WO2022141125A1 - 呼吸支持设备及其控制方法和存储介质 - Google Patents

呼吸支持设备及其控制方法和存储介质 Download PDF

Info

Publication number
WO2022141125A1
WO2022141125A1 PCT/CN2020/141088 CN2020141088W WO2022141125A1 WO 2022141125 A1 WO2022141125 A1 WO 2022141125A1 CN 2020141088 W CN2020141088 W CN 2020141088W WO 2022141125 A1 WO2022141125 A1 WO 2022141125A1
Authority
WO
WIPO (PCT)
Prior art keywords
mechanical energy
ventilation parameter
parameter configuration
ventilation
patient
Prior art date
Application number
PCT/CN2020/141088
Other languages
English (en)
French (fr)
Inventor
刘玲
刘京雷
杨毅
周小勇
邱海波
黄志文
谢剑锋
朱锋
孙骎
Original Assignee
东南大学附属中大医院
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学附属中大医院, 深圳迈瑞生物医疗电子股份有限公司 filed Critical 东南大学附属中大医院
Priority to EP20967473.8A priority Critical patent/EP4272788A4/en
Priority to PCT/CN2020/141088 priority patent/WO2022141125A1/zh
Priority to CN202080015622.5A priority patent/CN113490523B/zh
Publication of WO2022141125A1 publication Critical patent/WO2022141125A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/01Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes specially adapted for anaesthetising
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • A61M16/202Controlled valves electrically actuated
    • A61M16/203Proportional
    • A61M16/204Proportional used for inhalation control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • A61M16/202Controlled valves electrically actuated
    • A61M16/203Proportional
    • A61M16/205Proportional used for exhalation control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0027Accessories therefor, e.g. sensors, vibrators, negative pressure pressure meter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • A61M2016/0036Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical in the breathing tube and used in both inspiratory and expiratory phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3334Measuring or controlling the flow rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards
    • A61M2205/505Touch-screens; Virtual keyboard or keypads; Virtual buttons; Soft keys; Mouse touches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/40Respiratory characteristics
    • A61M2230/42Rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/40Respiratory characteristics
    • A61M2230/46Resistance or compliance of the lungs

Definitions

  • the present application relates to the technical field of medical devices, and in particular, to a respiratory support device, a control method thereof, and a storage medium.
  • Human respiration refers to the periodic rhythmic inhalation and exhalation of gas, absorbing oxygen and expelling carbon dioxide, thereby realizing gas exchange.
  • mechanical ventilation can be used to help patients complete their breathing.
  • external equipment such as ventilators can usually be used to provide patients with respiratory support.
  • the present application provides a respiratory support device, a control method and a storage medium thereof, aiming at reducing the risk of lung injury and solving the technical problems of inconvenience and untimely adjustment of the ventilation parameters of the respiratory support device.
  • an embodiment of the present application provides a control method for a respiratory support device, including:
  • the ventilation parameter configuration includes a setting value of at least one ventilation parameter
  • the mechanical energy being used to indicate the energy of mechanical ventilation acting on the lung or respiratory system
  • the ventilation parameter configuration is adjusted according to the mechanical energy, so that the adjusted mechanical energy conforms to a preset condition.
  • a respiratory support device including:
  • a breathing circuit in communication with the airflow providing device for delivering ventilation airflow generated by the airflow providing device to the airway of the patient;
  • One or more processors operating individually or collectively, to perform the steps of:
  • the ventilation parameter configuration includes a setting value of at least one ventilation parameter
  • the mechanical energy being used to indicate the energy of mechanical ventilation acting on the lung or respiratory system
  • the ventilation parameter configuration is adjusted according to the mechanical energy, so that the adjusted mechanical energy conforms to a preset condition.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the processor implements the foregoing control method.
  • Embodiments of the present application provide a respiratory support device, a control method, and a storage medium thereof.
  • Mechanical energy is determined according to a ventilation parameter configuration corresponding to the respiratory support device when ventilating a patient, and the mechanical energy is used to indicate that mechanical ventilation acts on the lungs.
