WO2022057476A1 - 一种校准信号的生成方法、电子设备和计算机存储介质 - Google Patents

一种校准信号的生成方法、电子设备和计算机存储介质 Download PDF

Info

Publication number
WO2022057476A1
WO2022057476A1 PCT/CN2021/110049 CN2021110049W WO2022057476A1 WO 2022057476 A1 WO2022057476 A1 WO 2022057476A1 CN 2021110049 W CN2021110049 W CN 2021110049W WO 2022057476 A1 WO2022057476 A1 WO 2022057476A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
calibration
electronic device
trigger information
trigger condition
Prior art date
Application number
PCT/CN2021/110049
Other languages
English (en)
French (fr)
Inventor
沈华正
李经纬
姜浩然
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022057476A1 publication Critical patent/WO2022057476A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04186Touch location disambiguation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method for generating a calibration signal, an electronic device and a computer storage medium.
  • the "Anti-Accidental Touch Mode” is a mode adopted to prevent functions such as touch screen, unlock or application from being triggered by mistake during the use of electronic equipment.
  • the "anti-mistouch mode” can be realized through the ultrasonic anti-mistouch algorithm.
  • the ultrasonic anti-mistouch algorithm can solve the need for low-power normally-on ultrasonics, so that there is no need to set up an optical proximity sensor, and the front side has no holes and the head space is reduced.
  • the result of the ultrasonic anti-mistouch algorithm will be abnormal, resulting in a false alarm.
  • the present application provides a method for generating a calibration signal, an electronic device and a computer storage medium, which can improve the accuracy of the result of the ultrasonic anti-mistouch algorithm.
  • an embodiment of the present application provides a method for generating a calibration signal, comprising:
  • a transmission signal is sent and a reference signal is received, wherein the reference signal includes a reflected signal of the transmission signal, the transmission signal includes an ultrasonic signal, and the reference signal includes an ultrasonic signal;
  • a calibration signal is generated.
  • it also includes:
  • the trigger information includes the holding pitch angle and the holding roll angle, and the trigger conditions include that the holding pitch angle is smaller than the first pitch threshold value and greater than the second pitch threshold value, and the holding roll angle is smaller than the first roll threshold value value and greater than the second rollover threshold.
  • the trigger information includes one of the orientation of the display screen, the pitch angle of motion, the roll angle of motion, and the yaw angle of motion, or any combination thereof;
  • the trigger condition includes that the orientation of the display screen is upward
  • the trigger condition includes that the motion pitch angle is greater than the third pitch threshold value
  • the trigger condition includes the motion roll angle
  • the trigger condition includes that the motion roll angle is smaller than the third roll threshold value
  • the trigger condition includes the motion yaw angle
  • the trigger condition includes the motion yaw angle greater than the yaw threshold value
  • the method further includes: the trigger information includes an ambient light alarm value, and the trigger condition includes that the ambient light alarm value is greater than the ambient light alarm threshold value.
  • the method further includes: the trigger information includes a camera analysis result, and the trigger condition includes that the camera analysis result is no occlusion.
  • the method further includes: the trigger information includes a touch screen result, and the trigger condition includes that the touch screen result is no touch point or the touch screen result is no change in the capacitance value.
  • the method further includes: the trigger information includes an unlocking result of the device, and the triggering condition includes that the unlocking result is unlocked.
  • the method further includes: the trigger information includes a screen brightening result, and the trigger condition includes that the screen brightening result is that the screen has been brightened.
  • it also includes:
  • the calibration time interval includes the time interval between the current calibration time point and the last calibration time point
  • the steps of sending the transmit signal and receiving the reference signal are continued.
  • it also includes:
  • each frame cross-correlation frequency domain includes a set of sampling arrays
  • the difference variance is generated
  • any one frame difference value among the multi-frame difference values is used as a calibration signal.
  • it also includes:
  • the cross-correlation frequency domain is generated.
  • it also includes:
  • the transmit signal is sent at preset time intervals.
  • an electronic device comprising:
  • a display screen ; one or more processors; a memory; a plurality of application programs; and one or more computer programs, wherein the one or more computer programs are stored in the memory, the one or more computer programs including instructions, when the instructions are When the device executes, cause the device to perform the following steps:
  • a transmission signal is sent and a reference signal is received, wherein the reference signal includes a reflected signal of the transmission signal, the transmission signal includes an ultrasonic signal, and the reference signal includes an ultrasonic signal;
  • a calibration signal is generated.
  • the device when the instruction is executed by the device, the device is caused to specifically perform the following steps:
  • the calibration time interval includes the time interval between the current calibration time point and the last calibration time point
  • the steps of sending the transmit signal and receiving the reference signal are continued.
  • the device when the instruction is executed by the device, the device is caused to specifically perform the following steps:
  • each frame cross-correlation frequency domain includes a set of sampling arrays
  • the difference variance is generated
  • any one frame difference value among the multi-frame difference values is used as a calibration signal.
  • the device when the instruction is executed by the device, the device is caused to specifically perform the following steps:
  • the cross-correlation frequency domain is generated.
  • the device when the instruction is executed by the device, the device is caused to specifically perform the following steps:
  • the transmit signal is sent at preset time intervals.
  • an embodiment of the present application provides a computer storage medium, which is applied to an electronic device, where the computer storage medium is used for program code executed by the device, and the program code includes a program code for executing the first aspect or the first aspect. Instructions for the method in any of the possible implementations.
  • an embodiment of the present application provides a computer program product containing instructions, when the computer program product runs on a computer or any at least one processor, the computer is used to execute the first aspect or the first aspect. Instructions for the method in any possible implementation of an aspect.
  • trigger information is obtained; it is judged whether the trigger information satisfies the trigger condition; if it is judged that the trigger information satisfies the trigger condition, a transmission signal is sent and a reference signal is received, the transmission signal includes an ultrasonic signal, and the reference signal includes an ultrasonic signal;
  • the reference signal generates a calibration signal, which can ensure that the calibration signal is generated when the electronic device is in an unobstructed state, which ensures the accuracy of the calibration signal, thereby improving the accuracy of the result of the anti-mistouch algorithm.
  • FIG. 1 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 2 is a system architecture diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 3 is a flowchart of a method for generating a calibration signal according to an embodiment of the present application
  • FIG. 4 is a flowchart of generating a cross-correlation frequency domain provided by an embodiment of the present application.
  • FIG. 5 is a frequency domain diagram of a single-frame cross-correlation frequency domain provided by an embodiment of the present application, taking the number of sampling points as 960 as an example;
  • FIG. 6 is a frequency domain diagram of an electronic device provided in an embodiment of the present application when it is in a blocked state
  • FIG. 7 is a frequency domain diagram of an electronic device provided in an embodiment of the present application when it is in an unobstructed state
  • FIG. 8 is a flowchart of another method for generating a calibration signal provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a holding angle of an electronic device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an apparatus for generating a calibration signal according to an embodiment of the present application.
  • first, second, etc. may be used to describe the set thresholds in the embodiments of the present application, these set thresholds should not be limited to these terms. These terms are only used to distinguish set thresholds from one another.
  • the first set threshold may also be referred to as the second set threshold, and similarly, the second set threshold may also be referred to as the first set threshold.
  • the "Anti-Accidental Touch Mode” is a mode adopted to prevent functions such as touch screen, unlock or application from being triggered by mistake during the use of electronic equipment.
  • the "anti-accidental touch mode" of electronic devices can be applied in call scenarios, low-power normally-on scenarios, and pocket mode scenarios. The following is a brief introduction to the call scenario, the low-power normally-on scenario, and the pocket mode scenario.
  • Call scenario Take the electronic device as a mobile phone as an example.
  • the touch screen of the mobile phone is not turned off in time, and the user's skin will touch the function keys on the touch screen, which will cause the user to hang up by mistake.
  • the problem of the phone makes the user experience extremely poor.
  • an optical proximity sensor can be used to detect the proximity distance between the mobile phone and the face, and when the proximity distance is detected to be less than a certain threshold, the touch screen is controlled to keep the screen off to prevent false triggering, thereby greatly improving the user experience.
  • Low-power normally-on scenario Take the electronic device as a mobile phone as an example.
  • the touch screen of the mobile phone When the touch screen of the mobile phone is lit, the user's skin may touch the function keys on the touch screen, which may cause the mobile phone to make false calls.
  • the problem of making calls or opening unnecessary applications consumes the power of the mobile phone and increases the power consumption of the mobile phone.
  • the emitting part of the optical proximity sensor arranged above the mobile phone emits pulsed light. When there is no obstacle in the close range, the pulsed light will not be reflected.
  • the receiving part of the optical proximity sensor does not receive the reflection If there is an obstacle in the close range, the pulsed light emitted by the transmitting part will be reflected, and the receiving part will receive the reflected light signal, indicating that there is an object in front of the mobile phone approaching, the mobile phone
  • the touch function will be turned off, that is, it will not respond to functional commands such as unlocking, Always On Display (AOD), face recognition, etc., so as to reduce power consumption and prevent false triggering of the mobile phone.
  • Pocket mode scenario Taking the electronic device as a mobile phone as an example, when the mobile phone is placed in a backpack or pocket, the functional buttons displayed on the touch screen or the mobile phone is accidentally unlocked due to capacitive factors such as the skin. Public opinion and exit risk.
  • the optical proximity sensor will immediately detect the surrounding environment. screen, and turn off the touch function at the same time, so as to minimize the probability of false triggering.
  • the anti-mistouch function can be triggered by a capacitive effect detection method based on a touch panel (Touch panel, TP for short).
  • a capacitive effect detection method based on a touch panel (Touch panel, TP for short).
  • TP touch panel
  • the first detection method when the object moves to the electronic device, no matter whether the object is a conductor or not, due to the proximity of the object, the dielectric constant of the capacitor will always change, so that the capacitance will change, and then determine whether there is an object blocking . Specifically, if the capacitance changes, indicating that an object is approaching, the anti-mistouch function is triggered; if the capacitance does not change, indicating that no object is approaching, the anti-mistouch function is not triggered.
  • the second detection method Detect whether there is a touch point on the touch screen. If there is a touch point on the touch screen, it means that there is an object in front of the touch screen, and then trigger the anti-mistouch function; If there is no touch point on the touch screen, it means that there is no object in front of the touch screen, and the anti-mistouch function will not be triggered.
  • the detection distance of the capacitive effect detection method based on TP is relatively short, that is, the capacitance will change only when the object is close enough to the touch screen, and this detection method has high algorithm complexity and long operation time.
  • the timeliness is poor, resulting in a low accuracy rate of triggering the anti-missing function.
  • the currently used optical proximity light sensor needs to open a hole on the front of the touch screen, and needs to install optical devices, which will occupy the space at the top of the mobile phone and cannot meet the planning requirements of a full screen; Therefore, the cost is relatively high, and the optical proximity sensor is easy to fail in the state of strong light and water mist. Therefore, it is proposed to replace the optical proximity sensor with an "ejection proximity light sensor", but the "ejection proximity light sensor” is prone to false alarms, and the device cost and the fault feedback ratio (FFR) are high.
  • FFR fault feedback ratio
  • a "proximity detection solution based on fusion of ultrasonic and optical” is proposed.
  • This solution can meet the requirements of preventing false touches in call scenarios, but cannot meet the requirements of pocket mode scenarios and low power consumption. Anti-accidental touch requirements for frequently-on scenarios.
  • An ultrasonic anti-mistouch algorithm is further proposed. The algorithm specifically detects whether the mobile terminal is blocked by intermittent ultrasonic waves, so as to determine whether to enable the anti-mistouch function. This method can solve the need for low-power and normally-on ultrasonic waves, so there is no need to set up optical proximity. sensor for no front holes and reduced headspace.
  • the algorithm result will be abnormal, resulting in a false alarm of the proximity state or False positives are far away from the state.
  • the result of the ultrasonic anti-mistouch algorithm is that the object is close, the touch screen of the mobile phone will be off, the fingerprint icon will not be displayed, and the touch function will be turned off, but the actual situation is that the received ultrasonic signal is inaccurate due to the replacement of the mobile phone case. when no object is approaching.
  • the embodiment of the present application provides a method for generating a calibration signal, so as to facilitate the calibration of the reference signal of the ultrasonic anti-mistouch algorithm.
  • the accuracy of the reference signal can be improved, thereby increasing the accuracy of triggering the false-touch prevention mode.
  • the method for generating a calibration signal can be applied to an electronic device having a display screen, and the electronic device includes but is not limited to a mobile phone, a tablet computer, a desktop computer, a laptop computer, a handheld computer, and a wearable device. , head-mounted displays, reader devices, portable music players, portable game consoles, notebook computers, ultra-mobile personal computers (UMPC), netbooks, as well as cicada phones, personal digital assistants (personal digital assistants) digital assistant, referred to as: PDA), augmented reality (augmented reality, referred to as: AR), virtual reality (virtual reality, referred to as: VR) equipment.
  • FIG. 1 Taking the electronic device as a mobile phone as an example, FIG.
  • the electronic device includes a main microphone 150 , a secondary microphone 160 , a power key 210 , a receiver 140 , a front camera 190 a , a fingerprint key 220 and a display screen 170 .
  • the secondary microphone 160 is located at the top of the electronic device, and the main microphone 150 is located at the bottom of the electronic device.
  • the secondary microphone 160 and the primary microphone 150 can be symmetrically arranged on the top and bottom of the electronic device in the shape of small circular holes.
  • the electronic device is equipped with two microphones, and uses the principle of dual-mic noise reduction to maintain stable calls. Among them, the main microphone 150 is used to collect the sound of the call, and the secondary microphone 160 is used to collect the noise around the call environment, and the sound of the call and the surrounding noise are processed in opposite directions, so as to achieve the purpose of noise reduction.
  • the secondary microphone 160 is further configured to receive the reflected reference signal.
  • the power button 210 is located on the side of the electronic device.
  • the power button 210 is arranged on the side of the electronic device in the form of a raised button, which is convenient for the user to operate while holding and does not need to occupy the display.
  • the front area of the screen 170 can further increase the screen ratio.
  • the power key 210 can be used to control the electronic device, including the functions of keeping the screen on, brightening the screen, and turning on or off. The specific functions can be set according to user requirements.
  • the user presses the power button 210 for a long time, and the electronic device enters the off state; when the electronic device is in the off-screen state, the user briefly presses the power button 210, and the electronic device turns on the screen.
  • the receiver 140 also called “earpiece” is located above the electronic device, and is used for converting audio electrical signals into sound signals and transmitting transmission signals.
  • the electronic device answers a call or a voice message, the sound can be answered by placing the receiver 140 close to the user's ear.
  • the front camera 190a is located above the display screen 170 of the electronic device, adjacent to the receiver 140, and the front camera 190a can be used to capture images or videos.
  • the fingerprint key 220 is used to collect fingerprints, and the electronic device can use the collected fingerprint characteristics to realize functions such as fingerprint unlocking, accessing application locks, taking photos with fingerprints, and answering incoming calls with fingerprints.
  • the fingerprint key 220 is arranged on the back of the electronic device in the form of a concave button. This design is convenient for the user to operate while holding it, and does not need to occupy the front area of the display screen 170, which can further improve the screen occupation. Compare.
  • the display screen 170 is located on the front of the electronic device, and is used for displaying images or videos, as well as for receiving touch indications input by the user.
  • the touch indications include single click, double click, pressing or sliding.
  • the display screen 170 may be curved on the sides. A curved screen can also be a flat screen with no curvature on the side.
  • the display screen 170 includes a display panel, and the display panel includes a liquid crystal display 170 (liquid crystal display, LCD for short), an organic light-emitting diode (OLED for short), an active matrix organic light emitting diode or an active matrix Organic Light Emitting Diode (active-matrix organic light emitti diode, referred to as: AMOLED), flexible light-emitting diode (flex light-emitting diode, referred to as: FLED), Mini LED (Mini LED), Micro LED (Micro LED), Micro OLED (Micro-OLED) or quantum dot light emitting diodes (quantum dot light emitting diodes, referred to as: QLED).
  • the display screen 170 includes a touch display screen.
  • FIG. 2 is a system architecture diagram of an electronic device provided by an embodiment of the application.
  • the electronic device includes a memory 100, a processor 110, a communication module 120, a receiver 140, a main microphone 150, a secondary microphone 160, The display screen 170 , the sensor module 180 , the camera 190 and the interaction module 200 .
  • the sensor module 180 includes one or any combination of an acceleration sensor 180a, a gyroscope sensor 180b, an ambient light sensor 180c and a magnetometer sensor 180d, the camera 190 includes a front camera 190a and a rear camera 190b, and the communication module 120 includes a mobile Communication module 120a and/or wireless communication module 120b.
  • the memory 100, the processor 110 and the interaction module 200 can communicate with each other through an internal connection path to transmit control and/or data signals, the memory 100 is used to store computer programs, and the processor 110 is used to call and run the computer from the memory 100. program.
  • Memory 100 may be read-only memory (ROM), other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types of information and instructions that can be stored It can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disk storage, CD-ROM storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media, or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and Any other medium that can be accessed by a computer, etc.
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • CD-ROM storage including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • magnetic disk storage media or other magnetic storage devices, or can be used to carry
  • the processor 110 may include one or more processing units, for example, the processor 110 may include an application processor (application processor, referred to as: AP), a modem processor, a graphics processor (graphics processing unit, referred to as: GPU), Image signal processor (ISP), controller, memory, video codec, digital signal processor (DSP), baseband processor, neural-network processing unit (abbreviation: NPU) or any combination thereof. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • application processor application processor, referred to as: AP
  • modem processor graphics processor
  • ISP Image signal processor
  • DSP digital signal processor
  • NPU neural-network processing unit
  • different processing units may be independent devices, or may be integrated in one or more processors.
  • the above-mentioned processor 110 and the memory 100 may be combined into a processing device, which is more commonly an independent component.
  • the processor 110 is configured to execute program codes stored in the memory 100 to implement the above functions.
  • the memory 100 may also be integrated in the processor 110 , or be independent of the processor 110 .
  • the processor 110 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, referred to as: I2C) interface, integrated circuit built-in audio (inter-integrated circuit sound, referred to as: I2S) interface, pulse code modulation (pulse code modulation, referred to as: PCM) interface, universal asynchronous Transmitter (universal asynchronous receiver/transmitter, referred to as: UART) interface, mobile industry processor interface (mobile industry processor interface, referred to as: MIPI), general-purpose input/output (general-purpose input/output, referred to as: GPIO) interface, user Identity module (subscriber identity module, referred to as: SIM) interface, universal serial bus (universal serial bus, referred to as: USB) interface one or any combination thereof.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous Transmitter
  • MIPI mobile industry processor interface
  • the interface connection relationship between the modules illustrated in the embodiments of the present application is only a schematic illustration, and does not constitute a structural limitation on the system architecture of the electronic device.
  • the electronic device may also adopt different interface connection manners in the foregoing embodiments, or a combination of multiple interface connection manners.
  • the communication module is connected to the processor 110, and the communication module is used for transmitting radio frequency signals.
  • the mobile communication module 120a can provide a wireless communication solution including 2G/3G/4G/5G etc. applied on the electronic device.
  • the mobile communication module 120a may include at least one filter, switch, power amplifier, low noise amplifier (low noise amplifier, LNA for short) and the like.
  • the electronic device may further include the first antenna 130.
  • the mobile communication module 120a can receive the electromagnetic wave by the first antenna 130, filter, amplify and other processing on the received electromagnetic wave, and transmit it to the modulation and demodulation processor for demodulation.
  • the mobile communication module 120a can also amplify the signal modulated by the modulation and demodulation processor, and then turn it into an electromagnetic wave for radiation through the first antenna 130 .
  • At least part of the functional modules of the mobile communication module 120a may be provided in the processor 110 . In some embodiments, at least part of the functional modules of the mobile communication module 120a may be provided in the same device as at least part of the modules of the processor 110 .
  • the wireless communication module 120b can provide wireless local area networks (wireless local area networks, referred to as: WLAN) (such as wireless fidelity (wireless fidelity, referred to as: Wi-Fi) network), Bluetooth (bluetooth, referred to as: BT) applied on the electronic device. , Global Navigation Satellite System (GNSS), Frequency Modulation (FM), Near Field Communication (NFC), Infrared (IR) and other wireless communication solutions.
  • the wireless communication module 120b may be one or more devices integrating at least one communication processing module. Further, the electronic device may further include a second antenna 131 .
  • the wireless communication module 120b receives electromagnetic waves via the second antenna 131 , frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 120b can also receive the signal to be sent from the processor 110, frequency-modulate the signal, amplify the signal, and then convert it into an electromagnetic wave for radiation through the second antenna 131.
  • the first antenna 130 is coupled with the mobile communication module 120a
  • the second antenna 131 is coupled with the wireless communication module 120b, so that the electronic device can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include a global system for mobile communications (GSM for short), a general packet radio service (GPRS for short), a code division multiple access (code division multiple access), Abbreviation: CDMA), wideband code division multiple access (WCDMA), time division code division multiple access (time-division code division multiple access, abbreviation: TDSCDMA), long term evolution (long term evolution, abbreviation: LTE), BT, GNSS, WLAN, NFC, FM, and/or IR technologies, etc.
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • TDSCDMA time division code division multiple access
  • LTE long term evolution
  • BT GNSS
  • WLAN NFC
  • FM FM
  • the GNSS may include global positioning system (global positioning system, referred to as: GPS), global navigation satellite system (global navigation satellite system, referred to as: GLONASS), Beidou satellite navigation system (bei dou navigation satellite system, referred to as: BDS) , quasi-zenith satellite system (quasi-zenith satellite system, referred to as: QZSS) and/or satellite based augmentation systems (satellite based augmentation systems, referred to as: SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • Beidou satellite navigation system bei dou navigation satellite system, referred to as: BDS
  • BDS Beidou satellite navigation system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • the receiver 140 is connected with the processor 110, and the receiver 140 is used for converting audio electrical signals into sound signals and transmitting ultrasonic signals.
  • the main microphone 150 is connected to the processor 110, and the main microphone 150 is used for collecting the sound signal of the call and converting the sound signal into an electrical signal.
