型。可以通过显示屏提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器130E也可以设置于显示屏的表面,与显示屏所处的位置不同。
存储器140,可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器110通过运行存储在存储器的指令,从而执行穿戴设备100的各种功能应用以及数据处理。存储器140可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等,本申请实施例不作限定。
供电模块150,可为穿戴设备100中的各个部件比如处理器110、传感器模块130等供电。在一些实施例中,供电模块150可为电池或其他便携式的电力元件。在另一些实施例中,穿戴设备100还可以与充电设备连接(比如,通过无线或者有线连接),供电模块150可以接收充电设备输入的电能,以电池蓄电。
在一些实施例中,继续参考图1,穿戴设备100还包括显示屏160。显示屏160包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,显示屏中可以设置触摸传感器,形成触摸屏,本申请实施例不作限定。可以理解,在一些实施例中,穿戴设备100可以包含显示屏160,也可以不包含显示屏160,例如,当穿戴设备100是手环时,可以包含显示屏或不包含显示屏,当穿戴设备100是手表时,可以包含显示屏。
在另一些实施例中,继续参考图1,穿戴设备100还可以包括音频设备170,音频设备170可包括麦克风、喇叭或听筒等可接收或输出声音信号的设备。
喇叭,也称“扬声器”,用于将音频电信号转换为声音信号。穿戴设备100可以通过喇叭收听音乐,或收听免提通话。
听筒,也称“受话器”,用于将音频电信号转换成声音信号。当穿戴设备100接听电话或语音信息时,可以通过将听筒靠近人耳接听语音。
麦克风,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风发声,将声音信号输入到麦克风。穿戴设备100可以设置至少一个麦克风。在另一些实施例中,穿戴设备100可以设置两个麦克风,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,穿戴设备100还可以设置 三个,四个或更多麦克风,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
另外,穿戴设备100可以具有无线通信功能。在一些实施例中,继续参考图1,穿戴设备100还可以包括无线通信模块181、移动通信模块182、一个或多个天线1以及一个或多个天线2。穿戴设备100可以通过天线1、天线2、无线通信模块181、移动通信模块182实现无线通信功能。
在一些实施例中,无线通信模块181可以提供应用在穿戴设备100上的遵循各类网络通信协议或通信技术的无线通信的解决方案。示例性地,该网络通信协议可以包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(Bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等通信协议。例如,穿戴设备100可以通过蓝牙协议与其他电子设备例如手机建立蓝牙连接。在另一些实施例中,无线通信模块181可以是集成至少一个通信处理模块的一个或多个器件。
无线通信模块181经由天线1接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块181还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线1转为电磁波辐射出去。在一些实施例中,无线通信模块181可以和一个或多个天线1耦合,使得穿戴设备100可以通过无线通信技术与网络以及其他设备通信。
在一些实施例中,移动通信模块182可以提供应用在穿戴设备100上的遵循各类网络通信协议或通信技术的无线通信的解决方案。示例性地,该网络通信协议可以是各种有线或无线通信协议,诸如以太网、全球移动通讯系统(global system for mobile communications,GSM)、通用分组无线服务(general packet radio service,GPRS)、码分多址接入(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE)、基于互联网协议的语音通话(voice over Internet protocol,VoIP)、支持网络切片架构的通信协议或任何其他合适的通信协议。例如,穿戴设备100可以通过WCDMA通信协议与其他电子设备例如手机建立无线通信连接。
在另一些实施例中,移动通信模块182可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。在另一些些实施例中,移动通信模块182的至少部分功能模块可以被设置于处理器110中。在另一些实施例中,移动通信模块182的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
移动通信模块182可以由天线2接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块182还可以对经调制解调处理器调制后的信号放大,经天线2转为电磁波辐射出去。在一些实施例中,移动通信模块182可以与一个或多个天线2耦合,使得穿戴设备100可以通过无线通信技术与网络以及其他设备通信。
在一些实施例中,穿戴设备还包括电极组190,该电极组190包括至少两个电极。电 极组190可以设置在穿戴设备100的一个或多个外表面上。一个或多个处理器110可以监视电极组190接收的电压或信号。在一些实施例中,电极可用于为穿戴设备100提供ECG功能。比如,当用户接触穿戴设备100上的第一电极和第二电极时,穿戴设备100可以提供2导联ECG功能,即穿戴设备100可以根据第一电极检测到的第一电信号和第二电极检测到的第二电信号得到ECG信号。再比如,当用户接触穿戴设备100上的第一电极、第二电极和第三电极时,穿戴设备100可以提供3导联ECG功能,即穿戴设备100可以根据第一电极检测到的第一电信号、第二电极检测到的第二电信号,以及第三电极检测到的第三电信号得到ECG信号。通常情况下,电极数量越多,采集到的电信号越多,得到的ECG越准确。本申请以下的实施例中主要以穿戴设备100包括两个电极为例。
图2是本申请实施例提供的穿戴设备100的示意性结构图。在一些实施例中,穿戴设备100可以是智能手表或智能手环。参考图2,穿戴设备100包括主体101和2个腕带102(图2中示出了腕带102的部分区域)。腕带102可以固定连接或者活动连接在主体101上,腕带102可缠绕于手腕、胳膊、腿或身体的其他部位,以将穿戴设备100固定到用户的身上。主体101可包括壳体1010和盖1011,壳体1010包围盖1011,例如,壳体1010包括设置在顶端的沟槽,盖1011容纳于沟槽中,盖1011的边缘邻接且固定在壳体1010的沟槽上,形成为主体101的表面。壳体1010和盖1011形成的结构的内部具有容纳空间,可容纳图1所示的以及未示出的一个或多个部件的组合,以实现穿戴设备100的各种功能。主体101还包括输入设备120,盖1011和壳体1010形成的结构内的容纳空间可容纳输入设备120的部分,输入设备120的外露部分便于用户接触。
盖1011作为主体101的表面,可作为主体101的保护板,以避免容纳于壳体1010内的部件外露而被损坏。示例性地,盖1011可以是透明的。示例性地,盖1011可以包括晶体,例如蓝宝石晶体,或者,盖1011可以由玻璃,塑料或其他材料形成。
在一些实施例中,盖1011可以是显示屏160,用户可通过显示屏160与穿戴设备100进行交互。示例性地,显示屏160可接收用户输入,并且,响应于该用户输入做出相应的输出,例如,用户可以通过触摸或按压显示屏160上的图形位置处来选择(或以其他方式)打开、编辑该图形等。
输入设备120附接到壳体1010的外侧且延伸至壳体1010的内部。可以理解,可旋转的输入设备120可称为按钮,在穿戴设备100是表的实施例中,可旋转的输入设备120可以是表的冠部,输入设备120可称为表冠。
壳体1010可由各种材料制作而成,包括但不限于塑料、金属、合金等。壳体1010上设置有与输入设备120配合的安装孔,以收容输入设备120的部分结构。
可以理解,输入设备120不限于图2所示的结构,任何可接收用户输入的机械部件都可以作为本申请实施例中的输入设备120。
在一些实施例中,参考图2,穿戴设备100的输入设备120可以是按钮1201,按钮1201可作为输入设备120的一例,按钮1201可安装在壳体1010的侧面10101上,在穿戴设备100是表的实施例中,按钮1201可称为表冠。