  • the energy of the breathing system, and the ventilation parameter configuration is adjusted according to the mechanical energy, so that the mechanical energy determined after adjustment meets the preset conditions, and the automatic adjustment of the ventilation parameter configuration is realized without manual adjustment.
  • the accuracy and timeliness of ventilation parameter configuration and adjustment reduces or avoids the risk of lung injury in patients, and improves the convenience and reliability of ventilation control of respiratory support equipment.
  • FIG. 1 is a schematic flowchart of a control method of a respiratory support device provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a respiratory support device provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a ventilator provided by an embodiment of the present application.
  • FIG. 1 is a schematic flowchart of a control method of a respiratory support device provided by an embodiment of the present application.
  • the control method can be applied to a respiratory support device or a control device of the respiratory support device, and is used to adjust the ventilation parameter configuration of the respiratory support device and other processes.
  • FIG. 2 is a schematic diagram of a scene for implementing the control method of the respiratory support device provided by the embodiment of the present application.
  • the respiratory support device may include an airflow providing device 10 and a breathing circuit 20, and the breathing circuit 20 and the airflow provide The device 10 is in communication for delivering the ventilation airflow generated by the airflow providing device 10 to the airway of the patient.
  • the respiratory support device may also include a patient interface 30, which may include a face mask, nasal mask, nasal cannula, and endotracheal tube, etc., which are attached to the patient.
  • the airflow providing device 10 communicates with the patient interface 30 through the breathing circuit 20 to deliver the ventilation airflow to the airway of the patient.
  • the respiratory support device may further include a ventilation detection device 40, and the ventilation detection device 40 is arranged on the breathing circuit or the patient interface to detect ventilation parameters, and the ventilation parameters may include the flow rate of ventilation airflow, airway pressure, Respiratory rate, tidal volume, inspiratory time, compliance of the respiratory system or lungs, etc. It should be noted that the detection of ventilation parameters can be obtained by direct detection, or after some basic parameters are obtained by detection, and then calculated.
  • some ventilation parameters may also be acquired by other devices than the respiratory support device, for example, by a monitor.
  • the respiratory support device includes one or more processors 50, and the one or more processors 50 work individually or together to execute the steps of the control method of the respiratory support device.
  • the respiratory support device further includes a memory 60, and the processor 50 and the memory 60 may be connected through a bus, such as an I2C (Inter-integrated Circuit) bus.
  • I2C Inter-integrated Circuit
  • the processor 50 is configured to execute a computer program stored in the memory 60, and when executing the computer program, implement any one of the control methods for the respiratory support device provided in the embodiments of the present application.
  • the respiratory support device may also include a human-computer interaction device, and the human-computer interaction device may include a display for displaying the positive end-expiratory pressure when the respiratory support device ventilates the patient, as well as displaying the patient's status information, ventilation parameters, etc.
  • the content can include text, charts, numbers, colors, waveforms, characters, etc., to visually display various types of information.
  • the human-computer interaction device may also include an input device, through which medical staff can set various parameters, select and control the display interface of the display, etc., to realize information interaction between humans and machines.
  • the display can also be a touch display.
  • the respiratory support device may be a ventilator or an anesthesia machine, as described in detail below.
  • the respiratory support device may be a ventilator, which is an artificial mechanical ventilation device used to assist or control the patient's breathing movement to achieve gas exchange in the lungs, reduce the patient's work of breathing, and facilitate respiratory function recovery.
  • the respiratory support device may further include a respiratory interface 211 (ie, a patient interface), an air source interface 212, a breathing circuit (ie, a breathing circuit), a respiratory assist device (ie, an airflow providing device), a
  • the processor 50 the memory 60, the display 70, etc. for detecting ventilation parameters, the processor 50 can determine the target positive end expiratory pressure based on the ventilation parameters detected by the ventilation detection device, so as to control the respiratory assistance device to exhale according to the target. Ventilate the patient with positive end-air pressure.
  • the breathing circuit selectively communicates the air source interface 212 with the patient's breathing system.
  • the breathing circuit includes an expiratory branch 213a and an inspiratory branch 213b.
  • the expiratory branch 213a is connected between the breathing interface 211 and the exhaust port 213c for directing the patient's exhaled air to the exhaust port. 213c.