  • the main microphone 150 is also used to transmit a transmission signal,
  • the transmitted signal includes an ultrasonic signal.
  • the sub-microphone 160 is connected to the processor 110, and the sub-microphone 160 is used for collecting the noise around the call environment.
  • the electronic device includes two microphones, a main microphone 150 and a secondary microphone 160, so that it can not only collect sound signals, but also realize a noise reduction function.
  • the electronic device may be further provided with three or four microphones to collect sound signals, reduce noise, identify sound sources, and implement directional recording functions; the secondary microphone 160 is also used to receive a reference signal, the reference signal
  • the reference signal includes an ultrasonic signal, which is a reflected signal reflected from the transmitted signal.
  • the display screen 170 is connected to the processor 110, and the display screen 170 is used for receiving the touch command input by the user, and sending the touch command to the processor 110, so that the processor 110 can call the relevant interface according to the touch command and send the relevant interface It is sent to the display screen 170, and the display screen 170 displays the relevant interface.
  • the sensor module 180 is connected to the processor 110 , and the sensor module 180 is used for collecting state information of each sensor for the processor 110 to process.
  • the acceleration sensor 180a is used to detect the gravitational direction of the electronic device, and the acceleration sensor 180a can output the holding pitch angle (pitch) and the holding roll angle (roll) of the electronic device to the processor 110 .
  • the acceleration sensor 180a detects the tiny deformation caused by the inertial force through the Micro-Electro-Mechanical System (Micro-Electro-Mechanical System, MEMS for short) technology, and the acceleration sensor 180a does not distinguish between the acceleration of gravity and the acceleration of an external force during the detection process of the acceleration sensor 180a, Therefore, when the electronic device performs variable speed motion in three-dimensional space, the pitch angle and roll angle output by the acceleration sensor 180a to the processor 110 are not accurate enough, and the processor 110 needs to combine the output of the electronic device with the gyroscope sensor 180b.
  • the angular velocity and the second angular velocity around the y-axis are weighted to obtain accurate pitch and roll angles.
  • the gyro sensor 180b may be used to determine the motion attitude of the electronic device. Specifically, the gyro sensor 180b outputs the first angular velocity around the x-axis and the second angular velocity around the y-axis of the electronic device to the processor 110 .
  • the ambient light sensor 180c is used for sensing the ambient light brightness and sending the ambient light brightness to the processor 110 .
  • the magnetometer sensor 180d is used to locate the orientation of the electronic device. Specifically, the magnetometer sensor 180d outputs the included angles of the electronic device in the four directions of east, south, west and north to the processor 110.
  • the processor 110 uses the fusion algorithm to Holding the pitch angle, holding the roll angle, the first angular velocity of the electronic device around the x-axis, the second angular velocity of the electronic device around the y-axis, and the included angles of the electronic device in the four directions of east, south, west, and north, calculate out of the direction of the display screen 170 .
  • the camera 190 is connected to the processor 110 for taking pictures or videos.
  • the camera 190 includes a front camera 190a and a rear camera 190b.
  • the object is projected onto the photosensitive element by generating an optical image through the lens.
  • the photosensitive element may be a charge coupled device (CCD for short) or a complementary metal-oxide-semiconductor (CMOS for short) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the optical signal into an electrical signal, and then transmits the electrical signal to the ISP to convert it into a digital image signal.
  • the ISP outputs the digital image signal to the DSP for the DSP to convert the digital image signal into a standard RGB or YUV format image signal.
  • the interaction module 200 is connected to the processor 110, and the interaction module 200 is configured to receive a user's long-press operation or short-press operation on the power key.
  • the interaction module 200 is further configured to receive the fingerprint input by the user through the fingerprint key 220, and send the fingerprint to the processor 110, and the processor 110 processes the fingerprint.
  • system architecture diagram shown in FIG. 2 does not constitute a specific limitation on the system architecture of the electronic device.
  • the system architecture of the electronic device may include more or fewer components than shown, or combine some components, or separate some components, or different component arrangements.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • FIG. 3 is a flowchart of a method for generating a calibration signal provided by an embodiment of the present application. As shown in FIG. 3 , the method includes:
  • Step 102 Acquire trigger information.
  • each step is performed by an electronic device.
  • the trigger information includes the following information of the electronic device: orientation of the display screen, pitch angle of motion (pitch), roll angle of motion (roll), yaw angle of motion (yaw), holding pitch angle, holding One or any combination of roll angle, ambient light report, camera analysis results, touch screen results, device unlock results, and screen bright results.
  • Step 104 judging whether the trigger information satisfies the trigger condition, if yes, go to Step 106 ; if not, the process ends.
  • the trigger condition includes that the grip pitch angle is less than the first pitch threshold value and greater than the second pitch threshold value, and the grip roll angle is greater than the second pitch threshold value.
  • the rotation angle is less than the first roll threshold value and greater than the second roll threshold value.
  • the trigger information includes one of the orientation of the display screen, the motion pitch angle, the motion roll angle, and the motion yaw angle, or any combination thereof.
  • the trigger condition when the trigger information includes the orientation of the display screen, the trigger condition includes that the orientation of the display screen is upward; when the trigger information includes the motion pitch angle, the trigger condition includes that the motion pitch angle is greater than the third pitch threshold value; when the trigger information includes the motion pitch angle
  • the trigger condition when the roll angle is used, the trigger condition includes that the movement roll angle is smaller than the third roll threshold value; when the trigger information includes the movement yaw angle, the trigger condition includes that the movement yaw angle is greater than the yaw threshold value.
  • the motion pitch angle is greater than the third pitch threshold value
  • the motion roll angle is less than the third roll threshold value
  • the motion yaw angle is greater than one of the yaw threshold values
  • the trigger condition includes that the ambient light alarm value is greater than the ambient light alarm threshold value.
  • the ambient light alarm value when the ambient light alarm value is greater than the ambient light alarm threshold value, it indicates that the electronic device is currently in an unobstructed state.
  • the trigger condition includes that the camera analysis result is no occlusion.
  • the trigger condition includes that the touch screen result is no touch point or the touch screen result is no change in the capacitance value.
  • the touch screen result is no touch point or the touch screen result is no change in the capacitance value, it indicates that no object is currently approaching the electronic device and no user is touching the display screen of the electronic device, and the electronic device is currently in an unobstructed state .
  • the triggering condition includes that the device unlocking result is unlocked.
  • the device unlocking result includes when the device has been unlocked, indicating that the electronic device is currently in an unblocked state.
  • the trigger condition includes that the screen brightening result is that the screen has been brightened.
  • the display screen may be lit by one of the methods of double-clicking to turn on the screen, the power button to turn on the screen, or raising a hand to turn on the screen.
  • the first pitch threshold value, the second pitch threshold value, the first roll threshold value, the second roll threshold value, the third pitch threshold value, and the third roll threshold value , yaw threshold and ambient light threshold are derived from user behavior analysis in big data.
  • the ambient light threshold is 50 lux.
  • step 106 if it is judged that the trigger information satisfies the trigger condition, it indicates that the electronic device is currently processing an unobstructed state and is suitable for generating a calibration signal, and proceeds to step 106; In a blocked state, it is not suitable to generate a calibration signal, and the process ends.
  • calibration is performed when the electronic device is in a state that satisfies the trigger condition, so as to ensure the accuracy of the calibration, thereby improving the success rate of preventing false touches.
  • Step 106 Send a transmit signal and receive a reference signal, where the reference signal includes a reflected signal of the transmit signal.
  • the transmitted signal includes a signal transmitted when the electronic device is in an unblocked state.
  • Sending the transmission signal specifically includes sending the transmission signal according to a preset time interval, wherein the preset time interval can be set according to the actual situation.
  • the preset time interval is 150 milliseconds.
  • the transmission signal includes an ultrasonic signal
  • the ultrasonic signal includes a single-frequency continuous wave (continuous wave, abbreviated as: CW), a linear frequency modulation continuous wave (linear frequency modulation, abbreviated as: LFM), or a ZC sequence (Zadoff-Chu sequence) .
  • CW continuous wave
  • LFM linear frequency modulation
  • ZC sequence Zadoff-Chu sequence
  • the reference signal includes an ultrasonic signal received by the secondary microphone.
  • the receiver sends a transmit signal, the transmit signal is reflected, and then reflected back to the reference signal, and the secondary microphone on the top of the mobile phone receives the reference signal.
  • the reflection from the transmitted signal back to the reference signal includes two reflection scenarios: the first is that there is an object within a short distance from the mobile phone, the receiver sends the transmitted signal, and the transmitted signal can hit an object with a short distance from the mobile phone and then reflect back to a reference Signal, the reference signal is received by the secondary microphone; the second is the open space around the mobile phone, that is, there is no object within a short distance from the mobile phone, the receiver sends the transmitting signal, and the transmitting signal is reflected by the mobile phone case and/or the sound cavity, The reference signal is reflected back, and the reference signal is received by the secondary microphone. Since the sound is a sound wave generated by the vibration of an object, even if the outside of the mobile phone is not blocked, the transmit signal sent by the receiver will be transmitted from the outside of
  • Step 108 Generate a calibration signal according to the reference signal.
  • a calibration signal is generated according to the received multi-frame reference signal.
  • step 108 specifically includes:
  • Step 1081 Perform pulse compression on the received multi-frame reference signals respectively to generate multi-frame cross-correlation frequency domains, where each frame cross-correlation frequency domain includes a set of sampling arrays, and a set of sampling arrays includes multiple sampling points.
  • the transmitted signal propagates through multiple paths from the receiver to the secondary microphone, the signal on each path is a delayed version of the transmitted signal, and the reference signal received at the secondary microphone is derived from the signal on each path.
  • the signal on each path is a delayed version of the transmitted signal
  • the reference signal received at the secondary microphone is derived from the signal on each path.
  • FIG. 4 is a flowchart of generating a cross-correlation frequency domain provided by an embodiment of the present application. As shown in FIG. 4 , step 1081 specifically includes:
  • Step 3002 Down-convert the reference signal to generate a complex baseband signal.
  • the digitized reference signal is divided into a first signal and a second signal by a serial-parallel conversion circuit, wherein the first signal is the same as the second signal; the first signal is multiplied by a cosine wave cos(2 ⁇ fct) to generate a complex number
  • the real part of the baseband signal where fc is the carrier frequency, and t is the preset time interval; multiply the second signal by the sine wave -sin(2 ⁇ fct) to generate the imaginary part of the complex baseband signal;
  • the parts are combined to generate a complex baseband signal.
  • Step 3004 Perform a Fast Fourier Transform (Fast Fourier Transform, FFT for short) on the complex baseband signal to generate a frequency domain signal.
  • FFT Fast Fourier Transform
  • the number of sampling points in the sampling array is firstly set.
  • set the number of sampling points is 960.
  • set the number of sampling points to 1024.
  • Step 3006 Acquire a conjugate inversion signal of the transmitted signal.
  • the conjugate inversion signal of the transmission signal is .
  • Step 3008 Generate a cross-correlation frequency domain according to the frequency domain signal and the conjugate inversion signal.
  • FIG. 5 is a frequency domain diagram of a single-frame cross-correlation frequency domain provided by an embodiment of the present application with the number of sampling points being 960 as an example.
  • the x-axis of the frequency domain diagram is a sampling array, and the sampling array includes 960 sample points; the y-axis of the frequency domain plot is the absolute value of the cross-correlation.
  • the frequency domain diagram includes a main peak and multiple side vines on both sides of the main peak.
  • the position of the main peak is the relative time of arrival of the cross-correlated direct waves, and the main peak is the point with the largest absolute value of the cross-correlation, that is, the largest absolute value of the cross-correlation.
  • the point is the 504th sampling point, and the absolute value of the corresponding cross-correlation is 5567.3362587164.
  • the absolute value of the cross-correlation of each side-pattern in the multiple side-patterns is different, for example, the side-pattern is the 550th sampling point, and the corresponding absolute value of the cross-correlation is 1200.
  • the ZC sequence has the best cyclic autocorrelation characteristics. Therefore, when the ZC sequence is sent according to time intervals, the received signal can be Pulses are compressed into very narrow time periods.
  • Step 1082 subtract adjacent two groups of sampling arrays among the multiple groups of sampling arrays to generate multi-frame difference values.
  • sampling arrays there are 5 groups of sampling arrays, namely array 1, array 2, array 3, array 4 and array 5, and the adjacent two groups of sampling arrays are subtracted, that is, the first frame is generated by subtracting array 1 and array 2 Difference value; subtract array 2 from array 3 to generate the second frame difference value; subtract array 3 from array 4 to generate the third frame difference value, subtract array 4 from array 5 to generate the fourth frame difference value , a total of 4 frame difference values are generated.
  • Step 1083 Generate a difference variance according to the multi-frame difference values.
  • the difference value of each frame includes a plurality of sampling points and the difference value corresponding to each sampling point; according to the difference value corresponding to each sampling point, the difference average value is generated; The difference value and the difference mean are calculated to generate the difference variance.
  • s2 is the difference variance
  • M is the average difference
  • xn is the difference value corresponding to the nth sampling point
  • n is the number of sampling points.
  • the difference values of each frame are calculated to generate multiple difference variances.
  • Step 1084 judge whether the difference variance is less than the variance threshold value, if yes, go to step 1085; if not, the process ends.
  • the variance threshold may be set according to the actual situation. As an optional method, the variance threshold is 40. As another optional threshold, the variance threshold is 50.
  • judging whether the differential variance is less than the variance threshold specifically includes judging whether the specified number of differential variances are all less than the variance threshold. If so, go to step 1085; if not, the process ends.
  • the specified quantity can be set and adjusted according to the actual situation.
  • the specified number is 1, that is, if it is determined that any difference variance is smaller than the variance threshold, step 1085 is performed; if it is determined that the difference variances are all greater than or equal to the variance threshold, the process ends.
  • the acquired trigger information of the electronic device satisfies the trigger condition, it indicates that the electronic device is in a state of no occlusion in a high probability, and it cannot be ruled out that it is still in a state of occlusion in a small probability. Therefore, it is necessary to check whether the difference variance is Judgment is made when it is less than the variance threshold value, so as to exclude the small probability that it is still in an occluded state.
  • step 1085 is continued; if it is determined that the specified amount of difference variance is greater than or equal to the variance threshold, it indicates that the electronic device is in a blocked state , if the calibration is started at this time, the obtained calibration signal is inaccurate, which leads to an increase in the failure rate of preventing false touches, and the process ends.
  • FIG. 6 is a frequency domain diagram of an electronic device provided in an embodiment of the present application when it is in a occluded state.
  • the x-axis of the frequency domain diagram is a sampling array, and the sampling The array includes 960 sample points; the y-axis of the frequency domain plot is the absolute value of the cross-correlation.
  • the frequency domain diagram includes a main peak and multiple sidelines on both sides of the main peak.
  • the main peak is the point with the largest absolute value of the cross-correlation, that is, the point with the largest absolute value of the cross-correlation is the 504th sampling point.
  • the absolute value of the corresponding cross-correlation is 26687.804962882827, that is: the height of the main peak is 26687.804962882827; the absolute value of the cross-correlation of each side-vine in multiple side-vines is different, for example: the side-vine is the 550th sampling point, the corresponding cross-correlation
  • the absolute value of 6000 that is: the height of the side vine is 6000, and the height difference with the main peak is 20687.804962882827, the height difference is large.
  • FIG. 7 is a frequency domain diagram of an electronic device provided in an embodiment of the present application when it is in an unobstructed state.
  • the x-axis of the frequency domain diagram is a sampling array, and the sampling The array includes 960 sample points; the y-axis of the frequency domain plot is the absolute value of the cross-correlation.
  • the frequency domain diagram includes a main peak and multiple sidelines on both sides of the main peak. The main peak is the point with the largest absolute value of the cross-correlation, that is, the point with the largest absolute value of the cross-correlation is the 504th sampling point.
  • the absolute value of the corresponding cross-correlation is 5567.3362587164, that is, the height of the main peak is 5567.3362587164; the absolute value of the cross-correlation of each of the multiple side-vines is different, for example: the side-vine is the 550th sampling point, the corresponding cross-correlation
  • the absolute value of 1200 that is: the height of the side vine is 1200, the height difference with the main peak is 4367.3362587164, the height difference is small.
  • Step 1085 Use any one frame difference value among the multi-frame difference values as a calibration signal.
  • the difference variance is smaller than the variance threshold value, it indicates that the difference between the difference values of each frame in the multi-frame difference values is small. Therefore, an arbitrary set of difference values in the multi-frame difference values can be used as the calibration signal, It is used to generate a new reference signal subsequently to be used in the anti-missing function. As an optional solution, the first frame difference value is used as the calibration signal.
  • trigger information is acquired; whether the trigger information satisfies the trigger condition is judged; if it is judged that the trigger information satisfies the trigger condition, a transmission signal is sent and a reference signal is received, and the transmission signal includes an ultrasonic signal , the reference signal includes an ultrasonic signal; according to the reference signal, a calibration signal is generated, which can ensure that the calibration signal is generated when the electronic device is in an unobstructed state, and the accuracy of the calibration signal is ensured, thereby improving the accuracy of the result of the anti-mistouch algorithm.
  • FIG. 8 is a flowchart of another method for generating a calibration signal provided by an embodiment of the present application. As shown in FIG. 8 , the method includes:
  • Step 200 perform whole-machine calibration on the electronic device.
  • each step is performed by an electronic device.
  • the electronic device can be placed in an empty box, and the whole-machine calibration of the electronic device can be performed.
  • the receiver of the electronic device sends a transmit signal, and the transmit signal is reflected back to the reference signal through the mobile phone case and/or the sound cavity, and the secondary microphone of the electronic device receives the reference signal; the electronic device calculates the reference signal to generate a calibration Signal.
  • placing the electronic device in an empty box can keep the surroundings of the electronic device open, thereby shielding external interference and ensuring that the electronic device is in an unobstructed state.
  • Step 202 Acquire trigger information.
  • the trigger information includes the orientation of the display screen of the electronic device, the pitch angle of motion (pitch), the roll angle of motion (roll), the yaw angle of motion (yaw), the holding pitch angle, and the holding roll angle , ambient light report value, camera analysis result, touch screen result, device unlock result and screen bright result, or any combination thereof.
  • the magnetometer sensor can detect the first azimuth angle of the electronic device in the east direction, the second azimuth angle of the electronic device in the south direction, the third azimuth angle of the electronic device in the west direction, and the first azimuth angle of the electronic device in the north direction.
  • Four azimuths and send the first azimuth, the second azimuth, the third azimuth, and the fourth azimuth to the processor.
  • the accelerometer detects the initial pitch angle and initial roll angle of the electronic device, and sends the initial pitch angle and initial roll angle to the processor.
  • the gyro sensor detects a first angular velocity about the x-axis and a second angular velocity about the y-axis of the electronic device, and sends the first angular velocity and the second angular velocity to the processor.
  • the processor calculates the orientation of the display screen according to the initial pitch angle, initial roll angle, first angular velocity, second angular velocity, first azimuth, second azimuth, third azimuth and fourth azimuth through a fusion algorithm .
  • the fusion algorithm includes Oculus fusion algorithm, complementary filtering algorithm or automatic heading reference system (Automatic Heading Reference System, AHRS for short) algorithm.
  • the acceleration sensor detects the initial pitch angle and initial roll angle of the electronic device, and sends the initial pitch angle and initial roll angle to the processor.
  • the gyro sensor detects a first angular velocity about the x-axis and a second angular velocity about the y-axis of the electronic device, and sends the first angular velocity and the second angular velocity to the processor.
  • the processor assigns a first weight to the first angular velocity, a second weight to the second angular velocity, a third weight to the initial pitch angle, and a fourth weight to the initial roll angle.
  • the processor multiplies the first weight by the first angular velocity to calculate the first multiplication result; the processor multiplies the third weight by the initial pitch angle to calculate the second multiplication result; the processor multiplies the first multiplication result with the first multiplication result; The two multiplication results are added to calculate the grip pitch angle.
  • the processor multiplies the second weight by the second angular velocity to calculate the third multiplication result; the processor multiplies the fourth weight by the initial roll angle to calculate the fourth multiplication result; the processor multiplies the third multiplication result with the The fourth multiplication results are added to calculate the grip roll angle, so that the processor obtains the grip pitch angle and the grip roll angle.
  • the electronic device when the user picks up the electronic device, the electronic device will move, and the acceleration sensor will detect the initial pitch angle, initial roll angle, and initial yaw angle of the electronic device, and calculate the initial pitch angle, initial roll angle, and initial roll angle of the electronic device.
  • the angle and initial yaw angle are sent to the processor.
  • the gyro sensor detects the first angular velocity about the x-axis, the second angular velocity about the y-axis, and the third angular velocity about the z-axis of the electronic device, and sends the first angular velocity, the second angular velocity, and the third angular velocity to the processor.
  • the processor assigns a fifth weight to the first angular velocity, a sixth weight to the second angular velocity, a seventh weight to the third angular velocity, an eighth weight to the initial pitch angle, a ninth weight to the initial roll angle, and the initial
  • the yaw angle is assigned a tenth weight.
  • the processor multiplies the fifth weight by the first angular velocity to calculate the fifth multiplication result; the processor multiplies the eighth weight by the initial pitch angle to calculate the sixth multiplication result; the processor multiplies the fifth multiplication result with the sixth multiplication result; Six multiply the result to calculate the motion pitch angle.
  • the processor multiplies the sixth weight by the second angular velocity to calculate the seventh multiplication result; the processor multiplies the ninth weight by the initial roll angle to calculate the eighth multiplication result; the processor multiplies the seventh multiplication result
  • the eighth multiplication result is added to calculate the motion roll angle.
  • the processor multiplies the seventh weight by the third angular velocity to calculate the ninth multiplication result; the processor multiplies the tenth weight by the initial yaw angle to calculate the tenth multiplication result.
  • the processor adds the ninth multiplication result and the tenth multiplication result to calculate the motion yaw angle, so that the processor obtains the motion pitch angle, the motion roll angle and the motion yaw angle.
  • the environmental sensor detects the ambient light report value, and sends the ambient light report value to the processor, so that the processor obtains the ambient light report value.
  • the camera captures a picture, and sends the captured picture to the processor; the processor recognizes and calculates the picture through a picture recognition algorithm to generate a camera analysis result.
  • the camera analysis result includes blocking or no blocking. If the camera analysis result is blocked, it indicates that the electronic device is in a blocked state; if the camera analysis result is no blocking, it indicates that the electronic device is in an unblocked state.
