WO2023115531A1 - 一种呼吸监测方法和呼吸监测装置 - Google Patents

一种呼吸监测方法和呼吸监测装置 Download PDF

Info

Publication number
WO2023115531A1
WO2023115531A1 PCT/CN2021/141168 CN2021141168W WO2023115531A1 WO 2023115531 A1 WO2023115531 A1 WO 2023115531A1 CN 2021141168 W CN2021141168 W CN 2021141168W WO 2023115531 A1 WO2023115531 A1 WO 2023115531A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
intrapulmonary
expiratory
transpulmonary
inspiratory
Prior art date
Application number
PCT/CN2021/141168
Other languages
English (en)
French (fr)
Inventor
邹心茹
刘京雷
周小勇
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2021/141168 priority Critical patent/WO2023115531A1/zh
Priority to CN202180100653.5A priority patent/CN117642202A/zh
Publication of WO2023115531A1 publication Critical patent/WO2023115531A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes

Definitions

  • the invention relates to the medical field, in particular to a breathing monitoring method and a breathing monitoring device.
  • the British ARDSnet multi-center study proposed small tidal volume (VT 6-8ml/kg ideal body weight), low airway plateau pressure (Pplat ⁇ 30-35cmH2O), high positive end-expiratory pressure (PEEP), and permissive carbonation (PHC) as the core lung protective ventilation strategy.
  • the lung protection ventilation strategy gives priority to maintaining low tidal volume, but it has been clinically proven that the mortality rate of ARDS with low tidal volume ventilation has not been reduced [1].
  • the size and distribution of the alveolar area are different, leading to the heterogeneity of the lung.
  • Airway pressure is the pressure acting on the respiratory system, including airway resistance, lungs, and chest wall.
  • Intrapulmonary pressure is the pressure acting directly on the lungs and chest wall after removing airway resistance.
  • Transpulmonary pressure is the pressure directly acting on the lungs after removing the part of the intrapulmonary pressure that acts on the chest wall.
  • the intrapulmonary pressure minus the intrathoracic pressure is the transpulmonary pressure.
  • the esophageal pressure is used to approximate the intrathoracic pressure.
  • Transpulmonary pressure Pulmonary pressure intrapulmonary pressure - esophageal pressure.
  • Driving pressure plateau pressure measured by inspiratory hold - PEEP total (PEEPi + PEEP) measured by expiratory hold. Inhalation and exhalation are maintained to stabilize the airflow in the airway, the airway pressure is equal to the intrapulmonary pressure, the interference of airway resistance is removed, and the real pressure in the lung is obtained.
  • the driving pressure reflects the removal of the airway resistance changes in intrapulmonary pressure.
  • the present invention mainly provides a breathing monitoring method and a breathing monitoring device, which can obtain the driving pressure without inhaling and exhaling.
  • a respiratory monitoring device comprising:
  • the pressure sensor is used to collect the patient's airway pressure, or airway pressure and esophageal pressure, and obtain corresponding airway pressure data and esophageal pressure data;
  • the flow sensor is used to obtain the gas flow rate data of the patient during ventilation
  • the inspiratory phase intrapulmonary pressure and/or expiratory pressure value of the patient corresponding to the breathing cycle calculate the inspiratory phase intrapulmonary pressure and/or expiratory pressure value of the patient corresponding to the breathing cycle ; According to the intrapulmonary pressure in the inspiratory phase and the expiratory pressure value, determine the driving pressure of the patient corresponding to the breathing cycle; or
  • the patient's inspiratory phase intrapulmonary pressure and expiratory phase intrapulmonary pressure corresponding to the respiratory cycle Based on the intrapulmonary pressure in the inspiratory phase and the intrapulmonary pressure in the expiratory phase, and the esophageal pressure measured by the pressure sensor in the respiratory cycle, determine the patient's transpulmonary driving pressure corresponding to the respiratory cycle.
  • the method for the processor to determine the transpulmonary driving pressure is one of the following:
  • the processor is configured to calculate the end-inspiratory intrapulmonary pressure of the patient corresponding to the breathing cycle based on the airway pressure data collected by the pressure sensor and the gas flow rate data measured by the flow sensor in a breathing cycle and end-expiratory intrapulmonary pressure; based on the end-inspiratory intrapulmonary pressure and the end-expiratory intrapulmonary pressure, and the esophageal pressure measured by the pressure sensor during the respiratory cycle, determine the corresponding The patient's transpulmonary driving pressure;
  • the processor is configured to calculate the inspiratory intrapulmonary pressure of the patient corresponding to the breathing cycle based on the airway pressure data collected by the pressure sensor and the gas flow rate data measured by the flow sensor in one breathing cycle Curve and expiratory phase intrapulmonary pressure curve; based on the inspiratory phase intrapulmonary pressure curve and the expiratory phase intrapulmonary pressure curve, and the corresponding esophageal pressure curve collected by the pressure sensor in the respiratory cycle, A transpulmonary pressure curve corresponding to the respiratory cycle is obtained; an end-inspiratory transpulmonary pressure and an end-expiratory transpulmonary pressure are determined based on the transpulmonary pressure curve, so as to determine a transpulmonary driving pressure of the patient corresponding to the respiratory cycle.
  • a display device is also included, and the processor is also used for:
  • the driving pressure or transpulmonary driving pressure is sent to the display device and displayed.
  • the driving pressure or the transpulmonary driving pressure is displayed on the display device in the form of a time-varying graph.
  • the intrapulmonary pressure during inspiration includes end-inspiration intrapulmonary pressure
  • the intrapulmonary pressure during expiration includes end-expiratory intrapulmonary pressure
  • the processor calculates the inspiratory
  • the steps for calculating end-pulmonary pressure and end-expiratory intrapulmonary pressure include:
  • the gas flow rate data and the airway pressure data, the intrapulmonary pressure data corresponding to the respiratory cycle is calculated; the intrapulmonary pressure data includes the end-inspiration intrapulmonary pressure and the end-expiration intrapulmonary pressure .
  • the step of calculating the transpulmonary driving pressure by the processor includes:
  • the intrapulmonary pressure data of the patient at the end of expiration and end of inspiration of the breathing cycle are calculated and obtained ;
  • transpulmonary pressure data comprising end-inspiratory transpulmonary pressure and end-expiratory transpulmonary pressure
  • a transpulmonary driving pressure corresponding to the respiratory cycle is obtained based on the end-inspiratory transpulmonary pressure and the end-expiratory transpulmonary pressure.
  • the intrapulmonary pressure data includes an intrapulmonary pressure waveform
  • the esophageal pressure data includes an esophageal pressure waveform
  • the transpulmonary pressure data includes a transpulmonary pressure waveform
  • the intrapulmonary pressure data includes end-inspiratory intrapulmonary pressure and end-expiratory intrapulmonary pressure
  • the esophageal pressure data includes end-inspiratory esophageal pressure and end-expiratory esophageal pressure
  • the processor calculates the difference between the intrapulmonary pressure data and the esophageal pressure data, and the step of obtaining the transpulmonary pressure data corresponding to the respiratory cycle includes:
  • the end-expiratory esophageal pressure is subtracted from the end-expiratory intrapulmonary pressure to obtain the corresponding end-expiratory transpulmonary pressure.
  • the step of calculating the intrapulmonary pressure data obtained by the processor according to the respiratory cycle, the gas flow rate data and the airway pressure data includes:
  • the gas flow rate data includes the gas flow rate corresponding to the inspiratory phase and the gas flow rate corresponding to the exhalation phase in the breathing cycle
  • the airway pressure data includes the airway pressure corresponding to the inspiratory phase and the expiratory phase Corresponding airway pressure
  • the gas volume corresponding to the inhalation phase is calculated
  • the intrapulmonary pressure corresponding to the inspiratory phase is calculated
  • the intrapulmonary pressure corresponding to the expiratory stage is calculated
  • the airway pressure data includes end-inspiratory airway pressure and end-expiratory airway pressure; calculate the total gas volume during the inspiratory phase according to the gas flow rate data;
  • the end-expiratory intrapulmonary pressure is calculated, or the end-expiratory airway pressure is approximated as the end-expiratory intrapulmonary pressure pressure.
  • the processor is also used to control the respiratory monitoring device.
  • the processor is also used to control the respiratory monitoring device.
  • the processor is also used to:
  • the driving pressure or the transpulmonary driving pressure are respectively analyzed based on a preset condition, and when the driving pressure or the transpulmonary driving pressure does not meet the preset condition, the processor sends a prompt signal.
  • a breathing monitoring method comprising:
  • the corresponding intrapulmonary pressure data are calculated, and the intrapulmonary pressure data include end-inspiration intrapulmonary pressure, end-expiration pulmonary Internal pressure; the end-inspiratory intrapulmonary pressure and the end-expiratory intrapulmonary pressure are used to characterize the pressures acting on the expected position of the patient's respiratory system at the end of inspiration and end of expiration, respectively, during the ventilation process; according to the inspiratory end-tidal intrapulmonary pressure and the end-expiratory intrapulmonary pressure to obtain the driving pressure corresponding to the respiratory cycle; or
  • the patient's inspiratory phase intrapulmonary pressure and expiratory phase intrapulmonary pressure corresponding to the respiratory cycle Based on the intrapulmonary pressure in the inspiratory phase and the intrapulmonary pressure in the expiratory phase, and the esophageal pressure measured by the pressure sensor in the respiratory cycle, determine the patient's transpulmonary driving pressure corresponding to the respiratory cycle.
  • a computer-readable storage medium on which a program is stored, and the program can be executed by a processor to implement the breathing monitoring method as described above.
  • the patient's inspiratory breath corresponding to the breathing cycle is calculated.
  • Phase intrapulmonary pressure and/or expiratory pressure value according to the inspiratory phase intrapulmonary pressure and expiratory pressure value, determine the patient's driving pressure corresponding to the breathing cycle.
  • the driving pressure can be obtained without manual intervention such as inspiratory and expiratory hold, and real-time detection of the driving pressure can also be performed; since it will not interfere with ventilation, it is also very friendly to patients.
  • Fig. 1 is the structural block diagram of an embodiment of the respiratory monitoring device provided by the present invention.
  • Fig. 2 is a structural block diagram of another embodiment of the respiratory monitoring device provided by the present invention.
  • Fig. 3 is a structural block diagram of an embodiment of a medical ventilation device in the respiratory monitoring device provided by the present invention.
  • Fig. 4 is a flow chart of an embodiment of the respiratory monitoring method provided by the present invention.
  • Fig. 5 is a flowchart of an embodiment of step 1 in Fig. 4;
  • Fig. 6 is a flowchart of another embodiment of step 1 in Fig. 4;
  • Fig. 7 is the schematic diagram of respiratory mechanics RC model
  • Fig. 8 is a waveform diagram of airway pressure and intrapulmonary pressure in the respiratory monitoring device provided by the present invention.
  • Fig. 9 is a flow chart of another embodiment of the breathing monitoring method provided by the present invention.
  • connection and “connection” mentioned in this application all include direct and indirect connection (connection) unless otherwise specified.
  • some embodiments of the present invention disclose a respiratory monitoring device, including a processor 40 and a display device 30 .
  • the processor 40 is used to obtain at least one of airway pressure data and esophageal pressure data of the patient, that is, airway pressure data, esophageal pressure data, or airway pressure data and esophageal pressure data can be obtained.
  • the processor 40 is also used to acquire gas flow rate data of the patient during ventilation.
  • the processor 40 calculates the patient's inspiratory phase intrapulmonary pressure and/or expiratory pressure value based on the airway pressure data and gas flow rate data according to the respiratory cycle; and determines the patient's
  • the driving pressure is output, for example, subtracting the expiratory pressure value from the intrapulmonary pressure during the inspiratory phase to obtain the driving pressure of the patient.
