WO2021031979A1 - 生理参数的采集方法和装置与生理参数的处理方法和装置 - Google Patents

生理参数的采集方法和装置与生理参数的处理方法和装置 Download PDF

Info

Publication number
WO2021031979A1
WO2021031979A1 PCT/CN2020/108947 CN2020108947W WO2021031979A1 WO 2021031979 A1 WO2021031979 A1 WO 2021031979A1 CN 2020108947 W CN2020108947 W CN 2020108947W WO 2021031979 A1 WO2021031979 A1 WO 2021031979A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
pulse wave
electrode
user
sensor
Prior art date
Application number
PCT/CN2020/108947
Other languages
English (en)
French (fr)
Inventor
李宏宝
张�杰
任慧超
吴宙真
黄曦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021031979A1 publication Critical patent/WO2021031979A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/02Stethoscopes
    • A61B7/04Electric stethoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor

Definitions

  • This application relates to the field of terminal technology, and more specifically, to a method and device for collecting physiological parameters and a method and device for processing physiological parameters in the field of terminal technology.
  • Coronary atherosclerotic heart disease also known as “coronary heart disease”
  • coronary heart disease is a more common type of cardiovascular disease. It is the atherosclerotic lesions in the coronary arteries that supply nutrients to the heart, causing vascular lumen stenosis or Obstruction, heart disease caused by myocardial ischemia, hypoxia or necrosis.
  • cardiovascular system may have been potentially dangerous, but the patient is not aware of it or unable to detect it in time. When the disease occurs suddenly, it will cause serious consequences that it is too late to treat.
  • the method and device for collecting physiological parameters and the method and device for processing physiological parameters provided in the present application can predict the risk of a user suffering from coronary heart disease and help avoid accidents caused by the onset of coronary heart disease.
  • this application provides a method for collecting physiological parameters, the method including:
  • the collecting the user's heart sound signal, electrocardiogram signal and fingertip pulse wave signal includes: collecting the heart sound signal through a heart sound sensor; collecting the electrocardiographic signal through the electrocardiographic sensor; and The fingertip pulse wave signal is collected by the fingertip pulse wave sensor.
  • Using the collection method provided by the embodiments of the present application can simultaneously acquire multiple physiological parameters of the user, and improve the efficiency of physiological parameter collection. At the same time, it is beneficial for the processing device to predict the risk of the user suffering from coronary heart disease based on these three signals.
  • this application provides a method for processing physiological parameters, the method including:
  • the fingertip pulse wave signal collected by the fingertip can reflect the information related to the terminal nerve, and its waveform is more complete. Therefore, the accuracy of the disease risk obtained based on the above three physiological parameters is higher.
  • the determining the risk information of the user according to the heart sound signal, the electrocardiogram signal and the fingertip pulse wave signal includes: determining the risk information of the user according to the heart sound signal The sensitive feature of the heart sound signal and the signal quality of the heart sound signal; the sensitive feature of the ECG signal and the signal quality of the ECG signal are determined according to the ECG signal; the signal quality of the ECG signal is determined according to the fingertip pulse wave signal The sensitive feature of the fingertip pulse wave signal and the signal quality of the fingertip pulse wave signal; according to the sensitive feature of the heart sound signal, the signal quality of the heart sound signal, the sensitive feature of the ECG signal, the The signal quality of the electrocardiogram signal, the sensitive feature of the fingertip pulse wave signal and the signal quality of the fingertip pulse wave signal determine the risk information of the user.
  • the sensitive feature of the heart sound signal may be based on the sensitive feature of the heart sound signal, the preset first mapping relationship, the signal quality of the heart sound signal, the contribution of the heart sound signal to the prediction of coronary heart disease, the sensitive feature of the ECG signal, the prediction
  • the second mapping relationship, the signal quality of the ECG signal, the contribution of the ECG signal to the prediction of coronary heart disease, the sensitive feature of the fingertip pulse wave signal, the preset third mapping relationship, the The signal quality of the fingertip pulse wave signal and the contribution of the fingertip pulse wave signal to the prediction of coronary heart disease determine the risk information of the user.
  • the first mapping relationship is used to represent the corresponding relationship between the sensitive features of the heart sound signal and the risk of coronary heart disease
  • the second mapping relationship is used to represent the sensitive features of the ECG signal and the coronary heart disease.
  • the third mapping relationship is used to represent the corresponding relationship between the sensitive feature of the fingertip pulse wave signal and the risk of coronary heart disease.
  • the first mapping relationship can be expressed by the following formula:
  • S pcg represents the heart sound signal
  • S power represents the sum of the spectral energy of the high frequency part of the heart sound
  • g represents a normalized function, such as a sigmoid function.
  • the second mapping relationship can be expressed by the following formula:
  • S ecg represents the ECG signal
  • T PTT represents the pulse wave transit time
  • g represents a normalized function, such as a sigmoid function.
  • the third mapping relationship can be expressed by the following formula:
  • Sppg represents the fingertip pulse wave signal
  • H height represents the height
  • T 2 represents the time between the main wave and the peak of the dicrotic wave
  • H 1 represents the dicrotic wave amplitude
  • H 2 represents the main wave amplitude
  • g represents the return A function, such as the sigmoid function.
  • each of the aforementioned signals can be preset in advance. Specifically, the correct rate of the sample user suffering from coronary heart disease can be predicted according to each signal (ie, the electrocardiogram signal, the heart sound signal or the fingertip pulse wave signal), and the contribution of each signal to the prediction of coronary heart disease can be determined.
  • each signal ie, the electrocardiogram signal, the heart sound signal or the fingertip pulse wave signal
  • the sensitive features of the heart sound signal include high-frequency spectrum energy; the sensitive features of the fingertip pulse wave signal include normalized peak time, peak ratio, sclerosis index, and reflection index. At least one item; the sensitive feature of the ECG signal includes pulse wave transit time.
  • the acquiring the user's heart sound signal, electrocardiogram signal, and fingertip pulse wave signal includes: receiving the heart sound signal, the electrocardiogram signal, and the fingertip pulse wave signal sent by a collecting device Wave signal.
  • the obtaining the user's heart sound signal, electrocardiogram signal, and fingertip pulse wave signal includes: collecting the heart sound signal through a heart sound sensor; collecting the electrocardiogram signal through the electrocardiographic sensor; and The fingertip pulse wave signal is collected by the fingertip pulse wave sensor.
  • the outputting the risk information includes: displaying the risk information to the user through a display interface of a display.
  • Using the processing method provided by the embodiment of the present application can intuitively present the risk of coronary heart disease to the user, and facilitate the user to understand the health status of his body.
  • the method further includes: displaying the heart sound signal, the electrocardiogram signal, and the fingertip pulse wave signal to the user through the display interface.
  • Using the processing method provided by the embodiment of the present application can intuitively present the collected physiological parameters to the user, which is convenient for the user to understand and analyze the health status of his body.
  • the method further includes: when the risk information is greater than or equal to a preset threshold, displaying prompt information to the user through the display interface, the prompt information including a reminder Information about the user's medical treatment and/or information reminding the user of precautions.
  • the display interface includes an instruction area
  • the instruction area includes at least one of an emergency instruction area, an emergency contact instruction area, a disease registration instruction area, and a medical treatment instruction area
  • the first aid instruction area is used to obtain the first aid instruction of the user
  • the emergency contact instruction area is used to obtain the emergency contact instruction of the user
  • the hospital disease registration instruction area is used to obtain the registered disease of the user.
  • the medical treatment instruction area is used to obtain the user's medical registration instruction
  • the method further includes: obtaining a target instruction sent by the user through the instruction area, the target instruction including the first aid instruction, the At least one of the instruction to contact an emergency contact and the instruction to see a doctor; perform an operation corresponding to the target instruction, the first aid instruction corresponds to dialing 110, and the instruction to contact an emergency contact corresponds to dialing an emergency contact number
  • the disease registration instruction corresponds to the registration of the condition with the hospital, and the medical registration instruction corresponds to online medical registration.
  • the embodiment of this application is not limited to presenting the interface provided in the above possible implementations through the display interface, but can also present other prompt information and operations related to the patient, disease, medical treatment, etc. Not limited.
  • this application provides a method for processing physiological parameters, the method including:
  • the acquisition device acquires the user's heart sound signal, ECG signal and fingertip pulse wave signal;
  • the acquisition device sends the heart sound signal, the electrocardiogram signal, and the fingertip pulse wave signal to a processing device;
  • the processing device determines the risk information of the user according to the heart sound signal, the electrocardiogram signal, and the fingertip pulse wave signal, and the risk information is used to indicate the risk of the user suffering from coronary heart disease;
  • the processing device outputs the risk information.
  • the collection device can simultaneously obtain multiple physiological parameters of the user, and the collection efficiency is high.
  • the fingertip pulse wave signal collected through the fingertips can reflect the information related to the terminal nerves, and its waveform is more complete. Therefore, the processing device predicts the user’s coronary heart disease based on these three signals. The risk of heart disease is more accurate.
  • the processing device includes a display
  • the processing device outputting the risk information includes: displaying the risk information to the user through a display interface of the display.
  • Using the processing method provided by the embodiment of the present application can intuitively present the risk of coronary heart disease to the user, and facilitate the user to understand the health status of his body.
  • the method further includes: displaying the heart sound signal, the electrocardiogram signal, and the fingertip pulse wave signal to the user through the display interface.
  • Using the processing method provided by the embodiment of the present application can intuitively present the collected physiological parameters to the user, which is convenient for the user to understand and analyze the health status of his body.
  • the method further includes: when the risk information is greater than or equal to a preset threshold, displaying prompt information to the user through the display interface, the prompt information including a reminder Information about the user's medical treatment and/or information reminding the user of precautions.
  • the display interface includes an instruction area
  • the instruction area includes at least one of an emergency instruction area, an emergency contact instruction area, a disease registration instruction area, and a medical treatment instruction area
  • the first aid instruction area is used to obtain the first aid instruction of the user
  • the emergency contact instruction area is used to obtain the emergency contact instruction of the user
  • the hospital disease registration instruction area is used to obtain the registered disease of the user.
  • the medical treatment instruction area is used to obtain the user's medical registration instruction
  • the method further includes: obtaining a target instruction sent by the user through the instruction area, the target instruction including the first aid instruction, the At least one of the instruction to contact an emergency contact and the instruction to see a doctor; perform an operation corresponding to the target instruction, the first aid instruction corresponds to dialing 110, and the instruction to contact an emergency contact corresponds to dialing an emergency contact number
  • the disease registration instruction corresponds to the registration of the condition with the hospital, and the medical registration instruction corresponds to online medical registration.
  • the embodiment of this application is not limited to presenting the interface provided in the above possible implementations through the display interface, but can also present other prompt information and operations related to the patient, disease, medical treatment, etc. Not limited.
  • the present application provides a device for collecting physiological parameters, the device comprising: a heart sound sensor, an electrocardiogram sensor, a fingertip pulse wave sensor and an output terminal;
  • the heart sound sensor is used to collect a user's heart sound signal and transmit it to the processor;
  • the ECG sensor is used to collect the ECG signal of the user and transmit it to the processor;
  • the fingertip pulse wave sensor is used to collect the fingertip pulse wave signal of the user and transmit it to the processor;
  • the output terminal is used to output the risk information.
  • the collection device provided by the embodiment of the present application can simultaneously obtain multiple physiological parameters of the user, and the collection efficiency is high.
  • the fingertip pulse wave signal collected through the fingertips can reflect the information related to the terminal nerves, and its waveform is more complete. Therefore, the accuracy of predicting the risk of coronary heart disease for users is higher. .
  • the ECG sensor includes a first electrode and a second electrode, and the first electrode and the second electrode have opposite polarities.
  • the device further includes a base, the base includes a first surface and a second surface, the first surface and the second surface are disposed opposite to each other, wherein the first surface The surface is the side in contact with the skin at the detection area of the user’s coronary artery, the second surface is the side in contact with the user’s finger; the heart sound sensor and the first electrode are arranged on the first On the surface; the fingertip pulse wave sensor and the second electrode are arranged on the second surface; the output end is arranged in the cavity between the first surface and the second surface, or On the first surface, or on the second surface.
  • the surface shape of the base may be a circle, a quadrilateral, a polygon, or other irregular shapes, which is not limited in the embodiment of the present application.
  • each sensor may be a circle, a quadrilateral, a polygon, or other irregular shapes, which is not limited in the embodiment of the present application.
  • multiple sensors on each surface of the base may be independently arranged or nested, which is not limited in the embodiment of the present application.
  • multiple sensors are nested, which can reduce the size of the base, can collect multiple signals at the same time, and can improve collection efficiency and convenience.
  • the heart sound sensor and the first electrode are nested together and arranged on the first surface; the fingertip pulse wave sensor and the second electrode are nested in Together and set on the second surface.
  • the fingertip pulse wave sensor and the second electrode may be closely nested, or there may be a gap; the heart sound sensor and the first electrode may be closely nested, or there may be a gap, the implementation of this application The example does not limit this.
  • the second surface includes a groove matching the shape of a finger, and the fingertip pulse wave sensor and the second electrode are nestedly arranged in the groove bottom area of the groove.
  • the fingertip pulse wave sensor and the second electrode are nested and arranged in the groove bottom area of the groove matching the shape of the finger, which can reduce light leakage and improve the integrity of fingertip pulse wave signal collection. Thereby, the accuracy of predicting the risk of illness can be improved.
  • the device further includes a base and a handle
  • the base includes a first surface and a second surface, the first surface and the second surface are disposed opposite to each other, and the grip
  • the handle is arranged on the second surface, wherein the first surface is the side contacting the skin at the coronary artery detection area of the user, and the second surface is the side contacting the user's fingers;
  • the heart sound sensor and the first electrode are arranged on the first surface;
  • the fingertip pulse wave sensor and the second electrode are arranged on the handle of the grip;
  • the output terminal is arranged on the In the cavity between the first surface and the second surface, or on the first surface, or on the second surface, or on the handle body.
  • the collection device provided by the embodiment of the present application is equipped with a handle on the base, which makes it more convenient for the user to hold the device, and only needs to hold the device to collect physiological parameters, which is more convenient to use.
  • the surface shape of the base may be a circle, a quadrilateral, a polygon, or other irregular shapes, which is not limited in the embodiment of the present application.
  • each sensor may be a circle, a quadrilateral, a polygon, or other irregular shapes, which is not limited in the embodiment of the present application.
  • multiple sensors on each surface of the base may be independently arranged or nested, which is not limited in the embodiment of the present application.
  • multiple sensors are nested, which can reduce the size of the base, can collect multiple signals at the same time, and can improve collection efficiency and convenience.
  • the heart sound sensor and the first electrode are nested together and arranged on the first surface; the fingertip pulse wave sensor and the second electrode are nested in Together and set on the handle body.
  • the second surface includes a groove matching the shape of a finger, and the fingertip pulse wave sensor and the second electrode are nestedly arranged in the groove bottom area of the groove.
  • the fingertip pulse wave sensor and the second electrode are nested and arranged in the groove bottom area of the groove matching the shape of the finger, which can reduce light leakage and improve the integrity of fingertip pulse wave signal collection. Thereby, the accuracy of predicting the risk of illness can be improved.
  • the surface shape of the first electrode is a ring
  • the surface shape of the heart sound sensor is a circle
  • the heart sound sensor is arranged in a central area formed by the ring.
  • the heart sound sensor and the first electrode are arranged at the center of the first surface, which can increase the surface area in contact with the user's skin and improve the waveform of the collected heart sound signals to be more complete.
  • the ECG sensor includes a first electrode, a second electrode, and a third electrode, the first electrode and the second electrode have opposite polarities, and the third electrode has a preset constant potential .
  • the ECG sensor adopts a three-electrode measuring circuit, which can improve the integrity and accuracy of the collected ECG signal.
  • the device further includes a base, the base includes a first surface and a second surface, the first surface and the second surface are disposed opposite to each other, wherein the first surface The surface is the side in contact with the skin at the detection area of the user’s coronary artery, the second surface is the side in contact with the user’s finger; the heart sound sensor and the first electrode are arranged on the first On the surface; the fingertip pulse wave sensor and the second electrode are arranged on the second surface; the third electrode is arranged on the first surface or the second surface; the output terminal is arranged In the cavity between the first surface and the second surface, or on the first surface, or on the second surface.
  • the third electrode may be provided on the first surface.
  • the user only needs to perform the operation of the pressing device to collect physiological parameters, which is more convenient to use.
  • the third electrode is arranged on the first surface; the heart sound sensor, the first electrode, and the third electrode are nested together and arranged on the first surface. On a surface; the fingertip pulse wave sensor and the second electrode are nested together and arranged on the second surface.
  • multiple sensors are nested, which can reduce the size of the base, can collect multiple signals at the same time, and can improve collection efficiency and convenience.
  • the second surface includes a groove matching the shape of a finger, and the fingertip pulse wave sensor and the second electrode are nested and arranged in the groove bottom area of the groove.
  • the fingertip pulse wave sensor and the second electrode are nested and arranged in the groove bottom area of the groove matching the shape of the finger, thereby reducing light leakage and improving the integrity of fingertip pulse wave signal collection, thereby It can improve the accuracy of predicting the risk of illness.
  • the third electrode may be provided on the second surface.
  • the third electrode is arranged on the second surface; the heart sound sensor and the first electrode are nested together and arranged on the first surface; the The fingertip pulse wave sensor, the second electrode and the third electrode are nested together and arranged on the second surface.
  • multiple sensors are nested, which can reduce the size of the base, can collect multiple signals at the same time, and can improve collection efficiency and convenience.
  • the second surface includes a groove matching the shape of a finger, and the fingertip pulse wave sensor, the second electrode, and the third electrode are nested and arranged in the groove.
  • the fingertip pulse wave sensor, the second electrode and the third electrode are nested and arranged in the groove bottom area of the groove matching the shape of the finger, which can reduce light leakage and improve fingertip pulse wave signal collection Therefore, it can improve the accuracy of predicting the risk of disease.
  • the device further includes a base and a handle
  • the base includes a first surface and a second surface, the first surface and the second surface are disposed oppositely, wherein the The first surface is the surface in contact with the skin of the user's coronary artery detection area, and the second surface is the surface in contact with the user's finger;
  • the heart sound sensor and the first electrode are arranged at the The first surface;
  • the fingertip pulse wave sensor and the second electrode are arranged on the handle of the handle;
  • the third electrode is arranged on the first surface or the handle;
  • the output The end is arranged in the cavity between the first surface and the second surface, or on the first surface, or on the second surface, or on the handle body.
  • the acquisition device provided by the embodiment of the present application with a handle on the base, it is more convenient for the user to hold the device, and the physiological parameters can be collected only by performing the operation of the holding device, which is more convenient to use.
  • the third electrode may be provided on the first surface.
  • the third electrode is arranged on the first surface; the heart sound sensor, the first electrode, and the third electrode are nested together and arranged on the first surface. On a surface; the fingertip pulse wave sensor and the second electrode are nested together and arranged on the handle.
  • multiple sensors are nested, which can reduce the size of the base, can collect multiple signals at the same time, and can improve collection efficiency and convenience.
  • the second surface includes a groove matching the shape of a finger, and the fingertip pulse wave sensor and the second electrode are nestedly arranged in the groove bottom area of the groove.
  • the fingertip pulse wave sensor and the second electrode are nested and arranged in the groove bottom area of the groove matching the shape of the finger, which can reduce light leakage and improve the integrity of fingertip pulse wave signal collection. Thereby, the accuracy of predicting the risk of illness can be improved.
  • the surface shapes of the first electrode and the third electrode are both semicircular rings
  • the surface shape of the heart sound sensor is circular
  • the heart sound sensor is arranged in two halves. The ring surrounds the formed area.
  • the heart sound sensor, the first electrode and the third electrode are arranged at the center of the first surface, which can increase the surface area in contact with the user's skin and improve the waveform of the collected heart sound signals to be more complete.
  • the third electrode may be provided on the handle body.
  • the third electrode is arranged on the handle; the heart sound sensor and the first electrode are nested together and arranged on the first surface; the fingertip The pulse wave sensor, the second electrode and the third electrode are nested together and arranged on the handle.
  • the handle body includes a groove that matches the shape of a finger, and the fingertip pulse wave sensor, the second electrode and the third electrode are nested and arranged in the groove. Bottom area of the tank.
  • the surface shape of the first electrode is a ring
  • the surface shape of the heart sound sensor is a circle
  • the heart sound sensor is arranged in an area surrounded by the ring.
  • the present application provides a device for processing physiological parameters.
  • the device includes a memory, a processor, a transceiver, and instructions stored in the memory and running on the processor, wherein the memory , The processor and the transceiver communicate with each other through an internal connection path, and the processor executes the instruction to enable the device to implement the method described in any possible implementation manner of the second aspect.
  • the processing device may be a terminal device.
  • the present application provides a device that includes the physiological parameter collection device described in any possible implementation manner of the fourth aspect, and the physiological parameter described in any possible implementation manner of the fifth aspect.
  • Parameter processing device In a sixth aspect, the present application provides a device that includes the physiological parameter collection device described in any possible implementation manner of the fourth aspect, and the physiological parameter described in any possible implementation manner of the fifth aspect. Parameter processing device.
  • the present application provides another device, which includes a sensor module, a processor, a memory, and a display, wherein the sensor module includes an electrocardiogram sensor, a heart sound sensor, and a fingertip pulse wave sensor processor;
  • the sensor module is used to acquire a signal and store the signal in the memory, where the signal includes an electrocardiogram signal, a heart sound signal, and a fingertip pulse wave signal; the processor is used to In the processing method described in any possible implementation manner, signal processing is performed on the signal stored in the memory, and the processing result is output through the display.
  • the processor is configured to display the risk information to the user through a display interface of the display.
  • the processor is further configured to: display the heart sound signal, the electrocardiogram signal, and the fingertip pulse wave signal to the user through the display interface.
  • the processor is further configured to: when the risk information is greater than or equal to a preset threshold, display prompt information to the user through the display interface, the prompt information including a reminder Information about the user's medical treatment and/or information reminding the user of precautions.
  • the display interface includes an instruction area
  • the instruction area includes at least one of an emergency instruction area, an emergency contact instruction area, a disease registration instruction area, and a medical treatment instruction area
  • the first aid instruction area is used to obtain the first aid instruction of the user
  • the emergency contact instruction area is used to obtain the emergency contact instruction of the user
  • the hospital disease registration instruction area is used to obtain the registered disease of the user.
  • the medical treatment instruction area is used to obtain a medical registration instruction of the user, and the processor is further used to obtain a target instruction sent by the user through the instruction area, the target instruction including the first aid instruction, At least one of the instruction to contact an emergency contact and the instruction to see a doctor; perform an operation corresponding to the target instruction, the first aid instruction corresponds to dialing 110, and the instruction to contact an emergency contact corresponds to dialing an emergency contact
  • the disease registration instruction corresponds to the registration of the condition with the hospital
  • the medical registration instruction corresponds to online medical registration.
  • a computer-readable medium for storing a computer program, wherein the computer program includes a method for implementing the method described in any one of the first to third aspects above Instructions.
  • a ninth aspect a computer program product, the computer program product contains instructions, characterized in that, when the instructions are run on a computer, the computer is allowed to implement any one of the first to third aspects above The method described in the way.
  • a chip device includes: an input interface, an output interface, at least one processor, and a memory, and the input interface, the output interface, the processor, and the memory communicate with each other through an internal connection path ,
  • the processor is configured to execute the code in the memory, and when the processor executes the code, the chip device implements the method described in any one of the foregoing first to third aspects method.
  • Figure 1 is a time-frequency diagram of a heart sound signal provided by an embodiment of the present application.
  • Figure 2 is a time-frequency diagram of fingertip pulse wave signals provided by an embodiment of the present application.
  • Fig. 3 is a waveform comparison diagram of fingertip pulse wave signals and wrist pulse wave signals provided by an embodiment of the present application
  • FIG. 4 is a time-frequency comparison diagram of an ECG signal and a heart sound signal provided by an embodiment of the present application