  • the corresponding touch point will be detected on the display screen, the touch screen result is a touch point, and the display screen will send the touch screen result with the touch point to the processor, so that The processor obtains the touch screen result; if the user does not touch the display screen, the touch screen result is no touch point, and the display screen sends the touch screen result with no touch point to the processor, so that the processor obtains the touch screen result.
  • the display screen will detect that the capacitance value has changed, the touch screen result is that the capacitance value has changed, and the display screen will send the touch screen result of the capacitance value change to the processor, In order for the processor to obtain the touch screen result; if there is no object close to the display screen, the display screen will detect that the capacitance value has not changed, the touch screen result is that the capacitance value has not changed, and the display screen will send the touch screen result with no change in the capacitance value to the The processor, so that the processor obtains the touch screen result.
  • the interaction module may receive the unlocking operation input by the user, and send the unlocking operation to the processor; the processor generates the unlocking result according to the unlocking operation.
  • the device unlocking result includes unlocked or not unlocked, and unlocking includes one of fingerprint unlocking, face unlocking, pattern unlocking or password unlocking.
  • the interaction module may receive a screen brightening operation input by the user, and send the screen brightening operation to the processor; the processor generates a screen brightening result according to the screen brightening operation.
  • the screen-on results include whether the screen is on or not, and the screen-on includes one of the power button to brighten the screen, double-tap to brighten the screen, or raise the hand to brighten the screen.
  • Step 204 judging whether the trigger information satisfies the trigger condition, if yes, go to Step 206 ; if not, the process ends.
  • the trigger information corresponds to the trigger condition.
  • the trigger condition when the trigger information includes a holding pitch angle (pitch) and a holding roll angle (roll), the corresponding trigger condition includes that the holding pitch angle is smaller than the first pitch threshold value and greater than the second pitch threshold value, and The holding roll angle is smaller than the first roll threshold value and greater than the second roll threshold value;
  • the trigger information when the trigger information includes the orientation of the display screen, the trigger condition includes the orientation of the display screen facing upward;
  • the trigger information includes the motion pitch angle the trigger condition includes that the motion pitch angle is greater than the third pitch threshold value;
  • the trigger information when the trigger information includes the motion roll angle, the trigger condition includes that the motion roll angle is smaller than the third roll threshold value; when the trigger information includes the motion yaw angle
  • the trigger condition when the trigger condition includes the motion yaw angle greater than the yaw threshold value;
  • the corresponding trigger condition when the trigger information includes the camera analysis result, the corresponding The trigger condition includes no blocking
  • FIG. 9 is a schematic diagram of a holding angle of an electronic device provided by an embodiment of the present application.
  • the rotation angle is the pitch angle, and the counterclockwise rotation is set as positive, and the clockwise rotation is negative; when the mobile phone rotates around the y-axis, the rotation angle is the roll angle, and the counterclockwise rotation is set as negative. , clockwise is positive.
  • the processor determines whether the holding pitch angle is less than the first pitch threshold value and greater than the second pitch threshold value, and whether the holding roll angle is less than the first roll threshold value and greater than the second roll threshold value value; if it is determined that the holding pitch angle is less than the first pitch threshold value and greater than the second pitch threshold value, and the holding roll angle is less than the first roll threshold value and greater than the second roll threshold value, it indicates that The trigger information satisfies the trigger condition.
  • the first pitch threshold is 60 degrees clockwise around the x-axis
  • the second pitch threshold is 10 degrees clockwise around the x-axis
  • the first roll threshold is 30 degrees counterclockwise around the y-axis
  • the second roll threshold value is 30 degrees clockwise around the y-axis, that is, the value range of the pitch angle includes -60 degrees to -10 degrees
  • the value range of the roll angle includes -30 degrees to 30 degrees.
  • the first pitch threshold is 50 degrees clockwise around the x-axis
  • the second pitch threshold is 10 degrees clockwise around the x-axis
  • the first roll threshold is 30 degrees counterclockwise around the y-axis
  • the second roll threshold value is 30 degrees clockwise around the y-axis, that is, the value range of the pitch angle includes -50 degrees to -10 degrees
  • the value range of the roll angle includes -30 degrees to 30 degrees.
  • the first pitch threshold is 60 degrees clockwise around the x-axis
  • the second pitch threshold is 10 degrees clockwise around the x-axis
  • the first roll threshold is 20 degrees counterclockwise around the y-axis
  • the second roll threshold is 20 degrees clockwise around the y-axis, that is, the pitch angle ranges from -60 degrees to -10 degrees
  • the roll angle ranges from -20 degrees to 20 degrees.
  • the trigger information includes one of the orientation of the display screen, the motion pitch angle, the motion roll angle, or the motion yaw angle, or any combination thereof.
  • the trigger condition when the trigger information includes the orientation of the display screen, the trigger condition includes that the orientation of the display screen is upward; when the trigger information includes the motion pitch angle, the trigger condition includes that the motion pitch angle is greater than the third pitch threshold value; when the trigger information includes the motion pitch angle
  • the trigger condition when the roll angle is used, the trigger condition includes that the movement roll angle is smaller than the third roll threshold value; when the trigger information includes the movement yaw angle, the trigger condition includes that the movement yaw angle is greater than the yaw threshold value.
  • the trigger information includes the orientation of the display screen, the pitch angle of the movement, and the roll angle of the movement
  • the trigger condition includes that the orientation of the display screen is upward, and the pitch angle of the movement is greater than the third pitch threshold value, and the roll angle of the movement is smaller than the third roll angle.
  • the rotation threshold, the third pitch threshold is 30 degrees counterclockwise around the x-axis or 30 degrees clockwise around the x-axis
  • the third roll threshold is 10 degrees counterclockwise around the y-axis.
  • the trigger information includes the orientation of the display screen, the movement roll angle, and the movement yaw angle
  • the trigger condition includes that the display screen is oriented upward, and the movement roll angle is smaller than the third roll threshold value
  • the motion yaw angle is greater than the yaw threshold value
  • the third roll threshold value is 10 degrees counterclockwise around the y-axis
  • the motion yaw angle is greater than 10 degrees around the z-axis.
  • the trigger condition includes that the ambient light alarm value is greater than the ambient light alarm threshold value.
  • the ambient light sensor in the electronic device can detect the ambient light report value where the electronic device is located, and send the ambient light report value to the processor; the processor determines whether the ambient light report value is greater than the ambient light report threshold value, If it is determined that the ambient light alarm value is greater than the ambient light alarm threshold value, it indicates that the trigger information satisfies the trigger condition, and the electronic device is in an unobstructed state.
  • the ambient light alarm threshold value is 50 lux (lux)
  • the ambient light alarm value sensed by the ambient light sensor is 60 lux, which is greater than the ambient light alarm threshold value, indicating that the trigger information satisfies the trigger condition.
  • the trigger condition includes that the camera analysis result is no occlusion.
  • the camera takes a picture and sends the taken picture to the processor; the processor identifies and calculates the picture through a picture recognition algorithm to generate a camera analysis result, thereby judging whether there is an object blocking the electronic equipment, if it is judged that there is an object blocking the electronic equipment , the camera analysis result is blocked, indicating that the trigger information does not meet the trigger condition; if it is determined that no object blocks the electronic device, the camera analysis result is no block, indicating that the trigger information meets the trigger condition.
  • the trigger condition includes that the touch screen result is no touch point or the touch screen result is no change in the capacitance value.
  • the touch screen result includes a touch point or no touch point. If the touch screen result is a touch point, it means that there is an object in front of the electronic device, and the trigger information does not meet the trigger condition; if the touch screen result is no touch point, Indicates that there is no object blocking in front of the electronic device, and the trigger information meets the trigger conditions.
  • the touch screen result includes a change in the capacitance value or no change in the capacitance value. If the user does not touch the display screen, the touch point will not be sensed on the display screen. The value will change, and the touch screen result includes a change in the capacitance value, which means that there is an object in front of the electronic device, and the trigger information does not meet the trigger conditions; if the touch screen result includes no change in the capacitance value, it means that there is no object in front of the electronic device. Triggering conditions.
  • the triggering condition includes that the unlocking result is unlocked.
  • the electronic device can be unlocked by means of fingerprint unlocking, pattern unlocking, password unlocking or face recognition unlocking. If the electronic device has been unlocked, it indicates that the trigger information satisfies the trigger condition.
  • the unlocking method includes password unlocking.
  • the processor receives the password input by the user and matches the input password with the locally stored standard password. If it matches, it controls the electronic device to unlock, and the trigger information satisfies the trigger condition; Then the control electronic device is locked, and the trigger information does not meet the trigger condition at this time.
  • the standard password includes the password set by the user for unlocking.
  • the trigger condition includes that the screen brightening result is that the screen has been brightened.
  • the display screen can be turned on by double-clicking to turn on the screen, the power button to turn on the screen, or raising a hand to turn on the screen. If the screen of the electronic device is on, it indicates that the trigger information meets the trigger conditions.
  • the screen brightening method includes double-clicking to brighten the screen.
  • the processor determines whether a double-click instruction from the user is received. If it receives a double-click instruction from the user, it controls the electronic device to brighten the screen. At this time, the trigger information satisfies the trigger condition; if the user's double-click instruction is not received Double-click the instruction to control the electronic device to turn off the screen, and the screen-on result obtained at this time is that the screen is not turned on, that is, the trigger information does not meet the trigger condition.
  • the trigger information includes the screen-on result.
  • the screen-on result is the screen is on, it indicates that the trigger information satisfies the trigger condition.
  • the trigger condition includes that the radio frequency signal difference is smaller than the difference threshold value.
  • the radio frequency signal difference includes a difference value between the transmitted radio frequency signal and the received radio frequency signal.
  • the radio frequency signal difference is greater than or equal to the difference threshold value, it indicates that the difference between the transmitted radio frequency signal and the received radio frequency signal is relatively large, and the electronic device is in a blocked state at this time. If the radio frequency signal difference is less than the difference threshold value, It shows that there is little difference between the transmitted radio frequency signal and the received radio frequency signal, and the electronic device is in an unobstructed state at this time.
  • the difference threshold value may be set according to the actual situation.
  • the difference threshold is 1db.
  • the difference threshold is 2db.
  • the trigger information includes the orientation of the display screen, the motion pitch angle, the motion roll angle, the holding angle and the ambient light value.
  • the direction of the display screen is upward, and the motion pitch angle is greater than the third pitch threshold, and the
  • the roll angle is smaller than the third roll threshold value
  • the holding angle is smaller than the holding threshold value
  • the ambient light alarm value is greater than the ambient light alarm threshold value
  • the electronic device When a certain trigger information satisfies the corresponding trigger condition, it indicates that the electronic device has a certain probability to be in an unobstructed state. Therefore, when multiple trigger information is set, and each trigger information satisfies the corresponding trigger condition, the electronic device has a greater probability In an unobstructed state, at this time, the calibration is started to generate a calibration signal, which can further ensure the accuracy of the generated calibration signal, thereby improving the success rate of preventing false touches.
  • the trigger information includes the unlocking result, the holding pitch angle, the holding roll angle, the orientation of the display screen, the motion pitch angle, the motion roll angle and the ambient light value.
  • the unlocking result includes the unlocked and the holding pitch angle is less than the first pitch threshold value and greater than the second pitch threshold value, and the holding roll angle is less than the first roll threshold value and greater than the second roll threshold value, and the direction of the display screen is upward, and the movement
  • the pitch angle is greater than the third pitch threshold value, and the motion roll angle is less than the third roll threshold value, and the ambient light alarm value is greater than the ambient light alarm threshold value
  • it indicates that the trigger information meets the trigger conditions, and multiple trigger information is set it is necessary to compare the corresponding multiple trigger conditions, which can further ensure the accuracy of the generated calibration signal, thereby improving the success rate of preventing false touches.
  • step 206 if it is judged that the trigger information satisfies the trigger condition, it indicates that the electronic device is currently in an unobstructed state and is suitable for generating a calibration signal, and proceeds to step 206; if it is judged that the trigger information does not meet the trigger condition, it indicates that the electronic device is currently in a occluded state , is not suitable for generating calibration signals, the process ends.
  • the calibration when the electronic device is in a state that satisfies the trigger condition, the calibration is performed, which can ensure the accuracy of the calibration, thereby improving the success rate of preventing accidental touch;
  • the obtained calibration result is inaccurate, so that the success rate of preventing false touch is low, and the user experience is degraded.
  • Step 206 Determine whether the acquired calibration time interval is greater than the interval threshold.
  • the calibration time interval includes the time interval between the time point of the current calibration and the time point of the last calibration. If so, proceed to step 208; if not, the process ends.
  • the current calibration time point includes the current time point
  • the last calibration time point includes the calibration completion time point.
  • the calibration completion time point can be obtained from the memory.
  • the interval threshold can be set according to the actual situation, and the interval threshold should not be set too long. If the interval threshold is too long, the calibration cannot be triggered for a long time, so that the failure rate of preventing false touches is high; It should be set too short. If the interval threshold is too short, the electronic device will frequently perform calculations and generate calibration signals, thereby increasing the load of the electronic device and increasing the calibration power consumption. Therefore, the interval threshold should be set at an appropriate time, neither without triggering calibration for a long time nor frequent calibration. As an option, the interval threshold is set to 1 hour. As another alternative, the interval threshold is set to 2 hours.
  • step 208 is performed; if it is determined that the acquired calibration time interval is less than or If it is equal to the interval threshold, it indicates that the time from the last calibration is short. If the calibration frequency is too frequent and the load of the electronic equipment is increased, the process ends.
  • the interval threshold is set to 1 hour
  • the last calibration time is 12:20
  • the current calibration time is 15:14
  • the calibration time interval is 2 hours and 54 minutes
  • the calibration time interval is greater than the interval threshold, and go to step 208 .
  • the interval threshold is set and compared with the calibration time interval, so that the calibration frequency can be controlled, and the load of the electronic device and the power consumption of the calibration can be reduced; if the interval threshold is not set, the electronic device will be frequently calibrated, which increases the calibration function of the electronic device.
  • the load of the electronic equipment is too large, and in severe cases, it will cause a certain degree of damage to the electronic equipment.
  • Step 208 Send a transmit signal and receive a reference signal, where the reference signal includes a reflected signal of the transmit signal.
  • the transmitted signal includes a signal transmitted when the electronic device is in an unblocked state.
  • Sending the transmission signal specifically includes sending the transmission signal according to a preset time interval, wherein the preset time interval can be set according to the actual situation.
  • the preset time interval is 150 milliseconds.
  • the transmission signal includes an ultrasonic signal
  • the ultrasonic signal includes a single-frequency continuous wave (continuous wave, abbreviated as: CW), a linear frequency modulation continuous wave (linear frequency modulation, abbreviated as: LFM), or a ZC sequence (Zadoff-Chu sequence) .
  • CW continuous wave
  • LFM linear frequency modulation
  • ZC sequence Zadoff-Chu sequence
  • the transmission signal with a specific frequency band is selected for transmission, and the specific frequency band includes a frequency with high electro-acoustic conversion efficiency and minimal noise interference to audio.
  • the electro-acoustic conversion efficiency includes the ratio of the sound wave energy emitted by the receiver to the input electric energy. The higher the sensitivity of the receiver, the higher the electro-acoustic conversion efficiency, and the stronger the response ability and resolution to ultrasonic signals.
  • the reference signal includes an ultrasonic signal received by the secondary microphone.
  • the receiver sends a transmit signal, the transmit signal is reflected and then reflected back to the reference signal, and the secondary microphone on the top of the mobile phone receives the reference signal.
  • the reflection from the transmitted signal back to the reference signal includes two reflection scenarios: the first is that there is an object within a short distance from the mobile phone, the receiver sends the transmitted signal, and the transmitted signal can hit an object with a short distance from the mobile phone and then reflect back to a reference Signal, the reference signal is received by the secondary microphone; the second is the open space around the mobile phone, that is, there is no object within a short distance from the mobile phone, the receiver sends the transmitting signal, and the transmitting signal is reflected by the mobile phone case and/or the sound cavity, The reference signal is reflected back, and the reference signal is received by the secondary microphone. Since the sound is a sound wave generated by the vibration of an object, even if the outside of the mobile phone is not blocked, the transmit signal sent by the receiver will be transmitted from the outside of the
  • Step 210 Generate a calibration signal according to the reference signal.
  • the calibration completion time point is recorded.
  • the calibration completion time point is recorded, and the calibration completion time point is stored in the memory, so as to provide a basis for determining whether to generate the calibration signal after the calibration is triggered next time.
  • trigger information is obtained; whether the trigger information satisfies the trigger condition is judged; if it is judged that the trigger information satisfies the trigger condition, a transmission signal is sent and a reference signal is received, and the transmission signal includes an ultrasonic signal , the reference signal includes an ultrasonic signal; according to the reference signal, a calibration signal is generated, which can ensure that the calibration signal is generated when the electronic device is in an unobstructed state, which ensures the accuracy of the calibration signal, thereby improving the accuracy of the result of the anti-mistouch algorithm.
  • each part of the processors or processing units inside the processor 110 can cooperate to implement the previous method process, and the corresponding software programs of each part of the processors or processing units can be stored in the memory.
  • FIG. 10 is a schematic structural diagram of an apparatus for generating a calibration signal according to an embodiment of the present application. As shown in FIG. 10 , the apparatus includes: an acquisition unit 11 , a first judgment unit 12 , a transceiver unit 13 and a generation unit 14 .
  • the acquiring unit 11 is used for acquiring trigger information.
  • the first judgment unit 12 is configured to judge whether the trigger information satisfies the trigger condition.
  • the transceiver unit 13 is used for the first judgment unit 12 to send a transmission signal and receive a reference signal if the first judgment unit 12 judges that the trigger information satisfies the trigger condition, wherein the reference signal includes a reflected signal of the transmission signal.
  • the generating unit 14 is configured to generate a calibration signal according to the reference signal.
  • the apparatus further includes: a second judgment unit 15 .
  • the second judgment unit 15 is used to judge whether the acquired calibration time interval is greater than the interval threshold, and the calibration time interval includes the time interval between the time point of the current calibration and the time point of the last calibration; if the second judgment unit 15 judges that the calibration time When the interval is greater than the interval threshold, the transceiver unit 13 is triggered to continue to perform the steps of sending the transmit signal and receiving the reference signal.
  • the generating unit 14 is specifically configured to perform pulse compression processing on the received multi-frame reference signals, respectively, to generate multi-frame cross-correlation frequency domains, and each frame cross-correlation frequency domain includes a set of sampling arrays; The adjacent two groups of sampling arrays in the array are subtracted to generate the multi-frame difference value; according to the multi-frame difference value, the difference variance is generated; it is judged whether the difference variance is less than the variance threshold value; if it is judged that the difference variance is less than the variance threshold value, the Any one frame difference value in the multi-frame difference value is used as a calibration signal.
  • the generating unit 14 is further specifically configured to perform down-conversion processing on the reference signal to generate a complex baseband signal; perform fast Fourier transform on the complex baseband signal to generate a frequency domain signal; obtain a conjugate inversion signal of the transmitted signal; From the frequency domain signal and the conjugate inversion signal, the cross-correlation frequency domain is generated.
  • the transceiver unit 13 is specifically configured to send the transmit signal according to a preset time interval.
  • trigger information is obtained; whether the trigger information satisfies the trigger condition is judged; if it is judged that the trigger information satisfies the trigger condition, a transmission signal is sent and a reference signal is received, and the transmission signal includes an ultrasonic signal , the reference signal includes an ultrasonic signal; according to the reference signal, a calibration signal is generated, which can ensure that the calibration signal is generated when the electronic device is in an unobstructed state, which ensures the accuracy of the calibration signal, thereby improving the accuracy of the result of the anti-mistouch algorithm.
  • the present application also provides a computer storage medium, where instructions are stored in the computer storage medium, and when the instructions are executed on the computer, the computer is made to execute each of the methods for generating a calibration signal as shown in FIG. 3 or FIG. 8 above. step.
  • the present application also provides a computer program product comprising instructions, when the computer program product runs on a computer or any at least one processor, the computer executes the method for generating a calibration signal as shown in FIG. 3 or FIG. 8 in each step.
  • the involved processor 110 may include, for example, a central processing unit (CPU), a microprocessor, a microcontroller or a digital signal processor, and may also include a GPU, an NPU, and an ISP.
  • CPU central processing unit
  • microprocessor a microcontroller or a digital signal processor
  • GPU graphics processing unit
  • NPU an NPU
  • ISP an ISP
  • Necessary hardware accelerators or logic processing hardware circuits may also be included, such as application-specific integrated circuits (ASICs), or one or more integrated circuits for controlling the execution of programs in the technical solution of the present application, and the like.
  • the processor may have the functionality to operate one or more software programs, which may be stored in the memory.
  • the memory may be read-only memory (ROM), other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types of storage devices that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (electrically erasable programmable read-only memory, EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disk storage (including compact discs, laser discs, compact discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media, or other magnetic storage devices, or may also be capable of carrying or storing desired program code in the form of instructions or data structures and capable of Any other medium accessed by a computer, etc.
  • “at least one” refers to one or more, and “multiple” refers to two or more.
  • “And/or”, which describes the association relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, which can indicate the existence of A alone, the existence of A and B at the same time, and the existence of B alone. where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • “At least one of the following” and similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one of a, b, and c may represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c may be single or multiple.
  • any function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Telephone Function (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