  • the expiratory pressure value may be the positive end-expiratory pressure directly measured by the ventilator through the sensor, or may be the intrapulmonary pressure in the expiratory phase calculated according to the airway pressure data and the gas flow rate data.
  • the processor 40 also calculates the patient's inspiratory phase intrapulmonary pressure and expiratory phase intrapulmonary pressure based on the airway pressure data and the gas flow rate data based on the respiratory cycle; based on the inspiratory phase intrapulmonary pressure and the expiratory phase intrapulmonary pressure, and Esophageal pressure, to determine and export the patient's transpulmonary driving pressure.
  • the processor 40 outputs the driving pressure and/or the transpulmonary driving pressure, which can be output to external devices (such as printers, monitors, etc.), and can also be output to the display device 30 (such as a monitor), and the display device 30 displays the patient's driving pressure.
  • the processor 40 outputs the patient's driving pressure and/or transpulmonary driving pressure to the display device 30
  • the display device 30 receives and displays the driving pressure and/or transpulmonary driving pressure sent by the processor 40 .
  • the display device 30 can display the driving pressure and/or the transpulmonary driving pressure in various ways, such as directly displaying the value of the driving pressure and/or the transpulmonary driving pressure, and displaying the driving pressure in a graph or chart (such as a histogram) or the like. And/or transpulmonary driving pressure, the user can see the approximate range of the driving pressure and/or transpulmonary driving pressure through graphs or charts.
  • the display device 30 is capable of outputting visual information, which may be various types of displays.
  • the present invention can obtain the driving pressure and/or the transpulmonary driving pressure without manual intervention such as inhalation and exhalation, and can also detect the driving pressure and/or the transpulmonary driving pressure in real time; Patient friendly too.
  • the respiratory monitoring device of the present invention can be applied to various occasions.
  • the respiratory monitoring device of the present invention can be a monitor, a central station, a monitoring module, etc. in some embodiments, and can be a medical ventilation device in some embodiments, such as a respiratory Machines, anesthesia machines, portable hand-held ventilation equipment, etc., may also be other medical equipment with computing and processing capabilities in some embodiments.
  • the manner in which the processor 40 obtains the above data may also be different.
  • the respiratory monitoring device also includes a pressure sensor and a flow sensor 70; Acquisition is performed to obtain corresponding airway pressure data and esophageal pressure data.
  • the flow sensor 70 is used to measure the gas flow rate data of the patient during ventilation.
  • the processor 40 acquires airway pressure data and esophageal pressure data through the pressure sensor of the respiratory monitoring device itself, and acquires gas flow rate data through the flow sensor 70 .
  • the respiratory monitoring device is a monitor, as shown in FIG. 2 , which also includes a communication device 80 through which the processor 40 acquires airway pressure data, esophageal pressure data and gas flow rate data from other external devices.
  • this embodiment takes the breathing monitoring device as a medical ventilation device as an example for illustration.
  • Medical ventilation equipment can perform mechanical ventilation to assist or control the patient's spontaneous breathing movement, so as to achieve the function of gas exchange in the lungs, reduce the consumption of the human body, and facilitate the recovery of respiratory function.
  • the medical ventilation equipment also includes a breathing assistance device 10 and a breathing circuit 20 .
  • the medical ventilation equipment takes a ventilator as an example. As shown in FIG. 3 , it shows an invasive ventilator, and the ventilator also includes: a breathing interface 211 , an air source interface 212 and a storage device 90 .
  • the respiratory assistance device 10 is used to provide power to input a preset gas to the patient, or to expel at least part of the gas exhaled by the patient to the external environment.
  • the preset gas is a gas that can meet the breathing needs of the patient.
  • the preset gas may also contain anesthetics.
  • the breathing circuit 20 selectively communicates the gas source interface 212 with the patient's respiratory system, including at least one branch (such as the expiratory branch 213a, the inspiratory branch 213b) and the valve arranged on the branch, and the valve is used to open Or close the branch.
  • the breathing circuit 20 is used to deliver the preset gas to the patient through the inspiratory branch 213b, and/or exhaust the at least part of the gas exhaled by the patient to the external environment through the expiratory branch 213a.
  • the breathing circuit 20 includes an expiratory branch 213a and an inspiratory branch 213b, and the expiratory branch 213a is connected between the breathing interface 211 and the exhaust port 213c, and is used to exhale the breath of the patient.
  • the gas is led out to the exhaust port 213c.
  • the exhaust port 213c can lead to the external environment, and also can be in a dedicated gas recovery device for the channel.
  • the breathing circuit 20 includes the inspiratory branch 213b but does not need the expiratory branch 213a, and the patient exhales spontaneously.
  • the gas source interface 212 is used to connect with the gas source (not shown in the figure), and the gas source is used to provide gas, and this gas can generally adopt oxygen and air etc.; In some embodiments, this gas source can adopt compressed gas bottle or central
  • the air supply source supplies air to the ventilator through the air source interface 212.
  • the types of air supply include oxygen O2 and air, etc.
  • the air source interface 212 can include a pressure gauge, a pressure regulator, a flow meter, a pressure reducing valve, and an air-oxygen ratio Conventional components such as regulating protection devices are used to control the flow of various gases (such as oxygen and air) respectively.
  • the gas source can also use a turbine, and the gas can be output to the gas source interface 212 through the turbine, or the gas source interface 212 can also be directly replaced by a turbine.
  • the inhalation branch 213b is connected between the breathing interface 211 and the air source interface 212, and is used to provide the patient with preset gas (such as oxygen or air), for example, the gas input from the air source interface 212 enters the inhalation branch 213b, Then enter the patient's lungs through the breathing interface 211 .
  • the respiratory interface 211 is used to connect the patient to the breathing circuit 20.
  • the breathing interface 211 can be a nasal cannula or a mask worn on the mouth and nose.
  • the breathing assistance device 10 is connected with the gas source interface 212 and the breathing circuit 20, and controls the gas provided by the external gas source to be delivered to the patient through the breathing circuit 20; the breathing assistance device 10 may include an exhalation control 214a and an inspiratory controller 214b, the respiratory assistance device 10 in an embodiment of a non-invasive ventilator may include an inspiratory controller 214b.
  • the exhalation controller 214a is arranged on the exhalation branch 213a, and is used for turning on the exhalation branch 213a or closing the exhalation branch 213a according to the control instruction, or controlling the flow rate or pressure of the gas exhaled by the patient.
  • the exhalation controller 214a may include one or more of devices capable of controlling flow or pressure, such as an exhalation valve, a one-way valve, a flow controller, and a PEEP valve.
  • the suction controller 214b is arranged on the suction branch 213b, and is used for turning on the suction branch 213b or closing the suction branch 213b according to a control command, or controlling the flow rate or pressure of the output gas.
  • the inhalation controller 214b may include one or more of devices capable of controlling flow or pressure, such as an exhalation valve, a one-way valve, or a flow controller.
  • the memory 90 can be used to store data or programs, for example, to store data collected by the sensor, data generated by the processor through calculation, or an image frame generated by the processor.
  • the image frame can be a 2D or 3D image, or the memory 90 A graphical user interface, one or more default image display settings, programming instructions for the processor may be stored.
  • the memory 90 may be a tangible and non-transitory computer-readable medium such as flash memory, RAM, ROM, EEPROM, and the like.
  • the processor 40 is used to execute instructions or programs, control the various control valves in the breathing assistance device 10, the air source interface 212 and/or the breathing circuit 20, or process the received data to generate the required calculation or judgment results, or generate visualized data or graphics, and output the visualized data or graphics to the display 30 for display.
  • the medical ventilation equipment is a ventilator. It should be noted that the above figure 3 is just an example of a ventilator, which is not intended to limit the structure of the ventilator.
  • the pressure sensor is used to collect at least one of airway pressure and esophageal pressure of the patient to obtain at least one of airway pressure data and esophageal pressure data.
  • the breathing monitoring device includes a first pressure sensor 50 and a second pressure sensor 60 .
  • the first pressure sensor 50 is used to collect the patient's esophageal pressure.
  • the patient's esophageal pressure is detected in real time to obtain esophageal pressure data.
  • the second pressure sensor 60 is used to collect the airway pressure of the patient when the medical ventilation equipment is ventilating the patient.
  • the airway pressure of the patient is detected in real time to obtain airway pressure data.
  • the flow sensor 70 is used to collect the gas flow rate of the patient during the ventilation process.
  • the gas flow rate of the patient during the ventilation process is detected in real time to obtain gas flow rate data.
  • the flow sensor 70 may be arranged on the air path between the breathing interface 211 and the air source interface 212, or between the air outlet 213c.
  • the gas flow rate can be the flow rate of the gas entering the patient's body.
  • the number of flow sensors 70 is multiple, including the inspiratory flow sensor and the expiratory flow sensor arranged at the mechanical ventilation end, for example, for breathing As far as the machine is concerned, it can be an inspiratory flow sensor set in the inspiratory branch 213b and an expiratory flow sensor set in the expiratory branch 213a.
  • the flow sensor 70 can also be a Ypiece directly connected to the patient end.
  • the flow sensor directly measures the flow rate into and out of the patient side as the gas flow rate.
  • the processor 40 acquires the leakage amount during non-invasive ventilation, and then performs compensation processing on the gas flow rate collected by the flow sensor 70 according to the leakage amount, so as to obtain the actual gas flow rate.
  • the present invention proposes a method capable of calculating the driving pressure without manual operation by the user and without interfering with ventilation.
  • the calculated end-inspiratory intrapulmonary pressure is used as the plateau pressure instead of the method of inspiratory pause or inspiratory hold measurement;
  • the calculated end-expiratory intrapulmonary pressure is used as the total positive end-expiratory pressure PEEPtotal (PEEPi +PEEP), instead of the method of expiratory hold; and then subtract the end-expiratory intrapulmonary pressure from the end-inspiratory intrapulmonary pressure to obtain the driving pressure.
  • the real-time driving pressure can be calculated in real time, thereby realizing real-time monitoring of the driving pressure.
  • the monitoring of the driving pressure can be real-time or non-real-time.
  • This embodiment takes real-time monitoring as an example for illustration.
  • the method is shown in Figure 4 and includes the following steps:
  • Step 1 For the airway pressure data collected by the pressure sensor and the gas flow rate data measured by the flow sensor in a breathing cycle, calculate the patient's inspiratory phase intrapulmonary pressure and expiratory pressure values corresponding to the breathing cycle.
  • the end-expiratory intrapulmonary pressure and the end-expiratory intrapulmonary pressure are used as an example for the inspiratory phase intrapulmonary pressure and expiratory pressure.
  • the processor 40 obtains the gas flow rate data of the patient during the ventilation process of a breathing cycle in real time through the flow sensor 70, and obtains the gas flow rate data of the patient during the ventilation process of the breathing cycle through the second pressure sensor 60 in real time. Airway pressure data.
  • the processor 40 calculates the intrapulmonary pressure data corresponding to the respiratory cycle according to the respiratory cycle, gas flow rate data and airway pressure data; wherein the intrapulmonary pressure data at least includes the end-inspiration intrapulmonary pressure and the end-expiration intrapulmonary pressure .
