WO2023116040A1 - 一种多层散热的六自由度运动机构 - Google Patents

一种多层散热的六自由度运动机构 Download PDF

Info

Publication number
WO2023116040A1
WO2023116040A1 PCT/CN2022/116141 CN2022116141W WO2023116040A1 WO 2023116040 A1 WO2023116040 A1 WO 2023116040A1 CN 2022116141 W CN2022116141 W CN 2022116141W WO 2023116040 A1 WO2023116040 A1 WO 2023116040A1
Authority
WO
WIPO (PCT)
Prior art keywords
horizontal
vertical
frame
heat dissipation
magnetic steel
Prior art date
Application number
PCT/CN2022/116141
Other languages
English (en)
French (fr)
Inventor
胡海
韩泽祥
Original Assignee
北京华卓精科科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京华卓精科科技股份有限公司 filed Critical 北京华卓精科科技股份有限公司
Publication of WO2023116040A1 publication Critical patent/WO2023116040A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/035DC motors; Unipolar motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/035DC motors; Unipolar motors
    • H02K41/0352Unipolar motors
    • H02K41/0354Lorentz force motors, e.g. voice coil motors
    • H02K41/0356Lorentz force motors, e.g. voice coil motors moving along a straight path
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N15/00Holding or levitation devices using magnetic attraction or repulsion, not otherwise provided for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/12Machines characterised by the bobbins for supporting the windings

Definitions

  • the present application relates to a kinematic mechanism for simulating gestures, in particular to a six-degree-of-freedom kinematic mechanism for multi-layer heat dissipation.
  • the six-degree-of-freedom motion mechanism of some motion platforms usually includes six servo motors, six servo electric cylinders, six Hooke hinges on the upper and lower sides, and two upper and lower platforms.
  • the servo motor is connected to the servo electric cylinder, and the servo electric cylinder is connected to the Hooke.
  • the upper and lower platforms are respectively connected to the upper and lower six lower Hooke hinges, and the upper and lower six Hooke hinges are respectively connected to six servo motors, the lower platform is fixed on the foundation, and six servo electric cylinders are used to drive six servo electric cylinders for telescopic Movement, so as to complete the movement of the upper and lower platforms in space with six degrees of freedom ( ⁇ , ⁇ , ⁇ , X, Y, Z), and finally simulate various postures.
  • this motion platform There are some deficiencies with this motion platform:
  • the lubricating oil in the cylinder that acts as a lubricant for movement will cause particle pollution to the environment;
  • the servo motor emits more heat to the surrounding environment when it is working.
  • Embodiments of the present application provide a multi-layer heat dissipation six-degree-of-freedom motion mechanism with compact structure, easy motion posture calculation, and instant heat dissipation.
  • the embodiment of the present application provides a multi-layer heat dissipation six-degree-of-freedom motion mechanism, including a base and a mover assembly and a stator assembly arranged on it, the mover assembly includes a magnetic steel skeleton, and the magnetic steel skeleton Assembled on the stator assembly, when the motor coil is energized, the mover assembly is in a state of magnetic levitation relative to the stator assembly;
  • the stator assembly includes a stator skeleton, and four groups of horizontal motor assemblies and vertical motor assemblies arranged perpendicularly to each other and electrically connected to the control system are fixed on the stator skeleton evenly distributed around the circumference. Circulation between components to absorb the heat dissipated by the motor coil;
  • the base is fixed with a horizontal position sensor that is respectively connected to the horizontal motor assembly and the vertical motor assembly to identify the position and direction of the horizontal motor assembly and the vertical motor assembly, and forms a closed loop with the control system to realize the six-degree-of-freedom attitude simulation , Vertical position sensor.
  • the horizontal motor coils in the four groups of horizontal motor components are evenly embedded around the stator frame, and the stator frame is also provided with a horizontal motor coil frame, and the horizontal motor coil frame includes respectively covering the upper side of the horizontal motor coil,
  • the upper water-cooled plate and the lower water-cooled plate on the lower side are respectively provided with four cooling water passages that communicate with each other and correspond to the four horizontal motor coils one-to-one and have a suitable shape.
  • the upper water-cooled plate, Both ends of one diagonal line in the lower water cooling plate are water inlets, and both ends of the other diagonal line are water outlets, and the two water inlets and the two water outlets are connected up and down.
  • the vertical motor assembly includes a vertical motor coil frame fixed on the outside of the stator frame, a vertical motor coil is fixed inside the vertical motor coil frame and both ends are fixed on the stator frame, four vertical The motor coils are in one-to-one correspondence with the four horizontal motor coils and are arranged perpendicularly to each other.
  • the vertical motor coil frame includes an inner heat dissipation plate and an outer heat dissipation plate respectively covering the inner and outer sides of the vertical motor coil, and the inner heat dissipation plate and the outer heat dissipation plate are respectively provided with The inner layer cooling water channel and the outer layer cooling water channel adapted to the shape of the coil, the inner layer cooling water channel communicates with the outer layer cooling water channel and communicates with the water inlet and outlet provided on the vertical motor coil frame.
  • the magnetic steel frame includes a horizontal frame and a vertical frame that are respectively configured to cover the horizontal motor assembly and the vertical motor assembly and are fixed on the stator frame.
  • the upper horizontal magnetic steel frame and the lower horizontal magnetic steel frame that are also fixedly connected to each other, and the motor magnetic steel frames on the upper and lower sides of the four groups of horizontal motor assemblies are respectively fixed on the upper horizontal magnetic steel frame and the lower horizontal magnetic steel frame.
  • the edge portions of the upper horizontal magnetic steel frame and the lower horizontal magnetic steel frame are fixedly connected together through the limit block pillars and the connecting pillars.
  • the vertical frame includes an inner vertical magnetic steel frame and an outer vertical magnetic steel frame fixed in the circumferential direction of the stator frame and vertically connected between the upper horizontal magnetic steel frame and the lower horizontal magnetic steel frame,
  • the vertical motor assembly is located between the inner vertical magnetic steel framework and the outer vertical magnetic steel framework.
  • a horizontal position sensor target surface and a vertical position sensor target surface respectively corresponding to the horizontal position sensor and the vertical position sensor are arranged on the back of the lower horizontal magnetic steel frame, and the horizontal position sensor, vertical position sensor The sensors respectively sense the distances from the target surface of the horizontal position sensor and the target surface of the vertical position sensor to identify the position directions of the horizontal motor assembly and the vertical motor assembly.
  • the multi-layer heat dissipation six-degree-of-freedom motion mechanism of the present application further includes a stator support, one end of which is connected to the stator frame, and the other end is connected to the base.
  • stator strut is further provided with a threaded hole configured to connect to a water pipe joint, and the threaded hole communicates with the water inlet and the water outlet.
  • a multi-layer heat dissipation six-degree-of-freedom motion mechanism provided by the embodiment of the present application has at least the following beneficial effects:
  • the four horizontal motor coils and the four vertical motor coils on the stator assembly are respectively wrapped by the upper and lower water cooling plates with cooling water inside and the inner and outer heat dissipation plates, and the motor coils are effectively fixed.
  • the heat emitted by the motor coil is absorbed by the cooling water in real time, which avoids the influence of heat emission on the ambient temperature and ensures the normal operation of the equipment that is sensitive to and harsh to the ambient temperature.
  • the base, stator frame, magnetic steel frame, and vertical motor coil frame are all thin-plate structures, while the upper water-cooled plate, lower water-cooled plate, inner heat sink, and outer heat sink are all It is an ultra-thin plate structure, which makes the overall structure more compact and occupies less space.
  • FIG. 1 is a structural schematic diagram 1 of a six-degree-of-freedom motion mechanism for multi-layer heat dissipation in the present application;
  • Fig. 2 is a structural schematic diagram II of a six-degree-of-freedom motion mechanism for multi-layer heat dissipation in the present application;
  • Fig. 3 is a schematic structural view of a stator assembly in a six-degree-of-freedom motion mechanism for multi-layer heat dissipation in the present application;
  • Fig. 4 is a schematic structural view of the upper water-cooled plate in a multi-layer heat dissipation six-degree-of-freedom motion mechanism of the present application;
  • Fig. 5 is a structural schematic diagram of the lower water-cooled plate in a six-degree-of-freedom motion mechanism for multi-layer heat dissipation in the present application;
  • Fig. 6 is a schematic diagram of the front structure of the vertical motor assembly in a six-degree-of-freedom motion mechanism with multiple layers of heat dissipation in the present application;
  • Fig. 7 is a schematic diagram of the rear structure of the vertical motor assembly in a multi-layer heat dissipation six-degree-of-freedom motion mechanism of the present application;
  • Fig. 8 is a structural schematic diagram 1 of the mover assembly in a multi-layer heat dissipation six-degree-of-freedom motion mechanism of the present application;
  • Fig. 9 is a structural schematic diagram II of the mover assembly in a multi-layer heat dissipation six-degree-of-freedom motion mechanism of the present application.
  • Fig. 10 is a schematic structural view of the upper horizontal magnetic steel frame in a multi-layer heat dissipation six-degree-of-freedom motion mechanism of the present application;
  • Fig. 11 is a schematic structural view of the lower horizontal magnetic steel frame in a multi-layer heat dissipation six-degree-of-freedom motion mechanism of the present application;
  • Fig. 12 is a schematic structural diagram of the outer vertical magnetic steel skeleton in a multi-layer heat dissipation six-degree-of-freedom motion mechanism of the present application;
  • FIG. 13 is a schematic structural view of the inner vertical magnetic steel skeleton in a multi-layer heat dissipation six-degree-of-freedom motion mechanism of the present application.
  • a six-degree-of-freedom motion mechanism with multiple layers of heat dissipation in the present application includes a base 1 on which a mover assembly 2 and a stator assembly 3 are arranged.
  • the stator assembly 3 includes a stator frame 31, one end of the stator support 13 is connected to the stator frame 31, and the other end is connected to the base 1 to fix the stator assembly 3 on the base 1 as a whole. Stabilizing support.
  • Four sets of horizontal motor assemblies 32 are evenly distributed and fixed in the circumferential direction of the stator frame 31, and four sets of vertical motor assemblies 33 are evenly distributed and fixed on the outside of the stator frame 31. connect.
  • the four groups of horizontal motor assemblies 32 have the same structure.
  • the horizontal motor coils 321 in the four groups of horizontal motor assemblies 32 are evenly embedded around the stator frame 31.
  • the stator frame 31 is also provided with a horizontal motor coil frame.
  • the upper water-cooled plate 322 on the upper side of the coil 321 and the lower water-cooled plate 323 covering the lower side of the horizontal motor coil 321, the upper water-cooled plate 322 and the lower water-cooled plate 323 are respectively provided with four interconnected cooling water flow channels 324 along their respective circumferential directions.
  • the positions of the cooling water channel 324 and the four horizontal motor coils 321 correspond one by one up and down and their shapes are adapted so as to fully and instantly dissipate heat for the corresponding motor coils.
  • Both ends of a diagonal line in the upper water cooling plate 322 and the lower water cooling plate 323 are water inlets 325, and both ends of the other diagonal line are water outlets 326.
  • the two water inlets 325 and the two water outlets 326 are both up and down. connected.
  • the cooling water enters the upper water cooling plate 322 and the lower water cooling plate 323 from the two water inlets 325, flows through the cooling water channels 324 of the two, and flows between the upper water cooling plate 322 and the lower water cooling plate 323. After the heat emitted by the horizontal motor coil 321 is absorbed, it flows out from the two water outlets 326 .
  • the upper water-cooling plate 322 and the lower water-cooling plate 323 are ultra-thin plates with a thickness of only 1.5-2mm, occupying a small space and helping to ensure a compact structure.
  • the stator support 13 is also provided with threaded holes configured to connect to water pipe joints. The threaded holes communicate with the water inlet 325 and the water outlet 326 to provide cooling water inlet and outlet interfaces for the horizontal motor.
  • the vertical motor assembly 33 includes a vertical motor coil frame 332 fixed on the outside of the stator frame 31, the vertical motor coil 331 is fixed inside the vertical motor coil frame 332, the position is stable, and the vertical motor Both ends of the coil frame 332 are fixed on the stator frame 31 , and each vertical motor coil 331 is vertically arranged with the adjacent horizontal motor coil 321 .
  • the vertical motor coil frame 332 includes an inner heat sink 333 covering the inside of the vertical motor coil 331 and an outer heat sink 334 covering the outside of the vertical motor coil 331.
  • the inner heat sink 333 and the outer heat sink 334 respectively An inner layer cooling water flow channel 335 and an outer layer cooling water flow channel 336 adapted to the shape of the vertical motor coil 331 are provided.
  • the inner layer cooling water flow channel 335 communicates with the outer layer cooling water flow channel 336.
  • a water inlet 337 and a water outlet 338 communicating with the inner layer cooling water channel 335 and the outer layer cooling water channel 336 are provided.
  • the inner heat dissipation plate 333 and the outer heat dissipation plate 334 are both ultra-thin plates with a thickness of only 1.5-2 mm, which occupy a small space and are conducive to ensuring a compact structure.
  • the cooling water enters the inner cooling plate 333 and the outer cooling plate 334 from the water inlet 337, flows through the inner cooling water channel 335 and the outer cooling water channel 336, and dissipates the vertical motor coil 331. After the heat is absorbed, it flows out from the drain port 338 .
  • the mover assembly 2 includes a magnetic steel skeleton 21, and the magnetic steel skeleton 21 is assembled on the stator assembly 3.
  • the magnetic steel skeleton 21 includes a horizontal frame configured to cover the horizontal motor assembly 32,
  • the vertical frame configured to cover the vertical motor assembly 33 , the horizontal frame and the vertical frame are all fixed on the stator frame 31 .
  • the horizontal frame includes an upper horizontal magnetic steel frame 22 and a lower horizontal magnetic steel frame 23 fixed on both sides of the upper and lower sides of the stator frame 31, and the edge portions of the upper horizontal magnetic steel frame 22 and the lower horizontal magnetic steel frame 23 pass through several
  • a limit block pillar 26 is fixedly connected together with a plurality of connecting pillars, which has a compact structure and high stability.
  • the upper and lower sides of the four groups of horizontal motor assemblies 32 are respectively provided with motor magnetic steel skeletons 27, and each motor magnetic steel skeleton 27 on the upper and lower sides is respectively fixed on the upper horizontal magnetic steel frame 22 and the lower floor horizontal magnetic steel frame 23.
  • the vertical frame includes an inner vertical magnetic steel frame 24 fixed on the circumference of the stator frame 31 and vertically fixedly connected between the upper horizontal magnetic steel frame 22 and the lower horizontal magnetic steel frame 23, and the outer layer vertical magnetic steel frame 25.
  • the vertical motor assembly 33 is located between the inner vertical magnetic steel framework 24 and the outer vertical magnetic steel framework 25 .
  • the base 1 is fixed with a horizontal position sensor 11 and a vertical position sensor 12 respectively correspondingly connected to the horizontal motor assembly 32 and the vertical motor assembly 33.
  • a horizontal position sensor target surface 111 and a vertical position sensor target surface 121 respectively corresponding to the horizontal position sensor 11 and the vertical position sensor 12 are provided. , the distance between the target surface 121 of the vertical position sensor to identify the position direction of the horizontal motor assembly 32 and the vertical motor assembly 33, and form a closed loop with the control system to realize the six-degree-of-freedom attitude simulation.
  • the working principle of a six-degree-of-freedom motion mechanism with multi-layer heat dissipation in the embodiment of the present application Taking the coordinate direction in Figure 4 as an example, the two horizontal motor coils 321 in the X direction are energized, and under the action of the Lorentz force, through the control The size of the coil current and the current positive and negative complete the positive and negative horizontal movement of the mover assembly 2 relative to the stator assembly 3 in the X direction; the two horizontal motor coils 321 in the Y direction are energized, and under the action of the Lorentz force, through the control coil The size of the current and the current positive and negative complete the positive and negative horizontal movement of the mover assembly 2 relative to the stator assembly 3 in the Y direction; the four vertical motor coils 331 are energized, and under the action of the Lorentz force, the size of the coil current is controlled And the current is positive and negative, so that the mover assembly 2 is suspended relative to the stator assembly 2 while completing the vertical movement in the Z direction.
  • the moving subassembly 2 is equipped with a work platform with a control system.
  • the position signals sent by the horizontal position sensor 11 and the vertical position sensor 12 form a closed loop to realize the adjustment of different attitudes of the working platform under six degrees of freedom, and the attitude calculation is easy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Linear Motors (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

本申请实施例公开了一种多层散热的六自由度运动机构,包括基座及其上设置的动子组件、定子组件,动子组件包括组装于定子组件上的磁钢骨架,电机线圈通电时动子组件相对定子组件处于磁悬浮状态;定子组件包括定子骨架,定子骨架周向均布固定有四组相互垂直布置且均与控制系统电连接的水平电机组件、垂向电机组件,冷却水在水平电机组件、垂向电机组件之间流通以吸收电机线圈散发的热量;基座上固设有与水平电机组件、垂向电机组件分别对应连接以识别水平电机组件、垂向电机组件的位置方向且与控制系统形成闭环以实现六自由度姿态模拟的水平位置传感器、垂向位置传感器。本申请实施例结构紧凑、运动姿态解算容易且散热即时。

Description

一种多层散热的六自由度运动机构
相关申请的交叉引用
本申请要求享有于2021年12月24日提交的中国专利申请CN 202111597787.0的优先权,上述申请的全部内容通过引用并入本文中。
技术领域
本申请涉及模拟姿态的运动机构,特别是涉及一种多层散热的六自由度运动机构。
背景技术
目前部分运动平台的六自由度运动机构通常包括六个伺服电机、六个伺服电动缸、上下各六个虎克铰和上下两个平台,伺服电机与伺服电动缸连接,伺服电动缸与虎克铰连接,上下平台分别与上下六个下虎克铰连接,上下六个虎克铰分别与六个伺服电机连接,下平台固定在基础上,借助六个伺服电机驱动六个伺服电动缸做伸缩运动,从而完成上下平台在空间六个自由度(α,β,γ,X,Y,Z)的运动,最终模拟出各种姿态。这种运动平台存在一些不足之处:
1、电动缸摩擦运动会对环境产生噪声污染;
2、缸内起运动润滑作用的润滑油会对环境产生颗粒污染;
3、依靠六个电动缸的不同伸缩长度及十二个虎克铰模拟出各种姿态,姿态解算比较复杂;
4、伺服电机工作时向周围环境散发出较多热量。
申请内容
本申请实施例提供一种结构紧凑、运动姿态解算容易且即时散热的多层散热的六自由度运动机构。
一方面,本申请实施例提供一种多层散热的六自由度运动机构,包括基座及其上设置的动子组件、定子组件,所述动子组件包括磁钢骨架,所述磁钢骨架组装于所述定子组件上,电机线圈通电时,所述动子组件相对定子组件处于磁悬浮状态;
所述定子组件包括定子骨架,所述定子骨架周向均布固定有四组相互垂直布置且均与控制系统电连接的水平电机组件、垂向电机组件,冷却水在所述水平电机组件、垂向电机组件之间流通以吸收电机线圈散发的热量;
所述基座上固设有与水平电机组件、垂向电机组件分别对应连接以识别水平电机组件、垂向电机组件的位置方向且与控制系统形成闭环以实现六自由度姿态模拟的水平位置传感 器、垂向位置传感器。
在一些实施例中,四组水平电机组件中的水平电机线圈均匀镶嵌在定子骨架四周,所述定子骨架内部还设置有水平电机线圈骨架,水平电机线圈骨架包括分别覆盖于水平电机线圈上侧、下侧的上层水冷板、下层水冷板,上层水冷板、下层水冷板上各设置有四处相互连通且与四个水平电机线圈一一对应且形状适配的冷却水流道,所述上层水冷板、下层水冷板中一条对角线的两端均为入水口,另一条对角线的两端均为出水口,两个入水口、两个出水口均上下连通。
在一些实施例中,垂向电机组件包括固定在定子骨架外侧的垂向电机线圈骨架,所述垂向电机线圈骨架内部固设垂向电机线圈且两端固定在定子骨架上,四个垂向电机线圈与四个水平电机线圈一一对应且相互垂直布置。
在一些实施例中,垂向电机线圈骨架包括分别覆盖在垂向电机线圈内外两侧的内层散热板、外层散热板,内层散热板、外层散热板上分别设置有与垂向电机线圈形状适配的内层冷却水流道、外层冷却水流道,内层冷却水流道与外层冷却水流道相连通且与所述垂向电机线圈骨架上设置的进水口、排水口连通。
在一些实施例中,磁钢骨架包括分别配置成覆盖水平电机组件、垂向电机组件且均固定于定子骨架上的水平架、垂向架,所述水平架包括固定于定子骨架上下两侧且相互之间也固定连接的上层水平磁钢架、下层水平磁钢架,四组水平电机组件上下两侧的电机磁钢骨架分别固定在上层水平磁钢架、下层水平磁钢架上。
在一些实施例中,上层水平磁钢架、下层水平磁钢架的边缘部通过限位块支柱搭配连接支柱固定连接在一起。
在一些实施例中,垂向架包括固定在定子骨架周向且垂直连接在上层水平磁钢架、下层水平磁钢架之间的内层垂向磁钢骨架、外层垂向磁钢骨架,所述垂向电机组件位于内层垂向磁钢骨架、外层垂向磁钢骨架之间。
在一些实施例中,下层水平磁钢架背面设置有与所述水平位置传感器、垂向位置传感器分别对应的水平位置传感器靶面及垂向位置传感器靶面,所述水平位置传感器、垂向位置传感器分别感应与水平位置传感器靶面、垂向位置传感器靶面之间的距离以识别水平电机组件、垂向电机组件的位置方向。
在一些实施例中,本申请一种多层散热的六自由度运动机构还包括定子支柱,所述定子支柱一端连接定子骨架,另一端连接基座。
在一些实施例中,定子支柱上还设置有配置成连接水管接头的螺纹孔,所述螺纹孔与入水口、出水口连通。
基于上述技术方案,本申请实施例提供的一种多层散热的六自由度运动机构至少具有以 下有益效果:
(1)采用控制水平运动的四个水平电机组件及控制垂向运动的四个垂向电机组件共同实现整个机构的六自由度运动,同时由固定在基座上的四个垂向位置传感器及四个水平位置传感器共同识别整个电机的各个方向的位置,与控制系统形成闭环,进而实现模拟各种姿态,姿态解算简单、容易。
(2)在电机线圈通电时,动子组件与定子组件处于磁悬浮状态,通过控制线圈的电流大小,进而实现动子的六自由度悬浮运动,动子运动过程中与定子组件无接触无摩擦,避免了颗粒的产生对环境造成污染,同时也避免了噪声污染。
(3)另外,定子组件上的四个水平电机线圈及四个垂向电机线圈分别被内有冷却水的上下层水冷板以及内外层散热板包裹上下及四周,电机线圈在得到有效固定的同时,也由冷却水对电机线圈散发的热量即时进行吸收,避免了热量散发对周围环境温度的影响,保证了对环境温度比较敏感苛刻的设备的正常运行。
(4)最后,本申请中,基座、定子骨架、磁钢骨架、垂向电机线圈骨架等均为薄板式结构,而上层水冷板、下层水冷板、内层散热板、外层散热板均为超薄板结构,使得整体结构更加紧凑,占用空间小。
下面结合附图对本申请一种多层散热的六自由度运动机构作进一步说明。
附图说明
图1为本申请一种多层散热的六自由度运动机构的结构示意图一;
图2为本申请一种多层散热的六自由度运动机构的结构示意图二;
图3为本申请一种多层散热的六自由度运动机构中定子组件的结构示意图;
图4为本申请一种多层散热的六自由度运动机构中上层水冷板的结构示意图;
图5为本申请一种多层散热的六自由度运动机构中下层水冷板的结构示意图;
图6为本申请一种多层散热的六自由度运动机构中垂向电机组件的正面结构示意图;
图7为本申请一种多层散热的六自由度运动机构中垂向电机组件的背面结构示意图;
图8为本申请一种多层散热的六自由度运动机构中动子组件的结构示意图一;
图9为本申请一种多层散热的六自由度运动机构中动子组件的结构示意图二;
图10为本申请一种多层散热的六自由度运动机构中上层水平磁钢架的结构示意图;
图11为本申请一种多层散热的六自由度运动机构中下层水平磁钢架的结构示意图;
图12为本申请一种多层散热的六自由度运动机构中外层垂向磁钢骨架的结构示意图;
图13为本申请一种多层散热的六自由度运动机构中内层垂向磁钢骨架的结构示意图。
具体实施方式
如图1、图2所示,本申请一种多层散热的六自由度运动机构,包括基座1,基座1上设置有动子组件2、定子组件3。
结合图3至图5所示,定子组件3包括定子骨架31,定子支柱13一端连接定子骨架31,另一端连接基座1以将定子组件3整个固定在基座1上,对定子组件3起稳定支撑作用。定子骨架31周向均布镶嵌固定有四组水平电机组件32,定子骨架31外侧周向均布固定有四组垂向电机组件33,水平电机组件32、垂向电机组件33相互垂直布置且均与控制系统电连接。四组水平电机组件32结构相同,四组水平电机组件32中的水平电机线圈321均匀镶嵌在定子骨架31四周,定子骨架31内部还设置有水平电机线圈骨架,水平电机线圈骨架包括覆盖于水平电机线圈321上侧的上层水冷板322以及覆盖于水平电机线圈321下侧的下层水冷板323,上层水冷板322、下层水冷板323上沿各自周向均设置有四处相互连通的冷却水流道324,上下四处冷却水流道324与四个水平电机线圈321的位置一一上下对应且形状适配,以便充分即时为相应的电机线圈散热。上层水冷板322、下层水冷板323中一条对角线的两端均为入水口325,另一条对角线的两端均为出水口326,两个入水口325、两个出水口326均上下连通。电机工作时,冷却水从两个入水口325处进入上层水冷板322、下层水冷板323内,流经二者的冷却水流道324,在上层水冷板322、下层水冷板323之间流动,将水平电机线圈321散发的热量吸收后,从两个出水口326流出。其中,上层水冷板322、下层水冷板323均为超薄板,厚度仅有1.5-2mm,占用空间小,有利于保证结构紧凑。定子支柱13上还设置有配置成连接水管接头的螺纹孔,螺纹孔与入水口325、出水口326连通,为水平电机提供冷却水出入接口。
结合图6、图7所示,垂向电机组件33包括固定在定子骨架31外侧的垂向电机线圈骨架332,垂向电机线圈331固定在垂向电机线圈骨架332内部,位置稳定,垂向电机线圈骨架332两端固定在定子骨架31上,每个垂向电机线圈331均与其附近的水平电机线圈321相互垂直布置。垂向电机线圈骨架332包括覆盖在垂向电机线圈331内侧的内层散热板333以及覆盖在垂向电机线圈331外侧的外层散热板334,内层散热板333、外层散热板334上分别设置有与垂向电机线圈331形状适配的内层冷却水流道335、外层冷却水流道336,内层冷却水流道335与外层冷却水流道336相连通,垂向电机线圈骨架332上还设置有与内层冷却水流道335、外层冷却水流道336连通的进水口337、排水口338。其中,内层散热板333、外层散热板334均为超薄板,厚度仅有1.5-2mm,占用空间小,有利于保证结构紧凑。电机工作时,冷却水从进水口337进入内层散热板333、外层散热板334内,流经内层冷却水流道335、外层冷却水流道336的过程,将垂向电机线圈331散发的热量吸收后,从排水口338流出。
再结合图8至图13所示,动子组件2包括磁钢骨架21,磁钢骨架21组装于定子组件3 上,具体的,磁钢骨架21包括配置成覆盖水平电机组件32的水平架、配置成覆盖垂向电机组件33的垂向架,水平架、垂向架均固定于定子骨架31上。具体的,水平架包括固定于定子骨架31上下两侧的上层水平磁钢架22、下层水平磁钢架23,上层水平磁钢架22、下层水平磁钢架23的边缘部沿周向通过若干个限位块支柱26搭配若干个连接支柱固定连接在一起,结构紧凑,稳定性高。四组水平电机组件32各自的上下两侧均设置有电机磁钢骨架27,上下两侧的各个电机磁钢骨架27分别固定在上层水平磁钢架22、下层水平磁钢架23上。垂向架包括固定在定子骨架31周向且垂直固定连接在上层水平磁钢架22、下层水平磁钢架23之间的内层垂向磁钢骨架24、外层垂向磁钢骨架25,垂向电机组件33位于内层垂向磁钢骨架24、外层垂向磁钢骨架25之间。电机线圈,即垂向电机线圈331与水平电机线圈321,通电时,动子组件2相对定子组件3处于磁悬浮状态。
再结合图2、图9所示,基座1上固设有与水平电机组件32、垂向电机组件33分别对应连接的水平位置传感器11、垂向位置传感器12,下层水平磁钢架23背面设置有与水平位置传感器11、垂向位置传感器12分别对应的水平位置传感器靶面111及垂向位置传感器靶面121,水平位置传感器11、垂向位置传感器12分别感应与水平位置传感器靶面111、垂向位置传感器靶面121之间的距离以识别水平电机组件32、垂向电机组件33的位置方向,与控制系统形成闭环以实现六自由度姿态模拟。
本申请实施例一种多层散热的六自由度运动机构的工作原理:以图4中坐标方向为例,X方向的两个水平电机线圈321通电,在洛伦兹力的作用下,通过控制线圈电流的大小及电流正负,完成动子组件2相对定子组件3在X方向的正反水平运动;Y方向的两个水平电机线圈321通电,在洛伦兹力的作用下,通过控制线圈电流的大小及电流正负,完成动子组件2相对定子组件3在Y方向的正反水平运动;四个垂向电机线圈331通电,在洛伦兹力的作用下,通过控制线圈电流的大小及电流正负,使动子组件2相对定子组件2悬浮的同时完成在Z方向的上下垂向运动。4个水平电机差动,完成Rz方向的旋转运动,相互正对平行布置的两个垂向电机差动,完成Rx(Ry)方向的旋转运动,另外两个相互正对平行布置的两个垂向电机差动,完成Ry(Rx)方向的旋转运动。总之,通过控制线圈电流大小和方向,在洛伦兹力的作用下,控制动子组件2的移动速度、加速度及位置,动子组件2上安装配置有控制系统的工作载台,通过结合上述水平位置传感器11、垂向位置传感器12发出的位置信号形成闭环,实现工作平台六个自由度下不同姿态的调整,姿态解算容易。
以上所述的实施例仅仅是对本申请的优选实施方式进行描述,并非对本申请的范围进行限定,在不脱离本申请设计精神的前提下,本领域普通技术人员对本申请的技术方案作出的各种变形和改进,均应落入本申请权利要求书确定的保护范围内。

Claims (10)

  1. 一种多层散热的六自由度运动机构,包括基座(1)及其上设置的动子组件(2)、定子组件(3),其特征在于,所述动子组件(2)包括磁钢骨架(21),所述磁钢骨架(21)组装于所述定子组件(3)上,电机线圈通电时,所述动子组件(2)相对定子组件(3)处于磁悬浮状态;
    所述定子组件(3)包括定子骨架(31),所述定子骨架(31)周向均布固定有四组相互垂直布置且均与控制系统电连接的水平电机组件(32)、垂向电机组件(33),冷却水在所述水平电机组件(32)、垂向电机组件(33)之间流通以吸收电机线圈散发的热量;
    所述基座(1)上固设有与水平电机组件(32)、垂向电机组件(33)分别对应连接以识别水平电机组件(32)、垂向电机组件(33)的位置方向且与控制系统形成闭环以实现六自由度姿态模拟的水平位置传感器(11)、垂向位置传感器(12)。
  2. 根据权利要求1所述的一种多层散热的六自由度运动机构,其特征在于,四组所述水平电机组件(32)中的水平电机线圈(321)均匀镶嵌在定子骨架(31)四周,所述定子骨架(31)内部还设置有水平电机线圈骨架,水平电机线圈骨架包括分别覆盖于水平电机线圈(321)上侧、下侧的上层水冷板(322)、下层水冷板(323),上层水冷板(322)、下层水冷板(323)上各设置有四处相互连通且与四个水平电机线圈(321)一一对应且形状适配的冷却水流道(324),所述上层水冷板(322)、下层水冷板(323)中一条对角线的两端均为入水口(325),另一条对角线的两端均为出水口(326),两个入水口(325)、两个出水口(326)均上下连通。
  3. 根据权利要求1或2所述的一种多层散热的六自由度运动机构,其特征在于,所述垂向电机组件(33)包括固定在定子骨架(31)外侧的垂向电机线圈骨架(332),所述垂向电机线圈骨架(332)内部固设垂向电机线圈(331)且两端固定在定子骨架(31)上,四个垂向电机线圈(331)与四个水平电机线圈(321)一一对应且相互垂直布置。
  4. 根据权利要求3所述的一种多层散热的六自由度运动机构,其特征在于,所述垂向电机线圈骨架(332)包括分别覆盖在垂向电机线圈(331)内外两侧的内层散热板(333)、外层散热板(334),内层散热板(333)、外层散热板(334)上分别设置有与垂向电机线圈(331)形状适配的内层冷却水流道(335)、外层冷却水流道(336),内层冷却水流道(335)与外层冷却水流道(336)相连通且与所述垂向电机线圈骨架(332)上设置的进水口(337)、排水口(338)连通。
  5. 根据权利要求1-4任意所述的一种多层散热的六自由度运动机构,其特征在于,所述 磁钢骨架(21)包括分别配置成覆盖水平电机组件(32)、垂向电机组件(33)且均固定于定子骨架(31)上的水平架、垂向架,所述水平架包括固定于定子骨架(31)上下两侧且相互之间也固定连接的上层水平磁钢架(22)、下层水平磁钢架(23),四组水平电机组件(32)上下两侧的电机磁钢骨架(27)分别固定在上层水平磁钢架(22)、下层水平磁钢架(23)上。
  6. 根据权利要求5所述的一种多层散热的六自由度运动机构,其特征在于,所述上层水平磁钢架(22)、下层水平磁钢架(23)的边缘部通过限位块支柱(26)搭配连接支柱固定连接在一起。
  7. 根据权利要求6所述的一种多层散热的六自由度运动机构,其特征在于,所述垂向架包括固定在定子骨架(31)周向且垂直连接在上层水平磁钢架(22)、下层水平磁钢架(23)之间的内层垂向磁钢骨架(24)、外层垂向磁钢骨架(25),所述垂向电机组件(33)位于内层垂向磁钢骨架(24)、外层垂向磁钢骨架(25)之间。
  8. 根据权利要求7所述的一种多层散热的六自由度运动机构,其特征在于,所述下层水平磁钢架(23)背面设置有与所述水平位置传感器(11)、垂向位置传感器(12)分别对应的水平位置传感器靶面(111)及垂向位置传感器靶面(121),所述水平位置传感器(11)、垂向位置传感器(12)分别感应与水平位置传感器靶面(111)、垂向位置传感器靶面(121)之间的距离以识别水平电机组件(32)、垂向电机组件(33)的位置方向。
  9. 根据权利要求2-8中任一项所述的一种多层散热的六自由度运动机构,其特征在于,还包括定子支柱(13),所述定子支柱(13)一端连接定子骨架(31),另一端连接基座(1)。
  10. 根据权利要求9所述的一种多层散热的六自由度运动机构,其特征在于,所述定子支柱(13)上还设置有配置成连接水管接头的螺纹孔,所述螺纹孔与入水口(325)、出水口(326)连通。
PCT/CN2022/116141 2021-12-24 2022-08-31 一种多层散热的六自由度运动机构 WO2023116040A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111597787.0A CN116388505A (zh) 2021-12-24 2021-12-24 一种多层散热的六自由度运动机构
CN202111597787.0 2021-12-24

Publications (1)

Publication Number Publication Date
WO2023116040A1 true WO2023116040A1 (zh) 2023-06-29

Family

ID=86901179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116141 WO2023116040A1 (zh) 2021-12-24 2022-08-31 一种多层散热的六自由度运动机构

Country Status (2)

Country Link
CN (1) CN116388505A (zh)
WO (1) WO2023116040A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6313550B1 (en) * 2000-02-02 2001-11-06 Nikon Corporation Coil mounting and cooling system for an electric motor
CN101741290A (zh) * 2009-12-24 2010-06-16 哈尔滨工业大学 六自由度磁悬浮微动平台
CN103226295A (zh) * 2013-04-27 2013-07-31 清华大学 一种光刻机硅片台微动工作台
CN104009674A (zh) * 2014-06-13 2014-08-27 哈尔滨工业大学 六自由度短行程磁悬浮工作台

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6313550B1 (en) * 2000-02-02 2001-11-06 Nikon Corporation Coil mounting and cooling system for an electric motor
CN101741290A (zh) * 2009-12-24 2010-06-16 哈尔滨工业大学 六自由度磁悬浮微动平台
CN103226295A (zh) * 2013-04-27 2013-07-31 清华大学 一种光刻机硅片台微动工作台
CN104009674A (zh) * 2014-06-13 2014-08-27 哈尔滨工业大学 六自由度短行程磁悬浮工作台

Also Published As

Publication number Publication date
CN116388505A (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
Lu 6D direct-drive technology for planar motion stages
WO2015018335A1 (zh) 哈尔贝克磁阵列及采用其的磁悬浮减震设备
CN202807110U (zh) 半主动式重力补偿结构的气浮六自由度模拟卫星装置
CN102866596B (zh) 一种配装波纹管垂向解耦重力补偿器的微动台
CN104942581A (zh) 永磁直驱风力发电机组轴系装配系统
WO2023116040A1 (zh) 一种多层散热的六自由度运动机构
CN104149985A (zh) 一种基于并联机构的自稳航拍云台
CN114313052B (zh) 可自锁的腿足模块及机器人
JP7248361B1 (ja) 並列接続型姿勢調整に基づく惑星ローバー磁気浮上重力補償実験プラットフォーム
CN108443323A (zh) 一种倒吸式气浮轴承结构
CN109599005B (zh) 基于气磁复合控制的双超卫星平台姿态地面仿真模拟器
CN112382160B (zh) 一种六自由度模拟器气浮滑轮系统
CN109073989A (zh) 一种摄像模组及移动终端
CN205979069U (zh) 可移动装置、移动拍摄设备、可移动装置控制系统
CN207038123U (zh) 一种展馆多媒体投影装置
CN110968123A (zh) 一种面向军用计算机应用的主动减振平台
CN108715235A (zh) 一种卫星用磁悬浮万向偏转隔震吊舱
CN114800569B (zh) 一种空冷器磁吸附射流式清洁机器人及其设计方法
CN102141734B (zh) 重力补偿器以及采用所述重力补偿器的微动台
WO2019223417A1 (zh) 一种用于存储区块链大数据的散热机房
JP4134193B2 (ja) 静圧気体軸受
CN213522591U (zh) 一种电子工程电气柜
JP3238992U (ja) 電気・機械設備用放熱保護装置
CN209947257U (zh) 一种单杆平衡装置
CN208221382U (zh) 一种倒吸式气浮轴承结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909365

Country of ref document: EP

Kind code of ref document: A1