WO2023115774A1 - 微透镜组件、光电转换设备及制造方法和成像系统 - Google Patents

微透镜组件、光电转换设备及制造方法和成像系统 Download PDF

Info

Publication number
WO2023115774A1
WO2023115774A1 PCT/CN2022/089376 CN2022089376W WO2023115774A1 WO 2023115774 A1 WO2023115774 A1 WO 2023115774A1 CN 2022089376 W CN2022089376 W CN 2022089376W WO 2023115774 A1 WO2023115774 A1 WO 2023115774A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
microlens
transmitting member
microlens array
refractive index
Prior art date
Application number
PCT/CN2022/089376
Other languages
English (en)
French (fr)
Inventor
曹堪宇
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Publication of WO2023115774A1 publication Critical patent/WO2023115774A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements

Definitions

  • the present disclosure relates to the technical field of semiconductors, and in particular to a microlens assembly, a photoelectric conversion device, a manufacturing method, and an imaging system.
  • the image sensor is a photoelectric conversion device that uses the photoelectric conversion function of the photoelectric device to convert the light image on the photosensitive surface into an electrical signal that is proportional to the light image. It is widely used in electronic products. Among them, the more common image sensor There are CMOS image sensor (CMOS Image Sensor, referred to as CIS), charge-coupled image sensor (Charge-coupled Device, hereinafter referred to as CCD).
  • CMOS Image Sensor referred to as CIS
  • CCD charge-coupled image sensor
  • a CIS image sensor usually includes a photosensitive element, a microlens array, and a peripheral circuit.
  • the microlens array is arranged on the photosensitive element, and the peripheral circuit is connected to the photosensitive element.
  • the component can convert the optical signal into an electrical signal, and the electrical signal is output into an image through a peripheral circuit.
  • a first aspect of an embodiment of the present disclosure provides a microlens assembly, including:
  • a first light-transmitting member is arranged on the first microlens array, and the first light-transmitting member is used to transmit the light propagating in the environment medium to the first microlens array
  • the refractive index of the first light-transmitting member is greater than the refractive index of the environment medium.
  • the refractive index of the first light-transmitting element is greater than the refractive index of the first microlens array.
  • it also includes a second light-transmitting member, the second light-transmitting member is arranged between the first light-transmitting member and the first microlens array, and the refraction of the second light-transmitting member
  • the refractive index is smaller than the refractive index of the first light-transmitting member and the first microlens array.
  • the first microlens array includes a microconvex lens array or a microconcave lens array.
  • the first microlens array includes a plurality of first microlenses
  • the first light-transmitting member includes a plurality of first light-transmitting parts
  • the first light-transmitting parts correspond to one or more of the first light-transmitting parts.
  • each of the first light-transmitting parts includes a second microlens, a second microlens array composed of a plurality of second microlenses, and one second microlens corresponds to one or more of the second microlenses. Describe the first microlens.
  • the second microlens has a second focus, and the second focus is formed in the second light-transmitting member.
  • the second light-transmitting element has a first thickness, and the maximum distance from the second focal point to the top surface of the second light-transmitting element is not greater than half of the first thickness.
  • the first microlens has a first curvature
  • the second microlens has a second curvature
  • the second curvature is different from the first curvature
  • the second aspect of the embodiments of the present disclosure provides a photoelectric conversion device, including: a photosensitive element layer and the microlens assembly described in the above embodiments;
  • the microlens assembly is disposed on the photosensitive element layer.
  • the photosensitive element layer includes a filter layer, and the filter layer includes a plurality of filter regions, and one filter region corresponds to one or more first microlenses.
  • the photosensitive element layer further includes a photosensitive element layer, the photosensitive element layer includes a plurality of photosensitive elements, and one photosensitive element corresponds to one or more first microlenses.
  • the first microlens has a first focus, the first focus is formed in the photosensitive element layer, the photosensitive element layer has a second thickness, the first focus is to the second The maximum distance between the bottom surface of a microlens is not less than half of the second thickness.
  • an anti-reflection layer is further included, and the anti-reflection layer is disposed between the microlens assembly and the photosensitive element layer.
  • a third aspect of the embodiments of the present disclosure provides an imaging system, including the photoelectric conversion device described in the above embodiments;
  • a signal processing unit that processes a signal output from the photoelectric conversion device.
  • a fourth aspect of an embodiment of the present disclosure provides a method for manufacturing a photoelectric conversion device, including: providing a substrate, and forming a photosensitive element layer in the substrate;
  • first microlens array on the photosensitive element layer, the first microlens array forming a first light receiving surface
  • a first light-transmitting member covering the first light-receiving surface is formed on the first microlens array, the top surface of the first light-transmitting member constitutes a second light-receiving surface, and the light propagating in the environment medium passes through the The second light-receiving surface transmits to the first light-receiving surface, wherein the refractive index of the first light-transmitting member is greater than the refractive index of the environment medium.
  • the step of forming the first microlens array on the photosensitive element layer includes:
  • the method after the step of forming a first microlens array on the photosensitive element layer, before the step of forming a first light-transmitting member covering the first light-receiving surface on the first microlens array , the method also includes:
  • the refractive index of the light-transmitting material layer being smaller than the refractive index of the first microlens array
  • the second light-transmitting member Removing part of the thickness of the light-transmitting material layer to form a second light-transmitting member, the second light-transmitting member at least fills the area between adjacent first microlenses, and the second light-transmitting member has A flat top surface, wherein the refractive index of the second light-transmitting member is smaller than that of the first light-transmitting member and the first microlens array.
  • the step of forming the first light-transmitting member covering the first light-receiving surface on the first microlens array includes:
  • the refractive index of the second lens material layer being greater than the refractive index of the first microlens array and the refractive index of the first light-transmitting member;
  • forming the second lens material layer is patterned according to the optical design, and the step of forming the first light-transmitting member includes:
  • each of the second light-transmitting parts includes a second microlens, and a plurality of the second microlenses In the second microlens array formed, one second microlens corresponds to one or more first microlenses.
  • the first light-transmitting member is provided on the first micro-lens array, and the refractive index of the first light-transmitting member is greater than that of the environment medium Refractive index, set in this way, can shorten the wavelength of the light transmitted to the first light-transmitting member via the light propagating in the environment medium, so that the light with shorter wavelength forms an object with a smaller diameter after being imaged by the first microlens array image, thereby increasing the resolution of the imaging system.
  • Fig. 1 is the structural representation of the microlens array provided in the related art
  • FIGS. 2 to 13 are schematic structural diagrams of microlens assemblies provided by embodiments of the present disclosure.
  • FIG. 23 is a schematic structural diagram of a photosensitive element layer provided by an embodiment of the present disclosure.
  • FIG. 24 is a schematic structural diagram of an imaging system provided by an embodiment of the present disclosure.
  • Fig. 25 is a process flow diagram of a method for manufacturing a photoelectric conversion device provided by an embodiment of the present disclosure
  • Fig. 26 is a schematic structural diagram of forming a photosensitive element layer in the method for manufacturing a photoelectric conversion device provided by an embodiment of the present disclosure
  • Fig. 27 is a schematic structural diagram of forming a first lens material layer in the method for manufacturing a photoelectric conversion device provided by an embodiment of the present disclosure
  • FIG. 28 is a schematic structural diagram of forming a photoresist layer in the method for manufacturing a photoelectric conversion device provided by an embodiment of the present disclosure
  • FIG. 29 is a schematic structural diagram of forming a first microlens array in the method for manufacturing a photoelectric conversion device provided by an embodiment of the present disclosure
  • FIG. 30 is a schematic structural diagram of forming a light-transmitting material layer in the method for manufacturing a photoelectric conversion device provided by an embodiment of the present disclosure
  • Figure 31 is a first structural schematic diagram of forming a second light-transmitting member in the method for manufacturing a photoelectric conversion device provided by an embodiment of the present disclosure