本申请实施例提供了一种校准信号的生成方法、电子设备和计算机存储介质。本申请实施例提供的技术方案中,获取触发信息; 判断触发信息是否满足触发条件; 若判断出触发信息满足触发条件,发送发射信号并接收基准信号,发射信号包括超声波信号,基准信号包括超声波信号; 根据基准信号,生成校准信号,可以保证在电子设备处于无遮挡状态时生成校准信号,保证了校准信号的准确性,进而提高了防误触算法的结果的准确性。

Description

一种校准信号的生成方法、电子设备和计算机存储介质 技术领域
本申请涉及通信技术领域,尤其涉及一种校准信号的生成方法、电子设备和计算机存储介质。
背景技术
“防误触模式”是为了防止电子设备在使用过程中,触控显示屏、解锁或应用程序等功能被误触发而采用的一种模式。目前,可通过超声防误触算法实现“防误触模式”,超声防误触算法可以解决超声波低功耗常开需要,从而可以无需设置光学接近传感器,实现正面无孔和顶部空间缩减。但当电子设备状态发生变化时,会导致超声防误触算法的结果异常,出现结果误报的问题。
发明内容
本申请提供一种校准信号的生成方法、电子设备和计算机存储介质,可以提高超声防误触算法的结果的准确性。
第一方面,本申请实施例提供了一种校准信号的生成方法,包括
获取触发信息;
判断触发信息是否满足触发条件;
若判断出触发信息满足触发条件,发送发射信号并接收基准信号,其中,基准信号包括发射信号的反射信号,发射信号包括超声波信号,基准信号包括超声波信号;
根据基准信号,生成校准信号。
在一种可能的实现方式中,还包括:
触发信息包括握持俯仰角度和握持滚转角度,触发条件包括握持俯仰角度小于第一俯仰门限值且大于第二俯仰门限值,且握持滚转角度小于第一滚转门限值且大于第二滚转门限值。
在一种可能的实现方式中,还包括:触发信息包括显示屏的方向、运动俯仰角度、运动滚转角度和运动偏航角度中之一或其任意组合;
当触发信息包括显示屏的方向时,触发条件包括显示屏的方向朝上;
当触发信息包括运动俯仰角度时,触发条件包括运动俯仰角度大于第三俯仰门限值;
当触发条件包括运动滚转角度时,触发条件包括运动滚转角度小于第三滚转门限值;
当触发条件包括运动偏航角度时,触发条件包括运动偏航角度大于偏航门限值。
在一种可能的实现方式中,还包括:触发信息包括环境光报值,触发条件包括环境光报值大于环境光报门限值。
在一种可能的实现方式中,还包括:触发信息包括摄像分析结果,触发条件包括摄像分析结果为无遮挡。
在一种可能的实现方式中,还包括:触发信息包括触屏结果,触发条件包括触屏结果为无触摸点或触屏结果为电容值无变化。
在一种可能的实现方式中,还包括:触发信息包括设备解锁结果,触发条件包括解锁结果为已解锁。
在一种可能的实现方式中,还包括:触发信息包括亮屏结果,触发条件包括亮屏结果为已亮屏。
在一种可能的实现方式中,还包括:
判断获取的校准时间间隔是否大于间隔阈值,校准时间间隔包括当前校准的时间点和上一次校准的时间点之间的时间间隔;
若判断出校准时间间隔大于间隔阈值,继续执行发送发射信号并接收基准信号的步骤。
在一种可能的实现方式中,还包括:
对接收到的多帧基准信号分别进行脉冲压缩处理,生成多帧互相关频域,每帧互相关频域包括一组采样数组;
对多组采样数组中的相邻两组采样数组相减,生成多帧差异值;
根据多帧差异值,生成差分方差;
判断差分方差是否小于方差门限值;
若判断出差分方差小于方差门限值,将多帧差异值中的任意一帧差异值作为校准信号。
在一种可能的实现方式中,还包括:
对基准信号进行下变频处理,生成复数基带信号;
对复数基带信号进行快速傅立叶变换,生成频域信号;
获取发射信号的共轭反转信号;
根据频域信号和共轭反转信号,生成互相关频域。
在一种可能的实现方式中,还包括:
按照预设时间间隔发送发射信号。
第二方面,本申请实施例提供了一种电子设备,设备包括:
显示屏;一个或多个处理器;存储器;多个应用程序;以及一个或多个计算机程序,其中一个或多个计算机程序被存储在存储器中,一个或多个计算机程序包括指令,当指令被设备执行时,使得设备执行以下步骤:
获取触发信息;
判断触发信息是否满足触发条件;
若判断出触发信息满足触发条件,发送发射信号并接收基准信号,其中,基准信号包括发射信号的反射信号,发射信号包括超声波信号,基准信号包括超声波信号;
根据基准信号,生成校准信号。
在一种可选的实现方式中,当指令被设备执行时,使得设备具体执行以下步骤:
判断获取的校准时间间隔是否大于间隔阈值,校准时间间隔包括当前校准的时间点和上一次校准的时间点之间的时间间隔;
若判断出校准时间间隔大于间隔阈值,继续执行发送发射信号并接收基准信号的步骤。
在一种可选的实现方式中,当指令被设备执行时,使得设备具体执行以下步骤:
对接收到的多帧基准信号分别进行脉冲压缩处理,生成多帧互相关频域,每帧互相关频域包括一组采样数组;
对多组采样数组中的相邻两组采样数组相减,生成多帧差异值;
根据多帧差异值,生成差分方差;
判断差分方差是否小于方差门限值;
若判断出差分方差小于方差门限值,将多帧差异值中的任意一帧差异值作为校准信号。
在一种可选的实现方式中,当指令被设备执行时,使得设备具体执行以下步骤:
对基准信号进行下变频处理,生成复数基带信号;
对复数基带信号进行快速傅立叶变换,生成频域信号;
获取发射信号的共轭反转信号;
根据频域信号和共轭反转信号,生成互相关频域。
在一种可选的实现方式中,当指令被设备执行时,使得设备具体执行以下步骤:
按照预设时间间隔发送发射信号。
第三方面,本申请实施例提供了一种计算机存储介质,应用于电子设备,所述计算机存储介质用于设备执行的程序代码,所述程序代码包括用于执行第一方面或者第一方面的任一可能的实现方式中的方法的指令。
第四方面,本申请实施例提供了一种包含指令的计算机程序产品,当所述计算机程序产品在计算机或任一至少一种处理器上运行时,所述计算机用于执行第一方面或者第一方面的任一可能的实现方式中的方法的指令。
本申请实施例的方案中,获取触发信息;判断触发信息是否满足触发条件;若判断出触发信息满足触发条件,发送发射信号并接收基准信号,发射信号包括超声波信号,基准信号包括超声波信号;根据基准信号,生成校准信号,可以保证在电子设备处于无遮挡状态时生成校准信号,保证了校准信号的准确性,进而提高了防误触算法的结果的准确性。
附图说明
图1为本申请实施例提供的一种电子设备的结构示意图;
图2为本申请实施例提供的一种电子设备的系统架构图;
图3为本申请实施例提供的一种校准信号的生成方法的流程图;
图4为本申请实施例提供的生成互相关频域的流程图;
图5为本申请实施例提供的一种以采样点数量为960为例的单帧互相关频域的频域图;
图6为本申请实施例提供的一种电子设备处于有遮挡状态时的频域图;
图7为本申请实施例提供的一种电子设备处于无遮挡状态时的频域图;
图8为本申请实施例提供的又一种校准信号的生成方法的流程图;
图9为本申请实施例提供的一种电子设备握持角度的示意图;
图10为本申请实施例提供的一种校准信号的生成装置的结构示意图。
具体实施方式
为了更好的理解本申请的技术方案,下面结合附图对本申请实施例进行详细描述。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应当理解,尽管在本申请实施例中可能采用术语第一、第二等来描述设定阈值,但这些设定阈值不应限于这些术语。这些术语仅用来将设定阈值彼此区分开。例如,在不脱离本申请实施例范围的情况下,第一设定阈值也可以被称为第二设定阈值,类似地,第二设定阈值也可以被称为第一设定阈值。
“防误触模式”是为了防止电子设备在使用过程中,触控显示屏、解锁或应用程序等功能被误触发而采用的一种模式。电子设备的“防误触模式”能够应用在通话场景、低功耗常开场景和口袋模式场景。下面分别对通话场景、低功耗常开场景和口袋模式场景进行简单的介绍。
通话场景:以电子设备是手机为例,用户在使用手机接听电话时,由于手机的触控显示屏没有及时熄灭,用户的皮肤接触到触控显示屏上的功能按键之后,会导致误挂断电话的问题,使得用户的体验感极差。相关技术中,可利用光学接近传感器检测手机与人脸之间的接近距离,当检测到接近距离小于一定阈值后控制触控显示屏息屏,以防止误触发,从而可以大幅提高用户的体验感。
低功耗常开场景:以电子设备是手机为例,在手机的触控显示屏点亮的状态下,用户的皮肤可能会接触到触控显示屏上的功能按键,会导致手机出现误拨打电话或打开不必要的应用程序的问题,耗费手机电量,增大手机功耗。相关技术中,设置在手机上方的光学接近传感器的发射部分会发射出脉冲光线,当近距离内无障碍物时,脉冲光线不会被反射,因此,光学接近传感器的接收部分若没有接收到反射光信号,则手机的触控显示屏正常工作;当近距离内有障碍物时,发射部分发射出的脉冲光线会被反射,接收部分会接收到反射光信号,表示手机前方有物体接近,手机将关闭触控功能,即:不响应解锁、息屏显示(Always On Display,简称:AOD)、人脸识别等功能性指令,从而可以降低功耗并防止手机误触发。
口袋模式场景:以电子设备是手机为例,当手机放在背包或口袋中时,由于皮肤等电容性因素而导致的触控显示屏上显示的功能性按键误触发或手机误解锁,带来舆情和退机风险。相关技术中,当手机触控显示屏因误触而亮起时,光学接近传感器会马上探测周围环境,如发现周围有物体存在,则认为手机还在口袋或背包中,将控制 触控显示屏息屏,同时关闭触控功能,从而最大程度地减少误触发的概率。
防误触功能可以通过基于触控面板(Touch panel,简称:TP)的电容效应检测方式进行触发。相关技术中,存在两种基于TP的电容效应检测方式,下面分别对两种基于TP的电容效应检测方式进行简单的介绍。
第一种检测方式:当物体移向电子设备时,不论该物体是否为导体,由于该物体的接近,总要使电容的介电常数发生变化,从而使电容发生变化,进而确定是否存在物体遮挡。具体地,若电容发生变化,表明有物体在靠近,则触发防误触功能;若电容未发生变化,表明没有物体在靠近,则不触发防误触功能。
第二种检测方式:检测触控显示屏上是否有触摸点,若检测到触控显示屏上有触摸点,表明触控显示屏前方有物体遮挡,则触发防误触功能;若检测到触控显示屏上无触摸点,表明触控显示屏前方无物体遮挡,则不触发防误触功能。
但是,基于TP的电容效应检测方式的检测距离较近,即:只有当物体足够靠近触控显示屏时电容才会发生变化,且此种检测方式的算法复杂度较高,运算时间较长,及时性较差,从而导致触发防误触功能的准确率较低。
随着对手机全面屏需求的进一步提升,减少正面开孔能够有效提升屏占比,并提高抗尘防水性能。当前使用的光学接近光传感器需要在触控显示屏正面开孔,并且需要安装光学器件,会挤占手机顶部的空间,无法实现全面屏的规划需求;再者,光学接近传感器需要满足出光孔、透光率和硅胶材料性能的要求,因此,成本较高;并且在强光和水雾等状态下,光学接近传感器容易失效。因此,又提出了使用“顶出接近光传感器”代替光学接近传感器,但“顶出接近光传感器”易出现误报问题,且器件成本和故障反馈比例(FFR)较高。为解决“顶出光学接近传感器”的误报问题,提出了“超声波与光学融合的接近检测解决方案”,该方案能够满足通话场景下的防误触需求,但无法满足口袋模式场景和低功耗常开场景的防误触需求。进一步提出了超声防误触算法,该算法具体为通过断续超声波检测移动终端是否被遮挡,从而决定是否开启防误触功能,该方法可解决超声波低功耗常开需要,从而无需设置光学接近传感器,实现正面无孔和顶部空间缩减。
在使用超声防误触算法的过程中,若手机状态发生变化(例如:为手机安装手机壳或者为手机更换手机壳),当发射超声波信号时,会出现算法结果异常,导致误报接近状态或误报远离状态。例如:超声防误触算法的结果为物体接近状态,则手机触控显示屏息屏、不显示指纹图标并关闭触控功能,而实际情况是由于手机壳更换而导致接收的超声波信号不准确,此时并没有物体接近。目前,超声防误触算法的触发防误触模式的准确率较低。为解决上述问题,本申请实施例提供了一种校准信号的生成方法,以便于校准超声防误触算法的参考信号,参考信号可用于判断电子设备是否处于有遮挡状态,对参考信号进行校准,可以提高参考信号的准确性,从而提高触发防误触模式的准确率。
本申请实施例提供的一种校准信号的生成方法可以应用于具有显示屏的电子设备,该电子设备包括但不限于手机、平板电脑、桌面型计算机、膝上型计算机、手持计算机、可穿戴设备、头戴式显示器、阅读器设备、便携式音乐播放器、便携式游戏机、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,简称:UMPC)、上 网本,以及蝉窝电话、个人数字助理(personal digital assistant,简称:PDA)、增强现实(augmented reality,简称:AR)、虚拟现实(virtual reality,简称:VR)设备。以电子设备是手机为例,图1为本申请实施例提供的一种电子设备的结构示意图。如图1所示,该电子设备包括主麦克风150、副麦克风160、电源(Power)键210、受话器140、前置摄像头190a、指纹键220和显示屏170。
副麦克风160位于电子设备的顶部,主麦克风150位于电子设备的底部,为了电子设备的美观效果,可以将副麦克风160与主麦克风150以小圆孔形状对称设置于电子设备的顶部与底部。电子设备设置两个麦克风,利用双麦降噪原理保持稳定通话。其中,主麦克风150用于收集通话的声音,副麦克风160用于收集通话环境周边的噪音,将通话的声音和周边噪音进行声向相反处理,从而达到降噪的目的。本申请实施例中,作为一种可选方案,副麦克风160还用于接收反射的基准信号。
如图1所示,电源键210位于电子设备侧面,作为一种可选方案,电源键210以凸起的按钮形式设置于电子设备的侧面,既方便用户握持时进行操作,也无需占用显示屏170的正面面积,能够进一步提高屏占比。电源键210可用于控制电子设备,包括息屏、亮屏、开启或关闭功能,具体功能可根据用户需求进行设置。例如,电子设备处于开启状态时,用户长按电源键210则电子设备进入关闭状态;电子设备处于息屏状态时,用户短按电源键210,则电子设备亮屏。
受话器140也称"听筒",位于电子设备的上方,用于将音频电信号转换成声音信号以及发射发射信号。当电子设备接听电话或语音信息时,可以通过将受话器140靠近用户耳朵接听声音。
前置摄像头190a位于电子设备的显示屏170的上方,与受话器140相邻设置,前置摄像头190a可用于捕获图像或视频。
指纹键220用于采集指纹,电子设备可以利用采集的指纹特性实现指纹解锁、访问应用锁、指纹拍照、指纹接听来电等功能。作为一种可选方案,指纹键220以凹陷的按钮形式设置于电子设备的背面,这种设计方式既方便用户握持时进行操作,也无需占用显示屏170的正面面积,能够进一步提高屏占比。
显示屏170位于电子设备的正面,用于显示图像或视频,以及用于接收用户输入的触控指示,触控指示包括单击、双击,按压或滑动,显示屏170可以是侧边有弧度的曲面屏,也可以是侧边没有弧度的平面屏。显示屏170包括显示面板,显示面板包括液晶显示屏170(liquid crystal display,简称:LCD)、有机发光二极管(organic light-emitting diode,简称:OLED)、有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitti diode,简称:AMOLED)、柔性发光二极管(flex light-emitting diode,简称:FLED)、迷你LED(Mini LED)、微型LED(Micro LED)、微型OLED(Micro-OLED)或量子点发光二极管(quantum dot light emitting diodes,简称:QLED)。作为一种可选方案,显示屏170包括触控显示屏。
图2为本申请实施例提供的一种电子设备的系统架构图,如图2所示,该电子设备包括存储器100、处理器110、通信模块120、受话器140、主麦克风150、副麦克风160、显示屏170、传感器模块180、摄像头190和交互模块200。其中,传感器模块180包括加速度传感器180a、陀螺仪传感器180b、环境光传感器180c和磁力计传 感器180d中之一或其任意组合,摄像头190包括前置摄像头190a和后置摄像头190b,通信模块120包括移动通信模块120a和/或无线通信模块120b。存储器100、处理器110和交互模块200之间可以通过内部连接通路互相通信,传递控制和/或数据信号,存储器100用于存储计算机程序,处理器110用于从存储器100中调用并运行该计算机程序。
存储器100可以是只读存储器(read-only memory,ROM)、可存储静态信息和指令的其它类型的静态存储设备、随机存取存储器(random access memory,RAM)或可存储信息和指令的其它类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其它磁存储设备,或者还可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其它介质等。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,简称:AP)、调制解调处理器、图形处理器(graphics processing unit,简称:GPU)、图像信号处理器(image signal processor,简称:ISP)、控制器、存储器、视频编解码器、数字信号处理器(digital signal processor,简称:DSP)、基带处理器、神经网络处理(neural-network processing unit,简称:NPU)中之一或其任意组合。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