在另一些实施例中,继续参考图2,穿戴设备100的输入设备120可以是按键1202,按键1202可作为输入设备120的另一例,按键1202可允许用户按压使得按键1202发生平移或倾斜等移动以实现用户的移动输入。示例性地,按键1202可安装在壳体1010的侧 面10101上,按键1202的一部分外露,另一部分从壳体1010的侧面朝着壳体1010的内部延伸(图中未示出)。示例性地,按键1202也可以设置在按钮1201的头部12011上,在可实现旋转输入的同时也可实现移动输入。示例性地,按键1202也可设置在主体101上安装有显示屏160的顶面上。
在另一些实施例中,继续参考图2,输入设备120可包括按钮1201和按键1202,按钮1201和按键1202可设置在壳体1010的同一个表面上,例如,都设置在壳体1010的同一侧面上,按钮1201和按键1202也可设置在壳体1010的不同表面上,本申请实施例不做任何限定。可以理解,输入设备120可包括一个或多个按键1202,也可包括一个或多个按钮1201。
随着穿戴设备的发展,用户对穿戴设备所集成的功能要求越来越高。例如,穿戴设备不仅可以作为时钟,还可以检测用户的生理参数。通常情况下,用户可以通过穿戴设备的生理参数传感器,实现多种生理参数的测量。
本申请实施例对生理参数传感器的种类和生理参数的种类不作限定。
示例性的,生理参数传感器可以包括但不限于以下至少一项:ACC传感器;PPG传感器;ECG传感器。
示例性的,生理参数可以包括房颤、早搏、心率、动脉硬化、血氧、睡眠、压力等。
当用户想要测量多个生理参数时,用户需要通过穿戴设备上与多个生理参数相对应的多个应用程序(Application,App),来实现多种生理参数的测量。操作比较繁琐,用户体验不佳。
因此,本申请实施例提供了一种测量方法200,该测量方法200应用于穿戴设备。通过该测量方法200,用户可以通过一个APP一次性测量多个生理参数,测量效率高,用户体验较好。
以下,以图3和图4为例,介绍本申请实施例提供的用户通过一个APP进行多个生理参数测量的过程中,穿戴设备的图形用户界面(graphical user interface,GUI)的变化示意图。
图3是本申请一实施例提供的穿戴设备的GUI的变化示意图。
如图3中的(a)所示,该穿戴设备100的显示界面中显示应用1的图标。
为了方便描述,本申请实施例中是以应用1是测量生理参数的应用的名称为例进行说明。本申请实施例对测量生理参数的应用的名称不作限定。
在一些实施例中,该穿戴设备100的显示界面中除了显示应用1的图标外,还显示一个或多个其他应用的图标。
如图3中的(a)所示,当用户点击应用1的图标后,穿戴设备100的显示界面上可以显示测量生理参数界面,该测量生理参数界面包括多个生理参数标识。
在一些实施例中,多个生理参数标识可以以单独的方式分别显示在测量生理参数界面中。
示例性的,多个生理参数标识可以分别在测量生理参数界面中的多个菜单项选项中显示。
本申请实施例对每个菜单选项包括的生理参数的个数不作限定。
例如,如图3中的(b)所示,每个菜单选项包括一个生理参数的标识。即该显示界 面上显示“心率”菜单选项、“血压”菜单选项、“心电图”菜单选项和“血液饱和度”菜单选项。
在一些实施例中,用户可以通过操作1来改变显示界面上显示的菜单选项。
本申请实施例对操作1的具体形式不作限定。
示例性的,操作1可以是用户在显示界面上,上下滑动的操作。
示例性的,操作1可以是用户旋转输入设备120的操作。
用户在多个菜单选项中选取需要测量的生理参数的标识。
在一些实施例中,用户可以通过操作2在多个菜单选项中选取需要测量的生理参数对应的菜单选项。
本申请实施例对操作2的具体形式不做限定。
示例性的,操作2可以是用户长按需要测量的生理参数对应的菜单选项的操作。例如,如图3中的(c)所示。
示例性的,操作2可以是用户输入需要测量的生理参数的语音操作。
本申请实施例对在穿戴设备的显示界面上,用户选取的需要测量的生理参数对应的菜单选项具体呈现的形式不作限定。
示例性的,在穿戴设备的显示界面上,用户选取的需要测量的生理参数对应的菜单选项高亮显示。例如,如图3中的(c)所示,用户选取的“心率”菜单选项和“血液饱和度”菜单选项高亮显示。
在用户选取需要测量的生理参数对应的菜单选项之后,穿戴设备开始对用户选取的生理参数进行测量。
在一种可实现的方式中,在用户选取需要测量的生理参数对应的菜单选项之后,穿戴设备可以在预设时间内,开始对用户选取的生理参数进行测量。
在另一种可实现的方式中,测量生理参数界面还包括用于开始对用户选取的生理参数进行测量的控件,在用户选取需要测量的生理参数对应的菜单选项之后,用户可以点击该控件,以便穿戴设备开始对用户选取的生理参数进行测量。
如图3中的(d)至图3中的(g)所示,为穿戴设备开始对用户选取的心率和血液饱和度进行测量的过程中,穿戴设备的GUI变化。
示例性的,穿戴设备可以通过后面的方法200,对用户选取的心率和血液饱和度进行测量。具体测量的过程,可以参考后面方法200中的相关描述,这里不再赘述。
在一些实施例中,穿戴设备在对用户选取的生理参数进行测量的过程中,可以按照测量的生理参数的时长递增的顺序,提醒用户的生理参数的测量进度。
本申请实施例对如何提醒用户,穿戴设备测量用户的生理参数的进度的形式不作限定。
示例性的,穿戴设备可以在穿戴设备的显示界面上提醒用户,穿戴设备测量用户的生理参数的进度。例如,如图3中的(d)所示,穿戴设备可以在穿戴设备的显示界面上显示“正在进行心率测量,稍后进行血液饱和度测量”的提醒信息。例如,如图3中的(f)所示,穿戴设备可以在穿戴设备的显示界面上显示“心率已测量完成,正在进行血液饱和度的测量”的提醒信息。
在一些实施例中,穿戴设备在对用户选取的生理参数进行测量的过程中,穿戴设备可 以提醒用户正确佩戴穿戴设备和/或正确使用穿戴设备的相应的生理参数(例如,心率和血液饱和度)测量功能。
在穿戴设备完成用户生理参数的测量后,输出测量的生理参数对应的测量结果。
在一些实施例中,穿戴设备可以每完成用户的一个生理参数的测量后,就输出测量的生理参数对应的测量结果。
本申请实施例对输出测量的生理参数的方式不作限定。
示例性的,穿戴设备在穿戴设备的显示界面上显示测量的生理参数。
在一种可实现的方式中,穿戴设备可以在每完成用户的一个生理参数的测量后,只输出当前测量的用户的生理参数对应的测量结果。
在另一种可实现的方式中,穿戴设备可以在每完成用户的一个生理参数的测量后,不仅可以输出当前测量的用户的生理参数对应的测量结果,还可以输出本次生理参数测量中已测量的用户的生理参数对应的测量结果中的至少一个。在完成用户的所有生理参数的测量后,穿戴设备最终输出所有用户选取的需要测量的生理参数对应的测量结果。
示例性的,如图3中的(d)至图3中的(g)所示,测量心率的时长小于测量血液饱和度的时长。因此,穿戴设备先对用户的心率进行测量,再对用户的血液饱和度进行测量。即穿戴设备先输出用户的心率测量的结果,后输出用户的血液饱和度测量的结果。如图3中的(e)所示,在完成用户心率的测量后,在穿戴设备的显示界面上就显示用户的心率。如图3中的(g)所示,在完成用户的血液饱和度的测量后,在穿戴设备的显示界面上显示用户的心率和用户的血液饱和度。
在另一些实施例中,穿戴设备可以在完成所有用户的生理参数的测量后,输出测量的生理参数。
本申请实施例对输出测量的生理参数的方式不作限定。
示例性的,穿戴设备在穿戴设备的显示界面上显示测量的生理参数。
本申请实施例对最终输出的生理参数测量结果的个数不作限定。
示例性的,穿戴设备可以最终输出所有用户选取的需要测量的生理参数对应的测量结果。
例如,如图3中的(g)所示,穿戴设备最终输出用户选取的心率对应的测量结果和血液饱和度对应的测量结果。
图4是本申请另一实施例提供的穿戴设备的GUI的变化示意图。
与图3相比,区别在于,图4中的生理参数标识可以以组合的方式显示在测量生理参数界面中。
示例性的,多个生理参数的标识可以以这的方式在测量生理参数界面中的一个菜单选项中显示。
例如,图4中的每个菜单选项包括多个生理参数的标识。例如,如图4中的(b)所示,第一个菜单选项包括“房颤”、“早搏”和“动脉硬化”3个生理参数的标识。第二个菜单选项包括“心率”和“血压”2个生理参数的标识。
本申请实施例对于每个菜单选项包括的多个生理参数的组合方式不作限定。
在一些实施例中,每个菜单选项包括的多个生理参数的组合方式可以是穿戴设备系统配置的。
在另一些实施例中,每个菜单选项包括的多个生理参数的组合方式可以是用户通过相应的设置选项设置的。用户可以通过该选项设置中设置自己想要组合的多个生理参数。