  • FIG. 32 is a second structural schematic diagram of forming a second light-transmitting member in the method for manufacturing a photoelectric conversion device provided by an embodiment of the present disclosure
  • Fig. 33 is a first structural schematic diagram of forming a second lens material in the method for manufacturing a photoelectric conversion device provided by an embodiment of the present disclosure
  • FIG. 34 is a second structural schematic diagram of forming a second lens material in the method for manufacturing a photoelectric conversion device provided by an embodiment of the present disclosure.
  • a microlens array 10 generally includes a plurality of microlenses 11, and each microlens 11 is used to gather light entering the microlens 11 to enhance the photosensitive element corresponding to the microlens.
  • the amount of light that can be received however, as the imaging system develops toward integration and miniaturization, the size of the microlens 11 becomes smaller and smaller. According to the imaging principle of light, the smaller the size of the microlens 11 , the larger the diameter of the formed object image, the lower the resolution of the imaging system with the microlens array.
  • the embodiment of the present disclosure by setting the first light-transmitting member on the first microlens array, and the refractive index of the first light-transmitting member is greater than the refractive index of the environment medium, such setting can shorten the The wavelength of the light transmitted from the light propagating in the environment medium to the light in the first light-transmitting member, so that the light with a shorter wavelength forms an object image with a smaller diameter after being imaged by the first microlens array, thereby improving the resolution of the imaging system .
  • the microlens assembly 100 provided by the embodiment of the present disclosure can be applied in a photoelectric conversion device, for example, in an image sensor.
  • the microlens assembly 100 includes a first microlens array 110, and the first microlens array 110 is configured to be disposed on a photosensitive element layer in a photoelectric conversion device to guide incident light into the photosensitive element layer.
  • the first microlens array 110 includes a microconvex lens array or a microconcave lens array, and its structure may be as shown in FIG. 2 and FIG. 3 .
  • the first microlens array 110 includes a plurality of first microlenses 111, the plurality of first microlenses 111 are located on the same layer, and the plurality of first microlenses 111 can be closely arranged along the first direction, as shown in Figure 2 and Figure 3 As shown, a plurality of first microlenses 111 can be arranged at intervals along the first direction, and its structure is shown in Figure 4 and Figure 5, wherein the distance between adjacent first microlenses 111 can be equal or unequal, Specifically, it can be set freely according to the situation.
  • the first direction can be understood as the X direction in FIG. 2 .
  • the first light-transmitting member 120 is disposed on the first microlens array 110, and is used to transmit light propagating in the environment medium into the first micro-lens array 110, wherein the refractive index of the first light-transmitting member 120 is greater than that of the environment medium. refractive index.
  • the propagation medium is air
  • the refractive index of the first light-transmitting member 120 is greater than the refraction of air
  • the refractive index of the first light-transmitting member 120 is greater than the refractive index of other propagation media.
  • the formula for calculating the diameter of the object image formed after the incident light passes through the first microlens array 110 Wherein, ⁇ is the wavelength of the incident light, f is the focal length of the first microlens, and d is the diameter of the first microlens.
  • the first light-transmitting member 120 is arranged on the first microlens array 110.
  • the refractive index of the first light-transmitting member 120 is greater than the refractive index of the environment medium. According to the relationship between the refractive index and the wavelength, the refraction The greater the rate, the smaller the wavelength. Therefore, the light transmitted from the environmental medium to the first light-transmitting member 120 will be converted into light with a shorter wavelength after passing through the first light-transmitting member 120. Thus, the shorter wavelength The light rays are imaged by the first microlens array 110 to form an object image with a smaller diameter, thereby improving the resolution of the imaging system.
  • the incident light enters the first microlens array 110 through the first light-transmitting member 120, not only the wavelength of the incident light can be shortened, but also the refraction angle of the incident light can be reduced, so as to reduce the incidence of the incident light on adjacent Interference occurs between the two first microlenses 111 .
  • the light propagates from the air to the first light-transmitting member 120, and the light entering the first light-transmitting member 120 from the air is called the incident light, which has a first The incident angle r1, and the incident light has a large angle, for example, the light propagating along the tangential direction of the right edge of the second first microlens 111; the light refracted by the first light-transmitting member 120 is called the first refracted light , which has a first refraction angle r2; the ray refracted by the first microlens 111 is called a second refracted ray, which has a second refraction angle r3.
  • the refractive index of air is marked as n1
  • the refractive index of the first light-transmitting member 120 is marked as n2
  • the refractive index of the first microlens is n3.
  • the first refraction angle r2 is smaller than the first incident angle r1, so that after the incident light with the first incident angle is refracted by the first light-transmitting member 120, the first refracted light is deflected toward the second first microlens 111, preventing the first refracted light from moving toward the third first microlens
  • the lens 111 is deflected so that the incident light enters the first microlens array 110 at a smaller incident angle, so as to prevent the incident light from interfering between two adjacent first microlenses 111 .
  • the second refracted light formed by the incident light with a large angle is transmitted to one of the first microlenses 111 as much as possible, thereby reducing the interference of the incident light between adjacent first microlenses 111.
  • the amount of light received by the first microlens 111 can be increased, thereby improving the performance of a photoelectric conversion device using the microlens assembly.
  • the relationship between the refractive index of the first light-transmitting member 120 and the first microlens array 110 can be selected differently, for example: the refractive index of the first light-transmitting member 120 can be smaller than that of the first microlens array 110 If the refractive index is set in this way, the wavelength of the incident light will be reduced again, so that the incident light has a smaller wavelength, and an object image with a smaller diameter can be obtained, thereby improving the resolution of the imaging system; at the same time, the first light transmission The refractive index of the element 120 can be smaller than that of the first microlens array 110 , so that the incident light becomes light denser again, and the incident light is prevented from interfering between two adjacent first microlenses 111 .
  • the refractive index of the first light-transmitting member 120 may be greater than the refractive index of the first microlens array 110.
  • the setting of the first light-transmitting member 120 has shortened the The wavelength of the light and the refraction angle of the light entering the first light-transmitting member 120 are reduced. Even if the first microlens array 110 performs a micro-diffusion of the incident light, the above-mentioned beneficial effect will not be affected, and the The technical effect of improving the resolution of the optical system and preventing the incident light from interfering between two adjacent first microlenses 111 can be achieved.
  • the top surface of the first light-transmitting member 120 may be flat or uneven, which is not limited in this embodiment.
  • the microlens assembly 100 further includes a second light-transmitting member 130 disposed between the first light-transmitting member 120 and the first microlens array 110 , and the refractive index of the second transparent member 130 is smaller than that of the first transparent member 120 and the first microlens array 110 .
  • the second light-transmitting member 130 is at least partially filled between adjacent first microlenses 111, wherein the top surface of the second light-transmitting member 130 can be flush with the top surface of the first microlens 111, or lower than the first microlens 111.
  • the top surface of the microlens 111, or the top surface of the second light-transmitting member 130 is higher than the top surface of the first micro-lens 111, so that the setting of the first light-transmitting member 120 can be facilitated, and the first light-transmitting member 130 can be improved. The ease of preparation of piece 120.
  • the edge of each first microlens 111 is covered by the second light-transmitting member. 130 wrapping, so that no matter from the position of the edge of the first microlens 111, the large-angle light can be refracted by the first light-transmitting member 120 and the second light-transmitting member 130 to form a refracted light with a small angle, so that The light is deflected toward its corresponding first microlens 111 , thereby reducing the interference of incident light between adjacent first microlenses 111 .
  • the small-angle refracted light can be used as small-angle incident light entering the first microlens 111, increasing the amount of light received by the first microlens 111, thereby improving the performance of the photoelectric conversion device using the microlens assembly.
