WO2015018335A1 - 哈尔贝克磁阵列及采用其的磁悬浮减震设备 - Google Patents

哈尔贝克磁阵列及采用其的磁悬浮减震设备 Download PDF

Info

Publication number
WO2015018335A1
WO2015018335A1 PCT/CN2014/083777 CN2014083777W WO2015018335A1 WO 2015018335 A1 WO2015018335 A1 WO 2015018335A1 CN 2014083777 W CN2014083777 W CN 2014083777W WO 2015018335 A1 WO2015018335 A1 WO 2015018335A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
array
magnet
halbach
arrays
Prior art date
Application number
PCT/CN2014/083777
Other languages
English (en)
French (fr)
Inventor
吴立伟
Original Assignee
上海微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微电子装备有限公司 filed Critical 上海微电子装备有限公司
Priority to JP2016532226A priority Critical patent/JP6253778B2/ja
Priority to SG11201600873PA priority patent/SG11201600873PA/en
Priority to US14/910,994 priority patent/US10170972B2/en
Priority to EP14833907.0A priority patent/EP3032137B1/en
Publication of WO2015018335A1 publication Critical patent/WO2015018335A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/03Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0205Magnetic circuits with PM in general
    • H01F7/021Construction of PM
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0231Magnetic circuits with PM for power or force generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0273Magnetic circuits with PM for magnetic field generation
    • H01F7/0278Magnetic circuits with PM for magnetic field generation for generating uniform fields, focusing, deflecting electrically charged particles