此外,图4中的每个菜单选项还包括用于用户选中该菜单选项的控件。例如,如图4中的(b)所示,在“房颤+早搏+动脉硬化”菜单选项和“心率+血压”菜单选项中分别显示的圆形控件。且在图4中,在穿戴设备的显示界面上,用户选取的菜单选项具体是以用户选取的菜单选项对应的控件显示选中的状态的形式呈现。例如,如图4中的(c)所示,用户选取的“心率+血压+动脉硬化”菜单选项对应的圆形控件以“√”形式显示。
关于图4中的其他图的描述,可以参见图3中相应图的描述,这里不再赘述。
此外,针对某些生理参数的测量,采集的数据类型虽然相同,但采集的数据量不同。例如,如表1所示,针对房颤、早搏和动脉硬化,采集的数据类型都是PPG数据和ECG数据。但是,针对房颤和早搏,需要采集30秒的PPG数据和ECG数据,针对动脉硬化,需要采集60秒的数据PPG数据和ECG数据。因此,针对某些生理参数的测量,采集的部分数据可以进行复用。但是,由于现有的穿戴设备中的各个生理参数的测量是相互独立的,因此,用户在进行多种生理参数测量时,不会进行数据共享,导致测量时间较长,用户体验不佳。
表1
Figure PCTCN2021136277-appb-000003
因此,本申请实施例还提供了一种测量方法300,该测量方法300应用于穿戴设备,通过该测量方法300,可以实现多个生理参数APP所采集的数据的复用,测量效率高,用户体验较好。
以下,以图5为例,介绍本申请实施例提供的用户通过多个APP进行多个生理参数测量的过程中,穿戴设备的GUI的变化示意图。
图5是本申请又一实施例提供的穿戴设备的GUI的变化示意图。
如图5中的(a)所示,该穿戴设备100的显示界面中显示“血液饱和度”菜单选项、“心率”菜单选项、“睡眠”菜单选项和“运动”菜单选项。
如图5中的(a)所示,当用户点击“心率”菜单选项后,穿戴设备开始对用户的心率进行测量。
示例性的,穿戴设备可以通过后面的方法300,对用户选取的心率进行测量。具体测量的过程,可以参考后面方法300中的相关描述,这里不再赘述。
在一些实施例中,在穿戴设备对用户的心率进行测量的过程中,穿戴设备可以提醒用户正确佩戴穿戴设备和/或正确使用穿戴设备的心率测量功能。
在穿戴设备完成对用户的心率测量后,穿戴设备输出对用户的心率进行测量的测量结果。
示例性的,如图5中的(b)所示,穿戴设备在显示界面上显示测量的用户的心率。
在一些实施例中,在穿戴设备完成对用户的心率测量后,穿戴设备还确定在当前测量心率的过程中,所采集的数据还可以作为测量血压时所采集的数据,穿戴设备还可以提醒用户是否开启血压APP。
例如,如图5中的(c)所示,穿戴设备在显示界面上显示“是否开启血压APP”
如图5中的(c)所示,用户确定开启血压APP。
在确定用户开启血压APP后,心率APP会将所采集的数据发送血压APP,血压APP对接收到的数据进行分析得到用户的血压,并输出用户的血压。例如,如图5中的(d)所示。
以上,结合图3至图5,介绍了本申请实施例提供的用户进行多个生理参数测量的过程中,穿戴设备的GUI的变化示意图。以下,结合图6和图7,介绍本申请实施例提供的测量方法。
以下,结合图6,介绍本申请实施例提供的测量生理参数的方法200。如图6所示,图6是本申请实施例提供的测量生理参数的方法200的流程示意图。该方法200包括:
S210,确定待测量的多个生理参数。穿戴设备可以通过接收用户测量生理参数的操作,确定待测量的多个生理参数。
在一些实施例中,穿戴设备可以在穿戴设备的显示界面上显示测量生理参数界面,该测量生理参数界面包括多个生理参数标识。穿戴设备可以通过用户选取的至少两个生理参数标识的操作,确定待测量的多个生理参数。
本申请实施例对多个生理参数标识分别在测量生理参数界面中显示方式不作限定。
在一种可实现的方式中,多个生理参数标识可以以单独的方式分别显示在测量生理参数界面中。
示例性的,多个生理参数标识分别在测量生理参数界面中的多个菜单项选项中显示。例如,如图3中的(b)所示,测量生理参数界面中的每个菜单项选项中显示一个生理参数标识。在另一种可实现的方式中,多个生理参数标识可以以组合的方式显示在测量生理参数界面中。
示例性的,在测量生理参数界面中,有一个菜单选项中显示至少两个生理参数的标识,有另一个菜单选项中包括至少一个生理参数的标识。
示例性的,在测量生理参数界面中,每个菜单选项中包括至少两个生理参数的标识。例如,如图4中的(b)所示,测量生理参数界面中的每个菜单项选项中显示两个生理参数标识。
本申请实施例对多个生理参数标识中以组合方式显示的生理参数标识,具体是哪些生理参数标识不作限定。
在一示例中,多个生理参数标识中以组合方式显示的生理参数标识可以是系统配置的。在另一示例中,多个生理参数标识中以组合方式显示的生理参数标识可以是用户通过相应的设置选项设置的。
示例性的,可以将生理参数1和生理参数2以组合方式进行显示。其中,在后续步骤中,当提取与生理参数1相关的数据和提取与生理参数2相关的数据时,存在部分数据相同或全部数据相同。
在一示例中,当提取与生理参数1相关的数据和提取与生理参数2相关的数据时,存在全部数据相同可以理解为提取的与生理参数1相关的数据的种类和提取的与生理参数2相关的数据的种类相同,以及提取的与生理参数1相关的数据的数据量和提取的与生理参数2相关的数据的数据量相同。
示例性的,与生理参数相关的数据的种类可以ACC数据类型、PPG数据类型和/或ECG数据类型。
例如,如表1所示,提取与心律失常特性(例如,房颤、早搏)相关的数据的种类是ACC数据、PPG数据和ECG数据,提取与心律失常特性相关的数据的数据量为提取30秒与心律失常特性相关的数据的数据量。提取与血管特性相关的数据的种类是ACC数据、PPG数据和ECG数据,提取与血管特性相关的数据的数据量为提取60秒与血管特性相关的数据的数据量。提取与血氧特性相关的数据的种类是ACC数据和PPG数据,提取与血氧特性相关的数据的数据量为提取20秒与血氧特性相关的数据的数据量。提取与压力特性相关的数据的种类是ACC数据和PPG数据,提取与压力特性相关的数据的数据量为提取60秒与压力特性相关的数据的数据量。
例如,在生理参数1和生理参数2中,一个可以是房颤,另一个可以是早搏。
在另一示例中,当提取与生理参数1相关的数据和提取与生理参数2相关的数据时,存在部分数据相同可以理解为与生理参数1相关的数据的种类和与生理参数2相关的数据的种类相同,以及与生理参数1相关的数据的数据量和与生理参数2相关的数据的数据量不相同。
例如,在生理参数1和生理参数2中,一个可以是心律失常特性,另一个可以是血氧特性。又例如,在生理参数1和生理参数2中,一个可以是血管特性,另一个可以是心律失常特性、血氧特性或压力特性。又例如,在生理参数1和生理参数2中,一个可以是压力特性,另一个可以是血氧特性。
本申请实施例对用户如何选取至少两个生理参数标识的操作不作限定。
示例性的,在穿戴设备显示的测量生理参数界面上显示的多个生理生理参数标识中,用户选取了第一生理参数标识和第二生理参数标识,则用户选取的第一生理参数标识和第二生理参数标识即为待测量的两个生理参数。其中,第一生理参数标识和第二生理参数标识分别为多个生理参数标识中的生理参数标识。
以下,为了方便描述,均以用户选取的是两个生理参数标识为例进行介绍。
在一些实施例中,用户可以通过多次操作,选取待测量的多个生理参数。
例如,如图3中的(c)所示,用户分别点击“心率”菜单选项和“血液饱和度”菜单选项,选取待测量的两个生理参数,即心率和血液饱和度。
在另一些实施例中,用户可以通过一次操作,选取待测量的多个生理参数。例如,如图4中的(c)所示,用户点击“心率+血压”菜单选项,选取待测量的两个生理参数,即心率和血压。
在确定待测量的多个生理参数之后,穿戴设备可以对多个生理参数进行测量。
在一种可实现的方式中,在确定待测量的多个生理参数之后穿戴设备在预设时间内,开始对用户选取的多个生理参数进行测量。
在另一种可实现的方式中,测量生理参数界面还包括用于开始对用户选取的生理参数 进行测量的控件,在确定待测量的多个生理参数之后,用户可以点击该控件,以便穿戴设备开始对用户选取的生理参数进行测量。
穿戴设备对多个生理参数进行测量的具体过程详见S220至S260。
在一些实施例中,穿戴设备在对用户选取的生理参数进行测量的过程中,穿戴设备可以提醒用户正确佩戴穿戴设备和/或正确使用穿戴设备的相应的生理参数测量功能。
S220,采集与多个生理参数相关的数据。在一些实施例中,在采集与多个生理参数相关的数据之前,可以先判断与待测量的多个生理参数相关的器件(例如,生理参数传感器)是否处于打开状态。在与待测量的多个生理参数相关的器件中存在处于未打开状态的器件的情况下,将与待测量的多个生理参数相关的器件调至打开状态,以便采集与多个生理参数相关的数据。如表1所示,例如,多个生理参数中包括与心律失常特性相关的生理参数,穿戴设备需要打开ACC传感器、PPG传感器和ECG传感器。又例如,多个生理参数中包括血氧特性,穿戴设备需要打开ACC传感器和PPG传感器。其中,ACC传感器采集穿戴设备在各个方向上的加速度的大小。PPG传感器采集经用户皮肤反射回的光信号,并根据光信号得到PPG信号。ECG传感器采集穿戴设备上设置的电极组中的每个电极的电信号,并根据电信号得到ECG信号。S230,判断采集的数据的质量是否满足相应的数据质量要求。