  • FIG. 5 is a time-frequency comparison diagram of an electrocardiogram signal and a fingertip pulse wave signal provided by an embodiment of the present application
  • Fig. 6 is a schematic block diagram of a physiological parameter collection device provided by an embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of a physiological parameter collection device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another physiological parameter collection device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another physiological parameter collection device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another physiological parameter collection device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another physiological parameter collection device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another physiological parameter collection device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another physiological parameter collection device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another physiological parameter collection device provided by an embodiment of the present application.
  • 15 is a schematic structural diagram of another physiological parameter collection device provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of another physiological parameter collection device provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of another physiological parameter collection device provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of another physiological parameter acquisition device provided by an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of another physiological parameter collection device provided by an embodiment of the present application.
  • 20 is a schematic structural diagram of another physiological parameter acquisition device provided by an embodiment of the present application.
  • FIG. 21 is a schematic structural diagram of another physiological parameter collection device provided by an embodiment of the present application.
  • FIG. 22 is a schematic structural diagram of another physiological parameter collection device provided by an embodiment of the present application.
  • FIG. 23 is a schematic structural diagram of another physiological parameter collection device provided by an embodiment of the present application.
  • FIG. 24 is a schematic structural diagram of another physiological parameter collection device provided by an embodiment of the present application.
  • FIG. 25 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 26 is a schematic flowchart of a physiological parameter processing method provided by an embodiment of the present application.
  • FIG. 27 is a schematic flowchart of a physiological parameter processing method provided by an embodiment of the present application.
  • FIG. 28 is a schematic diagram of a display interface provided by an embodiment of the present application.
  • FIG. 29 is a schematic diagram of another display interface provided by an embodiment of the present application.
  • FIG. 30 is a schematic diagram of another display interface provided by an embodiment of the present application.
  • FIG. 31 is a schematic diagram of another display interface provided by an embodiment of the present application.
  • FIG. 32 is a schematic diagram of another display interface provided by an embodiment of the present application.
  • FIG. 33 is a schematic diagram of another display interface provided by an embodiment of the present application.
  • FIG. 34 is a schematic diagram of another display interface provided by an embodiment of the present application.
  • 35 is a schematic diagram of another display interface provided by an embodiment of the present application.
  • FIG. 36 is a schematic flowchart of another physiological parameter processing method provided by an embodiment of the present application.
  • FIG. 37 is a schematic diagram of another display interface provided by an embodiment of the present application.
  • FIG. 38 is a schematic diagram of another display interface provided by an embodiment of the present application.
  • FIG. 39 is a schematic diagram of another display interface provided by an embodiment of the present application.
  • FIG. 40 is a schematic diagram of another display interface provided by an embodiment of the present application.
  • FIG. 41 is a schematic block diagram of a physiological parameter processing device provided by an embodiment of the present application.
  • FIG. 42 is a schematic block diagram of a physiological parameter collection device provided by an embodiment of the present application.
  • Figure 1 shows the time-frequency diagram of the heart sound signal, where the S1 phase is the systolic phase of the heart, and the S2 phase is the diastolic phase of the heart. It can be seen from Figure 1 that in the S2 phase of coronary heart disease patients, the heart sounds There will be high frequency part of the spectrum energy and appear on the signal. Therefore, the high frequency spectrum energy sum can be used as a sensitive feature for judging the user's arteriosclerosis and coronary heart disease risk.
  • P Y*conj(Y)/N
  • Y TTF(y,N)
  • S power is the sum of high-frequency spectrum energy
  • P is the power spectral density, that is, the energy at different frequencies is measured
  • sum() represents Sum operation
  • (M:end) means starting from the Mth one and adding to the last one
  • conj() means complex conjugate operation
  • Y means the result of Fourier transform
  • y is the heart sound signal
  • N Fourier
  • FFT() represents the Fourier transform operation.
  • Figure 2 shows the time-frequency diagram of the fingertip pulse wave signal, where T 1 is the time from the trough to the peak of the main wave, T 2 is the time from the peak of the main wave to the peak of the dicrotic wave , and T 3 is the pulse wave H 1 is the amplitude of the dicrotic wave, and H 2 is the amplitude of the main wave.
  • the indicators provided in the following formulas (2) to (5) can be used as sensitive features for judging the risk of atherosclerosis and coronary heart disease of users:
  • H height is the height of the user.
  • Figure 3 shows the waveform comparison of the fingertip pulse wave signal and the wrist pulse wave signal. It can be seen from Figure 3 that since the fingertip contains peripheral nerves, the waveform integrity of the fingertip pulse wave signal collected by the fingertip is excellent.
  • the waveform of the wrist pulse wave signal for example, the dicrotic wave in the waveform diagram of the wrist pulse wave signal is more obvious.
  • Fig. 4 shows a time-frequency comparison diagram of the ECG signal and the heart sound signal, where the first heart sound appears after the R wave of the ECG, so the ECG signal can assist in the segmentation of the heart sound signal.
  • Fig. 5 shows the time-frequency comparison diagram of the ECG signal and the fingertip pulse wave signal, wherein the pulse wave transit time is the time for the pulse wave to travel from the heart to the recording site, which can reflect the health of the heart. Therefore, the pulse wave transit time can be used as a sensitive feature for judging the risk of arteriosclerosis and coronary heart disease of the user.
  • Pulse wave transit time can be obtained by formula (6):
  • T PTT T PPG- T ECG formula (6)
  • T ECG refers to the time when the electrocardiogram is generated in a heartbeat cycle
  • T PPG refers to the time when the pulse wave is transmitted to the wrist.
  • the above only lists the sensitivity characteristics of several commonly used heart sound signals, electrocardiogram signals and fingertip pulse wave signals, but the sensitivity characteristics of these three signals are not limited to the above-mentioned ones, as long as the sensitivity mentioned above is satisfied
  • the indicators of the relationship between the characteristics and the risk of atherosclerosis or coronary heart disease of the user can be used as sensitive characteristics.
  • Fig. 6 shows a schematic block diagram of a physiological parameter collection device 100 provided by an embodiment of the present application.
  • the acquisition device 100 includes a heart sound sensor 110, an electrocardiogram sensor 120, a fingertip pulse wave sensor 130, and an output terminal 140.
  • the electrocardiogram sensor 120 includes a first electrode 121 and a second electrode 122.
  • the first electrode The polarities of 121 and the second electrode 122 are opposite.
  • the heart sound sensor 110 is used to collect the user's heart sound signal
  • the ECG sensor 120 is used to collect the user's ECG signal
  • the fingertip pulse wave sensor 130 is used to collect the user's fingertip pulse wave signal
  • the output terminal 140 is used to output the heart sound Signal, the electrocardiogram signal and the fingertip pulse wave signal.
  • the acquisition device 100 may further include a base 150.
  • the base 150 includes a first surface 151 and a second surface 152.
  • the first surface 151 is the skin at the detection area of the coronary artery of the user.
  • the contact surface, the second surface 152 is the surface opposite to the first surface 151 (that is, the second surface 152 is the surface contacting the user's finger).
  • the coronary artery detection area is an area for detecting coronary arteries, such as the fourth rib on the left side of the user.
  • the first surface 151 in the collection device provided by the embodiment of the present application can also be in contact with the skin at the user's carotid artery detection area, that is, the heart sound sensor can also collect heart sound signals at the user's carotid artery.
  • the heart sound signal at the carotid artery can be used to detect diseases related to the carotid artery.
  • the surface shape of the base 150 in the embodiment of the present application may be various.
  • FIG. 7 only schematically shows that the surface shape of the base 150 is a circle, but the embodiment of the present application is not limited thereto.
  • the surface shape of the base 150 may also be quadrangular, polygonal, or other irregular shapes.
  • the heart sound sensor 110, the electrocardiogram sensor 120, and the fingertip pulse wave sensor 130 can be arranged on the base 150 in a variety of ways, which is not limited in the embodiment of the present application.
  • the heart sound sensor 110 and the first electrode 121 may be arranged on the first surface 151, as shown in FIG. 9; the fingertip pulse wave sensor 130 and the second electrode 122 may be arranged on the second surface 152 , As shown in Figure 8.
  • a plurality of sensors on each surface of the base 150 may be independently arranged or nested, which is not limited in the embodiment of the present application.
  • the following will take the second surface 152 as an example to introduce the arrangement of the sensors on the second surface 152.
  • the fingertip pulse wave sensor 130 and the second electrode 122 on the second surface 152 can be arranged independently, as shown in FIG. 8; or, the fingertip pulse wave sensor 130 and the second electrode 122 on the second surface 152 It can be nested.
  • the surface shape of the second electrode 122 is a circular ring, and the fingertip pulse wave sensor 130 is provided in the central area of the circular ring.
  • the surface shape of the fingertip pulse wave sensor 130 may be a ring, and the second electrode 122 is arranged in the central area of the ring. This application does not limit the nesting relationship between the two sensors.
  • the fingertip pulse wave sensor 130 and the second electrode 122 when the fingertip pulse wave sensor 130 and the second electrode 122 are nested, the fingertip pulse wave sensor 130 and the second electrode 122 may be closely nested, or there may be a gap. This embodiment of the present application will not do this. limited.
  • the surface shapes of the fingertip pulse wave sensor 130 and the second electrode 122 can be various.
  • FIG. 8 only schematically shows that the surface shapes of the fingertip pulse wave sensor 130 and the second electrode 122 are circular.
  • 10 only schematically shows that the surface shape of the second electrode 122 is a ring, and the surface shape of the fingertip pulse wave sensor 130 is a circle, but the embodiment of the present application is not limited thereto.
  • the surface shapes of the fingertip pulse wave sensor 130 and the second electrode 122 in FIG. 8 may also be quadrangular, polygonal, or other irregular shapes.
  • the surface shape of the second electrode 122 in FIG. 10 may also be a square ring, the surface shape of the fingertip pulse wave sensor 130 may also be square (closely nested); the surface shape of the second electrode 122 may also be a circle
  • the ring, fingertip pulse wave sensor 130 has a square surface (with gaps) or the like.
  • the fingertip pulse wave sensor 130 and the second electrode 122 can be arranged at multiple positions on the second surface 152.
  • Figures 8 and 10 only schematically show two possible arrangement positions, but this application The embodiment is not limited to this.
  • the second surface 152 may include a first groove 161 and a second groove 162 that match the shape of the finger, wherein the finger
  • the sharp pulse wave sensor 130 is arranged in the groove bottom area of the first groove 161
  • the second electrode 122 is arranged in the groove bottom area of the second groove 162, as shown in FIG. 11 (the sensor on the first surface is not shown).
  • the second surface 152 may include a third groove 163 matching the shape of the finger, wherein the fingertip pulse wave sensor 130 and the second surface 152
  • the two electrodes 122 are nested and arranged in the bottom area of the third groove 163, as shown in FIG. 12 (the sensor on the first surface is not shown).
  • the arrangement of the heart sound sensor 110 and the first electrode 151 on the first surface 151 may be as shown in FIG. 9, FIG. 13 and FIG. 14. In order to avoid repetition, it will not be repeated here.
  • FIG. 15 schematically shows a structural diagram of a physiological parameter collection device 100 provided by an embodiment of the present application.
  • the base 150 includes a first surface 151 and a second surface 152.
  • the second surface 152 includes a third groove 163 that matches the finger.
  • the fingertip pulse wave sensor 130 and the second electrode 122 are nested in the bottom area of the third groove 163, and the heart sound sensor 110 and the first electrode 121 are embedded
  • the sleeve is provided on the first surface 151.
  • the fingertip pulse wave sensor 130 and the second electrode 122 are arranged on the second surface 152 near the central area, and the heart sound sensor 110 and the first electrode 121 are arranged on the first surface 151 near the central area, which is beneficial to avoid Insufficient contact between the base and the user's skin results in large noise or incomplete waveforms in the collected signals.
  • the ECG sensor 120 in the present application may adopt a two-electrode measuring circuit or a three-electrode measuring circuit.
  • the two-electrode measurement circuit includes a first electrode 121 (i.e., working electrode) and a second electrode 122 (i.e., counter electrode). The polarities of the first electrode 121 and the second electrode 122 are opposite;
  • the three-electrode measurement circuit includes the first electrode 121 (i.e. The working electrode), the second electrode 122 (ie the counter electrode) and the third electrode 123 (ie the reference electrode), the polarities of the first electrode 121 and the second electrode 122 are opposite, and the third electrode 123 has a preset constant potential .
  • the ECG sensor 120 adopts a three-electrode measuring circuit
  • the ECG signal is obtained through the potential difference between the first electrode 121 and the second electrode 122
  • the third electrode 123 has a preset constant point, which is the first
  • the one electrode 121 and the second electrode 122 provide a reference potential, which can reduce noise generated during the measurement process, thereby improving the common mode rejection ratio.
  • the ECG sensor 120 adopts a three-electrode measuring circuit
  • the heart sound sensor 110 and the first electrode 121 can be arranged on the first surface 151
  • the fingertip pulse wave sensor 130 and the second electrode 122 can be arranged On the second surface 152
  • the third electrode 123 may be provided on the first surface 151 or the second surface 152.
  • different sensors on each surface of the base 150 may be independent of each other, or may be nested together, which is not limited in the embodiment of the present application.
  • the arrangement of the sensors on the second surface 152 will be described by taking the third electrode 123 arranged on the second surface 152 as an example.
  • the fingertip pulse wave sensor 130, the second electrode 122, and the third electrode 123 on the second surface 152 can be arranged independently, as shown in FIG. 16; or, the fingertip pulse wave sensor 130 on the second surface 152
  • the second electrode 122 and the third electrode 123 can be nested and arranged.
  • the surface shapes of the second electrode 122 and the third electrode 123 are both semicircular rings, and the fingertip pulse wave sensor 130 is arranged in two halves. The ring surrounds the formed central area.
  • the fingertip pulse wave sensor 130, the second electrode 122, and the third electrode 123 are nested, it can also be that the surface shapes of the second electrode 122 and the fingertip pulse wave sensor 130 are both semicircular rings, The three electrodes 123 are arranged in the central area surrounded by two semicircular rings, and the nesting relationship between the three sensors is not limited in this application.
  • the semicircular ring formed by the second electrode 122 and the third electrode 123 and the fingertip pulse wave sensor 130 can be tightly spaced. Nesting or gaps may exist, which is not limited in the embodiment of the present application.
  • the fingertip pulse wave sensor 130, the second electrode 122, and the third electrode 123 may have various surface shapes.
  • FIG. 16 only schematically shows the fingertip pulse wave sensor 130, the second electrode 122, and the third electrode.
  • the surface shape of the electrode 123 is circular.
  • FIG. 17 only schematically shows that the surface shapes of the second electrode 122 and the third electrode 123 are semicircular rings.
  • the surface shape of the fingertip pulse wave sensor 130 is circular, but the present application The embodiment is not limited to this.
  • the surface shapes of the fingertip pulse wave sensor 130, the second electrode 122, and the third electrode 123 in FIG. 16 may also be quadrangular, polygonal, or other irregular shapes.
  • the surface shape of the second electrode 122 and the third electrode 123 in FIG. 17 may also be a half square ring, and the surface shape of the fingertip pulse wave sensor 130 may also be square (closely nested); the second electrode 122 and The surface shape of the third electrode 123 may also be a semi-square ring, and the surface shape of the fingertip pulse wave sensor 130 may be a circle (with a gap) or the like.
  • the fingertip pulse wave sensor 130, the second electrode 122, and the third electrode 123 can be arranged at various positions on the second surface 152.
  • Figures 16 and 17 only schematically show two possible arrangements. Location, but the embodiment of the present application is not limited to this.
  • the second surface 152 may include a fourth groove, a fifth groove, and a sixth groove that match the shape of the finger, where ,
  • the fingertip pulse wave sensor 130 is arranged in the groove bottom area of the fourth groove, the second electrode 122 is arranged in the groove bottom area of the fifth groove, and the third electrode 123 is arranged in the groove bottom area of the sixth groove.
  • the way can refer to Figure 11.
  • the second surface 152 may include a seventh groove that matches the shape of the finger, the fingertip pulse wave sensor 130, and the second electrode 122 After being nested with the third electrode 123, they are arranged in the bottom area of the seventh groove.
  • the specific arrangement please refer to FIG. 12.
  • the third electrode 123 is arranged on the first surface 151
  • the arrangement of the heart sound sensor 110, the first electrode 151 and the third electrode 123 on the first surface 151 can be as shown in FIGS. 18 and 19, To avoid repetition, I won’t repeat them here.
  • the fingertip pulse wave sensor 130 and the second electrode 122 are arranged on the second surface 152 near the central area, and the heart sound sensor 110, the first electrode 121 and the third electrode 123 are arranged on the first surface 151 near the central area. , Which is beneficial to avoid the insufficient contact between the base and the user's skin, resulting in large noise or incomplete waveforms of the collected signals.
  • the collection device 100 may further include a handle 170, as shown in FIG. 20, the handle 170 is disposed on the second surface 152 of the base 150.
  • the heart sound sensor 110, the electrocardiogram sensor 120, and the fingertip pulse wave sensor 130 can be arranged on the base 150 and the handle 170 in a variety of ways, which are not limited in the embodiment of the present application.
  • the ECG sensor 120 adopts a two-electrode measuring circuit
  • the heart sound sensor 110 and the first electrode 121 can be arranged on the first surface 151; the fingertip pulse wave sensor 130 and the first electrode 121
  • the two electrodes 122 may be provided on the handle 170.
  • the fingertip pulse wave sensor 130 and the second electrode 122 on the handle 170 can be independently arranged, as shown in FIG. 21 (the sensor on the base 150 is not shown); or, the fingertip on the handle 170
  • the pulse wave sensor 130 and the second electrode 122 can be nested, as shown in FIG. 22, wherein the surface shape of the second electrode 122 is a ring, and the fingertip pulse wave sensor 130 has a circular surface shape, and is arranged in the The central area of the ring.
  • the fingertip pulse wave sensor 130 and the second electrode 122 when the fingertip pulse wave sensor 130 and the second electrode 122 are nested, the fingertip pulse wave sensor 130 and the second electrode 122 may be closely nested, or there may be a gap. This embodiment of the present application will not do this. limited.
  • the surface shape of the fingertip pulse wave sensor 130 and the second electrode 122 in FIG. 21 may also be circular, polygonal, or other irregular shapes; the surface shape of the second electrode 122 in FIG. 22 may also be The surface shape of the fingertip pulse wave sensor 130 may also be a circle (closely nested); the surface shape of the second electrode 122 may also be a ring, and the surface shape of the fingertip pulse wave sensor 130 may be a square (exist Gap) and so on.
  • the fingertip pulse wave sensor 130 and the second electrode 122 can be arranged in multiple positions on the handle 170.
  • FIGS. 21 and 22 only schematically show two possible positions, but the embodiment of the present application Not limited to this.
  • the handle 170 may include an eighth groove 164 and a nine groove 165 that match the shape of the fingers, wherein the fingertip pulse wave
  • the sensor 130 is arranged in the groove bottom area of the eighth groove 164, and the second electrode 122 is arranged in the groove bottom area of the ninth groove 165, as shown in FIG. 23.
  • the handle 170 may include a tenth groove 166 matching the shape of the finger, wherein the fingertip pulse wave sensor 130 and the second electrode After being nested, 122 is arranged at the bottom area of the tenth groove 166, as shown in FIG. 24.
  • the arrangement of the heart sound sensor 110 and the first electrode 151 on the first surface 151 may be as shown in FIG. 9, FIG. 13 and FIG. 14. In order to avoid repetition, it will not be repeated here.
  • the ECG sensor 120 adopts a three-electrode measuring circuit
  • the heart sound sensor 110 and the first electrode 121 can be arranged on the first surface 151
  • the fingertip pulse wave sensor 130 and the second electrode 122 can be arranged
  • the third electrode 123 may be arranged on the first surface 151 or the handle 170.
  • the setting position of the output terminal 140 may be multiple, which is not limited in the embodiment of the present application.
  • the output terminal 140 may be arranged on the first surface 151, the second surface 152, the cavity formed between the first surface 151 and the second surface 152, the inside of the handle body of the handle 170, etc.
  • the embodiment of the present application There is no restriction on this.
  • the above-mentioned physiological parameter acquisition device can be used in conjunction with a physiological parameter processing device.
  • the processing device is used to receive the heart sound signal, electrocardiogram signal and fingertip pulse wave signal sent by the acquisition device, and is provided by this application.
  • the physiological parameter processing method processes the heart sound signal, the ECG signal, and the fingertip pulse wave signal to obtain the risk information of the user suffering from coronary heart disease, and the risk information is used to indicate According to the user’s risk of illness, the risk information is finally output to the user.
  • the collection device and the processing device may be independent devices, or the collection device and the processing device may be integrated as functional modules in one device, which is not limited in the embodiment of the present application.
  • the acquisition device and the processing device are two independent devices, and the processing device can receive the heart sound signal, the electrocardiogram signal and the fingertip pulse wave signal sent by the acquisition device through the communication network.
  • the above-mentioned communication network may be a local area network, or a wide area network switched through a relay device, or include a local area network and a wide area network.
  • the communication network may be a short-distance communication network such as a wifi hotspot network, a wifi P2P network, a Bluetooth network, a zigbee network, or a near field communication (NFC) network.
  • the communication network may be a 3rd-generation wireless telephone technology (3G) network, or the 4th generation mobile communication technology (4G). ) Network, 5th-generation mobile communication technology (5G) network, public land mobile network (PLMN) or the Internet, etc., which are not limited in the embodiment of the present application.
  • the output terminal 140 of the device 100 for collecting physiological parameters may be an antenna
  • the device for processing physiological parameters may be a device with calculation and processing functions, such as a terminal device, a wearable device, etc., as in this embodiment of the application. Not limited.
  • the terminal equipment in this application also referred to as user equipment (UE)
  • UE user equipment
  • Terminal devices can be mobile phones, tablets, wearable devices with wireless communication functions (such as smart watches), location trackers with positioning functions, computers with wireless transceiver functions, virtual reality (virtual reality) , VR) equipment, augmented reality (AR) equipment, wireless equipment in industrial control (industrial control), wireless equipment in self-driving (self-driving), wireless equipment in remote medical (remote medical), smart
  • wireless devices in the smart grid the wireless devices in the transportation safety, the wireless devices in the smart city, the wireless devices in the smart home, and so on.
  • FIG. 25 shows a schematic structural diagram of the mobile phone 200.
  • the mobile phone 200 may include a processor 210, an external memory interface 220, an internal memory 221, a USB interface 230, a charging management module 240, a power management module 241, a battery 242, antenna 1, antenna 2, mobile communication module 251, wireless communication module 252, Audio module 270, speaker 270A, receiver 270B, microphone 270C, earphone interface 270D, sensor module 280, buttons 290, motor 291, indicator 292, camera 293, display screen 294, SIM card interface 295 and so on.
  • a processor 210 an external memory interface 220, an internal memory 221, a USB interface 230, a charging management module 240, a power management module 241, a battery 242, antenna 1, antenna 2, mobile communication module 251, wireless communication module 252, Audio module 270, speaker 270A, receiver 270B, microphone 270C, earphone interface 270D, sensor module 280, buttons 290, motor 291, indicator 292, camera 293, display screen 294, SIM card interface 295 and so on.
  • the sensor module 280 may include a gyroscope sensor 280A, an acceleration sensor 280B, a proximity light sensor 280G, a fingerprint sensor 280H, a touch sensor 280K, and a hinge sensor 280M (Of course, the mobile phone 200 may also include other sensors, such as temperature sensors, pressure sensors, and distance sensors. Sensors, magnetic sensors, ambient light sensors, air pressure sensors, bone conduction sensors, etc., not shown in the figure).
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the mobile phone 200.
  • the mobile phone 200 may include more or fewer components than shown, or combine certain components, or disassemble certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the processor 210 may include one or more processing units.
  • the processor 210 may include an application processor (AP), a modem processor, a graphics processing unit (GPU), and an image signal processor. (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural network processor (Neural-network Processing Unit, NPU) Wait.
  • the different processing units may be independent devices or integrated in one or more processors.
  • the controller may be the nerve center and command center of the mobile phone 200. The controller can generate operation control signals according to the instruction operation code and timing signals to complete the control of fetching and executing instructions.
  • the processor 210 may also be provided with a memory for storing instructions and data.
  • the memory in the processor 210 is a cache memory.
  • the memory can store instructions or data that have just been used or recycled by the processor 210. If the processor 210 needs to use the instruction or data again, it can be directly called from the memory. Repeated access is avoided, the waiting time of the processor 210 is reduced, and the efficiency of the system is improved.
  • the processor 210 can run the physiological parameter processing method provided in this application (described in detail below), and obtain the risk information of the user suffering from coronary heart disease by processing the heart sound signal, the electrocardiogram signal and the fingertip pulse wave signal, and realize the user's Detection of the risk of coronary heart disease.
  • the processor 210 integrates different devices, such as integrated CPU and GPU, the CPU and GPU can cooperate to execute the processing method provided by the embodiment of the present application. For example, part of the algorithm of the processing method is executed by the CPU, and another part of the algorithm is executed by the GPU to obtain Faster processing efficiency.
  • the display screen 294 is used to display images, videos, etc.
  • the display screen 294 includes a display panel.
  • the display panel can adopt liquid crystal display (LCD), organic light-emitting diode (OLED), active-matrix organic light-emitting diode or active-matrix organic light-emitting diode (active-matrix organic light-emitting diode).
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • active-matrix organic light-emitting diode active-matrix organic light-emitting diode
  • AMOLED flexible light-emitting diode (FLED), Miniled, MicroLed, Micro-oLed, quantum dot light-emitting diode (QLED), etc.
  • the mobile phone 200 may include one or N display screens 294, and N is a positive integer greater than one.
  • the camera 293 (a front camera or a rear camera, or a camera can be used as a front camera or a rear camera) is used to capture still images or videos.
  • the camera 293 may include photosensitive elements such as a lens group and an image sensor, where the lens group includes a plurality of lenses (convex lens or concave lens) for collecting light signals reflected by the object to be photographed and transmitting the collected light signals to the image sensor .
  • the image sensor generates an original image of the object to be photographed according to the light signal.
  • the internal memory 221 may be used to store computer executable program code, the executable program code including instructions.