本申请实施例中,上述处理器110可以和存储器100可以合成一个处理装置,更常见的是彼此独立的部件,处理器110用于执行存储器100中存储的程序代码来实现上述功能。具体实现时,该存储器100也可以集成在处理器110中,或者,独立于处理器110。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,简称:I2C)接口、集成电路内置音频(inter-integrated circuit sound,简称:I2S)接口、脉冲编码调制(pulse code modulation,简称:PCM)接口、通用异步收发传输器(universal asynchronous receiver/transmitter,简称:UART)接口、移动产业处理器接口(mobile industry processor interface,简称:MIPI)、通用输入输出(general-purpose input/output,简称:GPIO)接口、用户标识模块(subscriber identity module,简称:SIM)接口、通用串行总线(universal serial bus,简称:USB)接口中之一或其任意组合。
可以理解的是,本申请实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备的系统架构的结构限定。在另一些实施例中,电子设备也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
通信模块与处理器110连接,通信模块用于发射射频信号。
移动通信模块120a可以提供应用在电子设备上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块120a可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,简称:LNA)等。进一步地,电子设备还可以包括第一 天线130。移动通信模块120a可以由第一天线130接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块120a还可以对经调制解调处理器调制后的信号放大,经第一天线130转为电磁波辐射出去。在一些实施例中,移动通信模块120a的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块120a的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
无线通信模块120b可以提供应用在电子设备上的包括无线局域网(wirelesslocal area networks,简称:WLAN)(如无线保真(wireless fidelity,简称:Wi-Fi)网络),蓝牙(bluetooth,简称:BT),全球导航卫星系统(global navigation satellite system,简称:GNSS),调频(frequency modulation,简称:FM),近距离无线通信技术(near field communication,简称:NFC),红外技术(infrared,简称:IR)等无线通信的解决方案。无线通信模块120b可以是集成至少一个通信处理模块的一个或多个器件。进一步地,电子设备还可以包括第二天线131。无线通信模块120b经由第二天线131接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块120b还可以从处理器110接收待发送的信号,对其进行调频,放大,经第二天线131转为电磁波辐射出去。
本申请实施例中,第一天线130和移动通信模块120a耦合,第二天线131和无线通信模块120b耦合,使得电子设备可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,简称:GSM),通用分组无线服务(general packet radio service,简称:GPRS),码分多址接入(code division multiple access,简称:CDMA),宽带码分多址(wideband code division multiple access,简称:WCDMA),时分码分多址(time-division code division multiple access,简称:TDSCDMA),长期演进(long term evolution,简称:LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global posi tioning system,简称:GPS),全球导航卫星系统(global navigation satellite system,简称:GLONASS),北斗卫星导航系统(bei dou navigation satellite system,简称:BDS),准天顶卫星系统(quasi-zenith satellite system,简称:QZSS)和/或星基增强系统(satellite based augmentation systems,简称:SBAS)。
受话器140与处理器110连接,受话器140用于将音频电信号转换成声音信号以及发射超声波信号。
主麦克风150与处理器110连接,主麦克风150用于收集通话的声音信号,并将声音信号转换为电信号。当用户需要拨打电话、发送语音信号或者通过语音助手触发电子设备执行某种功能时,用户可以靠近主麦克风并发出声音,以供主麦克风150收集声音信号;主麦克风150还用于发射发射信号,该发射信号包括超声波信号。
副麦克风160与处理器110连接,副麦克风160用于收集通话环境周边的噪音。该电子设备包括主麦克风150和副麦克风160两个麦克风,这样既可以采集声音信号,还可以实现降噪功能。在另一些实施例中,电子设备还可以设置三个或四个麦克风,以实现采集声音信号、降噪、识别声音来源、实现定向录音功能;副麦克风160还用于接收基准信号,该基准信号为发射信号反射的反射信号,基准信号包括超声波信号。
显示屏170与处理器110连接,显示屏170用于接收用户输入的触控指令,并将触控指令发送至处理器110,以供处理器110根据触控指令调取相关界面并将相关界面发送至显示屏170,显示屏170显示相关界面。
传感器模块180与处理器110连接,传感器模块180用于采集各传感器的状态信息,以供处理器110进行处理。加速度传感器180a用于检测电子设备的重力方向,加速度传感器180a可以向处理器110输出电子设备的握持俯仰角度(pitch)和握持滚转角度(roll)。具体地,加速度传感器180a是通过微机电系统(Micro-Electro-Mechanical System,简称:MEMS)技术检测惯性力造成的微小形变,且在加速度传感器180a检测的过程中不会区分重力加速度与外力加速度,因此,当电子设备在三维空间做变速运动时,加速度传感器180a向处理器110输出的俯仰角度和滚转角度不够准确,需要处理器110结合陀螺仪传感器180b输出的电子设备围绕x轴的第一角速度和围绕y轴的第二角速度进行加权计算,才能得出准确的俯仰角度和滚转角度。陀螺仪传感器180b可以用于确定电子设备的运动姿态,具体地,陀螺仪传感器180b向处理器110输出电子设备围绕的x轴的第一角速度和围绕y轴的第二角速度。环境光传感器180c用于感知环境光亮度并将环境光亮度发送至处理器110。磁力计传感器180d用于定位电子设备的方位,具体地,磁力计传感器180d向处理器110输出电子设备在东、南、西和北四个方向上的夹角,处理器110通过融合算法,根据握持俯仰角度、握持滚转角度、电子设备围绕x轴的第一角速度、电子设备围绕y轴的第二角速度和电子设备在东、南、西和北四个方向上的夹角,计算出显示屏170的方向。
摄像头190与处理器110连接,用于拍摄图片或视频。摄像头190包括前置摄像头190a和后置摄像头190b。具体地,物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷稠合器件(charge coupled device,简称:CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,简称:CMOS)光电晶体管。感光元件将光信号转换为电信号,再将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP,以供DSP将数字图像信号转换成标准的RGB或YUV格式的图像信号。
交互模块200与处理器110连接,交互模块200用于接收用户对电源键的长按操作或短按操作。交互模块200还用于接收用户通过指纹键220输入的指纹,并将指纹发送至处理器110,由处理器110对指纹进行处理。
可以理解的是,图2所示的系统架构图并不构成对电子设备的系统架构的具体限定。在另一些实施例中,电子设备的系统架构可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件、软件或软件和硬件的组合实现。
基于上述电子设备的系统架构,本申请实施例还提供了一种校准信号的生成方法。图3为本申请实施例提供的一种校准信号的生成方法的流程图,如图3所示,该方法包括:
步骤102、获取触发信息。
本申请实施例中,各步骤由电子设备执行。
本申请实施例中,触发信息包括电子设备的以下信息:显示屏的方向、运动俯仰 角度(pitch)、运动滚转角度(roll)、运动偏航角度(yaw)、握持俯仰角度、握持滚转角度、环境光报值、摄像分析结果、触屏结果、设备解锁结果和亮屏结果中之一或其任意组合。
步骤104、判断触发信息是否满足触发条件,若是,执行步骤106;若否,流程结束。
作为一种可选方案,当触发信息包括握持俯仰角度和握持滚转角度时,触发条件包括握持俯仰角度小于第一俯仰门限值且大于第二俯仰门限值,且握持滚转角度小于第一滚转门限值且大于第二滚转门限值。
本申请实施例中,当握持俯仰角度小于第一俯仰门限值且大于第二俯仰门限值,且握持滚转角度小于第一滚转门限值且大于第二滚转门限值时,表明电子设备此时被用户握持,电子设备当前处于无遮挡状态。
作为另一种可选方案,触发信息包括显示屏的方向、运动俯仰角度、运动滚转角度和运动偏航角度中之一或其任意组合。其中,当触发信息包括显示屏的方向时,触发条件包括显示屏的方向朝上;当触发信息包括运动俯仰角度时,触发条件包括运动俯仰角度大于第三俯仰门限值;当触发信息包括运动滚转角度时,触发条件包括运动滚转角度小于第三滚转门限值;当触发信息包括运动偏航角度时,触发条件包括运动偏航角度大于偏航门限值。
本申请实施例中,当显示屏的方向朝上、运动俯仰角度大于第三俯仰门限值、运动滚转角度小于第三滚转门限值、运动偏航角度大于偏航门限值中之一或其任意组合满足时,表明电子设备被拿起,此时电子设备处于无遮挡状态。
作为另一种可选方案,当触发信息包括环境光报值时,触发条件包括环境光报值大于环境光报门限值。
本申请实施例中,环境光报值大于环境光报门限值时,表明电子设备当前处于无遮挡状态。
作为另一种可选方案,当触发信息包括摄像分析结果时,触发条件包括摄像分析结果为无遮挡。
作为另一种可选方案,当触发信息包括触屏结果时,触发条件包括触屏结果为无触摸点或触屏结果为电容值无变化。
本申请实施例中,触屏结果为无触摸点或触屏结果为电容值无变化时,表明当前没有物体正在靠近电子设备且没有用户正在触摸电子设备的显示屏,电子设备当前处于无遮挡状态。
作为另一种可选方案,当触发信息包括设备解锁结果时,触发条件包括设备解锁结果为已解锁。
本申请实施例中,设备解锁结果包括已解锁时,表明电子设备当前处于无遮挡状态。
作为另一种可选方案,当触发信息包括亮屏结果时,触发条件包括亮屏结果为已亮屏。
本申请实施例中,可以通过双击亮屏、电源键亮屏或抬手亮屏中之一的方式点亮显示屏。
本申请实施例中,第一俯仰门限值、第二俯仰门限值、第一滚转门限值、第二滚转门限值、第三俯仰门限值、第三滚转门限值、偏航门限值和环境光报门限值是根据大数据中的用户行为分析得出的。作为一种可选方案,环境光报门限值为50勒克斯(lux)。
本步骤中,若判断出触发信息满足触发条件,表明电子设备当前处理无遮挡状态,适合生成校准信号,继续执行步骤106;若判断出触发信息不满足触发条件,表明电子设备较大概率下当前处于有遮挡状态,不适合生成校准信号,流程结束。
本申请实施例中,当电子设备处于满足触发条件的状态时进行校准,可以保证校准的准确性,从而提高防误触的成功率。
步骤106、发送发射信号并接收基准信号,其中,基准信号包括发射信号的反射信号。
本申请实施例中,发射信号包括在电子设备处于无遮挡状态下时发射的信号。发送发射信号具体包括按照预设时间间隔发送发射信号,其中,预设时间间隔可根据实际情况进行设置。作为一种可选方案,预设时间间隔为150毫秒。
本申请实施例中,发射信号包括超声波信号,超声波信号包括单频连续波(continuous wave,简称:CW)、线性调频连续波(linear frequency modulation,简称:LFM)或ZC序列(Zadoff-Chu sequence)。通过对电子设备的频响测试,选取具有特定频段的发射信号进行发射,特定频段包括电声转换效率较高且对音频的噪音干扰最小的一段频率。电声转换效率包括受话器发出的声波能量与输入的电能之比,受话器的灵敏度越高,电声转换效率越高,对超声波信号的反应能力以及解析力也就越强。
本申请实施例中,基准信号包括副麦克风接收到的超声波信号。
以电子设备是手机为例,受话器发送发射信号,发射信号经过反射,反射回基准信号,位于手机顶部的副麦克风接收基准信号。从发射信号反射回基准信号包括两种反射场景:第一种、在距离手机的较短距离内存在物体,受话器发送发射信号,发射信号可以碰到距离手机距离较短的物体然后反射回一个基准信号,基准信号由副麦克风接收;第二种、手机周围空旷,即:在距离手机距离的较短距离内不存在物体,受话器发送发射信号,发射信号通过手机壳和/或音腔的反射,反射回基准信号,基准信号由副麦克风接收。由于声音是由物体振动产生的声波,即使手机外部无遮挡,受话器发送的发射信号也会从手机外部传输到副麦克风。
步骤108、根据基准信号,生成校准信号。
具体地,根据接收到的多帧基准信号,生成校准信号。
本申请实施例中,步骤108具体包括:
步骤1081、对接收到的多帧基准信号分别进行脉冲压缩处理,生成多帧互相关频域,每帧互相关频域包括一组采样数组,一组采样数组中包括多个采样点。
本申请实施例中,发射信号从受话器到副麦克风会经过多条路径传播,各个路径上的信号是发射信号的延时版本,在副麦克风处接收到的基准信号是由各个路径上的信号的线性叠加在一起的,如果电子设备周围有障碍物,就会有一条比较明显的反射路径。
图4为本申请实施例提供的生成互相关频域的流程图,如图4所示,步骤1081具体包括:
步骤3002、对基准信号进行下变频处理,生成复数基带信号。
具体地,将数字化后的基准信号经串并转换电路分成第一信号和第二信号,其中,第一信号与第二信号相同;将第一信号与余弦波cos(2πfct)相乘,生成复数基带信号的实部,其中,fc为载波频率,t为预设时间间隔;将第二信号与正弦波-sin(2πfct)相乘,生成复数基带信号的虚部;将生成的实部与虚部进行组合,生成复数基带信号。
步骤3004、对复数基带信号进行快速傅立叶变换(Fast Fourier Transform,简称:FFT),生成频域信号。
本申请实施例中,对复数基带信号进行FFT时,先设置采样数组中采样点的数量。作为一种可选方案,设置采样点的数量为960。作为另一种可选方案,设置采样点的数量为1024。
步骤3006、获取发射信号的共轭反转信号。
本申请实施例中,以发射信号为ZC序列为例,发射信号的共轭反转信号为。
步骤3008、根据频域信号和共轭反转信号,生成互相关频域。
具体地,将频域信号与共轭反转信号相乘,生成时域信号的卷积;对信号进行快速傅立叶逆变换(Inverse Fast Fourier Transform,简称:IFFT),生成互相关频域。图5为本申请实施例提供的一种以采样点数量为960为例的单帧互相关频域的频域图,如图5所示,该频域图的x轴为采样数组,采样数组中包括960个采样点;频域图的y轴为互相关的绝对值。频域图包括一个主峰和主峰两侧的多个旁蔓,主峰的位置为互相关的直达波到达的相对时刻,主峰为互相关的绝对值最大的点,即:互相关的绝对值最大的点为第504个采样点,对应的互相关的绝对值为5567.3362587164。多个旁蔓中每个旁蔓的互相关的绝对值不同,例如:旁蔓为第550个采样点,对应的互相关的绝对值为1200。