  • Processor 40 calculates the real-time intrapulmonary pressure data in a manner as shown in FIG . at the end ).
  • the method shown in Figure 5 is described in detail below, which includes:
  • Step 11 the processor 40 calculates the total gas volume V(t inhalation end ) in the inhalation phase according to the gas flow rate data.
  • the total volume of gas in the inspiratory phase V (t end of inhalation) represents the total volume of gas entering the patient's lungs during the inspiratory phase of the respiratory cycle, which can be obtained by integrating the gas flow rate data.
  • Step 12 the processor 40 according to the end-inspiratory airway pressure Paw (t end inspiratory ), the total gas volume V (t end inspiratory ) in the inspiratory stage, the end inspiratory flow rate Flow (t end inspiratory ) in the gas flow rate data and the expiratory
  • the end-tidal airway pressure Paw (t end-tidal ) was calculated to obtain the end-inspiratory intrapulmonary pressure Plung (t end-tidal ).
  • the RC model of respiratory mechanics reveals the relationship between various parameters.
  • Flow is gas flow rate, which is equivalent to current
  • Paw is airway pressure, which is equivalent to voltage
  • airway pressure resistance is equivalent to resistance R
  • compliance of the respiratory system is equivalent to capacitance C
  • Plung is intrapulmonary pressure.
  • the respiratory mechanics equation can be constructed as follows:
  • R is the resistance of the respiratory system, which is a known or preset quantity
  • t is time or moment
  • Paw(t) is the function of airway pressure and time t, that is, the airway pressure at any time t
  • Flow(t ) is the function of gas flow rate and time t, that is, the gas flow rate at any time t
  • V(t) is the function of gas volume and time t, that is, the gas volume at any time t, and the gas flow rate Flow(t) can be integrated to get V (t).
  • the gas volume at time t represents the total volume of gas entering the patient's body from the beginning of inspiration to the current time t.
  • Plung(t) is the function of intrapulmonary pressure and time t, that is, the intrapulmonary pressure at any time t.
  • Intrapulmonary pressure the pressure inside the lungs
  • maintaining inhalation and exhalation is to make the airway pressure equal to the intrapulmonary pressure after the airflow in the airway is stabilized, to remove the interference of airway resistance, and to use the airway pressure as the intrapulmonary pressure.
  • the present invention does not keep inhalation and exhalation, but uses the following formula to calculate the intrapulmonary pressure:
  • PEEP positive end-expiratory pressure
  • is a time constant.
  • the value of the time constant is affected by the patient's resistance and compliance, and reflects the speed at which the patient exhales air. It is clinically believed that the exhalation time required for the general patient to finish exhaling is 3 times the time constant.
  • One calculation method is to use the ratio of the tidal volume to the flow rate at a certain moment in the expiratory phase as the time constant.
  • the other calculation method is to use real-time volume-time curve fitting to calculate.
  • the values may be different for different methods, and the time constant can be set in advance, which is not limited in the present invention.
  • the processor 40 calculates the end-inspiratory airway pressure Paw (t end inspiratory ), the total gas volume V (t inspiratory end ) of the inspiratory phase, the end-voted flow rate Flow (t end inspiratory ) and the end-expiratory airway pressure Paw (t End-expiratory ) (ie PEEP) is substituted into the above formula (1), and the end-inspiratory intrapulmonary pressure Plung (t end-inspiration ) is calculated.
  • tend-inspiration is the moment of end-inspiration.
  • Step 13 the processor 40 calculates the end-expiratory intrapulmonary pressure Plung (tend- ti) according to the end-tidal airway pressure Paw(tend-ti ) and the end-tidal flow rate Flow( tend-ti ) in the gas flow rate data. Specifically, the processor 40 substitutes the end-expiratory airway pressure Paw( tend-expiration ) and the end-expirational flow rate Flow(tend -expiration ) into the above formula (2), and calculates the end-expiration intrapulmonary pressure Plung( tend-expiration ). tend-ti is the moment at the end of expiration.
  • the positive end-expiratory pressure PEEP that is, the end-expiratory airway pressure Paw (t end-expiration ) can also be used as the end-expiratory intrapulmonary pressure, and PEEP can be used as the index of the end-expiratory intrapulmonary pressure.
  • PEEP can be used as the index of the end-expiratory intrapulmonary pressure.
  • the approximate value is used to calculate the driving pressure, and its accuracy is slightly worse than that of formula (2).
  • the intrapulmonary pressure data may also include intrapulmonary pressure at different times.
  • the processor 40 may calculate real-time intrapulmonary pressure data in a manner as shown in FIG. 6 .
  • the gas flow rate data include: in the respiratory cycle, the gas flow rate corresponding to the inhalation phase (the gas flow rate at different moments in the inhalation phase), the gas flow rate corresponding to the exhalation phase (the gas flow rate at different times in the exhalation phase), that is, Flow (t) Known.
  • Airway pressure data include end-expiratory airway pressure PEEP, airway pressure corresponding to the inspiratory phase (airway pressure at different moments during the inspiratory phase) and airway pressure corresponding to the expiratory phase (airway pressure at different moments during the expiratory phase) Pressure), that is, Paw(t) is known.
  • PEEP end-expiratory airway pressure
  • Airway pressure corresponding to the inspiratory phase airway pressure at different moments during the inspiratory phase
  • airway pressure corresponding to the expiratory phase airway pressure at different moments during the expiratory phase
  • Pressure airway pressure at different moments during the expiratory phase
  • Step 11 ′ the processor 40 calculates the gas volume V(t inhalation) corresponding to the inhalation phase according to the gas flow rate Flow(t inhalation ) corresponding to the inhalation phase.
  • the t- inhalations represent different moments of the inspiratory phase.
  • Step 12' the processor 40 calculates the intrapulmonary pressure Plung(t inhalation) in the inspiratory phase according to the airway pressure Paw(t inhalation ), the gas volume V (t inhalation ) and the gas flow rate Flow(t inhalation ) corresponding to the inspiratory phase .
  • the end-expiratory airway pressure PEEP can also be added to calculate Plung (t inhalation ).
  • the processor 40 combines the end-expiratory airway pressure PEEP and the airway pressure Paw (t inhalation ) at different moments in the inspiratory phase.
  • gas volume V( tinhalation ) and gas flow rate Flow( tinhalation ) are substituted into the above formula (1), and the intrapulmonary pressure during the inspiratory phase (intrapulmonary pressure at different moments during the inspiratory phase) Plung(t inhalation ) is calculated.
  • the processor 40 calculates the intrapulmonary pressure Plung ( tex) in the exhalation phase according to the airway pressure Paw( tex ) and the gas flow rate Flow( tex ) corresponding to the exhalation phase. Specifically, the processor 40 substitutes the airway pressure Paw(t exhale ) corresponding to the expiratory phase and the gas flow rate Flow(t exhale ) corresponding to the expiratory phase into the above formula (2), and calculates the intrapulmonary pressure (expiratory Intrapulmonary pressure at different moments in the air phase) Plung (t exhale ). The exhalation indicates different moments in the phase of exhalation.
  • Step 14' the processor 40 obtains the intrapulmonary pressure Plung(t) of the patient at different moments in the entire respiratory cycle according to the intrapulmonary pressure Plung(t inhale ) during the inspiratory phase and the intrapulmonary pressure Plung(t exhale ) during the expiratory phase, so that The intrapulmonary pressure waveform is obtained and displayed on the monitor, as shown by the dotted line waveform in FIG. 8 . In this way, the user can see the change trend of the intrapulmonary pressure over time, which is convenient for grasping the breathing condition of the patient.
  • the processor 40 may also generate an airway pressure waveform according to the airway pressure data and display it on the display, as shown by the solid line waveform in FIG. 8 .
  • the intrapulmonary pressure waveform and the airway pressure waveform are in the same graph, sharing the coordinate axis, which is convenient for users to view.
  • the driving pressure Pdrive is the power to drive the patient's entire respiratory system to expand, that is, the driving pressure acting on the lungs and chest wall.
  • the present invention creatively adopts two different formulas to deduce and calculate the end-inspiratory intrapulmonary pressure Plung (t end-inhalation ) and the end-expiratory intrapulmonary pressure Plung (t end-expiration ), and use the difference between the two as the driving pressure, No need to exhale and inhale to hold.
  • the real-time driving pressure Pdrive obtained by the processor 40 can be further utilized or output.
  • the processor 40 analyzes the driving pressure based on the first preset condition. When the driving pressure does not meet the first preset condition, the processor 40 outputs a corresponding prompt signal, such as outputting to the display device 30 to display prompt information.
  • the first preset condition may be a preset pressure range, if the driving pressure does not fall within the pressure range, it means that the driving pressure is too high or too low, and the processor 40 outputs a corresponding prompt signal to remind the doctor.
  • the processor 40 fails to calculate the driving pressure, it can also output a corresponding prompt signal.
  • the processor 40 fails to calculate the driving pressure, it outputs a corresponding prompt signal, and the processor 40 reports an error during the calculation of the driving pressure or the obtained driving pressure exceeds If the error threshold is set (if the error threshold is a value that cannot be reached by the driving pressure), then a corresponding prompt signal is output.
  • the prompt signal can be alarm information, which is alarmed by a display device, a loudspeaker or an indicator light.
  • the processor 40 can also adjust the patient's ventilation according to the driving pressure, for example, adjusting the driving pressure through flow or pressure control.
  • the driving pressure can be output to external devices (such as printers, monitors, etc.), and can also be output to the display device 30, and the display interface of the display device 30 displays the real-time driving pressure Pdrive, such as displaying real-time values. Changes in the form of graphs or graphs show driving pressure, etc.
  • the processor 40 can also obtain the time-varying trend of the driving pressure Pdrive according to the driving pressure Pdrive at different times, for example, obtain a waveform diagram of the driving pressure Pdrive;
  • the display device 30 receives the time-varying trend of the driving pressure sent by the processor 40 and displays it on its display interface, such as a waveform diagram of the driving pressure Pdrive, so that the medical staff can grasp the variation of the patient's driving pressure. Because the driving pressure can be monitored in real time, the safety of patient ventilation is improved.
  • the processor 40 can also monitor the respiratory state of the patient according to the compliance. Compliance refers to the ease with which an elastomer deforms under the action of an external force.
  • the processor 40 displays the compliance through the display device 30 , so that the medical staff can understand the physiological condition of the patient's lungs, so as to better ventilate the patient.
  • Airway pressure is the pressure acting on the respiratory system (airway resistance, lungs, chest wall, etc.).
  • Intrapulmonary pressure is the pressure acting directly on the lungs and chest wall after removing airway resistance.
  • Transpulmonary pressure is the pressure directly acting on the lungs after removing the part of the intrapulmonary pressure that acts on the chest wall.
  • the intrapulmonary pressure minus the intrathoracic pressure is the transpulmonary pressure.
  • the esophageal pressure is used to approximate the intrathoracic pressure.
  • Transpulmonary pressure Pulmonary pressure intrapulmonary pressure - esophageal pressure.
  • the processor 40 calculates the real-time intrapulmonary pressure data according to the respiratory cycle, gas flow rate data and airway pressure data, it can also calculate the difference between the intrapulmonary pressure data and the esophageal pressure data to obtain real-time transpulmonary pressure data;
  • the pressure data include the end-inspiratory transpulmonary pressure and the end-expiratory transpulmonary pressure; the end-inspiratory transpulmonary pressure is subtracted from the end-expiratory transpulmonary pressure to obtain the real-time transpulmonary driving pressure.
  • the intrapulmonary pressure data includes at least the end-inspiration intrapulmonary pressure and the end-expiration intrapulmonary pressure
  • the esophageal pressure data includes at least the end-inspiration esophageal pressure and the end-expiration esophageal pressure.