  • the exhaust port 213c can lead to the external environment, or can be channeled into a dedicated gas recovery device.
  • the gas source interface 212 is used to connect with a gas source (not shown in the figure), and the gas source is used to provide gas, and the gas can usually use oxygen and air; in some embodiments, the gas source can use a compressed gas cylinder or
  • the central air supply source supplies air to the ventilator through the air source interface 212.
  • the air supply types include oxygen and air.
  • the air source interface 212 can include pressure gauges, pressure regulators, flow meters, pressure reducing valves and air-oxygen ratios. Conventional components such as regulatory protection devices are used to control the flow of various gases such as oxygen and air, respectively.
  • the inspiratory branch 213b is connected between the breathing interface 211 and the air source interface 212 to provide oxygen or air for the patient, for example, the gas input from the air source interface 212 enters the inspiratory branch 213b, and then enters through the breathing interface 211 the patient's lungs.
  • the breathing interface 211 is used to connect the patient to the breathing circuit.
  • the gas exhaled by the patient can also be introduced into the exhaust port 213c through the expiratory branch 213a;
  • the breathing interface 211 may be a nasal cannula or a mask for wearing over the mouth and nose.
  • the breathing assistance device is connected to the air source interface 212 and the breathing circuit, and controls the delivery of gas provided by an external air source to the patient through the breathing circuit; in some embodiments, the breathing assistance device may include an expiratory controller 214a and an inspiratory controller 214b, the exhalation controller 214a is disposed on the expiratory branch 213a, and is used to connect or close the expiratory branch 213a according to the control instruction, or control the flow rate or pressure of the patient's exhaled gas.
  • the exhalation controller 214a may include one or more of the exhalation valve, one-way valve, flow controller, PEEP valve and other devices that can control the flow or pressure.
  • the suction controller 214b is disposed on the suction branch 213b, and is used to turn on the suction branch 213b or close the suction branch 213b according to the control command, or control the flow rate or pressure of the output gas.
  • the inhalation controller 214b may include one or more of the devices capable of controlling the flow or pressure, such as an exhalation valve, a one-way valve or a flow controller.
  • the memory 60 may be used to store data or programs, such as data collected by sensors or ventilation detection devices, and data calculated by the processor 50 or image frames generated by the processor, which may be 2D or 2D. 3D images, or memory 60 may store a graphical user interface, one or more default image display settings, programming instructions for the processor.
  • Memory 60 may be a tangible and non-transitory computer readable medium such as flash memory, RAM, ROM, EEPROM, and the like.
  • the processor 50 may also be used to execute instructions or programs to control the breathing assistance device, the air source interface 212 and/or various control valves in the breathing circuit, or to process the received data to generate the The required calculation or judgment results, or generate visual data or graphics, and output the visual data or graphics to the display 70 for display.
  • the respiratory support device is a ventilator. It should be noted that the above Figure 3 is only an example of a ventilator, which is not intended to limit the structure of the ventilator to only such a structure.
  • control method can also be applied to a control device of a respiratory support device, where the control device can be connected in communication with the respiratory support device and used to adjust the ventilation parameter configuration of the respiratory support device and other processes.
  • control device may be, for example, at least one of a mobile phone, a tablet computer, a notebook computer, a desktop computer, a personal digital assistant, a wearable device, a remote control, and the like.
  • control method of the respiratory support device includes steps S110 to S130 , which may be specifically as follows.
  • the ventilation parameters include at least one of the following: positive end-expiratory pressure (PEEP), respiratory rate (RR), tidal volume (VT), gas flow rate (Flow), inspired oxygen concentration (FiO2), Airway pressure (Paw), pressure rise time (Ramp), inspiration time (Ti).
  • PEEP positive end-expiratory pressure
  • RR respiratory rate
  • VT tidal volume
  • Flow gas flow rate
  • FiO2 inspired oxygen concentration
  • Airway pressure (Paw) Airway pressure
  • RV pressure rise time
  • inspiration time Ti
  • Positive end-expiratory pressure namely PEEP
  • EELV end-expiratory lung volume
  • alveoli make the alveoli not easily trapped at the end of expiration
  • end-expiratory lung volume increase the end-expiratory lung volume
  • alveolar-arterial oxygen partial pressure It promotes the regression of pulmonary interstitial and alveolar edema, thereby improving alveolar diffusing function and ventilation/blood flow ratio, and reducing intrapulmonary shunt to improve oxygenation and lung compliance.