Definitions

  • the present invention relates to the field of semiconductor manufacturing, and in particular to a high precision magnetic levitation active damper device for a lithography machine. Background technique
  • the lithography machine mainly consists of a light source (currently mainstream lithography machine uses an ArF deep ultraviolet (DUV) excimer laser with a wavelength of 193 nm), an optical illumination system, a projection lens, a mask stage carrying a mask, a workpiece stage carrying a silicon wafer, Damping equipment and other components. It requires that the vibration disturbances of many important components such as measuring systems, exposure systems, zero sensors, alignment sensors, light intensity energy sensors, etc., be as small as possible, so that important modules are in a "quiet" environment.
  • a light source currently mainstream lithography machine uses an ArF deep ultraviolet (DUV) excimer laser with a wavelength of 193 nm
  • DUV ArF deep ultraviolet
  • the shock absorber is one of the key equipments to ensure the performance of the integrated circuit manufacturing.
  • the shock absorber is used to separate the important parts inside the lithography machine from the external world of other structures such as the basic frame to form an independent interior. world.
  • the damper of the lithography machine used rubber damping for early use.
  • the current mainstream lithography machine damping device is based on the active damping method based on air spring. It mainly uses the active control strategy of the active controller, and realizes the speed measurement by the speed sensor (Geophones sensor) for damping feedback compensation.
  • the real-time position of the vibration isolation platform is measured, and the high-bandwidth response compensation is realized by the voice coil motor, thereby realizing the precise positioning compensation capability of the vibration isolation platform.
  • the gravity compensation part of the vibration isolation platform is used to compensate the air pressure of the compressed air in the gas cylinder in real time by using a pneumatic control valve, thereby realizing the large load carrying capacity of the shock absorber and effective pneumatic vibration isolation and shock absorption.
  • the typical layout of the internal shock absorber of the lithography machine equipment often uses three sets of shock absorbers, each set of shock absorbers A vertical compensation motor and a horizontal compensation motor are arranged, and a vertical measurement sensor and a horizontal measurement sensor are arranged at the same time, thereby realizing shock absorption vibration isolation and position suspension positioning of the vibration isolation platform 6 degrees of freedom.
  • the research goal of the shock absorber is to achieve high bearing capacity, low stiffness, low resonance frequency, and high attenuation rate, thereby achieving a low vibration transmission rate, and minimizing the influence of external disturbance on the internal world.
  • the requirements for the characteristic line width of the lithography machine are also increasing.
  • the module system inside the lithography machine is more and more complicated.
  • the weight of the whole machine ranges from 2 P ⁇ to 14 tons.
  • the TFT lithography machine even reaches 40 tons. Therefore, the lithography machine is Quiet"
  • the shock absorption requirements of the environment are more demanding. For this reason, it is necessary to achieve a large load carrying capacity for the damping device.
  • the industry has also proposed "negative stiffness, technical concept.
  • the device adopts a Han layer magnetic array structure, and each layer of the magnetic circuit structure adopts a two-dimensional NS magnetic array topology.
  • the upper two layers of magnet array use the magnetic force suspension method to realize the upward pulling force of the shock absorbing platform frame
  • the lower two layers of the magnet array use the magnetic repulsion suspension method to realize the upward lifting force of the shock absorbing platform frame.
  • the suspension device is capable of achieving gravitational compensation of thousands of kilograms of load, and the spring load of the vertical load reaches several tens of Newtons per millimeter, thereby achieving a lower resonance frequency.
  • the technical problem to be solved by the present invention is to provide a high-precision magnetic levitation active damper device that realizes a larger load capacity under the condition of equal magnetic energy product and maximizes the single-sided magnetic field characteristic using the magnetic energy product.
  • the present invention provides a Halbec magnetic array comprising first and second magnetic units alternately arranged along a width direction of the Halbeke magnetic array, wherein:
  • the first magnetic unit includes a first magnet group and a first magnetic column alternately arranged along a length direction of the Halbec magnetic array, and each of the first magnet groups includes four first magnetic strips arranged in a 2*2 array
  • Each of the second magnetic units includes a second magnetic column and a second magnet group alternately arranged along the length direction, and each of the second magnet groups includes four second magnetic strips arranged in a 2*2 array
  • the magnetization direction of the first magnetic column is along a height direction of the Halbec magnetic array, and the magnetization direction of each of the second magnetic columns is a reverse direction along the height direction.
  • a magnetization direction of each of the first and second magnet groups is a diagonal line along the body, and a direction of a magnetization direction of the four magnetic strips in the same magnet group is uniform in the height direction. And the component directions in the plane formed by the width and length directions are different.
  • the magnetization directions of the four magnetic strips in each of the first magnet groups are opposite to the magnetization directions of the four magnetic strips in each of the second magnet groups.
  • An angle between a magnetization direction of each of the first magnetic strips and a plane formed by the width and length directions is 30 to 60 degrees; a plane formed by a magnetization direction of each of the second magnetic strips and the width and length directions
  • the angle range is 30 to 60 degrees.
  • each of the first magnetic column and the second magnetic column is a regular shape such as a rectangle or a circle.
  • the present invention also provides a magnetic levitation damper comprising a pair of Halbeck magnetic arrays as described above stacked in a height direction to generate a magnetic force in a height direction, wherein one of the pair of Halbeke magnetic arrays Each of the magnetic columns of the first array is aligned with each of the magnetic columns of a second array of the pair of Halbeke magnetic arrays.
  • the magnetization direction is the same.
  • the magnetization direction of the magnetic column in the first array is opposite to the magnetization direction of the magnetic column at a corresponding position in the second array.
  • the magnetic levitation damper further includes: a second pair of Halbach magnetic arrays as previously described fixedly disposed on one side of the pair of Halbeke magnetic arrays in the pair of Halbeek magnetic arrays a magnetic force is generated in the longitudinal direction; and a third pair of Halbach magnetic arrays as previously described are fixedly disposed on the other side of the pair of Halbeke magnetic arrays in the width direction of the pair of Halbeek magnetic arrays Magnetic force is generated on it.
  • the magnetic force is a magnetic attraction or a magnetic repulsion.
  • the invention provides a high-precision magnetic levitation active damping device based on a planar Halbach magnetic array. Since the single-sided magnetic density of a Halbach magnetic array is a multiple of a conventional NS array, the isokinetic energy product is present. Under the realization of greater load capacity, and the single-sided magnetic field characteristics maximize the use of magnetic energy product, while effectively reducing the interference problem of the magnetic field leakage of the NS array. DRAWINGS
  • FIG. 1 is a schematic structural view of a shock absorbing device provided by the prior art
  • FIG. 2 is a schematic structural view of a high-precision magnetic levitation active damper device provided by the present invention
  • FIG. 3 is a schematic structural view of a magnetic levitation damper provided in Embodiment 1 of the present invention
  • FIG. 4 is another schematic structural view of a magnetic levitation damper according to Embodiment 1 of the present invention.
  • FIG 5 is another schematic structural view of the magnetic levitation damper shown in Figure 4.
  • FIG. 6 is a schematic structural view of a magnet group according to Embodiment 1 of the present invention.
  • FIG. 7 is a magnetic suspension load variation curve of a high-precision magnetic suspension active damping device according to Embodiment 1 of the present invention with a suspension height of from -1.5 to 0 mm;
  • Embodiment 8 is a suspension stiffness curve of a high-precision magnetic suspension active damper device according to Embodiment 1 of the present invention.
  • Embodiment 9 is a suspension of a high-precision magnetic suspension active damping device provided by Embodiment 1 of the present invention. Vibration frequency change curve;
  • Figure 10 is a schematic structural view of a magnetic levitation damper according to Embodiment 2 of the present invention.
  • Figure 11 is a schematic structural view of a magnetic levitation damper according to Embodiment 3 of the present invention.
  • FIGS. 12 and 13 are schematic views showing the structure of a magnetic levitation damper according to a fourth embodiment of the present invention. detailed description
  • the Halbeck magnetic array of the present invention can be applied to various high-precision magnetic levitation damping devices. Taking a lithography machine as an example, please refer to FIG. 2, which provides a high-precision magnetic levitation using a Halbec magnetic array.
  • An active damper device for dampering the workpiece table comprising a magnetic levitation damper, a damper frame, a measuring module, an execution module and a controller system, wherein the workpiece table is located
  • the shock absorbing frame is supported and suspended by the magnetic damper, and the magnetic damper comprises at least two layers of Halbach magnetic array, and through the two layers
  • the Halbach magnetic array realizes support and suspension damping of the shock absorbing frame, and both the measuring module and the execution module are fixedly connected with the shock absorbing frame, and the controller system is respectively executed with the measuring module and Module connection.
  • This embodiment proposes a high-precision magnetic levitation active damping device based on a planar Halbach magnetic array. Since Halbach's single-sided magnetic density is a multiple of a conventional NS array, in the case of equal magnetic energy product. Achieve greater load capacity, and maximize the single-sided magnetic field characteristics to utilize the magnetic energy product, while effectively reducing the interference problem of the magnetic field leakage of the NS array.
  • the invention also uses the measurement module, the execution module and the controller module to form a three-loop control, and realizes dynamic compensation for the damping frame.
  • the controller system collects information of the measurement module, and controls the execution module to implement dynamic compensation of the position of the damping frame according to the collected information.
  • the measuring module includes a position sensor and an acceleration sensor, both of which are fixedly connected to the damper frame for detecting a horizontal direction, a vertical position and a motion acceleration of corresponding position points on the damper frame.
  • the execution module includes a horizontal direction voice coil motor and a vertical voice coil motor for respectively realizing dynamic compensation of the damping frame horizontally to three degrees of freedom and three degrees of vertical position.
  • the high-precision magnetic levitation active damper device includes a damper frame, and is supported and damped by four sets of magnetic levitation dampers (at least three sets), and the damper frame is provided for compatibility and Supporting the interface of the lithography machine workpiece table, the workpiece table is mounted above the damper frame;
  • the shock absorbing device further includes:
  • Each magnetic damper is equipped with a position sensor and an acceleration sensor for measuring the horizontal and vertical position and acceleration of the installation position point;
  • Actuator module Each set of maglev dampers is equipped with a horizontal voice coil motor and a vertical voice coil motor for respectively compensating the horizontal three-degree-of-freedom and vertical three-degree-of-freedom of the damper frame;
  • System Includes control board, control chassis, power amplifier, measurement conditioning board, interface wiring, etc.
  • the magnetic flux loop will cause different magnetic flux density and uniformity according to the planar spatial structure of the upper and lower Haleck's magnetic arrays
  • magnetic field analysis of the shock absorbers of different structures is first performed, and the magnetic energy product of the magnetic array is considered.
  • the characteristics, magnetic gap (suspension height), load, damping stiffness, resonance frequency, flux area and size constraints determine the structure and size parameters of the magnetic damper.
  • the edge magnetic field problem of the magnetic levitation damper should be considered in structural design and magnetic circuit analysis.
  • the damping device of the invention adopts three-loop control:
  • Position loop the relative position change amount on each maglev damper is measured by a plurality of position sensors, and the physical axis position is converted into a logical axis position through the sensor matrix, and then passed through the actuator after being conditioned by the controller system.
  • the matrix is transformed into a force output current signal on each physical actuator, and the current signal is dynamically compensated by the D/A conversion and the PA power amplifier input to the horizontal voice coil motor and the vertical voice coil motor.
  • the acceleration signal on the shock absorbing frame is measured by a plurality of acceleration sensors, converted into acceleration on the logic axis by shaping conditioning filtering and A/D conversion, and added to the controller through the controller compensator In the position loop.
  • the two-layer Halbeke magnetic array is a first layer planar magnetic array structure 502 and a second layer planar magnetic array structure 503, respectively, the first layer planar magnetic array structure 502 and the shock absorbing frame.