在一示例中,穿戴设备可以通过穿戴设备的与待测量的多个生理参数相关的器件,采集与多个生理参数相关的数据。
在另一示例中,穿戴设备可以和其他设备连接,并通过其他设备的与待测量的多个生理参数相关的器件,采集与多个生理参数相关的数据。如图7所示,S230具体包括S231至S238。
由于生理参数不同,测量生理参数所采集的数据类型也不同。以下,将分别按照所采集的数据类型包括PPG数据类型和ECG数据类型进行说明。
其中,所采集的数据类型包括PPG数据类型时,需执行S231和S233。所采集的数据类型包括ECG数据类型时,需执行S234和S236。
S231,获取穿戴设备的佩戴状态。
示例性的,穿戴设备的佩戴状态包括用户是否佩戴穿戴设备、用户是否正确佩戴穿戴设备等。
示例性的,用户是否正确佩戴穿戴设备可以理解为用户当前佩戴穿戴设备的方式是否能够较好的采取与生理参数相关的信号。
S232,根据穿戴设备的佩戴状态和采集的PPG数据,判断是否满足采集PPG特征数据的要求。
在穿戴设备的佩戴状态处于异常和/或采集的PPG数据不满足采集PPG特征数据的要求的情况下,执行S233,并循环执行S220、S231、S232,直到穿戴设备的佩戴状态处于正常和/或采集的PPG数据满足采集PPG特征数据的要求。在穿戴设备的佩戴状态处于正常和/或采集的PPG数据满足采集PPG特征数据的要求的情况下,执行S240。
示例性的,穿戴设备的佩戴状态处于异常可以理解为用户没有佩戴穿戴设备和/或用户没有正确佩戴穿戴设备。
示例性的,穿戴设备的佩戴状态处于正常可以理解为用户佩戴穿戴设备和/或用户正 确佩戴穿戴设备。
示例性的,采集PPG特征数据的要求包括采集的PPG数据对应的波形光滑、没有毛刺、采集的PPG数据对应的波形的波峰和波谷之间的间距满足预设条件等。
S233,提醒用户正确佩戴穿戴设备。
在一些实施例中,穿戴设备可以通过在显示界面上显示提醒信息,来提醒用户正确佩戴穿戴设备。示例性的,该提醒信息可以是“请距离腕骨一指佩戴”的信息。
可选地,穿戴设备还可以在显示界面上显示指示用户正确佩戴穿戴设备的示意简图。
在另一些实施例中,穿戴设备可以通过语音助手,来提醒用户正确佩戴穿戴设备。
S234,获取穿戴设备的ECG导联状态。
示例性的,穿戴设备的ECG导联状态包括穿戴设备的ECG未处于导联的状态、穿戴设备的ECG处于导联的状态。
穿戴设备的ECG导联状态可以根据电极组和用户之间是否形成回路来判断。在电极组和用户之间形成回路的情况下,认为穿戴设备的ECG处于导联的状态。在电极组和用户之间没有形成回路的情况下,认为穿戴设备的ECG未处于导联的状态。
S235,根据穿戴设备的ECG导联状态和采集的ECG数据,判断是否满足采集ECG特征数据的要求。
在穿戴设备的ECG导联状态是穿戴设备的ECG未处于导联的状态和/或采集的ECG数据不满足采集ECG特征数据的要求的情况下,执行S236、并循环执行S220、S234、S235,直到穿戴设备的ECG导联状态是穿戴设备的ECG处于导联的状态和/或采集的ECG数据满足采集ECG特征数据的要求。在穿戴设备的ECG导联状态是穿戴设备的ECG处于导联的状态和/或采集的ECG数据满足采集ECG特征数据的要求的情况下,执行S240。
示例性的,采集ECG特征数据的要求包括采集的ECG数据对应的波形光滑、没有毛刺等。
S236,提醒用户正确操作穿戴设备。
在一些实施例中,穿戴设备可以通过在显示界面上显示提醒信息,来提醒用户正确操作穿戴设备。示例性的,该提醒信息可以是“请手指触摸ECG电极”的信息。
可选地,穿戴设备还可以在显示界面上显示指示用户正确操作穿戴设备的示意简图。
在另一些实施例中,穿戴设备可以通过语音助手,来提醒用户正确操作穿戴设备。
无论所采集的数据类型是什么,都可以执行S237和S238。
S237,根据ACC采集的数据,判断ACC采集的数据。
示例性的,在ACC采集的数据中存在有效值的情况下,即可认为用户处于运动状态。在ACC采集的数据都是无效值的情况下,即可认为用户处于非运动状态。
示例性的,有效值为非0的值;无效值为0。
在用户处于运动状态的情况下,执行S238,并循环执行S220、S237,直到用户处于非运动状态。在用户处于非运动状态的情况下,执行S240。
S238,提醒用户保持静止。
在一些实施例中,穿戴设备可以通过在显示界面上显示提醒信息,来提醒用户保持静止备。示例性的,该提醒信息可以是“请保持静止”的信息。
在另一些实施例中,穿戴设备可以通过语音助手,来提醒用户保持静止。
在采集的数据的质量满足相应的数据质量要求的情况下,执行S240。在采集的数据的质量不满足相应的数据质量要求的情况下,循环执行S220至S230,直到采集的数据的质量满足相应的数据质量要求。
S240,根据采集的数据,提取相关的特征数据,保存提取的相关的特征数据。
特征数据可以理解为是调用相应的生理参数数据算法得到的特征数据。
示例性的,若采集的数据包括通过ACC采集的数据,则根据通过ACC采集的数据,提取该数据相应的特征数据。
为了方便描述,将通过ACC采集的数据记为ACC数据,将通过ACC采集的数据相应的特征数据记为ACC特征数据。
示例性的,若采集的数据包括通过PPG传感器采集的数据,则根据通过PPG传感器采集的数据,提取该数据相应的特征数据。
为了方便描述,将通过PPG传感器采集的数据记为PPG数据,将通过PPG传感器采集的数据相应的特征数据记为PPG特征数据。
示例性的,若采集的数据包括通过ECG传感器采集的数据,则根据通过ECG传感器采集的数据,提取该数据相应的特征数据。
为了方便描述,将通过ECG传感器采集的数据记为ECG数据,将通过ECG传感器采集的数据相应的特征数据记为ECG特征数据。
S250,分别获取多个生理参数中与每个生理参数相关的特征数据。
例如,如图3所示,用户需要测量心率和血液饱和度两个生理参数。此时,在S250中,需要分别获取与心率相关的特征数据和与血液饱和度相关的特征数据。
其中,与心率相关的特征数据包括ACC特征数据和PPG特征数据,或者,与心率相关的特征数据包括ACC特征数据和ECG特征数据。与血液饱和度相关的特征数据包括ACC特征数据和PPG特征数据。
又例如,如图4所示,用户需要测量心率和血压两个生理参数。此时,在S250中,需要分别获取与心率相关的特征数据和与血压相关的特征数据。
其中,与血压相关的特征数据包括ACC特征数据、PPG特征数据。
S260,根据与每个生理参数相关的特征数据,分别对每个生理参数进行分析。
以下,以两个生理参数为例,详细介绍S260。例如,如图8所示,是针对两个生理参数进行分析的流程示意图。
如图8所示,S260包括S261,S262a至S266a,以及S262b至S266b。
S261,分别提取S250中获取的与每个生理参数相关的特征数据。
具体的,根据每个生理参数相关的特征数据,分别对每个生理参数进行分析。各个生理参数进行分析的过程是互相独立、互不干扰的。
在分别提取完每个生理参数相关的特征数据之后,需要针对每个生理参数进行分析。以下,将分别介绍对每个生理参数进行分析的具体流程。
例如,如图8中的S262a至S266a所示,是对生理参数1(第一生理参数的一例)和生理参数2(第二生理参数的一例)进行分析的具体流程。
S262a,根据S261分发的与生理参数1相关的特征数据,判断与生理参数1相关的特性数据是否满足对该生理参数1分析的要求。
应理解,针对不同的生理参数,有各自对应的生理参数分析的要求。
示例性的,若生理参数1是房颤测量,则生理参数1分析的要求可以为房颤测量的标准要求。例如,PPG数据对应的波形的波峰值和波谷值之间的偏差不超过预设值。
在生理参数1相关的特性数据不满足对该生理参数1分析的要求的情况下,无法对生理参数1进行分析。
此时,在一些实施例中,可以输出用于提示无法得到生理参数的提示信息。和/或,可以执行S263a,即丢弃所采集的与生理参数1相关的特性数据。
在生理参数1相关的特性数据满足对该生理参数1分析的要求的情况下,执行S264a。
S264a,进行数据处理。
示例性的,数据处理可以是进行数据复原。
例如,在采集的生理参数1相关的特性数据中存在噪音数据,可以将采集的生理参数1相关的特性数据进行去噪处理,从而将采集的生理参数1相关的特性数据进行复原。
在一些实施例中,S264a可执行。在另一些实施例中,S264a可不执行。
S265a,判断与生理参数1相关的特征数据的数据量是否满足对该生理参数1分析的数据量的要求。
应理解,针对不同的生理参数,有各自对应的生理参数分析的数据量的要求。
