WO2023115756A1 - 无机/有机复合的隔膜及其制备方法 - Google Patents

无机/有机复合的隔膜及其制备方法 Download PDF

Info

Publication number
WO2023115756A1
WO2023115756A1 PCT/CN2022/085953 CN2022085953W WO2023115756A1 WO 2023115756 A1 WO2023115756 A1 WO 2023115756A1 CN 2022085953 W CN2022085953 W CN 2022085953W WO 2023115756 A1 WO2023115756 A1 WO 2023115756A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic
prepolymer
solid electrolyte
inorganic layer
organic
Prior art date
Application number
PCT/CN2022/085953
Other languages
English (en)
French (fr)
Inventor
庄志
吴惠康
潘星星
刘倩倩
鲍晋珍
程跃
Original Assignee
上海恩捷新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海恩捷新材料科技有限公司 filed Critical 上海恩捷新材料科技有限公司
Publication of WO2023115756A1 publication Critical patent/WO2023115756A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field related to battery diaphragms, and in particular to an ion conductor/organic solid electrolyte composite diaphragm and a preparation method thereof.
  • the separator is the basic component of the lithium battery. Its main function is to separate the positive and negative electrodes of the battery and only allow the electrolyte ions to pass through to prevent the two electrodes from contacting and short-circuiting. Its characteristics have a direct impact on the performance of the battery. For example, the performance of the separator can determine The interface structure and internal resistance of the battery directly affect the capacity, cycle life, safety and stability of the battery.
  • Coated separators containing inorganic oxides such as alumina can effectively improve the thermal stability and electrolyte retention capacity of the separator, thereby improving the performance of lithium batteries, but it does not substantially improve the conductivity.
  • coated separators containing inorganic solid electrolytes such as lithium lanthanum zirconium oxide (LLZO) or lithium aluminum titanium phosphate (LATP) can improve the lithium ion conductivity of the separator, but it is difficult to form densely packed continuous ions due to inorganic solid electrolytes.
  • the conduction network affects the lithium ion conduction ability of the separator.
  • some inorganic solid electrolytes have poor stability to lithium metal, making it difficult to form a stable interface, which in turn affects battery life.
  • the present invention expects to provide a composite diaphragm and a preparation method thereof, which is based on a diaphragm containing an inorganic layer, and performs in-situ polymerization in the internal pores of the inorganic layer and on the surface to form an organic polymer as an organic material. Solid electrolyte to solve the current difficulties encountered by the separator.
  • the invention provides an inorganic/organic composite diaphragm, which includes: a base film, an inorganic layer and an organic solid electrolyte, the inorganic layer is formed on the base film and has internal pores, and the organic solid electrolyte is filled inside the inorganic layer In the pores and distributed on the surface of the inorganic layer, the organic solid electrolyte includes an organic polymer, which is formed by in-situ polymerization in the internal pores of the inorganic layer and on the surface of the inorganic layer.
  • the internal porosity of the inorganic layer is less than 30%.
  • the inorganic layer includes one or a combination of inorganic solid electrolytes and inorganic ceramics.
  • the inorganic solid electrolyte includes one or a combination of oxide solid electrolytes and sulfide solid electrolytes.
  • the oxide solid electrolyte includes lithium lanthanum zirconium oxide, lithium titanium aluminum phosphate, garnet-type oxide Li x Ln 3 M 2 O 12 or a combination of more, wherein Ln is La or Y , M is Zr, Nb, Sn, Sb, Te, Hf or Ta, and x is between 3 and 7.
  • the sulfide solid electrolyte includes one or a combination of LGPS, LPS, LPSCl, LSnPS, LSiPS, LGSiPS, LAlPS, LGS, LGZS, LSiS, and LSA1S.
  • the inorganic solid electrolyte includes one or more of garnet-type conductive materials, sulfide-type conductive materials, perovskite-type conductive materials, LiSiON-type conductive materials, LiPON-type conductive materials, and Li3N-type conductive materials The combination.
  • the inorganic ceramics include one or more combinations of alumina, silicon oxide, metal oxides, metal nitrides, metal phosphides, metal sulfides, and metal borides.
  • the organic polymer includes one of polyethers, polycarbonates, polyvinylidene fluoride, polyurethanes, polyacrylonitriles, polyimides, polyacrylic acids, and polyacrylic acid metal salts or a combination of several.
  • the organic solid electrolyte further includes a lithium salt.
  • the organic solid electrolyte further includes a lithium salt and a plasticizer.
  • the lithium salt includes lithium hexafluorophosphate, lithium dioxalate borate, lithium bistrifluoromethanesulfonyl imide, lithium bisfluorosulfonyl imide, lithium perchlorate, lithium difluorooxalate borate, lithium tetrafluoroborate one or a combination of more.
  • the plasticizer includes ethylene carbonate, propylene carbonate, ethyl methyl carbonate, dimethyl carbonate, diethyl carbonate, fluoroethylene carbonate, difluoroethylene carbonate, vinyl chloride, 1 , Combination of one or more of 3-dioxolane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, tetraethylene glycol dimethyl ether, 1,3-propane sultone, succinonitrile .
  • the present invention also provides a preparation method of an inorganic/organic composite membrane, which includes:
  • a base film is provided; an inorganic layer is formed on the base film, and the inorganic layer has internal pores; a prepolymer is filled in the internal pores of the inorganic layer and distributed on the surface of the inorganic layer; the prepolymer In-situ polymerization of the body in the internal pores of the inorganic layer and on the surface of the inorganic layer to form an organic polymer, thereby obtaining an organic solid electrolyte, which is filled in the internal pores of the inorganic layer and distributed on the surface of the inorganic layer and include organic polymers.
  • the in-situ polymerization is carried out by standing at room temperature, heating or light irradiation.
  • the prepolymer includes one or more combinations of cyclic ether compounds and polyethylene glycol diglycidyl ether.
  • the inorganic layer includes one or a combination of inorganic solid electrolytes and inorganic ceramics.
  • the inorganic solid electrolyte includes one or a combination of oxide solid electrolytes and sulfide solid electrolytes.
  • the oxide solid electrolyte includes lithium lanthanum zirconium oxide, lithium titanium aluminum phosphate, garnet-type oxide Li x Ln 3 M 2 O 12 or a combination of more, wherein Ln is La or Y , M is Zr, Nb, Sn, Sb, Te, Hf or Ta, and x is between 3 and 7.
  • the sulfide solid electrolyte includes one or a combination of LGPS, LPS, LPSCl, LSnPS, LSiPS, LGSiPS, LAlPS, LGS, LGZS, LSiS, and LSA1S.
  • the inorganic ceramics include one or a combination of alumina, silicon oxide, metal oxide, metal nitride, metal phosphide, metal sulfide, and metal boride.
  • the organic polymer includes one of polyethers, polycarbonates, polyvinylidene fluoride, polyurethanes, polyacrylonitriles, polyimides, polyacrylic acids, and polyacrylic acid metal salts or a combination of several.
  • the present invention forms an organic polymer through in-situ polymerization in the internal pores of the inorganic layer, which can effectively fill the gaps in the inorganic layer and form continuous lithium ion channels, thereby improving the ionic conductivity and stability of the diaphragm. battery performance.
  • the present invention forms an inorganic layer on a surface of the base film and forms an organic polymer through in-situ polymerization in the internal pores and the surface of the inorganic layer, so that the organic polymer can be formed on the inorganic layer on the surface of the base film.
  • a protective layer is formed on the surface of the battery layer, thereby improving the interface stability between the separator and the positive or negative electrode of the battery to improve battery performance.
  • the present invention forms an organic polymer by in-situ polymerization in the internal pores and surfaces of the inorganic layer by forming an inorganic layer on the two surfaces of the base film, so that the organic polymer can be placed on the two surfaces of the base film
  • a protective layer is formed on the surface of the inorganic layer, and then the interface stability between the separator and the positive and negative electrodes of the battery is improved to improve the performance of the battery.
  • FIG. 1 is a schematic structural view of an inorganic/organic composite diaphragm according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of an inorganic/organic composite diaphragm according to another embodiment of the present invention.
  • Fig. 3 is the flowchart of the preparation method of the inorganic/organic composite membrane of another embodiment of the present invention.
  • Fig. 4 is scanning electron micrograph, presents the section of the diaphragm that embodiment 1 obtains;
  • Fig. 5 is scanning electron micrograph, presents the section of the diaphragm that embodiment 4 obtains;
  • FIG. 6 is a graph of time-voltage and time-current, illustrating the voltage and current measured by the diaphragm obtained in Comparative Example 3 as a Li-Cu half-cell assembled as a diaphragm at different times of charge and discharge cycles at normal temperature;
  • Fig. 8 is the graph of the relationship between time and voltage and time and current. The voltage and current measured by the discharge cycle;
  • a specific embodiment of the present invention provides an inorganic/organic composite diaphragm, which includes: a base film 1, an inorganic layer 2 and an organic solid electrolyte 3, the inorganic layer 2 is formed on the base film 1 On one surface and having internal pores, the organic solid electrolyte 3 is filled in the internal pores of the inorganic layer 2 and distributed on one surface of the inorganic layer 2, the organic solid electrolyte 3 includes an organic polymer, and the organic polymer is The internal pores of the inorganic layer 2 and the surface of the inorganic layer 2 are formed by in-situ polymerization.
