WO2023116024A1 - 悬浮隧道管段混凝土防腐蚀材料及防腐蚀方法 - Google Patents

悬浮隧道管段混凝土防腐蚀材料及防腐蚀方法 Download PDF

Info

Publication number
WO2023116024A1
WO2023116024A1 PCT/CN2022/115382 CN2022115382W WO2023116024A1 WO 2023116024 A1 WO2023116024 A1 WO 2023116024A1 CN 2022115382 W CN2022115382 W CN 2022115382W WO 2023116024 A1 WO2023116024 A1 WO 2023116024A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe section
concrete
corrosion
frp
glass fiber
Prior art date
Application number
PCT/CN2022/115382
Other languages
English (en)
French (fr)
Inventor
王成启
方子善
梁远博
郭玉林
Original Assignee
中交上海三航科学研究院有限公司
中交第三航务工程局有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中交上海三航科学研究院有限公司, 中交第三航务工程局有限公司 filed Critical 中交上海三航科学研究院有限公司
Publication of WO2023116024A1 publication Critical patent/WO2023116024A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/003Linings or provisions thereon, specially adapted for traffic tunnels, e.g. with built-in cleaning devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/10Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an adhesive surface

Definitions

  • the application belongs to the technical field of anti-corrosion of concrete structures, and in particular relates to anti-corrosion materials and anti-corrosion methods for concrete in suspension tunnel pipe sections.
  • floating tunnels in water as a new type of traffic structure across deep sea areas such as straits and bays, can solve the technical problems of traffic construction in deep sea areas.
  • the selection of plane position and vertical depth of floating tunnels has more room for selection, and is not affected by seabed landforms, hydrogeological conditions, etc. Therefore, floating tunnels in water are receiving more and more attention.
  • FRP coating anti-corrosion technology has been more and more applied in anti-corrosion treatment and repair in marine environment, but FRP anti-corrosion materials have technical problems such as poor bond strength with concrete base and insufficient durability life.
  • FRP anti-corrosion materials have technical problems such as poor bond strength with concrete base and insufficient durability life.
  • the floating tunnel is also subject to the strong water flow of the seabed, a large number of seabed aquatic organisms will grow and enrich on the surface of the floating tunnel section. Therefore, the technical problems of FRP's resistance to water flow impact and aquatic organism adhesion should also be solved.
  • the technical problem to be solved in this application is to provide anti-corrosion materials and anti-corrosion methods for the pipe section concrete of the suspended tunnel.
  • Adhesive performance use high-strength and high-durability FRP to protect the seawater from scouring and corrosion of the pipe section; use hydrophobic materials on the surface of the FRP to slow down water erosion and aquatic bio-enrichment, thereby improving the corrosion resistance of the concrete in the suspension tunnel pipe section.
  • This application proposes concrete anti-corrosion materials for suspended tunnel pipe sections, including: base material, middle layer material and surface material, the base material is made of organic silicon material, the middle layer material is made of high-strength and high-durability fiberglass, and the surface material Made of hydrophobic material.
  • the above-mentioned concrete anti-corrosion material for the pipe section of the suspended tunnel wherein the organosilicon material is an alkyl silanol water-based organosilicon material, and the mass ratio of the active ingredient of the organosilicon material to water is 1:0.5.
  • the penetration depth is not less than 2.5mm; the water absorption rate is less than 0.001mm/min 1/2 , and the reduction effect of chloride absorption is greater than 96%.
  • the glass fiber reinforced plastic adopts multiple layers of glass fiber cloth and multiple layers of gel coat. Further preferably, in this application, at least five layers of glass fiber cloth and at least six layers of gel coat are preferably used.
  • the above-mentioned concrete anti-corrosion material for the pipe section of the floating tunnel wherein the glass fiber cloth is an alkali-free glass fiber cloth with a thickness of 0.2-0.4 mm;
  • the gel coat is made up of resin, initiator, accelerator, reinforcing agent and defoamer, the resin, the initiator, the accelerator, the reinforcing agent and the defoamer
  • the mass ratio is (50-60): (1.5-3.5): (0.3-2.0): (0.5-1.5): (0.001-0.005);
  • the above-mentioned concrete anti-corrosion material for the pipe section of the suspended tunnel wherein the resin is epoxy vinyl ester resin;
  • the initiator is methyl ethyl ketone peroxide
  • the accelerator is cobalt isooctanoate
  • the reinforcing agent is calcium carbonate with an average particle size of 30-50nm;
  • the defoamer is a polyether defoamer.
  • the concrete anti-corrosion material for the pipe section of the suspended tunnel wherein the thickness of the glass fiber reinforced plastic is 3.0-4.0mm.
  • the concrete anti-corrosion material for the pipe section of the floating tunnel above wherein, the bending strength of the 15d-age FRP is greater than 250MPa, the tensile strength of the FRP is greater than 120MPa, and the water absorption of the 30d-age FRP is not greater than 0.1%.
  • the above-mentioned concrete anti-corrosion material for the pipe section of the suspended tunnel wherein the hydrophobic material is a composite nano- SiO2 and nano- TiO2 fluorine-based polymer, the thickness of the coating film is 0.3-0.7mm, and the water contact angle of the coating film is Greater than 150°.