  • the second light-transmitting member 130 may have a first height H1 , which is the vertical distance between the top surface of the second light-transmitting member 130 and the bottom surface of the first microlens array 110 .
  • the focal length of the imaging system can be reduced, and the formed object image after passing through the first microlens array 110 can be reduced. Diameter, thereby improving the resolution of the imaging system; Interference occurs between the first microlenses 111. In addition, the amount of light received by the first microlenses 111 can be increased, thereby improving the performance of a photoelectric conversion device using the microlens assembly.
  • the structure of the first light-transmitting member 120 can be selected in various ways. In one example, as shown in FIG. The longitudinal section shape of the first light-transmitting member 120 is a rectangle.
  • the incident light with a large angle enters the first light-transmitting member 120 from various positions on the top surface of the first light-transmitting member 120, and the refraction angle of the light entering the first light-transmitting member 120 can be reduced. Furthermore, the light emitted from the first microlens array 110 becomes the incident light with an incident angle, which reduces the crosstalk of the incident light between adjacent photosensitive elements and improves the performance of the photoelectric conversion device.
  • the projection of the first light-transmitting portion 121 on the first microlens array 110 has an overlapping area with at least one first microlens 111 .
  • part of the projection of the first light-transmitting portion 121 on the first microlens array 110 is located on the first first microlens 111, and the other part is located on the first microlens 111. on the two first microlenses 111.
  • the number of first light-transmitting parts 121 is equal to the number of first microlenses 111, and the projection of one first light-transmitting part 121 on the first microlens array 110 is the same as that of one first light-transmitting part 121.
  • the microlenses 111 are coincident.
  • the loss of light incident at a large angle can be prevented, and at the same time, from both sides of the first light-transmitting portion 121
  • the incident light enters into different first microlenses 111 after being refracted by the first light-transmitting portion 121 , so as to reduce the interference of light between adjacent first microlenses 111 .
  • the light that propagates from the environment medium into the first light-transmitting portion 121 can be converted into light with a shorter wavelength. In this way, the light with a shorter wavelength is imaged by the first microlens array 110 to form a lens with a smaller diameter. object image, thereby improving the resolution of the imaging system.
  • a plurality of first light-transmitting parts 121 can be arranged at intervals on the second light-transmitting member 130, that is, as shown in FIG. 9 and FIG. 10, a plurality of first light-transmitting parts 121 can also be arranged in sequence.
  • a plurality of first light-transmitting parts 121 can also be arranged in sequence.
  • opposite bottoms of adjacent first light-transmitting parts 121 are connected together.
  • the first light-transmitting parts 121 can also reflect the incident light, so as to reflect part of the incident light into different first microlenses 111, reducing the light in the phase Interference occurs between adjacent first microlenses 111 .
  • the longitudinal section shape of the first light-transmitting portion 121 can be semi-elliptical, and its structure is as shown in FIG. 7 and FIG. 8 ,
  • the longitudinal cross-sectional shape of the first light-transmitting portion 121 can also be a trapezoid with a large top and a small bottom, as shown in FIG. .
  • the first light-transmitting portion 121 When the longitudinal cross-sectional shape of the first light-transmitting portion 121 is a trapezoid and a rectangle, along the first direction X, the first light-transmitting portion 121 has a first side and a second side opposite to each other. When on the second side, the first side and the second side play a blocking role, so that part of the light incident on the first side and the second side is reflected, so as to reflect the part of the light into different first microlenses , to reduce light interference between adjacent first microlenses 111 .
  • each first light-transmitting portion 121 includes a second microlens, a plurality of second microlenses form a second microlens array, and one second microlens corresponds to one or A plurality of first microlenses 111, wherein the second microlenses are convex lenses.
  • a plurality of second microlenses and a plurality of first microlenses 111 can be provided in one-to-one correspondence, for example, as shown in FIG. 12 , the number of first microlenses 111 is four, The number of second microlenses is also four, wherein one first microlens 111 is provided with one second microlens.
  • a plurality of second microlenses may not be in one-to-one correspondence with a plurality of first microlenses 111.
  • the number of the first microlenses 111 is four, and the number of the second microlenses is five. .
  • the second microlens has a second focal point S2, and the second focal point S2 is formed in the second light-transmitting member 130, so that the light output through one of the second microlenses is relatively scattered.
  • the state enters one of the first microlenses 111 to increase the amount of light received by the first microlens, thereby ensuring that the light on the photosensitive element layer is also relatively uniform, so that the light received by each photosensitive element in the photosensitive element layer is relatively uniform.
  • the performance of the photoelectric conversion device is improved.
  • the second light-transmitting member 130 has a first thickness H1, and the maximum distance L1 from the second focal point S2 to the top surface of the second light-transmitting member 130 is not greater than half of the first thickness H1.
  • the first thickness of the second light-transmitting member 130 is H1 shown in FIG.
  • the vertical distance, the distance from the second focal point S2 to the top surface of the second light-transmitting member 130 is L1 shown in FIG.
  • Part of the incident light entering from the second lens is guided to different sides of the first microlens 111 , and then the light concentrating effect of the first microlens 111 prevents the light from crosstalking between adjacent photosensitive elements.
  • the focal length of the imaging system can be reduced, and the diameter of the image formed after passing through the first microlens array 110 can be reduced, thereby improving the resolution of the imaging system.
  • curvatures of the second microlenses may be the same or different, which is not limited in this embodiment.
  • the first microlens 111 has a first curvature
  • the second microlens has a second curvature
  • the second curvature is different from the first curvature
  • the curvatures of the first microlens 111 and the second microlens can be the same or different. In this way, the flexibility of the microlens assembly 100 can be increased.
  • an embodiment of the present disclosure also provides a photoelectric conversion device, which can be applied in an imaging system, such as an image sensor.
  • the photoelectric conversion device includes a photosensitive element layer 200 and the microlens assembly 100 in the above embodiments.
  • the photosensitive element layer 200 includes a photosensitive element layer 210, the photosensitive element layer 210 includes a plurality of photosensitive elements 211 and an isolation structure 212 for separating each photosensitive element 211, one photosensitive element 211 corresponds to one or more first microlenses 111, and the photosensitive element 211 is used to receive the light transmitted through one or more first microlenses 111 and convert the optical signal of the light into an electrical signal, wherein the photosensitive element 211 includes a photodiode, but is not limited thereto.
  • the first light-transmitting member 120 and the second light-transmitting member 130 are arranged on the first microlens array 110, wherein the refractive index of the first light-transmitting member 120 is greater than the refractive index of the environment medium, so set, on the one hand
  • the wavelength of the incident light can be changed, so that the light with a shorter wavelength is imaged by the first microlens array to form an object image with a smaller diameter, thereby improving the resolution of the imaging system.
  • the angle of refraction of the incident light passing through the first light-transmitting member 120, the second light-transmitting member 130 and the refracted light entering the photosensitive element layer 200 after passing through the first microlens 111 can be reduced, reducing the Crosstalk occurs between adjacent photosensitive elements 211, improving the performance of the photoelectric conversion device.
  • the photosensitive element layer 200 further includes an interconnection layer 220, and the interconnection layer 220 is used to transmit the electrical signal of the photosensitive element 211
  • the interconnection layer 220 may include a dielectric layer and a plurality of interconnection structures 221 , wherein a plurality of interconnection structures 221 are arranged at intervals in the medium layer, and the plurality of interconnection structures 221 correspond to the plurality of photosensitive elements 211 one-to-one, so as to transmit the optical signal on each photosensitive element 211 to the peripheral circuit for reading out of the circuit.
  • the material of the dielectric layer may include insulating materials such as silicon oxide or silicon nitride, and the material of the interconnection structure 221 may include metal copper.