  • the processor 40 subtracts the end-inspiratory intrapulmonary pressure from the end-inspiratory esophageal pressure to obtain the real-time end-inspiratory transpulmonary pressure; subtracts the end-expiratory intrapulmonary pressure from the end-expiratory esophageal pressure to obtain the real-time end-expiratory transpulmonary pressure .
  • intrapulmonary pressure data can also include intrapulmonary pressure at different times, such as intrapulmonary pressure waveforms; esophageal pressure data can also include esophageal pressure at different times, such as esophageal pressure waveforms; transpulmonary pressure data can also include different time
  • the transpulmonary pressure of includes the transpulmonary pressure waveform.
  • the processor 40 subtracts the waveform of the intrapulmonary pressure from the waveform of the esophageal pressure to obtain the waveform of the transpulmonary pressure. According to the waveform of the transpulmonary pressure, the transpulmonary pressure at the end of inspiration and the transpulmonary pressure at the end of expiration can be obtained. The difference between the two is the transpulmonary drive pressure.
  • the airway pressure data can be used to approximately replace the esophageal pressure data to calculate the transpulmonary pressure data, that is, calculate the difference between the intrapulmonary pressure data and the airway pressure data to obtain real-time transpulmonary pressure data.
  • the processor 40 subtracts the end-inspiration airway pressure from the end-inspiration intrapulmonary pressure to obtain the real-time end-inspiration transpulmonary pressure; subtracts the end-expiration airway pressure from the end-expiration intrapulmonary pressure to obtain the real-time end-expiration Transpulmonary pressure; another example, subtracting the waveform of intrapulmonary pressure from the waveform of airway pressure to obtain the waveform of transpulmonary pressure, etc.;
  • the specific process of calculating transpulmonary pressure data with airway pressure data is the same as the above-mentioned calculation of transpulmonary pressure with esophageal pressure data The process of data is not repeated here.
  • the processor 40 can also display the real-time transpulmonary driving pressure on the display interface of the display device 30 to provide medical personnel with a reference to the force acting on the lungs;
  • the display interface shows the trend of the transpulmonary driving pressure over time, for example, a waveform diagram showing the transpulmonary driving pressure.
  • the processor 40 can also monitor the respiratory state of the patient according to the lung compliance.
  • the processor 40 can also display the lung compliance on the display interface of the display device 30, so that the medical staff can understand the elasticity of the patient's lungs.
  • the respiratory monitoring device can monitor the transpulmonary driving pressure, and the process of respiratory monitoring is shown in Figure 9, including the following steps:
  • Step 1' the processor 40 acquires the airway pressure data collected by the pressure sensor and the gas flow rate data measured by the flow sensor in one respiratory cycle. For example, real-time acquisition of gas flow rate data and airway pressure data of the patient during ventilation. The specific process has been described in detail in the foregoing embodiments, and will not be repeated here.
  • Step 2' the processor 40 calculates the inspiratory phase intrapulmonary pressure and the expiratory phase intrapulmonary pressure of the patient corresponding to the respiratory cycle for the airway pressure data and gas flow rate data in a respiratory cycle; for example, through FIG. 5 or The method shown in FIG. 6 obtains real-time intrapulmonary pressure data, including the intrapulmonary pressure during the inhalation phase and the intrapulmonary pressure during the exhalation phase.
  • the specific process has been described in detail in the above-mentioned embodiments and will not be repeated here.
  • Step 3' the processor 40 acquires the patient's esophageal pressure data in real time; for example, the processor 40 detects the patient's esophageal pressure in real time through the first pressure sensor 50 to obtain the esophageal pressure data.
  • Step 4' the processor 40 determines the transpulmonary driving pressure of the patient corresponding to the respiratory cycle based on the intrapulmonary pressure during the inspiratory phase and the intrapulmonary pressure during the expiratory phase, as well as the esophageal pressure measured by the pressure sensor during the respiratory cycle.
  • the transpulmonary driving pressure There are many specific ways to determine the transpulmonary driving pressure, which are introduced one by one below:
  • step 2' the processor 40 calculates the end-inspiratory pulmonary
  • the processor 40 determines the transpulmonary driving pressure of the patient corresponding to the respiratory cycle based on the end-inspiratory intrapulmonary pressure and the end-expiratory intrapulmonary pressure, as well as the esophageal pressure measured by the pressure sensor during the respiratory cycle .
  • step 2' the processor 40 calculates the patient's inspiratory phase corresponding to the breathing cycle based on the airway pressure data collected by the pressure sensor and the gas flow rate data measured by the flow sensor in one breathing cycle
  • the processor 40 obtains the corresponding esophageal pressure curve corresponding to the breathing cycle based on the inspiratory phase intrapulmonary pressure curve and the expiratory phase intrapulmonary pressure curve, and the esophageal pressure curve correspondingly collected by the pressure sensor in the breathing cycle.
  • the corresponding transpulmonary pressure curve determine the end-inspiratory transpulmonary pressure and the end-expiratory transpulmonary pressure based on the transpulmonary pressure curve, so as to determine the transpulmonary driving pressure of the patient corresponding to the respiratory cycle.
  • the processor 40 can specifically calculate the transpulmonary driving pressure in the following ways:
  • the processor 40 calculates the end-expiration and end-inspiration intrapulmonary pressure data of the patient at the end of the respiratory cycle according to the respiratory cycle, the gas flow rate data corresponding to the respiratory cycle, and the airway pressure data; The difference between the end-expiration and end-inspiration intrapulmonary pressure data and the esophageal pressure data collected by the pressure sensor at the corresponding time is used to obtain the transpulmonary pressure data respectively corresponding to the end-expiration and end-inspiration of the breathing cycle.
  • the intrapulmonary pressure data may include an intrapulmonary pressure waveform
  • the esophageal pressure data may include an esophageal pressure waveform
  • the transpulmonary pressure data may include a transpulmonary pressure waveform. According to the transpulmonary pressure waveform, the end-inspiratory transpulmonary pressure and the end-expiratory transpulmonary pressure can be obtained.
  • the intrapulmonary pressure data may also include end-inspiratory intrapulmonary pressure and end-expiratory intrapulmonary pressure
  • the esophageal pressure data may include end-inspiratory esophageal pressure and end-expiratory esophageal pressure.
  • the processor 40 calculates the difference between the intrapulmonary pressure data and the esophageal pressure data, and obtains the transpulmonary pressure data corresponding to the breathing cycle.
  • the end-inspiratory transpulmonary pressure subtract the end-expiratory esophageal pressure from the end-expiratory intrapulmonary pressure to obtain the corresponding end-expiratory transpulmonary pressure.
  • the processor 40 obtains the transpulmonary driving pressure corresponding to the respiratory cycle based on the end-inspiratory transpulmonary pressure and the end-expiratory transpulmonary pressure, for example, subtracting the end-expiratory transpulmonary pressure from the end-inspiratory transpulmonary pressure to obtain the The transpulmonary driving pressure corresponding to the respiratory cycle.
  • the corresponding transpulmonary driving pressure can be calculated for each respiratory cycle, so as to detect the transpulmonary driving pressure in real time.
  • the real-time transpulmonary driving pressure obtained by the processor 40 can be further utilized or output.
  • the processor 40 analyzes the transpulmonary driving pressure based on the second preset condition. When the transpulmonary driving pressure does not meet the second preset condition, the processor 40 outputs a corresponding prompt signal, such as outputting to the display device 30 to display prompt information. .
  • the second preset condition may be a preset pressure range. If the transpulmonary driving pressure does not fall within the pressure range, it means that the transpulmonary driving pressure is too high or too low, and the processor 40 outputs a corresponding prompt signal to remind the doctor. When the processor 40 fails to calculate the transpulmonary driving pressure, it can also output a corresponding prompt signal.
  • the processor 40 fails to calculate the transpulmonary driving pressure, it outputs a corresponding prompt signal, and the processor 40 reports an error during the calculation of the transpulmonary driving pressure. Or the obtained transpulmonary driving pressure exceeds the error threshold (for example, the error threshold is a value that cannot be reached by the transpulmonary driving pressure), then a corresponding prompt signal is output.
  • the prompt signal can be alarm information, which is alarmed by a display device, a loudspeaker or an indicator light.
  • the processor 40 can also adjust the patient's ventilation according to the transpulmonary driving pressure, for example, adjust the transpulmonary driving pressure through flow or pressure control.
  • the transpulmonary driving pressure can be output to external devices (such as printers, monitors, etc.), and can also be output to the display device 30, and the display interface of the display device 30 displays the real-time transpulmonary driving pressure, such as displaying real-time values, Display transpulmonary driving pressure, etc., as a graph or chart over time.
  • the processor 40 can also obtain the trend of the transpulmonary driving pressure over time according to the transpulmonary driving pressure at different moments, for example, obtain the waveform diagram of the transpulmonary driving pressure; the processor 40 sends the trend of the transpulmonary driving pressure over time to the display
  • the device 30 displays, for example, a waveform diagram of the transpulmonary driving pressure, so that the medical staff can grasp the change of the patient's transpulmonary driving pressure.
  • the driving pressure can be calculated and monitored in real time using the intrapulmonary pressure, without the need for inspiratory pause or manual operation by the user; Real-time calculation and monitoring without inspiratory pause or user manual operation; real-time calculation and monitoring of transpulmonary driving pressure without inspiratory pause or user manual operation; real-time calculation and monitoring of compliance based on driving pressure calculation and lung compliance , without the need for an inspiratory pause or manual user action.
  • the program can also be stored in a storage medium such as a server, another computer, a magnetic disk, an optical disk, a flash disk, or a mobile hard disk, and saved by downloading or copying.
  • a storage medium such as a server, another computer, a magnetic disk, an optical disk, a flash disk, or a mobile hard disk, and saved by downloading or copying.
  • any tangible, non-transitory computer-readable storage medium may be used, including magnetic storage devices (hard disks, floppy disks, etc.), optical storage devices (CD-ROM, DVD, Blu Ray discs, etc.), flash memory and/or the like .
  • These computer program instructions can be loaded into a general purpose computer, special purpose computer or other programmable data processing apparatus to form a machine, so that these instructions executed on the computer or other programmable data processing apparatus can generate an apparatus for realizing specified functions.
  • These computer program instructions may also be stored in a computer-readable memory which can instruct a computer or other programmable data processing device to operate in a particular manner such that the instructions stored in the computer-readable memory form a Manufactures, including implementing devices for implementing specified functions.
  • Computer program instructions can also be loaded on a computer or other programmable data processing device, thereby performing a series of operational steps on the computer or other programmable device to produce a computer-implemented process, so that the computer or other programmable device Instructions may provide steps for performing specified functions.
  • the term “comprises” and any other variants thereof are non-exclusive, such that a process, method, article, or apparatus that includes a list of elements includes not only those elements, but also elements not expressly listed or not part of the process. , method, system, article or other element of a device.
  • the term “coupled” and any other variations thereof, as used herein refers to a physical connection, an electrical connection, a magnetic connection, an optical connection, a communicative connection, a functional connection, and/or any other connection.