如表1所示,例如,对于心律失常特性,需采集30秒的与心律失常特性相关的特性数据。又例如,对于血管生理参数,需采集60秒的与血管生理参数相关的特性数据。又例如,对于血氧特性,需采集20秒的与血氧特性相关的特性数据。又例如,对于压力特性,需采集60秒的与压力特性相关的特性数据。
在与生理参数1相关的特征数据的数据量不满足对该生理参数1分析的数据量的要求的情况下,无法对生理参数1进行分析。
此时,在一些实施例中,可以输出用于提示无法得到生理参数的提示信息。和/或,可以执行S263a,即丢弃所采集的与生理参数1相关的特性数据。
在与生理参数1相关的特征数据的数据量满足对该生理参数1分析的数据量的要求的情况下,执行S266a。
S266a,根据与生理参数相关的特征数据,得到生理参数1的分析结果。
示例性的,将与生理参数1相关的特征数据输入生理参数1分析模型中,可得到生理参数1的分析结果。
应理解,针对不同的生理参数,有各自对应的生理参数分析模型。
以上,结合S262a至S266a,介绍了对生理参数2进行分析的具体流程。以下,将结合如8中的S262b至S266b所示,对生理参数2进行分析的具体流程进行介绍。
对生理参数2进行分析的具体流程和对生理参数1进行分析的具体流程类似。针对S262b至S266b的相关描述可以参考上述S262a至S266a的描述,这里不再赘述。
应理解,图8中是以两个生理参数(生理参数1和生理参数2)为例,详细介绍S260,即在S261中,分发的是2个与生理参数相关的数据。针对N(N大于2)个生理参数的分析,在S261中,将分发N个与生理参数相关的特征数据。且需要对N个生理参数分别独立进行分析,即需要根据N个生理参数中的每个生理参数都需执行与S262a至S266a类似的流程。
S270,输出每个生理参数的分析结果。
在一些实施例中,可以在每得到一个生理参数的分析结果后,就输出该生理参数的分析结果。
在另一些实施例中,可以在得到多个生理参数的分析结果后,才输出该多个生理参数的分析结果。
本申请实施例提供了另一种测量方法300。该测量方法300应用于穿戴设备,通过该测量方法300,可以在用户通过一个App测量完一个生理参数后,在针对该生理参数所采集的数据还可用于其他生理参数的分析的情况下,还可以调用其他生理参数对应的App,输出其他生理参数的分析结果。可以实现多个生理参数APP所采集的数据的复用,测量效率高,用户体验较好。
以上,结合图6至图9,介绍了本申请实施例提供的测量方法200。以下,结合图9,介绍本申请实施例提供的测量方法300。如图9所示,图9是本申请实施例提供的测量方法300的流程示意图。该方法300包括:
S310,已开启测量生理参数a(第一生理参数的另一例)功能。
本申请对开启测量生理参数a功能的方式不作限定。
S320,采集与生理参数a相关的数据。
如表1所示,例如,与心律失常特性相关的数据包括ACC数据、PPG数据和ECG数据。又例如,与血管生理参数相关的数据包括ACC数据、PPG数据和ECG数据。又例如,与血氧特性相关的数据包括ACC数据和PPG数据。又例如,与压力特性相关的数据包括ACC数据和PPG数据。
S330,判断是否达到测量生理参数a的最大测量时长。
其中,每个生理参数对应一个最大测量时长。
如表1所示,例如,心律失常特性对应的最大测量时长为30秒。又例如,血管生理参数和压力特性对应的最大测量时长都为60秒。又例如,血氧特性对应的最大测量时长为20秒。
在未达到测量生理参数a的最大测量时长的情况下,重复执行S320和S330,直到达到测量生理参数a的最大测量时长。
在达到测量生理参数a的最大测量时长的情况下,执行S340。
S340,根据所采集的数据,对生理参数a进行分析。
示例性的,将所采集的数据输入生理参数a分析模型中,可得到生理参数a的分析结果。
应理解,针对不同的生理参数,有各自对应的生理参数分析模型。
S350,输出生理参数a的分析结果。
在一些实施例中,可以通过电子设备的显示界面,输出生理参数a的分析结果。
例如,如图5中的(b)所示,在电子设备的显示界面上,显示心率值。
通过上述S310至S350,完成了对生理参数a的测量。
此时,若根据S320中所采集的与生理参数a相关的数据,还可以得到生理参数b的分析结果,还可以执行S360。
根据S320中所采集的与生理参数a相关的数据,还可以得到生理参数b(第二生理 参数的另一例)的分析结果,可以理解为S320中所采集的与生理参数a相关的数据,也是对生理参数b进行分析时所需采集的数据。即S320中所采集的与生理参数a相关的数据的数据量满足对生理参数b进行分析时所需采集的数据的数据量;且S320中所采集的与生理参数a相关的数据的数据种类包括对生理参数b进行分析时所需采集的数据的种类。
如表1所示,例如,生理参数a可以是与心律失常特性相关的生理参数,生理参数b可以是与血氧特性相关的生理参数。又例如,生理参数a可以是与血管生理参数相关的生理参数,生理参数b可以是与心律失常特性相关的生理参数、与血氧特性相关的生理参数或与压力特性相关的生理参数。又例如,生理参数a可以是与压力特性相关的生理参数,生理参数b可以是与血氧特性相关的生理参数。
S360,判断是否对生理参数b进行测量。
在一些实施例中,可以输出用于提示是否对生理参数b进行测量的提示信息。
在一种可实现的方式中,可以在电子设备的显示界面上用于提示是否对生理参数b进行测量的提示信息。
例如,所采集的与心率(生理参数a的一例)相关的数据,还可以用于血压(生理参数b的一例)的分析时,如图5的(c)所示,在手表的显示界面上显示“是否打开血压APP进行血压测量”的提示信息。
在一些实施例中,根据用户的操作,去判断是否对生理参数b进行测量。
在一种可实现的方式中,可以在电子设备的显示界面上显示用于对生理参数b进行测量的控件,和/或用于对生理参数b不进行测量的控件。根据用户通过点击相应控件的操作,确定是否需要对生理参数b进行测量。
例如,如图5的(c)所示,手表的显示界面上除了显示“是否打开血压APP进行血压测量”的提示信息外,还显示“是”控件和“否”控件。根据用户选取“是”控件的操作,确定需要对生理参数b进行测量。根据用户选取“否”控件的操作,确定不需要对生理参数b进行测量。
在S310至S360中,执行主体是测量生理参数a对应的App。
在不需要对生理参数b进行测量的情况下,不需执行S370。
在需要对生理参数b进行测量的情况下,执行S370。
S370,调用与生理参数b对应的App,对生理参数b进行测量。
示例性的,测量生理参数a对应的App向测量生理参数b对应的App发送测量消息,该测量消息包括测量生理参数a对应的App采集的与生理参数a相关的数据,该测量消息用于请求对生理参数b的分析结果。测量生理参数b对应的App根据该测量消息,可得到生理参数b的分析结果。示例性的,测量生理参数b对应的App将测量消息中包括的测量生理参数a对应的App采集的与生理参数a相关的数据输入生理参数b分析模型中,可得到生理参数b的分析结果。
可选的,测量生理参数b对应的App在接收到该测量消息后,还可以对测量消息中的数据进行处理,然后根据处理后的数据,得到生理参数b的分析结果。
S350,输出生理参数b的分析结果。
在一些实施例中,测量生理参数b对应的App可以通过电子设备的显示界面,输出生 理参数b的分析结果。
例如,如图5中的(d)所示,在电子设备的显示界面上,显示血压值。
上文结合图3至图9,详细描述了本申请实施例提供的测量生理参数的方法。下面将结合图10和图13,详细描述本申请的装置实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图10是本申请实施例提供的装置的示意性框图。应理解,装置1000可以执行图6至图8中所示的方法200。该装置1000包括:
显示单元1010,用于显示测量生理参数界面,测量生理参数界面包括多个生理参数标识;
通信单元1020,用于接收测量生理参数的操作,测量生理参数的操作包括选取第一生理参数标识和第二生理参数标识的操作,第一生理参数标识和第二生理参数标识分别为多个生理参数标识中的生理参数标识;
处理单元1030,用于根据测量生理参数的操作,通过生理参数传感器测量被测对象的第一生理参数和第二生理参数。
可选的,处理单元1030,还具体用于:根据测量生理参数的操作,通过生理参数传感器采集被测对象的数据;从采集的数据中分别提取与第一生理参数相关的数据和与第二生理参数相关的数据;根据与第一生理参数相关的数据,得到第一生理参数;根据与第二生理参数相关的数据,得到第二生理参数。
可选的,该处理单元1030,还用于:判断数据是否满足数据质量的要求;在数据不满足数据质量的要求的情况下,通过生理参数传感器重新采集被测对象的数据,将重新采集的数据更新数据,直到数据满足数据质量的要求。