  • the processor 210 executes various functional applications and signal processing of the mobile phone 200 by running instructions stored in the internal memory 221.
  • the internal memory 221 may include a storage program area and a storage data area.
  • the storage program area can store operating system, application program (such as camera application, WeChat application, etc.) codes and so on.
  • the data storage area can store data created during the use of the mobile phone 200 (such as images and videos collected by a camera application) and the like.
  • the internal memory 221 may also store the code of the anti-mistouch algorithm provided in the embodiment of the present application.
  • the code of the anti-mistouch algorithm stored in the internal memory 321 is executed by the processor 210, the touch operation during the folding or unfolding process can be shielded.
  • the internal memory 221 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, a universal flash storage (UFS), etc.
  • a non-volatile memory such as at least one magnetic disk storage device, a flash memory device, a universal flash storage (UFS), etc.
  • the code for implementing the algorithm for video editing can also be stored in an external memory.
  • the processor 210 may run the algorithm code stored in the external memory through the external memory interface 220 to implement editing of the video.
  • the function of the sensor module 280 is described below.
  • the gyroscope sensor 280A may be used to determine the movement posture of the mobile phone 200.
  • the angular velocity of the mobile phone 200 around three axes ie, x, y, and z axes
  • the gyroscope sensor 280A can be used to detect the current motion state of the mobile phone 200, such as shaking or static.
  • the acceleration sensor 280B can detect the magnitude of acceleration of the mobile phone 200 in various directions (generally three axes). That is, the gyroscope sensor 280A can be used to detect the current motion state of the mobile phone 200, such as shaking or static.
  • the proximity light sensor 380G may include, for example, a light emitting diode (LED) and a light detector, such as a photodiode.
  • the light emitting diode may be an infrared light emitting diode.
  • the mobile phone emits infrared light through light-emitting diodes. Mobile phones use photodiodes to detect infrared reflected light from nearby objects. When sufficient reflected light is detected, it can be determined that there is an object near the phone. When insufficient reflected light is detected, the phone can determine that there is no object near the phone.
  • the gyroscope sensor 280A (or the acceleration sensor 280B) may send the detected motion state information (such as angular velocity) to the processor 210.
  • the processor 210 determines whether it is currently in the handheld state or the tripod state based on the motion state information (for example, when the angular velocity is not 0, it means that the mobile phone 200 is in the handheld state).
  • the fingerprint sensor 280H is used to collect fingerprints.
  • the mobile phone 200 can use the collected fingerprint characteristics to realize fingerprint unlocking, access application locks, fingerprint photographs, fingerprint answering calls, etc.
  • the touch sensor is 280K, also called "touch panel”.
  • the touch sensor 280K may be disposed on the display screen 294, and the touch screen is composed of the touch sensor 280K and the display screen 294, which is also called a “touch screen”.
  • the touch sensor 280K is used to detect touch operations acting on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • the display screen 294 may provide visual output related to the touch operation.
  • the touch sensor 280K may also be disposed on the surface of the mobile phone 200, which is different from the position of the display screen 294.
  • the display screen 294 of the mobile phone 200 displays a main interface, and the main interface includes icons of multiple applications (such as a camera application, a WeChat application, etc.).
  • the display screen 294 displays the interface of the camera application, such as a viewfinder interface.
  • the wireless communication function of the mobile phone 200 can be realized by the antenna 1, the antenna 2, the mobile communication module 251, the wireless communication module 252, the modem processor, and the baseband processor.
  • the antenna 1 and the antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in the mobile phone 200 can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna can be used in combination with a tuning switch.
  • the mobile communication module 251 can provide a wireless communication solution including 2G/3G/4G/5G and the like applied on the mobile phone 200.
  • the mobile communication module 251 may include at least one filter, switch, power amplifier, low noise amplifier (LNA), etc.
  • the mobile communication module 251 can receive electromagnetic waves from the antenna 1, filter, amplify, and other processing of the received electromagnetic waves, and transmit them to the modem processor for demodulation.
  • the mobile communication module 251 can also amplify the signal modulated by the modem processor, and convert it into electromagnetic wave radiation via the antenna 1.
  • at least part of the functional modules of the mobile communication module 351 may be provided in the processor 210.
  • at least part of the functional modules of the mobile communication module 351 and at least part of the modules of the processor 210 may be provided in the same device.
  • the modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low frequency baseband signal to be sent into a medium and high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low-frequency baseband signal. Then the demodulator transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the low-frequency baseband signal is processed by the baseband processor and then passed to the application processor.
  • the application processor outputs a sound signal through an audio device (not limited to a speaker 270A, a receiver 270B, etc.), or displays an image or video through the display screen 294.
  • the modem processor may be an independent device.
  • the modem processor may be independent of the processor 310 and be provided in the same device as the mobile communication module 351 or other functional modules.
  • the wireless communication module 252 can provide applications on the mobile phone 200 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), bluetooth (BT), and global navigation satellite systems. (global navigation satellite system, GNSS), frequency modulation (frequency modulation, FM), near field communication technology (near field communication, NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • WLAN wireless local area networks
  • BT wireless fidelity
  • GNSS global navigation satellite system
  • frequency modulation frequency modulation, FM
  • NFC near field communication technology
  • infrared technology infrared, IR
  • the wireless communication module 252 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 352 receives electromagnetic waves via the antenna 2, modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 210.
  • the wireless communication module 252 may also receive the signal to be sent from the processor 210, perform frequency modulation, amplify, and convert it into electromagnetic waves
  • the antenna 1 of the mobile phone 200 is coupled with the mobile communication module 251, and the antenna 2 is coupled with the wireless communication module 252, so that the mobile phone 200 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technologies may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time division code division multiple access (time-division code division multiple access, TD-SCDMA), long term evolution (LTE), BT, GNSS, WLAN, NFC , FM, and/or IR technology, etc.
  • the GNSS may include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), quasi-zenith satellite system (quasi -zenith satellite system, QZSS) and/or satellite-based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite-based augmentation systems
  • the mobile phone 200 can implement audio functions through the audio module 270, the speaker 270A, the receiver 270B, the microphone 270C, the earphone interface 270D, and the application processor. For example, music playback, recording, etc.
  • the mobile phone 200 can receive key 290 input, and generate key signal input related to user settings and function control of the mobile phone 200.
  • the mobile phone 200 can use the motor 291 to generate a vibration notification (such as an incoming call vibration notification).
  • the indicator 292 in the mobile phone 200 can be an indicator light, which can be used to indicate the charging status, power change, and can also be used to indicate messages, missed calls, notifications, and so on.
  • the SIM card interface 295 in the mobile phone 200 is used to connect to the SIM card.
  • the SIM card can be connected to and separated from the mobile phone 200 by inserting into the SIM card interface 295 or pulling out from the SIM card interface 295.
  • the mobile phone 200 may include more or less components than those shown in FIG. 25, which is not limited in the embodiment of the present application.
  • the acquisition device and the processing device can be integrated as two functional modules in the same device, such as a coronary heart disease measurement device.
  • the processing device can receive the heart sound signal sent by the acquisition device through an internal bus. , ECG signal and fingertip pulse wave signal.
  • the output terminal 140 of the aforementioned collecting device 100 may be an interface of an internal bus.
  • the coronary heart disease measurement device described in the embodiment of the present application may be a wearable device, also called a wearable smart device, which uses wearable technology to intelligently design daily wear and develop a wearable device
  • the general term such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories.
  • Wearable devices are not only a hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be realized without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to be used with other devices such as smart phones. , Such as various smart bracelets, smart jewelry, patches, etc. that perform physical sign monitoring, which are not limited in the embodiment of the application.
  • the processing device can be replaced with a chip device, for example, a communication chip that can be used in the device to implement processing in the device.
  • a chip device for example, a communication chip that can be used in the device to implement processing in the device.
  • the chip device can be a field programmable gate array, a dedicated integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, a microcontroller, and a programmable controller or other integrated chips for realizing related functions.
  • the chip may optionally include one or more memories for storing program codes. When the codes are executed, the processor realizes corresponding functions.
  • the chip device may be the aforementioned terminal device, such as a chip device in a mobile phone.
  • the apparatus for collecting physiological parameters and the apparatus for processing physiological parameters provided by the embodiments of the present application are described above with reference to FIGS. 6-25.
  • the method 300 for processing physiological parameters provided by an embodiment of the present application will be described below in conjunction with FIG. 26.
  • FIG. 26 shows a schematic flowchart of a method 300 for processing physiological parameters provided by an embodiment of the present application. It should be understood that the processing method 300 may be executed by a physiological parameter processing device.
  • S310 Acquire the user's heart sound signal, electrocardiogram signal, and fingertip pulse wave signal.
  • the processing device may obtain the heart sound signal, the electrocardiogram signal, and the fingertip pulse wave signal in various ways, which are not limited in the embodiment of the present application.
  • the processing device may receive the heart sound signal, the electrocardiogram signal, and the fingertip pulse wave signal sent by the collecting device.
  • the collection device collects the heart sound signal, the electrocardiogram signal and the fingertip pulse wave signal; and sends the heart sound signal, the electrocardiogram signal and the fingertip pulse wave signal to the processing device; accordingly, the processing device receives the The heart sound signal, the electrocardiogram signal and the fingertip pulse wave signal sent by the collecting device.
  • the processing device can collect the user's heart sound signal, electrocardiogram signal, and fingertip pulse wave signal by itself.
  • S320 Determine risk information of the user according to the heart sound signal, the electrocardiogram signal, and the fingertip pulse wave signal, where the risk information is used to indicate the risk of the user suffering from coronary heart disease.
  • S320 may include the following steps:
  • Step 1 Determine the sensitive characteristics of the heart sound signal and the signal quality of the heart sound signal according to the heart sound signal.
  • the sensitive feature of the heart sound signal is the sum of the high frequency spectrum energy
  • the sum of the high frequency spectrum energy of the heart sound signal can be determined by formula (1).
  • the signal quality of the heart sound signal can be determined by formula (7) and formula (8):
  • E is the expected value
  • X i signal value e.g., heart sound signal amplitude
  • ⁇ i the expected value of
  • ⁇ 2 the variance signal
  • r k_ * heart sound signals e.g., heart sound signal amplitude
  • the fingertip pulse waves, heart sounds, and ECG signals of patients with coronary heart disease and normal users can be collected to assess the correlation between the three signals and the risk of coronary heart disease, thereby determining their contribution.
  • Step 2 Determine the sensitive characteristics of the ECG signal and the signal quality of the ECG signal according to the ECG signal.
  • the pulse wave transit time of the heart sound signal can be determined by the above formula (6).
  • the signal quality of the ECG signal can be determined by formula (7) and formula (8), where r k_* is the ECG signal.
  • Step 3 Determine the sensitive characteristics of the fingertip pulse wave signal and the signal quality of the fingertip pulse wave signal according to the fingertip pulse wave signal.
  • the sensitive feature of the fingertip pulse wave signal may be at least one of normalized peak time, peak ratio, hardening index and reflection index.
  • the sensitive feature of the fingertip pulse wave signal is normalized peak time, peak ratio, hardening index or reflection index, it can be determined by the above formula (2) to formula (5).
  • the signal quality of the fingertip pulse wave signal can be determined by formula (7) and formula (8), where r k_* is the fingertip pulse wave signal.
  • Step 4 According to the sensitive feature of the heart sound signal, the signal quality of the heart sound signal, the sensitive feature of the ECG signal, the signal quality of the ECG signal, the sensitive feature of the fingertip pulse wave signal and the result The signal quality of the fingertip pulse wave signal determines the risk information of the user.
  • the sensitive characteristics of the heart sound signal may be based on the sensitive characteristics of the heart sound signal, the preset first mapping relationship, the signal quality of the heart sound signal, the contribution of the heart sound signal to the prediction of coronary heart disease, and the heart sound signal.
  • the third mapping relationship, the signal quality of the fingertip pulse wave signal and the contribution of the fingertip pulse wave signal to the prediction of coronary heart disease determine the risk information of the user.
  • the first mapping relationship is used to represent the corresponding relationship between the sensitive feature of the heart sound signal and the risk of coronary heart disease.
  • the first mapping relationship can be expressed by formula (9):
  • S pcg represents the heart sound signal
  • S power represents the sum of the spectral energy of the high frequency part of the heart sound
  • g represents a normalized function, such as a sigmoid function.
  • the second mapping relationship is used to represent the corresponding relationship between the sensitivity feature of the ECG signal and the risk of coronary heart disease.
  • the second mapping relationship can be expressed by formula (10):
  • S ecg represents the ECG signal
  • T PTT represents the pulse wave transit time
  • g represents a normalized function, such as a sigmoid function.
  • mapping relationship is used to represent the corresponding relationship between the sensitive feature of the fingertip pulse wave signal and the risk of coronary heart disease.
  • the third mapping relationship can be expressed by formula (11):
  • Sppg represents the fingertip pulse wave signal
  • H height represents the height
  • T 2 represents the time between the main wave and the peak of the dicrotic wave
  • H 1 represents the dicrotic wave amplitude
  • H 2 represents the main wave amplitude
  • g represents the return A function, such as the sigmoid function.
  • each of the aforementioned signals can be preset in advance. Specifically, the correct rate of the sample user suffering from coronary heart disease can be predicted according to each signal (ie, the electrocardiogram signal, the heart sound signal or the fingertip pulse wave signal), and the contribution of each signal to the prediction of coronary heart disease can be determined.
  • each signal ie, the electrocardiogram signal, the heart sound signal or the fingertip pulse wave signal
  • the accuracy of predicting disease is 70% based on the pulse wave signal of the fingertips.
  • the accuracy rate of signal predicting disease is 50%, and the accuracy rate of predicting disease only through ECG signal is 80%. Therefore, the contribution of fingertip pulse wave signal w ppg is 0.7, and the contribution of heart sound signal.
  • the degree is w pcg is 0.5, and the contribution degree of ECG signal w ecg is 0.8.
  • risk information R in step 4 can be determined by formula (12):
  • the processing device may output the risk information in multiple ways, which is not limited in the embodiment of the present application.
  • the processing device may include a display screen, through which the risk information is displayed to the user.
  • the processing device may include a motor, and output the risk information to the user by controlling the motor to vibrate.
  • the motor is controlled to vibrate.
  • a first preset value such as 50%
  • the processing device may include an indicator light, and output the risk information to the user by controlling the color or brightness of the indicator light.
  • the control indicator light when the R value is lower than the second preset value, such as 20%, the control indicator light is green; when the R value is higher than the third preset value, such as 70%, the control indicator light is red; when the R value is at When between the second preset value and the third preset value, the control indicator is yellow.
  • the control indicator light is on.
  • the acquisition device and the processing device are independent devices as an example, and the process of collecting and processing signals when the acquisition device and the processing device are used together is described in detail.
  • the acquisition device takes a structure with a handle as an example
  • the processing device takes a mobile phone as an example.
  • S410 The collection device establishes a connection with the processing device through Bluetooth.
  • S420 The acquisition device receives the user's measurement instruction and enters the measurement mode.
  • the user uses the thumb and index finger to pinch the collection device, and contact the first surface of the collection device with the skin at the heart test point, as shown in FIG. 28.
  • the collection device may obtain the measurement instruction in multiple ways, which is not limited in the embodiment of the present application.
  • a mobile phone presents a display interface as shown in FIG. 29 to the user.
  • the physiological parameter acquisition device obtains the user's measurement instruction.
  • the collection device obtains the user's measurement instruction.
  • the acquisition device measures the user's heart sound signal, electrocardiogram signal, and fingertip pulse wave signal according to the measurement instruction.
  • the mobile phone can present the display interface as shown in Figure 30 to the user and start collecting signals.
  • the collecting device transmits the heart sound signal, the ECG signal and the fingertip pulse wave signal to the mobile phone via Bluetooth.
  • the acquisition device may obtain a transmission instruction, and according to the transmission instruction, transmit the heart sound signal, the electrocardiogram signal, and the fingertip pulse wave signal to the mobile phone.
  • the mobile phone can present the user with a display interface as shown in Figure 31.
  • the collection device obtains the user's transmission instruction, and the collection device transmits the heart sound signal and the heart sound signal to the mobile phone according to the transmission instruction.
  • the electrical signal and the fingertip pulse wave signal are examples of the user clicks "start transmission"
  • the mobile phone determines the user's risk information according to the heart sound signal, the electrocardiogram signal, and the fingertip pulse wave signal.
  • the signal quality of the heart sound signal, the ECG signal and the fingertip pulse wave signal calculated by the mobile phone through the above formula (7) and formula (8) are 0.6, 0.1 and 0.3 respectively; the heart sound signal and the ECG signal are obtained according to the previous big data analysis The contribution of the signal and the fingertip pulse wave signal are 0.5, 0.2 and 0.3 respectively; the crowns of the heart sound signal, ECG signal and fingertip pulse wave signal are calculated by the above formula (9), formula (10) and formula (11) The predicted risk values of heart disease are 0.25, 0.4 and 0.3 respectively; the final risk information is calculated by the above formula (12):
  • S460 The mobile phone presents the risk information to the user through the display interface of the display.
  • the mobile phone can present a display interface as shown in FIG. 32 to the user.
  • the method further includes: displaying the heart sound signal, the electrocardiogram signal, and the fingertip pulse wave signal to the user through the display interface.
  • a mobile phone can present a display interface as shown in FIG. 33 to the user.
  • the method further includes: when the risk information is greater than or equal to a preset threshold, displaying prompt information to the user through the display interface, the prompt information including information reminding the user to seek medical treatment and / Or information that reminds the user of precautions.
  • the mobile phone can present a display interface as shown in FIG. 34 to the user.
  • the display interface may include an instruction area, the instruction area including at least one of an emergency instruction area, an emergency contact instruction area, a disease registration instruction area, and a medical treatment instruction area, wherein, The first aid instruction area is used to obtain the first aid instruction of the user, the emergency contact instruction area is used to obtain the emergency contact instruction of the user, and the hospital disease registration instruction area is used to obtain the user's emergency contact instruction.
  • the method further includes: a mobile phone obtains a target instruction sent by the user through the instruction area, the target instruction includes the first aid instruction , At least one of the instruction to contact an emergency contact and the instruction to see a doctor; and perform an operation corresponding to the target instruction, the first aid instruction corresponds to dialing 110, and the instruction to contact an emergency contact corresponds to dialing emergency Contact phone number, the disease registration instruction corresponds to registration of the condition with the hospital, and the medical registration instruction corresponds to online medical registration.
  • the user uses the thumb and index finger to pinch the collection device, and contacts the first surface of the collection device with the skin at the heart test point.
  • the collection device is ready to measure
  • the mobile phone presents the display interface as shown in Figure 29; the user clicks "start measurement”, the acquisition device starts to measure the heart sound signal, ECG signal and fingertip pulse wave signal, and the mobile phone presents the display interface as shown in Figure 30 to the user;
  • the mobile phone displays the display interface as shown in Figure 31;
  • the mobile phone receives the heart sound Signal, ECG signal and fingertip pulse wave signal, process the heart sound signal, ECG signal and fingertip pulse wave signal to obtain risk information, and present any display interface in Figure 32 to 35 to the user.
  • the above only schematically provides some possible display interfaces of this application, but the embodiments of this application do not limit this.
  • the display interface in this application may also prompt the user with other information or provide the user with other operable interfaces.
  • the acquisition device and the processing device are integrated in the same device as an example.
  • a coronary heart disease measuring device is taken as an example to introduce in detail the process of collecting and processing signals when the coronary heart disease measuring device is used.
  • S510 Acquire a user's measurement instruction, and enter a measurement mode.
  • the user uses the index finger and middle finger to press the upper surface of the coronary heart disease measurement device, and contact the lower surface of the coronary heart disease measurement device with the skin at the heart test point, as shown in FIGS. 37 and 38.
  • FIG. 37 and FIG. 38 only show parts related to the functions of the present application, and the coronary heart disease test device may also include other hardware (not shown in the figure).
  • the coronary heart disease measurement device can obtain measurement instructions in multiple ways, which are not limited in the embodiment of the present application.
  • a coronary heart disease measurement device presents a display interface as shown in FIG. 37 to the user.
  • the coronary heart disease measurement device obtains the user's measurement instruction.
  • the coronary heart disease measuring device obtains the user's measurement instruction.
  • S520 According to the measurement instruction, measure the user's heart sound signal, electrocardiogram signal, and fingertip pulse wave signal.
  • the upper surface of the coronary heart disease measurement device may present the display interface as shown in FIG. 39 to the user and start collecting signals.
  • S530 Determine the user's risk information according to the heart sound signal, the electrocardiogram signal, and the fingertip pulse wave signal.
  • the signal quality of the heart sound signal, ECG signal, and fingertip pulse wave signal calculated by the above formula (7) and formula (8) are 0.6, 0.1 and 0.3 respectively; the heart sound signal and the ECG signal are obtained according to the previous big data analysis And the contribution of fingertip pulse wave signal is 0.5, 0.2 and 0.3 respectively; the heart sound signal, ECG signal and fingertip pulse wave signal are calculated by the above formula (9), formula (10) and formula (11) for coronary heart disease The predicted risk values are 0.25, 0.4 and 0.3 respectively; the final risk information is calculated by the above formula (12):
  • S540 Present the risk information to the user through a display interface.
  • a display interface as shown in FIG. 37 can be presented to the user.
  • the user uses the index finger and middle finger to press the upper surface of the coronary heart disease measurement device, and contact the lower surface of the coronary heart disease measurement device with the skin at the heart test point.
  • the coronary heart disease measurement device When the coronary heart disease measurement device is ready for measurement, it will present the display interface as shown in Figure 37; the user clicks "start measurement", the coronary heart disease measurement device will start measuring the heart sound signal, ECG signal and fingertip pulse wave signal, and the mobile phone tells the user
  • the display interface shown in Figure 39 is presented; after the measurement of the coronary heart disease measurement device is completed, the heart sound signal, ECG signal and fingertip pulse wave signal are processed to obtain risk information, and the display interface shown in Figure 40 is presented to the user .
  • the content displayed on the display interface of the display of the coronary heart disease measurement device can refer to FIG. 32 to FIG. 35, and to avoid repetition, details are not described here.
  • the physiological parameter processing method provided in the embodiment of the present application is described in detail above with reference to the accompanying drawings.
  • the physiological parameter processing device and the physiological parameter acquisition device provided in the embodiment of the present application will be introduced below.
  • FIG. 41 shows a schematic block diagram of a physiological parameter processing apparatus 600 provided by an embodiment of the present application.
  • the processing device 600 may correspond to the processing device (or terminal device) described in the processing method 300, processing method 400, and processing method 500, and each module or unit in the processing device 600 is used to execute the processing method 300, processing Each action and processing procedure performed by the processing device (or terminal device) in the method 400 and the signal processing 500 are omitted here in order to avoid redundant description.
  • the processing device 600 includes an acquisition unit 610, a processing unit 620, and an output unit 630.
  • the acquisition unit 610 is used to acquire the heart sound signal, the electrocardiogram signal and the fingertip pulse wave signal.
  • the processing unit 620 is configured to determine the user's risk information according to the heart sound signal, the electrocardiogram signal, and the fingertip pulse wave signal acquired by the acquiring unit 610, and the risk information is used to indicate The risk of coronary heart disease.
  • the output unit 630 is configured to output the risk information determined by the processing unit 620.
  • FIG. 42 shows a schematic block diagram of a device 700 for collecting physiological parameters provided by an embodiment of the present application.
  • the collection device 700 may correspond to the collection device 100 in FIG. 6, and each module or unit in the collection device 700 is respectively used to execute various actions and processing procedures performed by the aforementioned collection device 100.
  • the collection device 700 includes a collection unit 710 and a sending unit 720.
  • the collecting unit 710 is used to collect heart sound signals, electrocardiogram signals and fingertip pulse wave signals.
  • the sending unit 720 is used to send the heart sound signal, the ECG signal and the fingertip pulse wave signal to the processing device.
  • the collection unit 710 in FIG. 42 corresponds to the heart sound sensor 110, the electrocardiogram sensor 120, and the fingertip pulse wave sensor 130 in FIG. 6, and the sending unit 720 in FIG. 42 corresponds to the output terminal 140 in FIG. .
  • the functional units in the various embodiments of the embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • a computer readable storage medium includes a number of instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: flash memory, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Pulmonology (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种生理参数的采集方法和装置(100)与生理参数的处理方法(300,400,500)和装置(600),生理参数的处理方法(300,400,500)包括:采集装置(100)获取用户的心音信号、心电信号和指尖脉搏波信号(S310);采集装置(100)向处理装置发送心音信号、心电信号和指尖脉搏波信号;处理装置(600)根据心音信号、心电信号和指尖脉搏波信号,确定用户的风险信息,风险信息用于指示用户患冠心病的风险(S320);处理装置(600)输出风险信息(S330)。采用该生理参数的采集方法和装置(100)与生理参数的处理方法(300,400,500)和装置(600),能够预测用户患冠心病的风险,有利于避免用户由于冠心病发作而引发的意外。