Landscapes

  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种呼吸监测方法和呼吸监测装置,对于一个呼吸周期内压力传感器采集到的气道压数据和流量传感器测量得到的气体流速数据,计算与该呼吸周期对应的患者的吸气阶段肺内压和\或呼气压力值;根据吸气阶段肺内压和呼气压力值,确定该呼吸周期对应的患者的驱动压。由此无需吸气和呼气保持等人工干预就能得到驱动压,也就能对驱动压进行实时检测;由于不会干扰通气,对患者也很友好。

Description

一种呼吸监测方法和呼吸监测装置 技术领域
本发明涉及医疗领域,具体涉及一种呼吸监测方法和呼吸监测装置。
背景技术
机械通气过程中,呼吸机的不合理设置会对病人造成肺损伤。2000年英国ARDSnet的多中心研究提出小潮气量(VT 6~8ml/kg理想体重)、低气道平台压(Pplat<30~35cmH2O)、高呼气末正压(PEEP)、允许性碳酸血症(PHC)为核心的肺保护性通气策略。目前肺保护通气策略优先保持低潮气量,但是临床证明用低潮气量通气ARDS死亡率并没有降低[1],是由于ARDS病人病因不同、严重程度不同、功能残气量不同、可复张性不同,塌陷肺泡区域大小、分布不同,导致肺的不均一性,这种不均一性使得肺顺应性也不同,患者真正所需要的潮气量也不同,所以仅以潮气量作为肺保护控制是不够的。常用的小潮气量联合最佳呼气末正压(PEEP)的保护性肺通气策略,也仍然存在非重力依赖区肺泡过度膨胀、重力依赖区肺泡潮汐性塌陷复张,呼吸机相关性肺损伤不可避免。此外,结合小潮气量和平台压限制的肺保护方法,由于塌陷肺泡多的患者正常通气肺泡少,过度膨胀明显增高,仍可能会带来肺损伤和高气压。不同病人,潮气量相同,顺应性不同,作用在肺上的压力不同。所以结合避免肺泡过度膨胀的Pplat,和避免肺泡塌陷的PEEP,直接驱动整个呼吸系统扩张的动力,也就是驱动压的监测十分重要。
现有测量驱动压的方法:
气道压是作用在呼吸系统的压力,包括气道阻力、肺、胸壁。肺内压是去除气道阻力,直接作用在肺和胸壁的压力。跨肺压则是肺内压去除作用在胸壁上的部分,直接作用在肺上的压力,用肺内压减去胸腔内压即为跨肺压,通常用食道压近似替换胸腔内压,跨肺压=肺内压-食道压。
临床常规测量驱动压:通过吸气保持测量平台压,通过呼气保持测量PEEPtotal(PEEPi+PEEP)。驱动压=吸气保持测量的平台压-呼气保持测量的PEEPtotal(PEEPi+PEEP)。吸气和呼气保持是为了使气道中的气流稳定后,气道压与肺内压相等,去除气道阻力的干扰,获得肺内真实的压力,驱动压反映的是去除作用于气道阻力后的肺内压力的变化。
临床上一些肥胖或者腹部高压病人的胸壁顺应性较小时,肺内压作用力主要分布到胸壁上,作用于肺的压力很小,所以这类病人,肺内压无法反映真实作用到肺上的压力,需要用跨肺压(去除作用在胸壁上的部分,直接作用在肺 上的压力)来进行监测。跨肺驱动压=吸气保持测量的跨肺压-呼气保持测量跨肺压。
现在测量驱动压的方法,吸气保持和呼气保持的操作较为复杂,需要记录数据后再计算,并且会干扰通气。
发明内容
本发明主要提供一种呼吸监测方法和呼吸监测装置,无需吸气和呼气保持即可得到驱动压。
在一实施例中,提供了一种呼吸监测装置,包括:
压力传感器,用于对患者的气道压,或气道压和食道压,进行采集,得到对应的气道压数据、食道压数据;
流量传感器,用于获取患者在通气过程中的气体流速数据;
处理器,用于
对于一个呼吸周期内所述压力传感器采集到的气道压数据和所述流量传感器测量得到的气体流速数据,计算与该呼吸周期对应的患者的吸气阶段肺内压和\或呼气压力值;根据所述吸气阶段肺内压和所述呼气压力值,确定该呼吸周期对应的患者的驱动压;或者
对于一个呼吸周期内所述压力传感器采集到的气道压数据和所述流量传感器测量得到的气体流速数据,计算与该呼吸周期对应的患者的吸气阶段肺内压和呼气阶段肺内压;基于所述吸气阶段肺内压和所述呼气阶段肺内压,以及所述压力传感器在所述呼吸周期内测量得到的食道压,确定该呼吸周期对应的患者的跨肺驱动压。
在一实施例提供的呼吸监测装置中,处理器确定所述跨肺驱动压的方法为以下之一:
所述处理器,用于对于一个呼吸周期内所述压力传感器采集到的气道压数据和所述流量传感器测量得到的气体流速数据,计算与该呼吸周期对应的患者的吸气末肺内压和呼气末肺内压;基于所述吸气末肺内压和所述呼气末肺内压,以及所述压力传感器在所述呼吸周期内测量得到的食道压,确定该呼吸周期对应的患者的跨肺驱动压;
所述处理器,用于对于一个呼吸周期内所述压力传感器采集到的气道压数据和所述流量传感器测量得到的气体流速数据,计算与该呼吸周期对应的患者的吸气阶段肺内压曲线和呼气阶段肺内压曲线;基于所述吸气阶段肺内压曲线和所述呼气阶段肺内压曲线,以及所述压力传感器在所述呼吸周期内对应采集到的食道压曲线,得到与该呼吸周期相对应的跨肺压曲线;基于所述跨肺压曲线确定吸气末跨肺压和呼气末跨肺压,从而确定该呼吸周期对应的患者的跨肺 驱动压。
在一实施例提供的呼吸监测装置中,还包括显示装置,所述处理器还用于:
将所述驱动压或跨肺驱动压发送至所述显示装置并显示。
在一实施例提供的呼吸监测装置中,所述驱动压或跨肺驱动压,以随时间变化的图形形式显示在所述显示装置上。
在一实施例提供的呼吸监测装置中,所述吸气阶段肺内压包括吸气末肺内压,所述呼气阶段肺内压包括呼气末肺内压;所述处理器计算吸气末肺内压、呼气末肺内压的步骤包括:
实时获取患者在一个呼吸周期的通气过程中的所述流量传感器采集到的气体流速数据以及患者在该呼吸周期的通气过程中所述压力传感器采集到的气道压数据;
根据呼吸周期和所述气体流速数据以及所述气道压数据,计算得到与该呼吸周期对应的肺内压数据;所述肺内压数据包括吸气末肺内压和呼气末肺内压。
在一实施例提供的呼吸监测装置中,所述处理器计算跨肺驱动压的步骤包括:
对于一个呼吸周期,根据所述呼吸周期和与所述呼吸周期相对应的气体流速数据以及气道压数据,计算得到所述患者在该呼吸周期的呼气末和吸气末的肺内压数据;
根据所述呼气末和吸气末的肺内压数据与对应时刻所述压力传感器采集到的食道压数据之间的差值,得到与该呼吸周期的呼气末和吸气末分别对应的跨肺压数据;所述跨肺压数据包括吸气末跨肺压和呼气末跨肺压;
基于所述吸气末跨肺压和所述呼气末跨肺压得到与该呼吸周期相对应的跨肺驱动压。
在一实施例提供的呼吸监测装置中,
所述肺内压数据包括肺内压波形,所述食道压数据包括食道压波形,所述跨肺压数据包括跨肺压波形;或者,
所述肺内压数据包括吸气末肺内压和呼气末肺内压,所述食道压数据包括吸气末食道压和呼气末食道压;
所述处理器计算所述肺内压数据与所述食道压数据的差值,得到与该呼吸周期相对应的跨肺压数据的步骤包括:
将所述吸气末肺内压减去所述吸气末食道压得到对应的吸气末跨肺压;
将所述呼气末肺内压减去所述呼气末食道压得到对应的呼气末跨肺压。
在一实施例提供的呼吸监测装置中,所述处理器根据呼吸周期和所述气体流速数据以及所述气道压数据计算得到的肺内压数据的步骤包括:
所述气体流速数据包括在所述呼吸周期内,吸气阶段对应的气体流速、呼 气阶段对应的气体流速,以及,所述气道压数据包括吸气阶段对应的气道压以及呼气阶段对应的气道压;
根据吸气阶段对应的气体流速,计算得到吸气阶段对应的气体容积;
根据吸气阶段对应的气道压、气体容积和气体流速计算得到吸气阶段对应的吸气阶段肺内压;
根据呼气阶段对应的气道压和气体流速计算得到呼气阶段对应的呼气阶段肺内压;
根据吸气阶段肺内压和呼气阶段肺内压得到患者在所述呼吸周期内的肺内压波形;
或者,
所述气道压数据包括吸气末气道压和呼气末气道压;根据所述气体流速数据计算得到吸气阶段总气体容积;
根据所述吸气末气道压、吸气阶段总气体容积、所述气体流速数据中的吸气末流速以及呼气末气道压,计算得到吸气末肺内压;
根据所述呼气末气道压和所述气体流速数据中的呼气末流速,计算得到呼气末肺内压,或者将所述呼气末气道压近似为所述呼气末肺内压。
在一实施例提供的呼吸监测装置中,所述处理器还用于
通过所述流量传感器实时获取患者的潮气量,根据所述潮气量与所述驱动压,得到对应的顺应性;或根据所述潮气量与所述跨肺驱动压,得到对应的肺顺应性;根据所述顺应性或肺顺应性,对患者的呼吸状态进行监测。
在一实施例提供的呼吸监测装置中,所述处理器还用于,
基于预设条件分别对所述驱动压或所述跨肺驱动压进行分析,当所述驱动压或所述跨肺驱动压不满足预设条件时,所述处理器发出提示信号。
在一实施例中,提供了一种呼吸监测方法,包括:
实时获取患者在通气过程中的气体流速数据和气道压数据,或气体流速数据、食道压数据和气道压数据;
对于一个呼吸周期,根据该呼吸周期的所述气体流速数据以及所述气道压数据,计算得到对应的肺内压数据,所述肺内压数据包括吸气末肺内压、呼气末肺内压;所述吸气末肺内压和所述呼气末肺内压,分别用于表征通气过程中,吸气末和呼气末作用于患者呼吸系统预期位置的压力;根据所述吸气末肺内压和所述呼气末肺内压,得到该呼吸周期对应的驱动压;或者
对于一个呼吸周期内所述压力传感器采集到的气道压数据和所述流量传感器测量得到的气体流速数据,计算与该呼吸周期对应的患者的吸气阶段肺内压和呼气阶段肺内压;基于所述吸气阶段肺内压和所述呼气阶段肺内压,以及所述压力传感器在所述呼吸周期内测量得到的食道压,确定该呼吸周期对应的患 者的跨肺驱动压。
在一实施例中,提供了一种计算机可读存储介质,所述介质上存储有程序,所述程序能够被处理器执行以实现如上所述的呼吸监测方法。
依据上述实施例的一种呼吸监测方法和呼吸监测装置,对于一个呼吸周期内压力传感器采集到的气道压数据和流量传感器测量得到的气体流速数据,计算与该呼吸周期对应的患者的吸气阶段肺内压和\或呼气压力值;根据吸气阶段肺内压和呼气压力值,确定该呼吸周期对应的患者的驱动压。由此无需吸气和呼气保持等人工干预就能得到驱动压,也就能对驱动压进行实时检测;由于不会干扰通气,对患者也很友好。
附图说明
图1为本发明提供的呼吸监测装置一实施例的结构框图;
图2为本发明提供的呼吸监测装置另一实施例的结构框图;
图3为本发明提供的呼吸监测装置中,医疗通气设备一种实施例的结构框图;
图4为本发明提供的呼吸监测方法一实施例的流程图;
图5为图4中,步骤1一实施例的流程图;
图6为图4中,步骤1另一实施例的流程图;
图7为呼吸力学RC模型的原理图;
图8为本发明提供的呼吸监测装置中,气道压和肺内压的波形图;
图9为本发明提供的呼吸监测方法另一实施例的流程图。
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有 说明其中某个顺序是必须遵循的。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
请参照图1和图2,本发明一些实施例中公开了一种呼吸监测装置,包括处理器40和显示装置30。
处理器40用于获取患者的气道压数据和食道压数据中的至少一者,即,可以获取气道压数据,也可以获取食道压数据,还可以获取气道压数据和食道压数据。处理器40还用于获取患者在通气过程中的气体流速数据。处理器40根据呼吸周期,基于气道压数据和气体流速数据计算患者的吸气阶段肺内压和/或呼气压力值;并基于吸气阶段肺内压和呼气压力值,确定患者的驱动压并输出,例如,将吸气阶段肺内压减去呼气压力值,得到患者的驱动压。其中,呼气压力值可以是呼吸机直接通过传感器测量得到的呼气末正压,也可以是根据气道压数据和气体流速数据计算得到的呼气阶段肺内压。
处理器40还根据呼吸周期,基于气道压数据和气体流速数据计算患者的吸气阶段肺内压和呼气阶段肺内压;基于吸气阶段肺内压和呼气阶段肺内压,以及食道压,确定患者的跨肺驱动压并输出。
处理器40输出驱动压和/或跨肺驱动压,可以输出给外部设备(如打印机、监护仪等),也可以输出给显示装置30(如显示器),通过显示装置30显示患者的驱动压。例如处理器40将患者的驱动压和/或跨肺驱动压输出给显示装置30,显示装置30接收处理器40发送来的驱动压和/或跨肺驱动压并显示。显示装置30显示驱动压和/或跨肺驱动压可以有多种方式,例如直接显示驱动压和/或跨肺驱动压的数值,又例如以图形或图表(例如柱状图)等方式显示驱动压和/或跨肺驱动压,用户通过图形或图表等能看出驱动压和/或跨肺驱动压数值的大致范围,总之能一定程度反映驱动压和/或跨肺驱动压的高低即可。显示装置30能输出可视化信息,其可以是各种类型的显示器。
可见本发明无需吸气和呼气保持等人工干预就能得到驱动压和/或跨肺驱动压,也就能对驱动压和/或跨肺驱动压进行实时检测;由于不会干扰通气,对患者也很友好。
本发明的呼吸监测装置可以应用于多种场合,例如本发明的呼吸监测装置在一些实施例中可以是监护仪、中央站、监护模块等,在一些实施例中可以是医疗通气设备,例如呼吸机、麻醉机、便携的手持通气设备等,在一些实施例中也可以是具有运算处理能力的其他医疗设备。呼吸监测装置的类型不同,处理器40获取上述数据的方式也可能不同。例如图1所示,呼吸监测装置还包括压力传感器和流量传感器70等;压力传感器用于对患者的气道压进行采集得到 对应的气道压数据,或者,用于对气道压和食道压进行采集,得到对应的气道压数据和食道压数据。流量传感器70用于测量患者在通气过程中的气体流速数据。处理器40通过呼吸监测装置自身的压力传感器来获取气道压数据和食道压数据,通过流量传感器70获取气体流速数据。又例如,呼吸监测装置是监护仪,如图2所示,其还包括通信装置80,处理器40通过通信装置80从其他外部设备获取气道压数据、食道压数据和气体流速数据。