  • the base film can be a PE base film or a PP base film according to the material, and can be a wet-process base film or a dry-process base film according to the manufacturing process.
  • the internal porosity of the inorganic layer may be greater than 0% and less than 30%.
  • the inorganic layer may include one or a combination of inorganic solid electrolytes and inorganic ceramics.
  • the inorganic solid electrolyte includes one or more combinations of oxide solid electrolyte and sulfide solid electrolyte.
  • the oxide solid electrolyte includes lithium lanthanum zirconium oxide, lithium titanium aluminum phosphate, and a combination of one or more of garnet-type oxides LixLn 3 M 2 O 12 , wherein Ln is La or Y, and M is Zr, Nb, Sn, Sb, Te, Hf or Ta, x is between 3 and 7, and the sulfide solid electrolyte includes one of LGPS, LPS, LPSCl, LSnPS, LSiPS, LGSiPS, LAlPS, LGS, LGZS, LSiS, LSAilS one or more combinations.
  • the inorganic ceramic includes one or more combinations of alumina, silicon oxide, metal oxide, metal nitride, metal phosphide, metal sulfide, and metal boride.
  • the inorganic layer may include one or a combination of inorganic solid electrolytes and inorganic ceramics.
  • the inorganic solid electrolyte includes one or more combinations of garnet-type conductive materials, sulfide-type conductive materials, perovskite-type conductive materials, LiSiON-type conductive materials, LiPON-type conductive materials, and Li3N-type conductive materials.
  • the inorganic ceramic includes one or more combinations of alumina, silicon oxide, metal oxide, metal nitride, metal phosphide, metal sulfide, and metal boride.
  • the organic polymer may include one or more of polyethers, polycarbonates, polyvinylidene fluoride, polyurethanes, polyacrylonitriles, polyimides, polyacrylic acids, and polyacrylic acid metal salts. combination of species.
  • the organic solid electrolyte may further include a lithium salt in addition to the organic polymer.
  • the addition of lithium salts can increase the number of charge carriers in the solid electrolyte to improve the conductivity of the battery, examples of which include lithium hexafluorophosphate, lithium dioxalate borate, lithium bistrifluoromethanesulfonyl imide, lithium bisfluorosulfonyl imide , lithium perchlorate, lithium difluorooxalate borate, lithium tetrafluoroborate or a combination of more.
  • the organic solid electrolyte may further include lithium salts and plasticizers.
  • the addition of lithium salts can increase the number of charge carriers in the solid electrolyte to improve the conductivity of the battery, examples of which include lithium hexafluorophosphate, lithium dioxalate borate, lithium bistrifluoromethanesulfonylimide, bisfluoromethanesulfonimide A combination of one or more of lithium sulfonyl imide, lithium difluorooxalate borate, and lithium tetrafluoroborate.
  • plasticizer can reduce the Tg temperature of organic solid electrolyte (2), to promote the electrical conductivity of battery
  • plasticizer can reduce the Tg temperature of organic solid electrolyte (2), to promote the electrical conductivity of battery
  • its example includes propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, Fluoroethylene carbonate, difluoroethylene carbonate, vinyl chloride, 1,3-dioxolane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, tetraethylene glycol dimethyl ether, 1,3- A combination of one or more of propane sultone and succinonitrile.
  • the structure shown in Figure 2 is based on The two surfaces of the film form an organic/inorganic composite structure and can be in contact with the positive and negative electrodes to improve the interface stability and improve the performance of the battery, which is more conducive to the electrical performance of the battery.
  • FIG. 3 another specific embodiment of the present invention illustrates a kind of preparation method of above-mentioned inorganic/organic composite diaphragm, and its detailed description is as follows:
  • a base film is provided.
  • the base film can be a PE base film or a PP base film according to the material.
  • the base film can be a wet base film or a dry base film according to the manufacturing process.
  • an inorganic layer is formed on the base film, and the inorganic layer has internal pores.
  • an inorganic layer may be formed on one surface of the base film.
  • an inorganic slurry is coated on one surface of the base film, and then dried to form an inorganic layer.
  • inorganic layers may be formed on both surfaces of the base film.
  • the inorganic slurry is coated on the two surfaces of the base film, and then dried to form the inorganic layer.
  • the internal porosity of the inorganic layer may be greater than 0% and less than 30%.
  • the inorganic slurry may include a solvent and a binder in addition to a combination of one or more of inorganic solid electrolytes and inorganic ceramics.
  • the addition of the solvent can dissolve the organic components in the inorganic slurry and disperse the inorganic components in the inorganic slurry, so that the components of the inorganic slurry are evenly distributed on the base film, examples of which include water, methanol, ethanol, iso A combination of one or more of propanol, acetonitrile, acetone, DMAc, NMP, THF, DMF, anhydrous hydrazine, toluene, n-heptane, xylene and anisole.
  • the addition of the binder can stabilize the inorganic layer on the base film, examples of which include one or more combinations of PTFE, FEP copolymer, PFA resin, PCTFF, ECTFE copolymer, ETFE, PVDF, PVF.
  • the weight ratio between the inorganic solid electrolyte or inorganic ceramics and the binder can be 3:1-25:1, preferably 5:1 ⁇ 15:1.
  • the solvent can account for 40wt%-65wt%
  • the inorganic solid electrolyte or inorganic ceramics can account for 30wt%-50wt%
  • the binder can account for 2wt%-10wt%.
  • the weight ratio between the inorganic solid electrolyte and the inorganic ceramics as a whole and the binder can be 3:1 to 25:1, preferably The ratio is 5:1 to 15:1.
  • the solvent can account for 40wt%-65wt%
  • the whole of the inorganic solid electrolyte and inorganic ceramics can account for 30wt%-50wt%
  • the binder can account for 2wt%-10wt%.
  • the inorganic slurry may include a dispersant, a solvent, and a binder in addition to a combination of one or more of inorganic solid electrolytes and inorganic ceramics.
  • a dispersant can make the components in the inorganic layer evenly distributed, and its examples include one or more combinations of polyvinyl alcohol, polyethylene oxide, polyacrylate, and polyvinylpyrrolidone.
  • the addition of the solvent can dissolve the organic components in the inorganic slurry and disperse the inorganic components in the inorganic slurry, so that the components of the inorganic slurry are evenly distributed on the base film, examples of which include water, methanol, ethanol, iso A combination of one or more of propanol, acetonitrile, acetone, DMAc, NMP, THF, DMF, anhydrous hydrazine, toluene, n-heptane, xylene and anisole.
  • the addition of the binder can stabilize the inorganic layer on the base film, examples of which include one or more combinations of PTFE, FEP copolymer, PFA resin, PCTFF, ECTFE copolymer, ETFE, PVDF, PVF.
  • the weight ratio between the inorganic solid electrolyte or inorganic ceramics and the binder can be 3:1-25:1, preferably 5:1 ⁇ 15:1.
  • the solvent can account for 40wt% to 65wt%
  • the inorganic solid electrolyte or inorganic ceramics can account for 30wt% to 50wt%
  • the dispersant can account for 0.05wt% to 0.3wt%
  • the binder It can account for 2wt% to 10wt%.
  • the weight ratio between the inorganic solid electrolyte and the inorganic ceramics as a whole and the binder can be 3:1-25:1 , preferably 5:1-15:1.
  • the solvent can account for 40wt% to 65wt%
  • the whole of the inorganic solid electrolyte and inorganic ceramics can account for 30wt% to 50wt%
  • the dispersant can account for 0.05wt% to 0.3wt%.
  • the binder can account for 2wt% to 10wt%.
  • a prepolymer is filled in the internal pores of the inorganic layer and distributed on the surface of the inorganic layer.
  • the prepolymer can be dropped onto the inorganic layer and coated or the inorganic layer can be soaked in the prepolymer, so that the prepolymer is filled in the internal pores of the inorganic layer and distributed on the surface of the inorganic layer .
  • a prepolymer solution can be dripped on the inorganic layer and coated or the inorganic layer can be soaked in the prepolymer solution, so that the prepolymer solution is filled in the internal pores of the inorganic layer and distributed in the inorganic layer. on the surface of the inorganic layer.
  • the prepolymer is a unit of an organic polymer formed subsequently, such as a monomer or an oligomer, and in order to accelerate the efficiency of filling the internal pores of the inorganic layer and distributing the prepolymer on the surface thereof, the prepolymer It is better to have the characteristic of low viscosity.
  • monomers may include cyclic ether compounds; cyclic ether compounds may contain one or more oxygen atoms, or may contain single or multiple ring structures, or may contain carbon-carbon double bonds, or may contain 1 or multiple substituents.
  • the cyclic ether compound may be substituted or unsubstituted 1,3-dioxolane or substituted or unsubstituted 1,4-dioxcyclohexane.
  • the oligomer can include polyethylene glycol diglycidyl ether.
  • the lithium salt and the prepolymer can be mixed to form a prepolymer solution, and then the prepolymer solution is added dropwise to the inorganic layer and coated or the inorganic layer Wetting into the prepolymer solution, so that the prepolymer solution is filled in the inner pores of the inorganic layer and distributed on the surface thereof.
  • the prepolymer can account for 90wt%-98wt%, and the lithium salt can account for 2wt%-10wt%.
  • the prepolymer is an oligomer, such as polyethylene glycol diglycidyl ether.
  • the prepolymer is a monomer such as 1,3-dioxolane or vinylene carbonate.
  • the lithium salt, the initiator, and the prepolymer can be mixed into a prepolymer solution, and the prepolymer solution is added dropwise to the inorganic layer and coating or soaking the inorganic layer into the prepolymer solution, so that the prepolymer solution is filled in the internal pores of the inorganic layer and distributed on the surface thereof.