Description

生理参数的采集方法和装置与生理参数的处理方法和装置
本申请要求于2019年08月19日递交的申请号为201910766134.7、申请名称为“生理参数的采集方法和装置与生理参数的处理方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端技术领域,并且更具体地,涉及终端技术领域中的生理参数的采集方法和装置与生理参数的处理方法和装置。
背景技术
当今社会,生活节奏的加快以及不科学的饮食习惯、自我保健意识的缺乏等因素,导致心血管疾病的发病率越来越高。冠状动脉粥样硬化性心脏病,也被称为“冠心病”是心血管疾病中较常见的一种,它是供给心脏营养物质的血管-冠状动脉发生粥样硬化病变而引起血管腔狭窄或阻塞,造成心肌缺血、缺氧或者坏死而导致的心脏病。
由于冠心病具有“发病率高、死亡率高、复发率高、并发症多”等特点,被称为“人类第一杀手”。在很多现有病例中,有时候病患的心血管可能已经发生潜在危险,但是病患没有发觉或无法及时发觉,当病情突然发作时会造成来不及救治的严重后果。
因此,需要提供一种能够检测冠心病的患病风险的装置,有利于避免用户冠心病发作产生意外。
发明内容
本申请提供的生理参数的采集方法和装置与生理参数的处理方法和装置,能够预测用户患冠心病的风险,有利于避免由于冠心病发作而引发的意外。
第一方面,本申请提供一种生理参数的采集方法,所述方法包括:
采集用户的心音信号、心电信号和指尖脉搏波信号;
向处理装置发送所述心音信号、所述心电信号和所述指尖脉搏波信号。
在一种可能的实现方式中,所述采集用户的心音信号、心电信号和指尖脉搏波信号,包括:通过心音传感器采集所述心音信号;通过心电传感器采集所述心电信号;以及通过所述指尖脉搏波传感器采集所述指尖脉搏波信号。
采用本申请实施例提供的采集方法,能够同时获取用户的多种生理参数,提高生理参数采集的效率,与此同时,有利于处理装置根据这三种信号,预测用户患冠心病的风险。
第二方面,本申请提供一种生理参数的处理方法,所述方法包括:
获取用户的心音信号、心电信号和指尖脉搏波信号;
根据所述心音信号、所述心电信号和所述指尖脉搏波信号,确定所述用户的风险信息,所述风险信息用于指示用户患冠心病的风险;
输出所述风险信息。
采用本申请实施例提供的处理方法,由于指尖上包含末梢神经,通过指尖采集的指尖脉搏波信号能够反映与末端神经相关的信息,其波形更完整性。因此,根据上述三种生理参数得到的患病风险准确性更高。
在一种可能的实现方式中,所述根据所述心音信号、所述心电信号和所述指尖脉搏波信号,确定所述用户的风险信息,包括:根据所述心音信号,确定所述心音信号的敏感特征和所述心音信号的信号质量;根据所述心电信号,确定所述心电信号的敏感特征和所述心电信号的信号质量;根据所述指尖脉搏波信号,确定所述指尖脉搏波信号的敏感特征和所述指尖脉搏波信号的信号质量;根据所述心音信号的敏感特征、所述心音信号的信号质量、所述心电信号的敏感特征、所述心电信号的信号质量、所述指尖脉搏波信号的敏感特征和所述指尖脉搏波信号的信号质量,确定所述用户的风险信息。
例如,可以根据所述心音信号的敏感特征、预设的第一映射关系、所述心音信号的信号质量、所述心音信号对冠心病预测的贡献度、所述心电信号的敏感特征、预设的第二映射关系、所述心电信号的信号质量、所述心电信号对冠心病预测的贡献度、所述指尖脉搏波信号的敏感特征、预设的第三映射关系、所述指尖脉搏波信号的信号质量和所述指尖脉搏波信号对冠心病预测的贡献度,确定所述用户的风险信息。
采用本申请实施例提供的处理方法,结合三种生理参数以及其中每种生理参数的敏感特征和信号质量,能够提高患病风险预测的准确性。
需要说明的是,所述第一映射关系用于表示心音信号的敏感特征和冠心病患病风险之间的对应关系,所述第二映射关系用于表示所述心电信号的敏感特征和冠心病患病风险之间的对应关系,所述第三映射关系用于表示所述指尖脉搏波信号的敏感特征和冠心病患病风险之间的对应关系。
例如,该第一映射关系可以通过下式表示:
f pcg(S pcg)=g(S power)
其中,S pcg表示心音信号,S power表示心音高频部分频谱能量和,g表示归一化函数,如sigmoid函数。
例如,该第二映射关系可以通过下式表示:
f ecg(S ecg)=g(T PTT)
其中,S ecg表示心电信号,T PTT表示脉搏波传导时间,g表示归一化函数,如sigmoid函数。
例如,该第三映射关系可以通过下式表示:
Figure PCTCN2020108947-appb-000001
其中,S ppg表示指尖脉搏波信号,H height表示身高,T 2表示主波到重搏波峰之间的时间,H 1表示重搏波幅值,H 2表示主波幅值,g表示归一化函数,如sigmoid函数。
还需要说明的是,上述每种信号对冠心病预测的贡献度可以为提前预设的。具体地,可以根据每种信号(即心电信号、心音信号或指尖脉搏波信号)预测样本用户患冠心病的正确率,确定所述每种信号对冠心病预测的贡献度。
在一种可能的实现方式中,所述心音信号的敏感特征包括高频部分频谱能量;所述指 尖脉搏波信号的敏感特征包括归一化波峰时间、波峰比率、硬化指数和反射指数中的至少一项;所述心电信号的敏感特征包括脉搏波传导时间。
在一种可能的实现方式中,所述获取用户的心音信号、心电信号和指尖脉搏波信号,包括:接收采集装置发送的所述心音信号、所述心电信号和所述指尖脉搏波信号。
在一种可能的实现方式中,所述获取用户的心音信号、心电信号和指尖脉搏波信号,包括:通过心音传感器采集所述心音信号;通过心电传感器采集所述心电信号;以及通过指尖脉搏波传感器采集所述指尖脉搏波信号。
在一种可能的实现方式中,所述输出所述风险信息,包括:通过显示器的显示界面向所述用户显示该风险信息。
采用本申请实施例提供的处理方法,能够直观地向用户呈现冠心病的患病风险,便于用户了解自己身体的健康状况。
在一种可能的实现方式中,所述方法还包括:通过所述显示界面向用户显示所述心音信号、所述心电信号和所述指尖脉搏波信号。
采用本申请实施例提供的处理方法,能够直观地向用户呈现采集到的生理参数,便于用户了解和分析自己身体的健康状况。
在一种可能的实现方式中,所述方法还包括:当所述风险信息大于或等于预设的阈值时,通过所述显示界面向所述用户显示提示信息,所述提示信息包括提醒所述用户就医的信息和/或提醒所述用户注意事项的信息。
采用本申请实施例提供的处理方法,能够在用户的身体健康出现问题时,便捷地向用户呈现注意事项,以及其它提示信息。
在一种可能的实现方式中,所述显示界面包括指令区域,所述指令区域包括急救指令区域、联系紧急联系人指令区域、疾病登记指令区域和就医指令区域中的至少一个,其中,所述急救指令区域用于获取所述用户的急救指令,所述联系紧急联系人指令区域用于获取所述用户的联系紧急联系人指令,所述医院疾病登记指令区域用于获取所述用户的登记疾病指令,所述就医指令区域用于获取所述用户的就医挂号指令,所述方法还包括:获取所述用户通过所述指令区域发送的目标指令,所述目标指令包括所述急救指令、所述联系紧急联系人指令和所述就医挂号指令中的至少一个;执行与所述目标指令对应的操作,所述急救指令对应于拨打110,所述联系紧急联系人指令对应于拨打紧急联系人电话,所述登记疾病指令对应于向医院登记病情,所述就医挂号指令对应于在线就医挂号。
采用本申请实施例提供的处理方法,能够便捷地为用户提供紧急情况下的操作,例如用户患病风险较高甚至发病时,及时快速地为用户提供相应的帮助和服务。
需要说明的是,本申请实施例不仅限于通过显示界面呈现上述可能的实现方式中提供的界面,还可以呈现其它与病患、疾病、就医等相关的提示信息以及操作,本申请实施例对此不作限定。
第三方面,本申请提供一种生理参数的处理方法,所述方法包括:
采集装置获取用户的心音信号、心电信号和指尖脉搏波信号;
所述采集装置向处理装置发送所述心音信号、所述心电信号和所述指尖脉搏波信号;
所述处理装置根据所述心音信号、所述心电信号和所述指尖脉搏波信号,确定所述用户的风险信息,所述风险信息用于指示用户患冠心病的风险;
所述处理装置输出所述风险信息。
采用本申请实施例提供的处理方法,采集装置能够同时获取用户的多种生理参数,采集效率较高。与此同时,由于指尖上包含末梢神经,通过指尖采集的指尖脉搏波信号能够反映与末端神经相关的信息,其波形更完整性,因此,处理装置根据这三种信号,预测用户患冠心病的风险的准确性更高。
在一种可能的实现方式中,所述处理装置包括显示器,所述处理装置输出所述风险信息,包括:通过所述显示器的显示界面向所述用户显示该风险信息。
采用本申请实施例提供的处理方法,能够直观地向用户呈现冠心病的患病风险,便于用户了解自己身体的健康状况。
在一种可能的实现方式中,所述方法还包括:通过所述显示界面向用户显示所述心音信号、所述心电信号和所述指尖脉搏波信号。
采用本申请实施例提供的处理方法,能够直观地向用户呈现采集到的生理参数,便于用户了解和分析自己身体的健康状况。
在一种可能的实现方式中,所述方法还包括:当所述风险信息大于或等于预设的阈值时,通过所述显示界面向所述用户显示提示信息,所述提示信息包括提醒所述用户就医的信息和/或提醒所述用户注意事项的信息。
采用本申请实施例提供的处理方法,能够在用户的身体健康出现问题时,便捷地向用户呈现注意事项,以及其它提示信息。
在一种可能的实现方式中,所述显示界面包括指令区域,所述指令区域包括急救指令区域、联系紧急联系人指令区域、疾病登记指令区域和就医指令区域中的至少一个,其中,所述急救指令区域用于获取所述用户的急救指令,所述联系紧急联系人指令区域用于获取所述用户的联系紧急联系人指令,所述医院疾病登记指令区域用于获取所述用户的登记疾病指令,所述就医指令区域用于获取所述用户的就医挂号指令,所述方法还包括:获取所述用户通过所述指令区域发送的目标指令,所述目标指令包括所述急救指令、所述联系紧急联系人指令和所述就医挂号指令中的至少一个;执行与所述目标指令对应的操作,所述急救指令对应于拨打110,所述联系紧急联系人指令对应于拨打紧急联系人电话,所述登记疾病指令对应于向医院登记病情,所述就医挂号指令对应于在线就医挂号。
采用本申请实施例提供的处理方法,能够便捷地为用户提供紧急情况下的操作,例如用户患病风险较高甚至发病时,及时快速地为用户提供相应的帮助和服务。
需要说明的是,本申请实施例不仅限于通过显示界面呈现上述可能的实现方式中提供的界面,还可以呈现其它与病患、疾病、就医等相关的提示信息以及操作,本申请实施例对此不作限定。
第四方面,本申请提供一种生理参数的采集装置,所述装置包括:心音传感器、心电传感器、指尖脉搏波传感器和输出端;
所述心音传感器用于采集用户的心音信号,并传输至所述处理器;
所述心电传感器用于采集所述用户的心电信号,并传输至所述处理器;
所述指尖脉搏波传感器用于采集所述用户的指尖脉搏波信号,并传输至所述处理器;
所述输出端用于输出所述风险信息。
采用本申请实施例提供的采集装置,能够同时获取用户的多种生理参数,采集效率较 高。与此同时,由于指尖上包含末梢神经,通过指尖采集的指尖脉搏波信号能够反映与末端神经相关的信息,其波形更完整性,因此,预测用户患冠心病的风险的准确性更高。
可选地,所述心电传感器包括第一电极和第二电极,所述第一电极和所述第二电极的极性相反。
在一种可能的实现方式中,所述装置还包括基座,所述基座包括第一表面和第二表面,所述第一表面与所述第二表面相对设置,其中,所述第一表面为与所述用户的冠状动脉检测区域处的皮肤接触的一面,所述第二表面为与所述用户的手指接触的一面;所述心音传感器和所述第一电极设置在所述第一表面上;所述指尖脉搏波传感器和所述第二电极设置在所述第二表面上;所述输出端设置在所述第一表面和所述第二表面之间的内腔中、或所述第一表面上、或所述第二表面上。
可选地,基座的表面形状可以为圆形、四边形、多边形,或其他不规则形状,本申请实施例对此不作限定。
可选地,每种传感器的表面形状可以为圆形、四边形、多边形,或其他不规则形状,本申请实施例对此不作限定。
可选地,基座的每个表面上的多个传感器之间可以独立设置或嵌套设置,本申请实施例对此不作限定。
采用本申请实施例提供的采集装置,多种传感器独立设置,能够节约集成成本。
采用本申请实施例提供的采集装置,多种传感器嵌套设置,能够减小基座尺寸,且可以同时采集多种信号,能够提高采集效率和便捷性。
在一种可能的实现方式中,所述心音传感器和所述第一电极嵌套在一起,并设置在所述第一表面上;所述指尖脉搏波传感器和所述第二电极嵌套在一起,并设置在所述第二表面上。
可选地,指尖脉搏波传感器和第二电极之间可以紧密嵌套,或者可以存在间隙;所述心音传感器和所述第一电极之间可以紧密嵌套,或者可以存在间隙,本申请实施例对此不作限定。
在一种可能的实现方式中,所述第二表面上包括与手指形状匹配的凹槽,所述指尖脉搏波传感器和所述第二电极嵌套设置在所述凹槽的槽底区域。
采用本申请实施例提供的采集装置,指尖脉搏波传感器和第二电极嵌套设置在与手指形状匹配的凹槽的槽底区域,能够减少漏光,提高指尖脉搏波信号采集的完整性,从而能够提高预测患病风险的准确性。
在一种可能的实现方式中,所述装置还包括基座和握柄,所述基座包括第一表面和第二表面,所述第一表面与所述第二表面相对设置,所述握柄设置在所述第二表面上,其中,所述第一表面为与所述用户的冠状动脉检测区域处的皮肤接触的一面,所述第二表面为与所述用户的手指接触的一面;所述心音传感器和所述第一电极设置在所述第一表面上;所述指尖脉搏波传感器和所述第二电极设置在所述握柄的柄身上;所述输出端设置在所述第一表面和所述第二表面之间的内腔中、或所述第一表面上、或所述第二表面上、或所述柄身上。
采用本申请实施例提供的采集装置,基座上带握柄,用户拿捏装置更方便,且只需要拿捏装置就可以采集生理参数,使用更便捷。
可选地,基座的表面形状可以为圆形、四边形、多边形,或其他不规则形状,本申请实施例对此不作限定。
可选地,每种传感器的表面形状可以为圆形、四边形、多边形,或其他不规则形状,本申请实施例对此不作限定。
可选地,基座的每个表面上的多个传感器之间可以独立设置或嵌套设置,本申请实施例对此不作限定。
采用本申请实施例提供的采集装置,多种传感器独立设置,能够节约集成成本。
采用本申请实施例提供的采集装置,多种传感器嵌套设置,能够减小基座尺寸,且可以同时采集多种信号,能够提高采集效率和便捷性。
在一种可能的实现方式中,所述心音传感器和所述第一电极嵌套在一起,并设置在所述第一表面上;所述指尖脉搏波传感器和所述第二电极嵌套在一起,并设置在所述柄身上。
在一种可能的实现方式中,所述第二表面上包括与手指形状匹配的凹槽,所述指尖脉搏波传感器和所述第二电极嵌套设置在所述凹槽的槽底区域。
采用本申请实施例提供的采集装置,指尖脉搏波传感器和第二电极嵌套设置在与手指形状匹配的凹槽的槽底区域,能够减少漏光,提高指尖脉搏波信号采集的完整性,从而能够提高预测患病风险的准确性。
在一种可能的实现方式中,所述第一电极的表面形状为圆环,所述心音传感器的表面形状为圆形,且所述心音传感器设置在所述圆环形成的中心区域中。
采用本申请实施例提供的采集装置,心音传感器和第一电极设置在第一表面的中心位置,能够提高与用户皮肤接触的表面积,提高采集的心音信号的波形更完整。
可选地,所述心电传感器包括第一电极、第二电极和第三电极,所述第一电极和所述第二电极的极性相反,所述第三电极上具有预设的恒定电位。
采用本申请实施例提供的采集装置,心电传感器采用三电极测量电路,能够提高采集的心电信号的完整性和准确性。
在一种可能的实现方式中,所述装置还包括基座,所述基座包括第一表面和第二表面,所述第一表面与所述第二表面相对设置,其中,所述第一表面为与所述用户的冠状动脉检测区域处的皮肤接触的一面,所述第二表面为与所述用户的手指接触的一面;所述心音传感器和所述第一电极设置在所述第一表面上;所述指尖脉搏波传感器和所述第二电极设置在所述第二表面上;所述第三电极设置在所述第一表面或所述第二表面上;所述输出端设置在所述第一表面和所述第二表面之间的内腔中、或所述第一表面上、或所述第二表面上。
可选地,所述第三电极可以设置在所述第一表面上。
采用本申请实施例提供的采集装置,用户只需要执行按压装置的操作就可以采集生理参数,使用更便捷。
在一种可能的实现方式中,所述第三电极设置在所述第一表面上;所述心音传感器、所述第一电极和所述第三电极嵌套在一起,并设置在所述第一表面上;所述指尖脉搏波传感器和所述第二电极嵌套在一起,并设置在所述第二表面上。
采用本申请实施例提供的采集装置,多种传感器嵌套设置,能够减小基座尺寸,且可以同时采集多种信号,能够提高采集效率和便捷性。
在一种可能的实现方式中,所述第二表面上包括与手指形状匹配的凹槽,所述指尖脉 搏波传感器和所述第二电极嵌套设置在所述凹槽的槽底区域。
采用本申请实施例提供的采集装置,指尖脉搏波传感器和第二电极嵌套设置在与手指形状匹配的凹槽的槽底区域,减少漏光,提高指尖脉搏波信号采集的完整性,从而能够提高预测患病风险的准确性。
可选地,所述第三电极可以设置在所述第二表面上。
在一种可能的实现方式中,所述第三电极设置在所述第二表面上;所述心音传感器和所述第一电极嵌套在一起,并设置在所述第一表面上;所述指尖脉搏波传感器、所述第二电极和所述第三电极嵌套在一起,并设置在所述第二表面上。
采用本申请实施例提供的采集装置,多种传感器嵌套设置,能够减小基座尺寸,且可以同时采集多种信号,能够提高采集效率和便捷性。
在一种可能的实现方式中,所述第二表面上包括与手指形状匹配的凹槽,所述指尖脉搏波传感器、所述第二电极和所述第三电极嵌套设置在所述凹槽的槽底区域。
采用本申请实施例提供的采集装置,指尖脉搏波传感器、第二电极和第三电极嵌套设置在与手指形状匹配的凹槽的槽底区域,能够减少漏光,提高指尖脉搏波信号采集的完整性,从而能够提高预测患病风险的准确性。
在一种可能的实现方式中,所述装置还包括基座和握柄,所述基座包括第一表面和第二表面,所述第一表面与所述第二表面相对设置,其中,所述第一表面为与所述用户的冠状动脉检测区域处的皮肤接触的一面,所述第二表面为与所述用户的手指接触的一面;所述心音传感器和所述第一电极设置在所述第一表面上;所述指尖脉搏波传感器和所述第二电极设置在所述握柄的柄身上;所述第三电极设置在所述第一表面或所述柄身上;所述输出端设置在所述第一表面和所述第二表面之间的内腔中、或所述第一表面上、或所述第二表面上、或所述柄身上。
采用本申请实施例提供的采集装置,基座上带握柄,用户拿捏装置更方便,且只需要执行拿捏装置的操作就可以采集生理参数,使用更便捷。
可选地,所述第三电极可以设置在所述第一表面上。
在一种可能的实现方式中,所述第三电极设置在所述第一表面上;所述心音传感器、所述第一电极和所述第三电极嵌套在一起,并设置在所述第一表面上;所述指尖脉搏波传感器和所述第二电极嵌套在一起,并设置在所述柄身上。
采用本申请实施例提供的采集装置,多种传感器嵌套设置,能够减小基座尺寸,且可以同时采集多种信号,能够提高采集效率和便捷性。
在一种可能的实现方式中,所述第二表面上包括与手指形状匹配的凹槽,所述指尖脉搏波传感器和所述第二电极嵌套设置在所述凹槽的槽底区域。
采用本申请实施例提供的采集装置,指尖脉搏波传感器和第二电极嵌套设置在与手指形状匹配的凹槽的槽底区域,能够减少漏光,提高指尖脉搏波信号采集的完整性,从而能够提高预测患病风险的准确性。
在一种可能的实现方式中,所述第一电极和所述第三电极的表面形状均为半圆环,所述心音传感器的表面形状为圆形,且所述心音传感器设置在两个半圆环包围形成的区域中。
采用本申请实施例提供的采集装置,心音传感器、第一电极和第三电极设置在第一表 面的中心位置,能够提高与用户皮肤接触的表面积,提高采集的心音信号的波形更完整。
可选地,所述第三电极可以设置在所述柄身上。
在一种可能的实现方式中,所述第三电极设置在所述柄身上;所述心音传感器和所述第一电极嵌套在一起,并设置在所述第一表面上;所述指尖脉搏波传感器、所述第二电极和所述第三电极嵌套在一起,并设置在所述柄身上。