本申请实施例中,ZC序列具有最佳的循环自相关的特性,因此,当按照时间间隔发送ZC序列时,可以通过将频域信号和ZC序列的共轭反转信号相乘,将接收的脉冲压缩至非常窄的时间段内。
步骤1082、对多组采样数组中的相邻两组采样数组相减,生成多帧差异值。
例如:有5组采样数组,分别为数组1、数组2、数组3、数组4和数组5,对相邻两组采样数组相减,即:将数组1与数组2相减,生成第一帧差异值;将数组2与数组3相减,生成第二帧差异值;将数组3与数组4相减,生成第三帧差异值,将数组4与数组5相减,生成第四帧差异值,共生成4帧差异值。
步骤1083、根据多帧差异值,生成差分方差。
本申请实施例中,每帧差异值包括多个采样点和每个采样点对应的差异值;根据每个采样点对应的差异值,生成差异平均值;通过方差公式,对每个采样点对应的差异值和差异平均值进行计算,生成差分方差。其中,s2为差分方差,M为差异平均值,xn为第n个采样点对应的差异值,n为采样点的数量。
由于有多帧差异值,因此对每帧差异值进行计算,生成多个差分方差。
步骤1084、判断差分方差是否小于方差门限值,若是,执行步骤1085;若否,流 程结束。
本申请实施例中,方差门限可根据实际情况进行设置。作为一种可选方式,方差门限值为40。作为另一种可选门限,方差门限值为50。
本申请实施例中,由于有多个差分方差,判断差分方差是否小于方差门限值具体包括判断指定数量的差分方差是否均小于方差门限值,若是,执行步骤1085;若否,流程结束。其中,指定数量可根据实际情况进行设置和调整。作为一种可选方案,指定数量为1,即:若判断出任意一个差分方差小于方差门限值,执行步骤1085;若判断出差分方差均大于或等于方差门限值,流程结束。本申请实施例中,若获取到的电子设备的触发信息满足触发条件,表明电子设备大概率上处于无遮挡状态,也并不能排除小概率上仍处于有遮挡状态,因此,需要对差分方差是否小于方差门限值进行判断,以排除小概率上仍处于有遮挡状态的情况。若判断出指定数量的差分方差小于方差门限值,表明电子设备处于无遮挡状态,继续执行步骤1085;若判断出指定数量的差分方差大于或等于方差门限值,表明电子设备处于有遮挡状态,此时若启动校准,则得到的校准信号是不准确的,导致防误触的失败率增加,流程结束。
值得说明的是,差分方差的大小也可以根据频域图分析得出,当主峰高度较高时,差分方差较大。以采样点数量为960为例,图6为本申请实施例提供的一种电子设备处于有遮挡状态时的频域图,如图6所示,该频域图的x轴为采样数组,采样数组中包括960个采样点;频域图的y轴为互相关的绝对值。如图6所示,频域图包括一个主峰和主峰两侧的多个旁蔓,主峰为互相关的绝对值最大的点,即:互相关的绝对值最大的点为第504个采样点,对应的互相关的绝对值为26687.804962882827,即:主峰的高度为26687.804962882827;多个旁蔓中每个旁蔓的互相关的绝对值不同,例如:旁蔓为第550个采样点,对应的互相关的绝对值为6000,即:旁蔓的高度为6000,与主峰的高度差为20687.804962882827,高度差较大。
以采样点数量为960为例,图7为本申请实施例提供的一种电子设备处于无遮挡状态时的频域图,如图7所示,该频域图的x轴为采样数组,采样数组中包括960个采样点;频域图的y轴为互相关的绝对值。如图7所示,频域图包括一个主峰和主峰两侧的多个旁蔓,主峰为互相关的绝对值最大的点,即:互相关的绝对值最大的点为第504个采样点,对应的互相关的绝对值为5567.3362587164,即:主峰的高度为5567.3362587164;多个旁蔓中每个旁蔓的互相关的绝对值不同,例如:旁蔓为第550个采样点,对应的互相关的绝对值为1200,即:旁蔓的高度为1200,与主峰的高度差为4367.3362587164,高度差较小。
综上所述,通过图6和图7的对比可以看出,当电子设备处于有遮挡状态时,频域图的主峰高度较高,即:最大的互相关的绝对值较大;且主峰与旁蔓的高度差较大。
步骤1085、将多帧差异值中的任意一帧差异值作为校准信号。
本申请实施例中,由于判断出差分方差小于方差门限值,表明多帧差异值中每帧差异值的差异较小,因此,可以将多帧差异值中的任意一阵差异值作为校准信号,用于后续生成新的参考信号,以应用于防误触功能中。作为一种可选方案,将第一帧差异值作为校准信号。
本申请实施例提供的校准信号的生成方法的技术方案中,获取触发信息;判断触 发信息是否满足触发条件;若判断出触发信息满足触发条件,发送发射信号并接收基准信号,发射信号包括超声波信号,基准信号包括超声波信号;根据基准信号,生成校准信号,可以保证在电子设备处于无遮挡状态时生成校准信号,保证了校准信号的准确性,进而提高了防误触算法的结果的准确性。
图8为本申请实施例提供的又一种校准信号的生成方法的流程图,如图8所示,该方法包括:
步骤200、对电子设备进行整机校准。
本申请实施例中,各步骤由电子设备执行。
本申请实施例中,例如,可将电子设备放置于空箱子,对电子设备进行整机校准。
具体地,电子设备的受话器发送发射信号,发射信号经过通过手机壳和/或音腔的反射,反射回基准信号,电子设备的副麦克风接收该基准信号;电子设备对基准信号进行计算,生成校准信号。
本申请实施例中,将电子设备放置于空箱子中,可以保持电子设备周围空旷,从而屏蔽外界干扰,保证电子设备处于无遮挡状态。
步骤202、获取触发信息。
本申请实施例中,触发信息包括电子设备的显示屏的方向、运动俯仰角度(pitch)、运动滚转角度(roll)、运动偏航角度(yaw)、握持俯仰角度、握持滚转角度、环境光报值、摄像分析结果、触屏结果、设备解锁结果和亮屏结果中之一或其任意组合。
本申请实施例中,磁力计传感器可以检测出电子设备在东向的第一方位角、电子设备在南向的第二方位角、电子设备在西向的第三方位角和电子设备在北向的第四方位角,并将第一方位角、第二方位角、第三方位角和第四方位角发送至处理器。加速度传感器会检测电子设备的初始俯仰角度和初始滚转角度,并将初始俯仰角度和初始滚转角度发送至处理器。陀螺仪传感器检测电子设备围绕x轴第一角速度和围绕y轴的第二角速度,并将第一角速度和第二角速度发送至处理器。处理器通过融合算法,根据初始俯仰角度、初始滚转角度、第一角速度、第二角速度、第一方位角、第二方位角、第三方位角和第四方位角,计算出显示屏的方向。其中,融合算法包括Oculus融合算法、互补滤波算法或自动航向基准系统(Automatic Heading Reference System,简称:AHRS)算法。
本申请实施例中,当用户握持电子设备时,加速度传感器会检测电子设备的初始俯仰角度和初始滚转角度,并将初始俯仰角度和初始滚转角度发送至处理器。陀螺仪传感器检测电子设备围绕x轴第一角速度和围绕y轴的第二角速度,并将第一角速度和第二角速度发送至处理器。处理器为第一角速度分配第一权重,为第二角速度分配第二权重,为初始俯仰角度分配第三权重,且为初始滚转角度分配第四权重。处理器将第一权重乘以第一角速度,计算出第一相乘结果;处理器将第三权重乘以初始俯仰角度,计算出第二相乘结果;处理器将第一相乘结果与第二相乘结果相加,计算出握持俯仰角度。处理器将第二权重乘以第二角速度,计算出第三相乘结果;处理器将第四权重乘以初始滚转角度,计算出第四相乘结果;处理器将第三相乘结果与第四相乘结果相加,计算出握持滚转角度,以使处理器获取握持俯仰角度和握持滚转角度。
本申请实施例中,当用户拿起电子设备时,电子设备会产生运动,加速度传感器 会检测电子设备的初始俯仰角度、初始滚转角度和初始偏航角度,并将初始俯仰角度、初始滚转角度和初始偏航角度发送至处理器。陀螺仪传感器检测电子设备围绕x轴第一角速度、围绕y轴的第二角速度、围绕z轴的第三角速度,并将第一角速度、第二角速度和第三角速度发送至处理器。处理器为第一角速度分配第五权重,为第二角速度分配第六权重,为第三角速度分配第七权重,为初始俯仰角度分配第八权重,为初始滚转角度分配第九权重,为初始偏航角度分配第十权重。处理器将第五权重乘以第一角速度,计算出第五相乘结果;处理器将第八权重乘以初始俯仰角度,计算出第六相乘结果;处理器将第五相乘结果与第六相乘结果,计算出运动俯仰角度。处理器将第六权重乘以第二角速度,计算出第七相乘结果;处理器将第九权重与初始滚转角度相乘,计算出第八相乘结果;处理器将第七相乘结果与第八相乘结果相加,计算出运动滚转角度。处理器将第七权重乘以第三角速度,计算出第九相乘结果;处理器将第十权重乘以初始偏航角度,计算出第十相乘结果。处理器将第九相乘结果与第十相乘结果相加,计算出运动偏航角度,以使处理器获取运动俯仰角度、运动滚转角度和运动偏航角度。
本申请实施例中,环境传感器检测出环境光报值,并将环境光报值发送至处理器,以使处理器获取环境光报值。
本申请实施例中,摄像头拍摄图片,并将拍摄的图片发送至处理器;处理器通过图片识别算法对图片进行识别计算生成摄像分析结果。其中,摄像分析结果包括有遮挡或无遮挡,若摄像分析结果为有遮挡,表明电子设备处于有遮挡状态;若摄像分析结果为无遮挡,表明电子设备处于无遮挡状态。
本申请实施例中,若用户触摸到显示屏,则显示屏上会检测到对应的触摸点,触屏结果为有触摸点,显示屏将有触摸点的触屏结果发送至处理器,以使处理器获取触屏结果;若用户没有触摸到显示屏,触屏结果为无触摸点,显示屏将无触摸点的触屏结果发送至处理器,以使处理器获取触屏结果。作为一种可选方案,若有物体靠近显示屏,则显示屏会检测到电容值发生变化,触屏结果为电容值有变化,显示屏将电容值有变化的触屏结果发送至处理器,以使处理器获取触屏结果;若没有物体靠近显示屏,则显示屏会检测到电容值没有发生变化,触屏结果为电容值无变化,显示屏将电容值无变化的触屏结果发送至处理器,以使处理器获取触屏结果。
本申请实施例中,交互模块可以接收用户输入的解锁操作,并将解锁操作发送至处理器;处理器根据解锁操作生成解锁结果。设备解锁结果包括已解锁或未解锁,解锁包括指纹解锁、人脸解锁、图案解锁或密码解锁中之一。
本申请实施例中,交互模块可以接收用户输入的亮屏操作,并将亮屏操作发送至处理器;处理器根据亮屏操作生成亮屏结果。亮屏结果包括已亮屏或未亮屏,亮屏包括电源键亮屏、双击亮屏或抬手亮屏中之一。
步骤204、判断触发信息是否满足触发条件,若是,执行步骤206;若否,流程结束。
本申请实施例中,触发信息与触发条件是对应的。例如:当触发信息包括握持俯仰角度(pitch)和握持滚转角度(roll)时,对应的触发条件包括握持俯仰角度小于第一俯仰门限值且大于第二俯仰门限值,且握持滚转角度小于第一滚转门限值且大于第 二滚转门限值;当触发信息包括显示屏的方向时,触发条件包括显示屏的方向朝上;当触发信息包括运动俯仰角度时,触发条件包括运动俯仰角度大于第三俯仰门限值;当触发信息包括运动滚转角度时,触发条件包括运动滚转角度小于第三滚转门限值;当触发信息包括运动偏航角度时,触发条件包括运动偏航角度大于偏航门限值;当触发信息包括环境光报值时,对应的触发条件包括大于环境光报门限值;当触发信息包括摄像分析结果时,对应的触发条件包括无遮挡;当触发信息包括触屏结果时,对应的触发条件包括无触摸点或电容值无变化;当触发信息包括设备解锁结果时,对应的触发条件包括已解锁;当触发信息包括亮屏结果时,对应的触发条件包括已亮屏。
图9为本申请实施例提供的一种电子设备握持角度的示意图,如图9所示,以电子设备是手机为例,以显示屏的方向朝上放置的手机的中心点为原点,建立坐标系,其中,x轴平行于显示屏所在平面,设定靠近电源键的方向为x轴正向;y轴平行于显示屏所在平面,且y轴垂直于x轴,设定靠近受话器的方向为y轴正向;z轴与x轴和y轴两两垂直,设定向上为z轴正向。当手机绕x轴转动时,转动角度为俯仰角度,设定逆时针转动为正,顺时针转动为负;当手机绕y轴转动时,转动角度为滚转角度,设定逆时针转动为负,顺时针转动为正。
具体地,处理器判断握持俯仰角度是否小于第一俯仰门限值且大于第二俯仰门限值,且握持滚转角度是否小于第一滚转门限值且大于第二滚转门限值;若判断出握持俯仰角度小于第一俯仰门限值且大于第二俯仰门限值,且握持滚转角度小于第一滚转门限值且大于第二滚转门限值,表明触发信息满足触发条件。
例如,第一俯仰门限值为绕x轴顺时针旋转60度,第二俯仰门限值为绕x轴顺时针旋转10度,第一滚转门限值为绕y轴逆时针旋转30度,第二滚转门限值为绕y轴顺时针旋转30度,即:俯仰角度的取值范围包括-60度至-10度,滚转角度的取值范围包括-30度至30度。
例如,第一俯仰门限值为绕x轴顺时针旋转50度,第二俯仰门限值为绕x轴顺时针旋转10度,第一滚转门限值为绕y轴逆时针旋转30度,第二滚转门限值为绕y轴顺时针旋转30度,即:俯仰角度的取值范围包括-50度至-10度,滚转角度的取值范围包括-30度至30度。
例如,第一俯仰门限值为绕x轴顺时针旋转60度,第二俯仰门限值为绕x轴顺时针旋转10度,第一滚转门限值为绕y轴逆时针旋转20度,第二滚转门限值为绕y轴顺时针旋转20度,即:俯仰角度取值范围包括-60度至-10度,滚转角度的取值范围包括-20度至20度。
作为另一种可选方案,触发信息包括显示屏的方向、运动俯仰角度、运动滚转角度或运动偏航角度中之一或其任意组合。其中,当触发信息包括显示屏的方向时,触发条件包括显示屏的方向朝上;当触发信息包括运动俯仰角度时,触发条件包括运动俯仰角度大于第三俯仰门限值;当触发信息包括运动滚转角度时,触发条件包括运动滚转角度小于第三滚转门限值;当触发信息包括运动偏航角度时,触发条件包括运动偏航角度大于偏航门限值。
例如,触发信息包括显示屏的方向、运动俯仰角度和运动滚转角度,触发条件包括显示屏的方向朝上,且运动俯仰角度大于第三俯仰门限值,且运动滚转角度小于第 三滚转门限值,第三俯仰门限值为绕x轴逆时针旋转30度或绕x轴顺时针旋转30度,第三滚转门限值为绕y轴逆时针旋转10度。
作为另一种可选方案,触发信息包括显示屏的方向、运动滚转角度和运动偏航角度,触发条件包括显示屏的方向朝上,且运动滚转角度小于第三滚转门限值,且运动偏航角度大于偏航门限值,第三滚转门限值为绕y轴逆时针旋转10度,运动偏航角度为绕z轴大于10度。
作为另一种可选方案,当触发信息包括环境光报值时,触发条件包括环境光报值大于环境光报门限值。
具体地,电子设备中的环境光传感器可以检测到电子设备所处的环境光报值,并将环境光报值发送至处理器;处理器判断环境光报值是否大于环境光报门限值,若判断出环境光报值大于环境光报门限值,表明触发信息满足触发条件,电子设备处于无遮挡状态。
例如:环境光报门限值为50勒克斯(lux),环境光传感器感应到的环境光报值为60lux,大于环境光报门限值,表明触发信息满足触发条件。
作为另一种可选方案,当触发信息包括摄像分析结果时,触发条件包括摄像分析结果为无遮挡。
具体地,摄像头拍摄图片,并将拍摄的图片发送至处理器;处理器通过图片识别算法对图片进行识别计算生成摄像分析结果,从而判断是否有物体遮挡电子设备,若判断出有物体遮挡电子设备,则摄像分析结果为有遮挡,表明触发信息不满足触发条件;若判断出无物体遮挡电子设备,则摄像分析结果为无遮挡,表明触发信息满足触发条件。
作为另一种可选方案,当触发信息包括触屏结果时,触发条件包括触屏结果为无触摸点或触屏结果为电容值无变化。
具体地,触屏结果包括有触控点或无触控点,若触屏结果为有触摸点,表示电子设备前有物体遮挡,触发信息不满足触发条件;若触屏结果为无触摸点,表示电子设备前无物体遮挡,触发信息满足触发条件。
具体地,触屏结果包括电容值有变化或电容值无变化,若用户没有触摸到显示屏,则显示屏上不会感应到触摸点,此时若有物体靠近显示屏,则显示屏的电容值会发生变化,触屏结果包括电容值有变化,表示电子设备前有物体遮挡,触发信息不满足触发条件;若触屏结果包括电容值无变化,表明电子设备前无物体遮挡,触发信息满足触发条件。
作为另一种可选方案,当触发信息包括设备解锁结果时,触发条件包括解锁结果为已解锁。
具体地,可以通过指纹解锁、图案解锁、密码解锁或人脸识别解锁的解锁方式解锁电子设备。若电子设备已解锁,表明触发信息满足触发条件。
例如:解锁方式包括密码解锁,处理器接收用户输入的密码并将输入的密码和本地存储的标准密码进行匹配,若匹配,则控制电子设备解锁,此时触发信息满足触发条件;若不匹配,则控制电子设备锁定,此时触发信息不满足触发条件。其中,标准密码包括用户设置的用于解锁的密码。
作为另一种可选方案,当触发信息包括亮屏结果时,触发条件包括亮屏结果为已亮屏。
具体地,可以通过双击亮屏、电源键亮屏或抬手亮屏的方式点亮显示屏。若电子设备已亮屏,表明触发信息满足触发条件。
例如:亮屏方式包括双击亮屏,处理器判断是否接收到用户的双击指令,若接收到用户的双击指令,则控制电子设备亮屏,此时触发信息满足触发条件;若未接收到用户的双击指令,则控制电子设备灭屏,此时获取的亮屏结果为未亮屏,即:触发信息不满足触发条件。
例如:触发信息包括亮屏结果,当亮屏结果为已亮屏,表明触发信息满足触发条件。
作为另一种可选方案,当触发信息包括射频信号差异时,触发条件包括射频信号差异小于差异门限值。
本申请实施例中,射频信号差异包括发射的射频信号与接收的射频信号之间的差异值。
具体地,若射频信号差异大于或等于差异门限值,表明发射的射频信号与接收的射频信号之间差异较大,此时电子设备处于有遮挡状态,若射频信号差异小于差异门限值,表明发射的射频信号与接收的射频信号之间差异不大,此时电子设备处于无遮挡状态。
本申请实施例中,差异门限值可根据实际情况进行设置。作为一种可选方案,差异门限值为1db。作为另一种可选方案,差异门限值为2db。