  • Initiators initiate the reaction of the prepolymer to form the organic polymer.
  • the initiator may include common commercial thermal initiators, photoinitiators, or other Lewis acids capable of initiating ring-opening polymerization of epoxy ethers.
  • initiators may include lithium hexafluorophosphate, lithium tetrafluoroborate, tin difluoride, trifluoroacetic acid, boron trifluoride, aluminum trifluoromethanesulfonate, magnesium trifluoromethanesulfonate, trifluoromethyl Tin sulfonate, bismuth trifluoromethanesulfonate, azobisisobutyronitrile, azobisisoheptanonitrile, dimethyl azobisisobutyrate, benzoyl peroxide, tert-butyl benzoyl peroxide , Benzophenone, Benzophenone, 2-Hydroxy-2-Methyl-1-Phenyl Methanone, 1-Hydroxy-Cyclohexyl-1-Phenyl Methanone, 2-Methyl-1-(4- Methylthiophenyl)-2-morpholino-1-propanone, be
  • the prepolymer can account for 90wt%-98wt%, and the lithium salt can account for 2wt%-10wt%.
  • the initiator can account for 0.4wt%-10wt%.
  • the prepolymer is an oligomer, such as polyethylene glycol diglycidyl ether. Still preferably, the prepolymer is a monomer such as 1,3-dioxolane or vinylene carbonate.
  • the organic solid electrolyte obtained later further includes lithium salt and plasticizer
  • the prepolymer solution is added dropwise to the inorganic layer and coat or infiltrate the inorganic layer into the prepolymer solution, so that the prepolymer solution is filled in the internal pores of the inorganic layer and distributed on the surface.
  • the prepolymer can account for 45wt%-53wt%
  • the lithium salt can account for 2wt%-10wt%
  • the plasticizer can account for 35wt%-45wt%.
  • the prepolymer is a monomer such as 1,3-dioxolane or vinylene carbonate.
  • the prepolymer is an oligomer, such as polyethylene glycol diglycidyl ether.
  • the lithium salt, plasticizer, initiator, and prepolymer can be mixed into a prepolymer solution, and the prepolymer
  • the polymer solution is added dropwise to the inorganic layer and coated or the inorganic layer is soaked into the prepolymer solution, so that the prepolymer solution is filled in the internal pores of the inorganic layer and distributed on the surface.
  • Initiators initiate the reaction of the prepolymer to form the organic polymer.
  • the initiator may include common commercial thermal initiators, photoinitiators, or other Lewis acids capable of initiating ring-opening polymerization of epoxy ethers.
  • initiators may include lithium hexafluorophosphate, lithium tetrafluoroborate, tin difluoride, trifluoroacetic acid, boron trifluoride, aluminum trifluoromethanesulfonate, magnesium trifluoromethanesulfonate, trifluoromethyl Tin sulfonate, bismuth trifluoromethanesulfonate, azobisisobutyronitrile, azobisisoheptanonitrile, dimethyl azobisisobutyrate, benzoyl peroxide, tert-butyl benzoyl peroxide , Benzophenone, Benzophenone, 2-Hydroxy-2-Methyl-1-Phenyl Methanone, 1-Hydroxy-Cyclohexyl-1-Phenyl Methanone, 2-Methyl-1-(4- Methylthiophenyl)-2-morpholino-1-propanone, be
  • the prepolymer can account for 45wt%-53wt%, the lithium salt can account for 2wt%-10wt%, and the plasticizer can account for 35wt%-45wt%.
  • the initiator can account for 0.4wt%-10wt%.
  • the prepolymer is a monomer such as 1,3-dioxolane or vinylene carbonate.
  • the prepolymer is an oligomer, such as polyethylene glycol diglycidyl ether.
  • in-situ polymerization can be carried out by standing at room temperature, heating or light irradiation.
  • the method and conditions of in-situ polymerization can be determined according to the type of prepolymer.
  • the heating temperature is 25°C to 80°C.
  • a specific embodiment of the present invention provides a solid-state lithium battery.
  • the solid-state lithium battery includes a positive electrode, a negative electrode, and a solid electrolyte, wherein the solid electrolyte is the above-mentioned solid electrolyte composite membrane.
  • the main improvement of the provided solid-state lithium battery is that a new solid-state electrolyte is used, and the composition of the positive pole and the negative pole and the arrangement (connection mode) of the positive pole, the negative pole and the solid-state electrolyte can be the same as those of the prior art. Those skilled in the art can know it, so it will not be repeated here.
  • LiOH ⁇ H 2 O was selected as the lithium source, La(OH) 3 as the lanthanum source, ZrO 2 as the zirconium source, and Al 2 O 3 as the aluminum source.
  • LiOH ⁇ H 2 O, La(OH) 3 , ZrO 2 , and Al 2 O 3 were weighed respectively according to the stoichiometric ratio (10%-15% excess lithium source). Move the four raw materials into a zirconia ball mill jar, add zirconia balls with a diameter of 10 mm (the weight ratio of the ball to material is 10:1), set the speed at 400 rpm/min, and mill for 10 hours.
  • the mixed mixture powder to a magnesia crucible, put it into a box-type muffle furnace for calcination, and calcine at a temperature of 950°C for 12 hours. After natural cooling, the calcined product powder is obtained.
  • the calcined product powder is then ball milled under the following conditions: the medium is isopropanol, the diameter of the zirconia ball is 3 mm (the weight ratio of the ball to material is 10:1), the set speed is 400 rpm/min, the ball milling time is 24 hours, and then 50 °C for 6 hours, and the obtained powder was ground in a mortar and sieved to obtain an Al-doped LLZO powder (Al-LLZO).
  • Al-doped LLZO powder Al-LLZO
  • solid electrolyte slurry The preparation process of Al-doped LLZO powder (Al-LLZO) and solid electrolyte slurry is as in Example 1.
  • Al-doped LLZO powder Al-LLZO
  • solid electrolyte slurry The preparation process of Al-doped LLZO powder (Al-LLZO) and solid electrolyte slurry is as in Example 1.
  • the prepolymer solution is as in Example 1.
  • prepolymer solution Dropwise to the membrane coated with the LLZO layer on both sides to make it fully wet, penetrate into the internal pores of the LLZO layer and evenly distribute on one surface of the LLZO layer, and let it stand at room temperature for 24 hours.
  • the prepolymer solution is polymerized to obtain a composite membrane.
  • Al-doped LLZO powder Al-LLZO powder
  • the preparation process of the polymer electrolyte prepolymer solution is as in Example 1.
  • the starting materials of Li 3 PO 4 , Al 2 O 3 (200-300 mesh), TiO 2 (40nm) and (NH 4 ) 2 HPO 4 were mixed in stoichiometric ratio (Li 3 PO 4 excess 20 mol%).
  • the mixture, zirconia balls and ethanol were milled in a ball mill for 12 hours, the mass ratio of zirconia balls, mixture and ethanol was 3:1:0.6, and the rotational speed of the planetary ball mill was 300rpm/min.
  • the mixed slurry was then heated in a 70°C oven until the ethanol was completely evaporated. After fully grinding the evaporated powder, it was calcined in a muffle furnace at 900° C. for 10 hours with a heating rate of 3° C./min. After the sintered powder was ground, ball milled again according to the above ratio for 12 hours, then evaporated ethanol at 70°C until completely dry, fully ground and sieved to obtain LATP powder.
  • a wet-process porous base membrane with a thickness of 9 ⁇ m was selected, and the solid electrolyte slurry was coated on one surface of the porous base membrane with a thickness of 3 ⁇ m, and then dried in an oven to obtain a membrane coated with a LATP layer.
  • LiTFSI LiTFSI was stirred and dissolved in 5 ml of vinylene carbonate (VC, about 6.8 g), and then 0.033 g of azobisisobutyronitrile (AIBN) was added, stirred and dissolved to obtain a prepolymer solution.
  • VC vinylene carbonate
  • AIBN azobisisobutyronitrile
  • the prepolymer solution was applied dropwise on one surface of the LATP layer, it was heated at 60° C. for 5 hours to cause the prepolymer solution to undergo a polymerization reaction to obtain a composite diaphragm.
  • the prepolymer solution is as in Example 5.
  • the prepolymer solution was drop-coated on the surface of the above-mentioned double-sided LATP layer, it was heated at 60°C for 5 hours to make the prepolymer solution undergo a polymerization reaction, and thus a composite separator was prepared.
  • Prepolymer solution was prepared as in Example 1.
  • the prepolymer solution After the prepolymer solution is dripped and coated on one surface of the aluminum oxide layer of the diaphragm, it is left to stand at room temperature for 24 hours, so that the prepolymer solution undergoes a polymerization reaction, and a composite diaphragm is obtained.
  • Al-doped LLZO powder Al-LLZO
  • solid electrolyte slurry The preparation process of Al-doped LLZO powder (Al-LLZO) and solid electrolyte slurry is as in Example 1.
  • a wet-process porous base membrane with a thickness of 9 ⁇ m was selected, and the solid electrolyte slurry was coated on one surface of the porous base membrane with a thickness of 3 ⁇ m, and then dried in an oven to obtain a membrane coated with a LATP layer.
  • the preparation process of the alumina slurry is as in Example 7.
  • Coating porosity characterization intercept the cross-section of the sample and take pictures with a scanning electron microscope to obtain the characteristic information of its interface microstructure. Through the software identification and fitting of the contrast difference between the inorganic/organic light and dark background in the cross-sectional organic/inorganic coating, the proportion of inorganic matter in the organic/inorganic coating is estimated, and the porosity of the coating is calculated. As shown in Figures 4 and 5, the membrane cross-sections of Examples 1 and 4 are presented by scanning electron microscopy, respectively. In addition to the base film, the inorganic electrolyte layer is formed on the base film, while the organic polymer is distributed on the inorganic membrane. In the internal pores of the electrolyte layer and on the inorganic electrolyte layer.
  • the stability of the diaphragm on lithium deposition is characterized by the cycle short-circuit time of the Li-Cu half-cell, which reflects the regulation of the diaphragm on lithium deposition and the inhibitory effect of lithium dendrites.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Conductive Materials (AREA)
  • Cell Separators (AREA)