为便于更详细的阐述本发明的技术方案,本实施例以呼吸监测装置为医疗通气设备为例进行说明。医疗通气设备能够进行机械通气,用以辅助或控制患者的自主呼吸运动,以达到肺内气体交换的功能,降低人体的消耗,以利于呼吸功能的恢复。如图1所示,医疗通气设备还包括呼吸辅助装置10和呼吸回路20。
医疗通气设备以呼吸机为例,如图3所示,其示出了一种有创呼吸机,呼吸机还包括:呼吸接口211、气源接口212和存储器90。
呼吸辅助装置10用于提供动力,以将预设的气体输入给患者,或将患者呼出的至少部分气体排到外部环境。预设的气体是能够满足患者呼吸需求的气体,对于麻醉机,预设的气体中还可以具有麻药。
呼吸回路20将气源接口212和患者的呼吸系统选择性连通,包括至少一条支路(如呼气支路213a、吸气支路213b)以及设置于支路的阀门,所述阀门用于打开或关闭所述支路。呼吸回路20用于将所述预设的气体通过吸气支路213b传输给患者,和/或,将患者呼出的所述至少部分气体通过呼气支路213a排到外部环境。一些实施例中如有创呼吸机,呼吸回路20包括呼气支路213a和吸气支路213b,呼气支路213a连接在呼吸接口211和排气口213c之间,用于将患者呼出的气体导出到排气口213c。排气口213c可以通到外界环境,也可以通道专用的气体回收装置中。一些实施例中如无创呼吸机,呼吸回路20包括吸气支路213b但无需呼气支路213a,患者自主呼气。气源接口212用于与气源(图中未示出)连接,气源用以提供气体,该气体通常可采用氧气和空气等;一些实施例中,该气源可以采用压缩气瓶或中心供气源,通过气源接口212为呼吸机供气,供气种类有氧气O2和空气等,气源接口212中可以包括压力表、压力调节器、流量计、减压阀和空气-氧气比例调控保护装置等常规组件,分别用于控制各种气体(例如氧气和空气)的流量。当然,气源也可以采用涡轮,通过涡轮输出气体给气源接口212,或者,也可以直接用涡轮取代气源接口212。吸气支路213b连接在呼吸接口211和气源接口212之间,用于为患者提供预设气体(如氧气或空气),例如从气源接口212输入的气体进入吸气支路213b中,然后通过呼吸接口211进入患者的肺部。呼吸接口211是用于将患者连接到呼吸回路20,除了将由吸气支路213b传输过来的气体导入到患者外,对于有创 呼吸机其还可以将患者呼出的气体通过呼气支路213a导入到排气口213c,而对于无创呼吸机其还可以直接将患者呼出的气体排出;根据情况,呼吸接口211可以是鼻插管或用于佩戴在口鼻上的面罩。
呼吸辅助装置10与气源接口212和呼吸回路20连接,控制将外部气源提供的气体通过所述呼吸回路20输送给患者;有创呼吸机的实施例中呼吸辅助装置10可以包括呼气控制器214a和吸气控制器214b,无创呼吸机的实施例中呼吸辅助装置10可以包括吸气控制器214b。呼气控制器214a设置在呼气支路213a上,用于根据控制指令接通呼气支路213a或关闭呼气支路213a,或控制患者呼出气体的流速或压力。具体实现时,呼气控制器214a可以包括呼气阀、单向阀、流量控制器、PEEP阀等能实现对流量或压力控制的器件中的一个或多个。吸气控制器214b设置在吸气支路213b上,用于根据控制指令接通吸气支路213b或关闭吸气支路213b,或控制输出气体的流速或压力。具体实现时,吸气控制器214b可以包括呼气阀、单向阀或流量控制器等能实现对流量或压力控制的器件中的一个或多个。
存储器90可以用于存储数据或者程序,例如用于存储传感器所采集的数据、处理器经计算所生成的数据或处理器所生成的图像帧,该图像帧可以是2D或3D图像,或者存储器90可以存储图形用户界面、一个或多个默认图像显示设置、用于处理器的编程指令。存储器90可以是有形且非暂态的计算机可读介质,例如闪存、RAM、ROM、EEPROM等。
一些实施例中处理器40用于执行指令或程序,对呼吸辅助装置10、气源接口212和/或呼吸回路20中的各种控制阀进行控制,或对接收的数据进行处理,生成所需要的计算或判断结果,或者生成可视化数据或图形,并将可视化数据或图形输出给显示器30进行显示。
以上是医疗通气设备为呼吸机的一些描述,需要说明的是,上面图3只是呼吸机的一种例子,这并不用于限定呼吸机只能是如此的结构。
压力传感器用于对患者气道压、食道压中的至少一个进行采集,得到气道压数据、食道压数据中的至少一个。本实施例中,呼吸监测装置包括第一压力传感器50和第二压力传感器60。第一压力传感器50用于采集患者的食道压,本实施例是实时检测患者的食道压,得到食道压数据。第二压力传感器60用于采集医疗通气设备给患者通气时患者的气道压,本实施例是实时检测患者的气道压,得到气道压数据。
流量传感器70用于采集患者在通气过程中的气体流速,本实施例是实时检测患者在通气过程中的气体流速,得到气体流速数据。流量传感器70可以设置在呼吸接口211到气源接口212之间,或者到排气口213c之间的气路上。气体流速可以是进入患者体内的气体的流速,对于有创呼吸,一些实施例中,流量 传感器70的数量为多个,包括设置于机械通气端的吸气流量传感器和呼气流量传感器,例如对于呼吸机来讲,可以是设置于吸气支路213b中的吸气流量传感器和设置于呼气支路213a中的呼气流量传感器,一些实施例中流量传感器70也可以是直接接在病人端的Ypiece流量传感器,通过直接测量病人端流进和流出的流速作为所述气体流速。而对于无创通气,由于其通气方式的特点导致气体存在泄漏,因此可以对流量传感器70采集的气体流速做补偿处理,以得到实际流速。具体的,处理器40获取无创通气时的泄漏量,进而根据泄漏量对流量传感器70采集的气体流速做补偿处理,以得到实际的气体流速。
本发明提出不需要用户手动操作,不干扰通气,能计算驱动压的方法。通过计算肺内压,将计算的吸气末肺内压作为平台压,代替吸气暂停或吸气保持测量的方法;将计算的呼气末肺内压作为总呼气末正压PEEPtotal(PEEPi+PEEP),代替呼气保持的方法;进而将吸气末肺内压减去呼气末肺内压得到驱动压。由于无需吸气和呼气保持,故可以实时计算得到实时的驱动压,从而实现对驱动压的实时监测。驱动压的监测可以是实时的也可以是非实时的,本实施例以实时监测为例进行说明,其方法如图4所示,包括如下步骤:
步骤1、对于一个呼吸周期内压力传感器采集到的气道压数据和流量传感器测量得到的气体流速数据,计算与该呼吸周期对应的患者的吸气阶段肺内压和呼气压力值,本实施例中,吸气阶段肺内压吸气末肺内压、呼气压力值取呼气末肺内压为例进行说明。具体的,以实时监测为例,处理器40通过流量传感器70实时获取患者在一个呼吸周期的通气过程中的气体流速数据,通过第二压力传感器60实时获取患者在该呼吸周期的通气过程中的气道压数据。进而处理器40根据呼吸周期和气体流速数据以及气道压数据,计算得到与该呼吸周期对应的肺内压数据;其中肺内压数据至少包括吸气末肺内压和呼气末肺内压。
处理器40计算实时的肺内压数据可以采用如图5所示的方式,其中,气道压数据包括吸气末气道压Paw(t 吸末)和呼气末气道压Paw(t 呼末)。下面对图5所示的方法具体说明,其包括:
步骤11、处理器40根据气体流速数据计算得到吸气阶段总气体容积V(t 吸末)。吸气阶段总气体容积V(t 吸末)表示呼吸周期中吸气阶段进入患者肺部的气体总体积,可由气体流速数据进行积分得到。
步骤12、处理器40根据吸气末气道压Paw(t 吸末)、吸气阶段总气体容积V(t 吸末)、气体流速数据中的吸气末流速Flow(t 吸末)以及呼气末气道压Paw(t 呼末)计算得到吸气末肺内压Plung(t 吸末)。
具体的,图7所示,呼吸力学RC模型揭示了各个参数之间的关系。图中Flow为气体流速,等同电流;Paw为气道压,等同电压;气道压阻力等同电阻R;呼吸系统的顺应性等同电容C;Plung为肺内压。可构建呼吸力学方程,如 下:
吸气阶段:
Figure PCTCN2021141168-appb-000001
呼气阶段:Plung(t)=Paw(t)-R*Flow(t)。
其中,R为呼吸系统的阻力,是已知量或预设量;t为时间或时刻,Paw(t)为气道压与时间t的函数,即任意时刻t的气道压;Flow(t)为气体流速与时间t的函数,即任意时刻t的气体流速;V(t)为气体容积与时间t的函数,即任意时刻t的气体容积,对气体流速Flow(t)积分可得到V(t)。t时刻的气体容积表示吸气开始到当前t时刻进入患者体内的气体的总体积。Plung(t)为肺内压与时间t的函数,即任意时刻t的肺内压。
肺内压即肺内部的压力,通常是无法直接测量的。现有技术中,做吸气和呼气保持是为了使气道气流稳定后,气道压与肺内压相等,去除气道阻力的干扰,将气道压作为肺内压。而本发明不做吸气和呼气保持,而是采用如下公式来计算肺内压:
吸气阶段:
Figure PCTCN2021141168-appb-000002
呼气阶段:Plung(t)=Paw(t)-R*Flow(t),公式(2)。
其中,PEEP为呼气终末正压,也就是呼气末气道压Paw(t 呼末),单位通常是cmH 2O;τ是时间常数。时间常数的数值受病人阻力和顺应性的影响,反映病人呼出气体的快慢。临床认为一般病人呼气呼完所需呼气时间为3倍的时间常数。时间常数的计算有多种方法,一种计算方法是用呼气阶段某一时刻的潮气量和流速的比值作为时间常数,另一种计算方法是用实时容积-时间曲线拟合计算得到,计算方法不同其数值也就可能不同,时间常数预先设置即可,本发明不做限定。
处理器40将吸气末气道压Paw(t 吸末)、吸气阶段总气体容积V(t 吸末)、吸气末流速Flow(t 吸末)以及呼气末气道压Paw(t 呼末)(即PEEP)代入到上述公式(1)中,计算得到吸气末肺内压Plung(t 吸末)。t 吸末为吸气末的时刻。
步骤13、处理器40根据呼气末气道压Paw(t 呼末)和气体流速数据中的呼气末流速Flow(t 呼末)计算得到呼气末肺内压Plung(t 呼末)。具体的,处理器40将呼气末气道压Paw(t 呼末)和呼气末流速Flow(t 呼末)代入上述公式(2),计算得到呼气末肺内压Plung(t 呼末)。t 呼末为呼气末的时刻。当然,有的实施例中,也可以用呼气终末正压PEEP,即呼气末气道压Paw(t 呼末)作为呼气末肺内压,用PEEP作为呼气末肺内压的近似值来计算驱动压,其准确性较公式(2)差一点。
肺内压数据还可以包括不同时刻的肺内压,具体的,处理器40计算实时的肺内压数据可以采用如图6所示的方式。其中,气体流速数据包括:在呼吸周期内,吸气阶段对应的气体流速(吸气阶段不同时刻的气体流速)、呼气阶段对应的气体流速(呼气阶段不同时刻的气体流速),即Flow(t)已知。气道压数据包括呼气末气道压PEEP、吸气阶段对应的气道压(吸气阶段不同时刻的气道压)以及呼气阶段对应的气道压(呼气阶段不同时刻的气道压),即Paw(t)已知。下面对图6所示的方法具体说明,其包括:
步骤11’、处理器40根据吸气阶段对应的气体流速Flow(t )计算得到吸气阶段对应的气体容积V(t )。t 表示吸气阶段的不同时刻。
步骤12’、处理器40根据吸气阶段对应的气道压Paw(t )、气体容积V(t )和气体流速Flow(t )计算得到吸气阶段肺内压Plung(t )。具体的,还可以加入呼气末气道压PEEP来计算Plung(t ),例如,处理器40将呼气末气道压PEEP以及吸气阶段不同时刻的:气道压Paw(t )、气体容积V(t )和气体流速Flow(t )代入到上述公式(1)中,计算得到吸气阶段肺内压(吸气阶段不同时刻的肺内压)Plung(t )。
步骤13’、处理器40根据呼气阶段对应的气道压Paw(t )和气体流速Flow(t )计算得到呼气阶段肺内压Plung(t )。具体的,处理器40将呼气阶段对应的气道压Paw(t )和呼气阶段对应的气体流速Flow(t )代入上述公式(2),计算得到呼气阶段肺内压(呼气阶段不同时刻的肺内压)Plung(t )。t 表示呼气阶段的不同时刻。
步骤14’、处理器40根据吸气阶段肺内压Plung(t )和呼气阶段肺内压Plung(t )得到患者在整个呼吸周期内不同时刻的肺内压Plung(t),从而得到肺内压波形并通过显示器显示,如图8中的虚线波形所示。如此,用户能看到肺内压随时间的变化趋势,便于掌握患者的呼吸情况。当然,处理器40也可以根据气道压数据生成气道压波形并通过显示器显示,如图8中的实线波形所示。肺内压波形和气道压波形在同一个图中,共用坐标轴,便于用户查看。
步骤2、处理器40将吸气末肺内压Plung(t 吸末)减去呼气末肺内压Plung(t 呼末),得到实时的驱动压Pdrive;即Pdrive=Plung(t 吸末)-Plung(t 呼末)。驱动压Pdrive为驱动患者整个呼吸系统扩张的动力,即作用在肺和胸壁上的驱动压力。
本发明创造性的采用两个不同的公式来分别推导计算吸气末肺内压Plung(t 吸末)和呼气末肺内压Plung(t 呼末),并将两者之差作为驱动压,无需呼气和吸气保持。
处理器40得到实时的驱动压Pdrive可以加以进一步利用,也可以输出。例如处理器40基于第一预设条件对驱动压进行分析,当驱动压不满足第一预 设条件时,处理器40输出对应的提示信号,如输出给显示装置30显示提示信息。第一预设条件可以是一个预设的压力区间,驱动压没有落入到这个压力区间说明驱动压过高或过低,则处理器40输出对应的提示信号来提醒医生。处理器40计算驱动压失败时,也可以输出对应的提示信号,例如,处理器40无法计算出驱动压则输出对应的提示信号,处理器40计算驱动压的过程中报错或者得到的驱动压超过错误阈值(如错误阈值为驱动压不可能达到的一个值),则输出对应的提示信号。提示信号可以是报警信息,由显示装置、扬声器或指示灯等进行报警。
处理器40也可以根据驱动压来调整患者的通气,例如通过流量或压力控制来调整驱动压等。又例如可以将驱动压输出给外部设备(如打印机、监护仪等),也可以输出给显示装置30,由显示装置30的显示界面显示实时的驱动压Pdrive,例如显示实时的数值、以随时间变化的图形或图表的形式显示驱动压等。处理器40还可以根据不同时刻的驱动压Pdrive得到驱动压随时间变化的趋势,例如得到驱动压Pdrive的波形图;处理器40将驱动压随时间变化的趋势发送给显示装置30。显示装置30接收处理器40发送来的驱动压随时间变化的趋势并在其显示界面显示,例如显示驱动压Pdrive的波形图,便于医护人员掌握患者驱动压的变化情况。由于能实时地对驱动压进行监测,提高了患者通气的安全性。
进一步的,处理器40还可以实时获取患者的潮气量(Tidal volume,TV)。例如,处理器40通过流量传感器实时获取患者的潮气量,根据潮气量与驱动压得到对应的顺应性,如计算潮气量与驱动压的比值,得到实时的顺应性,即顺应性=潮气量/驱动压。处理器40还可以根据顺应性,对患者的呼吸状态进行监测。顺应性是指弹性体在外力作用下发生形变的难易程度。处理器40通过显示装置30显示该顺应性,便于医护人员了解患者肺部生理情况,进而更好的为患者通气。
气道压是作用在呼吸系统(气道阻力、肺、胸壁等)的压力。肺内压是去除气道阻力,直接作用在肺和胸壁的压力。跨肺压则是肺内压去除作用在胸壁上的部分,直接作用在肺上的压力,用肺内压减去胸腔内压即为跨肺压,通常用食道压近似替换胸腔内压,跨肺压=肺内压-食道压。处理器40根据呼吸周期和气体流速数据以及气道压数据计算得到实时的肺内压数据之后,还可以计算肺内压数据与食道压数据的差值,得到实时的跨肺压数据;跨肺压数据包括吸气末跨肺压和呼气末跨肺压;将吸气末跨肺压减去呼气末跨肺压得到实时的跨肺驱动压。具体的,肺内压数据至少包括吸气末肺内压和呼气末肺内压,食道压数据至少包括吸气末食道压和呼气末食道压。处理器40将吸气末肺内压减去吸气末食道压得到实时的吸气末跨肺压;将呼气末肺内压减去呼气末食道压 得到实时的呼气末跨肺压。当然,肺内压数据也可以包括不同时刻的肺内压,例如包括肺内压波形;食道压数据也可以包括不同时刻的食道压,例如包括食道压波形;跨肺压数据也可以包括不同时刻的跨肺压,例如包括跨肺压波形。处理器40将肺内压波形减去食道压波形得到跨肺压波形,根据跨肺压波形即可得到吸气末跨肺压和呼气末跨肺压,两者之差即为跨肺驱动压。
在一些实施例中,可以用气道压数据近似的代替食道压数据来计算跨肺压数据,即计算肺内压数据与气道压数据的差值,得到实时的跨肺压数据。例如处理器40将吸气末肺内压减去吸气末气道压得到实时的吸气末跨肺压;将呼气末肺内压减去呼气末气道压得到实时的呼气末跨肺压;又例如,将肺内压波形减去气道压波形得到跨肺压波形等;用气道压数据来计算跨肺压数据的具体过程同上述用食道压数据来计算跨肺压数据的过程,在此不做赘述。
处理器40还可以在显示装置30的显示界面显示实时的跨肺驱动压,为医护人员提供作用到肺部的力的参考;也可以根据不同时刻得到的跨肺驱动压,在显示装置30的显示界面显示跨肺驱动压随时间变化的趋势,例如显示跨肺驱动压的波形图。
处理器40可根据潮气量与跨肺驱动压得到对应的肺顺应性,如计算潮气量与跨肺驱动压的比值,得到实时的肺顺应性,即肺顺应性=潮气量/跨肺驱动压。处理器40还可以根据肺顺应性,对患者的呼吸状态进行监测。处理器40还可以在显示装置30的显示界面显示该肺顺应性,便于医护人员了解患者肺部的弹性情况。
在一些实施例中,呼吸监测装置可针对跨肺驱动压进行监测,呼吸监测的过程如图9所示,包括如下步骤:
步骤1’、处理器40获取一个呼吸周期内压力传感器采集到的气道压数据和流量传感器测量得到的气体流速数据。如实时获取患者在通气过程中的气体流速数据以及气道压数据。具体过程在上述实施例中已详细阐述,在此不做赘述。
步骤2’、处理器40对于一个呼吸周期内的气道压数据和气体流速数据,计算与该呼吸周期对应的患者的吸气阶段肺内压和呼气阶段肺内压;例如通过图5或图6所示的方法得到实时的肺内压数据,包括吸气阶段肺内压和呼气阶段肺内压,具体过程在上述实施例中已详细阐述,在此不做赘述。
步骤3’、处理器40实时获取患者的食道压数据;例如处理器40通过第一压力传感器50实时检测患者的食道压,得到食道压数据。
步骤4’、处理器40基于吸气阶段肺内压和呼气阶段肺内压,以及压力传感器在呼吸周期内测量得到的食道压,确定该呼吸周期对应的患者的跨肺驱动压。确定跨肺驱动压的具体方式可以有多种,下面一一进行介绍:
一种方式是在步骤2’中,处理器40对于一个呼吸周期内压力传感器采集到的气道压数据和流量传感器测量得到的气体流速数据,计算与该呼吸周期对应的患者的吸气末肺内压和呼气末肺内压,具体过程在上述实施例中已详细阐述,在此不做赘述。进而在步骤4’中,处理器40基于吸气末肺内压和呼气末肺内压,以及压力传感器在呼吸周期内测量得到的食道压,确定该呼吸周期对应的患者的跨肺驱动压。
另一种方式是在步骤2’中,处理器40对于一个呼吸周期内压力传感器采集到的气道压数据和流量传感器测量得到的气体流速数据,计算与该呼吸周期对应的患者的吸气阶段肺内压曲线和呼气阶段肺内压曲线,具体过程在上述实施例中已详细阐述,在此不做赘述。进而在步骤4’中,处理器40基于吸气阶段肺内压曲线和呼气阶段肺内压曲线,以及压力传感器在所述呼吸周期内对应采集到的食道压曲线,得到与该呼吸周期相对应的跨肺压曲线;基于跨肺压曲线确定吸气末跨肺压和呼气末跨肺压,从而确定该呼吸周期对应的患者的跨肺驱动压。
上述两种方式中,处理器40具体计算跨肺驱动压可采用如下方式:
处理器40对于一个呼吸周期,根据呼吸周期和与呼吸周期相对应的气体流速数据以及气道压数据,计算得到患者在该呼吸周期的呼气末和吸气末的肺内压数据;根据呼气末和吸气末的肺内压数据与对应时刻压力传感器采集到的食道压数据之间的差值,得到与该呼吸周期的呼气末和吸气末分别对应的跨肺压数据。
其中,肺内压数据可以包括肺内压波形,食道压数据可以包括食道压波形,跨肺压数据可以包括跨肺压波形。根据跨肺压波形即可得到吸气末跨肺压和呼气末跨肺压。
肺内压数据也可以包括吸气末肺内压和呼气末肺内压,食道压数据包括吸气末食道压和呼气末食道压。处理器40计算肺内压数据与食道压数据的差值,得到与该呼吸周期相对应的跨肺压数据,可以采用如下方式:将吸气末肺内压减去吸气末食道压得到对应的吸气末跨肺压;将呼气末肺内压减去呼气末食道压得到对应的呼气末跨肺压。
进而,处理器40基于吸气末跨肺压和呼气末跨肺压得到与该呼吸周期相对应的跨肺驱动压,例如吸气末跨肺压减去呼气末跨肺压得到与该呼吸周期相对应的跨肺驱动压。可以每个呼吸周期都计算对应的跨肺驱动压,从而对跨肺驱动压进行实时检测。具体过程在上述实施例中已详细阐述,在此不做赘述。
处理器40得到实时的跨肺驱动压可以加以进一步利用,也可以输出。例如处理器40基于第二预设条件对跨肺驱动压进行分析,当跨肺驱动压不满足第二预设条件时,处理器40输出对应的提示信号,如输出给显示装置30显示提示 信息。第二预设条件可以是一个预设的压力区间,跨肺驱动压没有落入到这个压力区间说明跨肺驱动压过高或过低,则处理器40输出对应的提示信号来提醒医生。处理器40计算跨肺驱动压失败时,也可以输出对应的提示信号,例如,处理器40无法计算出跨肺驱动压则输出对应的提示信号,处理器40计算跨肺驱动压的过程中报错或者得到的跨肺驱动压超过错误阈值(如错误阈值为跨肺驱动压不可能达到的一个值),则输出对应的提示信号。提示信号可以是报警信息,由显示装置、扬声器或指示灯等进行报警。
处理器40也可以根据跨肺驱动压来调整患者的通气,例如通过流量或压力控制来调整跨肺驱动压等。又例如可以将跨肺驱动压输出给外部设备(如打印机、监护仪等),也可以输出给显示装置30,由显示装置30的显示界面显示实时的跨肺驱动压,例如显示实时的数值、以随时间变化的图形或图表的形式显示跨肺驱动压等。处理器40还可以根据不同时刻的跨肺驱动压得到跨肺驱动压随时间变化的趋势,例如得到跨肺驱动压的波形图;处理器40将跨肺驱动压随时间变化的趋势发送给显示装置30显示,例如显示跨肺驱动压的波形图,便于医护人员掌握患者跨肺驱动压的变化情况。
综上所述,本发明提供的呼吸监测方法和呼吸监测装置,驱动压能用肺内压实时计算和监测,不需要吸气暂停或用户手动操作;计算驱动压过程中的平台压、PEEPtotal能实时计算和监测,不需要吸气暂停或用户手动操作;跨肺驱动压能实时计算和监测,不需要吸气暂停或用户手动操作;基于驱动压计算的顺应性和肺顺应性实时计算和监测,不需要吸气暂停或用户手动操作。
本领域技术人员可以理解,上述实施方式中各种方法的全部或部分功能可以通过硬件的方式实现,也可以通过计算机程序的方式实现。当上述实施方式中全部或部分功能通过计算机程序的方式实现时,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器、随机存储器、磁盘、光盘、硬盘等,通过计算机执行该程序以实现上述功能。例如,将程序存储在设备的存储器中,当通过处理器执行存储器中程序,即可实现上述全部或部分功能。另外,当上述实施方式中全部或部分功能通过计算机程序的方式实现时,该程序也可以存储在服务器、另一计算机、磁盘、光盘、闪存盘或移动硬盘等存储介质中,通过下载或复制保存到本地设备的存储器中,或对本地设备的系统进行版本更新,当通过处理器执行存储器中的程序时,即可实现上述实施方式中全部或部分功能。
本文参照了各种示范实施例进行说明。然而,本领域的技术人员将认识到,在不脱离本文范围的情况下,可以对示范性实施例做出改变和修正。例如,各种操作步骤以及用于执行操作步骤的组件,可以根据特定的应用或考虑与系统的操作相关联的任何数量的成本函数以不同的方式实现(例如一个或多个步骤 可以被删除、修改或结合到其他步骤中)。
另外,如本领域技术人员所理解的,本文的原理可以反映在计算机可读存储介质上的计算机程序产品中,该可读存储介质预装有计算机可读程序代码。任何有形的、非暂时性的计算机可读存储介质皆可被使用,包括磁存储设备(硬盘、软盘等)、光学存储设备(CD-ROM、DVD、Blu Ray盘等)、闪存和/或诸如此类。这些计算机程序指令可被加载到通用计算机、专用计算机或其他可编程数据处理设备上以形成机器,使得这些在计算机上或其他可编程数据处理装置上执行的指令可以生成实现指定的功能的装置。这些计算机程序指令也可以存储在计算机可读存储器中,该计算机可读存储器可以指示计算机或其他可编程数据处理设备以特定的方式运行,这样存储在计算机可读存储器中的指令就可以形成一件制造品,包括实现指定功能的实现装置。计算机程序指令也可以加载到计算机或其他可编程数据处理设备上,从而在计算机或其他可编程设备上执行一系列操作步骤以产生一个计算机实现的进程,使得在计算机或其他可编程设备上执行的指令可以提供用于实现指定功能的步骤。
虽然在各种实施例中已经示出了本文的原理,但是许多特别适用于特定环境和操作要求的结构、布置、比例、元件、材料和部件的修改可以在不脱离本披露的原则和范围内使用。以上修改和其他改变或修正将被包含在本文的范围之内。
前述具体说明已参照各种实施例进行了描述。然而,本领域技术人员将认识到,可以在不脱离本披露的范围的情况下进行各种修正和改变。因此,对于本披露的考虑将是说明性的而非限制性的意义上的,并且所有这些修改都将被包含在其范围内。同样,有关于各种实施例的优点、其他优点和问题的解决方案已如上所述。然而,益处、优点、问题的解决方案以及任何能产生这些的要素,或使其变得更明确的解决方案都不应被解释为关键的、必需的或必要的。本文中所用的术语“包括”和其任何其他变体,皆属于非排他性包含,这样包括要素列表的过程、方法、文章或设备不仅包括这些要素,还包括未明确列出的或不属于该过程、方法、系统、文章或设备的其他要素。此外,本文中所使用的术语“耦合”和其任何其他变体都是指物理连接、电连接、磁连接、光连接、通信连接、功能连接和/或任何其他连接。
具有本领域技术的人将认识到,在不脱离本发明的基本原理的情况下,可以对上述实施例的细节进行许多改变。因此,本发明的范围应根据以下权利要求确定。