  • the concrete strength grade of the pipe section is C40-C100.
  • the application also proposes an anti-corrosion method for the concrete anti-corrosion material of the suspension tunnel pipe section, comprising the following steps:
  • the above-mentioned anti-corrosion method includes: weighing the initiator, reinforcing agent and defoamer according to the proportion, adding them to the resin and stirring evenly, and then adding the accelerator while stirring, and obtaining the gel coat after stirring; Brush the gel coat on the molding surface of the mold and lay glass cloth; repeat the above layering operation until the design thickness is reached, and then solidify and demould;
  • This application aims at the technical problems such as poor bonding force between FRP resin and concrete base, which is easy to cause falling off, etc., and adopts environmentally friendly water-based silicone material to solve the technical problem of poor bonding force between FRP conventional resin and concrete, which can effectively improve the bonding between FRP and pipe section concrete.
  • knot, and give full play to the protective effect of FRP; the hydrophobic material has a good hydrophobic effect, slows down the impact of water flow on the suspended tunnel section, avoids the accumulation of marine organisms, and effectively protects the concrete section.
  • the water-based silicone material uses water as a solvent without volatile organic solvents, which avoids the harm of conventional oily silicone materials to the human body and the environment.
  • the water-based silicone material can be impregnated into the concrete, and the penetration depth is not less than 2.5mm. Can effectively improve the durability of concrete.
  • This application uses nano-calcium carbonate to fill the pores of FRP, and uses polyether defoamer to eliminate air bubbles in FRP, which significantly improves the strength and durability of FRP, has good mechanical properties such as compressive strength and bending strength, and can resist external impacts on floating tunnels , protect the concrete pipe section, effectively improve the toughness and impact resistance of the floating tunnel pipe section, and have high durability, and obtain high-strength and high-durability FRP.
  • This application adopts the superimposed effect of water-based silicone material, glass fiber reinforced plastic and hydrophobic material, which can effectively improve the durability of the concrete in the suspension tunnel pipe section, and ensure that the anti-corrosion life is not less than 120 years.
  • the water-based silicone material has a protective effect of not less than 30 years, and glass fiber reinforced plastic
  • the protective effect of not less than 80 years, and the protective effect of hydrophobic materials is not less than 10 years, which overcomes the technical defect of insufficient durability of conventional FRP coating technology.
  • the water-based organic silicon material, glass fiber reinforced plastic and hydrophobic material of the present application have technical characteristics such as good constructability, high strength, high impact resistance and high durability, and can be used in high-durability anti-corrosion fields such as suspension tunnel pipe section materials, and have good economic and social benefits.
  • initiator is methyl ethyl ketone peroxide
  • Accelerator is cobalt isooctanoate
  • reinforcing agent is the calcium carbonate that average particle diameter is 30 nanometers
  • the defoamer is a polyether defoamer
  • the glass fiber cloth is EWR400 alkali-free glass fiber cloth
  • the hydrophobic material is a composite nano-SiO 2 and nano-TiO 2 fluorine polymer, and the thickness of the coating film is 0.5mm;
  • Example 2 From the test result of above-mentioned table 2, it can be seen that the flexural strength and the tensile strength of the FRP of Example 2 mixed with nano-calcium carbonate and defoamer are obviously higher than that of Example 1, and the water absorption and chloride ion diffusion coefficient are obviously lower than those of Example 1.
  • Example 1 the anti-chloride ion penetration life is greater than 80 years.
  • the surface of FRP is made of hydrophobic materials, the bending strength and tensile strength of Examples 3 and 4 are further increased, the water absorption rate and chloride ion diffusion coefficient are further reduced, and the anti-chloride ion penetration life is greater than 90 years.
  • Example 2 The above-mentioned FRP in Example 2 shown in Table 1 is adopted, and MFE-2 epoxy vinyl ester resin, 189 unsaturated polyester resin, E44 epoxy resin and water-based organic silicon material are respectively used as the bonding material between FRP and concrete , Carry out the positive tensile bond strength test between FRP and concrete, and the test results are shown in Table 3 below.
  • the penetration depth of the water-based silicone material used is 3.0mm
  • the water absorption rate is 0.0008mm/min 1/2
  • the chloride absorption reduction effect can reach 97%
  • the anti-chloride ion penetration life is 35 years .
  • This application adopts the composite anti-corrosion technology of water-based organic silicon material, glass fiber reinforced plastic and hydrophobic material, and proposes a method of anti-corrosion technology for 120 years of protection, which can effectively meet the needs of the suspension tunnel pipe section material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Lining And Supports For Tunnels (AREA)
  • Sewage (AREA)