Abstract

提供一种无机/有机复合的隔膜,包括:基膜(1)、无机层(2)及有机固态电解质(3),无机层(2)形成于基膜上(1)且具有内部孔隙,有机固态电解质(3)填充于无机层(2)的内部孔隙中并分布于无机层(2)的表面上,有机固态电解质(3)包括有机聚合物,有机聚合物是于无机层(2)的内部孔隙中与无机层(2)的表面上通过原位聚合反应所形成的。

Description

无机/有机复合的隔膜及其制备方法 技术领域
本发明涉及电池隔膜相关的技术领域,且具体地涉及一种离子导体/有机固态电解质复合的隔膜及其制备方法。
背景技术
隔膜是锂电池的基本组件,主要作用是将电池的正、负极分隔开,只让电解质离子通过以防止两极接触而短路,其特性对电池的性能有直接的影响,例如隔膜的性能能决定电池的界面结构、内阻等,进而直接影响电池的容量、循环寿命及安全稳定性等性能。
含有如氧化铝等无机氧化物的涂敷隔膜,可有效改善隔膜的热稳定性和电解液保持能力,进而改进锂电池的性能,但对电导率的改善没有实质帮助。此外,含如锂镧锆氧(LLZO)或磷酸钛铝锂(LATP)等无机固态电解质的涂敷隔膜,则可以改善隔膜的锂离子电导性能,但由于无机固态电解质难以形成密集堆积的连续离子导通网络,影响隔膜的锂离子导通能力,同时部分无机固态电解质对锂金属的稳定性较差,难以形成稳定的界面,进而影响电池寿命。
发明内容
有鉴于此,本发明期望提供一种复合隔膜及其制备方法,其以含有无机层的膜片为主体,并在无机层的内部孔隙中与表面上进行原位聚合反应形成有机聚合物作为有机固态电解质,以解决隔膜目前所遭 遇的难题。
为达到上述目的,本发明的技术方案是这样实现的:
本发明提供一种无机/有机复合的隔膜,其包括:基膜、无机层及有机固态电解质,所述无机层形成于基膜上且具有内部孔隙,所述有机固态电解质填充于无机层的内部孔隙中并分布于无机层的表面上,所述有机固态电解质包括有机聚合物,有机聚合物是于无机层的内部孔隙中与无机层的表面上通过原位聚合反应所形成的。
较佳地,所述无机层的内部孔隙率小于30%。
较佳地,所述无机层包括无机固态电解质、无机陶瓷中的一种或多种的组合。
较佳地,所述无机固态电解质包括氧化物固态电解质、硫化物固态电解质中的一种或多种的组合。
较佳地,所述氧化物固态电解质包括锂镧锆氧、磷酸钛铝锂、石榴石型氧化物Li xLn 3M 2O 12中的一种或多种的组合,其中Ln是La或Y,M是Zr、Nb、Sn、Sb、Te、Hf或Ta,x介于3~7。
较佳地,所述硫化物固态电解质包括LGPS、LPS、LPSCl、LSnPS、LSiPS、LGSiPS、LAlPS、LGS、LGZS、LSiS、LSAlS中的一种或多种的组合。
较佳地,所述无机固态电解质包括石榴石型导电材料、硫化物类导电材料、钙钛矿型导电材料、LiSiON型导电材料、LiPON型导电材料、Li3N型导电材料中的一种或多种的组合。
较佳地,所述无机陶瓷包括氧化铝、氧化硅、金属氧化物、金属 氮化物、金属磷化物、金属硫化物、金属硼化物中的一种或多种的组合。
较佳地,所述有机聚合物包括聚醚类、聚碳酸酯类、聚偏氟乙烯、聚氨酯类、聚丙烯腈类、聚酰亚胺、聚丙烯酸类、聚丙烯酸金属盐类中的一种或多种的组合。
较佳地,所述有机固态电解质更包括锂盐。
较佳地,所述有机固态电解质更包括锂盐、塑化剂。
较佳地,所述锂盐包括六氟磷酸锂、二草酸硼酸锂、双三氟甲磺酰亚胺锂、双氟磺酰亚胺锂、高氯酸锂、二氟草酸硼酸锂、四氟硼酸锂中的一种或多种的组合。
较佳地,所述塑化剂包括碳酸乙烯酯、碳酸丙烯酯、碳酸甲乙酯、碳酸二甲酯、碳酸二乙酯、氟代碳酸乙烯酯、双氟代碳酸乙烯酯、氯乙烯、1,3-二氧戊环、乙二醇二甲醚、乙二醇二乙醚、四乙二醇二甲醚、1,3-丙烷磺内酯、丁二腈中的一种或多种的组合。
本发明还提供一种无机/有机复合的隔膜的制备方法,其包括:
提供基膜;于所述基膜上形成无机层,且无机层具有内部孔隙;将一前聚体填充于所述无机层的内部孔隙中并分布于无机层的表面上;使所述前聚体在无机层的内部孔隙中及无机层的表面上原位聚合以形成有机聚合物,藉此得到有机固态电解质,所述有机固态电解质填充于无机层的内部孔隙中并分布于无机层的表面上且包括有机聚合物。
较佳地,所述原位聚合采用室温静置、加热或光照进行的。
较佳地,所述前聚体包括环状醚化合物、聚乙二醇二缩水甘油醚中的一种或多种的组合。
较佳地,所述无机层包括无机固态电解质、无机陶瓷中的一种或多种的组合。
较佳地,所述无机固态电解质包括氧化物固态电解质、硫化物固态电解质中的一种或多种的组合。
较佳地,所述氧化物固态电解质包括锂镧锆氧、磷酸钛铝锂、石榴石型氧化物Li xLn 3M 2O 12中的一种或多种的组合,其中Ln是La或Y,M是Zr、Nb、Sn、Sb、Te、Hf或Ta,x介于3~7。
较佳地,所述硫化物固态电解质包括LGPS、LPS、LPSCl、LSnPS、LSiPS、LGSiPS、LAlPS、LGS、LGZS、LSiS、LSAlS中的一种或多种的组合。
较佳地,所述无机陶瓷包括氧化铝、氧化硅、金属氧化物、金属氮化物、金属磷化物、金属硫化物、金属硼化物中的一种或多种的组合。
较佳地,所述有机聚合物包括聚醚类、聚碳酸酯类、聚偏氟乙烯、聚氨酯类、聚丙烯腈类、聚酰亚胺、聚丙烯酸类、聚丙烯酸金属盐类中的一种或多种的组合。
本发明有益效果如下:
1)本发明藉由于无机层的内部孔隙中通过原位聚合反应形成有机聚合物,可有效填满无机层的空隙,并形成连续锂离子通道,进而提高隔膜的离子电导率及稳定性来改善电池性能。
2)本发明藉由于基膜的一表面上形成无机层并于无机层的内部孔隙与表面上中通过原位聚合反应形成有机聚合物,可使有机聚合物于基膜的此表面上的无机层的表面上形成保护层,进而提高隔膜与电池正极或负极的界面稳定性来改善电池性能。
3)本发明藉由于基膜的二表面上各形成无机层并于无机层的内部孔隙与表面上中通过原位聚合反应形成有机聚合物,可使有机聚合物于基膜的此二表面上的无机层的表面上各形成保护层,进而提高隔膜与电池正极与负极的界面稳定性来改善电池性能。
附图说明
图1为本发明一实施方式的无机/有机复合的隔膜的结构示意图;
图2为本发明另一实施方式的无机/有机复合的隔膜的结构示意图;
图3为本发明另一实施方式的无机/有机复合的隔膜的的制备方法的流程图;
图4为扫描电子显微镜照片,呈现实施例1得到的膜片的截面;
图5为扫描电子显微镜照片,呈现实施例4得到的膜片的截面;
图6为时间-电压以及时间-电流的曲线图,说明对比例3得到的膜片作为隔膜组装的Li-Cu半电池于常温下不同次数的充放电循环测得的电压与电流;
图7为时间-电压以及时间-电流的曲线图,说明对比例3得到的膜片作为隔膜组装的Li-Cu半电池于常温下最後20次的充放电循环测得的电压与电流;
图8为时间与电压以及时间与电流的关系曲线图为时间-电压以及时间-电流的曲线图,说明实施例1得到的膜片作为隔膜组装的Li-Cu半电池于常温下不同次数的充放电循环测得的电压与电流;
组件标号说明
1…基膜
2…无机层
3…有机固态电解质
具体实施方式
以下对本发明的具体实施方式结合附图进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
如图1所示,本发明的一具体实施方式提供一种无机/有机复合的隔膜,其包括:基膜1、无机层2及有机固态电解质3,所述无机层2形成于基膜1的一表面上且具有内部孔隙,所述有机固态电解质3填充于无机层2的内部孔隙中并分布于无机层2的一表面上,所述有机固态电解质3包括有机聚合物,有机聚合物是于无机层2的内部孔隙中与无机层2的表面上通过原位聚合反应所形成的。
具体地,基膜依材料可为PE基膜或PP基膜,而依制程可为湿法基膜或干法基膜。
具体地,无机层的内部孔隙率可大于0%,小于30%。
具体地,无机层可包括无机固态电解质、无机陶瓷中的一种或多种的组合。举例而言,无机固态电解质包括氧化物固态电解质、硫化物固态电解质中的一种或多种的组合。又举例而言,氧化物固态电解质包括锂镧锆氧、磷酸钛铝锂、石榴石型氧化物LixLn 3M 2O 12中的一种或多种的组合,其中Ln是La或Y,M是Zr、Nb、Sn、Sb、Te、Hf或Ta,x介于3~7,硫化物固态电解质包括LGPS、LPS、LPSCl、LSnPS、LSiPS、LGSiPS、LAlPS、LGS、LGZS、LSiS、LSAlS中的一种或多种的组合。再举例而言,无机陶瓷包括氧化铝、氧化硅、金属氧化物、金属氮化物、金属磷化物、金属硫化物、金属硼化物中的一种或多种的组合。
具体地,无机层可包括无机固态电解质、无机陶瓷中的一种或多种的组合。举例而言,无机固态电解质包括石榴石型导电材料、硫化物类导电材料、钙钛矿型导电材料、LiSiON型导电材料、LiPON型导电材料、Li3N型导电材料中的一种或多种的组合。再举例而言,无机陶瓷包括氧化铝、氧化硅、金属氧化物、金属氮化物、金属磷化物、金属硫化物、金属硼化物中的一种或多种的组合。
具体地,有机聚合物可包括聚醚类、聚碳酸酯类、聚偏氟乙烯、聚氨酯类、聚丙烯腈类、聚酰亚胺、聚丙烯酸类、聚丙烯酸金属盐类中的一种或多种的组合。
具体地,除了有机聚合物外,有机固态电解质更可包括锂盐。锂盐的添加可提高固态电解质中的电荷载流子数量,以提升电池的导电性,其实例包括六氟磷酸锂、二草酸硼酸锂、双三氟甲磺酰亚胺锂、双氟磺酰亚胺锂、高氯酸锂、二氟草酸硼酸锂、四氟硼酸锂中的一种或多种的组合。