  • the second layer planar magnetic array structure 503 Fixedly connected, the second layer planar magnetic array structure 503 is fixedly coupled to a ground or stator portion (which may be part of a foundation support, or other support member), the first layer planar magnetic array structure 502 and the second
  • the layer plane magnetic array structure 503 achieves support and suspension damping of the shock absorbing frame by magnetic repulsion or magnetic attraction between the two.
  • the first layer planar magnetic array structure 502 and the second layer planar magnetic array structure 503 are fixedly connected to the damper frame and the ground or stator portion through two back irons 501 and 504, respectively.
  • the first layer planar magnetic array structure 502 and the second layer planar magnetic array structure 503 are both disposed parallel to the plane of the shock absorbing frame. Usually, the plane is the horizontal plane.
  • the back iron 501 is laminated upward in the third direction in the first layer planar magnetic array structure 502, and the back iron 504 is laminated downward in the third direction in the second layer planar magnetic array structure 503.
  • the back irons 501 and 504 are characterized by a thickness dimension of between 2 mm and 20 mm and are composed of a highly magnetically permeable material.
  • the first layer planar magnetic array structure 502 and the second layer planar magnetic array structure 503 are each formed by alternately arranging the first magnetic unit and the second magnetic unit in the second direction.
  • the first magnetic unit is formed by alternately arranging the magnet group and the magnetic column in a first direction
  • the second magnetic unit is formed by alternately arranging the magnetic column and the magnet group in a first direction
  • the first magnetic unit is
  • the magnet group and the magnetic column are respectively connected to the magnetic column and the magnet group in the second magnetic unit in a second direction, and the magnet group matches the size of the magnetic column, the first direction and the first
  • the two directions are perpendicular to each other and are located on a horizontal plane, and the magnet group is formed by closely arranging four magnetic strips of the same size in a 2*2 array form.
  • the end face of the magnetic strip is square, and the angle between the diagonal of the body and the horizontal plane ranges from 30 to 60 degrees.
  • the first layer planar magnetic array structure 502 and the second layer planar magnetic array structure 503 adopt a Haarbeek magnetic array topology, and each layer of the magnetic steel array is composed of a magnetic unit in the first direction and The second direction is extended.
  • the first direction can be defined as the horizontal X direction
  • the second direction can be defined as the horizontal Y direction
  • the third direction is defined as the vertical Z direction, which is the vertical direction.
  • the first layer planar magnetic array structure 502 and the second layer planar magnetic array structure 503 in this embodiment employ a reverse magnetic distribution array.
  • the magnet group 505 and the magnetic column 506 are alternately arranged in the X direction, and the magnet group 505 ( 2 ) and the magnet in the figure
  • the group 505 ( 1 ) is the same magnet group
  • the magnetic column 506 ( 1 ) and the magnetic column 506 ( 2 ) are the same magnetic column.
  • the magnet group 505 and the magnetic column 506 which are alternately arranged are not limited to two. It can be understood that the arrangement can continue alternately along the X-axis direction to form the first magnetic unit.
  • the magnetic column 510 and the magnet group 511 are alternately arranged in the X direction, and the magnet group 511 ( 2 ) in the figure is the same magnet as the magnet group 511 ( 1 ).
  • the magnetic column 510 ( 1 ) and the magnetic column 510 ( 2 ) are the same magnetic column.
  • the magnet group 511 and the magnetic column 510 which are alternately arranged in the specific embodiment may not be limited to two, and may be understood as being along the X-axis direction. The arrangement continues to be alternated to form a second magnetic unit.
  • the magnet group 511 in the second magnetic unit corresponds to the magnetic column 506 in the Y direction
  • the magnetic column 510 in the second magnetic unit corresponds to the magnet group 505 in the Y direction.
  • the magnetic unit and the second magnetic unit are alternately arranged in the Y direction to form a first layer planar magnetic array structure.
  • the first magnetic unit and the magnetic post 508 and the magnet group 507 therein correspond to the first magnetic unit in the first layer planar magnetic array structure 502
  • the second magnetic unit and The magnetic column 509 and magnet set 512 also correspond to the second magnetic unit in the first layer planar magnetic array structure 502.
  • the first layer planar magnetic array structure is taken as an example, and the magnetization directions of the magnetic columns in the first magnetic unit and the second magnetic unit are vertical.
  • the downward setting that is, the magnetization direction of the magnetic column 601 (ie, 506 in FIG. 3) in the figure is vertically downward, and the magnetization direction of the magnetic strip in the first magnetic unit is along the body.
  • the diagonal surface is disposed obliquely downward, that is, the magnetic strips in the magnet group 600 (ie, 505 in FIG. 3) are disposed obliquely downward along the diagonal surface of the body.
  • the direction components of the magnetization directions of the four magnetic strips in the same magnet group on the horizontal plane are respectively directed to four different directions, and since the magnetization direction of the magnetic strip is set along the diagonal plane of the body,
  • the directional component on the horizontal plane must be the diagonal direction along the end face.
  • Four directions can be obtained from the two diagonal lines of the end face, and the directional components of the four magnetic strips in the same magnet group in the horizontal plane point to the four direction. It is only necessary to satisfy this condition that it conforms to the spirit and content of the patent, and the specific distribution of the four directions does not need to be specially set.
  • the distribution pattern shown in Fig. 4 or Fig. 5 is only one of them.
  • the magnetization directions of the magnetic columns and the magnetic strips in the first layer planar magnetic array structure and the magnetization directions of the magnetic columns and magnetic strips in the corresponding positions in the second layer planar magnetic array structure, respectively Similarly, a magnetic repulsion can be generated between the two planar magnetic array structures.
  • the first magnetic unit and the second magnetic unit are along the first direction.
  • the length of the period is ⁇
  • the width of the first magnet group 600 of the first magnetic unit is / 8 to / 4 .
  • the width of the second magnetic column 601 of the first magnetic unit is / 4 to /S; the width of the first magnet group 603 of the second magnetic unit is / 8 to / 4 , the first magnetic unit The width of the second magnetic column 602 is
  • the cross-sectional shape of the magnetic column is a square, but the present invention is not limited thereto, and the cross-sectional shape of each magnetic column may also be a rectangle or a circle. In this case, the cross-sectional shape of the magnetic column is a rectangle.
  • the magnetic density parameter is 1.24T
  • the first magnetic unit and the second magnetic unit are along the first
  • the period length ⁇ of the direction is 40 mm
  • the first magnet groups 600 and 603 and the second magnetic columns 601 and 602 are given by ⁇ .
  • the simulated data shows that a magnetic field strength far exceeding the magnetic density of a single magnet surface is produced between the first layer planar magnetic array and the second layer planar magnetic array.
  • Figure 7 shows the magnetic levitation load variation curve that can be supported when the levitation height between the first layer planar magnetic array and the second layer planar magnetic array changes from 0 to 1.5 ⁇ m under the condition of setting parameters.
  • the load can achieve a carrying capacity of 8.60 kN to 10.38 kN.
  • the corresponding change in suspension stiffness is given in Figure 8, with an average suspension stiffness of 1.13E6N/m.
  • the corresponding levitation resonance frequency is given by Figure 9.
  • the resonance frequency is stable at 5 ⁇ 6Hz. Provides a lower resonant frequency for the vibration isolation platform.
  • the main difference between this embodiment and the embodiment 1 is as follows: Please refer to FIG. 10, wherein the upper layer is a first layer planar magnetic array structure, the lower layer is a second layer planar magnetic array structure, and the magnetic layer in the first layer planar magnetic array structure a magnetization direction of the column and the magnetic strip respectively corresponding to a position in the second layer planar magnetic array structure
  • the magnetic column and the magnetic strip are opposite in magnetization direction, and the magnetic shock is used to achieve suspension damping.
  • the specific structural arrangement, measurement module, actuator module and controller module of the two-layer planar magnetic array can be obtained by referring to FIG. 2 and similar to Embodiment 1.
  • the magnetic density parameter is 1.24T
  • the first magnetic unit and the second magnetic unit are along the first direction.
  • the length ⁇ is 40 mm
  • the first magnet group and the second magnetic column are all given by / 4 .
  • the simulated data shows that a magnetic field strength far exceeding the magnetic density of a single magnet surface is produced between the first layer planar magnetic array and the second layer planar magnetic array.
  • the embodiment is improved on the basis of the embodiment 1.
  • the first direction first magnetic array 803 is fixed on the outer side of two adjacent edges of the first layer planar magnetic array structure.
  • a first direction second magnetic array 804 and a second direction second magnetic array 802 are disposed outside the edge of the corresponding position of the second layer planar magnetic array structure, and the first direction is A magnetic array 803 and the first direction second magnetic array 804 generate magnetic attraction or magnetic repulsive force only in a first direction
  • the second direction second magnetic array 802 and the second direction first magnetic array 801 are only A magnetic attraction or a magnetic repulsion is generated in the second direction.
  • the structure of the magnetic array ⁇ ij 801-804 and the magnetic array 800 are the same, only the direction of placement is different.
  • the first direction is defined as the X direction
  • the second direction is defined as the Y direction
  • the magnetic attraction or magnetic repulsion force causes the shock absorbing frame to be isolated from the external world in the horizontal direction.
  • the second layer planar magnetic array structure is fixedly connected to the ground or the stator portion through a back iron, and the first direction second magnetic array and the second direction second magnetic array are fixedly disposed on the back iron. on. Further, space can be generated to achieve vibration isolation in the horizontal direction.
  • Example 4 Referring to FIG. 12 and FIG. 13, the first layer planar magnetic array structure 901 and the second layer planar magnetic array structure 902 are both disposed obliquely with respect to the plane of the damper frame.
  • the first layer planar magnetic array structure is mounted on the damper frame, and the first layer planar magnetic array structure comprises 901 (1), 901 (2), 901 (3), 901 (4).
  • the second layer planar magnetic array structure is mounted on a stator or a foundation, and the second layer planar magnetic array structure includes 902 (1), 902 (2), 902 (3), 902 (4).
  • This embodiment can be considered as an improvement according to the embodiment 1.
  • the two-layer planar magnetic array structure is disposed in parallel with the damper frame, and can be regarded as being disposed along a horizontal plane, and the embodiment is It can be considered that the two-layer planar magnetic array structure in Embodiment 1 is obliquely disposed, and is tilted and then fixedly connected to the damper frame and the stator or the ground, respectively.
  • the high-precision magnetic levitation active damper device in this embodiment can also be approximated with reference to FIG. 2, the difference is only that the magnetic levitation damper is different from the other components, and the internal structure of the magnetic levitation damper can also be implemented by reference. Examples 1 to 3 were obtained.
  • each set of magnetic levitation dampers are placed obliquely on the four corners of the damper frame.
  • Each set of maglev absorbers has an angle of less than 90 degrees with respect to the X direction
  • each set of shock absorbers has an angle of less than 90 degrees with respect to the Y direction.
  • the floating force Fz generated by the upper and lower planar magnetic array structures is orthogonal to the upper surface of the first planar magnetic array structure 901, and the direction of the floating force Fz has an angle of less than 90 degrees with the X direction.
  • the direction of the levitation force Fz has an angle of less than 90 degrees with the Y direction, and the direction of the levitation force Fz has an angle of less than 90 degrees with the Z direction.
  • the present invention proposes a shock absorbing structure constructed by a double-layer magnetic array, and each layer can be constructed by using a magnetic susceptibility suspension damping structure, and each layer can also adopt a reverse magnetic distribution.
  • the array builds a magnetic repulsion suspension damping architecture.
  • the invention proposes to construct a horizontal auxiliary isolation device using a magnetic force array or a magnetic repulsion array.
  • the invention adopts the voice coil motor as the open-loop feedforward driving mechanism of the precision compensation control of the shock absorbing frame, can accurately compensate the position of the shock absorbing frame, and can also realize the centroid position drift compensation caused by the movement of the workpiece table mask table inside the lithography machine. .
  • the invention also adopts an acceleration sensor, a speed sensor and a position sensor as a measuring device for precise control compensation of the damper platform of the lithography machine to realize the stiffness and damping compensation of each degree of freedom.
  • This embodiment proposes a high-precision magnetic suspension active damping device based on a planar Halbach magnetic array, which also has the following advantages:
  • the voice coil motor precisely compensates the position of the shock absorbing frame, and can also realize the centroid position drift compensation caused by the movement of the workpiece table mask table inside the lithography machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

一种哈尔贝克(Halbach)磁阵列,包括沿所述哈尔贝克磁阵列的一宽度方向交替排布的第一磁单元与第二磁单元,其中:每个第一磁单元包括沿所述哈尔贝克磁阵列的一长度方向交替排布的第一磁铁组与第一磁柱,每个第一磁铁组包括排列成2*2阵列的四个第一磁条;每个第二磁单元包括沿所述长度方向交替排布的第二磁柱与第二磁铁组,每个第二磁铁组包括排列成2*2阵列的四个第二磁条;每个所述第一磁柱的充磁方向为沿所述哈尔贝克磁阵列的一高度方向,每个所述第二磁柱的充磁方向为沿所述高度方向的一反方向。本申请还具有一种磁浮减震器,该减震器由所述哈尔贝克(Halbach)磁阵列沿高度方向堆叠以在高度方向上产生磁力,通过磁吸力或磁斥力发挥减震作用。由于哈尔贝克磁阵列的单边磁密为传统NS阵列的√2倍,在等磁能积情况下实现更大的负载能力,并且单边磁场特性最大化利用磁能积,同时有效减小了NS阵列的磁场泄露的干扰问题。

Description

哈尔贝克磁阵列及采用其的磁悬浮减震设备 技术领域
本发明涉及半导体制造领域, 尤其涉及一种光刻机用的高精密磁悬浮主 动减震设备。 背景技术
光刻机主要由光源 (目前主流光刻机釆用波长 193nm 的 ArF 深紫外 ( DUV )准分子激光)、 光学照明系统、 投影镜头、 承载掩模的掩模台、 承载 硅晶片的工件台、 减震设备等构成。 其要求许多重要部件如测量系统、 曝光 系统、 零位传感器、 对准传感器、 光强能量传感器等设备的振动干扰尽可能 小, 使得重要的模块处于 "安静" 环境中。 由于振动的干扰会传递给测量框 架, 使得测量框架产生不必要的运动, 进而干扰工件台掩模台的测量系统, 最终影响工件台掩模台和镜面误差, 导致套刻误差和特征线宽误差加大, 因 此, 减震器是保证实现集成电路制造性能的关键设备之一, 通常釆用减震装 置将光刻机内部重要部件与基础框架等其他结构的外部世界独立开来形成独 立的内部世界。
光刻机减震装置早期釆用橡胶阻尼减震, 80年代初随着空气弹簧减震理 论的成熟, 光刻机减震装置开始釆用基于空气弹簧的被动减震技术。 当前主 流光刻机减震装置以基于空气弹簧的主动减震方式为主, 主要釆用有源控制 器的主动控制策略, 通过速度传感器(Geophones传感器)实现速度测量进行 阻尼反馈补偿, 通过位置传感器测量隔振平台的实时位置, 利用音圈电机实 现高带宽响应补偿, 从而实现隔振平台的精密定位补偿能力。 承载隔振平台 的重力补偿部分, 则釆用气动控制阀实时补偿气嚢中压缩空气的气压, 从而 实现减震器的大负载承载能力和有效的气动隔振减震。
光刻机设备内部减震器典型布局方式常釆用三组减震器, 每组减震器上 配置一个垂向补偿电机和一个水平向补偿电机, 同时配置一个垂向测量传感 器和水平向测量传感器, 从而实现隔振平台 6自由度的减震隔振和位置悬浮 定位。
减震器的研究目标即实现高承载力、 低刚度、 低共振频率、 高衰减率, 从而实现较低的振动传递率, 使得外部扰动对内部世界的影响最小化。 但随 着光刻机分辨率的不断提高, 对光刻机的特征线宽指标要求也在不断提升 , 随着光刻机产率的增加, 光刻机设备内部的工件台和掩模台的运动速度、 加 速度不断增大, 光刻机内部各模块系统越来越复杂, 整机重量从 2 P屯〜 14吨不 等, TFT光刻机甚至达到了 40吨, 因此, 光刻机对 "安静" 环境的减震性能 要求更加苛刻。 为此针对减震装置必须实现大负载承载能力, 同时业内还提 出了 "负刚度,, 技术概念, 国外一些研究者基于磁浮轴承技术提出了一些新 型减震方案。
2003年, 德国 IDE ( Integrated Dynamics Engineering )公司提出一种具有 负刚度的磁浮减震装置专利申请(美国专利号为 US7290642 ), 该专利首次提 出采用三个永磁磁极 , 相邻两个磁极之间采用磁吸力悬浮方式实现减震台的 汉向刚度设计的减震装置, 如图 1所示。
2009年荷兰埃因霍芬大学 (TU/e ) 的 Lomonova教授提出一种基于永磁 阵列悬浮的被动减震装置。 该装置采用汉层磁阵列结构, 每层磁路结构均采 用二维 NS磁阵列拓朴结构。 其中, 上面两层磁铁阵列利用磁吸力悬浮方式对 减震平台框架实现向上拉升的力量, 下面两层磁铁阵列利用磁斥力悬浮方式 对减震平台框架实现向上抬升的力量。 该悬浮装置能够实现数千公斤的负载 重力补偿, 垂向负载的弹簧刚度达到几十牛顿每毫米, 进而实现较低的共振 频率。
这种被动磁浮减震装置与传统气浮减震装置技术无疑有巨大的进步, 但 它在永磁体的等磁能积条件下的磁悬浮有效利用仍然存在不足, 并且存在较 大的磁泄露, 对光刻机应用环境产生诸多不利影响。 发明内容
本发明要解决的技术问题是提供一种在等磁能积情况下实现更大的负载 能力, 并且单边磁场特性最大化利用磁能积的高精密磁悬浮主动减震设备。
为了解决这一技术问题, 本发明提供了一种哈尔贝克磁阵列, 包括沿所 述哈尔贝克磁阵列的一宽度方向交替排布的第一磁单元与第二磁单元, 其中: 每个第一磁单元包括沿所述哈尔贝克磁阵列的一长度方向交替排布的第一磁 铁组与第一磁柱 , 每个第一磁铁组包括四个第一磁条排列成 2*2阵列;每个第 二磁单元包括沿所述长度方向交替排布的第二磁柱与第二磁铁组, 每个第二 磁铁组包括四个第二磁条排列成 2*2阵列; 每个所述第一磁柱的充磁方向为 沿所述哈尔贝克磁阵列的一高度方向, 每个所述第二磁柱的充磁方向为沿所 述高度方向的一反方向。
所述第一和第二磁铁组中的每个磁条的充磁方向为沿体对角线, 同一磁 铁组中的四个磁条的充磁方向在所述高度方向上的分量方向一致, 且在由所 述宽度和长度方向构成的平面内的分量方向各不相同。
每个所述第一磁铁组中的四个磁条的充磁方向与每个所述第二磁铁组中 的四个磁条的充磁方向相反。
每个第一磁条的充磁方向与所述宽度和长度方向构成的平面的夹角范围 为 30至 60度; 每个第二磁条的充磁方向与所述宽度和长度方向构成的平面 的夹角范围为 30至 60度。
每个所述第一磁柱与第二磁柱的截面形状为矩形、 圆形等规则形状。 本发明还提供了一种磁浮减震器, 包括一对如上所述的哈尔贝克磁阵列 沿高度方向堆叠以在高度方向上产生磁力, 其中, 所述一对哈尔贝克磁阵列 中的一第一阵列的各所述磁柱与所述一对哈尔贝克磁阵列中的一第二阵列的 各所述磁柱对齐。
所述第一阵列中的磁柱的充磁方向与所述第二阵列中对应位置的磁柱的 充磁方向相同。
所述第一阵列中的磁柱的充磁方向与所述第二阵列中对应位置的磁柱的 充磁方向相反。
所述的磁浮减震器还包括: 第二对如前所述的哈尔贝克磁阵列固定设置 于所述一对哈尔贝克磁阵列的一侧以在所述一对哈尔贝克磁阵列的长度方向 上产生磁力; 以及第三对如前所述的哈尔贝克磁阵列固定设置于所述一对哈 尔贝克磁阵列的另一侧以在所述一对哈尔贝克磁阵列的宽度方向上产生磁 力。
所述磁力为磁吸力或磁斥力。
本发明提出一种基于平面哈尔贝克(Halbach )磁阵列的高精密磁悬浮主 动减震设备,由于哈尔贝克(Halbach )磁阵列的单边磁密为传统 NS阵列的 倍, 在等磁能积情况下实现更大的负载能力, 并且单边磁场特性最大化利用 磁能积, 同时有效减小了 NS阵列的磁场泄露的干扰问题。 附图说明
图 1是现有技术提供的减震设备的结构示意图;
图 2是本发明提供的高精密磁悬浮主动减震设备的结构示意图; 图 3是本发明实施例 1提供的磁浮减震器的结构示意图;
图 4是本发明实施例 1提供的磁浮减震器的另一结构示意图;
图 5是图 4所示的磁浮减震器的另一结构示意图;
图 6是本发明实施例 1提供的磁铁组的结构示意图
图 7是采用本发明实施例 1提供的高精密磁悬浮主动减震设备的悬浮高 度从 -1.5至 0亳米的磁悬浮负载变化曲线;
图 8是采用本发明实施例 1提供的高精密磁悬浮主动减震设备的悬浮刚 度变化曲线;
图 9是采用本发明实施例 1提供的高精密磁悬浮主动减震设备的悬浮共 振频率变化曲线;
图 10是本发明实施例 2提供的磁浮减震器的结构示意图;
图 11是本发明实施例 3提供的磁浮减震器的结构示意图;
图 12和图 13是本发明实施例 4提供的磁浮减震器的结构示意图。 具体实施方式
以下将结合图 2至图 13, 通过 4个实施例对本发明提供的高精密磁悬浮 主动减震设备进行详细的描述, 其均为本发明可选的实施例, 可以认为本领 域的技术人员在不改变本发明精神和内容的范围内能够对其进行修改和润 色。
实施例 1
本发明的哈尔贝克磁阵列可应用于各种高精密磁悬浮减震设备中 , 以光 刻机为例, 请参考图 2, 本实施例提供了一种采用哈尔贝克磁阵列的高精密磁 悬浮主动减震设备, 用以实现工件台的减震, 所述高精密磁悬浮主动减震设 备包括磁浮减震器、 减震框架、 测量模块、 执行模块和控制器系统, 所述工 件台位于所述减震框架上, 所述减震框架通过所述磁浮减震器实现支撑和悬 浮减震, 所述磁浮减震器至少包括两层哈尔贝克 (Halbach )磁阵列, 且通过 所述两层哈尔贝克(Halbach )磁阵列实现所述减震框架的支撑和悬浮减震, 所述测量模块和执行模块均与所述减震框架固定连接, 所述控制器系统分别 与所述测量模块和执行模块连接。
本实施例提出一种基于平面哈尔贝克 (Halbach )磁阵列的高精密磁悬浮 主动减震设备, 由于哈尔贝克( Halbach )的单边磁密为传统 NS阵列的 倍, 在等磁能积情况下实现更大的负载能力, 并且单边磁场特性最大化利用磁能 积, 同时有效减小了 NS阵列的磁场泄露的干扰问题。 此外, 本发明还利用测 量模块、 执行模块和控制器模块形成三环控制, 对减震框架实现了动态的补 偿。 所述控制器系统采集所述测量模块的信息 , 并 4艮据所采集到的信息控制 所述执行模块实现所述减震框架位置的动态补偿。 所述测量模块包括位置传 感器与加速度传感器, 均与所述减震框架固定连接, 用以检测所述减震框架 上对应位置点的水平向、 垂直向的位置和运动加速度。 所述执行模块包括水 平向音圈电机与垂向音圈电机, 分别用于实现所述减震框架水平向三个自由 度和竖直向三个自由度位置的动态补偿。
具体来说, 在本实施例中所述高精密磁悬浮主动减震设备包括减震框架, 由四套磁浮减震器 (至少可以有 3套) 支撑和减震, 减震框架设有用于兼容 和支持光刻机工件台的接口, 工件台安装在减震框架的上方;
所述减震设备还包括:
测量模块: 每套磁浮减震器配置一个位置传感器和一个加速度传感器, 分别用于测量其安装位置点的水平向和垂向位置、 加速度;
执行器模块: 每套磁浮减震器配置一个水平向音圈电机和一个垂向音圈 电机, 分别用于实现所述减震框架水平向三自由度和垂向三自由度的补偿; 控制器系统: 包括控制板卡、 控制机箱、 功率放大器、 测量调理板卡、 接口连线等。
工作时, 由于磁力线回路会根据上下两层哈尔贝克磁阵列的平面空间结 构不同导致磁通密度及其均匀性不同 , 所以首先对不同结构的减震器进行磁 场解析, 考虑磁阵列的磁能积特性、 磁隙 (悬浮高度)、 负载、 减震刚度、 共 振频率、 磁通面积和尺寸等约束条件, 确定磁浮减震器的结构和尺寸参数。 同时由于在光刻机中对磁泄露要求极高, 所以在进行结构设计和磁路解析时 要考虑磁浮减震器的边沿磁场问题。 隔振负载、 悬浮高度、 减震结构和尺寸 参数确定之后, 下一步建立静态磁斥力方程, 分析磁通、 磁隙、 平面磁阵列 尺寸变化对磁斥力和负载重力的影响, 获得如下磁悬浮减震装置参数和信息:
(1)平面磁阵列的各个关键尺寸参数;
(2)额定负载下, 磁斥力与悬浮高度之间的关系; (3)建立悬浮刚度和负载之间的关系;
(4)建立减震器动刚度与扰动之间的关系。
本发明的减震设备采用三环控制:
(1)位置环, 通过多个位置传感器测得每个磁浮减震器上的相对位置变化 量, 经过传感器矩阵将物理轴位置变换为逻辑轴位置, 再经过控制器系统调 理后再经过执行器矩阵变换为每个物理执行器上的力输出电流信号, 该电流 信号经 D/A变换和 PA功放输入到水平向音圈电机与垂向音圈电机实现位置 的动态补偿。
(2)惯性反馈环路,通过多个加速度传感器测得减震框架上的加速度信号, 通过整形调理滤波和 A/D变换后转换为逻辑轴上的加速度, 在经过控制器补 偿器调理加入到位置环路中。
(3)前馈环路, 由于光刻机中工件台与掩模台的运动反力会影响磁浮减震 器性能, 或工件台掩模台的运动导致减震框架的整体质心发生变化, 需要将 减震框架的运动位置通过前馈的方式由磁浮减震器来进行质心补偿。
请参考图 3 , 所述两层哈尔贝克磁阵列分別为第一层平面磁阵列结构 502 和第二层平面磁阵列结构 503 ,所述第一层平面磁阵列结构 502与所述减震框 架固定连接, 所述第二层平面磁阵列结构 503与地基或者定子部分(可以是 地基支撑的一部分, 或者其他的支撑部件) 固定连接, 所述第一层平面磁阵 列结构 502与所述第二层平面磁阵列结构 503通过两者间的磁斥力或磁吸力 实现所述减震框架的支撑和悬浮减震。 所述第一层平面磁阵列结构 502与所 述第二层平面磁阵列结构 503分别通过两个背铁 501与 504与所述减震框架 和地基或者定子部分固定连接。 第一层平面磁阵列结构 502和第二层平面磁 阵列结构 503均平行于所述减震框架所在平面设置。 通常, 该平面即为水平 面。 所述背铁 501在第一层平面磁阵列结构 502沿着第三方向向上叠层, 所 述背铁 504在第二层平面磁阵列结构 503沿着第三方向向下叠层。 所述背铁 501和 504的厚度尺寸特征在 2mm到 20mm之间, 由高导磁材料组成。 所述第一层平面磁阵列结构 502和所述第二层平面磁阵列结构 503均由 第一磁单元与第二磁单元沿第二方向交替排布形成。 所述第一磁单元由磁铁 组与磁柱沿第一方向交替排布形成 , 所述第二磁单元由磁柱与磁铁组沿第一 方向交替排布形成 , 且所述第一磁单元中的磁铁组与磁柱沿第二方向分别与 所述第二磁单元中的磁柱与磁铁组对应连接设置, 所述磁铁组与所述磁柱的 尺寸相匹配, 所述第一方向与第二方向互相垂直, 且均位于水平面, 所述磁 铁组由四个尺寸相同的磁条呈 2*2阵列形式紧密排布形成。 本实施例中, 磁 条的端面为正方形, 且体对角线与水平面的夹角范围为 30至 60度。
在本实施例中,第一层平面磁阵列结构 502和第二层平面磁阵列结构 503 采用类哈尔贝克磁阵列拓朴结构, 每层磁钢阵列都是由磁单元在第一方向和 第二方向延展形成。 第一方向可以定义为水平 X方向, 第二方向可以定义为 水平 Y方向, 第三方向定义为垂直 Z方向, 此即为竖直方向。 本实施例中的 第一层平面磁阵列结构 502和第二层平面磁阵列结构 503采用反向磁分布阵 列。
具体来说, 请参考图 3 , 在第一层平面磁阵列结构中的第一磁单元中,磁 铁组 505与磁柱 506沿 X向交替排布, 图中的磁铁组 505 ( 2 ) 与磁铁组 505 ( 1 )是相同的磁铁组, 磁柱 506 ( 1 ) 与磁柱 506 ( 2 )是相同的磁柱, 具体 实施例中交替排布的磁铁组 505与磁柱 506不仅限于 2个, 可以理解为沿 X 轴方向可以继续交替排布, 从而形成第一磁单元。 在第一层平面磁阵列结构 中的第二磁单元中 , 磁柱 510与磁铁组 511沿 X向交替排布 , 图中的磁铁组 511 ( 2 )与磁铁组 511 ( 1 )是相同的磁铁组, 磁柱 510 ( 1 ) 与磁柱 510 ( 2 ) 是相同的磁柱 , 具体实施例中交替排布的磁铁组 511与磁柱 510可以不仅限 于 2个, 可以理解为沿 X轴方向可以继续交替排布, 从而形成第二磁单元, 第二磁单元中的磁铁组 511沿 Y向与磁柱 506对应 ,第二磁单元中的磁柱 510 沿 Y向与磁铁组 505对应.第一磁单元与第二磁单元沿 Y向交替排布,从而形 成第一层平面磁阵列结构。 在第二层平面磁阵列结构 503中 , 第一磁单元以及其中的磁柱 508和磁 铁组 507与第一层平面磁阵列结构 502中的第一磁单元——对应 , 第二磁单 元以及其中的磁柱 509和磁铁组 512也与第一层平面磁阵列结构 502中的第 二磁单元 对应。
在本实施例中, 请参考图 4, 并结合图 3 , 现仅举第一层平面磁阵列结构 为例, 所述第一磁单元和第二磁单元中的磁柱的充磁方向竖直向下设置, 即 图中的磁柱 601 (亦即图 3中的 506 ) 的充磁方向均是竖直向下设置的, 所述 第一磁单元中的磁条的充磁方向均沿体对角面斜向下设置, 即图中的磁铁组 600 (亦即图 3中的 505 ) 中的磁条均沿体对角面斜向下设置, 具体的情形可 参见图 6的中磁铁组 600,图 4和图 5中仅标示了磁铁组中磁条的充磁方向在 水平面的分量 , 所述第二磁单元中的磁柱与磁条的充磁方向分别与所述第一 磁单元中的磁柱与磁条的充磁方向相反, 即图 4中的磁柱 602与磁柱 601的 充磁方向相反, 磁铁组 603中的磁条的充磁方向与磁铁组 600中的磁条的充 磁方向相反, 其具体的方向也可参见图 6的中磁铁组 600与 603的对比情形。
请参考图 6 ,同一磁铁组内的四个磁条的充磁方向在水平面上的方向分量 分别指向四个不同的方向, 由于磁条的充磁方向是沿体对角面设置的, 所以 其在水平面上的方向分量必然是沿端面的对角线方向, 由端面的两条对角线 即可得到四种方向, 同一磁铁组内的四个磁条在水平面的方向分量分别指向 这四个方向。 只需满足这一条件即可认为其符合本专利的精神和内容, 而四 种方向的具体分布是不需要特别设置的, 如图 4或图 5所示的分布方式仅是 其中的一种。
在本实施例中 , 所述第一层平面磁阵列结构中的磁柱和磁条的充磁方向 分别与所述第二层平面磁阵列结构中对应位置的磁柱和磁条的充磁方向相 同, 故而两层平面磁阵列结构之间能够产生磁斥力。
请参考图 4, 本实施例中, 所述的第一磁单元和第二磁单元沿着第一方向 的周期长度为 λ , 所述的第一磁单元的第一磁铁组 600宽度为 /8 至 /4 , 所
Λ/ 3Λ/
述的第一磁单元的第二磁柱 601的宽度为 /4至 /S ; 所述的第二磁单元的第 一磁铁组 603宽度为 /8至 /4 , 所述的第一磁单元的第二磁柱 602的宽度为
/4
Figure imgf000012_0001
, 且磁柱的截面形 状为正方形, 然而本发明不局限于此, 各磁柱的截面形状也可以为矩形或圆 形
Figure imgf000012_0002
况, 此时 , 磁柱的截面形状为矩形。
实施图 4所示实施例中的高精密磁悬浮主动减震设备时, 经仿真计算可 以得到如下的参数: 磁密参数为 1.24T, 所述的第一磁单元和第二磁单元沿着 第一方向的周期长度 λ为 40mm,第一磁铁组 600和 603、第二磁柱 601和 602 均按照 ^给定。 仿真得到的数据表明在第一层平面磁阵列和第二层平面磁阵 列之间产生了远超过单个磁体表面磁密的磁场强度。
图 7给出了在设定参数条件下第一层平面磁阵列和第二层平面磁阵列之 间的悬浮高度从 0至 1.5亳米变化时可支持的磁悬浮负载变化曲线,该参数条 件下的负载可实现 8.60千牛至 10.38千牛的承载能力。 对应的悬浮刚度变化 由图 8给出, 平均悬浮刚度为 1.13E6N/m。 对应的悬浮共振频率由图 9给出, 承载的负载从 8.6KN至 10.3KN变化时 ,共振频率稳定在 5〜6Hz。 为隔振平台 提供了一个较低的共振频率。 实施例 2
本实施例与实施例 1的主要区别在于: 请参考图 10, 其中上层为第一层 平面磁阵列结构, 下层为第二层平面磁阵列结构, 所述第一层平面磁阵列结 构中的磁柱和磁条的充磁方向分别与所述第二层平面磁阵列结构中对应位置 的磁柱和磁条的充磁方向相反, 利用磁吸力实现悬浮减震。 而两层平面磁阵 列的具体结构设置、 测量模块、 执行器模块和控制器模块均可参考图 2得到, 且与实施例 1类似。
实施本实施例中的高精密磁悬浮主动减震设备时, 经仿真计算可以得到 如下的参数: 磁密参数为 1.24T, 所述的第一磁单元和第二磁单元沿着第一方 向的周期长度 λ为 40mm, 第一磁铁组、 第二磁柱均按照 /4给定。 仿真得到 的数据表明在第一层平面磁阵列和第二层平面磁阵列之间产生了远超过单个 磁体表面磁密的磁场强度。 实施例 3
本实施例在实施例 1的基础上做了改进, 具体来说, 参考图 11 , 所述第 一层平面磁阵列结构的两个相邻的边缘外侧固定设有第一方向第一磁阵列 803和第二方向第一磁阵列 801 , 所述第二层平面磁阵列结构对应位置的边缘 外侧设有第一方向第二磁阵列 804和第二方向第二磁阵列 802,所述第一方向 第一磁阵列 803与所述第一方向第二磁阵列 804仅沿第一方向上产生磁吸力 或磁斥力, 所述第二方向第二磁阵列 802与所述第二方向第一磁阵列 801仅 沿第二方向上产生磁吸力或磁斥力。其中,磁阵歹 ij 801-804和磁阵列 800的结 构是相同的,仅仅是放置的方向不同而已。 本实施例中第一方向定义为 X向, 第二方向定义为 Y向, 该磁吸力或磁斥力使得减震框架与外部世界实现水平 方向的振动隔离。
在本实施例中, 所述第二层平面磁阵列结构通过一个背铁与地基或者定 子部分固定连接, 所述第一方向第二磁阵列和第二方向第二磁阵列固定设在 在背铁上。 进而能够产生空间, 实现水平方向的振动隔离。 实施例 4 请参考图 12和图 13 ,第一层平面磁阵列结构 901和第二层平面磁阵列结 构 902均相对于所述减震框架所在平面倾斜设置。 所述第一层平面磁阵列结 构安装于所述减震框架上, 所述的第一层平面磁阵列结构包括 901 ( 1 )、 901 ( 2 )、 901 ( 3 )、 901 ( 4 )。 所述第二层平面磁阵列结构安装于定子或地基上, 所述的第二层平面磁阵列结构包括 902 ( 1 )、 902 ( 2 )、 902 ( 3 )、 902 ( 4 )。 本实施例可以认为其是依据实施例 1做出的改进, 在实施例 1中, 两层平面 磁阵列结构与所述减震框架平行设置, 可视作均为沿水平面设置, 而本实施 例可以认为是将实施例 1中的两层平面磁阵列结构倾斜设置, 使之倾斜后再 分别与减震框架与定子或地基固定连接。 本实施例中的高精密磁悬浮主动减 震设备亦可参照图 2而近似得到, 其差别仅仅是磁浮减震器与其他部件的连 接方式存在区别, 其磁浮减震器的内部结构亦可参照实施例 1至 3得到。
请参考图 13 , X向、 Y向位于水平面, 亦即实施例 1中的第一方向和第 二方向, Z向为竖直方向。 本实施例中, 每组磁浮减震器呈斜向放置于减震框 架的 4个角上。每组磁浮减震器与 X方向有一小于 90度的夹角, 每组减震减 震器与 Y方向有一小于 90度的夹角。上下两层平面磁阵列结构产生的悬浮力 Fz与第一层平面磁阵列结构 901的上表面相互正交,所述的悬浮力 Fz的方向 与 X方向有一小于 90度的夹角 , 所述的悬浮力 Fz的方向与 Y方向有一小于 90度的夹角 , 所述的悬浮力 Fz的方向与 Z方向有一小于 90度的夹角。
综上所述, 在诸实施例中, 本发明提出双层磁阵列构建的减震结构, 每 层可以采用同向磁分布阵列构建磁吸力悬浮减震架构, 每层还可以采用反向 磁分布阵列构建磁斥力悬浮减震架构。 本发明提出采用磁吸力阵列或磁斥力 阵列构建水平辅助隔离装置。 本发明采用音圈电机作为减震框架的精密补偿 控制的开环前馈驱动机构, 可以精密补偿减震框架的位置, 还可以实现光刻 机内部工件台掩模台运动引起的质心位置漂移补偿。 本发明还采用加速度传 感器、 速度传感器、 位置传感器作为光刻机减震平台精密控制补偿的测量装 置来实现各个自由度的刚度、 阻尼补偿。 本实施例提出一种基于平面哈尔贝克 (Halbach)磁阵列的高精密磁悬浮 主动减震设备, 还具有如下的好处:
(1) 小体积、 大负载, 满足纳米精度的光刻机设备大负载、 低刚度和高 精度定位的需求;
(2)巧妙利用哈尔贝克(Halbach)磁阵列的单边磁密为传统 NS阵列的 倍的优势, 在等磁能积情况下实现更大的负载能力;
(3)单边磁场特性最大化利用磁能积, 同时有效减小磁场泄露的干扰;
(4)音圈电机作为开环前馈驱动机构精密补偿减震框架的位置, 还可以 实现光刻机内部工件台掩模台运动引起的质心位置漂移补偿。

Claims

权利要求
1、 一种哈尔贝克磁阵列, 包括沿所述哈尔贝克磁阵列的一宽度方向交替 排布的第一磁单元与第二磁单元, 其中:
每个第一磁单元包括沿所述哈尔贝克磁阵列的一长度方向交替排布的第 一磁铁组与第一磁柱 , 每个第一磁铁组包括排列成 2*2阵列的四个第一磁条; 每个第二磁单元包括沿所述长度方向交替排布的第二磁柱与第二磁铁 组 , 每个第二磁铁组包括排列成 2*2阵列的四个第二磁条;
每个所述第一磁柱的充磁方向为沿所述哈尔贝克磁阵列的一高度方向, 每个所述第二磁柱的充磁方向为沿所述高度方向的一反方向。
2、 如权利要求 1所述的哈尔贝克磁阵列, 其特征在于: 所述第一和第二 磁铁组中的每个磁条的充磁方向为沿体对角线, 同一磁铁组中的四个磁条的 充磁方向在所述高度方向上的分量方向一致, 且在由所述宽度和长度方向构 成的平面内的分量方向各不相同。
3、 如权利要求 2所述的哈尔贝克磁阵列, 其特征在于: 每个所述第一磁 铁组中的四个磁条的充磁方向与每个所述第二磁铁组中的四个磁条的充磁方 向相反。
4、 如权利要求 3所述的哈尔贝克磁阵列, 其特征在于: 每个第一磁条的 充磁方向与所述宽度和长度方向构成的平面的夹角范围为 30至 60度; 每个 第二磁条的充磁方向与所述宽度和长度方向构成的平面的夹角范围为 30至 60 度。
5、 如权利要求 1所述的哈尔贝克磁阵列, 其特征在于, 每个所述第一磁 柱与第二磁柱的截面形状为矩形、 圆形等规则形状。
6、 一种磁浮减震器, 包括一对如权利要求 1-5中任一项所述的哈尔贝克 磁阵列沿高度方向堆叠以在高度方向上产生磁力, 其中, 所述一对哈尔贝克 磁阵列中的一第一阵列的各所述磁柱与所述一对哈尔贝克磁阵列中的一第二 阵列的各所述磁柱对齐。
7、 如权利要求 6所述的磁浮减震器, 其特征在于: 所述第一阵列中的磁 柱的充磁方向与所述第二阵列中对应位置的磁柱的充磁方向相同。
8、 如权利要求 6所述的磁浮减震器, 其特征在于: 所述第一阵列中的磁 柱的充磁方向与所述第二阵列中对应位置的磁柱的充磁方向相反。
9、 如权利要求 6所述的磁浮减震器, 其特征在于, 还包括:
第二对如权利要求 1-5中任一项所述的哈尔贝克磁阵列固定设置于所述 一对哈尔贝克磁阵列的一侧以在所述一对哈尔贝克磁阵列的长度方向上产生 磁力; 以及
第三对如权利要求 1-5中任一项所述的哈尔贝克磁阵列固定设置于所述 一对哈尔贝克磁阵列的另一侧以在所述一对哈尔贝克磁阵列的宽度方向上产 生磁力。
10、 如权利要求 9所述的磁浮减震器, 其特征在于, 所述磁力为磁吸力 或磁斥力。
PCT/CN2014/083777 2013-08-09 2014-08-06 哈尔贝克磁阵列及采用其的磁悬浮减震设备 WO2015018335A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016532226A JP6253778B2 (ja) 2013-08-09 2014-08-06 ハルバッハ配列及び該ハルバッハ配列を採用する磁気浮遊式ダンパー
SG11201600873PA SG11201600873PA (en) 2013-08-09 2014-08-06 Halbach array and magnetic suspension damper using same
US14/910,994 US10170972B2 (en) 2013-08-09 2014-08-06 Halbach array and magnetic suspension damper using same
EP14833907.0A EP3032137B1 (en) 2013-08-09 2014-08-06 Halbach array and magnetic suspension damper using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310347667.4A CN104343885B (zh) 2013-08-09 2013-08-09 高精密磁悬浮主动减震设备
CN201310347667.4 2013-08-09

Publications (1)

Publication Number Publication Date
WO2015018335A1 true WO2015018335A1 (zh) 2015-02-12

Family

ID=52460667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/083777 WO2015018335A1 (zh) 2013-08-09 2014-08-06 哈尔贝克磁阵列及采用其的磁悬浮减震设备

Country Status (7)

Country Link
US (1) US10170972B2 (zh)
EP (1) EP3032137B1 (zh)
JP (1) JP6253778B2 (zh)
CN (1) CN104343885B (zh)
SG (1) SG11201600873PA (zh)
TW (1) TW201522807A (zh)
WO (1) WO2015018335A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101707899B1 (ko) * 2015-08-26 2017-02-28 한국생산기술연구원 할바흐 자석 배열을 이용한 잔류 진동 제어 시스템과 이를 이용한 광학 검사 장치 및 후가공 장치
US20230120544A1 (en) * 2020-12-03 2023-04-20 Lantha Tech Ltd. Methods for generating directional magnetic fields and magnetic apparatuses thereof