在一种可能的实现方式中,所述柄身上包括与手指形状匹配的凹槽,所述指尖脉搏波传感器、所述第二电极和所述第三电极嵌套设置在所述凹槽的槽底区域。
在一种可能的实现方式中,所述第一电极的表面形状均为圆环,所述心音传感器的表面形状为圆形,且所述心音传感器设置在所述圆环包围形成的区域中。
第五方面,本申请提供一种生理参数的处理装置,所述装置包括存储器、处理器、收发器及存储在所述存储器上并可在所述处理器上运行的指令,其中,所述存储器、所述处理器以及所述收发器之间通过内部连接通路互相通信,所述处理器执行所述指令使得所述装置实现上述第二方面的任一可能实现的方式中所述的方法。
可选地,所述处理装置可以为终端设备。
第六方面,本申请提供一种设备,包括上述第四方面的任一可能实现的方式中所述的生理参数的采集装置,以及上述第五方面的任一可能实现的方式中所述的生理参数的处理装置。
第七方面,本申请提供另一种设备,所述设备包括传感器模组、处理器、存储器和显示器,其中,所述传感器模组包括心电传感器、心音传感器、指尖脉搏波传感器处理器;
所述传感器模组用于获取信号,并将所述信号存储至所述存储器,其中,所述信号包括心电信号、心音信号和指尖脉搏波信号;所述处理器用于根据上述第二方面的任一可能实现的方式中所述的处理方法,对所述存储器中存储的所述信号进行信号处理,并通过所述显示器输出处理结果。
在一种可能的实现方式中,所述处理器用于:通过所述显示器的显示界面向所述用户显示该风险信息。
在一种可能的实现方式中,所述处理器还用于:通过所述显示界面向用户显示所述心音信号、所述心电信号和所述指尖脉搏波信号。
在一种可能的实现方式中,所述处理器还用于:当所述风险信息大于或等于预设的阈值时,通过所述显示界面向所述用户显示提示信息,所述提示信息包括提醒所述用户就医的信息和/或提醒所述用户注意事项的信息。
在一种可能的实现方式中,所述显示界面包括指令区域,所述指令区域包括急救指令区域、联系紧急联系人指令区域、疾病登记指令区域和就医指令区域中的至少一个,其中,所述急救指令区域用于获取所述用户的急救指令,所述联系紧急联系人指令区域用于获取所述用户的联系紧急联系人指令,所述医院疾病登记指令区域用于获取所述用户的登记疾病指令,所述就医指令区域用于获取所述用户的就医挂号指令,所述处理器还用于:获取所述用户通过所述指令区域发送的目标指令,所述目标指令包括所述急救指令、所述联系紧急联系人指令和所述就医挂号指令中的至少一个;执行与所述目标指令对应的操作,所述急救指令对应于拨打110,所述联系紧急联系人指令对应于拨打紧急联系人电话,所述登记疾病指令对应于向医院登记病情,所述就医挂号指令对应于在线就医挂号。
第八方面、一种计算机可读介质,用于存储计算机程序,其特征在于,所述计算机程序包括用于实现上述第一方面至第三方面中的任一可能实现的方式中所述的方法的指令。
第九方面,一种计算机程序产品,所述计算机程序产品中包含指令,其特征在于,当所述指令在计算机上运行时,使得计算机实现上述第一方面至第三方面中的任一可能实现的方式中所述的方法。
第十方面、一种芯片装置,包括:输入接口、输出接口、至少一个处理器、存储器,所述输入接口、所述输出接口、所述处理器以及所述存储器之间通过内部连接通路互相通信,所述处理器用于执行所述存储器中的代码,当所述处理器执行所述代码时,所述芯片装置实现上述第一方面至第三方面中的任一可能实现的方式中所述的方法。
附图说明
图1是本申请实施例提供的心音信号的时频图;
图2是本申请实施例提供的指尖脉搏波信号的时频图;
图3是本申请实施例提供的指尖脉搏波信号和手腕脉搏波信号的波形对比图;
图4是本申请实施例提供的心电信号和心音信号的时频对比图;
图5是本申请实施例提供的心电信号和指尖脉搏波信号的时频对比图;
图6是本申请实施例提供的生理参数的采集装置的示意性框图;
图7是本申请实施例提供的生理参数的采集装置的示意性结构图;
图8是本申请实施例提供的另一生理参数的采集装置的示意性结构图;
图9是本申请实施例提供的又一生理参数的采集装置的示意性结构图;
图10是本申请实施例提供的又一生理参数的采集装置的示意性结构图;
图11是本申请实施例提供的又一生理参数的采集装置的示意性结构图;
图12是本申请实施例提供的又一生理参数的采集装置的示意性结构图;
图13是本申请实施例提供的又一生理参数的采集装置的示意性结构图;
图14是本申请实施例提供的又一生理参数的采集装置的示意性结构图;
图15是本申请实施例提供的又一生理参数的采集装置的示意性结构图;
图16是本申请实施例提供的又一生理参数的采集装置的示意性结构图;
图17是本申请实施例提供的又一生理参数的采集装置的示意性结构图;
图18是本申请实施例提供的又一生理参数的采集装置的示意性结构图;
图19是本申请实施例提供的又一生理参数的采集装置的示意性结构图;
图20是本申请实施例提供的又一生理参数的采集装置的示意性结构图;
图21是本申请实施例提供的又一生理参数的采集装置的示意性结构图;
图22是本申请实施例提供的又一生理参数的采集装置的示意性结构图;
图23是本申请实施例提供的又一生理参数的采集装置的示意性结构图;
图24是本申请实施例提供的又一生理参数的采集装置的示意性结构图;
图25是本申请实施例提供的终端设备的示意性结构图;
图26是本申请实施例提供的生理参数的处理方法的示意性流程图;
图27是本申请实施例提供的生理参数的处理方法的示意性流程图;
图28是本申请实施例提供的显示界面示意图;
图29是本申请实施例提供的另一显示界面示意图;
图30是本申请实施例提供的又一显示界面示意图;
图31是本申请实施例提供的又一显示界面示意图;
图32是本申请实施例提供的又一显示界面示意图;
图33是本申请实施例提供的又一显示界面示意图;
图34是本申请实施例提供的又一显示界面示意图;
图35是本申请实施例提供的又一显示界面示意图;
图36是本申请实施例提供的另一生理参数的处理方法的示意性流程图;
图37是本申请实施例提供的又一显示界面示意图;
图38是本申请实施例提供的又一显示界面示意图;
图39是本申请实施例提供的又一显示界面示意图;
图40是本申请实施例提供的又一显示界面示意图;
图41是本申请实施例提供的生理参数的处理装置的示意性框图;
图42是本申请实施例提供的生理参数的采集装置的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
为便于理解本申请,下面首先简单介绍本申请中涉及的几个信号。
1、心音信号
图1中示出了心音信号的时频图,其中,S1阶段为心脏的收缩期,S2阶段为心脏的舒张期,由图1可以看出,冠心病患者在S2阶段,由于血管阻塞,心音信号上会有高频部分频谱能量和出现。因此,高频部分频谱能量和可以作为判断用户动脉硬化以及冠心病患病风险的敏感特征。
高频部分频谱能量和可以通过公式(1)得到:
S power=sum(P(M:end))               公式(1)
其中,P=Y*conj(Y)/N,Y=TTF(y,N),S power为高频部分频谱能量和,P为功率谱密度,即测量不同频率下的能量,sum()表示求和操作,(M:end)表示从第M个开始,一直加到最后一个,conj()表示复共轭操作,Y表示傅里叶变换的结果,y为心音信号,N为傅里叶变换的点数,一般选取为2的整数次方,FFT()表示傅里叶变换操作。
其中,公式(1)得到的值越大,用户发生动脉硬化或者冠心病风险的可能性越大。
2、指尖脉搏波信号
图2中示出了指尖脉搏波信号的时频图,其中,T 1为从波谷到主波波峰的时间,T 2为从主波波峰到重搏波波峰的时间,T 3为脉搏波的周期,H 1为重搏波的幅值,H 2为主波的幅值。
以下公式(2)至公式(5)中提供的指标可以作为判断用户动脉硬化以及冠心病患病风险的敏感特征:
归一化波峰时间=T1/H height             公式(2)
波峰比率=T1/T3                 公式(3)
硬化指数=H height/T2                 公式(4)
反射指数=H1/H2                 公式(5)
其中,H height为用户的身高。公式(2)至公式(5)得到的值越大,用户发生动脉硬化或者冠心病风险的可能性越大。
图3示出了指尖脉搏波信号和手腕脉搏波信号的波形对比图,由图3中可以看出,由于指尖上包含末梢神经,通过指尖采集的指尖脉搏波信号的波形完整性优于手腕脉搏波信号的波形,例如手腕脉搏波信号的波形图中的重搏波更加明显。
3、心电信号
图4中示出了心电信号和心音信号的时频对比图,其中,第一个心音出现在心电图R波之后,因此,心电信号可以辅助进行心音信号的分割。
图5示出了心电信号和指尖脉搏波信号的时频对比图,其中,脉搏波传导时间为脉搏波从心脏传输到记录部位的时间,能够反映心脏的健康情况。因此,脉搏波传导时间可以作为判断用户动脉硬化以及冠心病患病风险的敏感特征。
脉搏波传导时间可以通过公式(6)得到:
T PTT=T PPG-T ECG              公式(6)
其中,T ECG指的是一个心跳周期内心电产生的时间,T PPG表示的是脉搏波传输到手腕处的时间。
其中,公式(6)得到的值越大,用户发生动脉硬化或者冠心病风险的可能性越大。
需要说明的是,上面仅列举了几种常用的心音信号、心电信号和指尖脉搏波信号的敏感特征,但是这三种信号的敏感特征并不限于上述几种,只要满足上面说的敏感特征与用户发生动脉硬化或冠心病风险的关系的指标都可以作为敏感特征。
图6示出了本申请实施例提供的生理参数的采集装置100的示意性框图。如图6所示,采集装置100包括心音传感器110、心电传感器120、指尖脉搏波传感器130和输出端140,其中,心电传感器120包括第一电极121和第二电极122,第一电极121和第二电极122的极性相反。
心音传感器110用于采集用户的心音信号,心电传感器120用于采集用户的心电信号,指尖脉搏波传感器130用于采集用户的指尖脉搏波信号,输出端140用于输出所述心音信号、所述心电信号和所述指尖脉搏波信号。
可选地,所述采集装置100还可以包括基座150,如图7所示,基座150包括第一表面151和第二表面152,第一表面151为与用户冠状动脉检测区域处的皮肤接触的一面,第二表面152为与第一表面151相对的一面(即第二表面152为与用户手指接触的一面)。
需要说明的是,冠状动脉检测区域为用于检测冠状动脉的区域,例如用户的左侧第四肋骨处。
需要说明的是,本申请实施例提供的采集装置中的第一表面151还可以与用户的颈动脉检测区域处的皮肤接触,即该心音传感器还可以采集用户的颈动脉处的心音信号,该颈动脉处的心音信号可以用于检测用于与颈动脉相关的疾病。
可选地,本申请实施例中的基座150的表面形状可以为多种,图7中仅示意性示出基座150的表面形状为圆形,但本申请实施例不限于此。
例如,基座150的表面形状还可以为四边形、多边形,或其他不规则形状等。
可选地,心音传感器110、心电传感器120和指尖脉搏波传感器130可以采用多种设 置方式设置在基座150上,本申请实施例对此不作限定。
作为一种可能的实现方式,心音传感器110和第一电极121可以设置在第一表面151上,如图9所示;指尖脉搏波传感器130和第二电极122可以设置在第二表面152上,如图8所示。
可选地,基座150的每个表面上的多个传感器之间可以独立设置或嵌套设置,本申请实施例对此不作限定。
下面将以第二表面152为例,介绍第二表面152上的各传感器的设置方式。
可选地,第二表面152上的指尖脉搏波传感器130和第二电极122可以独立设置,如图8所示;或者,第二表面152上的指尖脉搏波传感器130和第二电极122可以嵌套设置,如图10所示,第二电极122的表面形状为圆环,指尖脉搏波传感器130设置在该圆环的中心区域。
可选地,当指尖脉搏波传感器130和第二电极122嵌套设置时,还可以是指尖脉搏波传感器130的表面形状为圆环,第二电极122设置在该圆环的中心区域,本申请对这两个传感器之间的嵌套关系不作限定。
可选地,指尖脉搏波传感器130和第二电极122嵌套设置时,指尖脉搏波传感器130和第二电极122之间可以紧密嵌套,或者可以存在间隙,本申请实施例对此不作限定。
可选地,指尖脉搏波传感器130和第二电极122的表面形状可以为多种,图8中仅示意性示出指尖脉搏波传感器130和第二电极122的表面形状为圆形,图10中仅示意性示出第二电极122的表面形状为圆环,指尖脉搏波传感器130的表面形状为圆形,但本申请实施例不限于此。
例如,图8中的指尖脉搏波传感器130和第二电极122的表面形状还可以为四边形、多边形,或其他不规则形状等。
又例如,图10中的第二电极122的表面形状还可以为方环,指尖脉搏波传感器130的表面形状还可以为方形(紧密嵌套);第二电极122的表面形状还可以为圆环,指尖脉搏波传感器130的表面形状为方形(存在间隙)等。
可选地,指尖脉搏波传感器130和第二电极122在第二表面152上的设置位置可以为多种,图8和图10中仅示意性示出两种可能的设置位置,但本申请实施例不限于此。
可选地,当第二表面152上的传感器采用如图8所示的设置方式时,第二表面152上可以包括与手指形状匹配的第一凹槽161和第二凹槽162,其中,指尖脉搏波传感器130设置在第一凹槽161的槽底区域,第二电极122设置在第二凹槽162的槽底区域,如图11所示(第一表面上的传感器未示出)。
类似地,当第二表面152上的传感器采用如图10所示的设置方式时,第二表面152上可以包括与手指形状匹配的第三凹槽163,其中,指尖脉搏波传感器130和第二电极122嵌套后设置在第三凹槽163的槽底区域,如图12所示(第一表面上的传感器未示出)。
需要说明的是,第一表面151上的心音传感器110和第一电极151的设置方式可以如图9、图13和图14所示,为避免重复,此处不再赘述。
又例如,图15示意性示出了本申请实施例提供的一种生理参数的采集装置100的结构图,如图15中所示,该基座150包括第一表面151和第二表面152,第二表面152上包括与手指匹配的第三凹槽163,指尖脉搏波传感器130和第二电极122嵌套设置在第三 凹槽163的槽底区域,心音传感器110和第一电极121嵌套设置在第一表面151上。
应理解,指尖脉搏波传感器130和第二电极122设置在第二表面152靠近中心区域的位置,心音传感器110和第一电极121设置在第一表面151靠近中心区域的位置,有利于避免由于基座与用户皮肤接触不充分,导致采集的信号噪声大或者波形不完整。
可选地,本申请中的心电传感器120可以采用双电极测量电路或三电极测量电路。双电极测量电路包括第一电极121(即工作电极)和第二电极122(即对电极),第一电极121和第二电极122的极性相反;三电极测量电路包括第一电极121(即工作电极)、第二电极122(即对电极)和第三电极123(即参比电极),第一电极121和第二电极122的极性相反,第三电极123上具有预设的恒定电位。
应理解,心电传感器120采用三电极测量电路时,通过第一电极121和第二电极122之间的电位差获取心电信号,而第三电极123上具有预设的恒定点位,为第一电极121和第二电极122提供基准电位,能够降低测量过程中产生的噪声,从而提高共模抑制比。
作为另一种可能的实现方式,当心电传感器120采用三电极测量电路时,心音传感器110和第一电极121可以设置在第一表面151上,指尖脉搏波传感器130和第二电极122可以设置在第二表面152上,第三电极123可以设置在第一表面151或第二表面152上。
可选地,基座150的每个表面上的不同传感器之间可以相互独立,或者可以嵌套在一起,本申请实施例对此不作限定。
下面将以第三电极123设置在第二表面152为例,介绍第二表面152上的各传感器的设置方式。
可选地,第二表面152上的指尖脉搏波传感器130、第二电极122和第三电极123可以独立设置,如图16所示;或者,第二表面152上的指尖脉搏波传感器130、第二电极122和第三电极123可以嵌套设置,如图17所示,第二电极122和第三电极123的表面形状均为半圆环,指尖脉搏波传感器130设置在两个半圆环包围形成的中心区域。
可选地,当指尖脉搏波传感器130、第二电极122和第三电极123嵌套设置时,还可以是第二电极122和指尖脉搏波传感器130的表面形状均为半圆环,第三电极123设置在两个半圆环包围形成的中心区域,本申请对这三个传感器之间的嵌套关系不作限定。
可选地,指尖脉搏波传感器130、第二电极122和第三电极123嵌套设置时,第二电极122和第三电极123形成的半圆环和指尖脉搏波传感器130之间可以紧密嵌套,或者可以存在间隙,本申请实施例对此不作限定。
可选地,指尖脉搏波传感器130、第二电极122和第三电极123的表面形状可以为多种,图16中仅示意性示出指尖脉搏波传感器130、第二电极122和第三电极123的表面形状为圆形,图17中仅示意性示出第二电极122和第三电极123的表面形状为半圆环,指尖脉搏波传感器130的表面形状为圆形,但本申请实施例不限于此。
例如,图16中的指尖脉搏波传感器130、第二电极122和第三电极123的表面形状还可以为四边形、多边形,或其他不规则形状等。
又例如,图17中的第二电极122和第三电极123的表面形状还可以为半方环,指尖脉搏波传感器130的表面形状还可以为方形(紧密嵌套);第二电极122和第三电极123的表面形状还可以为半方环,指尖脉搏波传感器130的表面形状为圆形(存在间隙)等。
可选地,指尖脉搏波传感器130、第二电极122和第三电极123在第二表面152上的 设置位置可以为多种,图16和图17中仅示意性示出两种可能的设置位置,但本申请实施例不限于此。
类似的,当第二表面152上的传感器采用如图16所示的设置方式时,第二表面152上可以包括与手指形状匹配的第四凹槽、第五凹槽和第六凹槽,其中,指尖脉搏波传感器130设置在第四凹槽的槽底区域,第二电极122设置在第五凹槽的槽底区域,第三电极123设置在第六凹槽的槽底区域,具体设置方式可以参考图11。
类似地,当第二表面152上的传感器采用如图17所示的设置方式时,第二表面152上可以包括与手指形状匹配的第七凹槽,指尖脉搏波传感器130、第二电极122和第三电极123嵌套后设置在第七凹槽的槽底区域,具体设置方式可以参考图12。
需要说明的是,第三电极123设置在第一表面151上时,第一表面151上的心音传感器110、第一电极151和第三电极123的设置方式可以如图18和图19所示,为避免重复,此处不再赘述。
应理解,指尖脉搏波传感器130和第二电极122设置在第二表面152靠近中心区域的位置,心音传感器110、第一电极121和第三电极123设置在第一表面151靠近中心区域的位置,有利于避免由于基座与用户皮肤接触不充分,导致采集的信号噪声大或者波形不完整。
可选地,所述采集装置100还可以包括握柄170,如图20所示,握柄170设置在基座150的第二表面152上。
可选地,心音传感器110、心电传感器120和指尖脉搏波传感器130可以采用多种设置方式设置在基座150和握柄170上,本申请实施例对此不作限定。
作为一种可能的实现方式,如图21所示,当心电传感器120采用双电极测量电路时,心音传感器110和第一电极121可以设置在第一表面151上;指尖脉搏波传感器130和第二电极122可以设置在握柄170上。
下面将介绍握柄170上的各传感器的设置方式(以下介绍的图中未示出第一表面151上的传感器)。
可选地,握柄170上的指尖脉搏波传感器130和第二电极122可以独立设置,如图21所示(基座150上的传感器未示出);或者,握柄170上的指尖脉搏波传感器130和第二电极122可以嵌套设置,如图22所示,其中,第二电极122的表面形状为圆环,指尖脉搏波传感器130的表面形状为圆形,且设置在该圆环的中心区域。
可选地,指尖脉搏波传感器130和第二电极122嵌套设置时,指尖脉搏波传感器130和第二电极122之间可以紧密嵌套,或者可以存在间隙,本申请实施例对此不作限定。