Abstract

一种悬浮隧道管段混凝土防腐蚀材料及防腐蚀方法,该防腐蚀材料包括:基层材料、中间层材料以及表层材料,该基层材料采用有机硅材料,该中间层材料采用高强和高耐久性玻璃钢,该表层材料采用疏水性材料。该防腐蚀方法包括:制备玻璃钢;清理悬浮隧道混凝土管段材料表面,配制有机硅材料,在混凝土管段材料表面涂刷有机硅材料;配置疏水性材料,并在该玻璃钢表面喷涂该疏水性材料。该方案采用有机硅材料提高管段混凝土耐久性,并提高玻璃钢与管段混凝土的粘结性能;采用高强和高耐久性玻璃钢防护海水对管段冲刷和腐蚀;在玻璃钢表面采用疏水性材料,减缓水流冲刷和水生物富集,从而提高了悬浮隧道管段混凝土的防腐蚀性。

Description

悬浮隧道管段混凝土防腐蚀材料及防腐蚀方法 技术领域
本申请属于混凝土结构防腐蚀技术领域,具体涉及悬浮隧道管段混凝土防腐蚀材料及防腐蚀方法。
背景技术
由于在深海地区建造桥梁存在诸多不能解决的技术问题,水中悬浮隧道作为跨越海峡、海湾等深海地区的新型交通结构,可解决深海地区交通建造技术难题。与沉管隧道和海底深埋隧道相比,悬浮隧道平面位置的选取和竖直深度的选择都有较大的余地,且不受海底地貌、水文地质条件等影响。因此,水中悬浮隧道正受到越来越多的关注。由于海水对悬浮隧道管段钢筋混凝土具有较强的腐蚀作用,需采取高耐久性的防腐材料进行防腐蚀处理,对悬浮隧道管段材料进行防护,以保证悬浮隧道至少具有120年的高耐久性防腐寿命,从而保证悬浮隧道安全运行。同时,海底悬浮隧道管段还面临洋流、潮流海浪等的冲刷作用,防腐层的力学性能和耐磨性能均具有较高要求。因此,需开发满足悬浮隧道管段混凝土的防腐蚀方法。
近年来,玻璃钢包覆防腐技术在海洋环境下的防腐处理和修复中得到了越来越多的应用,但玻璃钢防腐蚀材料存在与混凝土基层粘结强度差及耐久性寿命不足等技术问题。此外,由于悬浮隧道还受到海底较强的水流冲刷作用,海底水生物会大量生长富集在悬浮隧道管段表面,因此还应解决玻璃钢的抗水流冲击和水生物附着等技术问题。
发明内容
针对上述现有技术的缺点或不足,本申请要解决的技术问题是提供悬浮隧道管段混凝土防腐蚀材料及防腐蚀方法,本申请采用有机硅材料提高管段 混凝土耐久性,并提高玻璃钢与管段混凝土的粘结性能;采用高强和高耐久性玻璃钢防护海水对管段冲刷和腐蚀;在玻璃钢表面采用疏水性材料,减缓水流冲刷和水生物富集,从而提高了悬浮隧道管段混凝土的防腐蚀性。
为解决上述技术问题,本申请通过以下技术方案来实现:
本申请提出了悬浮隧道管段混凝土防腐蚀材料,包括:基层材料、中间层材料以及表层材料,所述基层材料采用有机硅材料,所述中间层材料采用高强和高耐久性玻璃钢,所述表层材料采用疏水性材料。
可选地,上述的悬浮隧道管段混凝土防腐蚀材料,其中,所述有机硅材料为烷基硅醇类水性有机硅材料,有机硅材料有效成分与水的质量比为1:0.5,在混凝土中的渗透深度不小于2.5mm;吸水率小于0.001mm/min 1/2,氯化物吸收量降低效果大于96%。
可选地,上述的悬浮隧道管段混凝土防腐蚀材料,其中,所述玻璃钢采用多层玻璃纤维布以及多层胶衣。进一步优选地,在本申请中,优选地采用至少五层玻璃纤维布以及至少六层胶衣。
可选地,上述的悬浮隧道管段混凝土防腐蚀材料,其中,所述玻璃纤维布为无碱玻璃纤维布,厚度为0.2-0.4mm;
和/或,所述胶衣由树脂、引发剂、促进剂、增强剂以及消泡剂组成,所述树脂、所述引发剂、所述促进剂、所述增强剂以及所述消泡剂的质量比为(50-60):(1.5-3.5):(0.3-2.0):(0.5-1.5):(0.001-0.005);
可选地,上述的悬浮隧道管段混凝土防腐蚀材料,其中,所述树脂为环氧乙烯基酯树脂;
和/或,所述引发剂为过氧化甲乙酮;
和/或,所述促进剂为异辛酸钴;
和/或,所述增强剂为平均粒径30-50nm的碳酸钙;