需要说明的是,当触发信息为多个时,若每个触发信息均满足对应的触发条件,表明触发信息满足触发条件。例如:触发信息包括显示屏的方向、运动俯仰角度、运动滚转角度、握持角度和环境光报值,当显示屏的方向朝上,且运动俯仰角度大于第三俯仰门限值,且运动滚转角度小于第三滚转门限值,且握持角度小于握持门限值,且环境光报值大于环境光报门限值时,表明触发信息满足触发条件。当某个触发信息满足对应的触发条件时,表明电子设备具有一定概率处于无遮挡状态,因此当设置多个触发信息,且每个触发信息均满足对应的触发条件时,电子设备具有较大概率处于无遮挡状态,此时启动校准生成校准信号,可以进一步保证生成的校准信号的准确性,从而提高防误触的成功率。
例如:触发信息包括解锁结果、握持俯仰角度、握持滚转角度、显示屏的方向、运动俯仰角度、运动滚转角度和环境光报值,当解锁结果包括已解锁,且握持俯仰角度小于第一俯仰门限值且大于第二俯仰门限值,且握持滚转角度小于第一滚转门限值且大于第二滚转门限值,且显示屏的方向朝上,且运动俯仰角度大于第三俯仰门限值,且运动滚转角度小于第三滚转门限值,且环境光报值大于环境光报门限值时,表明触发信息满足触发条件,设置多个触发信息,需要比对对应的多个触发条件,可以进一步保证生成的校准信号的准确性,从而提高防误触的成功率。
本步骤中,若判断出触发信息满足触发条件,表明电子设备当前处理无遮挡状态,适合生成校准信号,继续执行步骤206;若判断出触发信息不满足触发条件,表明电子设备当前处于有遮挡状态,不适合生成校准信号,流程结束。
本申请实施例中,当电子设备处于满足触发条件的状态时进行校准,可以保证校准的准确性,从而提高防误触的成功率;若当电子设备处于不满足触发条件的状态下进行校准,得到的校准结果是不准确的,从而使防误触的成功率较低,降低用户体验。
步骤206、判断获取的校准时间间隔是否大于间隔阈值,校准时间间隔包括当前校准的时间点和上一次校准的时间点之间的时间间隔,若是,则继续执行步骤208;若否,流程结束。
本申请实施例中,当前校准时间点包括当前的时间点,上一次校准的时间点包括校准完成时间点。其中,校准完成时间点可以从存储器中获取。
本申请实施例中,间隔阈值可根据实际情况进行设置,间隔阈值不应设置过长,若间隔阈值过长,会导致长时间不能触发校准,从而使得防误触失败率较高;间隔阈值不应设置过短,若间隔阈值过短,会导致电子设备频繁进行计算并生成校准信号,从而增加电子设备负载,增大校准功耗。因此,间隔阈值应设置在一个适当的时间,既不能长时间不触发校准,也不能频繁校准。作为一种可选方案,间隔阈值设置为1小时。作为另一种可选方案,间隔阈值设置为2小时。
本申请实施例中,若判断出获取的校准时间间隔大于间隔阈值,表明距离上一次校准的时间较长,可以再一次执行校准操作,则执行步骤208;若判断出获取的校准时间间隔小于或等于间隔阈值,表明距离上一次校准的时间较短,如果再执行校准操作会使得校准频率过于频繁,增加电子设备的负载,则流程结束。
例如:间隔阈值设置为1小时,上一次校准的时间点是12:20,当前校准时间点是15:14,则校准时间间隔是2小时54分钟,则校准时间间隔大于间隔阈值,执行步骤208。
本申请实施例中,设置间隔阈值与校准时间间隔进行比较,可以控制校准频率,降低电子设备负荷和校准功耗;若没有设置间隔阈值,则电子设备会频繁校准,增大电子设备的校准功耗,使得电子设备负载过大,严重情况下会对电子设备造成一定程度的损害。
步骤208、发送发射信号并接收基准信号,其中,基准信号包括发射信号的反射信号。
本申请实施例中,发射信号包括在电子设备处于无遮挡状态下时发射的信号。发送发射信号具体包括按照预设时间间隔发送发射信号,其中,预设时间间隔可根据实际情况进行设置。作为一种可选方案,预设时间间隔为150毫秒。
本申请实施例中,发射信号包括超声波信号,超声波信号包括单频连续波(continuous wave,简称:CW)、线性调频连续波(linear frequency modulation,简称:LFM)或ZC序列(Zadoff-Chu sequence)。通过对电子设备的频响测试,选取具有特定频段的发射信号进行发射,特定频段包括电声转换效率较高且对音频的噪音干扰最小的一段频率。电声转换效率包括受话器发出的声波能量与输入的电能之比,受话器的灵敏度越高,电声转换效率越高,对超声波信号的反应能力以及解析力也就越强。
本申请实施例中,基准信号包括副麦克风接收到的超声波信号。
以电子设备是手机为例,受话器发送发射信号,发射信号经过反射,反射回基准 信号,位于手机顶部的副麦克风接收基准信号。从发射信号反射回基准信号包括两种反射场景:第一种、在距离手机的较短距离内存在物体,受话器发送发射信号,发射信号可以碰到距离手机距离较短的物体然后反射回一个基准信号,基准信号由副麦克风接收;第二种、手机周围空旷,即:在距离手机距离的较短距离内不存在物体,受话器发送发射信号,发射信号通过手机壳和/或音腔的反射,反射回基准信号,基准信号由副麦克风接收。由于声音是由物体振动产生的声波,即使手机外部无遮挡,受话器发送的发射信号也会从手机外部传输到副麦克风。
步骤210、根据基准信号,生成校准信号。
本申请实施例中,对触发信息的描述可参见上述图3对应的实施例的描述,在此不再重复赘述。
进一步地,在生成校准信号之后,记录校准完成时间点。
本申请实施例中,在生成校准信号之后,记录校准完成时间点,并将该校准完成时间点存储至存储器,为下一次触发校准之后判断是否进行校准信号的生成提供依据。
本申请实施例提供的校准信号的生成方法的技术方案中,获取触发信息;判断触发信息是否满足触发条件;若判断出触发信息满足触发条件,发送发射信号并接收基准信号,发射信号包括超声波信号,基准信号包括超声波信号;根据基准信号,生成校准信号,可以保证在电子设备处于无遮挡状态时生成校准信号,保证了校准信号的准确性,进而提高了防误触算法的结果的准确性。
总之,处理器110内部的各部分处理器或处理单元可以共同配合实现之前的方法流程,且各部分处理器或处理单元相应的软件程序可存储在存储器中。
图10为本申请实施例提供的一种校准信号的生成装置的结构示意图。如图10所示,该装置包括:获取单元11、第一判断单元12、收发单元13和生成单元14。
获取单元11用于获取触发信息。
第一判断单元12用于判断触发信息是否满足触发条件。
收发单元13用于第一判断单元12若判断出触发信息满足触发条件,发送发射信号并接收基准信号,其中,基准信号包括发射信号的反射信号。
生成单元14用于根据基准信号,生成校准信号。
本申请实施例中,该装置还包括:第二判断单元15。
第二判断单元15用于判断获取的校准时间间隔是否大于间隔阈值,校准时间间隔包括当前校准的时间点和上一次校准的时间点之间的时间间隔;第二判断单元15若判断出校准时间间隔大于间隔阈值,触发收发单元13继续执行发送发射信号并接收基准信号的步骤。
本申请实施例中,生成单元14具体用于对接收到的多帧基准信号分别进行脉冲压缩处理,生成多帧互相关频域,每帧互相关频域包括一组采样数组;对多组采样数组中的相邻两组采样数组相减,生成多帧差异值;根据多帧差异值,生成差分方差;判断差分方差是否小于方差门限值;若判断出差分方差小于方差门限值,将多帧差异值中的任意一帧差异值作为校准信号。
本申请实施例中,生成单元14还具体用于对基准信号进行下变频处理,生成复数基带信号;对复数基带信号进行快速傅立叶变换,生成频域信号;获取发射信号的共 轭反转信号;根据频域信号和共轭反转信号,生成互相关频域。
本申请实施例中,收发单元13具体用于按照预设时间间隔发送发射信号。
本申请实施例提供的校准信号的生成方法的技术方案中,获取触发信息;判断触发信息是否满足触发条件;若判断出触发信息满足触发条件,发送发射信号并接收基准信号,发射信号包括超声波信号,基准信号包括超声波信号;根据基准信号,生成校准信号,可以保证在电子设备处于无遮挡状态时生成校准信号,保证了校准信号的准确性,进而提高了防误触算法的结果的准确性。
本申请还提供了一种计算机存储介质,该计算机存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行如上述图3或图8所示的校准信号的生成方法中的各个步骤。
本申请还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机或任一至少一种处理器上运行时,使得计算机执行如图3或图8所示的校准信号的生成方法中的各个步骤。
以上各实施例中,涉及的处理器110可以例如包括中央处理器(central processing unit,CPU)、微处理器、微控制器或数字信号处理器,还可包括GPU、NPU和ISP,该处理器还可包括必要的硬件加速器或逻辑处理硬件电路,如特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请技术方案程序执行的集成电路等。此外,处理器可以具有操作一个或多个软件程序的功能,软件程序可以存储在存储器中。
存储器可以是只读存储器(read-only memory,ROM)、可存储静态信息和指令的其它类型的静态存储设备、随机存取存储器(random access memory,RAM)或可存储信息和指令的其它类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其它磁存储设备,或者还可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其它介质等。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示单独存在A、同时存在A和B、单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项”及其类似表达,是指的这些项中的任意组合,包括单项或复数项的任意组合。例如,a,b和c中的至少一项可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
本领域普通技术人员可以意识到,本文中公开的实施例中描述的各单元及算法步骤,能够以电子硬件、计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,任一功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。本申请的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种校准信号的生成方法,其特征在于,应用于电子设备;所述方法包括:
    获取触发信息;
    判断所述触发信息是否满足触发条件;
    若判断出所述触发信息满足所述触发条件,发送发射信号并接收基准信号,其中,所述基准信号包括所述发射信号的反射信号,所述发射信号包括超声波信号,所述基准信号包括超声波信号;
    根据所述基准信号,生成所述校准信号。
  2. 根据权利要求1所述的方法,其特征在于,所述触发信息包括握持俯仰角度和握持滚转角度,所述触发条件包括所述握持俯仰角度小于第一俯仰门限值且大于第二俯仰门限值,且所述握持滚转角度小于第一滚转门限值且大于第二滚转门限值。
  3. 根据权利要求1所述的方法,其特征在于,所述触发信息包括显示屏的方向、运动俯仰角度、运动滚转角度和运动偏航角度中之一或其任意组合;
    当所述触发信息包括所述显示屏的方向时,所述触发条件包括所述显示屏的方向朝上;
    当所述触发信息包括所述运动俯仰角度时,所述触发条件包括所述运动俯仰角度大于第三俯仰门限值;
    当所述触发条件包括所述运动滚转角度时,所述触发条件包括所述运动滚转角度小于第三滚转门限值;
    当所述触发条件包括所述运动偏航角度时,所述触发条件包括所述运动偏航角度大于偏航门限值。
  4. 根据权利要求1所述的方法,其特征在于,所述触发信息包括环境光报值,所述触发条件包括所述环境光报值大于环境光报门限值。
  5. 根据权利要求1所述的方法,其特征在于,所述触发信息包括摄像分析结果,所述触发条件包括所述摄像分析结果为无遮挡。
  6. 根据权利要求1所述的方法,其特征在于,所述触发信息包括触屏结果,所述触发条件包括所述触屏结果为无触摸点或所述触屏结果为电容值无变化。
  7. 根据权利要求1所述的方法,其特征在于,所述触发信息包括设备解锁结果,所述触发条件包括所述解锁结果为已解锁。
  8. 根据权利要求1所述的方法,其特征在于,所述触发信息包括亮屏结果,所述触发条件包括所述亮屏结果为已亮屏。
  9. 根据权利要求1所述的方法,其特征在于,还包括:
    判断获取的校准时间间隔是否大于间隔阈值,所述校准时间间隔包括当前校准的时间点和上一次校准的时间点之间的时间间隔;
    若判断出所述校准时间间隔大于所述间隔阈值,继续执行所述发送发射信号并接收基准信号的步骤。
  10. 根据权利要求1所述的方法,其特征在于,所述根据所述基准信号,生成所述校准信号,包括:
    对接收到的多帧所述基准信号分别进行脉冲压缩处理,生成多帧互相关频域,每 帧所述互相关频域包括一组采样数组;
    对多组所述采样数组中的相邻两组采样数组相减,生成多帧差异值;
    根据所述多帧差异值,生成差分方差;
    判断所述差分方差是否小于方差门限值;
    若判断出所述差分方差小于所述方差门限值,将所述多帧差异值中的任意一帧差异值作为所述校准信号。
  11. 根据权利要求10所述的方法,其特征在于,所述对接收到的多帧所述基准信号分别进行脉冲压缩处理,生成多帧互相关频域,包括:
    对所述基准信号进行下变频处理,生成复数基带信号;
    对所述复数基带信号进行快速傅立叶变换,生成频域信号;
    获取所述发射信号的共轭反转信号;
    根据所述频域信号和所述共轭反转信号,生成所述互相关频域。
  12. 根据权利要求1所述的方法,其特征在于,所述发送发射信号,包括:
    按照预设时间间隔发送所述发射信号。
  13. 一种电子设备,其特征在于,包括:
    显示屏;一个或多个处理器;存储器;多个应用程序;以及一个或多个计算机程序,其中所述一个或多个计算机程序被存储在所述存储器中,所述一个或多个计算机程序包括指令,当所述指令被所述设备执行时,使得所述设备执行以下步骤:
    获取触发信息;
    判断所述触发信息是否满足触发条件;
    若判断出所述触发信息满足所述触发条件,发送发射信号并接收基准信号,其中,所述基准信号包括所述发射信号的反射信号,所述发射信号包括超声波信号,所述基准信号包括超声波信号;
    根据所述基准信号,生成所述校准信号。
  14. 根据权利要求13所述的电子设备,其特征在于,当所述指令被所述设备执行时,使得所述设备具体执行以下步骤:
    判断获取的校准时间间隔是否大于间隔阈值,所述校准时间间隔包括当前校准的时间点和上一次校准的时间点之间的时间间隔;
    若判断出所述校准时间间隔大于所述间隔阈值,继续执行所述发送发射信号并接收基准信号的步骤。
  15. 根据权利要求13所述的电子设备,其特征在于,当所述指令被所述设备执行时,使得所述设备具体执行以下步骤:
    对接收到的多帧所述基准信号分别进行脉冲压缩处理,生成多帧互相关频域,每帧所述互相关频域包括一组采样数组;
    对多组所述采样数组中的相邻两组采样数组相减,生成多帧差异值;
    根据所述多帧差异值,生成差分方差;
    判断所述差分方差是否小于方差门限值;
    若判断出所述差分方差小于所述方差门限值,将所述多帧差异值中的任意一帧差异值作为所述校准信号。
  16. 根据权利要求15所述的电子设备,其特征在于,当所述指令被所述设备执行时,使得所述设备具体执行以下步骤:
    对所述基准信号进行下变频处理,生成复数基带信号;
    对所述复数基带信号进行快速傅立叶变换,生成频域信号;
    获取所述发射信号的共轭反转信号;
    根据所述频域信号和所述共轭反转信号,生成所述互相关频域。
  17. 根据权利要求13所述的电子设备,其特征在于,当所述指令被所述设备执行时,使得所述设备具体执行以下步骤:
    按照预设时间间隔发送所述发射信号。
  18. 一种计算机存储介质,其特征在于,包括计算机指令,当所述计算机指令在电子设备上运行时,使得所述电子设备执行如权利要求1至12中任一项所述的校准信号的生成方法。
  19. 一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在计算机或任一至少一种处理器上运行时,使得所述计算机执行如权利要求1至12中任一项所述的校准信号的生成方法。
PCT/CN2021/110049 2020-09-15 2021-08-02 一种校准信号的生成方法、电子设备和计算机存储介质 WO2022057476A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010968249.7 2020-09-15
CN202010968249.7A CN114185446A (zh) 2020-09-15 2020-09-15 一种校准信号的生成方法、电子设备和计算机存储介质