可选地,图21中的指尖脉搏波传感器130和第二电极122的表面形状还可以为圆形、多边形,或其他不规则形状等;图22中的第二电极122的表面形状还可以为圆环,指尖脉搏波传感器130的表面形状还可以为圆形(紧密嵌套);第二电极122的表面形状还可以为圆环,指尖脉搏波传感器130的表面形状为方形(存在间隙)等。
可选地,指尖脉搏波传感器130和第二电极122在握柄170上的设置位置可以为多种,图21和图22中仅示意性示出两种可能的设置位置,但本申请实施例不限于此。
可选地,当握柄170上的传感器采用如图21所示的设置方式时,握柄170上可以包括与手指形状匹配的第八凹槽164和九凹槽165,其中,指尖脉搏波传感器130设置在第 八凹槽164的槽底区域,第二电极122设置在第九凹槽165的槽底区域,如图23所示。
类似地,当握柄170上的传感器采用如图22所示的设置方式时,握柄170上可以包括与手指形状匹配的第十凹槽166,其中,指尖脉搏波传感器130和第二电极122嵌套后设置在第十凹槽166的槽底区域,如图24所示。
需要说明的是,第一表面151上的心音传感器110和第一电极151的设置方式可以如图9、图13和图14所示,为避免重复,此处不再赘述。
作为另一种可能的实现方式,当心电传感器120采用三电极测量电路时,心音传感器110和第一电极121可以设置在第一表面151上,指尖脉搏波传感器130和第二电极122可以设置在握柄170上,第三电极123可以设置在第一表面151或握柄170上,具体设置方式可以参考上述三种可能的实现方式,为避免重复,此处不再赘述。
可选地,输出端140的设置位置可以为多种,本申请实施例对此不作限定。
例如,该输出端140可以设置在第一表面151上、第二表面152上、第一表面151和第二表面152之间形成的内腔、握柄170的柄身内部等,本申请实施例对此不作限定。
需要说明的是,上述生理参数的采集装置可以与生理参数的处理装置搭配使用,该处理装置用于接收该采集装置发送的心音信号、心电信号和指尖脉搏波信号,并通过本申请提供的生理参数的处理方法(下文将详细介绍)对所述心音信号、所述心电信号和所述指尖脉搏波信号进行处理,得到用户患冠心病的风险信息,所述风险信息用于指示所述用户的患病风险,最后向用户输出该风险信息。
可选地,该采集装置和该处理装置可以为独立的设备,或者该采集装置和该处理装置可以作为功能模块集成在一个设备中,本申请实施例对此不作限定。
作为一种可能的实现方式,该采集装置和该处理装置为两个独立的设备,该处理装置可以通过通信网络接收采集装置发送的心音信号、心电信号和指尖脉搏波信号。
需要说明的是,上述通信网络可以是局域网,也可以是通过中继(relay)设备转接的广域网,或者包括局域网和广域网。当该通信网络为局域网时,示例性的,该通信网络可以是wifi热点网络、wifi P2P网络、蓝牙网络、zigbee网络或近场通信(near field communication,NFC)网络等近距离通信网络。当该通信网络为广域网时,示例性的,该通信网络可以是第三代移动通信技术(3rd-generation wireless telephone technology,3G)网络、第四代移动通信技术(the 4th generation mobile communication technology,4G)网络、第五代移动通信技术(5th-generation mobile communication technology,5G)网络、未来演进的公共陆地移动网络(public land mobile network,PLMN)或因特网等,本申请实施例对此不作限定。
可选地,生理参数的采集装置100的输出端140可以为天线,生理参数的处理装置可以为具有运算和处理功能的设备,例如可以为终端设备、可穿戴设备等,本申请实施例对此不作限定。
还需要说明的是,本申请中的终端设备,又可称之为用户设备(user equipment,UE),可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端设备可以是手机(mobile phone)、平板电脑(pad)、具备无线通讯功能的可穿戴设备(如智能手表)、具有定位功能的位置追踪器、带无线收发功能的电脑、虚拟现实(virtual reality,VR)设备、增强现实(augmented  reality,AR)设备、工业控制(industrial control)中的无线设备、无人驾驶(self driving)中的无线设备、远程医疗(remote medical)中的无线设备、智能电网(smart grid)中的无线设备、运输安全(transportation safety)中的无线设备、智慧城市(smart city)中的无线设备、智慧家庭(smart home)中的无线设备等,本申请实施例对此不作限定。
以终端设备是手机为例,图25示出了手机200的结构示意图。
手机200可以包括处理器210,外部存储器接口220,内部存储器221,USB接口230,充电管理模块240,电源管理模块241,电池242,天线1,天线2,移动通信模块251,无线通信模块252,音频模块270,扬声器270A,受话器270B,麦克风270C,耳机接口270D,传感器模块280,按键290,马达291,指示器292,摄像头293,显示屏294,以及SIM卡接口295等。其中传感器模块280可以包括陀螺仪传感器280A,加速度传感器280B,接近光传感器280G、指纹传感器280H,触摸传感器280K、转轴传感器280M(当然,手机200还可以包括其它传感器,比如温度传感器,压力传感器、距离传感器、磁传感器、环境光传感器、气压传感器、骨传导传感器等,图中未示出)。
可以理解的是,本申请实施例示意的结构并不构成对手机200的具体限定。在本申请另一些实施例中,手机200可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器210可以包括一个或多个处理单元,例如:处理器210可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(Neural-network Processing Unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。其中,控制器可以是手机200的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器210中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器210中的存储器为高速缓冲存储器。该存储器可以保存处理器210刚用过或循环使用的指令或数据。如果处理器210需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器210的等待时间,因而提高了系统的效率。
处理器210可以运行本申请提供的生理参数的处理方法(下文中详细介绍),通过对心音信号、心电信号和指尖脉搏波信号进行处理,得到用户患冠心病的风险信息,实现用户的冠心病患病风险的检测。当处理器210集成不同的器件,比如集成CPU和GPU时,CPU和GPU可以配合执行本申请实施例提供的处理方法,比如该处理方法部分算法由CPU执行,另一部分算法由GPU执行,以得到较快的处理效率。
显示屏294用于显示图像,视频等。显示屏294包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,手机200可以包括1个或N个显示屏294,N为大于1的正整数。
摄像头293(前置摄像头或者后置摄像头,或者一个摄像头既可作为前置摄像头,也可作为后置摄像头)用于捕获静态图像或视频。通常,摄像头293可以包括感光元件比如镜头组和图像传感器,其中,镜头组包括多个透镜(凸透镜或凹透镜),用于采集待拍摄物体反射的光信号,并将采集的光信号传递给图像传感器。图像传感器根据所述光信号生成待拍摄物体的原始图像。
内部存储器221可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器210通过运行存储在内部存储器221的指令,从而执行手机200的各种功能应用以及信号处理。内部存储器221可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,应用程序(比如相机应用,微信应用等)的代码等。存储数据区可存储手机200使用过程中所创建的数据(比如相机应用采集的图像、视频等)等。
内部存储器221还可以存储本申请实施例提供的防误触算法的代码。当内部存储器321中存储的防误触算法的代码被处理器210运行时,可以对折叠或者展开过程中的触摸操作进行屏蔽。
此外,内部存储器221可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
当然,本申请实施例提供的用于实现视频编辑的算法的代码还可以存储在外部存储器中。这种情况下,处理器210可以通过外部存储器接口220运行存储在外部存储器中算法的代码,实现对视频进行编辑。
下面介绍传感器模块280的功能。
陀螺仪传感器280A,可以用于确定手机200的运动姿态。在一些实施例中,可以通过陀螺仪传感器280A确定手机200围绕三个轴(即,x,y和z轴)的角速度。即陀螺仪传感器280A可以用于检测手机200当前的运动状态,比如抖动还是静止。
加速度传感器280B可检测手机200在各个方向上(一般为三轴)加速度的大小。即陀螺仪传感器280A可以用于检测手机200当前的运动状态,比如抖动还是静止。
接近光传感器380G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。手机通过发光二极管向外发射红外光。手机使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定手机附近有物体。当检测到不充分的反射光时,手机可以确定手机附近没有物体。
陀螺仪传感器280A(或加速度传感器280B)可以将检测到的运动状态信息(比如角速度)发送给处理器210。处理器210基于运动状态信息确定当前是手持状态还是脚架状态(比如,角速度不为0时,说明手机200处于手持状态)。
指纹传感器280H用于采集指纹。手机200可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
触摸传感器280K,也称“触控面板”。触摸传感器280K可以设置于显示屏294,由触摸传感器280K与显示屏294组成触摸屏,也称“触控屏”。触摸传感器280K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏294提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器280K也可以设置于手机200的表面,与显示屏294所处的位置不同。
示例性的,手机200的显示屏294显示主界面,主界面中包括多个应用(比如相机应 用、微信应用等)的图标。用户通过触摸传感器280K点击主界面中相机应用的图标,触发处理器210启动相机应用,打开摄像头293。显示屏294显示相机应用的界面,例如取景界面。
手机200的无线通信功能可以通过天线1,天线2,移动通信模块251,无线通信模块252,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。手机200中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块251可以提供应用在手机200上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块251可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块251可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块251还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块351的至少部分功能模块可以被设置于处理器210中。在一些实施例中,移动通信模块351的至少部分功能模块可以与处理器210的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器270A,受话器270B等)输出声音信号,或通过显示屏294显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器310,与移动通信模块351或其他功能模块设置在同一个器件中。
无线通信模块252可以提供应用在手机200上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块252可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块352经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器210。无线通信模块252还可以从处理器210接收待发送的信号,对其进行调频、放大,经天线2转为电磁波辐射出去。
在一些实施例中,手机200的天线1和移动通信模块251耦合,天线2和无线通信模块252耦合,使得手机200可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global  navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS))和/或星基增强系统(satellite based augmentation systems,SBAS)。
另外,手机200可以通过音频模块270,扬声器270A,受话器270B,麦克风270C,耳机接口270D,以及应用处理器等实现音频功能。例如音乐播放,录音等。手机200可以接收按键290输入,产生与手机200的用户设置以及功能控制有关的键信号输入。手机200可以利用马达291产生振动提示(比如来电振动提示)。手机200中的指示器292可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。手机200中的SIM卡接口295用于连接SIM卡。SIM卡可以通过插入SIM卡接口295,或从SIM卡接口295拔出,实现和手机200的接触和分离。
应理解,在实际应用中,手机200可以包括比图25所示的更多或更少的部件,本申请实施例不作限定。
作为另一种可能的实现方式,该采集装置和该处理装置可以作为两个功能模块集成在同一个设备,例如冠心病测量设备中,该处理装置可以通过内部总线接收该采集装置发送的心音信号、心电信号和指尖脉搏波信号。
可选地,上述采集装置100的输出端140可以为内部总线的接口。
可选地,本申请实施例中所述的冠心病测量设备可以为可穿戴设备,也称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,如智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰、贴片等,本申请实施例对此不作限定。
在一种可能的设计中,当采集装置和处理装置为两个独立的设备时,所述处理装置可以被替换为芯片装置,例如可以为可用于装置中的通信芯片,用于实现装置中处理器的相关功能。该芯片装置可以为实现相关功能的现场可编程门阵列,专用集成芯片,系统芯片,中央处理器,网络处理器,数字信号处理电路,微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选的可以包括一个或多个存储器,用于存储程序代码,当所述代码被执行时,使得处理器实现相应的功能。
可选地,该芯片装置可以为上述终端设备,例如手机中的芯片装置。
上面结合图6至图25介绍了本申请实施例提供的生理参数的采集装置和生理参数的处理装置。下面将结合图26介绍本申请实施例提供的生理参数的处理方法300。
图26示出了本申请实施例提供的生理参数的处理方法300的示意性流程图。应理解,该处理方法300可以由生理参数的处理装置执行。
S310,获取用户的心音信号、心电信号和指尖脉搏波信号。
可选地,处理装置可以通过多种方式获取心音信号、心电信号和指尖脉搏波信号,本申请实施例对此不作限定。
作为一种可能的实现方式,处理装置可以接收采集装置发送的所述心音信号、所述心 电信号和所述指尖脉搏波信号。
例如,采集装置采集心音信号、心电信号和该指尖脉搏波信号;以及向所述处理装置发送该心音信号、该心电信号和该指尖脉搏波信号;相应地,该处理装置接收该采集装置发送的该心音信号、该心电信号和该指尖脉搏波信号。
作为另一种可能的实现方式,处理装置可以自己采集用户的心音信号、心电信号和指尖脉搏波信号。
S320,根据所述心音信号、所述心电信号和所述指尖脉搏波信号,确定所述用户的风险信息,所述风险信息用于指示用户患冠心病的风险。
具体地,S320可以包括以下步骤:
步骤1:根据所述心音信号,确定所述心音信号的敏感特征和所述心音信号的信号质量。
作为一种可能的实现方式,该心音信号的敏感特征为高频部分频谱能量和时,可以通过公式(1)确定该心音信号的高频部分频谱能量和。
作为一种可能的实现方式,所述心音信号的信号质量可以通过公式(7)和公式(8)确定:
Figure PCTCN2020108947-appb-000002
Figure PCTCN2020108947-appb-000003
其中,E为期望值,X i为在i时的信号值(如心音信号幅值),μ为在i时的预期值,σ2为信号为方差,r k_*为心音信号。
作为一种可能的实现方式,可以通过采集冠心病患者与正常用户的指尖脉搏波、心音以及心电信号,评估三种信号与冠心病发病风险的相关性,从而确定其贡献度大小。
步骤2:根据所述心电信号,确定所述心电信号的敏感特征和所述心电信号的信号质量。
作为一种可能的实现方式,该心电信号的敏感特征为脉搏波传导时间时,可以通过上述公式(6)确定该心音信号的脉搏波传导时间。
作为一种可能的实现方式,所述心电信号的信号质量可以通过公式(7)和公式(8)确定,其中,r k_*为心电信号。
步骤3:根据所述指尖脉搏波信号,确定所述指尖脉搏波信号的敏感特征和所述指尖脉搏波信号的信号质量。
作为一种可能的实现方式,指尖脉搏波信号的敏感特征可以为归一化波峰时间、波峰比率、硬化指数和反射指数中的至少一种。
例如,指尖脉搏波信号的敏感特征为归一化波峰时间、波峰比率、硬化指数或反射指数时,可以通过上述公式(2)至公式(5)确定。
作为一种可能的实现方式,所述指尖脉搏波信号的信号质量可以通过公式(7)和公式(8)确定,其中,r k_*为指尖脉搏波信号。
步骤4:根据所述心音信号的敏感特征、所述心音信号的信号质量、所述心电信号的敏感特征、所述心电信号的信号质量、所述指尖脉搏波信号的敏感特征和所述指尖脉搏波 信号的信号质量,确定所述用户的风险信息。
在一种可能的实现方式中,可以根据所述心音信号的敏感特征、预设的第一映射关系、所述心音信号的信号质量、所述心音信号对冠心病预测的贡献度、所述心电信号的敏感特征、预设的第二映射关系、所述心电信号的信号质量、所述心电信号对冠心病预测的贡献度、所述指尖脉搏波信号的敏感特征、预设的第三映射关系、所述指尖脉搏波信号的信号质量和所述指尖脉搏波信号对冠心病预测的贡献度,确定所述用户的风险信息。
需要说明的是,所述第一映射关系用于表示心音信号的敏感特征和冠心病患病风险之间的对应关系。
例如,该第一映射关系可以通过公式(9)表示:
f pcg(S pcg)=g(S power)            公式(9)