  • the relative positional relationship between the interconnection layer 220, the photosensitive element layer 210 and the microlens assembly 100 can have multiple options, for example, as shown in Figures 14 to 21, the photosensitive element layer 210 and The microlens assembly 100 is sequentially arranged on the interconnection layer 220, that is to say, the photosensitive element layer 210 is arranged between the microlens assembly 100 and the interconnection layer 220, so that the pixel array in the photoelectric conversion device is a Back Side Illuminated (Back Side) Illuminated (abbreviated as BSI) pixel array; for another example, as shown in FIG. Between the microlens assembly 100, the pixel array in the photoelectric conversion device is a Front Side Illuminated (FSI for short) pixel array.
  • FSI Front Side Illuminated
  • the photosensitive element layer 200 further includes a filter layer 230, and the filter layer 230 includes a plurality of filter regions 231, and one filter region 231 corresponds to one or more first microlenses 111 .
  • the first filter area 231 can only pass light with a wavelength corresponding to red
  • the second filter area 231 can only pass light with a wavelength corresponding to green
  • the third filter area 231 can only pass light with a wavelength corresponding to green.
  • Zone 231 only passes light of wavelengths corresponding to blue.
  • an anti-reflection layer 240 is also provided between the microlens assembly 100 and the photosensitive element layer 200 to reduce the reflection of light, so that more light is transmitted to the photosensitive element 211, ensuring the performance of the image sensor .
  • the material of the anti-reflection layer 240 may be one or any combination of dielectric materials such as silicon oxide, hafnium oxide, silicon nitride, aluminum oxide, and thallium oxide.
  • the anti-reflection layer 240 may be a whole layer structure, or may include a plurality of independent anti-reflection blocks, each anti-reflection block corresponds to a photosensitive element 211 and a first microlens 111.
  • the first microlens 111 has a first focal point S1
  • the first focal point S1 is formed in the photosensitive element layer 210
  • the photosensitive element layer 210 has a second thickness H2
  • the maximum distance L2 from S1 to the bottom surface of the first microlens 111 is not less than one-half of the second thickness H2, so that the focal length of the first microlens 111 can be increased to prevent crosstalk of light into adjacent photosensitive elements 211 , improving the performance of the photoelectric conversion device.
  • An embodiment of the present disclosure also provides an imaging system, wherein the imaging system may include a digital still camera, a digital video camera, an image reading device (such as a scanner), and a mobile phone.
  • the imaging system may include a digital still camera, a digital video camera, an image reading device (such as a scanner), and a mobile phone.
  • the imaging system includes the photoelectric conversion device and the signal processing unit in the above embodiment, the signal processing unit is used to process the output signal output from the photoelectric conversion device, so as to convert the output signal output by the photoelectric conversion device into a digital signal Analog-to-digital conversion, the signal processing unit includes a microcomputer including a central processing unit (CPU), read-only memory (ROM), random-access memory (RAM), and various circuits.
  • the signal processing unit includes a microcomputer including a central processing unit (CPU), read-only memory (ROM), random-access memory (RAM), and various circuits.
  • an embodiment of the present disclosure also provides a method for manufacturing a photoelectric conversion device, including the following steps:
  • Step S100 providing a substrate, and forming a photosensitive element layer in the substrate.
  • the substrate can be made of semiconductor material, and the semiconductor material can be one or more of silicon, germanium, silicon-germanium compound, and silicon-carbide compound.
  • an isolation structure 212 can be formed in the substrate first to isolate the substrate into several independently existing photosensitive regions, and then doping different types of ions into the substrate by ion implantation technology, In order to form a P-type doped region and an N-type doped region in the photosensitive region, the interface between the P-type doped region and the N-type doped region forms a PN junction, that is, a photosensitive diode as a photosensitive element 211 is formed in the photosensitive region .
  • the pixel array in the photoelectric conversion device is a front-illuminated pixel array
  • the layer 230 and the anti-reflection layer 240, wherein, the formation process of the interconnection layer 220, the filter layer 230 and the anti-reflection layer 240 can be a conventional preparation process, which will not be repeated in this embodiment.
  • Step S200 forming a first microlens array on the photosensitive element layer, and the first microlens array forms a first light receiving surface.
  • the first microlens array 110 includes a plurality of first microlenses 111 , top surfaces of the plurality of first microlenses 111 form a first light receiving surface 112 .
  • the first lens material layer 140 can be formed on the substrate on which the photosensitive element layer 200 is formed by using a deposition process. It should be noted that if the antireflection layer 240 has been formed in the above steps, This step may be to form the first lens material layer 140 on the antireflection layer 240 .
  • the first lens material layer 140 is patterned according to the optical design to form a plurality of first microlenses 111 connected to each other or arranged at intervals, the plurality of first microlenses 111 form the first microlens array 110, and the first microlenses
  • the lens array 110 has a first light receiving surface 112, the structure of which is shown in FIG. 29 .
  • a photoresist layer 150 can be formed on the first lens material layer 140, and the photoresist layer 150 is patterned to form a pattern in the photoresist layer 150, so that the patterned light
  • the resist layer is a mask, part of the first lens material layer 140 is removed, and the remaining first lens material layer forms a plurality of first microlenses 111 .
  • Step S300 Form a first light-transmitting member covering the first light-receiving surface on the first microlens array, the top surface of the first light-transmitting member constitutes the second light-receiving surface, and the light propagating in the environment medium passes through the second light-receiving surface The receiving surface transmits through the first light receiving surface, wherein the refractive index of the first light-transmitting member is greater than that of the environment medium.
  • the refractive index of the first light-transmitting member 120 is greater than the refractive index of the environment medium.
  • the wavelength of the incident light is changed so that the light with a shorter wavelength forms an object image with a smaller diameter after being imaged by the first microlens array, thereby improving the resolution of the imaging system.
  • the refraction angle of the refracted light entering the photosensitive element layer 200 after the incident light passes through the first light-transmitting member 120, the second light-transmitting member 130 and the first microlens 111 in sequence can be reduced, reducing the refraction light in the phase.
  • Crosstalk occurs between adjacent photosensitive elements 211, which improves the performance of the photoelectric conversion device.
  • the photoelectric conversion after the step of forming the first microlens array on the photosensitive element layer, before the step of forming the first light-transmitting member covering the first light-receiving surface on the first microlens array, the photoelectric conversion
  • the device method also includes:
  • a light-transmitting material layer 160 may be formed on the first microlens array 110 by using a deposition process.
  • part of the thickness of the light-transmitting material layer 160 can be removed by etching to form a second light-transmitting member 130, and the second light-transmitting member 130 at least fills the space between adjacent first microlenses 111. and the second light-transmitting member 130 has a flat top surface, wherein the refractive index of the second light-transmitting member 130 is smaller than that of the first light-transmitting member 120 and the first microlens array 110 .
  • the height of the second light-transmitting member 130 can be freely designed, as long as the top surface of the second light-transmitting member 130 is guaranteed to be flat.
  • the step of forming the first light-transmitting member covering the first light-receiving surface on the first microlens array includes:
  • the second lens material layer 170 covering the second light-transmitting member 130 is formed by a deposition process, and the refractive index of the second lens material layer 170 is greater than the refractive index of the first microlens array 110 and the first The refractive index of the light-transmitting member 120 is larger than the refractive index of the environment medium.
  • the second lens material layer 170 is patterned according to the optical design to form the first light-transmitting member 120.
  • the top surface of the first light-transmitting member 120 constitutes the second light-receiving surface 122, and the structure is shown in FIG. 16 and FIG. 17 .
  • the second lens material layer 170 is patterned to form a plurality of first light-transmitting portions 121 connected to each other or arranged at intervals, and the plurality of first light-transmitting portions 121 constitute the second light-transmitting member 130 , which The structure can continue to refer to FIG. 18 to FIG. 21 .
  • each first light-transmitting portion 121 includes a second microlens, a second microlens array composed of a plurality of second microlenses, one second microlens corresponds to one or more first microlenses 111, and the first microlens 111 has a first curvature, the second microlens has a second curvature, and the second curvature is different from the first curvature.
  • the functions of the formed first light-transmitting member 120 and the second light-transmitting member 130 are the same as those of the first light-transmitting member 120 and the second light-transmitting member 130 in Embodiment 1. In this embodiment, No more details here.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