Claims (17)

  1. 一种呼吸监测装置,其特征在于,包括
    压力传感器,用于对患者的气道压,或气道压和食道压,进行采集,得到对应的气道压数据、食道压数据;
    流量传感器,用于获取患者在通气过程中的气体流速数据;
    处理器,用于
    对于一个呼吸周期内所述压力传感器采集到的气道压数据和所述流量传感器测量得到的气体流速数据,计算与该呼吸周期对应的患者的吸气阶段肺内压和\或呼气压力值;根据所述吸气阶段肺内压和所述呼气压力值,确定该呼吸周期对应的患者的驱动压;或者
    对于一个呼吸周期内所述压力传感器采集到的气道压数据和所述流量传感器测量得到的气体流速数据,计算与该呼吸周期对应的患者的吸气阶段肺内压和呼气阶段肺内压;基于所述吸气阶段肺内压和所述呼气阶段肺内压,以及所述压力传感器在所述呼吸周期内测量得到的食道压,确定该呼吸周期对应的患者的跨肺驱动压。
  2. 如权利要求1所述的呼吸监测装置,其特征在于,所述处理器确定所述跨肺驱动压的方法为以下之一:
    所述处理器,用于对于一个呼吸周期内所述压力传感器采集到的气道压数据和所述流量传感器测量得到的气体流速数据,计算与该呼吸周期对应的患者的吸气末肺内压和呼气末肺内压;基于所述吸气末肺内压和所述呼气末肺内压,以及所述压力传感器在所述呼吸周期内测量得到的食道压,确定该呼吸周期对应的患者的跨肺驱动压;
    所述处理器,用于对于一个呼吸周期内所述压力传感器采集到的气道压数据和所述流量传感器测量得到的气体流速数据,计算与该呼吸周期对应的患者的吸气阶段肺内压曲线和呼气阶段肺内压曲线;基于所述吸气阶段肺内压曲线和所述呼气阶段肺内压曲线,以及所述压力传感器在所述呼吸周期内对应采集到的食道压曲线,得到与该呼吸周期相对应的跨肺压曲线;基于所述跨肺压曲线确定吸气末跨肺压和呼气末跨肺压,从而确定该呼吸周期对应的患者的跨肺驱动压。
  3. 如权利要求1或2所述的呼吸监测装置,其特征在于,还包括显示装置,所述处理器还用于:
    将所述驱动压或跨肺驱动压发送至所述显示装置并显示。
  4. 如权利要求3所述的呼吸监测装置,其特征在于,所述驱动压或跨肺驱动压,以随时间变化的图形形式显示在所述显示装置上。
  5. 如权利要求1或2所述的呼吸监测装置,其特征在于,所述吸气阶段肺内压包括吸气末肺内压,所述呼气阶段肺内压包括呼气末肺内压;所述处理器计算吸气末肺内压、呼气末肺内压的步骤包括:
    实时获取患者在一个呼吸周期的通气过程中的所述流量传感器采集到的气体流速数据以及患者在该呼吸周期的通气过程中所述压力传感器采集到的气道压数据;
    根据呼吸周期和所述气体流速数据以及所述气道压数据,计算得到与该呼吸周期对应的肺内压数据;所述肺内压数据包括吸气末肺内压和呼气末肺内压。
  6. 如权利要求1或2所述的呼吸监测装置,其特征在于,所述处理器计算跨肺驱动压的步骤包括:
    对于一个呼吸周期,根据所述呼吸周期和与所述呼吸周期相对应的气体流速数据以及气道压数据,计算得到所述患者在该呼吸周期的呼气末和吸气末的肺内压数据;
    根据所述呼气末和吸气末的肺内压数据与对应时刻所述压力传感器采集到的食道压数据之间的差值,得到与该呼吸周期的呼气末和吸气末分别对应的跨肺压数据;所述跨肺压数据包括吸气末跨肺压和呼气末跨肺压;
    基于所述吸气末跨肺压和所述呼气末跨肺压得到与该呼吸周期相对应的跨肺驱动压。
  7. 如权利要求6所述的呼吸监测装置,其特征在于,
    所述肺内压数据包括肺内压波形,所述食道压数据包括食道压波形,所述跨肺压数据包括跨肺压波形;或者,
    所述肺内压数据包括吸气末肺内压和呼气末肺内压,所述食道压数据包括吸气末食道压和呼气末食道压;
    所述处理器计算所述肺内压数据与所述食道压数据的差值,得到与该呼吸周期相对应的跨肺压数据的步骤包括:
    将所述吸气末肺内压减去所述吸气末食道压得到对应的吸气末跨肺压;
    将所述呼气末肺内压减去所述呼气末食道压得到对应的呼气末跨肺压。
  8. 如权利要求5、6或7所述的呼吸监测装置,其特征在于,所述处理器根据呼吸周期和所述气体流速数据以及所述气道压数据计算得到的肺内压数据的步骤包括:
    所述气体流速数据包括在所述呼吸周期内,吸气阶段对应的气体流速、呼气阶段对应的气体流速,以及,所述气道压数据包括吸气阶段对应的气道压以及呼气阶段对应的气道压;
    根据吸气阶段对应的气体流速,计算得到吸气阶段对应的气体容积;
    根据吸气阶段对应的气道压、气体容积和气体流速计算得到吸气阶段对应 的吸气阶段肺内压;
    根据呼气阶段对应的气道压和气体流速计算得到呼气阶段对应的呼气阶段肺内压;
    根据吸气阶段肺内压和呼气阶段肺内压得到患者在所述呼吸周期内的肺内压波形;
    或者,
    所述气道压数据包括吸气末气道压和呼气末气道压;根据所述气体流速数据计算得到吸气阶段总气体容积;
    根据所述吸气末气道压、吸气阶段总气体容积、所述气体流速数据中的吸气末流速以及呼气末气道压,计算得到吸气末肺内压;
    根据所述呼气末气道压和所述气体流速数据中的呼气末流速,计算得到呼气末肺内压,或者将所述呼气末气道压近似为所述呼气末肺内压。
  9. 如权利要求1或2所述的呼吸监测装置,其特征在于,所述处理器还用于
    通过所述流量传感器实时获取患者的潮气量,根据所述潮气量与所述驱动压,得到对应的顺应性;或根据所述潮气量与所述跨肺驱动压,得到对应的肺顺应性;根据所述顺应性或肺顺应性,对患者的呼吸状态进行监测。
  10. 如权利要求1或2所述的呼吸监测装置,其特征在于,所述处理器还用于,
    基于预设条件分别对所述驱动压或所述跨肺驱动压进行分析,当所述驱动压或所述跨肺驱动压不满足预设条件时,所述处理器发出提示信号。
  11. 一种呼吸监测方法,其特征在于,包括:
    实时获取患者在通气过程中的气体流速数据和气道压数据,或气体流速数据、食道压数据和气道压数据;
    对于一个呼吸周期,根据该呼吸周期的所述气体流速数据以及所述气道压数据,计算得到对应的肺内压数据,所述肺内压数据包括吸气末肺内压、呼气末肺内压;所述吸气末肺内压和所述呼气末肺内压,分别用于表征通气过程中,吸气末和呼气末作用于患者呼吸系统预期位置的压力;根据所述吸气末肺内压和所述呼气末肺内压,得到该呼吸周期对应的驱动压;或者
    对于一个呼吸周期内所述压力传感器采集到的气道压数据和所述流量传感器测量得到的气体流速数据,计算与该呼吸周期对应的患者的吸气阶段肺内压和呼气阶段肺内压;基于所述吸气阶段肺内压和所述呼气阶段肺内压,以及所述压力传感器在所述呼吸周期内测量得到的食道压,确定该呼吸周期对应的患者的跨肺驱动压。
  12. 如权利要求11所述的方法,其特征在于,所述跨肺驱动压的计算方 法为以下之一:
    对于一个呼吸周期内所述压力传感器采集到的气道压数据和所述流量传感器测量得到的气体流速数据,计算与该呼吸周期对应的患者的吸气末肺内压和呼气末肺内压;基于所述吸气末肺内压和所述呼气末肺内压,以及所述压力传感器在所述呼吸周期内采集到的食道压,确定该呼吸周期对应的患者的跨肺驱动压;
    对于一个呼吸周期,根据该呼吸周期所所对应的气体流速数据以及气道压数据,计算得到对应的肺内压曲线,所述肺内压曲线包括吸气阶段肺内压曲线、呼气阶段肺内压曲线;根据吸气阶段肺内压曲线和呼气阶段肺内压曲线,以及对应的食道压曲线,得到与该呼吸周期相对应的跨肺压曲线;基于所述跨肺压曲线确定吸气末跨肺压和呼气末跨肺压;根据所述吸气末跨肺压和所述呼气末跨肺压得到该呼吸周期对应的跨肺驱动压。
  13. 如权利要求11所述的方法,其特征在于,
    所述肺内压数据包括肺内压波形,所述食道压数据包括食道压波形,所述跨肺压数据包括跨肺压波形;或者,
    所述肺内压数据包括吸气末肺内压和呼气末肺内压,所述食道压数据包括吸气末食道压和呼气末食道压;所述计算所述肺内压数据与所述食道压数据的差值,得到实时的跨肺压数据包括:
    将所述吸气末肺内压减去所述吸气末食道压得到对应的吸气末跨肺压;
    将所述呼气末肺内压减去所述呼气末食道压得到对应的呼气末跨肺压。
  14. 如权利要求11所述的方法,其特征在于,所述根据呼吸周期和所述气体流速数据以及所述气道压数据计算得到肺内压数据的步骤包括:
    所述气体流速数据包括吸气阶段对应的气体流速、呼气阶段对应的气体流速,所述气道压数据包括呼气末气道压、吸气阶段对应的气道压以及呼气阶段对应的气道压;根据吸气阶段对应的气体流速计算得到吸气阶段对应的气体容积;
    根据呼气末气道压以及吸气阶段不同时刻的气道压、气体容积和气体流速计算得到吸气阶段不同时刻的肺内压;
    根据呼气阶段不同时刻的气道压和气体流速计算得到呼气阶段不同时刻的肺内压;
    根据吸气阶段和呼气阶段不同时刻的肺内压得到肺内压波形;
    或者,
    所述气道压数据包括吸气末气道压和呼气末气道压;根据所述气体流速数据计算得到吸气阶段总气体容积;
    根据所述吸气末气道压、吸气阶段总气体容积、所述气体流速数据中的吸 气末流速以及呼气末气道压计算得到吸气末肺内压;
    根据所述呼气末气道压和所述气体流速数据中的呼气末流速,计算得到呼气末肺内压,或者将所述呼气末气道压作为所述呼气末肺内压。
  15. 如权利要求11所述的方法,其特征在于,还包括:
    实时获取患者的潮气量;
    根据所述潮气量与所述驱动压,得到对应的顺应性;或根据所述潮气量与所述跨肺驱动压,得到对应的肺顺应性;
    根据所述顺应性或肺顺应性,对患者的呼吸状态进行监测。
  16. 如权利要求11所述的方法,其特征在于,还包括以下至少一种:
    在显示装置的显示界面显示所述驱动压;
    对于不同时刻的所述驱动压,在显示装置的显示界面显示所述驱动压随时间变化的趋势;
    在显示装置的显示界面显示所述实时的跨肺驱动压;
    根据不同时刻得到的所述跨肺驱动压,在显示装置的显示界面显示所述跨肺驱动压随时间变化的趋势。
  17. 一种计算机可读存储介质,其特征在于,所述介质上存储有程序,所述程序能够被处理器执行以实现如权利要求11-16中任一项所述的方法。
PCT/CN2021/141168 2021-12-24 2021-12-24 一种呼吸监测方法和呼吸监测装置 WO2023115531A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/141168 WO2023115531A1 (zh) 2021-12-24 2021-12-24 一种呼吸监测方法和呼吸监测装置
CN202180100653.5A CN117642202A (zh) 2021-12-24 2021-12-24 一种呼吸监测方法和呼吸监测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/141168 WO2023115531A1 (zh) 2021-12-24 2021-12-24 一种呼吸监测方法和呼吸监测装置

Publications (1)

Publication Number Publication Date
WO2023115531A1 true WO2023115531A1 (zh) 2023-06-29

Family

ID=86901011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141168 WO2023115531A1 (zh) 2021-12-24 2021-12-24 一种呼吸监测方法和呼吸监测装置

Country Status (2)

Country Link
CN (1) CN117642202A (zh)
WO (1) WO2023115531A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080294060A1 (en) * 2007-05-21 2008-11-27 Cardiac Pacemakers, Inc. Devices and methods for disease detection, monitoring and/or management
CN108513540A (zh) * 2015-05-25 2018-09-07 瑞典伦格气压测量有限公司 用于保护性换气的方法、系统和软件
WO2021189197A1 (zh) * 2020-03-23 2021-09-30 深圳迈瑞生物医疗电子股份有限公司 一种呼吸监测装置及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080294060A1 (en) * 2007-05-21 2008-11-27 Cardiac Pacemakers, Inc. Devices and methods for disease detection, monitoring and/or management
CN108513540A (zh) * 2015-05-25 2018-09-07 瑞典伦格气压测量有限公司 用于保护性换气的方法、系统和软件
WO2021189197A1 (zh) * 2020-03-23 2021-09-30 深圳迈瑞生物医疗电子股份有限公司 一种呼吸监测装置及方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ARNAL, JEAN-MICHEL ET AL.: "Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients", HEART & LUNG, vol. 49, no. 4, 14 November 2019 (2019-11-14), XP086191277, DOI: 10.1016/j.hrtlng.2019.11.001 *
GUY ELLA F.S. ET AL: "Pilot study of model-based estimation of inspiratory driving pressure in CPAP ventilation", IFAC-PAPERSONLINE - 16TH IFAC SYMPOSIUM ON CONTROL IN TRANSPORTATION SYSTEMS CTS 2021 LILLE, FRANCE, 8-10 JUNE 2021, FRANKFURT ; MUNCHEN [U.A.] : ELSEVIER ; LUXENBURG, DE, vol. 54, no. 15, 1 January 2021 (2021-01-01), DE , pages 109 - 114, XP093077316, ISSN: 2405-8963, DOI: 10.1016/j.ifacol.2021.10.240 *
KNOOP, JENNIFER ET AL.: "Model-based estimation of negative inspiratory driving pressure in patients receiving invasive NAVA mechanical ventilation", COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, vol. 208, 22 July 2021 (2021-07-22), XP086728099, DOI: 10.1016/j.cmpb.2021.106300 *
KNOOP, JENNIFER LET ET AL.: "Model-based estimation of negative inspiratory driving pressure in patients receiving invasive NAVA mechanical ventilation", COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, vol. 208, 22 July 2021 (2021-07-22), XP086728099, DOI: 10.1016/j.cmpb.2021.106300 *

Also Published As

Publication number Publication date
CN117642202A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
US11033700B2 (en) Leak determination in a breathing assistance system
US11351320B2 (en) Automatic PEEP selection for mechanical ventilation
US6390091B1 (en) Method and apparatus for controlling a medical ventilator
WO2021189197A1 (zh) 一种呼吸监测装置及方法
CN109803708A (zh) 使用压力控制呼吸来估计肺顺应性和肺阻力以允许所有呼吸肌反冲生成的压力消失
CA2362164A1 (en) Method and apparatus for nullifying the imposed work of breathing
CN107405107B (zh) 呼吸器及其控制方法
JP6783253B2 (ja) 保護ベンチレーションのための方法、システム、及びソフトウェア
WO2022104808A1 (zh) 呼吸支持设备及其通气控制方法和计算机可读存储介质
WO2021119919A1 (zh) 一种医疗通气设备的通气信息显示方法及装置、医疗设备
WO2021189198A1 (zh) 一种对患者进行通气监测的方法和装置
WO2023115531A1 (zh) 一种呼吸监测方法和呼吸监测装置
WO2017079860A1 (zh) 呼吸机压力控制方法
WO2022141125A1 (zh) 呼吸支持设备及其控制方法和存储介质
WO2023050108A1 (zh) 一种医疗通气设备及通气控制方法
WO2023045488A1 (zh) 一种医疗设备和检测呼气末正压的方法
US20230157574A1 (en) End tidal carbon dioxide measurement during high flow oxygen therapy
WO2023097553A1 (zh) 一种通气设备及其扩展模块、压力监测方法
CN114126694A (zh) 一种患者通气监测装置及其通气监测方法
SE532701C2 (sv) Anordning för inställning av obligatoriska mekaniska ventileringsparametrar baserat på patientfysiologi

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968664

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180100653.5

Country of ref document: CN