可选的,该处理单元1030,还具体用于:根据与第一生理参数相关的数据,提取与第一生理参数相关的特征数据;判断与第一生理参数的特征数据是否满足对第一生理参数进行分析的要求;在与第一生理参数的特征数据满足对第一生理参数进行分析的要求的情况下,根据与第一生理参数相关的特征数据,得到第一生理参数。
可选的,该处理单元1030,还具体用于:判断与第一生理参数的特征数据是否满足对第一生理参数进行分析的要求;在与第一生理参数的特征数据满足对第一生理参数进行分析的要求的情况下,判断与第一生理参数的特征数据对应的数据量是否满足对第一生理参数进行分析的要求;在与第一生理参数的特征数据对应的数据量满足对第一生理参数进行分析的要求的情况下,根据与第一生理参数相关的特征数据,得到第一生理参数。
可选的,该处理单元1030,还具体用于:对与第一生理参数的特征数据进行数据处理;在处理后的与第一生理参数的特征数据满足对第一生理参数进行分析的要求的情况下,判断与第一生理参数的特征数据对应的数据量是否满足对第一生理参数进行分析的要求。
可选的,该处理单元1030,还具体用于:根据与第二生理参数相关的数据,提取与第二生理参数相关的特征数据;判断与第二生理参数的特征数据是否满足对第二生理参数进行分析的要求;在与第二生理参数的特征数据满足对第二生理参数进行分析的要求的情况下,根据与第二生理参数相关的特征数据,得到第二生理参数。
可选的,该处理单元1030,还具体用于:判断与第二生理参数的特征数据是否满足 对第二生理参数进行分析的要求;在与第二生理参数的特征数据满足对第二生理参数进行分析的要求的情况下,判断与第二生理参数的特征数据对应的数据量是否满足对第二生理参数进行分析的要求;在与第二生理参数的特征数据对应的数据量满足对第二生理参数进行分析的要求的情况下,根据与第二生理参数相关的特征数据,得到第二生理参数。
可选的,该处理单元1030,还具体用于:对与第二生理参数的特征数据进行数据处理;在处理后的与第二生理参数的特征数据满足对第二生理参数进行分析的要求的情况下,判断与第二生理参数的特征数据对应的数据量是否满足对第二生理参数进行分析的要求。
可选的,该显示单元1010,还用于:显示被测对象的第一生理参数和所述第二生理参数。
可选的,该显示单元1010,还具体用于:在测量完第一生理参数之后,显示第一生理参数;在测量完第二生理参数之后,显示第二生理参数。
可选的,该显示单元1010,还具体用于:在测量完第一生理参数和第二生理参数之后,显示第一生理参数和第二生理参数。
可选的,生理参数传感器包括以下至少一项:ACC传感器;PPG传感器;ECG传感器。
可选的,生理参数包括以下至少一项:房颤;早搏;心率;动脉硬化;血氧;睡眠;压力。
可选的,提取的与第一生理参数相关的数据和提取的与第二生理参数相关的数据部分相同或全部相同。
图11是本申请实施例提供的装置的示意性框图。应理解,装置1100可以执行图9中所示的方法300。该装置1100包括:
处理单元1110,用于通过生理参数传感器采集被测对象的与第一生理参数相关的数据;
处理单元1110,还用于根据与第一生理参数相关的数据,得到第一生理参数;
处理单元1110,还用于检测对第二生理参数进行测量的操作,该第二生理参数和第一生理参数不相同;
通信单元1120,用于响应于该操作,向第二应用发送测量消息,该测量消息包括所述与第一生理参数相关的数据。
可选的,在处理单元1110,还用于根据与第一生理参数相关的数据,得到第一生理参数之后,该处理单元1110,还用于:根据与第一生理参数相关的数据,确定第二生理参数。
图12是本申请实施例提供的装置的示意性框图。应理解,装置1200可以执行图9中所示的方法300。该装置1200包括:
通信单元1210,用于从第一应用接收测量消息,测量消息包括与第一生理参数相关的数据;
处理单元1220,用于根据与第一生理参数相关的数据,得到第二生理参数。
图13是本申请实施例提供的穿戴设备的硬件结构示意图。图13所示的电子设备1100包括一个或多个存储器1110,一个或多个处理器1120,显示器1130。
该一个或多个存储器存储1110存储有一个或多个计算机程序,该一个或多个计算机程序包括指令。
在一种可实现的方式中,当该指令被一个或多个处理器1120运行时,使得电子设备1100执行上述实施例中的方法200或方法300。
在另一种可实现的方式中,处理器1120包括中央处理单元(Central Processing Unit,CPU)和神经网络处理单元(Neural-network Processing Unit,NPU)。当该指令被NPU运行时,使得电子设备1100执行上述实施例中的方法200或方法300。例如,当该指令被NPU运行时,NPU可以执行上述方法200中根据与第一生理参数相关的数据,得到第一生理参数的方案。
该显示器1230用于显示信息。例如,显示器1230用于显示上述实施例中的第一生理参数、第二生理参数等。
本申请实施例还提供一种系统。图14是本申请实施例的系统1400的示意性框图。如图14所示,该系统1400包括:
第一应用1410,用于采集被测对象的与第一生理参数相关的数据;
该第一应用1410,还用于根据该与第一生理参数相关的数据,得到第一生理参数;
该第一应用1410,还用于检测对第二生理参数进行测量的操作,该第二生理参数和第一生理参数不相同;
该第一应用1410,还用于响应于该操作,向第二应用发送测量消息,该测量消息包括与第一生理参数相关的数据;
该第二应用1420,用于根据该与第一生理参数相关的数据,得到第二生理参数。
可选的,在该第一应用1410,还用于根据与第一生理参数相关的数据,得到第一生理参数之后,该第一应用1410,还用于:根据该与第一生理参数相关的数据,确定第二生理参数。
本申请实施例还提供一种芯片,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。该芯片可以执行上述方法实施例中的方法。
本申请实施例还提供一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被执行时执行上述方法实施例中的方法。
还应理解,本申请实施例中,该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。处理器的一部分还可以包括非易失性随机存取存储器。例如,处理器还可以存储设备类型的信息。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可 以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种测量生理参数的方法,其特征在于,所述方法应用于包括生理参数传感器的电子设备中,所述方法包括:
    显示测量生理参数界面,所述测量生理参数界面包括多个生理参数标识;
    接收测量生理参数的操作,所述测量生理参数的操作包括选取第一生理参数标识和第二生理参数标识的操作,所述第一生理参数标识和第二生理参数标识分别为所述多个生理参数标识中的生理参数标识;
    根据所述测量生理参数的操作,通过所述生理参数传感器测量被测对象的第一生理参数和第二生理参数。
  2. 根据权利要求1所述的方法,其特征在于,所述响应于所述测量生理参数的操作,通过所述生理参数传感器测量被测对象的所述第一生理参数和所述第二生理参数,包括:
    根据所述测量生理参数的操作,通过所述生理参数传感器采集所述被测对象的数据;
    从采集的所述数据中分别提取与所述第一生理参数相关的数据和与所述第二生理参数相关的数据;
    根据所述与所述第一生理参数相关的数据,得到所述第一生理参数;
    根据所述与所述第二生理参数相关的数据,得到所述第二生理参数。
  3. 根据权利要求2所述的方法,其特征在于,在所述根据所述测量生理参数的操作,通过所述生理参数传感器采集所述被测对象的数据之后,所述方法还包括:
    判断所述数据是否满足数据质量的要求;
    在所述数据不满足所述数据质量的要求的情况下,通过所述生理参数传感器重新采集所述被测对象的数据,将所述重新采集的数据更新所述数据,直到所述数据满足所述数据质量的要求。
  4. 根据权利要求2或3所述的方法,其特征在于,所述根据所述与所述第一生理参数相关的数据,得到所述第一生理参数,包括:
    根据所述与所述第一生理参数相关的数据,提取与所述第一生理参数相关的特征数据;
    判断与所述第一生理参数的特征数据是否满足对所述第一生理参数进行分析的要求;
    在所述与所述第一生理参数的特征数据满足对所述第一生理参数进行分析的要求的情况下,根据所述与所述第一生理参数相关的特征数据,得到所述第一生理参数。
  5. 根据权利要求4所述的方法,其特征在于,所述判断与所述第一生理参数的特征数据是否满足对所述第一生理参数进行分析的要求,包括:
    判断与所述第一生理参数的特征数据是否满足对所述第一生理参数进行分析的要求;