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016110667A1 (de) * 2016-06-09 2017-12-14 Eto Magnetic Gmbh Dämpfungsvorrichtung und Verfahren mit einer Dämpfungsvorrichtung
CN107783378B (zh) * 2016-08-30 2019-10-25 上海微电子装备(集团)股份有限公司 一种光刻机垂向微动结构和控制方法
US9942663B1 (en) 2016-12-22 2018-04-10 Apple Inc. Electromagnetic transducer having paired Halbach arrays
CN106953551B (zh) * 2017-05-05 2018-12-11 哈尔滨工业大学 磁悬浮重力补偿器
CN107315425B (zh) * 2017-08-15 2023-12-12 京东方科技集团股份有限公司 质心控制系统以及质心控制方法
CN109581861B (zh) * 2017-09-29 2022-02-15 上海微电子装备(集团)股份有限公司 运动台控制系统、运动台系统与曝光装置
CN108263568B (zh) * 2018-01-23 2019-09-03 金陵科技学院 一种基于调频的自适应磁悬浮减摇装置及减摇控制方法
PL424607A1 (pl) * 2018-02-16 2019-08-26 Politechnika Białostocka Aktywna podpora magnetyczna z magnesami trwałymi w układzie tablic Halbacha
KR101875560B1 (ko) * 2018-05-24 2018-07-06 (주)신호엔지니어링 수배전반용 마그넷 면진장치
CN108732941A (zh) * 2018-05-31 2018-11-02 青岛理工大学 一种多维磁悬浮隔振平台的控制系统及仿真方法
CN109158802B (zh) * 2018-10-16 2021-02-26 宁夏吴忠市好运电焊机有限公司 用于焊接机器人的磁悬浮减震稳定连接器
WO2020110592A1 (ja) * 2018-11-26 2020-06-04 アダマンド並木精密宝石株式会社 運動ユニット
CN109296685A (zh) * 2018-11-29 2019-02-01 美钻深海能源科技研发(上海)有限公司 水下磁悬减震器
CN109765065B (zh) * 2019-03-04 2020-12-15 西南交通大学 一种立式电动悬浮试验台
CN217615844U (zh) * 2019-07-08 2022-10-21 株式会社村田制作所 振动装置
CN110299240A (zh) * 2019-07-09 2019-10-01 北京麦格易来科技有限公司 一种控制磁性材料的磁性的装置
CN110513576B (zh) * 2019-07-11 2021-02-19 南京航空航天大学 一种用于航天的空间六自由度无接触隔振平台
CN113757285B (zh) * 2021-09-08 2022-06-21 重庆大学 负刚度生成机构及准零刚度隔振器
CN113915282B (zh) * 2021-09-27 2022-10-28 华中科技大学 一种紧凑型宽域高线性度磁负刚度机构
CN114151488B (zh) * 2021-11-15 2022-11-22 华中科技大学 一种刚度可调的紧凑型宽域高线性度磁负刚度装置
CN115217892B (zh) * 2022-07-15 2023-09-08 哈尔滨工业大学 大型精密设备气浮隔振与主动阻尼转运装置
CN115217890B (zh) * 2022-07-15 2023-10-31 哈尔滨工业大学 大型精密设备气磁隔振与主动阻尼转运装置
CN115763031B (zh) * 2022-11-02 2023-06-09 哈尔滨工业大学 一种Halbach阵列装码工具

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW550352B (en) * 2002-05-03 2003-09-01 Integrated Dynamics Eng Gmbh Magnetic spring device with negative stiffness
US20110074231A1 (en) * 2009-09-25 2011-03-31 Soderberg Rod F Hybrid and electic vehicles magetic field and electro magnetic field interactice systems
US20110169346A1 (en) * 2010-01-13 2011-07-14 Integrated Dynamics Engineering Gmbh Magnetic Actor and a Method for its Installation
US8009001B1 (en) * 2007-02-26 2011-08-30 The Boeing Company Hyper halbach permanent magnet arrays

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5285995A (en) * 1992-05-14 1994-02-15 Aura Systems, Inc. Optical table active leveling and vibration cancellation system
JP4242961B2 (ja) * 1998-12-28 2009-03-25 株式会社デルタツーリング 磁気バネ
SG107660A1 (en) * 2002-06-13 2004-12-29 Asml Netherlands Bv Lithographic apparatus, device manufacturing method, and device manufactured thereby
CN1219240C (zh) * 2003-11-13 2005-09-14 上海交通大学 集成电路光刻设备的磁悬浮精密工件台
JP4251648B2 (ja) * 2004-01-23 2009-04-08 日立金属株式会社 挿入光源
US20060018075A1 (en) * 2004-07-23 2006-01-26 Data Security, Inc. Permanent magnet bulk degausser
US7541699B2 (en) * 2005-12-27 2009-06-02 Asml Netherlands B.V. Magnet assembly, linear actuator, planar motor and lithographic apparatus
US7830046B2 (en) * 2007-03-16 2010-11-09 Nikon Corporation Damper for a stage assembly
US7800471B2 (en) * 2008-04-04 2010-09-21 Cedar Ridge Research, Llc Field emission system and method
US8130436B2 (en) * 2009-02-17 2012-03-06 Prysm, Inc. Flexure actuator
US8264314B2 (en) * 2009-10-20 2012-09-11 Stream Power, Inc. Magnetic arrays with increased magnetic flux
US8405479B1 (en) * 2009-12-22 2013-03-26 The Boeing Company Three-dimensional magnet structure and associated method
JP5567991B2 (ja) * 2010-11-19 2014-08-06 株式会社東芝 動吸振器
CN103226296B (zh) * 2013-04-27 2015-04-15 清华大学 一种带激光干涉仪测量的粗精动叠层工作台

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW550352B (en) * 2002-05-03 2003-09-01 Integrated Dynamics Eng Gmbh Magnetic spring device with negative stiffness
US7290642B2 (en) 2002-05-03 2007-11-06 Integrated Dynamics Engineering Gmbh Magnetic spring device with negative stiffness
US8009001B1 (en) * 2007-02-26 2011-08-30 The Boeing Company Hyper halbach permanent magnet arrays
US20110074231A1 (en) * 2009-09-25 2011-03-31 Soderberg Rod F Hybrid and electic vehicles magetic field and electro magnetic field interactice systems
US20110169346A1 (en) * 2010-01-13 2011-07-14 Integrated Dynamics Engineering Gmbh Magnetic Actor and a Method for its Installation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3032137A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101707899B1 (ko) * 2015-08-26 2017-02-28 한국생산기술연구원 할바흐 자석 배열을 이용한 잔류 진동 제어 시스템과 이를 이용한 광학 검사 장치 및 후가공 장치
US20230120544A1 (en) * 2020-12-03 2023-04-20 Lantha Tech Ltd. Methods for generating directional magnetic fields and magnetic apparatuses thereof
US11830671B2 (en) * 2020-12-03 2023-11-28 Lantha Tech Ltd. Methods for generating directional magnetic fields and magnetic apparatuses thereof

Also Published As

Publication number Publication date
SG11201600873PA (en) 2016-03-30
US20160197544A1 (en) 2016-07-07
EP3032137B1 (en) 2019-05-15
EP3032137A1 (en) 2016-06-15
CN104343885A (zh) 2015-02-11
CN104343885B (zh) 2016-08-24
TW201522807A (zh) 2015-06-16
EP3032137A4 (en) 2017-04-12
JP6253778B2 (ja) 2017-12-27
TWI563190B (zh) 2016-12-21
US10170972B2 (en) 2019-01-01
JP2016536536A (ja) 2016-11-24

Similar Documents

Publication Publication Date Title
WO2015018335A1 (zh) 哈尔贝克磁阵列及采用其的磁悬浮减震设备
Hoque et al. A six-axis hybrid vibration isolation system using active zero-power control supported by passive weight support mechanism
WO2020108156A1 (zh) 一种多维磁负刚度机构及其构成的多维磁负刚度减振系统
CN101364052B (zh) 主动减振系统及其预见控制方法
CN102200689B (zh) 一种混合磁浮式的重力补偿装置
CN106997155B (zh) 一种低刚度的磁悬浮重力补偿器及微动台结构
CN103226296B (zh) 一种带激光干涉仪测量的粗精动叠层工作台
Hoque et al. A three-axis vibration isolation system using modified zero-power controller with parallel mechanism technique
WO2015021820A1 (zh) 零刚度磁悬浮主动隔振器及其构成的六自由度隔振系统
CN202133856U (zh) 减振平台
CN101477316B (zh) 重力补偿器
CN110429868B (zh) 低刚度的磁悬浮重力补偿器、驱动装置及六自由度微动台
CN103019046B (zh) 一种基于多组独立驱动解耦控制的六自由度磁浮微动台
CN203259773U (zh) 一种设有吸振装置的微动模块
US20170115580A1 (en) Coarse motion and fine motion integrated reticle stage driven by planar motor
CN104847825B (zh) 阵列式磁浮重力补偿器
CN102073219B (zh) 平衡质量系统及其工件台
CN107306099A (zh) 磁悬浮导向装置及其控制方法
US7940150B2 (en) Six-degree-of-freedom precision positioning system
JP4727151B2 (ja) 除振方法およびその装置
JP4421130B2 (ja) 除振方法およびその装置
CN107306098A (zh) 磁悬浮导向装置及其控制系统和控制方法
CN107565853A (zh) 一种定子磁铁交错排列的磁悬浮重力补偿器
KR102265142B1 (ko) 제진 장치
Hoque et al. A 3-DOF modular vibration isolation system using zero-power magnetic suspension with adjustable negative stiffness

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14833907

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016532226

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14910994

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014833907

Country of ref document: EP