一种微透镜组件(100)、光电转换设备及制造方法和成像系统,涉及半导体技术领域,微透镜组件(100)包括第一微透镜阵列(110)和第一透光件(120),第一透光件(120)设置在第一微透镜阵列(110)上,第一透光件(120)的折射率大于环境介质的折射率。通过在第一微透镜阵列(110)上设置具有高折射率的第一透光件(120),改变入射光的波长,使得具有更短波长的光线经第一微透镜阵列(110)成像后形成具有更小直径的物像,从而提高成像系统的分辨率。

Description

微透镜组件、光电转换设备及制造方法和成像系统
本公开要求于2021年12月24日提交中国专利局、申请号为202111603725.6、申请名称为“微透镜组件、光电转换设备及制造方法和成像系统”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及半导体技术领域,尤其涉及一种微透镜组件、光电转换设备及制造方法和成像系统。
背景技术
图像传感器是利用光电器件的光电转化功能将感光面上的光像转换为与光像成相应比例关系的电信号的光电转换设备,被广泛地应用到电子产品中,其中,较为常见的图像传感器有CMOS图像传感器(CMOS Image Sensor,简称CIS)、电荷耦合图像传感器(Charge-coupled Device,以下简称CCD)。
CIS图像传感器通常包括光敏元件、微透镜阵列以及外围电路,其中,微透镜阵列设置在光敏元件上,外围电路与光敏元件连接,当外界的光线通过微透镜阵列汇集之后,进入光敏元件中,光敏元件能够将光信号转化电信号,该电信号通过外围电路输出成像。
发明内容
本公开实施例的第一方面提供一种微透镜组件,包括:
第一微透镜阵列;
第一透光件,所述第一透光件设置在所述第一微透镜阵列上,所述第一透光件用于将在环境介质中传播的光线传输至所述第一微透镜阵列内,其中,所述第一透光件的折射率大于所述环境介质的折射率。
在一些实施例中,所述第一透光件的折射率大于所述第一微透镜阵列的折射率。
在一些实施例中,还包括第二透光件,所述第二透光件设置在所述第一透光件和所述第一微透镜阵列之间,所述第二透光件的折射率小于所述第一透光件和所述第一微透镜阵列的折射率。
在一些实施例中,所述第一微透镜阵列包括微凸透镜阵列或微凹透镜阵列。
在一些实施例中,所述第一微透镜阵列包括多个第一微透镜,所述第一透光件包括多个第一透光部,所述第一透光部对应一个或多个所述第一微透镜;其中,所述第一微透镜包括凸透镜或凹透镜。
在一些实施例中,每个所述第一透光部包括第二微透镜,多个所述第二微透镜组成的第二微透镜阵列,一个所述第二微透镜对应一个或多个所述第一微透镜。
在一些实施例中,所述第二微透镜具有第二焦点,所述第二焦点形成在所述第二透光件中。
在一些实施例中,所述第二透光件具有第一厚度,所述第二焦点到所述第二透光件顶表面的最大距离不大于所述第一厚度的二分之一。
在一些实施例中,所述第一微透镜具有第一曲率,所述第二微透镜具有第二曲率, 所述第二曲率与所述第一曲率不同。
本公开实施例的第二方面提供一种光电转换设备,包括:感光元件层以及上述实施例中所述的微透镜组件;
所述微透镜组件设置在所述感光元件层上。
在一些实施例中,所述感光元件层包括滤光层,所述滤光层包括多个滤光区,一个所述滤光区对应一个或多个所述第一微透镜。
在一些实施例中,所述感光元件层还包括光敏元件层,所述光敏元件层包括多个光敏元件,一个所述光敏元件对应一个或多个所述第一微透镜。
在一些实施例中,所述第一微透镜具有第一焦点,所述第一焦点形成在所述光敏元件层中,所述光敏元件层具有第二厚度,所述第一焦点到所述第一微透镜底表面的最大距离不小于所述第二厚度的二分之一。
在一些实施例中,还包括抗反射层,所述抗反射层设置在所述微透镜组件与所述感光元件层之间。
本公开实施例的第三方面提供一种成像系统,包括上述实施例所述的光电转换设备;
以及,信号处理单元,所述信号处理单元处理从所述光电转换设备输出的信号。
本公开实施例的第四方面提供一种制造光电转换设备的方法,包括:提供衬底,在所述衬底中形成感光元件层;
在所述感光元件层上形成第一微透镜阵列,所述第一微透镜阵列形成第一光接收面;
在所述第一微透镜阵列上形成覆盖所述第一光接收面的第一透光件,第一透光件的顶面构成第二光接收面,在环境介质中传播的光线通过所述第二光接收面向所述第一光接收面传输,其中,所述第一透光件的折射率大于所述环境介质的折射率。
在一些实施例中,在所述感光元件层上形成第一微透镜阵列的步骤中,包括:
在形成有所述感光元件层的衬底上沉积第一透镜材料层;
形成按照光学设计图形化所述第一透镜材料层,形成多个彼此连结或间隔排布的第一微透镜。
在一些实施例中,在所述感光元件层上形成第一微透镜阵列的步骤之后,在所述第一微透镜阵列上形成覆盖所述第一光接收面的第一透光件的步骤之前,所述方法还包括:
在所述第一微透镜阵列上形成透光材料层,所述透光材料层的折射率小于所述第一微透镜阵列的折射率;
去除部分厚度所述透光材料层,形成第二透光件,所述第二透光件至少填充满相邻的所述第一微透镜之间的区域,且所述第二透光件具有平坦状的顶面,其中,所述第二透光件的折射率小于所述第一透光件和所述第一微透镜阵列的折射率。
在一些实施例中,在所述第一微透镜阵列上形成覆盖所述第一光接收面的第一透光件的步骤中,包括:
形成覆盖所述第二透光件的第二透镜材料层,所述第二透镜材料层的折射率大于所述第一微透镜阵列的折射率和所述第一透光件的折射率;
形成按照光学设计图形化所述第二透镜材料层,形成第一透光件。
在一些实施例中,形成按照光学设计图形化所述第二透镜材料层,形成第一透光件的步骤包括:
图形化所述第二透镜材料层,以形成多个彼此连结或间隔排布的第二透光部,每个所述第二透光部包括第二微透镜,多个所述第二微透镜组成的第二微透镜阵列,一个所述第二微透镜对应一个或多个所述第一微透镜。
本公开实施例所提供的微透镜组件、光电转换设备及制造方法和成像系统中,通过在第一微透镜阵列上设置第一透光件,且第一透光件的折射率大于环境介质的折射率,如此设置,可以缩短经由环境介质中传播的光线传输至第一透光件中的光线的波长,使得具有更短波长的光线经第一微透镜阵列成像后形成具有更小直径的物像,从而提高成像系统的分辨率。
除了上面所描述的本公开实施例解决的技术问题、构成技术方案的技术特征以及由这些技术方案的技术特征所带来的有益效果外,本公开实施例提供的微透镜组件、光电转换设备及制造方法和成像系统所能解决的其他技术问题、技术方案中包含的其他技术特征以及这些技术特征带来的有益效果,将在具体实施方式中作出进一步详细的说明。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为相关技术中提供的微透镜阵列的结构示意图;
图2至图13为本公开实施例提供的微透镜组件的结构示意图;
图14至图22为本公开实施例提供的光电转换设备的结构示意图;
图23为本公开实施例提供的感光元件层的结构示意图;
图24为本公开实施例提供的成像系统的结构示意图;
图25为本公开实施例提供的制造光电转换设备的方法的工艺流程图;
图26为本公开实施例提供的制造光电转换设备的方法中形成光敏元件层的结构示意图;
图27为本公开实施例提供的制造光电转换设备的方法中形成第一透镜材料层的结构示意图;
图28为本公开实施例提供的制造光电转换设备的方法中形成光刻胶层的结构示意图;
图29为本公开实施例提供的制造光电转换设备的方法中形成第一微透镜阵列的结构示意图;
图30为本公开实施例提供的制造光电转换设备的方法中形成透光材料层的结构示意图;
图31为本公开实施例提供的制造光电转换设备的方法中形成第二透光件的结构 示意图一;
图32为本公开实施例提供的制造光电转换设备的方法中形成第二透光件的结构示意图二;
图33为本公开实施例提供的制造光电转换设备的方法中形成第二透镜材料的结构示意图一;
图34为本公开实施例提供的制造光电转换设备的方法中形成第二透镜材料的结构示意图二。
具体实施方式
如图1所示,相关技术中,微透镜阵列10通常包括多个微透镜11,每个微透镜11用于对进入该微透镜11的光线进行汇集,以增强与该微透镜对应的光敏元件能够接收到光的量,但是,随着成像系统向集成化、小尺寸化方向发展,使得微透镜11的尺寸越来越小,根据光线的成像原理可以得知,微透镜11的尺寸越小,所形成物像的直径越大,进而会降低具有该微透镜阵列的成像系统的分辨率。
针对上述的技术问题,在本公开实施例中,通过在第一微透镜阵列上设置第一透光件,且第一透光件的折射率大于环境介质的折射率,如此设置,可以缩短经由环境介质中传播的光线传输至第一透光件中的光线的波长,使得具有更短波长的光线经第一微透镜阵列成像后形成具有更小直径的物像,从而提高成像系统的分辨率。
为了使本公开实施例的上述目的、特征和优点能够更加明显易懂,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其它实施例,均属于本公开保护的范围。
实施例一
如图2至图13所示,本公开实施例提供的微透镜组件100,可以应用的光电转换设备中,比如,可以应用于图像传感器中。
微透镜组件100包括第一微透镜阵列110,第一微透镜阵列110用于设置在光电转化设备中的感光元件层上,以将入射光引导至感光元件层内。
在本实施例中,第一微透镜阵列110包括微凸透镜阵列或微凹透镜阵列,其结构可以如图2和图3所示。
第一微透镜阵列110包括多个第一微透镜111,多个第一微透镜111位于同一层,且多个第一微透镜111可以沿第一方向紧密排列,其结构如图2和图3所示,多个第一微透镜111可以沿第一方向间隔设置,其结构如图4和图5所示,其中,相邻的第一微透镜111之间距离可以相等,也可以不相等,具体地,可以根据的情况进行自由设定。此外,第一方向可以理解为图2中X方向。
第一透光件120设置在第一微透镜阵列110上,用于将环境介质中传播的光线传输至第一微透镜阵列110内,其中,第一透光件120的折射率大于环境介质的折射率。