    在与所述第一生理参数的特征数据满足对所述第一生理参数进行分析的要求的情况下,判断所述与所述第一生理参数的特征数据对应的数据量是否满足对所述第一生理参数进行分析的要求;
    在所述与所述第一生理参数的特征数据满足对所述第一生理参数进行分析的要求的情况下,根据所述与所述第一生理参数相关的特征数据,得到所述第一生理参数,包括:
    在所述与所述第一生理参数的特征数据对应的数据量满足对所述第一生理参数进行分析的要求的情况下,根据所述与所述第一生理参数相关的特征数据,得到所述第一生理参数。
  6. 根据权利要求5所述的方法,其特征在于,在所述与所述第一生理参数的特征数据满足对所述第一生理参数进行分析的要求之后,所述方法还包括:
    对所述与所述第一生理参数的特征数据进行数据处理;
    在与所述第一生理参数的特征数据满足对所述第一生理参数进行分析的要求的情况下,判断所述与所述第一生理参数的特征数据对应的数据量是否满足对所述第一生理参数进行分析的要求,包括:
    在处理后的与所述第一生理参数的特征数据满足对所述第一生理参数进行分析的要求的情况下,判断所述与所述第一生理参数的特征数据对应的数据量是否满足对所述第一生理参数进行分析的要求。
  7. 根据权利要求2至6中任一项所述的方法,其特征在于,所述根据所述与所述第二生理参数相关的数据,得到所述第二生理参数,包括:
    根据所述与所述第二生理参数相关的数据,提取与所述第二生理参数相关的特征数据;
    判断与所述第二生理参数的特征数据是否满足对所述第二生理参数进行分析的要求;
    在所述与所述第二生理参数的特征数据满足对所述第二生理参数进行分析的要求的情况下,根据所述与所述第二生理参数相关的特征数据,得到所述第二生理参数。
  8. 根据权利要求7所述的方法,其特征在于,所述判断与所述第二生理参数的特征数据是否满足对所述第二生理参数进行分析的要求,包括:
    判断与所述第二生理参数的特征数据是否满足对所述第二生理参数进行分析的要求;
    在与所述第二生理参数的特征数据满足对所述第二生理参数进行分析的要求的情况下,判断所述与所述第二生理参数的特征数据对应的数据量是否满足对所述第二生理参数进行分析的要求;
    在所述与所述第二生理参数的特征数据满足对所述第二生理参数进行分析的要求的情况下,根据所述与所述第二生理参数相关的特征数据,得到所述第二生理参数,包括:
    在所述与所述第二生理参数的特征数据对应的数据量满足对所述第二生理参数进行分析的要求的情况下,根据所述与所述第二生理参数相关的特征数据,得到所述第二生理参数。
  9. 根据权利要求8所述的方法,其特征在于,在所述与所述第二生理参数的特征数据满足对所述第二生理参数进行分析的要求之后,所述方法还包括:
    对所述与所述第二生理参数的特征数据进行数据处理;
    在与所述第二生理参数的特征数据满足对所述第二生理参数进行分析的要求的情况下,判断所述与所述第二生理参数的特征数据对应的数据量是否满足对所述第二生理参数进行分析的要求,包括:
    在处理后的与所述第二生理参数的特征数据满足对所述第二生理参数进行分析的要求的情况下,判断所述与所述第二生理参数的特征数据对应的数据量是否满足对所述第二生理参数进行分析的要求。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,在所述根据所述测量生理参数的操作,通过所述生理参数传感器测量被测对象的所述第一生理参数和所述第二生理参数之后,所述方法还包括:
    显示所述被测对象的所述第一生理参数和所述第二生理参数。
  11. 根据权利要求10所述的方法,其特征在于,所述显示所述被测对象的所述第一生理参数和所述第二生理参数包括:
    在测量完所述第一生理参数之后,显示所述第一生理参数;
    在测量完所述第二生理参数之后,显示所述第二生理参数。
  12. 根据权利要求10所述的方法,其特征在于,所述显示所述被测对象的所述第一生理参数和所述第二生理参数包括:
    在测量完所述第一生理参数和所述第二生理参数之后,显示所述第一生理参数和所述第二生理参数。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述生理参数传感器包括以下至少一项:
    加速度ACC传感器;
    光电容积脉搏波PPG传感器;
    心电图ECG传感器。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,所述生理参数包括以下至少一项:
    房颤;
    早搏;
    心率;
    动脉硬化;
    血氧;
    睡眠;
    压力。
  15. 根据权利要求2至14中任一项所述的方法,其特征在于,提取的所述与所述第一生理参数相关的数据和提取的所述与所述第二生理参数相关的数据部分相同或全部相同。
  16. 一种系统,其特征在于,所述系统包括第一应用和第二应用,其中,
    所述第一应用,用于采集被测对象的与第一生理参数相关的数据;
    所述第一应用,还用于根据所述与第一生理参数相关的数据,得到所述第一生理参数;
    所述第一应用,还用于检测对第二生理参数进行测量的操作,所述第二生理参数和所述第一生理参数不相同;
    所述第一应用,还用于响应于所述操作,向所述第二应用发送测量消息,所述测量消息包括所述与第一生理参数相关的数据;
    所述第二应用,用于根据所述与第一生理参数相关的数据,得到所述第二生理参数。
  17. 根据权利要求16所述的系统,其特征在于,在所述第一应用,还用于根据所述与第一生理参数相关的数据,得到所述第一生理参数之后,所述第一应用,还用于:
    根据所述与第一生理参数相关的数据,确定所述第二生理参数。
  18. 一种测量生理参数的方法,其特征在于,所述方法应用于包括生理参数传感器的电子设备中,所述方法包括:
    通过所述生理参数传感器采集被测对象的与第一生理参数相关的数据;
    根据所述与第一生理参数相关的数据,得到所述第一生理参数;
    检测对第二生理参数进行测量的操作,所述第二生理参数和所述第一生理参数不相同;
    响应于所述操作,向第二应用发送测量消息,所述测量消息包括所述与第一生理参数相关的数据。
  19. 根据权利要求18所述的方法,其特征在于,所述根据所述与第一生理参数相关的数据,得到所述第一生理参数之后,所述方法还包括:
    根据所述与第一生理参数相关的数据,确定所述第二生理参数。
  20. 一种测量生理参数的方法,其特征在于,所述方法包括:
    从第一应用接收测量消息,所述测量消息包括与第一生理参数相关的数据;
    根据所述与第一生理参数相关的数据,得到第二生理参数,所述第二生理参数和所述第一生理参数不相同。
  21. 一种电子设备,其特征在于,包括一个或多个处理器;一个或多个存储器;所述一个或多个存储器存储有一个或者多个计算机程序,所述一个或者多个计算机程序包括指令,当所述指令被所述一个或多个处理器执行时,使得所述电子设备执行如权利要求1至15中任一项所述的测量生理参数的方法,或,使得所述电子设备执行如权利要求18或19所述的测量生理参数的方法,或,使得所述电子设备执行如权利要求20所述的测量生理参数的方法。
  22. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在电子设备上运行时,使得所述电子设备执行如权利要求1至15中任一项所述的测量生理参数的方法,或,使得所述电子设备执行如权利要求18或19所述的测量生理参数的方法,或,使得所述电子设备执行如权利要求20所述的测量生理参数的方法。
PCT/CN2021/136277 2020-12-22 2021-12-08 测量生理参数的方法及电子设备 WO2022135145A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/258,710 US20240041333A1 (en) 2020-12-22 2021-12-08 Method for Measuring Physiological Parameter and Electronic Device
EP21909142.8A EP4241664A4 (en) 2020-12-22 2021-12-08 METHOD FOR MEASURING PHYSIOLOGICAL PARAMETERS AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011529749.7 2020-12-22
CN202011529749.7A CN114711734A (zh) 2020-12-22 2020-12-22 测量生理参数的方法及电子设备