和/或,所述消泡剂为聚醚类消泡剂。
可选地,上述的悬浮隧道管段混凝土防腐蚀材料,其中,所述玻璃钢 的厚度为3.0-4.0mm。
可选地,上述的悬浮隧道管段混凝土防腐蚀材料,其中,所述玻璃钢15d龄期的弯曲强度大于250MPa,玻璃钢抗拉强度大于120MPa,玻璃钢30d龄期吸水率不大于0.1%。
可选地,上述的悬浮隧道管段混凝土防腐蚀材料,其中,所述疏水性材料采用复合纳米SiO 2和纳米TiO 2氟类聚合物,涂膜厚度为0.3-0.7mm,涂膜的水接触角大于150°。
其中,在本申请中,管段混凝土强度等级为C40-C100。
本申请另一方面还提出了的悬浮隧道管段混凝土防腐蚀材料的防腐蚀方法,包括以下步骤:
制备玻璃钢;
清理悬浮隧道混凝土管段材料表面,配制有机硅材料,在混凝土管段材料表面涂刷有机硅材料;
配置疏水性材料,并在所述玻璃钢表面喷涂所述疏水性材料。
可选地,上述的防腐方法,包括:按配比称取引发剂、增强剂和消泡剂依次加入树脂中搅拌均匀,再边搅拌边加入促进剂,待搅拌均匀后得到胶衣;将搅拌均匀的胶衣,涂刷在模具成型面上并铺放玻璃布;重复上述铺层操作,直到达到设计厚度,然后进行固化脱模;
和/或,清理悬浮隧道混凝土管段材料表面灰尘和油污等有害物质,配制水性有机硅材料,在混凝土表面涂刷有机硅材料,铺覆玻璃钢,并施加一定力,使玻璃钢与管段混凝土牢固粘结;
和/或,配制复合纳米SiO 2和纳米TiO 2氟类聚合物疏水性材料,在玻璃钢表面,喷涂所述疏水性材料。
与现有技术相比,本申请具有如下技术效果:
本申请针对玻璃钢树脂与混凝土基层粘结力差,易导致脱落等技术问题,采用环保性水性有机硅材料,解决玻璃钢常规树脂与混凝土粘结力差的技术 问题,可有效提高玻璃钢与管段混凝土粘结,并充分发挥玻璃钢保护作用;疏水性材料具有良好疏水效果,减缓水流对悬浮隧道管段的冲击,避免海洋生物富积,有效保护混凝土管段。
本申请中,水性有机硅材料采用水作为溶剂,无挥发性有机溶剂,避免了常规油性有机硅材料对人体和环境的危害,水性有机硅材料可浸渍到混凝土内部,渗透深度不小于2.5mm,可有效提升混凝土耐久性。
本申请采用纳米碳酸钙填充玻璃钢孔隙,采用聚醚消泡剂排除玻璃钢中气泡,显著提高玻璃钢强度和耐久性,具有良好的抗压强度和抗弯强度等力学性能,可抵抗悬浮隧道受外界冲击,保护混凝土管段,有效提升悬浮隧道管段的韧性和抗冲击性能,且具有较高耐久性,获得高强和高耐久性玻璃钢。
本申请采用水性有机硅材料、玻璃钢和疏水性材料叠加作用,可有效提升悬浮隧道管段混凝土耐久性,保证不低于120年防腐蚀寿命,其中水性有机硅材料不低于30年防护作用,玻璃钢不低于80年防护作用,疏水性材料不低于10年防护作用,克服了常规玻璃钢包覆技术耐久性不足的技术缺陷。
本申请的水性有机硅材料、玻璃钢和疏水性材料具有可施工性好、高强、抗冲击性能高和高耐久性等技术特点,可用于悬浮隧道管段材料等高耐久性防腐蚀领域,具有良好的经济效益和社会效益。
具体实施方式
下面将对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
1.本实施例涉及的试验方法如下:
(1)玻璃钢弯曲强度按照国家标准《纤维增强塑料弯曲性能试验方法》(GB/T 1449-2005)相关规定进行。
(2)玻璃钢拉伸强度按照国家标准《纤维增强塑料拉伸性能试验方法》(GB/T 1447)相关规定进行。
(3)玻璃钢吸水率按照国家标准《纤维增强塑料吸水性试验方法》(GB/T 1462)相关规定进行。
(4)玻璃钢与混凝土正拉强度按照国家标准《混凝土结构加固设计规范》(GB/T 50367-2006)中附录F进行。
(5)水性有机硅渗透深度、吸水率和氯化物吸收量降低效果按照《海港工程混凝土结构防腐蚀技术规范》(JTJ275-2000)相关规定执行。
2.实施例原材料
(1)MFE-2环氧乙烯基酯树脂;