Publications (1)

Publication Number Publication Date
WO2022057476A1 true WO2022057476A1 (zh) 2022-03-24

Family

ID=80539739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110049 WO2022057476A1 (zh) 2020-09-15 2021-08-02 一种校准信号的生成方法、电子设备和计算机存储介质

Country Status (2)

Country Link
CN (1) CN114185446A (zh)
WO (1) WO2022057476A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116521018B (zh) * 2023-07-04 2023-10-20 荣耀终端有限公司 误触提示方法、终端设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105893989A (zh) * 2016-05-20 2016-08-24 乐视控股(北京)有限公司 用于超声波指纹识别的动态校准方法、装置及电子设备
CN106301606A (zh) * 2016-08-16 2017-01-04 北京小米移动软件有限公司 移动设备的超声波校准方法及装置
CN106546970A (zh) * 2016-10-19 2017-03-29 北京小米移动软件有限公司 移动设备的超声波校准方法及装置
CN106546969A (zh) * 2016-10-19 2017-03-29 北京小米移动软件有限公司 超声波校准的方法及装置
US20170168147A1 (en) * 2015-12-10 2017-06-15 Hyundai Mobis Co., Ltd. System and method for correcting signal of ultrasonic sensor
US20180210632A1 (en) * 2017-01-20 2018-07-26 General Electric Company Method and ultrasound imaging system for adjusting an ultrasound image with a touch screen
CN111025882A (zh) * 2019-12-25 2020-04-17 歌尔科技有限公司 一种智能钟表及其自校准方法、装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170168147A1 (en) * 2015-12-10 2017-06-15 Hyundai Mobis Co., Ltd. System and method for correcting signal of ultrasonic sensor
CN105893989A (zh) * 2016-05-20 2016-08-24 乐视控股(北京)有限公司 用于超声波指纹识别的动态校准方法、装置及电子设备
CN106301606A (zh) * 2016-08-16 2017-01-04 北京小米移动软件有限公司 移动设备的超声波校准方法及装置
CN106546970A (zh) * 2016-10-19 2017-03-29 北京小米移动软件有限公司 移动设备的超声波校准方法及装置
CN106546969A (zh) * 2016-10-19 2017-03-29 北京小米移动软件有限公司 超声波校准的方法及装置
US20180210632A1 (en) * 2017-01-20 2018-07-26 General Electric Company Method and ultrasound imaging system for adjusting an ultrasound image with a touch screen
CN111025882A (zh) * 2019-12-25 2020-04-17 歌尔科技有限公司 一种智能钟表及其自校准方法、装置

Also Published As

Publication number Publication date
CN114185446A (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
EP3951774A1 (en) Voice-based wakeup method and device
JP7244666B2 (ja) 画面制御方法、電子デバイス、および記憶媒体
WO2022170863A1 (zh) 超宽带定位方法及系统
WO2018223270A1 (zh) 一种显示的处理方法及装置
CN110798568B (zh) 具有折叠屏的电子设备的显示控制方法及电子设备
CN110289014B (zh) 一种语音质量检测方法及电子设备
CN113115439B (zh) 定位方法及相关设备
CN112637758B (zh) 一种设备定位方法及其相关设备
US20230019967A1 (en) Electronic device, and interaction method and device
WO2022027972A1 (zh) 一种设备搜寻方法以及电子设备
US20230025705A1 (en) Display method and electronic device
EP3435283A1 (en) Method and device for optical fingerprint recognition, and computer-readable storage medium
WO2022057476A1 (zh) 一种校准信号的生成方法、电子设备和计算机存储介质
WO2023273476A1 (zh) 一种检测设备方法和电子设备
CN111638522B (zh) 接近检测方法及电子设备
CN114466308A (zh) 一种定位方法和电子设备
US20220365166A1 (en) Method, device and system for determining relative angle between intelligent devices
CN113238214B (zh) 目标对象检测方法、装置、电子设备和存储介质
CN112184802B (zh) 标定框的调整方法、装置及存储介质
CN116521018B (zh) 误触提示方法、终端设备及存储介质
CN110807411A (zh) 一种月亮识别方法及电子设备
US20240111478A1 (en) Video Recording Method and Electronic Device
CN110084025B (zh) 一种支付安全验证方法、设备及计算机可读存储介质
CN110686667B (zh) 方向指示方法、双屏终端及计算机可读存储介质
CN115296978B (zh) 根因定位方法、装置、设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21868305

Country of ref document: EP

Kind code of ref document: A1