具体地,除了有机聚合物外,有机固态电解质更可包括锂盐、塑化剂。如前所述,锂盐的添加可提高固态电解质中的电荷载流子数量,以提升电池的导电性,其实例包括六氟磷酸锂、二草酸硼酸锂、双三氟甲磺酰亚胺锂、双氟磺酰亚胺锂、二氟草酸硼酸锂、四氟硼酸锂中的一种或多种的组合。塑化剂的添加可降低有机固态电解质(2)的Tg温度,以提升电池的导电性,其实例包括碳酸丙烯酯、碳酸乙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、氟代碳酸乙烯酯、双氟代碳酸乙烯酯、氯乙烯、1,3-二氧戊环、乙二醇二甲醚、乙二醇二乙醚、四乙二醇二甲醚、1,3-丙烷磺内酯、丁二腈中的一种或多种的组合。
如图2所示,本发明的另一具体实施方式提供一种无机/有机复合的隔膜,其大致上与图1所示的结构相似,除了无机层2形成于基膜1的二表面上,有机固态电解质3分布于每个无机层2的一表面上,有机聚合物是于每个无机层2的表面上通过原位聚合反应所形成的。相较于图1所示的结构仅于基膜的单一表面形成有机/无机复合结构而仅能与正极及负极之一接触来提高界面稳定性而改善电池性能,图2所示的结构于基膜的二表面形成有机/无机复合结构而能与正极及 负极接触来提高界面稳定性而改善电池性能,反而更有助于电池电性的表现。
请参照图3,本发明的另一具体实施方式说明一种上述无机/有机复合的隔膜的制备方法,其详细说明如下:
首先,提供基膜。
具体地,基膜依材料可为PE基膜或PP基膜。
具体地,基膜依制程可为湿法基膜或干法基膜。
其次,于基膜上形成无机层,且无机层具有内部孔隙。
具体地,可于基膜的一表面上形成无机层。举例而言,于基膜的一表面上涂敷无机浆料,之后干燥形成无机层。
具体地,可于基膜的二表面上各形成无机层。举例而言,于基膜的二表面上各涂敷无机浆料,之后干燥形成无机层。
具体地,无机层的内部孔隙率可大于0%,小于30%。
具体地,无机浆料除了包括无机固态电解质、无机陶瓷中的一种或多种的组合外,更可包括溶剂、粘结剂。溶剂的添加可溶解无机浆料中的有机组份并分散无机浆料中的无机组份,以使无机浆料的各组份均匀分布于基膜上,其实例包括水、甲醇、乙醇、异丙醇、乙腈、丙酮、DMAc、NMP、THF、DMF、无水肼、甲苯、正庚烷、二甲苯和苯甲醚中的一种或多种的组合。粘结剂的添加可使无机层稳定于基膜上,其实例包括PTFE、FEP共聚物、PFA树脂、PCTFF、ECTFE共聚物、ETFE、PVDF、PVF中的一种或多种的组合。此外,于无机浆料包括无机固态电解质、无机陶瓷中的一种的条件下,无机固态电 解质或无机陶瓷与粘结剂之间的重量比可为3:1~25:1,较佳地为5:1~15:1。而且,以无机浆料的总重量为依据,溶剂可占40wt%~65wt%,无机固态电解质或无机陶瓷可占30wt%~50wt%,粘结剂可占2wt%~10wt%。于无机浆料包括无机固态电解质、无机陶瓷中的多种的组合的条件下,无机固态电解质与无机陶瓷的整体与粘结剂之间的重量比可为3:1~25:1,较佳地为5:1~15:1。而且,以无机浆料的总重量为依据,溶剂可占40wt%~65wt%,无机固态电解质与无机陶瓷的整体可占30wt%~50wt%,粘结剂可占2wt%~10wt%。
具体地,无机浆料除了包括无机固态电解质、无机陶瓷中的一种或多种的组合外,更可包括分散剂、溶剂、粘结剂。分散剂的添加可使无机层中的各组份分布均匀,其实例包括聚乙烯醇、聚氧化乙烯、聚丙烯酸盐、聚乙烯基吡咯烷酮中的一种或多种的组合。溶剂的添加可溶解无机浆料中的有机组份并分散无机浆料中的无机组份,以使无机浆料的各组份均匀分布于基膜上,其实例包括水、甲醇、乙醇、异丙醇、乙腈、丙酮、DMAc、NMP、THF、DMF、无水肼、甲苯、正庚烷、二甲苯和苯甲醚中的一种或多种的组合。粘结剂的添加可使无机层稳定于基膜上,其实例包括PTFE、FEP共聚物、PFA树脂、PCTFF、ECTFE共聚物、ETFE、PVDF、PVF中的一种或多种的组合。此外,于无机浆料包括无机固态电解质、无机陶瓷中的一种的条件下,无机固态电解质或无机陶瓷与粘结剂之间的重量比可为3:1~25:1,较佳地为5:1~15:1。而且,以无机浆料的总重量为依据,溶剂可占40wt%~65wt%,无机固态电解质或无机陶瓷可占30wt%~50wt%, 分散剂可占0.05wt%~0.3wt%,粘结剂可占2wt%~10wt%。再者,于无机浆料包括无机固态电解质、无机陶瓷中的多种的组合的条件下,无机固态电解质与无机陶瓷的整体与粘结剂之间的重量比可为3:1~25:1,较佳地为5:1~15:1。而且,以无机浆料的总重量为依据,溶剂可占40wt%~65wt%,无机固态电解质与无机陶瓷的整体可占30wt%~50wt%,分散剂可占0.05wt%~0.3wt%,粘结剂可占2wt%~10wt%。
再者,将一前聚体填充于所述无机层的内部孔隙中并分布于无机层的表面上。
具体地,可将前聚体滴加于无机层上并涂布或可将无机层浸润于前聚体,使前聚体填充于所述无机层的内部孔隙中并分布于无机层的表面上。举例而言,可将一前聚体溶液滴加于无机层上并涂布或可将无机层浸润于前聚体溶液,使前聚体溶液填充于所述无机层的内部孔隙中并分布于无机层的表面上。
具体地,前聚体为后续形成的有机聚合物的单元,例如单体或低聚物,而且为加快前聚体填充于无机层的内部孔隙中与分布于其表面上的效率,前聚体具备低黏度的特性为佳。举例而言,单体可包括环状醚化合物;环状醚化合物可含有1个或多个氧原子、或可含有单个或多个环结构、或可含有碳碳双键、或可含有1个或多个取代基。更举例而言,环状醚化合物可为经取代或未经取代的1,3-二氧环戊烷或经取代或未经取代的1,4-二氧环己烷。又举例而言,低聚物可包括聚乙二醇二缩水甘油醚。
具体地,于后续得到的有机固态电解质更包括锂盐的条件下,锂盐及前聚体可混合成前聚体溶液后,将前聚体溶液滴加至无机层并涂布或将无机层浸润至前聚体溶液,使前聚体溶液填充于无机层的内部孔隙中与分布于其表面上。较佳地,以前聚体溶液的总重量为依据,前聚体可占90wt%~98wt%,锂盐可占2wt%~10wt%。较佳地,前聚体为低聚物,例如聚乙二醇二缩水甘油醚。又较佳地,前聚体为单体,例如1,3-二氧环戊烷或碳酸亚乙烯酯。
具体地,于后续得到的有机固态电解质更包括锂盐及引发剂的条件下,锂盐、引发剂及前聚体可混合成前聚体溶液后,将前聚体溶液滴加至无机层并涂布或将无机层浸润至前聚体溶液,使前聚体溶液填充于无机层的内部孔隙中与分布于其表面上。引发剂可启动前聚体形成有机聚合物的反应。举例而言,引发剂可包括常见的商用热引发剂、光引发剂、或其他能引发环氧醚类开环聚合的刘易斯酸。更举例而言,引发剂可包括六氟磷酸锂、四氟硼酸锂、二氟化锡、三氟乙酸、三氟化硼、三氟甲基磺酸铝、三氟甲基磺酸镁、三氟甲基磺酸锡、三氟甲基磺酸铋、偶氮二异丁腈、偶氮二异庚腈、偶氮二异丁酸二甲酯、过氧化苯甲酰、过氧化苯甲酰叔丁酯、苯甲酮、二苯甲酮、2-羟基-2-甲基-1-苯基甲酮、1-羟基-环己基-1-苯基甲酮、2-甲基-1-(4-甲硫基苯基)-2-吗啉基-1-丙酮、安息香双甲醚、4-(N,N-二甲氨基)苯甲酸乙酯、异丙基硫杂蒽酮、4-氯二苯甲酮、邻苯甲酰苯甲酸甲酯、4-甲基二苯甲酮、4-苯基二苯甲酮、4-甲基二甲丙酮中的一种或多种的组合。较佳地,以前聚体溶液的总重量为依据,前聚体可占90wt%~98wt%, 锂盐可占2wt%~10wt%。较佳地,以前聚体的总重量为依据,引发剂可占0.4wt%~10wt%。较佳地,前聚体为低聚物,例如聚乙二醇二缩水甘油醚。又较佳地,前聚体为单体,例如1,3-二氧环戊烷或碳酸亚乙烯酯。
具体地,于后续得到的有机固态电解质更包括锂盐、塑化剂的条件下,锂盐、塑化剂及前聚体可混合成前聚体溶液后,将前聚体溶液滴加至无机层并涂布或将无机层浸润至前聚体溶液,使前聚体溶液填充于无机层的内部孔隙中并分布表面上。较佳地,以前聚体溶液的总重量为依据,前聚体可占45wt%~53wt%,锂盐可占2wt%~10wt%,塑化剂可占35wt%~45wt%。较佳地,前聚体为单体,例如1,3-二氧环戊烷或碳酸亚乙烯酯。又较佳地,前聚体为低聚物,例如聚乙二醇二缩水甘油醚。
具体地,于后续得到的有机固态电解质更包括锂盐、塑化剂及引发剂的条件下,锂盐、塑化剂、引发剂及前聚体可混合成前聚体溶液后,将前聚体溶液滴加至无机层并涂布或将无机层浸润至前聚体溶液,使前聚体溶液填充于无机层的内部孔隙中并分布表面上。引发剂可启动前聚体形成有机聚合物的反应。举例而言,引发剂可包括常见的商用热引发剂、光引发剂、或其他能引发环氧醚类开环聚合的刘易斯酸。更举例而言,引发剂可包括六氟磷酸锂、四氟硼酸锂、二氟化锡、三氟乙酸、三氟化硼、三氟甲基磺酸铝、三氟甲基磺酸镁、三氟甲基磺酸锡、三氟甲基磺酸铋、偶氮二异丁腈、偶氮二异庚腈、偶氮二异丁酸二甲酯、过氧化苯甲酰、过氧化苯甲酰叔丁酯、苯甲酮、二 苯甲酮、2-羟基-2-甲基-1-苯基甲酮、1-羟基-环己基-1-苯基甲酮、2-甲基-1-(4-甲硫基苯基)-2-吗啉基-1-丙酮、安息香双甲醚、4-(N,N-二甲氨基)苯甲酸乙酯、异丙基硫杂蒽酮、4-氯二苯甲酮、邻苯甲酰苯甲酸甲酯、4-甲基二苯甲酮、4-苯基二苯甲酮、4-甲基二甲丙酮中的一种或多种的组合。较佳地,以前聚体溶液的总重量为依据,前聚体可占45wt%~53wt%,锂盐可占2wt%~10wt%,塑化剂可占35wt%~45wt%。较佳地,以前聚体的总重量为依据,引发剂可占0.4wt%~10wt%。较佳地,前聚体为单体,例如1,3-二氧环戊烷或碳酸亚乙烯酯。又较佳地,前聚体为低聚物,例如聚乙二醇二缩水甘油醚。
最后,使所述前聚体在无机层的内部孔隙中及无机层的表面上原位聚合以形成有机聚合物,藉此得到有机固态电解质,所述有机固态电解质填充于无机层的内部孔隙中并分布于无机层的表面上且包括有机聚合物。
具体地,原位聚合可采用室温静置、加热或光照进行的。一般而言,原位聚合的手法及条件可依前聚体的种类而决定。举例而言,加热温度为25℃~80℃。
此外,本发明的一具体实施方式提供一种固态锂电池,固态锂电池包括正极、负极、固态电解质,其中,固态电解质为上述的固态电解质复合膜。