(2)189不饱和聚酯树脂;
(3)E44环氧树脂;
(4)引发剂为过氧化甲乙酮;
(5)促进剂为异辛酸钴;
(6)增强剂为平均粒径为30纳米的碳酸钙;
(7)消泡剂为聚醚类消泡剂;
(8)玻璃纤维布为EWR400无碱玻璃纤维布;
(9)疏水性材料为复合纳米SiO 2和纳米TiO 2氟类聚合物,涂膜厚度为0.5mm;
(10)玻璃钢与混凝土正拉强度试验的混凝土强度等级为C60。
3.玻璃钢性能
3.1实例玻璃钢配合比
玻璃钢配合比如表1所示。
表1实施例1-实施例4玻璃钢配比
Figure PCTCN2022115382-appb-000001
3.2玻璃钢的性能测试结果
玻璃钢性能测试结果如下表2所示。
表2玻璃钢性能测试结果及抗氯离子渗透寿命
Figure PCTCN2022115382-appb-000002
Figure PCTCN2022115382-appb-000003
从上述表2的测试结果可知,掺入纳米碳酸钙和消泡剂的实施例2的玻璃钢的弯曲强度和拉伸强度明显高于实施例1,且吸水率和氯离子扩散系数明显低于实施例1,抗氯离子渗透寿命大于80年。此外,玻璃钢表面采用疏水性材料,实施例3和实施例4的弯曲强度和拉伸强度进一步增加,吸水率和氯离子扩散系数进一步降低,抗氯离子渗透寿命大于90年。
4.玻璃钢与混凝土粘结强度
上述采用表1所示的实施例2中的玻璃钢,分别采用MFE-2环氧乙烯基酯树脂、189不饱和聚酯树脂、E44环氧树脂和水性有机硅材料作为玻璃钢与混凝土的粘结材料,开展玻璃钢与混凝土正拉粘结强度试验,测试结果如下述表3所示。
表3玻璃钢与混凝土正拉粘结强度
试验编号 粘结材料品种 正拉粘结强度(MPa)
1 MFE-2环氧乙烯基酯树脂 3.5
2 189不饱和聚酯树脂 3.9
3 E44环氧树脂 4.5
4 水性有机硅材料 6.6
从上述表3可以看出,采用水性有机硅材料时,玻璃钢与混凝土正拉强度明显高于MFE-2环氧乙烯基酯树脂、189不饱和聚酯树脂和E44环氧树脂,可有效保证玻璃钢与管段混凝土粘结,充分发挥玻璃钢作用。
5.水性有机硅测试结果
水性有机硅测试结果如表4所示。
表4水性有机硅材料性能
Figure PCTCN2022115382-appb-000004
在本实施例中,所采用的水性有机硅材料的渗透深度为3.0mm,吸水率为0.0008mm/min 1/2,氯化物吸收量降低效果可达97%,抗氯离子渗透寿命为35年。
本实施例悬浮隧道管段防腐蚀方法的主要工艺如下:
首先,在工厂制作玻璃钢制品,按配比称取引发剂、增强剂和消泡剂依次加入树脂中搅拌均匀,再边搅拌边加入促进剂,待搅拌均匀后得到胶衣;清理好或经过表面处理的模具成型面上涂抹脱模剂,待充分干燥好后,将搅拌均匀的胶衣,涂刷在模具成型面上,随后在其上铺放裁剪好的玻璃布,并浸透树脂、排除气泡。重复上述铺层操作,直到达到设计厚度,然后进行固化脱模。
然后,清理悬浮隧道混凝土管段材料表面灰尘和油污等有害物质,配制水性有机硅材料,在混凝土表面涂刷有机硅材料,保证混凝土管段充分浸润,待20-30min后,涂刷第二遍有机硅材料,立即铺覆玻璃钢材料,并施加一定力,使玻璃钢与管段混凝土牢固粘结。
最后,配制复合纳米SiO 2和纳米TiO 2氟类聚合物疏水性材料,在玻璃钢表面,喷涂疏水性材料,其中,喷涂厚度优选地控制在0.3-0.7mm。
本申请采用水性有机硅材料、玻璃钢和疏水性材料复合防腐蚀技术,提出防护达到120年防腐蚀技术方法,可有效满足悬浮隧道管段材料的需要。
以上实施例仅用以说明本申请的技术方案而非限定,参照较佳实施例对本申请进行了详细说明。本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换,而不脱离本申请技术方案的精神和范围,均应涵盖在本申请的权利要求范围内。