Publications (1)

Publication Number Publication Date
WO2022135145A1 true WO2022135145A1 (zh) 2022-06-30

Family

ID=82157379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136277 WO2022135145A1 (zh) 2020-12-22 2021-12-08 测量生理参数的方法及电子设备

Country Status (4)

Country Link
US (1) US20240041333A1 (zh)
EP (1) EP4241664A4 (zh)
CN (1) CN114711734A (zh)
WO (1) WO2022135145A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040138540A1 (en) * 2003-01-10 2004-07-15 Nellcor Puritan Bennett Inc. Signal quality metrics design for qualifying data for a physiological monitor
CN103313650A (zh) * 2010-11-11 2013-09-18 卓尔医学产品公司 急诊处理系统信息面板
US20140046144A1 (en) * 2012-08-13 2014-02-13 Tata Consultancy Services Limited Real-time stress determination of an individual
CN204480462U (zh) * 2015-03-17 2015-07-15 珠海迈科智能科技股份有限公司 一种遥控器
CN109195509A (zh) * 2016-07-26 2019-01-11 爱德华兹生命科学公司 具有低血压预测图形用户界面(gui)的健康监测单元

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3234826B1 (en) * 2014-12-19 2019-09-04 Koninklijke Philips N.V. Medical bracelet standard
CN106901720A (zh) * 2017-02-22 2017-06-30 安徽华米信息科技有限公司 心电数据的采集方法、装置及可穿戴设备
US10524735B2 (en) * 2017-03-28 2020-01-07 Apple Inc. Detecting conditions using heart rate sensors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040138540A1 (en) * 2003-01-10 2004-07-15 Nellcor Puritan Bennett Inc. Signal quality metrics design for qualifying data for a physiological monitor
CN103313650A (zh) * 2010-11-11 2013-09-18 卓尔医学产品公司 急诊处理系统信息面板
US20140046144A1 (en) * 2012-08-13 2014-02-13 Tata Consultancy Services Limited Real-time stress determination of an individual
CN204480462U (zh) * 2015-03-17 2015-07-15 珠海迈科智能科技股份有限公司 一种遥控器
CN109195509A (zh) * 2016-07-26 2019-01-11 爱德华兹生命科学公司 具有低血压预测图形用户界面(gui)的健康监测单元

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4241664A4

Also Published As

Publication number Publication date
CN114711734A (zh) 2022-07-08
EP4241664A1 (en) 2023-09-13
US20240041333A1 (en) 2024-02-08
EP4241664A4 (en) 2024-03-13

Similar Documents

Publication Publication Date Title
WO2020253727A1 (zh) 一种ecg检测方法与穿戴设备
US10575086B2 (en) System and method for sharing wireless earpieces
CN105391937B (zh) 电子设备及控制电子设备的方法和移动终端
CN110192383B (zh) 电子设备及其操作方法
WO2016155331A1 (zh) 一种基于穿戴设备的信息传递方法及相关设备
CN111651040B (zh) 用于肌肤检测的电子设备的交互方法及电子设备
KR20170033641A (ko) 전자 장치 및 전자 장치의 동작 제어 방법
CN103889040B (zh) 发射控制方法、装置及系统
CN112450891B (zh) 生理参数的采集方法和装置与生理参数的处理方法和装置
WO2021213337A1 (zh) 可穿戴电子设备的使用监测方法、介质及其电子设备
CN113827185A (zh) 穿戴设备佩戴松紧程度的检测方法、装置及穿戴设备
WO2021052139A1 (zh) 手势输入方法及电子设备
TWI645834B (zh) 用於機會性測量及處理使用者的情境的裝置、方法及非暫態計算裝置可讀取媒體
WO2023185122A1 (zh) 一种检测心律的方法和电子设备
WO2023273834A1 (zh) 一种检测方法及相关设备
EP4070719A1 (en) Electronic device, method for controlling same to perform ppg detection, and medium
WO2022135145A1 (zh) 测量生理参数的方法及电子设备
US20230190170A1 (en) Premature beat detection method, electronic device and medium
CN108451529A (zh) 电子设备和身体成分分析方法
WO2021169443A1 (zh) 一种数据采集方法、终端设备及存储介质
KR20200061864A (ko) 생체 센서 모듈 및 이를 포함하는 전자 장치
WO2018095044A1 (zh) 音频输入输出方法和终端设备
US20230074565A1 (en) Electronic device and method for detecting tremor in electronic device
US11806169B2 (en) Electronic device for integrating and presenting physiological data between multiple devices and method thereof
CN110074791B (zh) 健康提示方法、装置、可穿戴设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909142

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021909142

Country of ref document: EP

Effective date: 20230606

WWE Wipo information: entry into national phase

Ref document number: 18258710

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE