WO2023115638A1 - 滤波器组联合子载波多维索引调制水声通信系统及方法 - Google Patents

滤波器组联合子载波多维索引调制水声通信系统及方法 Download PDF

Info

Publication number
WO2023115638A1
WO2023115638A1 PCT/CN2021/143600 CN2021143600W WO2023115638A1 WO 2023115638 A1 WO2023115638 A1 WO 2023115638A1 CN 2021143600 W CN2021143600 W CN 2021143600W WO 2023115638 A1 WO2023115638 A1 WO 2023115638A1
Authority
WO
WIPO (PCT)
Prior art keywords
index
subcarrier
module
bits
filter bank
Prior art date
Application number
PCT/CN2021/143600
Other languages
English (en)
French (fr)
Inventor
王彪
朱雨男
解方彤
方涛
张友文
Original Assignee
江苏科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏科技大学 filed Critical 江苏科技大学
Publication of WO2023115638A1 publication Critical patent/WO2023115638A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B11/00Transmission systems employing sonic, ultrasonic or infrasonic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/02Transmission systems in which the medium consists of the earth or a large mass of water thereon, e.g. earth telegraphy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the technical field of underwater acoustic communication, in particular to an underwater acoustic multi-carrier communication system and method of filter banks combined with subcarrier multidimensional index modulation (MIM, Multidimensional index modulation).
  • MIM subcarrier multidimensional index modulation
  • Multi-carrier modulation technology can convert high-speed serial transmission into low-speed parallel transmission, increase the duration of symbols, and greatly reduce the degree of inter-symbol interference; related technologies have been widely used in underwater acoustic communication, and become a new generation of wireless communication standard.
  • the multi-carrier efficient underwater acoustic communication technology system represented by Orthogonal Frequency Division Multiplexing (OFDM, Orthogonal Frequency Division Multiplexing) has become increasingly mature.
  • Filter Bank Multi-Carrier (FBMC, Filter Bank Multi-Carrier) technology introduces pulses with good time-frequency localization characteristics as the filter bank of the system.
  • the pulses of FBMC Compared with the rectangular pulses of OFDM, the pulses of FBMC have concentrated characteristics in the time domain and frequency domain are relatively good, so the cyclic prefix is no longer needed, and the system spectrum efficiency is greatly improved.
  • the initial signal modulation method still only uses the traditional MPSK and QAM digital modulation methods, and the most information can be obtained by using such digital modulation methods. It is two-dimensional information (amplitude dimension and phase dimension). In fact, the dimension of digital modulation can be increased by index modulation to effectively improve system performance.
  • index modulation and multi-carrier can effectively improve the spectrum utilization of the system. It has been theoretically verified in the field of terrestrial wireless communication. At present, the research on the combination of index modulation and underwater acoustic multi-carrier communication mainly focuses on the index of the active state of subcarriers. . However, index modulation technology, as a space modulation method to increase information dimension, should have a more general index mapping scheme.
  • the purpose of the present invention is to overcome the existing problems and deficiencies in the prior art, and provide a filter bank joint subcarrier multi-dimensional index modulation underwater acoustic communication system and method.
  • the present invention establishes space-frequency two-dimensional combined index mapping for the prototype pulse and subcarrier states, and through the combined design of the index mapping scheme, part of the transmitted bits are hidden in the activation position information of the filter bank and active subcarriers, which can realize flexible selection of transceivers
  • the filter bank basis function is used to match the complex time-varying underwater acoustic channel state, thereby reducing the bit error rate of the system, and at the same time, it can realize subcarrier state control to further improve the frequency band utilization and anti-interference ability of the system, and effectively improve underwater acoustic multi-carrier communication system performance.
  • the present invention adopts the following technical solutions to achieve.
  • a filter bank joint subcarrier multi-dimensional index modulation underwater acoustic communication system including a sending end and a receiving end;
  • the sending end includes a prototype pulse index module, a bit splitter, a carrier state index module, a constellation mapping module, an FBMC block generator, and a filter bank modulation module;
  • the receiving end includes an equalizer, a detector, a decoder and a bit parallelizer
  • the bit input signal is respectively used as the input signal of the prototype pulse index module and the input signal of the bit splitter; the output signal of the prototype pulse index module is transmitted to the filter bank modulation module; the output signal of the bit splitter is respectively Delivered to carrier state index module, constellation mapping module; The output signal of described carrier state index module, the output signal of constellation mapping module are all delivered to described FBMC block generator; The output signal of described FBMC block generator is delivered to described A filter bank modulation module; the output signal of the filter bank modulation module is used as the output signal of the sending end;
  • the output signal of the sending end is used as the input signal of the equalizer; the output signal of the equalizer is transmitted to the detector; the output signal of the detector is transmitted to the decoder; The output signal is transmitted to the bit parallelizer; the output signal of the bit parallelizer is used as the output signal of the receiving end.
  • the detector includes: a prototype pulse detection module, a subcarrier basis function module, an FBMC block grouper, a carrier state detection module, and a symbol detection module;
  • the decoder includes: a filter index decoding module, a subcarrier index decoding module, and a constellation symbol decoding module;
  • the output signal of the equalizer is transmitted to the prototype pulse detection module; the output signal of the prototype pulse detection module is transmitted to the subcarrier basis function module; the output signal of the subcarrier basis function module is respectively transmitted to the FBMC block grouper, filter index decoding module;
  • the output signal of the FBMC block grouper is passed to the carrier state detection module; the output signal of the carrier state detection module is passed to the symbol detection module; the symbol
  • the output signal of the detection module is delivered to the subcarrier index decoding module and the constellation symbol decoding module respectively; the output signal of the subcarrier index decoding module, the output signal of the constellation symbol decoding module, and the filter index decoding module
  • the output signals of are passed to the bit parallelizer.
  • the steps of the sending method are:
  • Step 1 Part of the bits in the sent binary bit stream are used to select the active prototype pulse index, and the rest of the bits are grouped equally with all subcarriers through the bit splitter. Some bits in each group are used to select the active subcarrier index, and some bits are passed through After quadrature amplitude modulation, it is mapped to the active subcarrier, and each group of data forms a complete transmission data after passing through the FBMC block generator;
  • Step 2 Interleave the real part and imaginary part of the mapped complex constellation symbol for 1/2 period, and perform filter bank multi-carrier modulation through the filter selected by the prototype pulse index in step 1 to form a transmission signal and send it to the underwater acoustic channel for further processing. transmission;
  • the steps of the receiving method are:
  • Step 3 Demodulate and decode the received symbols after channel equalization at the receiving end, and finally combine the outputs to restore the original transmitted binary bit stream.
  • the total number of subcarriers M of the system is determined according to the communication requirements, and the total number of bits is input A; where p 1 bit is used to select the activated filter prototype pulse index, and the remaining B bit information is divided equally by the bit splitter and the subcarriers
  • each part of bits p 3 Llog 2 Q, where Represents the rounding down function, that is, the number of bits of p 1 depends on all alternative prototype filter types N f , and the number of bits of p 2 depends on all possible combinations of subcarriers The number of bits of p 3 depends on the number L of active subcarriers in each group and the modulation dimension Q of the constellation mapping.
  • the p 1 bit is output as the activation filter sequence number F n ⁇ [1,2,...,N f ] of the nth FBMC symbol after passing through the prototype pulse index module; after the p 2 bit passes through the carrier state index module
  • the composite index modulated transmission signal modulated by the F nth filter basis function g n (t) is expressed as
  • step 3 the equalization result of the received signal
  • the detection process is divided into the following steps:
  • Step 1 Perform prototype pulse detection and determine filter bank basis function index information by maximum likelihood detection right perform filter bank demodulation
  • Step 2 Obtain each group of received signals y 1 ⁇ y G through the FBMC block grouper
  • Step 3 Perform subcarrier state detection in groups, and determine the active subcarrier index information of each group through the maximum likelihood criterion At the same time, the data symbols carried on the active subcarriers are used as constellation symbols to be decoded
  • the carrier index and the FBMC prototype pulse selection are jointly indexed, and through the combined design of the index mapping scheme, the state control of the system sub-carrier can be realized, so that it has better frequency band utilization, and the prototype pulse can be realized
  • the type selection can flexibly match the characteristics of complex underwater acoustic channels to further improve system performance.
  • the realization of the present invention can provide a research idea of a high-speed anti-interference multi-carrier system under a new modulation mode for the field of underwater acoustic communication.
  • Fig. 1 is a schematic diagram of a filter bank joint subcarrier multi-dimensional index modulation method of the present invention
  • Fig. 2 is a block diagram of the sending end of a filter bank joint subcarrier multi-dimensional index modulation underwater acoustic communication system of the present invention
  • FIG. 3 is a block diagram of a receiving end of a filter bank joint subcarrier multi-dimensional index modulation underwater acoustic communication system according to the present invention
  • FIG. 4 is a communication mode when spectrum interference exists in a traditional communication system in an embodiment of the present invention.
  • FIG. 5 is an anti-jamming communication method after subcarrier index modulation in an embodiment of the present invention.
  • Fig. 6 is a schematic diagram of the matching of the prototype pulse and the channel extension characteristic in the embodiment of the present invention.
  • a filter bank joint subcarrier multi-dimensional index modulation underwater acoustic communication system and method As shown in FIG. 1 , the multi-dimensional index modulation method of the present invention combines filter bank prototype pulse index mapping and subcarrier state index mapping, and is a combined index modulation in the space and frequency domains.
  • the communication system includes a sending end and a receiving end.
  • the transmitting end includes a prototype pulse index module, a bit splitter, a carrier state index module, a constellation mapping module, an FBMC block generator, and a filter bank modulation module. Determine the total number M of subcarriers of the system according to the communication requirements, and input the total number A of bits.
  • p 3 Llog 2 Q
  • the number of bits of p 2 depends on all possible combinations of subcarriers
  • the number of bits of p 3 depends on the number L of active subcarriers in each group and the modulation dimension Q of the constellation mapping.
  • the complex index modulated transmitted signal modulated by the F nth filter basis function g n (t) is expressed as
  • the receiving end includes an equalizer, a detector, an FBMC block grouper, a decoder, and a bit parallelizer, where the detector includes a prototype pulse detection module, a subcarrier basis function module, a carrier state detection module, a symbol
  • the detection module and the decoder include a filter index decoding module, a subcarrier index decoding module, and a constellation symbol decoding module.
  • the equalization result of the received signal at the receiving end into the detector. First, the prototype pulse detection is performed, and the filter bank basis function index information is determined by maximum likelihood detection
  • is a collection of N f prototype filter bank basis functions. through the number of analysis filter bank pairs Perform demodulation to obtain y, and obtain each group of received signals y 1 ⁇ y G through the FBMC block grouper; perform sub-carrier state detection in groups, and determine the active sub-carrier index information of each group through the maximum likelihood criterion Maximum likelihood detection considers that the symbols carried have 0 and non-zero values, and determines the index position by comparing the posterior probability, among which L subcarriers with higher posterior probability are determined as active subcarriers, and the rest are silent subcarriers Carrier; at the same time, the data symbols carried on the active subcarriers are used as constellation symbols to be decoded
  • Will The corresponding bits are respectively input into the filter index decoding module, the subcarrier index decoding module and the constellation symbol decoding module, and combined by a bit parallelizer to obtain a restored transmission bit stream.
  • Embodiments of the present invention further consider a communication scenario where there is multi-band narrowband interference as shown in FIG. After subcarrier index modulation, multi-band narrowband interference avoidance can be realized, and the effectiveness and reliability of underwater acoustic communication can be improved. Further consider the filter bank prototype pulse adaptation as shown in Fig. 6, so that the pulse dispersion characteristics of the currently used filter bank cover the current underwater acoustic channel dispersion characteristics. Based on the above analysis, the performance of the underwater acoustic communication system with combined sub-carrier multi-dimensional index modulation using the filter bank of the present invention will be greatly improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

一种滤波器组联合子载波多维索引调制水声通信系统及方法。所述系统包括发送端和接收端;所述方法是:在发送端进行联合索引调制,先将FBMC符号的部分比特用于选择激活的原型脉冲索引,对其余发送的信息比特和所有子载波进行分组;再各组中一部分比特用于选择激活的子载波索引,其余比特经星座符号映射调制到激活子载波上,通过滤波器组调制后形成发送信号;经水声信道作用后在接收端解调出三部分发送比特,最后合并各部分译码结果恢复出原始的数据比特。本发明将部分发送比特隐含在滤波器组和活跃子载波的激活位置信息中,灵活选择收发滤波器组基函数来匹配复杂时变的水声信道状态,降低了系统误码率,提高了系统频带利用率和抗干扰能力。

Description

滤波器组联合子载波多维索引调制水声通信系统及方法 技术领域
本发明涉及水声通信技术领域,具体涉及一种滤波器组联合子载波多维索引调制(MIM,Multidimensional index modulation)的水声多载波通信系统及方法。
背景技术
多载波调制技术可将高速串行传输转化为低速并行传输,增加了码元持续时间,使码间干扰程度大为降低;相关技术已被广泛应用于水声通信,并成为新一代的无线通信标准。以正交频分复用技术(OFDM,Orthogonal Frequency Division Multiplexing)为代表的多载波高效水声通信技术体系已经日趋成熟。滤波器组多载波(FBMC,Filter Bank Multi-Carrier)技术引入时频局部化特性良好的脉冲作为系统的滤波器组,相比OFDM的矩形脉冲,FBMC的脉冲在时域和频域的集中特性都比较良好,因此不再需要循环前缀,系统频谱效率大大地提升。然而目前的水声多载波通信技术中,无论是采用OFDM体制还是FBMC体制在信号初始调制方式上依旧是只采用了传统MPSK和QAM式的数字调制方式,采用这样的数字调制方式获得的信息最多是二维信息(幅度维度和相位维度),事实上可以通过索引调制的方式增加数字调制的维度来有效的提高系统性能。
索引调制与多载波的结合可以有效提高系统的频谱利用率在陆地无线通信领域已经得到了理论验证,目前对于索引调制与水声多载波通信相结合的研究主要着眼于对子载波活跃状态的索引。然而索引调制技术作为增加信息维度的空间调制手段,应当存在一种更加泛化的索引映射方案。
发明内容
本发明的目的是为了克服现有技术存在的问题和不足,提供一种滤波器组联合子载波多维索引调制水声通信系统及方法。
本发明对原型脉冲和子载波状态建立空频二维组合索引映射,通过索引映射方案的组合设计将部分发送比特隐含在滤波器组和活跃子载波的激活位置信息中,既能实现灵活选择收 发滤波器组基函数来匹配复杂时变的水声信道状态,从而降低系统误码率,同时又能实现子载波状态控制进一步提高系统的频带利用率和抗干扰能力,有效提升水声多载波通信系统的性能。
为达到上述目的,本发明采用如下技术方案予以实现。
一种滤波器组联合子载波多维索引调制水声通信系统,包括发送端和接收端;
所述发送端包括原型脉冲索引模块、比特分流器、载波状态索引模块、星座映射模块、FBMC块产生器、滤波器组调制模块;
所述接收端包括均衡器、检测器、译码器和比特并流器;
比特输入信号分别作为所述原型脉冲索引模块的输入信号、比特分流器的输入信号;所述原型脉冲索引模块的输出信号传递至所述滤波器组调制模块;所述比特分流器的输出信号分别传递至载波状态索引模块、星座映射模块;所述载波状态索引模块的输出信号、星座映射模块的输出信号均传递至所述FBMC块产生器;所述FBMC块产生器的输出信号传递至所述滤波器组调制模块;所述滤波器组调制模块的输出信号作为所述发送端的输出信号;
所述发送端的输出信号作为所述均衡器的输入信号;所述均衡器的输出信号传递至所述检测器;所述检测器的输出信号传递至所述译码器;所述译码器的输出信号传递至所述比特并流器;所述比特并流器的输出信号作为所述接收端的输出信号。
进一步,所述检测器包括:原型脉冲检测模块、子载波基函数模块、FBMC块分组器、载波状态检测模块、符号检测模块;
进一步,所述译码器包括:滤波器索引译码模块、子载波索引译码模块、星座符号译码模块;
所述均衡器的输出信号传递至所述原型脉冲检测模块;所述原型脉冲检测模块的输出信号传递至所述子载波基函数模块;所述子载波基函数模块的输出信号分别传递至所述FBMC块分组器、滤波器索引译码模块;所述FBMC块分组器的输出信号传递至所述载波状态检测模块;所述载波状态检测模块的输出信号传递至所述符号检测模块;所述符号检测模块的输出信号分别传递至所述子载波索引译码模块、星座符号译码模块;所述子载波索引译码模块的输出信号、星座符号译码模块的输出信号、滤波器索引译码模块的输出信号均传递至所述比特并流器。
一种滤波器组联合子载波多维索引调制水声通信系统的通信方法,包括发送方法和接收方法;
所述发送方法的步骤是:
步骤1:发送的二进制比特流中一部分比特用于选择激活的原型脉冲索引,其余比特经比特分流器与所有子载波平均分组,各组中部分比特用于选择激活的子载波索引,部分比特经正交振幅调制后映射到激活子载波上,各组数据经FBMC块产生器后形成完整发送数据;
步骤2:将映射后的复数星座符号实部虚部交错1/2个周期,通过步骤1中原型脉冲索引所选用的滤波器进行滤波器组多载波调制,形成发送信号送入水声信道进行传输;
所述接收方法的步骤是:
步骤3:在接收端对信道均衡后的接收符号进行解调和译码,最终将输出合并恢复出原始的发送二进制比特流。
进一步,所述步骤1中根据通信需求确定系统的子载波总数M,输入比特总数A;其中p 1比特用来选择激活的滤波器原型脉冲索引,其余B比特信息经比特分流器和子载波平均分为G组,每组p=p 2+p 3比特信息映射到长度为K的子载波组上,A=p 1+B=p 1+(p 2+p 3)G,G=M/K=B/p;每组中仅有L个子载波被激活用于传输星座符号,其余静默子载波被置零,p 2比特用来选择激活的子载波索引,p 3比特经过星座映射成复数符号后调制到活跃子载波上。
进一步,所述各部分比特
Figure PCTCN2021143600-appb-000001
p 3=Llog 2 Q,其中
Figure PCTCN2021143600-appb-000002
表示向下取整函数,即p 1的比特数取决于所有备选的原型滤波器种类N f,p 2的比特数取决于所有可能出现的子载波组合情况
Figure PCTCN2021143600-appb-000003
p 3的比特数取决于各组活跃子载波数量L和星座映射的调制维度Q。
进一步,所述p 1比特经过原型脉冲索引模块后输出为第n个FBMC符号的激活滤波器序号F n∈[1,2,...,N f];p 2比特经过载波状态索引模块后输出为激活子载波序号I g={i g,1,i g,2,...,i g,L},i g,l∈[1,2,...,K],g=1,...,G,l=1,...,L;p 3比特经过星座映射后输出为L个符号s g={s g,1,s g,2,...,s g,L},s g,l∈ζ,g=1,...,G,l=1,...,L,ζ表示Q维的星座集合。
进一步,所述步骤1中FBMC块产生器的输出数据为x=[x(0),...,x(M-1)],x(m)∈{0,ζ},m=0,...,M-1。
进一步,所述步骤2中经第F n号滤波器基函数g n(t)调制的复合索引调制发送信号表示为
Figure PCTCN2021143600-appb-000004
其中,附加相位
Figure PCTCN2021143600-appb-000005
子载波间隔ν和符号周期T满足ν=1/T,a m,n和b m,n是x(m)的实部和虚部,由于静默子载波的引入,部分a m,n和b m,n可能为0值。
进一步,所述步骤3中将接收信号的均衡结果
Figure PCTCN2021143600-appb-000006
送入检测器,检测过程分为如下步骤:
步骤1:进行原型脉冲检测,通过最大似然检测确定滤波器组基函数索引信息
Figure PCTCN2021143600-appb-000007
Figure PCTCN2021143600-appb-000008
进行滤波器组解调;
步骤2:经FBMC块分组器得到各组接收信号y 1~y G
步骤3:分组进行子载波状态检测,通过最大似然准则确定各组活跃子载波索引信息
Figure PCTCN2021143600-appb-000009
同时将活跃子载波上承载的数据符号作为待译码的星座符号
Figure PCTCN2021143600-appb-000010
进一步,所述步骤3中将
Figure PCTCN2021143600-appb-000011
分别输入滤波器索引译码模块、子载波索引译码模块、星座符号译码模块得到相应比特,经比特并流器合并得到恢复的发送比特
本发明具有的优点和有益效果:
本发明将载波索引与FBMC的原型脉冲选择进行联合索引,通过索引映射方案的组合设计,既能实现对系统子载波的状态控制,使其具有更好的频带利用率,又能实现对原型脉冲的类型选择,灵活匹配复杂水声信道特性,进一步提升系统性能。本发明的实现能为水声通信领域提供一种新调制方式下的高速抗干扰多载波系统研究思路。
附图说明
图1为本发明一种滤波器组联合子载波多维索引调制方法示意图;
图2为本发明一种滤波器组联合子载波多维索引调制水声通信系统发送端框图;
图3为本发明一种滤波器组联合子载波多维索引调制水声通信系统接收端框图;
图4为本发明实施例中传统通信系统存在频谱干扰时的通信方式;
图5为本发明实施例中经子载波索引调制后的抗干扰通信方式;
图6为本发明实施例中原型脉冲与信道扩展特性匹配示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附 图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
一种滤波器组联合子载波多维索引调制水声通信系统及方法。如图1所示,本发明所述多维索引调制方法联合了滤波器组原型脉冲索引映射和子载波状态索引映射,是一种空域频域组合索引调制。所述通信系统包括发送端和接收端。
如图2所示,发送端包括原型脉冲索引模块、比特分流器、载波状态索引模块、星座映射模块、FBMC块产生器、滤波器组调制模块。根据通信需求确定系统的子载波总数M,输入比特总数A。
二进制比特流中有p 1比特用来选择激活的滤波器原型脉冲索引,
Figure PCTCN2021143600-appb-000012
表示向下取整函数,即p 1的比特数取决于所有备选的原型滤波器种类N f,经过原型脉冲索引模块后输出为第n个FBMC符号的激活滤波器序号F n∈[1,2,...,N f]。
其余B比特信息经比特分流器和子载波一起平均分为G组,每组p=p 2+p 3比特信息映射到长度为K的子载波组上,A=p 1+B=p 1+(p 2+p 3)G,G=M/K=B/p。每组中仅有L个子载波被激活用于传输星座符号,其余静默子载波被置零,p 2比特用来选择激活的子载波索引,p 3比特经过星座映射成复数符号后调制到活跃子载波上。
Figure PCTCN2021143600-appb-000013
p 3=Llog 2 Q,p 2的比特数取决于所有可能出现的子载波组合情况
Figure PCTCN2021143600-appb-000014
p 3的比特数取决于各组活跃子载波数量L和星座映射的调制维度Q。p 2比特经过载波状态索引模块后输出为激活子载波序号I g={i g,1,i g,2,...,i g,L},i g,l∈[1,2,...,K],g=1,...,G,l=1,...,L;p 3比特经过星座映射后输出为L个符号s g={s g,1,s g,2,...,s g,L},s g,l∈ζ,g=1,...,G,l=1,...,L,ζ表示Q维的星座集合。
表1本发明实施例中N f=4时的一种原型脉冲索引映射表
Figure PCTCN2021143600-appb-000015
表2本发明实施例中
Figure PCTCN2021143600-appb-000016
时的一种载波状态索引映射表
Figure PCTCN2021143600-appb-000017
考虑如表1所示的原型脉冲索引映射N f=4和表2所示的载波状态索引映射情况
Figure PCTCN2021143600-appb-000018
(选取6种载波组合中的C 1~C 4),每个FBMC符号包含M=512个子载波且星座符号采用4QAM调制,则此时p 1=2、p 2=2、p 3=4,G=128,进一步可以计算出发送端产生一个FBMC符号需发送770比特信息。
FBMC块产生器的输出数据为x=[x(0),...,x(M-1)],x(m)∈{0,ζ},m=0,...,M-1。经第F n号滤波器基函数g n(t)调制的复合索引调制发送信号表示为
Figure PCTCN2021143600-appb-000019
其中,附加相位
Figure PCTCN2021143600-appb-000020
子载波间隔ν和符号周期T满足ν=1/T,a m,n和b m,n是x(m)的实部和虚部,由于静默子载波的引入,部分a m,n和b m,n可能为0值。
如图3所示,接收端包括均衡器、检测器、FBMC块分组器、译码器和比特并流器,其中检测器包括原型脉冲检测模块、子载波基函数模块、载波状态检测模块、符号检测模块,译码器包括滤波器索引译码模块、子载波索引译码模块、星座符号译码模块。在接收端将接收信号的均衡结果
Figure PCTCN2021143600-appb-000021
送入检测器。首先进行原型脉冲检测,通过最大似然检测确定滤波器组基函数索引信息
Figure PCTCN2021143600-appb-000022
Figure PCTCN2021143600-appb-000023
其中,η为N f个原型滤波器组基函数集合。通过第
Figure PCTCN2021143600-appb-000024
号分析滤波器组对
Figure PCTCN2021143600-appb-000025
进行解调得到y,经FBMC块分组器得到各组接收信号y 1~y G;分组进行子载波状态检测,通过最大似然准则 确定各组活跃子载波索引信息
Figure PCTCN2021143600-appb-000026
最大似然检测考虑到所承载的符号有0和非0值,通过对比后验概率来确定索引位置,其中L个后验概率较大的子载波被确定为活跃子载波,其余的为静默子载波;同时将活跃子载波上承载的数据符号作为待译码的星座符号
Figure PCTCN2021143600-appb-000027
Figure PCTCN2021143600-appb-000028
分别输入滤波器索引译码模块、子载波索引译码模块、星座符号译码模块得到相应比特,经比特并流器合并得到恢复的发送比特流。
本发明的实施例进一步考虑如图4所示存在多频段窄带干扰的通信场景,未经处理的通信信号会和干扰信号频谱混叠,造成干扰,降低了通信的质量;如图5所示采用子载波索引调制后可实现多频段窄带干扰规避,提高水声通信的有效性和可靠性。进一步考虑如图6所示的滤波器组原型脉冲配适,使得当前所用滤波器组脉冲色散特性覆盖当前水声信道色散特性。综上分析,采用本发明的滤波器组联合子载波多维索引调制水声通信系统在性能上会有较大提升。
虽然结合附图描述了本发明的实施例,但是本领域技术人员可以在不脱离本发明的精神和范围的情况下作出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。

Claims (10)

  1. 一种滤波器组联合子载波多维索引调制水声通信系统,包括发送端和接收端;
    所述发送端包括原型脉冲索引模块、比特分流器、载波状态索引模块、星座映射模块、FBMC块产生器、滤波器组调制模块;
    所述接收端包括均衡器、检测器、译码器和比特并流器;
    比特输入信号分别作为所述原型脉冲索引模块的输入信号、比特分流器的输入信号;所述原型脉冲索引模块的输出信号传递至所述滤波器组调制模块;所述比特分流器的输出信号分别传递至载波状态索引模块、星座映射模块;所述载波状态索引模块的输出信号、星座映射模块的输出信号均传递至所述FBMC块产生器;所述FBMC块产生器的输出信号传递至所述滤波器组调制模块;所述滤波器组调制模块的输出信号作为所述发送端的输出信号;
    所述发送端的输出信号作为所述均衡器的输入信号;所述均衡器的输出信号传递至所述检测器;所述检测器的输出信号传递至所述译码器;所述译码器的输出信号传递至所述比特并流器;所述比特并流器的输出信号作为所述接收端的输出信号。
  2. 如权利要求1所述的滤波器组联合子载波多维索引调制水声通信系统,其特征在于,所述检测器包括:原型脉冲检测模块、子载波基函数模块、FBMC块分组器、载波状态检测模块、符号检测模块;
    所述译码器包括:滤波器索引译码模块、子载波索引译码模块、星座符号译码模块;
    所述均衡器的输出信号传递至所述原型脉冲检测模块;所述原型脉冲检测模块的输出信号传递至所述子载波基函数模块;所述子载波基函数模块的输出信号分别传递至所述FBMC块分组器、滤波器索引译码模块;所述FBMC块分组器的输出信号传递至所述载波状态检测模块;所述载波状态检测模块的输出信号传递至所述符号检测模块;所述符号检测模块的输出信号分别传递至所述子载波索引译码模块、星座符号译码模块;所述子载波索引译码模块的输出信号、星座符号译码模块的输出信号、滤波器索引译码模块的输出信号均传递至所述比特并流器。
  3. 一种如权利要求1或2所述的滤波器组联合子载波多维索引调制水声通信系统的通信方法,其特征在于,包括发送方法和接收方法;
    所述发送方法的步骤是:
    步骤1:发送的二进制比特流中一部分比特用于选择激活的原型脉冲索引,其余比特经比特分流器与所有子载波平均分组,各组中部分比特用于选择激活的子载波索引,部分比特经正交振幅调制后映射到激活子载波上,各组数据经FBMC块产生器后形成完整发送数据;
    步骤2:将映射后的复数星座符号实部虚部交错1/2个周期,通过步骤1中原型脉冲索引所选用的滤波器进行滤波器组多载波调制,形成发送信号送入水声信道进行传输;
    所述接收方法的步骤是:
    步骤3:在接收端对信道均衡后的接收符号进行解调和译码,最终将输出合并恢复出原始的发送二进制比特流。
  4. 根据权利要求3所述的一种滤波器组联合子载波多维索引调制水声通信系统的通信方法,其特征在于,步骤1中所述根据通信需求确定系统的子载波总数M,输入比特总数A;其中p 1比特用来选择激活的滤波器原型脉冲索引,其余B比特信息经比特分流器和子载波平均分为G组,每组p=p 2+p 3比特信息映射到长度为K的子载波组上,A=p 1+B=p 1+(p 2+p 3)G,G=M/K=B/p;每组中仅有L个子载波被激活用于传输星座符号,其余静默子载波被置零,p 2比特用来选择激活的子载波索引,p 3比特经过星座映射成复数符号后调制到活跃子载波上。
  5. 根据权利要求4所述的一种滤波器组联合子载波多维索引调制水声通信系统的通信方法,其特征在于,所述各部分比特
    Figure PCTCN2021143600-appb-100001
    p 3=L log 2Q,其中
    Figure PCTCN2021143600-appb-100002
    表示向下取整函数,即p 1的比特数取决于所有备选的原型滤波器种类N f,p 2的比特数取决于所有可能出现的子载波组合情况
    Figure PCTCN2021143600-appb-100003
    p 3的比特数取决于各组活跃子载波数量L和星座映射的调制维度Q。
  6. 根据权利要求4所述的一种滤波器组联合子载波多维索引调制水声通信系统的通信方法,其特征在于,所述p 1比特经过原型脉冲索引模块后输出为第n个FBMC符号的激活滤波器序号F n∈[1,2,...,N f];p 2比特经过载波状态索引模块后输出为激活子载波序号I g={i g,1,i g,2,...,i g,L},i g,l∈[1,2,...,K],g=1,...,G,l=1,...,L;p 3比特经过星座映射后输出为L个符号s g={s g,1,s g,2,...,s g,L},s g,l∈ζ,g=1,...,G,l=1,...,L,ζ表示Q维的星座集合。
  7. 根据权利要求3所述的一种滤波器组联合子载波多维索引调制水声通信系统的通信方法,其特征在于,所述步骤1中FBMC块产生器的输出数据为x=[x(0),...,x(M-1)],x(m)∈{0,ζ},m=0,...,M-1。
  8. 根据权利要求3所述的一种滤波器组联合子载波多维索引调制水声通信系统的通信方 法,其特征在于,所述步骤2中经第F n号滤波器基函数g n(t)调制的复合索引调制发送信号表示为
    Figure PCTCN2021143600-appb-100004
    其中,附加相位
    Figure PCTCN2021143600-appb-100005
    子载波间隔ν和符号周期T满足ν=1/T,a m,n和b m,n是x(m)的实部和虚部,由于静默子载波的引入,部分a m,n和b m,n可能为0值。
  9. 根据权利要求3所述的一种滤波器组联合子载波多维索引调制水声通信系统的通信方法,其特征在于,所述步骤3中将接收信号的均衡结果
    Figure PCTCN2021143600-appb-100006
    送入检测器,检测过程分为如下步骤:
    步骤1:进行原型脉冲检测,通过最大似然检测确定滤波器组基函数索引信息
    Figure PCTCN2021143600-appb-100007
    Figure PCTCN2021143600-appb-100008
    进行滤波器组解调;
    步骤2:经FBMC块分组器得到各组接收信号y 1~y G
    步骤3:分组进行子载波状态检测,通过最大似然准则确定各组活跃子载波索引信息
    Figure PCTCN2021143600-appb-100009
    同时将活跃子载波上承载的数据符号作为待译码的星座符号
    Figure PCTCN2021143600-appb-100010
  10. 根据权利要求3所述的一种滤波器组联合子载波多维索引调制水声通信系统的通信方法,其特征在于,所述步骤3中将
    Figure PCTCN2021143600-appb-100011
    分别输入滤波器索引译码模块、子载波索引译码模块、星座符号译码模块得到相应比特,经比特并流器合并得到恢复的发送比特流。
PCT/CN2021/143600 2021-12-23 2021-12-31 滤波器组联合子载波多维索引调制水声通信系统及方法 WO2023115638A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111590438.6A CN116016076A (zh) 2021-12-23 2021-12-23 滤波器组联合子载波多维索引调制水声通信系统及方法
CN202111590438.6 2021-12-23

Publications (1)

Publication Number Publication Date
WO2023115638A1 true WO2023115638A1 (zh) 2023-06-29

Family

ID=86017964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143600 WO2023115638A1 (zh) 2021-12-23 2021-12-31 滤波器组联合子载波多维索引调制水声通信系统及方法

Country Status (2)

Country Link
CN (1) CN116016076A (zh)
WO (1) WO2023115638A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180083814A1 (en) * 2016-09-21 2018-03-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Ofdm transmitter with filter banks and corresponding transmission/reception system
CN111355677A (zh) * 2018-12-20 2020-06-30 常熟海量声学设备科技有限公司 一种基于滤波器组的多载波水下高速通信系统
CN113259295A (zh) * 2021-05-08 2021-08-13 浙江大学 一种用于水声fbmc系统的信号检测方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106470180B (zh) * 2015-08-21 2021-11-05 北京三星通信技术研究有限公司 基于滤波器组多载波调制的信号发送方法、接收方法和装置
CN106533465B (zh) * 2015-09-15 2018-10-23 澜起科技(上海)有限公司 干扰处理方法和装置
AU2018451799B2 (en) * 2018-12-05 2022-11-03 Beijing Institute Of Control And Electronic Technology 5G multi-carrier underwater acoustic communication method
CN113395117B (zh) * 2021-06-15 2022-09-09 江苏科技大学 一种基于索引调制的多载波水声抗干扰通信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180083814A1 (en) * 2016-09-21 2018-03-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Ofdm transmitter with filter banks and corresponding transmission/reception system
CN111355677A (zh) * 2018-12-20 2020-06-30 常熟海量声学设备科技有限公司 一种基于滤波器组的多载波水下高速通信系统
CN113259295A (zh) * 2021-05-08 2021-08-13 浙江大学 一种用于水声fbmc系统的信号检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIAN ZHANG; MINJIAN ZHAO; JIE ZHONG; PEI XIAO; TIANHANG YU: "Optimised index modulation for filter bank multicarrier system", IET COMMUNICATIONS, vol. 11, no. 4, 1 March 2017 (2017-03-01), GB , pages 459 - 467, XP006097087, ISSN: 1751-8628, DOI: 10.1049/iet-com.2016.0564 *
WANG WU, WANG BIAO;GAO SHIJIE: "Research on FBMC Underwater Acoustic Communication Technology Based on Index Modulation", ELECTRONIC MEASUREMENT TECHNOLOGY, 23 July 2020 (2020-07-23), pages 1 - 4, XP093074328, DOI: 10.19651/j.cnki.emt.2004276 *

Also Published As

Publication number Publication date
CN116016076A (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
CN111756664B (zh) 短参考载波索引差分混沌移位键控调制解调方法及系统
CN108900291B (zh) 用于sim-ofdm系统的数据-导频图案联合索引调制方法
CN110932788B (zh) 一种无线光通信系统中基于im-dd的hpam-dmt调制方法
CN105743835B (zh) 一种降低ofdma系统信号峰均功率比的方法
CN110661576B (zh) 无线光通信系统中基于im-dd的自适应偏置ofdm调制方法
CN1367615A (zh) 低峰值平均功率比的时域同步正交频分复用调制方法
CN106487738B (zh) 一种基于正交导频序列的水声ofdm通信系统选择性映射峰均比抑制算法
Patel et al. A comparative performance analysis of OFDM using MATLAB simulation with M-PSK and M-QAM mapping
CN113950101B (zh) 一种多载波索引调制系统及方法
WO2023115638A1 (zh) 滤波器组联合子载波多维索引调制水声通信系统及方法
CN112653647A (zh) 一种多载波信号调制方法
Hossain et al. Spectrum efficient DSI-based OFDM PAPR reduction by subcarrier group modulation
WO2022068194A1 (zh) 一种信号的处理方法、装置、存储介质以及电子装置
Kumutha et al. Effective PAPR reduction in MIMO-OFDM using combined SFBC-PTS
Hou et al. Bandwidth efficiency of PC-OFDM systems with high compaction multi-carrier modulation
CN108183880A (zh) 一种基于限幅联合星座扩展法的ofdm峰均比抑制器
Kalia et al. PAPR Analysis of IFFT and DWT Based OFDM-IM System
CN108282438B (zh) 基于数据驱动多子载波映射的二维数据隐蔽传输方法
Chow Performances of M-ACO-OFDM, DCO-OFDM and M-GLIM OFDM in Visible Light Communication Systems
CN107896206A (zh) 基于四维信号插入降低ofdm系统峰均功率比的方法及系统
CN114944977B (zh) 一种多维索引调制otfs通信系统及方法
Rashmi et al. Power efficiency enhancement using hybrid techniques for OFDM
Shankar et al. Hadamard based SLM using genetic algorithm fo PAPR reduction in OFDM systems
Jamdar et al. A review: Orthogonal frequency division multiplexing based on wavelet transforms
DN et al. Analysis of PAPR and BER in MIMO OFDM 5G Systems with different Modulation and Transform Techniques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968762

Country of ref document: EP

Kind code of ref document: A1