其中,S pcg表示心音信号,S power表示心音高频部分频谱能量和,g表示归一化函数,如sigmoid函数。
还需要说明的是,所述第二映射关系用于表示所述心电信号的敏感特征和冠心病患病风险之间的对应关系。
例如,该第二映射关系可以通过公式(10)表示:
f ecg(S ecg)=g(T PTT)            公式(10)
其中,S ecg表示心电信号,T PTT表示脉搏波传导时间,g表示归一化函数,如sigmoid函数。
还需要说明的是,所述第三映射关系用于表示所述指尖脉搏波信号的敏感特征和冠心病患病风险之间的对应关系。
例如,该第三映射关系可以通过公式(11)表示:
Figure PCTCN2020108947-appb-000004
其中,S ppg表示指尖脉搏波信号,H height表示身高,T 2表示主波到重搏波峰之间的时间,H 1表示重搏波幅值,H 2表示主波幅值,g表示归一化函数,如sigmoid函数。
还需要说明的是,上述每种信号对冠心病预测的贡献度可以为提前预设的。具体地,可以根据每种信号(即心电信号、心音信号或指尖脉搏波信号)预测样本用户患冠心病的正确率,确定所述每种信号对冠心病预测的贡献度。
例如,统计50个冠心病患者和50个正常人的心电信号、心音信号和指尖脉搏波信号,其中,仅通过指尖脉搏波信号预测是否患病的正确率为70%,仅通过心音信号预测是否患病的正确率率为50%,仅通过心电信号预测是否患病的正确率为80%,因此,可以得到指尖脉搏波信号的贡献度w ppg为0.7,心音信号的贡献度为w pcg为0.5,心电信号的贡献度w ecg为0.8。
还需要说明的是,步骤4中的风险信息R可以通过公式(12)确定:
Figure PCTCN2020108947-appb-000005
S330,输出所述风险信息。
可选地,该处理装置可以采用多种方式输出所述风险信息,本申请实施例对此不作限定。
在一种可能的实现方式中,该处理装置可以包括显示屏,通过该显示屏向所述用户显示该风险信息。
例如,在显示屏上输出“您的冠心病发病风险为20%”。
在另一种可能的实现方式中,该处理装置可以包括马达,通过控制马达震动向用户输出该风险信息。
例如,当R值超过第一预设值,例如50%时,控制马达震动。
在又一种可能的实现方式中,该处理装置可以包括指示灯,通过控制指示灯颜色或亮度,向用户输出该风险信息。
例如,当R值低于第二预设值,例如20%时,控制指示灯呈绿色;当R值高于第三预设值,例如70%时,控制指示灯呈红色;当R值在第二预设值和第三预设值之间时,控制指示灯呈黄色。
又例如,当R值高于该第三预设值时,控制指示灯点亮。
本申请实施例以下将结合附图和具体地应用场景,对本申请实施例提供的生理参数的处理方法400进行详细介绍,如图27所示,具体步骤如下。
需要说明的是,下述流程中以采集装置和处理装置为独立的设备为例,详细介绍采集装置与处理装置搭配使用时,采集并处理信号的流程。
其中,采集装置以带握柄的结构为例,处理装置以手机为例。
S410,采集装置通过蓝牙与处理装置建立连接。
S420,采集装置接获取用户的测量指令,进入测量模式。
可选地,在S420之前,用户使用拇指与食指捏持该采集装置,并将采集装置的第一表面与心脏测试点处的皮肤接触,如图28所示。
可选地,采集装置可以通过多种方式获取测量指令,本申请实施例对此不作限定。
例如,手机向用户呈现如图29所示的显示界面,当用户点击“开始测量”时,该生理参数的采集装置获取到用户的测量指令。
又例如,用户保持手指与心脏测试点处皮肤与采集装置上相应的传感器接触时间超过预设时长(例如2秒)时,该采集装置获取到用户的测量指令。
S430,采集装置根据该测量指令,测量用户的心音信号、心电信号和指尖脉搏波信号。
例如,手机可以向用户呈现如图30所示的显示界面,并开始采集信号。
S440,采集装置通过蓝牙将该心音信号、该心电信号和该指尖脉搏波信号传输至手机。
可选地,在S440之前,采集装置可以获取传输指令,并根据该传输指令,将该心音信号、该心电信号和该指尖脉搏波信号传输至手机。
例如,手机可以向用户呈现如图31所示的显示界面,当用户点击“开始传输”时,采集装置获取到用户的传输指令,采集装置根据该传输指令,向手机传输该心音信号、该心电信号和该指尖脉搏波信号。
S450,手机根据该心音信号、该心电信号和该指尖脉搏波信号,确定用户的风险信息。
例如,手机通过上述公式(7)和公式(8)计算得到心音信号、心电信号和指尖脉搏波信号的信号质量分别为0.6、0.1和0.3;根据前期大数据分析得到心音信号、心电信号以及指尖脉搏波信号的贡献度分别为0.5、0.2和0.3;通过上述公式(9)、公式(10)和公式(11)计算得到心音信号、心电信号和指尖脉搏波信号的冠心病预测风险值分别为0.25、0.4和0.3;通过上述公式(12)计算得到最终的风险信息:
R=0.6×0.5×0.25/0.41+0.1×0.2×0.4/0.41+0.3×0.3×0.3/0.41=0.27。
S460,手机通过显示器的显示界面向用户呈现该风险信息。
例如,手机可以向用户呈现如图32所示的显示界面。
可选地,所述方法还包括:通过所述显示界面向用户显示所述心音信号、所述心电信号和所述指尖脉搏波信号。
例如,手机可以向用户呈现如图33所示的显示界面。
可选地,所述方法还包括:当所述风险信息大于或等于预设的阈值时,通过所述显示界面向所述用户显示提示信息,所述提示信息包括提醒所述用户就医的信息和/或提醒所述用户注意事项的信息。
例如,当风险信息大于或等于70%时,手机可以向用户呈现如图34所示的显示界面。
可选地,如图35所示,所述显示界面可以包括指令区域,所述指令区域包括急救指令区域、联系紧急联系人指令区域、疾病登记指令区域和就医指令区域中的至少一个,其中,所述急救指令区域用于获取所述用户的急救指令,所述联系紧急联系人指令区域用于获取所述用户的联系紧急联系人指令,所述医院疾病登记指令区域用于获取所述用户的登记疾病指令,所述就医指令区域用于获取所述用户的就医挂号指令,所述方法还包括:手机获取所述用户通过所述指令区域发送的目标指令,所述目标指令包括所述急救指令、所述联系紧急联系人指令和所述就医挂号指令中的至少一个;并执行与所述目标指令对应的操作,所述急救指令对应于拨打110,所述联系紧急联系人指令对应于拨打紧急联系人电话,所述登记疾病指令对应于向医院登记病情,所述就医挂号指令对应于在线就医挂号。
在一种可能的实现方式中,如图28所示,用户使用拇指与食指捏持该采集装置,并将采集装置的第一表面与心脏测试点处的皮肤接触,此时,采集装置准备测量,手机向呈现如图29所示的显示界面;用户点击“开始测量”,采集装置开始测量心音信号、心电信号和指尖脉搏波信号,手机向用户呈现如图30所示的显示界面;采集装置测量完毕时,手机呈现如图31所示的显示界面;用户点击“开始传输”,采集装置开始向手机传输测量得到的心音信号、心电信号和指尖脉搏波信号;手机接收到心音信号、心电信号和指尖脉搏波信号,对心音信号、心电信号和指尖脉搏波信号进行处理,得到风险信息,并向用户呈现如图32至35中任意一个显示界面。
上面仅示意性提供了本申请的一些可能的显示界面,但本申请实施例对此不作限定, 本申请中的显示界面还可以向用户提示其它的信息,或者为用户提供其它可操作的界面。
本申请实施例以下将结合附图和具体地应用场景,对本申请实施例提供的另一生理参数的处理方法500进行详细介绍,如图36所示,具体步骤如下。
需要说明的是,下述流程中以采集装置和处理装置为集成在同一设备为例,例如以冠心病测量设备为例,详细介绍该冠心病测量设备使用时,采集并处理信号的流程。
S510,获取用户的测量指令,进入测量模式。
可选地,在S510之前,用户使用食指与中指按压冠心病测量设备上表面,并将冠心病测量设备的下表面与心脏测试点处的皮肤接触,如图37和图38所示。
需要说明的是,图37和图38仅示出与本申请功能相关的部分,该冠心病测试设备还可以包括其他硬件(图中未示出)。
可选地,该冠心病测量设备可以通过多种方式获取测量指令,本申请实施例对此不作限定。
例如,冠心病测量设备向用户呈现如图37所示的显示界面,当用户按压“测量”按键时,该冠心病测量设备获取到用户的测量指令。
又例如,用户保持手指与心脏测试点处皮肤与冠心病测量设备上相应的传感器接触时间超过预设时长(例如2秒)时,该冠心病测量设备获取到用户的测量指令。
S520,根据该测量指令,测量用户的心音信号、心电信号和指尖脉搏波信号。
例如,冠心病测量设备上表面可以向用户呈现如图39所示的显示界面,并开始采集信号。
S530,根据该心音信号、该心电信号和该指尖脉搏波信号,确定用户的风险信息。
例如,通过上述公式(7)和公式(8)计算得到心音信号、心电信号和指尖脉搏波信号的信号质量分别为0.6、0.1和0.3;根据前期大数据分析得到心音信号、心电信号以及指尖脉搏波信号的贡献度分别为0.5、0.2和0.3;通过上述公式(9)、公式(10)和公式(11)计算得到心音信号、心电信号和指尖脉搏波信号的冠心病预测风险值分别为0.25、0.4和0.3;通过上述公式(12)计算得到最终的风险信息:
R=0.6×0.5×0.25/0.41+0.1×0.2×0.4/0.41+0.3×0.3×0.3/0.41=0.27。
S540,通过显示界面向用户呈现该风险信息。
例如,可以向用户呈现如图37所示的显示界面。
在一种可能的实现方式中,如图37和图38所示,用户使用食指与中指按压冠心病测量设备上表面,并将冠心病测量设备的下表面与心脏测试点处的皮肤接触,此时,冠心病测量设备准备测量,并向呈现如图37所示的显示界面;用户点击“开始测量”,冠心病测量设备开始测量心音信号、心电信号和指尖脉搏波信号,手机向用户呈现如图39所示的显示界面;冠心病测量设备测量完毕后,对心音信号、心电信号和指尖脉搏波信号进行处理,得到风险信息,并向用户呈现如图40所示的显示界面。
需要说明的是,所述冠心病测量设备的显示器的显示界面显示的内容可以参考图32至图35,为避免重复,此处不再赘述。
上面结合附图详细介绍了本申请实施例提供的生理参数的处理方法,下面将介绍本申请实施例提供的生理参数的处理装置和生理参数的采集装置。
图41示出了本申请实施例提供的生理参数的处理装置600的示意性框图。该处理装 置600可以对应上述处理方法300、处理方法400和处理方法500中描述的处理装置(或终端设备),并且,该处理装置600中各个模块或单元分别用于执行上述处理方法300、处理方法400和信号处理500中的处理装置(或终端设备)所执行的各动作和处理过程,这里,为了避免赘述,省略其详细说明。该处理装置600包括获取单元610、处理单元620和输出单元630。
所述获取单元610用于获取用于的心音信号、心电信号和指尖脉搏波信号。
所述处理单元620用于根据所述获取单元610获取的所述心音信号、所述心电信号和所述指尖脉搏波信号,确定用户的风险信息,所述风险信息用于指示用于的冠心病的患病风险。
所述输出单元630用于输出所述处理单元620确定的所述风险信息。
图42示出了本申请实施例提供的生理参数的采集装置700的示意性框图。该采集装置700可以对应图6中的采集装置100,并且,该采集装置700中各个模块或单元分别用于执行上述采集装置100所执行的各动作和处理过程。该采集装置700包括采集单元710和发送单元720。
所述采集单元710用于采集心音信号、心电信号和指尖脉搏波信号。
所述发送单元720用于向处理装置发送该心音信号、该心电信号和该指尖脉搏波信号。
需要说明的是,图42中的采集单元710对应于图6中的心音传感器110、心电传感器120、指尖脉搏波传感器130,图42中的发送单元720对应于图6中的输出端140。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请实施例各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:快闪存储器、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何在本申请实施例揭露的技术范围内的变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种生理参数的处理方法,其特征在于,包括:
    采集装置获取用户的心音信号、心电信号和指尖脉搏波信号;
    所述采集装置向处理装置发送所述心音信号、所述心电信号和所述指尖脉搏波信号;
    所述处理装置根据所述心音信号、所述心电信号和所述指尖脉搏波信号,确定所述用户的风险信息,所述风险信息用于指示用户患冠心病的风险;
    所述处理装置输出所述风险信息。
  2. 根据权利要求1所述的方法,其特征在于,所述处理装置根据所述心音信号、所述心电信号和所述指尖脉搏波信号,确定所述用户的风险信息,包括:
    根据所述心音信号,确定所述心音信号的敏感特征和所述心音信号的信号质量;
    根据所述心电信号,确定所述心电信号的敏感特征和所述心电信号的信号质量;
    根据所述指尖脉搏波信号,确定所述指尖脉搏波信号的敏感特征和所述指尖脉搏波信号的信号质量;
    根据所述心音信号的敏感特征、所述心音信号的信号质量、所述心电信号的敏感特征、所述心电信号的信号质量、所述指尖脉搏波信号的敏感特征和所述指尖脉搏波信号的信号质量,确定所述用户的风险信息。
  3. 根据权利要求2所述的方法,其特征在于,所述心音信号的敏感特征包括高频部分频谱能量;所述指尖脉搏波信号的敏感特征包括归一化波峰时间、波峰比率、硬化指数和反射指数中的至少一项;所述心电信号的敏感特征包括脉搏波传导时间。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述采集装置包括心音传感器、心电传感器和指尖脉搏波传感器,所述采集装置获取用户的心音信号、心电信号和指尖脉搏波信号,包括:
    通过所述心音传感器采集所述心音信号;
    通过所述心电传感器采集所述心电信号;以及
    通过所述指尖脉搏波传感器采集所述指尖脉搏波信号。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述处理装置包括显示器,所述处理装置输出所述风险信息,包括:
    通过所述显示器的显示界面向所述用户显示该风险信息。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    通过所述显示界面向用户显示所述心音信号、所述心电信号和所述指尖脉搏波信号。
  7. 根据权利要求5或6所述的方法,其特征在于,所述方法还包括:
    当所述风险信息大于或等于预设的阈值时,通过所述显示界面向所述用户显示提示信息,所述提示信息包括提醒所述用户就医的信息和/或提醒所述用户注意事项的信息。
  8. 根据权利要求5至7中任一项所述的方法,其特征在于,所述显示界面包括指令区域,所述指令区域包括急救指令区域、联系紧急联系人指令区域、疾病登记指令区域和就医指令区域中的至少一个,其中,所述急救指令区域用于获取所述用户的急救指令,所述联系紧急联系人指令区域用于获取所述用户的联系紧急联系人指令,所述医院疾病登记指令区域用于获取所述用户的登记疾病指令,所述就医指令区域用于获取所述用户的就医 挂号指令,所述方法还包括:
    获取所述用户通过所述指令区域发送的目标指令,所述目标指令包括所述急救指令、所述联系紧急联系人指令和所述就医挂号指令中的至少一个;
    执行与所述目标指令对应的操作,所述急救指令对应于拨打110,所述联系紧急联系人指令对应于拨打紧急联系人电话,所述登记疾病指令对应于向医院登记病情,所述就医挂号指令对应于在线就医挂号。
  9. 一种生理参数的采集装置,其特征在于,包括:心音传感器、心电传感器、指尖脉搏波传感器和输出端;
    所述心音传感器用于采集用户的心音信号,并传输至所述处理器;
    所述心电传感器用于采集所述用户的心电信号,并传输至所述处理器;
    所述指尖脉搏波传感器用于采集所述用户的指尖脉搏波信号,并传输至所述处理器;
    所述输出端用于输出所述风险信息。
  10. 根据权利要求9所述的装置,其特征在于,所述心电传感器包括第一电极、第二电极和第三电极,所述第一电极和所述第二电极的极性相反,所述第三电极上具有预设的恒定电位。
  11. 根据权利要求10所述的装置,其特征在于,所述装置还包括基座,所述基座包括第一表面和第二表面,所述第一表面与所述第二表面相对设置,其中,所述第一表面为与所述用户的冠状动脉检测区域处的皮肤接触的一面,所述第二表面为与所述用户的手指接触的一面;
    所述心音传感器和所述第一电极设置在所述第一表面上;
    所述指尖脉搏波传感器和所述第二电极设置在所述第二表面上;
    所述第三电极设置在所述第一表面上或所述第二表面上;
    所述输出端设置在所述第一表面和所述第二表面之间形成的内腔中、或所述第一表面上、或所述第二表面上。
  12. 根据权利要求11所述的装置,其特征在于,所述第三电极设置在所述第一表面上;
    所述心音传感器、所述第一电极和所述第三电极嵌套在一起,并设置在所述第一表面上;
    所述指尖脉搏波传感器和所述第二电极嵌套在一起,并设置在所述第二表面上。
  13. 根据权利要求12所述的装置,其特征在于,
    所述第二表面上包括与手指形状匹配的凹槽,所述指尖脉搏波传感器和所述第二电极嵌套设置在所述凹槽的槽底区域。
  14. 根据权利要求10所述的装置,其特征在于,所述装置还包括基座和握柄,所述基座包括第一表面和第二表面,所述第一表面与所述第二表面相对设置,所述握柄设置在所述第二表面上,其中,所述第一表面为与所述用户的冠状动脉检测区域处的皮肤接触的一面,所述第二表面为与所述用户的手指接触的一面;
    所述心音传感器和所述第一电极设置在所述第一表面上;
    所述指尖脉搏波传感器和所述第二电极设置在所述握柄的柄身上;
    所述第三电极设置在所述第一表面上或所述柄身上;
    所述输出端设置在所述第一表面和所述第二表面之间形成的内腔中、或所述第一表面上、或所述第二表面上、或所述柄身上。
  15. 根据权利要求14所述的装置,其特征在于,所述第三电极设置在所述第一表面上;
    所述心音传感器、所述第一电极和所述第三电极嵌套在一起,并设置在所述第一表面上;
    所述指尖脉搏波传感器和所述第二电极嵌套在一起,并设置在所述柄身上。
  16. 根据权利要求15所述的装置,其特征在于,
    所述柄身上包括与手指形状匹配的凹槽,所述指尖脉搏波传感器和所述第二电极嵌套设置在所述凹槽的槽底区域。
  17. 根据权利要求12、13、15或16所述的装置,其特征在于,所述第一电极和所述第三电极的表面形状均为半圆环,所述心音传感器的表面形状为圆形,且所述心音传感器设置在两个半圆环包围形成的区域中。
  18. 一种设备,其特征在于,所述设备包括传感器模组、处理器、存储器和显示器,其中,所述传感器模组包括心电传感器、心音传感器、指尖脉搏波传感器处理器;
    所述传感器模组用于获取信号,并将所述信号存储至所述存储器,其中,所述信号包括心电信号、心音信号和指尖脉搏波信号;
    所述处理器用于执行上述权利要求1至8中任一项中所述的处理装置所执行的方法,对所述存储器中存储的所述信号进行信号处理,并通过所述显示器输出处理结果。
PCT/CN2020/108947 2019-08-19 2020-08-13 生理参数的采集方法和装置与生理参数的处理方法和装置 WO2021031979A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910766134.7A CN112450891B (zh) 2019-08-19 2019-08-19 生理参数的采集方法和装置与生理参数的处理方法和装置
CN201910766134.7 2019-08-19