在本实施例中,如果入射光线直接从空气传播至第一透光件120,则传播介质为 空气,相应地,第一透光件120的折射率大于空气的折射;又比如,如果入射光线从空气传播至其他传播介质中,再由其他传播介质传播至第一透光件120中,则第一透光件120的折射率要大于其他传播介质的折射率。
入射光线经过第一微透镜阵列110之后所形成物像的直径的计算公式:
Figure PCTCN2022089376-appb-000001
其中,λ为入射光的波长,f为第一微透镜的焦距,d为第一微透镜的直径。
由以上的公式可以得知,若是入射光的波长越小,相应地,经过第一微透镜阵列110成像后的物像的直径越小,从而可以提高成像系统的分辨率。
基于上述的理论,本实施例在第一微透镜阵列110上设置第一透光件120,通过第一透光件120的折射率大于环境介质的折射率,根据折射率与波长的关系,折射率越大,波长越小,因此,从环境介质中传递至第一透光件120之后的光线,经过第一透光件120传播之后,会转换成更短波长的光线,如此,更短波长的光线经第一微透镜阵列110成像后形成具有更小直径的物像,从而提高成像系统的分辨率。
此外,需要说明的是,当入射光线通过第一透光件120进入第一微透镜阵列110,不仅可以对缩短入射光线的波长,也可以降低入射光线的折射角,以降低入射光线在相邻的两个第一微透镜111之间发生干扰。
示例性地,继续参考图2和图3所示,假设光线是从空气传播至第一透光件120,并将从空气进入第一透光件120的光线称为入射光线,其具有第一入射角r1,且该入射光线具有大角度,比如,沿第二个第一微透镜111的右边缘的切线方向传播的光线;经过第一透光件120折射后的光线称为第一折射光线,其具有第一折射角r2;经过第一微透镜111折射后的光线称为第二折射光线,其具有第二折射角r3。
其中,空气的折射率记为n1,第一透光件120的折射率记为n2,第一微透镜的折射率为n3。
根据光线在不同介质层传播过程中,折射角度的计算公式:sin(r1)×(n1)=sin(r2)×(n2),由于n2大于n1,使得第一折射角r2小于第一入射角r1,进而使得具有第一入射角的入射光线经过第一透光件120折射之后,第一折射光线朝向第二个第一微透镜111偏折,防止第一折射光线朝向第三个第一微透镜111偏折,进而使得入射光线以较小的入射角进入第一微透镜阵列110内,避免入射光线在相邻的两个第一微透镜111之间发生干扰。
如此设置,具有大角度的入射光线所形成的第二折射光线尽量传输至其中一个第一微透镜111上,进而降低了入射光线在相邻的第一微透镜111之间发生干扰,此外,还可以提高了第一微透镜111所接收的光线的量,进而提高了使用该微透镜组件的光电转换设备的性能。
需要理解的是,第一透光件120与第一微透镜阵列110之间折射率的关系,可以有不同的选择,比如:第一透光件120的折射率可以小于第一微透镜阵列110的折射率,如此设置,入射光线的波长会经过再一次的缩减,使得入射光线具有更小的波长,可以得到更小直径的物像,从而提高成像系统的分辨率;同时,第一透光件120的折射率可以小于第一微透镜阵列110的折射率,使得入射光线再次从光疏进到光密,避免入射光线在相邻的两个第一微透镜111之间发生干扰。
又比如,第一透光件120的折射率可以大于第一微透镜阵列110的折射率,在本 实施例中,通过第一透光件120的设置,已经缩短了进入第一透光件120的光线的波长,以及降低了进入第一透光件120的光线的折射角,即使,第一微透镜阵列110对入射光线进行了一次微扩散,也不会对上述的有益效果造成影响,也可以达到提高光学系统的分辨率和防止入射光线在相邻的两个第一微透镜111之间发生干扰的技术效果。
在本实施例中,第一透光件120的顶面可以为平面,也可以为凹凸不平的,本实施例在此不加限定。
在一些实施例中,如图6至图10所示,微透镜组件100还包括第二透光件130,第二透光件130设置在第一透光件120和第一微透镜阵列110之间,且第二透光件130的折射率小于第一透光件120和第一微透镜阵列110的折射率。
第二透光件130至少部分填充在相邻的第一微透镜111之间,其中,第二透光件130的顶面可以与第一微透镜111的顶面平齐,或者低于第一微透镜111的顶面,又或者是第二透光件130的顶面高于第一微透镜111的顶面,如此设置,可以便于第一透光件120的设置,提高了第一透光件120的制备的便利性。
若第二透光件130的顶面与第一微透镜111的顶面平齐或者高于第一微透镜111的顶面,使得每个第一微透镜111的边缘均被第二透光件130包裹,使得,无论从第一微透镜111的边缘的那个位置入射的大角度光线,均能通过第一透光件120和第二透光件130折射后形成具有小角度的折射光线,使得该光线朝向与其对应的第一微透镜111偏折,进而降低了入射光线在相邻的第一微透镜111之间的干扰。
此外,再以该小角度的折射光线可以作为进入第一微透镜111的小角度入射光线,提高第一微透镜111接收光线的量,进而提高了使用该微透镜组件的光电转换设备的性能。
在本实施例中,如图11所示,第二透光件130可以具有第一高度H1,即第二透光件130的顶面与第一微透镜阵列110的底面之间的垂直距离。
本实施例通过增加第二透光件130沿垂直于第一微透镜阵列110的方向上的高度,一方面,可以减少成像系统的焦距,缩小经过第一微透镜阵列110之后,所成物像的直径,进而提高了成像系统的分辨率;另一方面,使得具有大角度的入射光线所形成的第二折射光线尽量传输至其中一个第一微透镜111上,进而降低了入射光线在相邻的第一微透镜111之间发生干扰,此外,还可以提高第一微透镜111接收光线的量,进而提高了使用该微透镜组件的光电转换设备的性能。
在一些实施例中,第一透光件120的结构可以多种选择,在一示例中,比如,以图6所示,以垂直于第二透光件130的顶面的截面为纵截面,第一透光件120的纵截面形状为矩形。
如此,可以保证大角度的入射光线从第一透光件120的顶面的各个位置处入射至第一透光件120内,均能降低进入第一透光件120内的光线的折射角,进而使得从第一微透镜阵列110出射光线变成具有入射角的入射光线,降低了入射光线在相邻的光敏元件之间的串扰,提高了光电转换设备的性能。
在另一示例中,如图7至图11所示,第一透光件120包括多个第一透光部121,一个第一透光部121对应一个或多个第一微透镜111,也就是说,第一透光部121在 第一微透镜阵列110上的投影与至少一个第一微透镜111具有重叠区域。
比如,以图7所示的方位为例,从左往右,第一透光部121在第一微透镜阵列110上的投影,一部分位于第一个第一微透镜111上,另一部分位于第二个第一微透镜111上。
又比如,图8所示,第一透光部121的个数与第一微透镜111的个数相等,一个第一透光部121在第一微透镜阵列110上的投影,与一个第一微透镜111重合。
在本实施例中,通过在第一微透镜阵列110上设置折射率较大的第一透光部121,可以防止大角度入射光线的损失,同时,使得从第一透光部121的两侧入射的入射光线经过第一透光部121的折射之后,进入不同的第一微透镜111内,降低光线在相邻的第一微透镜111之间发生干扰。同时,可以将从环境介质中传播至第一透光部121内的光线,转换成更短波长的光线,如此,更短波长的光线经第一微透镜阵列110成像后形成具有更小直径的物像,从而提高成像系统的分辨率。
在一些实施例中,多个第一透光部121可以间隔设置在第二透光件130上,即,如图9和图10所示,多个第一透光部121也可以依次连接设置在第二透光件130上,即,如图7和图8所示,相邻的第一透光部121相对的底部连接在一起。
当相邻的第一透光部121之间具有间隔时,第一透光部121还可以对入射光线进行反射,以将部分入射光线反射至不同的第一微透镜111内,降低光线在相邻的第一微透镜111之间发生干扰。
在一示例中,以垂直于第一微透镜阵列110所在的平面的截面为纵截面,第一透光部121的纵截面形状可以为半椭圆形,其结构如图7和图8所示,第一透光部121的纵截面形状还可以为上大下小的梯形,其结构如图9所示,第一透光部121的纵截面形状还可以为矩形,其结构如图10所示。
当第一透光部121的纵截面形状为梯形和矩形时,沿第一方向X,第一透光部121具有相对设置的第一侧面和第二侧面,当入射光线传递至第一侧面和第二侧面上时,第一侧面和第二侧面起到阻挡的作用,使得入射到第一侧面和第二侧面上的部分光线进行反射,以将该部分光线反射至不同的第一微透镜内,降低光线在相邻的第一微透镜111之间发生干扰。
在一些实施例中,如图12和图13所示,每个第一透光部121包括第二微透镜,多个第二微透镜组成第二微透镜阵列,一个第二微透镜对应一个或多个第一微透镜111,其中,第二微透镜为凸透镜。
需要说明的是,在本实施例中,多个第二微透镜与多个第一微透镜111可以一一对应设置,比如,如图12所示,第一微透镜111个数为四个,第二微透镜的个数也为四个,其中,一个第一微透镜111上设置有一个第二微透镜。
多个第二微透镜与多个第一微透镜111可以不一一对应,比如,如图13所示,第一微透镜111的个数为四个,第二微透镜的个数为五个。
其中,如图12所示,第二微透镜具有第二焦点S2,第二焦点S2形成在第二透光件130内,如此设置,使得经过其中一个第二微透镜输出的光线以相对分散的状态进入其中一个第一微透镜111中,增加第一微透镜所接收的光线的量,进而保证感光元件层上光线也比较均匀,使得位于光敏元件层内每个感光元件接收的光线比较均匀, 提高了光电转换设备的性能。
在一些实施例中,第二透光件130具有第一厚度H1,第二焦点S2到第二透光件130的顶表面的最大距离L1不大于第一厚度H1的二分之一。
需要说明的是,第二透光件130的第一厚度为图12中所示的H1,也可以理解为,第二透光件130的顶面与第一微透镜阵列110的底面之间的垂直距离,第二焦点S2到第二透光件130的顶表面的距离为图11中所示L1,在本实施例,通过调控第二焦点S2在第二透光件130中的位置,使从第二透镜进入的入射光线的部分被引导至第一微透镜111的不同侧面,然后通过第一微透镜111的聚光效果防止光线在相邻的光敏元件之间发生串扰效应。