Claims (10)

  1. 悬浮隧道管段混凝土防腐蚀材料,其特征在于,包括:基层材料、中间层材料以及表层材料,所述基层材料采用有机硅材料,所述中间层材料采用高强和高耐久性玻璃钢,所述表层材料采用疏水性材料。
  2. 根据权利要求1所述的悬浮隧道管段混凝土防腐蚀材料,其特征在于,所述有机硅材料为烷基硅醇类水性有机硅材料,有机硅材料有效成分与水的质量比为1:0.5,在混凝土中的渗透深度不小于2.5mm;吸水率小于0.001mm/min 1/2,氯化物吸收量降低效果大于96%。
  3. 根据权利要求1所述的悬浮隧道管段混凝土防腐蚀材料,其特征在于,所述玻璃钢采用多层玻璃纤维布以及多层胶衣。
  4. 根据权利要求3所述的悬浮隧道管段混凝土防腐蚀材料,其特征在于,所述玻璃纤维布为无碱玻璃纤维布,厚度为0.2-0.4mm;
    和/或,所述胶衣由树脂、引发剂、促进剂、增强剂以及消泡剂组成,所述树脂、所述引发剂、所述促进剂、所述增强剂以及所述消泡剂的质量比为(50-60):(1.5-3.5):(0.3-2.0):(0.5-1.5):(0.001-0.005)。
  5. 根据权利要求4所述的悬浮隧道管段混凝土防腐蚀材料,其特征在于,所述树脂为环氧乙烯基酯树脂;
    和/或,所述引发剂为过氧化甲乙酮;
    和/或,所述促进剂为异辛酸钴;
    和/或,所述增强剂为平均粒径30-50nm的碳酸钙;
    和/或,所述消泡剂为聚醚类消泡剂。
  6. 根据权利要求1至5任一项所述的悬浮隧道管段混凝土防腐蚀材料,其特征在于,所述玻璃钢的厚度为3.0-4.0mm。
  7. 根据权利要求1至5任一项所述的悬浮隧道管段混凝土防腐蚀材料,其特征在于,所述玻璃钢15d龄期的弯曲强度大于250MPa,玻璃钢抗拉强度大于120MPa,玻璃钢30d龄期吸水率不大于0.1%。
  8. 根据权利要求1所述的悬浮隧道管段混凝土防腐蚀材料,其特征在于,所述疏水性材料采用复合纳米SiO 2和纳米TiO 2氟类聚合物,涂膜厚度为0.3-0.7mm,涂膜的水接触角大于150°。
  9. 如权利要求1至8任一项所述的悬浮隧道管段混凝土防腐蚀材料的防腐蚀方法,其特征在于,包括以下步骤:
    制备玻璃钢;
    清理悬浮隧道混凝土管段材料表面,配制有机硅材料,在混凝土管段材料表面涂刷有机硅材料;
    配置疏水性材料,并在所述玻璃钢表面喷涂所述疏水性材料。
  10. 根据权利要求9所述的防腐蚀方法,其特征在于,在制备玻璃钢过程中,包括:按配比称取引发剂、增强剂和消泡剂依次加入树脂中搅拌均匀,再边搅拌边加入促进剂,待搅拌均匀后得到胶衣;将搅拌均匀的胶衣,涂刷在模具成型面上并铺放玻璃布;重复上述铺层操作,直到达到设计厚度,然后进行固化脱模;
    和/或,清理悬浮隧道混凝土管段材料表面灰尘和油污等有害物质,配制水性有机硅材料,在混凝土表面涂刷有机硅材料,铺覆玻璃钢,并施加一定力,使玻璃钢与管段混凝土牢固粘结;
    和/或,配制复合纳米SiO 2和纳米TiO 2氟类聚合物疏水性材料,在玻璃钢表面,喷涂所述疏水性材料。
PCT/CN2022/115382 2021-12-21 2022-08-29 悬浮隧道管段混凝土防腐蚀材料及防腐蚀方法 WO2023116024A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111568992.4A CN114396292A (zh) 2021-12-21 2021-12-21 悬浮隧道管段混凝土防腐蚀材料及防腐蚀方法
CN202111568992.4 2021-12-21