所提供的固态锂电池的主要改进之处在于采用了一种新的固态电解质,而正极及负极的组成与正极、负极与固态电解质的排列方式(连接方式)可以与现有技术相同,对此本领域技术人员均能知悉, 在此不作赘述。
实施例1
选取LiOH·H 2O作为锂源,La(OH) 3作为镧源,ZrO 2作为锆源,Al 2O 3作为铝源。按照化学计量比(锂源过量10%~15%)分别称取LiOH·H 2O、La(OH) 3、ZrO 2、Al 2O 3。将四种原料移入氧化锆球磨罐中,加入10毫米直径的氧化锆小球(球料重量比为10:1),设置转速为400rpm/min,球磨10小时。将混料好的混合物粉末转移至氧化镁坩埚中,放入箱式马弗炉煅烧,煅烧温度为950℃,保温12小时。待自然冷却后,得到煅烧产物粉末。煅烧产物粉末再经过球磨,条件如下:介质为异丙醇,氧化锆磨球直径为3毫米(球料重量比为10:1),设置转速为400rpm/min,球磨时间为24小时,之后50℃干燥6小时,得到的粉体再经过研钵研磨,过筛,得到Al掺杂的LLZO粉体(Al-LLZO)。
将固含量为45%的分散剂0.3克,加到100克去离子水中进行充分搅拌溶解后,加入上述Al-LLZO粉末96克,高速搅拌,即形成LLZO分散液。之后,添加固含量为30%的粘结剂17克,搅拌均匀,最后加入少量表面润湿剂,即形成固态电解质浆料。
选取9μm厚的湿法多孔基膜,将LLZO固态电解质浆料涂敷到多孔基膜的一表面上,涂敷厚度为3μm,之后经过烘箱,干燥,即制得涂布有LLZO层的膜片。
将5ml的1,3-二氧环戊烷(约5.3g)和5ml的乙二醇二甲醚(约4.3325g)混合均匀后,加入0.72g双三氟甲磺酰亚胺锂搅拌溶解, 接着,称取0.076g六氟磷酸锂快速溶解在上述溶液中,制得聚合物电解质的前聚体溶液。
将前聚体溶液滴加于涂布有LLZO层的膜片并使其充分润湿,渗透至LLZO层的内部孔隙并均匀分布于LLZO层的一表面,静置24小时,使前聚体溶液聚合反应充分,即制得复合隔膜。
实施例2
Al掺杂的LLZO粉体(Al-LLZO)及固态电解质浆料制备过程如实施例1。
选取9μm厚的湿法多孔基膜,将LLZO固态电解质浆料涂敷到多孔基膜的一表面上,涂敷厚度为3μm,之后经过烘箱,干燥,即制得涂布有LLZO层的膜片。
称取10g的聚乙二醇二缩水甘油醚后,加入0.72g的双三氟甲磺酰亚胺锂,慢慢加入0.076的克六氟磷酸锂,并搅拌溶解,制得聚合物电解质的前聚体溶液。
把前聚体溶液滴加于涂布有LLZO层的膜片让其充分润湿,并渗透至LLZO层的内部孔隙与均匀分布于LLZO层的一表面,静置24小时,使前聚体溶液发生聚合反应,即制得复合隔膜。
实施例3
Al掺杂的LLZO粉体(Al-LLZO)及固态电解质浆料制备过程如实施例1。
选取9μm厚的湿法多孔基膜,将LLZO固态电解质浆料涂敷到多孔基膜的两侧表面上,涂敷厚度为各1.5μm,之后经过烘箱,干燥, 即制得双面涂布有LLZO层的膜片。
前聚体溶液如实施例1。
把前聚体溶液滴加于两侧涂布有LLZO层的膜片让其充分润湿,并渗透至LLZO层的内部孔隙与均匀分布于LLZO层的一表面,在室温下静置24小时,使前聚体溶液发生聚合反应,即制得复合隔膜。
实施例4
Al掺杂的LLZO粉体(Al-LLZO)制备过程如实施例1。
将固含量为45%的分散剂0.3克,加到100克去离子水中进行充分搅拌溶解后,加入上述Al-LLZO粉末56克,高速搅拌,即形成LLZO分散液。之后,添加固含量为30%的粘结剂10克,搅拌均匀,最后加入少量表面润湿剂,即形成固态电解质浆料。
选取9μm厚的湿法多孔基膜,将LLZO固态电解质浆料涂敷到多孔基膜的一表面上,涂敷厚度为3μm,之后经过烘箱,干燥,即制得涂布有LLZO层的膜片。
聚合物电解质前聚体溶液配制过程如实施例1。
将前聚体溶液滴加于涂布有LLZO层的膜片并使其充分润湿,渗透至LLZO层的内部孔隙并均匀分布于LLZO层的一表面,静置24小时,使前聚体溶液聚合反应充分,即制得复合隔膜。
实施例5
将Li 3PO 4、Al 2O 3(200目~300目)、TiO 2(40nm)和(NH 4) 2HPO 4的起始原料按化学计量比混合(Li 3PO 4过量20mol%)。将混合物、氧化锆球和乙醇在球磨机中球磨12小时,氧化锆球、混合物与乙醇 的质量比为3:1:0.6,行星球磨机转速为300rpm/min。然后将混合浆料在70℃烘箱中加热,直到乙醇完全蒸发为止。将蒸干后的粉末充分研磨后,在马弗炉中于900℃下煅烧10小时,升温速率为3℃/min。烧结完的粉末研磨后,再次按上述比例进行球磨12小时,然后在70℃下蒸发乙醇至完全干燥,充分研磨、过筛得到LATP粉体。
将固含量为37%的分散剂0.5克,加到100克去离子水中进行充分搅拌溶解后,加入上述LATP粉末85克,高速搅拌,即形成LATP分散液。之后,添加固含量为45%的粘结剂8.5克,搅拌均匀,即形成固态电解质浆料。
选取9μm厚的湿法多孔基膜,将固态电解质浆料涂敷到多孔基膜的一表面上,涂敷厚度为3μm,之后经过烘箱,干燥,即制得涂布有LATP层的膜片。
将0.72g的LiTFSI搅拌溶解在5ml的碳酸亚乙烯酯(VC,约6.8g)中,随后,加入0.033g的偶氮二异丁腈(AIBN),搅拌溶解,得到前聚体溶液。
将前聚体溶液滴加涂敷到上述LATP层的一表面上后,于60℃下加热5小时,使前聚体溶液发生聚合反应,即制得复合隔膜。
实施例6
LATP粉末及固态电解质浆料制备过程如实施例5。
选取9μm厚的湿法多孔基膜,将固态电解质浆料涂敷到多孔基膜的两侧表面上,涂敷厚度为各1.5μm,之后经过烘箱,干燥,即制得双面涂布有LATP层的膜片。
前聚体溶液如实施例5。
将前聚体溶液滴加涂敷到上述双面LATP层的表面上后,于60℃下加热5小时,使前聚体溶液发生聚合反应,即制得复合隔膜。
实施例7
将固含量为45%的分散剂0.11克,加到100克去离子水中进行充分搅拌溶解后,加入氧化铝粉末80克,高速搅拌,即形成LLZO分散液。之后,添加固含量为42%的粘结剂14.4克,搅拌均匀,即得氧化铝浆料。
接着,选取9μm厚的湿法多孔基膜,将氧化铝浆料涂敷到多孔基膜的一表面上,涂敷厚度为3μm,经过烘箱,干燥,即制得涂布有氧化铝层的膜片。
前聚体溶液配制如实施例1。
将前聚体溶液滴加涂敷到膜片的氧化铝层的一表面上后,于室温下静置24小时,使前聚体溶液发生聚合反应,即制得复合隔膜。
对比例1
Al掺杂的LLZO粉体(Al-LLZO)及固态电解质浆料制备过程如实施例1。
选取9μm厚的湿法多孔基膜,将LLZO固态电解质浆料涂敷到多孔基膜的一表面上,涂敷厚度为3μm,之后经过烘箱,干燥,即制得涂布有LLZO层的膜片。
对比例2
LATP粉末及固态电解质浆料制备过程如实施例5。
选取9μm厚的湿法多孔基膜,将固态电解质浆料涂敷到多孔基膜的一表面上,涂敷厚度为3μm,之后经过烘箱,干燥,即制得涂布有LATP层的膜片。
对比例3
氧化铝浆料制备过程如实施例7。
接着,选取9μm厚的湿法多孔基膜,将氧化铝浆料涂敷到多孔基膜的一表面上,涂敷厚度为3μm,经过烘箱,干燥,即制得涂布有氧化铝层的膜片。
性能表征分析
涂层孔隙率表征:截取样品横截面,采用扫描电子显微镜拍照的方式,获取其界面微观结构特征信息。通过对截面有机/无机涂层中无机/有机明暗背景对比差异的软件识别和拟合,估算出有机/无机涂层的无机物占比,从而推算出其涂层孔隙率。如图4与5所示,分别为采用扫描电子显微镜拍照的方式呈现实施例1与4的膜片截面,除了基膜外,无机电解质层形成于基膜上,而有机聚合物则分布于无机电解质层的内部孔隙内及无机电解质层上。
离子电导率:将待测隔膜样品组装成2025扣式电池,隔膜夹于两片不锈钢片之间,滴加适量电解液(质量摩尔浓度为1M的LiPF 6溶解于EC/EMC/DMC=1:1:1(vol%))充分浸润隔膜,形成离子阻塞电池。采用电化学工作站测试其交联阻抗谱,根据谱图结果拟合出阻抗值,根据公式σ=L/(R×S)计算得到样品离子电导率。其中,L为样品的厚度,S为样品的片面积,R为阻抗值。
稳定性表征:隔膜对锂沉积稳定性采用Li-Cu半电池循环短路时间加以表征,以此反应隔膜对锂沉积的调控和锂枝晶的抑制效果。具体地,将待测隔膜样品组装成扣式电池,隔膜夹于锂片、铜箔之间,单面涂敷隔膜涂敷面对铜箔,滴加适量电解液(质量摩尔浓度为1M LiTFSI溶解于DOL/DME=1:1(vol%)及1wt%LiNO 3)充分浸润隔膜。采用LAND电池充放仪测试其充放电循环稳定性,设置恒流充放电电流密度恒定为0.25mA/cm 2,时间为30分钟,充电截止电压为1V,直到当充电电压始终低于0.05V的时间记作电池锂枝晶短路时间t。如图6(图7为图6电池循环末期短路局部放大图)与8所示,分别为对比例3与实施例1的膜片作为隔膜的Li-Cu半电池于常温下不同次数的充放电循环电压电流曲线图,可知实施例1的膜片组装的Li-Cu半电池在经过长时间充放电循环(>3400次)后仍能提供稳定的电性能表现,未出现隔膜短路情况,远优于对比例3的循环稳定性(<183次),亦即说明本发明提供的隔膜具备优异的抗枝晶及锂沉积调控能力,对电极具有更好的稳定性,从而在提升电池长期循环性能及安全性方面具备较大潜力。
上述测试结果如以下表1所列:
Figure PCTCN2022085953-appb-000001
Figure PCTCN2022085953-appb-000002
以上涉及到公知常识的内容不作详细描述,本领域的技术人员能够理解。
以上所述仅为本发明的一些具体实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (19)

  1. 一种无机/有机复合的隔膜,其特征在于:包括:
    基膜;
    无机层;及
    有机固态电解质;
    所述无机层形成于基膜上且具有内部孔隙,所述有机固态电解质填充于无机层的内部孔隙中并分布于无机层的表面上,所述有机固态电解质包括有机聚合物,所述有机聚合物是于无机层的内部孔隙中与无机层的表面上通过原位聚合反应所形成的。
  2. 根据权利要求1所述的无机/有机复合的隔膜,其特征在于:
    所述有机聚合物包括聚醚类、聚碳酸酯类、聚偏氟乙烯、聚氨酯类、聚丙烯腈类、聚酰亚胺、聚丙烯酸类、聚丙烯酸金属盐类中的一种或多种的组合。
  3. 根据权利要求2所述的无机/有机复合的隔膜,其特征在于:
    所述基膜为PE基膜或PP基膜;且/或
    所述无机层包括无机固态电解质、无机陶瓷中的一种或多种的组合;且/或
    所述无机层的内部孔隙率小于30%。
  4. 根据权利要求3所述的无机/有机复合的隔膜,其特征在于:
    所述无机固态电解质包括氧化物固态电解质、硫化物固态电解质中的一种或多种的组合,所述氧化物固态电解质包括锂镧锆氧、磷酸 钛铝锂、石榴石型氧化物LixLn 3M 2O 12中的一种或多种的组合,其中Ln是La或Y,M是Zr、Nb、Sn、Sb、Te、Hf或Ta,x介于3~7,所述硫化物固态电解质包括LGPS、LPS、LPSCl、LSnPS、LSiPS、LGSiPS、LAlPS、LGS、LGZS、LSiS、LSAlS中的一种或多种的组合。
  5. 根据权利要求3所述的无机/有机复合的隔膜,其特征在于:
    所述无机固态电解质包括石榴石型导电材料、硫化物类导电材料、钙钛矿型导电材料、LiSiON型导电材料、LiPON型导电材料、Li3N型导电材料中的一种或多种的组合。
  6. 根据权利要求3所述的无机/有机复合的隔膜,其特征在于:
    所述无机陶瓷包括氧化铝、氧化硅、金属氧化物、金属氮化物、金属磷化物、金属硫化物、金属硼化物中的一种或多种的组合。
  7. 根据权利要求2所述的无机/有机复合的隔膜,其特征在于:
    所述有机固态电解质更包括锂盐;或
    所述有机固态电解质更包括锂盐及塑化剂。
  8. 根据权利要求7所述的无机/有机复合的隔膜,其特征在于:
    所述锂盐包括六氟磷酸锂、二草酸硼酸锂、双三氟甲磺酰亚胺锂、双氟磺酰亚胺锂、二氟草酸硼酸锂、四氟硼酸锂中的一种或多种的组合;
    所述塑化剂包括碳酸丙烯酯、碳酸乙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、氟代碳酸乙烯酯、双氟代碳酸乙烯酯、氯乙烯、1,3-二氧戊环、乙二醇二甲醚、乙二醇二乙醚、四乙二醇二甲醚、1,3- 丙烷磺内酯、丁二腈中的一种或多种的组合。
  9. 一种无机/有机复合的隔膜的制备方法,其特征在于:包括:
    提供基膜;
    于所述基膜上形成无机层,且所述无机层具有内部孔隙;
    将一前聚体填充于无机层的内部孔隙中并分布于无机层的表面上;及
    使所述前聚体在无机层的内部孔隙中及无机层的表面上原位聚合以形成有机聚合物,藉此得到有机固态电解质,所述有机固态电解质填充于无机层的内部孔隙中并分布于无机层的表面上且包括有机聚合物。
  10. 根据权利要求9所述的无机/有机复合的隔膜的制备方法,其特征在于:
    所述原位聚合采用室温静置、加热或光照进行的。
  11. 根据权利要求9所述的无机/有机复合的隔膜的制备方法,其特征在于:
    形成无机层的步骤包括:
    于所述基膜上涂敷无机浆料,之后干燥形成无机层。
  12. 根据权利要求11所述的无机/有机复合的隔膜的制备方法,其特征在于:
    所述无机浆料包括无机固态电解质、无机陶瓷中的一种或多种的组合、溶剂、及粘结剂;或
    所述无机浆料包括无机固态电解质、无机陶瓷中的一种或多种的 组合、分散剂、溶剂、及粘结剂。
  13. 根据权利要求12所述的无机/有机复合的隔膜的制备方法,其特征在于:
    所述无机固态电解质、无机陶瓷中的一种或多种的组合与所述粘结剂之间的重量比为3:1~25:1。
  14. 根据权利要求12所述的无机/有机复合的隔膜的制备方法,其特征在于:
    于所述无机浆料包括无机固态电解质、无机陶瓷中的一种或多种的组合、溶剂、及粘结剂的条件下,以所述无机浆料的总重量为依据,所述溶剂占40wt%~65wt%,所述无机固态电解质、无机陶瓷中的一种或多种的组合占30wt%~50wt%,所述粘结剂占2wt%~10wt%;
    于所述无机浆料包括无机固态电解质、无机陶瓷中的一种或多种的组合、分散剂、溶剂、及粘结剂的条件下,以所述无机浆料的总重量为依据,所述溶剂占40wt%~65wt%,所述无机固态电解质、无机陶瓷中的一种或多种的组合占30wt%~50wt%,所述分散剂占0.05wt%~0.3wt%,所述粘结剂占2wt%~10wt%。
  15. 根据权利要求9所述的无机/有机复合的隔膜的制备方法,其特征在于:
    填充前聚体的步骤包括:
    将一前聚体溶液滴加于无机层上并涂布或将无机层浸润于前聚体溶液,使所述前聚体溶液填充于所述无机层的内部孔隙中并分布于无机层的表面上。
  16. 根据权利要求9所述的无机/有机复合的隔膜的制备方法,其特征在于:
    所述前聚体为单体或低聚物,所述单体包括环状醚化合物。
  17. 根据权利要求16所述的无机/有机复合的隔膜的制备方法,其特征在于:
    所述单体包括1,3-二氧环戊烷或碳酸亚乙烯酯,所述低聚物包括聚乙二醇二缩水甘油醚。
  18. 根据权利要求15所述的无机/有机复合的隔膜的制备方法,其特征在于:
    所述前聚体溶液包括锂盐及前聚体;
    所述前聚体溶液包括锂盐、前聚体及引发剂;
    所述前聚体溶液包括锂盐、塑化剂及前聚体;或
    所述前聚体溶液包括锂盐、塑化剂、前聚体及引发剂。
  19. 根据权利要求18所述的无机/有机复合的隔膜的制备方法,其特征在于:
    于所述前聚体溶液包括锂盐及前聚体的条件下,以所述前聚体溶液的总重量为依据,所述前聚体占90wt%~98wt%,所述锂盐占2wt%~10wt%;
    于所述前聚体溶液包括锂盐、前聚体及引发剂的条件下,以所述前聚体溶液的总重量为依据,所述前聚体占90wt%~98wt%,所述锂盐占2wt%~10wt%,而以所述前聚体的总重量为依据,所述引发剂占0.4wt%~10wt%;
    于所述前聚体溶液包括锂盐、塑化剂及前聚体的条件下,以所述前聚体溶液的总重量为依据,所述前聚体占45wt%~53wt%,所述锂盐占2wt%~10wt%,所述塑化剂占35wt%~45wt%;
    于所述前聚体溶液包括锂盐、塑化剂、前聚体及引发剂的条件下,以所述前聚体溶液的总重量为依据,所述前聚体占45wt%~53wt%,所述锂盐占2wt%~10wt%,所述塑化剂占35wt%~45wt%,而以所述前聚体的总重量为依据,所述引发剂占0.4wt%~10wt%。
PCT/CN2022/085953 2021-12-23 2022-04-08 无机/有机复合的隔膜及其制备方法 WO2023115756A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111583875.5A CN114284639B (zh) 2021-12-23 2021-12-23 无机/有机复合的隔膜及其制备方法
CN202111583875.5 2021-12-23