此外,还可以减少成像系统的焦距,缩小经过第一微透镜阵列110之后,所成物像的直径,进而提高了成像系统的分辨率。
需要说明的是,在本实施例中,各个第二微透镜的曲率可以相同,也可以不同,本实施例在此不作限定。
在一些实施例中,第一微透镜111具有第一曲率,第二微透镜具有第二曲率,第二曲率与第一曲率不同。
在保证第二焦点在第二透光件130的前提下,第一微透镜111和第二微透镜的曲率可以相同,也可以不同,如此,可以增加微透镜组件100的灵活性。
实施例二
如图14至图23所示,本公开实施例还提供了一种光电转换设备,光电转换设备可以应用的成像系统中,比如,图像传感器。
光电转换设备包括感光元件层200以及上述实施例中的微透镜组件100。
感光元件层200包括光敏元件层210,光敏元件层210包括多个光敏元件211以及用于分隔各个光敏元件211的隔离结构212,一个光敏元件211对应一个或多个第一微透镜111,光敏元件211用于接收经由一个或者多个第一微透镜111传输的光线,并使得光线的光信号转化为电信号,其中,光敏元件211包括感光二极管,但并不仅限于此。
本实施例通过在第一微透镜阵列110上设置第一透光件120和第二透光件130,其中,第一透光件120的折射率大于环境介质的折射率,如此设置,一方面可以改变入射光的波长,使得具有更短波长的光线经第一微透镜阵列成像后形成具有更小直径的物像,从而提高成像系统的分辨率。另一方面,可以降低入射光线依次经过第一透光件120、第二透光件130以及降低经第一微透镜111后进入到感光元件层200中的折射光线的折射角,降低了折射光线在相邻的光敏元件211之间发生串扰,提高了光电转换设备的性能。
在一些实施例中,感光元件层200还包括互连层220,互连层220用于将光敏元件211的电信号传递出去,其中,互连层220可以包括介质层和多个互连结构221,其中,多个互连结构221间隔设置在介质层内,且多个互连结构221与多个光敏元件211一一对应,以将每个光敏元件211上的光信号传递至外围电路中读出电路中。
其中,介质层的材质可以包括氧化硅或者氮化硅等绝缘材质,互连结构221的材质可以包括金属铜。
在本实施例中,互连层220、光敏元件层210以及微透镜组件100三者之间的相对位置关系可以有多种选择,例如,如图14至图21所示,光敏元件层210和微透镜组件100依次设置在互连层220上,也就是说,光敏元件层210设置在微透镜组件100与互连层220之间,使得,光电转换设备中像素阵列为背面照射式(Back Side Illuminated,简称BSI)像素阵列;又例如,如图22所示,互连层220和微透镜组件100层叠设置在光敏元件层210上,也就是说,互连层220设置在光敏元件层210与微透镜组件100之间,使得,光电转换设备中的像素阵列为正面照射式(Front Side Illuminated,简称FSI)像素阵列。
在一些实施例中,如图23所示,感光元件层200还包括滤光层230,滤光层230包括多个滤光区231,一个滤光区231对应一个或多个第一微透镜111。
本实施例通过多个滤光区的设置,可以得到所需不同波段的光线,以提高光电转换设备的成像效果。
示例性地,以图23所示的方位为例,第一个滤光区231可以仅通过红色对应波长的光线,第二个滤光区231仅通过绿色对应波长的光线,第三个滤光区231仅通过蓝色对应的波长的光线。
在一些实施例中,微透镜组件100与感光元件层200之间还设置有抗反射层240,以降低光线的反射,使得更多的光线被传递至光敏元件211处,保证了图像传感器的性能。其中,抗反射层240的材质可以氧化硅、氧化铪、氮化硅、氧化铝、氧化铊等介电材料中一种或者其任意组合。
需要说明的是,在本实施例中,抗反射层240可以为整层结构,也可以是包括多个独立存在的抗反射块,每个抗反射块对应一个光敏元件211和一个第一微透镜111。
在一些实施例中,继续参考图14和图15,第一微透镜111具有第一焦点S1,第一焦点S1形成在光敏元件层210中,光敏元件层210具有第二厚度H2,第一焦点S1到第一微透镜111的底表面的最大距离L2不小于第二厚度H2的二分之一,如此设置,可以增加第一微透镜111的焦距,防止光线串扰至相邻的光敏元件211中,提高了光电转换设备的性能。
实施例三
本公开实施例还提供了一种成像系统,其中成像系统可以包括数字静态相机、数字摄像机、图像读取装置(比如,扫描仪)以及移动电话等。
如图24所示,成像系统包括上述实施例中光电转换设备以及信号处理单元,信号处理单元用于处理从光电转换设备输出的输出信号,以将光电转换设备输出的输出信号转换成数字信号的模数转换,信号处理单元包括微型计算机和各种电路,该微型计算机包括中央处理单元(CPU)、只读存储器(ROM)、随机存取存储器(RAM)等。
实施例四
如图25所示,本公开实施例还提供了一种制造光电转换设备的方法,包括如下的步骤:
步骤S100:提供衬底,在衬底中形成感光元件层。
衬底可以由半导体材料制成,半导体材料可以为硅、锗、硅锗化合物以及硅碳化 合物中的一种或者多种。
示例性地,如图26所示,可以先在衬底中形成隔离结构212,以将衬底隔离成若干独立存在的感光区,之后通过离子注入技术向衬底中掺杂不同类型的离子,以在感光区内形成P型掺杂区和N型掺杂区,P型掺杂区和N型掺杂区之间的界面形成PN结,即在感光区内形成作为光敏元件211的感光二极管。
需要说明的是,当光电转换设备中的像素阵列为正面照射式的像素阵列,还需要在光敏元件层210的下表面上形成互连层220,在光敏元件层210的上表面上形成滤光层230和抗反射层240,其中,互连层220、滤光层230以及抗反射层240的形成工艺可以为常规的制备工艺,本实施例在此不再多加赘述。
步骤S200:在感光元件层上形成第一微透镜阵列,第一微透镜阵列形成第一光接收面。
其中,第一微透镜阵列110包括多个第一微透镜111,多个第一微透镜111的顶面构成第一光接收面112。
示例性地,如图27所示,可以利用沉积工艺在形成有感光元件层200的衬底上形成第一透镜材料层140,需要说明的是,若是上述步骤中已经形成抗反射层240之后,此步骤可以是在抗反射层240上形成第一透镜材料层140。
之后,形成按照光学设计图形化第一透镜材料层140,形成多个彼此连结或间隔排布的第一微透镜111,多个第一微透镜111组成第一微透镜阵列110,且第一微透镜阵列110具有第一光接收面112,其结构图29所示。
示例性地,如图28所示,可以在第一透镜材料层140上形成光刻胶层150,图形化光刻胶层150以在光刻胶层150内形成图案,以图案化后的光刻胶层为掩膜,去除部分第一透镜材料层140,被保留下来的第一透镜材料层构成多个第一微透镜111。
步骤S300:在第一微透镜阵列上形成覆盖第一光接收面的第一透光件,第一透光件的顶面构成第二光接收面,在环境介质中传播的光线通过第二光接收面向第一光接收面传输,其中,第一透光件的折射率大于环境介质的折射率。
在本实施例中,通过在第一微透镜阵列110上形成折射率较大的第一透光件120,第一透光件120的折射率大于环境介质的折射率,如此设置,一方面可以改变入射光的波长,使得具有更短波长的光线经第一微透镜阵列成像后形成具有更小直径的物像,从而提高成像系统的分辨率。另一方面,可以降低入射光线依次经过第一透光件120、第二透光件130以及第一微透镜111后进入到感光元件层200中的折射光线的折射角,降低了折射光线在相邻的光敏元件211之间发生串扰,提高了光电转换设备的性能。
在一些实施例中,在感光元件层上形成第一微透镜阵列的步骤之后,在第一微透镜阵列上形成覆盖所述第一光接收面的第一透光件的步骤之前,制造光电转换设备的方法还包括:
如图30所示,可以利用沉积工艺在第一微透镜阵列110上形成透光材料层160。
之后,如图31和图32所示,可以刻蚀去除部分厚度的透光材料层160,形成第二透光件130,第二透光件130至少填充满相邻的第一微透镜111之间的区域,且第二透光件130具有平坦状的顶面,其中,第二透光件130的折射率小于第一透光件120和第一微透镜阵列110的折射率。
至于第二透光件130的高度可以自由设计,只要保证第二透光件130的顶面为平面即可。
在一些实施例中,在第一微透镜阵列上形成覆盖第一光接收面的第一透光件的步骤中,包括:
如图33和图34所示,利用沉积工艺形成覆盖第二透光件130的第二透镜材料层170,第二透镜材料层170的折射率大于第一微透镜阵列110的折射率和第一透光件120的折射率,并大于环境介质的折射率。
形成按照光学设计图形化第二透镜材料层170,形成第一透光件120,第一透光件120的顶面构成第二光接收面122,且结构如图16和图17所示。
在一些实施例中,图形化第二透镜材料层170,以形成多个彼此连结或间隔排布的第一透光部121,多个第一透光部121构成第二透光件130,其结构可以继续参考图18至图21。
其中,每个第一透光部121包括第二微透镜,多个第二微透镜组成的第二微透镜阵列,一个第二微透镜对应一个或多个第一微透镜111,第一微透镜111具有第一曲率,第二微透镜具有第二曲率,第二曲率与第一曲率不同。
在本实施例中,所形成第一透光件120和第二透光件130的功能,与实施例一中第一透光件120和第二透光件130的功能相同,本实施例在此不再多加赘述。
本说明书中各实施例或实施方式采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分相互参见即可。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施方式或示例中。
在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。