Publications (1)

Publication Number Publication Date
WO2021031979A1 true WO2021031979A1 (zh) 2021-02-25

Family

ID=74659663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108947 WO2021031979A1 (zh) 2019-08-19 2020-08-13 生理参数的采集方法和装置与生理参数的处理方法和装置

Country Status (2)

Country Link
CN (1) CN112450891B (zh)
WO (1) WO2021031979A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023019467A1 (zh) * 2021-08-18 2023-02-23 中国人民解放军总医院第二医学中心 多项生理参数检测手套及高血压病症患病风险检测系统
CN115640507B (zh) * 2022-12-09 2024-03-15 镜电(南京)科技发展有限公司 一种基于心电心音联合分析的异常数据筛查方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1582849A (zh) * 2003-07-30 2005-02-23 欧姆龙健康医疗事业株式会社 便携式心电仪
CN1961824A (zh) * 2006-11-24 2007-05-16 北京超思电子技术有限责任公司 一种便携式心电测量仪
US20130261414A1 (en) * 2012-03-29 2013-10-03 Card Guard Scientific Survival Ltd Hand-held device having health monitoring capabilities
US20150038856A1 (en) * 2011-05-03 2015-02-05 Heart Force Medical Inc Method and apparatus for estimating myocardial contractility using precordial vibration
CN105916439A (zh) * 2014-01-21 2016-08-31 加州理工学院 便携式电子血液动力传感器系统
CN107960990A (zh) * 2018-01-11 2018-04-27 上海健康医学院 一种穿戴式心脑血管疾病智能监测系统及方法
CN108577883A (zh) * 2018-04-03 2018-09-28 上海交通大学 一种冠心病筛查装置、筛查系统以及信号特征提取方法
CN109497992A (zh) * 2019-01-04 2019-03-22 济南汇医融工科技有限公司 基于机器学习方法的冠心病智能筛查装置
CN109497991A (zh) * 2019-01-04 2019-03-22 济南汇医融工科技有限公司 基于机器学习的心衰检测装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100584276C (zh) * 2007-06-06 2010-01-27 香港中文大学 一种电子听诊装置
KR20090079006A (ko) * 2008-01-16 2009-07-21 삼성전자주식회사 생체 신호 측정 장치, 생체 신호 측정 센서, 맥파 전달속도 측정 장치 및 방법
US10244949B2 (en) * 2012-10-07 2019-04-02 Rhythm Diagnostic Systems, Inc. Health monitoring systems and methods
CN108742594B (zh) * 2018-06-23 2020-11-24 桂林医学院附属医院 一种穿戴式冠心病检测装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1582849A (zh) * 2003-07-30 2005-02-23 欧姆龙健康医疗事业株式会社 便携式心电仪
CN1961824A (zh) * 2006-11-24 2007-05-16 北京超思电子技术有限责任公司 一种便携式心电测量仪
US20150038856A1 (en) * 2011-05-03 2015-02-05 Heart Force Medical Inc Method and apparatus for estimating myocardial contractility using precordial vibration
US20130261414A1 (en) * 2012-03-29 2013-10-03 Card Guard Scientific Survival Ltd Hand-held device having health monitoring capabilities
CN105916439A (zh) * 2014-01-21 2016-08-31 加州理工学院 便携式电子血液动力传感器系统
CN107960990A (zh) * 2018-01-11 2018-04-27 上海健康医学院 一种穿戴式心脑血管疾病智能监测系统及方法
CN108577883A (zh) * 2018-04-03 2018-09-28 上海交通大学 一种冠心病筛查装置、筛查系统以及信号特征提取方法
CN109497992A (zh) * 2019-01-04 2019-03-22 济南汇医融工科技有限公司 基于机器学习方法的冠心病智能筛查装置
CN109497991A (zh) * 2019-01-04 2019-03-22 济南汇医融工科技有限公司 基于机器学习的心衰检测装置

Also Published As

Publication number Publication date
CN112450891B (zh) 2022-03-29
CN112450891A (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
US20220265197A1 (en) ECG Detection Method and Wearable Device
US10950112B2 (en) Wrist fall detector based on arm direction
CN111651040B (zh) 用于肌肤检测的电子设备的交互方法及电子设备
WO2022170863A1 (zh) 超宽带定位方法及系统
CN113827185B (zh) 穿戴设备佩戴松紧程度的检测方法、装置及穿戴设备
WO2021031979A1 (zh) 生理参数的采集方法和装置与生理参数的处理方法和装置
CN110531864A (zh) 一种手势交互方法、装置及终端设备
US11928947B2 (en) Fall detection-based help-seeking method and electronic device
AU2018299499B2 (en) Method for iris recognition and related products
WO2023273476A1 (zh) 一种检测设备方法和电子设备
WO2020221062A1 (zh) 一种导航操作方法及电子设备
EP4070719A1 (en) Electronic device, method for controlling same to perform ppg detection, and medium
CN115530768A (zh) 一种检测方法及相关设备
WO2023185122A1 (zh) 一种检测心律的方法和电子设备
WO2022033554A1 (zh) 脉搏波测量装置及其脉搏波测量方法、系统和介质
WO2021233319A1 (zh) 早搏检测方法及其电子设备和介质
WO2022057476A1 (zh) 一种校准信号的生成方法、电子设备和计算机存储介质
EP4066730B1 (en) Data acquisition method, terminal device, and storage medium
WO2021169443A1 (zh) 一种数据采集方法、终端设备及存储介质
CN110339427B (zh) 一种输液监测方法、可穿戴设备及计算机可读存储介质
WO2019101222A2 (zh) 更新数据采样间隔的方法、根据采样间隔采集数据的方法及其装置
WO2022135145A1 (zh) 测量生理参数的方法及电子设备
CN112817512A (zh) 一种防误触方法、移动设备及计算机可读存储介质
CN110062156B (zh) 一种拍照方法、穿戴式设备及存储介质
WO2022089101A1 (zh) 基于便携式电子设备的pwv检测方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20853789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20853789

Country of ref document: EP

Kind code of ref document: A1