Publications (1)

Publication Number Publication Date
WO2023116024A1 true WO2023116024A1 (zh) 2023-06-29

Family

ID=81226536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115382 WO2023116024A1 (zh) 2021-12-21 2022-08-29 悬浮隧道管段混凝土防腐蚀材料及防腐蚀方法

Country Status (2)

Country Link
CN (1) CN114396292A (zh)
WO (1) WO2023116024A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114396292A (zh) * 2021-12-21 2022-04-26 中交上海三航科学研究院有限公司 悬浮隧道管段混凝土防腐蚀材料及防腐蚀方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09156957A (ja) * 1995-12-08 1997-06-17 Nippon Electric Glass Co Ltd 耐蝕性ガラス繊維
KR101103880B1 (ko) * 2011-05-27 2012-01-12 주식회사 삼주에스엠씨 콘크리트 구조물에 사용되는 강재의 방식을 위한 접착성 방청 도료 및 그 시공방법
CN102400546A (zh) * 2011-10-13 2012-04-04 重庆大众防腐有限公司 一种烟囱、烟道和其它管道及容器防腐的喷涂玻璃钢防腐层工艺
CN203160805U (zh) * 2013-03-11 2013-08-28 成都龙泉防腐工程有限公司 一种混凝土烟囱的防腐层结构
CN105696475A (zh) * 2016-02-04 2016-06-22 合肥卡勒斯通建筑材料有限公司 一种现状桥梁结构的纳米技术防护方法
CN105909040A (zh) * 2016-06-23 2016-08-31 江苏国窑科技有限公司 一种纳米碳化硅玻璃钢烟囱
CN114396292A (zh) * 2021-12-21 2022-04-26 中交上海三航科学研究院有限公司 悬浮隧道管段混凝土防腐蚀材料及防腐蚀方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101898902B (zh) * 2009-05-31 2012-10-10 上海市涂料研究所 可直接应用于潮湿表面的混凝土渗透剂
CN101824278A (zh) * 2010-04-06 2010-09-08 南京工业大学 一种超疏水无机有机纳米复合高分子涂层材料及其制备方法
CN101845208B (zh) * 2010-05-19 2011-09-28 厦门大学 一种不饱和聚酯树脂复合材料及其制备方法
CN104878743B (zh) * 2015-03-24 2016-10-05 中交上海三航科学研究院有限公司 一种海洋工程预应力钢筋混凝土桩基础防腐材料及其施工方法
CN205154193U (zh) * 2015-11-26 2016-04-13 山东科技大学 一种新型隧道防水结构
CN106217898A (zh) * 2016-08-28 2016-12-14 北海运龙环保材料有限责任公司 玻璃钢化粪池的生产工艺
CN106366912B (zh) * 2016-09-09 2019-04-09 东南大学 一种可转移耐磨柔性超疏水薄膜及其制备方法
CN110128051A (zh) * 2018-11-28 2019-08-16 国网新疆电力有限公司经济技术研究院 提高混凝土抗氯离子侵蚀性能的氯离子吸附添加剂
CN110183246B (zh) * 2019-06-21 2021-09-07 河南聚研材料科技有限公司 一种自交联烷基烷氧基硅烷浸渍剂
CN210855930U (zh) * 2019-11-20 2020-06-26 扬州智翔石油工程技术有限公司 一种高强度玻璃钢