Claims (20)

  1. 一种微透镜组件,所述微透镜组件包括:
    第一微透镜阵列;
    第一透光件,所述第一透光件设置在所述第一微透镜阵列上,所述第一透光件用于将在环境介质中传播的光线传输至所述第一微透镜阵列内,其中,所述第一透光件的折射率大于所述环境介质的折射率。
  2. 根据权利要求1所述的微透镜组件,其中,所述第一透光件的折射率大于所述第一微透镜阵列的折射率。
  3. 根据权利要求1或2所述的微透镜组件,其中,还包括第二透光件,所述第二透光件设置在所述第一透光件和所述第一微透镜阵列之间,所述第二透光件的折射率小于所述第一透光件和所述第一微透镜阵列的折射率。
  4. 根据权利要求1或2所述的微透镜组件,其中,所述第一微透镜阵列包括微凸透镜阵列或微凹透镜阵列。
  5. 根据权利要求1或2所述的微透镜组件,其中,所述第一微透镜阵列包括多个第一微透镜,所述第一透光件包括多个第一透光部,所述第一透光部对应一个或多个所述第一微透镜;其中,所述第一微透镜包括凸透镜或凹透镜。
  6. 根据权利要求5所述的微透镜组件,其中,每个所述第一透光部包括第二微透镜,多个所述第二微透镜组成的第二微透镜阵列,一个所述第二微透镜对应一个或多个所述第一微透镜。
  7. 根据权利要求6所述的微透镜组件,其中,所述第二微透镜具有第二焦点,所述第二焦点形成在第二透光件中。
  8. 根据权利要求7所述的微透镜组件,其中,所述第二透光件具有第一厚度,所述第二焦点到所述第二透光件顶表面的最大距离不大于所述第一厚度的二分之一。
  9. 根据权利要求7所述的微透镜组件,其中,所述第一微透镜具有第一曲率,所述第二微透镜具有第二曲率,所述第二曲率与所述第一曲率不同。
  10. 一种光电转换设备,包括:感光元件层以及如权利要求1-9任一项所述的微透镜组件;
    所述微透镜组件设置在所述感光元件层上。
  11. 根据权利要求10所述的光电转换设备,其中,所述感光元件层包括滤光层,所述滤光层包括多个滤光区,一个所述滤光区对应一个或多个第一微透镜。
  12. 根据权利要求10所述的光电转换设备,其中,所述感光元件层还包括光敏元件层,所述光敏元件层包括多个光敏元件,一个所述光敏元件对应一个或多个所述第一微透镜。
  13. 根据权利要求12所述的光电转换设备,其中,所述第一微透镜具有第一焦点,所述第一焦点形成在所述光敏元件层中,所述光敏元件层具有第二厚度,所述第一焦点到所述第一微透镜底表面的最大距离不小于所述第二厚度的二分之一。
  14. 根据权利要求11-13任一项所述的光电转换设备,其中,还包括抗反射层,所述抗反射层设置在所述微透镜组件与所述感光元件层之间。
  15. 一种成像系统,包括:
    如权利要求10-14任一项所述的光电转换设备;
    以及,信号处理单元,所述信号处理单元处理从所述光电转换设备输出的信号。
  16. 一种制造光电转换设备的方法,包括:
    提供衬底,在所述衬底中形成感光元件层;
    在所述感光元件层上形成第一微透镜阵列,所述第一微透镜阵列形成第一光接收面;
    在所述第一微透镜阵列上形成覆盖所述第一光接收面的第一透光件,第一透光件的顶面构成第二光接收面,在环境介质中传播的光线通过所述第二光接收面向所述第一光接收面传输,其中,所述第一透光件的折射率大于所述环境介质的折射率。
  17. 根据权利要求16所述的方法,其中,在所述感光元件层上形成第一微透镜阵列的步骤中,包括:
    在形成有所述感光元件层的衬底上沉积第一透镜材料层;
    形成按照光学设计图形化所述第一透镜材料层,形成多个彼此连结或间隔排布的第一微透镜。
  18. 根据权利要求17所述的方法,其中,在所述感光元件层上形成第一微透镜阵列的步骤之后,在所述第一微透镜阵列上形成覆盖所述第一光接收面的第一透光件的步骤之前,所述方法还包括:
    在所述第一微透镜阵列上形成透光材料层,所述透光材料层的折射率小于所述第一微透镜阵列的折射率;
    去除部分厚度所述透光材料层,形成第二透光件,所述第二透光件至少填充满相邻的所述第一微透镜之间的区域,且所述第二透光件具有平坦状的顶面,其中,所述第二透光件的折射率小于所述第一透光件和所述第一微透镜阵列的折射率。
  19. 根据权利要求18所述的方法,其中,在所述第一微透镜阵列上形成覆盖所述第一光接收面的第一透光件的步骤中,包括:
    形成覆盖所述第二透光件的第二透镜材料层,所述第二透镜材料层的折射率大于所述第一微透镜阵列的折射率和所述第二透光件的折射率;
    形成按照光学设计图形化所述第二透镜材料层,形成第一透光件。
  20. 根据权利要求19所述的方法,其中,形成按照光学设计图形化所述第二透镜材料层,形成第一透光件的步骤包括:
    图形化所述第二透镜材料层,以形成多个彼此连结或间隔排布的第二透光部,每个所述透光部包括第二微透镜,多个所述第二微透镜组成的第二微透镜阵列,一个所述第二微透镜对应一个或多个所述第一微透镜。
PCT/CN2022/089376 2021-12-24 2022-04-26 微透镜组件、光电转换设备及制造方法和成像系统 WO2023115774A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111603725.6 2021-12-24
CN202111603725.6A CN116338833A (zh) 2021-12-24 2021-12-24 微透镜组件、光电转换设备及制造方法和成像系统

Publications (1)

Publication Number Publication Date
WO2023115774A1 true WO2023115774A1 (zh) 2023-06-29

Family

ID=86891743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089376 WO2023115774A1 (zh) 2021-12-24 2022-04-26 微透镜组件、光电转换设备及制造方法和成像系统

Country Status (2)

Country Link
CN (1) CN116338833A (zh)
WO (1) WO2023115774A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163866A (ja) * 1992-11-24 1994-06-10 Nikon Corp 固体撮像装置およびその製造方法
CN1643406A (zh) * 2002-03-29 2005-07-20 夏普株式会社 微透镜阵列基板及其制造方法以及使用该基板的投影液晶显示装置
CN1815747A (zh) * 2004-12-24 2006-08-09 东部亚南半导体株式会社 Cmos图像传感器及其制造方法
CN1816915A (zh) * 2003-05-08 2006-08-09 微米技术有限公司 用于图像传感器或显示单元的多微透镜系统
CN102623464A (zh) * 2011-01-28 2012-08-01 佳能株式会社 固态图像传感器和照相机
CN102859692A (zh) * 2011-01-26 2013-01-02 索尼公司 固体摄像装置、固体摄像装置的制造方法和电子机器
CN110400816A (zh) * 2019-08-15 2019-11-01 德淮半导体有限公司 图像传感器及其形成方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163866A (ja) * 1992-11-24 1994-06-10 Nikon Corp 固体撮像装置およびその製造方法
CN1643406A (zh) * 2002-03-29 2005-07-20 夏普株式会社 微透镜阵列基板及其制造方法以及使用该基板的投影液晶显示装置
CN1816915A (zh) * 2003-05-08 2006-08-09 微米技术有限公司 用于图像传感器或显示单元的多微透镜系统
CN1815747A (zh) * 2004-12-24 2006-08-09 东部亚南半导体株式会社 Cmos图像传感器及其制造方法
CN102859692A (zh) * 2011-01-26 2013-01-02 索尼公司 固体摄像装置、固体摄像装置的制造方法和电子机器
CN102623464A (zh) * 2011-01-28 2012-08-01 佳能株式会社 固态图像传感器和照相机
CN110400816A (zh) * 2019-08-15 2019-11-01 德淮半导体有限公司 图像传感器及其形成方法

Also Published As

Publication number Publication date
CN116338833A (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
US8648943B2 (en) Solid-state imaging device and camera module
JP5766663B2 (ja) シリコンマイクロレンズ及び金属反射材を有する裏面イメージセンサピクセル
KR101358587B1 (ko) 고체 이미지 센서 및 촬상 시스템
KR101550866B1 (ko) 광학적 크로스토크를 개선하기 위하여, 절연막의 트렌치 상부만을 갭필하여 에어 갭을 형성하는 이미지 센서의 제조방법
US8669632B2 (en) Solid-state imaging device and method for manufacturing the same
CN111741238A (zh) 包括阻光图案的光学传感器以及电子设备
US10686000B1 (en) Solid-state imaging device
US9704901B2 (en) Solid-state imaging devices
KR20180016699A (ko) 이미지 센서
US10804306B2 (en) Solid-state imaging devices having flat microlenses
KR20120020448A (ko) 단위 화소 어레이 및 이를 포함하는 이미지 센서
JP2010093081A (ja) 固体撮像装置およびその製造方法
KR20100036201A (ko) 고체 촬상 장치, 그 제조 방법, 및 전자 기기
JP2014232761A (ja) 固体撮像装置
JP2004047682A (ja) 固体撮像装置
KR100829378B1 (ko) 이미지 센서 및 이의 제조 방법
JP2011243885A (ja) 固体撮像装置及びその製造方法
CN108336103B (zh) 图像传感器及其形成方法
CN109148502B (zh) 图像传感器及其形成方法、成像设备
WO2023115774A1 (zh) 微透镜组件、光电转换设备及制造方法和成像系统
KR102597412B1 (ko) 이미지 센서 및 이를 형성하는 방법
CN114464635A (zh) 固态成像装置
CN114582898A (zh) 影像感测器
KR20070105763A (ko) 시모스 이미지센서 및 그 제작방법
US20220181371A1 (en) Image sensing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909111

Country of ref document: EP

Kind code of ref document: A1