Publications (1)

Publication Number Publication Date
WO2023115756A1 true WO2023115756A1 (zh) 2023-06-29

Family

ID=80874001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085953 WO2023115756A1 (zh) 2021-12-23 2022-04-08 无机/有机复合的隔膜及其制备方法

Country Status (2)

Country Link
CN (1) CN114284639B (zh)
WO (1) WO2023115756A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117080530A (zh) * 2023-08-31 2023-11-17 深圳欣视界科技有限公司 一种锂金属电池及其制备方法和电池组

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284639B (zh) * 2021-12-23 2024-02-02 江西省通瑞新能源科技发展有限公司 无机/有机复合的隔膜及其制备方法
CN114899551A (zh) * 2022-05-30 2022-08-12 安普瑞斯(无锡)有限公司 一种复合膜及含有该膜的锂离子电池
CN115513603A (zh) * 2022-10-28 2022-12-23 华中科技大学 原位聚合的高分子材料复合锂电池隔膜及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751462A (zh) * 2012-07-16 2012-10-24 中国海诚工程科技股份有限公司 一种动力锂离子电池及其复合隔膜
CN106654362A (zh) * 2016-12-07 2017-05-10 珠海光宇电池有限公司 复合固态电解质膜、制备方法及锂离子电池
CN108878751A (zh) * 2018-07-03 2018-11-23 宁德卓高新材料科技有限公司 导电陶瓷复合隔膜和固态电池
CN110459803A (zh) * 2019-08-20 2019-11-15 昆山宝创新能源科技有限公司 复合电解质膜及其制备方法和应用
JP2020007574A (ja) * 2018-07-02 2020-01-16 株式会社日本触媒 無機有機複合膜、及び、電気化学素子用隔膜
CN112018429A (zh) * 2019-05-28 2020-12-01 比亚迪股份有限公司 一种复合固态电解质及其制备方法、固态锂电池
CN114284639A (zh) * 2021-12-23 2022-04-05 上海恩捷新材料科技有限公司 无机/有机复合的隔膜及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751462A (zh) * 2012-07-16 2012-10-24 中国海诚工程科技股份有限公司 一种动力锂离子电池及其复合隔膜
CN106654362A (zh) * 2016-12-07 2017-05-10 珠海光宇电池有限公司 复合固态电解质膜、制备方法及锂离子电池
JP2020007574A (ja) * 2018-07-02 2020-01-16 株式会社日本触媒 無機有機複合膜、及び、電気化学素子用隔膜
CN108878751A (zh) * 2018-07-03 2018-11-23 宁德卓高新材料科技有限公司 导电陶瓷复合隔膜和固态电池
CN112018429A (zh) * 2019-05-28 2020-12-01 比亚迪股份有限公司 一种复合固态电解质及其制备方法、固态锂电池
CN110459803A (zh) * 2019-08-20 2019-11-15 昆山宝创新能源科技有限公司 复合电解质膜及其制备方法和应用
CN114284639A (zh) * 2021-12-23 2022-04-05 上海恩捷新材料科技有限公司 无机/有机复合的隔膜及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117080530A (zh) * 2023-08-31 2023-11-17 深圳欣视界科技有限公司 一种锂金属电池及其制备方法和电池组

Also Published As

Publication number Publication date
CN114284639B (zh) 2024-02-02
CN114284639A (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
WO2023115756A1 (zh) 无机/有机复合的隔膜及其制备方法
KR100884598B1 (ko) 리튬 이온 2차 전지 및 그 고체 전해질
US11955595B2 (en) High-ionic conductivity ceramic-polymer nanocomposite solid state electrolyte
JP4777593B2 (ja) リチウムイオン二次電池の製造方法
CN110323493B (zh) 一种正极极片和聚合物电解质膜的组合片及其制备方法
US11710852B2 (en) Separator for secondary battery and lithium secondary battery including same
JP2011520214A (ja) 高エネルギー高出力電極および電池
US11223088B2 (en) Low-temperature ceramic-polymer nanocomposite solid state electrolyte
CN112599850A (zh) 一种固态电解质复合层及锂离子电池
WO2023087635A1 (zh) 固态电解质复合膜及其制备方法
WO2023024266A1 (zh) 一种包覆型硫化物固态电解质及其制备方法和应用
TWI705601B (zh) 用於全固態鋰電池的鋰離子傳導組成物、固態聚合物電解質及全固態鋰電池
CN108140885B (zh) 用于凝胶聚合物电解质的组合物和凝胶聚合物电解质
KR20200056136A (ko) 전고체 이차전지 및 이의 제작방법
WO2019050618A1 (en) SURFACE COATINGS FOR CERAMIC ELECTROLYTE PARTICLES
EP3696890A1 (en) Reduced llto particles with electronically insulating coatings
JP2017033871A (ja) 負極及びリチウムイオン二次電池並びにその製造方法
US20240113299A1 (en) Silicon-Based Composite Anodes for High Energy Density, High Cycle Life Solid-State Lithium-Ion Battery
US20220247039A1 (en) Long-life lithium-sulfur battery using a novel flexible bi-layer solid state electrolyte
US11967678B2 (en) All solid-state lithium-ion battery incorporating electrolyte-infiltrated composite electrodes
CN111900458A (zh) 一种复合固态电解质及其制备方法
JP2010056093A (ja) リチウムイオン二次電池
US20220263130A1 (en) Gel composite electrolyte membrane for lithium metal batteries
KR20060008049A (ko) 리튬 이차 마이크로 전지용 전극 및 이의 제조 방법
JP7455045B2 (ja) 正極活物質

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909093

Country of ref document: EP

Kind code of ref document: A1