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09156957A (ja) * 1995-12-08 1997-06-17 Nippon Electric Glass Co Ltd 耐蝕性ガラス繊維
KR101103880B1 (ko) * 2011-05-27 2012-01-12 주식회사 삼주에스엠씨 콘크리트 구조물에 사용되는 강재의 방식을 위한 접착성 방청 도료 및 그 시공방법
CN102400546A (zh) * 2011-10-13 2012-04-04 重庆大众防腐有限公司 一种烟囱、烟道和其它管道及容器防腐的喷涂玻璃钢防腐层工艺
CN203160805U (zh) * 2013-03-11 2013-08-28 成都龙泉防腐工程有限公司 一种混凝土烟囱的防腐层结构
CN105696475A (zh) * 2016-02-04 2016-06-22 合肥卡勒斯通建筑材料有限公司 一种现状桥梁结构的纳米技术防护方法
CN105909040A (zh) * 2016-06-23 2016-08-31 江苏国窑科技有限公司 一种纳米碳化硅玻璃钢烟囱
CN114396292A (zh) * 2021-12-21 2022-04-26 中交上海三航科学研究院有限公司 悬浮隧道管段混凝土防腐蚀材料及防腐蚀方法

Also Published As

Publication number Publication date
CN114396292A (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
Zhao et al. Hydrophobic or superhydrophobic modification of cement-based materials: A systematic review
CN207878393U (zh) 水工建筑物复合防渗体系
Wang et al. Superhydrophobic calcium aluminate cement with super mechanical stability
CN106186965A (zh) 一种水工建筑用耐冲磨的无机高性能复合材料
WO2023116024A1 (zh) 悬浮隧道管段混凝土防腐蚀材料及防腐蚀方法
CN104017469A (zh) 无机鳞片水性环氧树脂涂料
CN104478288A (zh) 一种建筑用无机涂层材料的粘结增强剂及其制备方法
CN102140281A (zh) 用于石材背面防护的涂料
CN106318053A (zh) 水工混凝土表面疏水耐污涂层及其施工方法
KR101331950B1 (ko) 초경량 폴리머 콘크리트 조성물 및 이를 이용한 성형품
CN207260440U (zh) 一种frp管海水海砂再生自密实混凝土环保建筑构件
CN113511870A (zh) 一种固废基海工修复材料及其制备方法
CN105419571B (zh) 一种重防腐涂层材料
CN114713479A (zh) 一种通过激光固化提高液料喷涂EP+PDMS/SiO2超疏水涂层耐久性能的方法
CN106431111A (zh) 金刚砂耐磨地坪
CN105199547A (zh) 一种耐用环氧树脂防水涂料
CN105350491A (zh) 一种高海拔地区大坝上游面防渗涂料及其施工方法
CN108457437A (zh) 混凝土粉化整治用防护涂层及其施工方法
CN111825389A (zh) 一种无机纤维增强聚合物基防水涂料及制备方法
CN214462151U (zh) 一种乙烯基防腐地坪
Zhao et al. Study of self-cleaning and anticorrosion superhydrophobic coating on cement mortar using milled coral waste powder
CN109913049A (zh) 一种环保外墙涂料及其施工工艺
CN108083719A (zh) 一种耐久型抗裂渗透防水防腐涂料及其制备方法
CN211872454U (zh) 一种防滑抗高压冲洗地坪
CN211007507U (zh) 一种聚氨酯超耐磨地坪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909349

Country of ref document: EP

Kind code of ref document: A1