  • Respiratory rate can be the number of breaths a patient takes in one minute
  • tidal volume refers to the volume of air inhaled or exhaled each time during calm breathing
  • tidal volume is related to age, gender, volume surface, breathing habits, and body metabolism, etc.
  • the tidal volume set in this embodiment may refer to the inhaled gas volume, for example, the gas volume of the patient inhaled at one time.
  • the setting value of the ventilation parameter when ventilating the patient may be determined according to at least one of the following manners: determined according to a user's setting operation, determined according to a pre-stored setting value, and determined based on a preset determination logic.
  • the respiratory support device provides a visual interface capable of displaying the setting values of the ventilation parameters, and for the user to determine the setting values of the ventilation parameters through setting operations.
  • the respiratory support device pre-stores the setting values of several ventilation parameters, and can determine the default setting values, or display the visual identifiers corresponding to the setting values of the several ventilation parameters on the visual interface for the user to select and determine.
  • determining the set value of the ventilation parameter when ventilating the patient based on the preset determination logic may include determining the set value of the ventilation parameter when ventilating the patient according to the control method of the embodiment of the present application.
  • Appropriate ventilation parameter configuration is very important for patient treatment, and the control method of the embodiment of the present application can automatically dynamically adjust the setting values of ventilation parameters such as positive end expiratory pressure, so that the adjusted setting values can be suitable for the patient.
  • the adjustment of the set value of the ventilation parameter can be to adjust the set value of the ventilation parameter to the appropriate value for the patient when the patient starts to use the respiratory support device for ventilation, or to dynamically adjust the set value of the ventilation parameter during the operation of the respiratory support device. adjust.
  • the respiratory support device provides a visual interface that can be manipulated by the user to determine whether to turn on or off the automatic adjustment of the ventilation parameter configuration.
  • the function of automatic adjustment of ventilation parameter configuration is enabled, the set values of ventilation parameters such as positive end expiratory pressure are automatically and dynamically adjusted by the control method of the embodiment of the present application.
  • S120 Determine mechanical energy according to the ventilation parameter configuration, where the mechanical energy is used to indicate the energy that the mechanical ventilation acts on the lung or the respiratory system.
  • Mechanical energy represents the amount of energy applied to the patient by the respiratory support device. Under the same ventilation rate, it is hoped that the mechanical energy will remain stable, or at a smaller level, which can reduce lung damage.
  • ventilation parameters are set such as tidal volume (Vt), positive end-expiratory pressure (PEEP), respiratory rate (RR) and the patient's respiratory mechanics (such as airway resistance and respiratory system) under different mechanical ventilation modes. compliance) both affect the mechanical energy of mechanical ventilation acting on the lung or respiratory system.
  • Vt tidal volume
  • PEEP positive end-expiratory pressure
  • RR respiratory rate
  • compliance both affect the mechanical energy of mechanical ventilation acting on the lung or respiratory system.
  • the control method of the embodiment of the present application realizes the real-time monitoring of mechanical energy by acquiring the ventilation parameter configuration corresponding to the breathing support device when ventilating the patient, and determining the mechanical energy according to the ventilation parameter configuration, so as to automatically adjust the mechanical ventilation according to the monitoring result of the mechanical energy. It can automatically adjust the settings of mechanical ventilation parameters according to the guidance of mechanical energy, and reduce or avoid the risk of ventilator-related lung injury for patients.
  • the respiratory support device can determine the mechanical energy by ventilating the patient by corresponding ventilation parameters such as pressure and flow rate, where the pressure is the patient's real-time airway pressure, and the flow rate is the gas flow rate.
  • the airway pressure and the gas flow rate may be integrated within a preset unit time, or the pressure and the flow rate may be integrated within a breathing cycle, or the pressure and the gas flow rate may be integrated within a preset time period, etc.
  • the corresponding mechanical energy Power rs is obtained, and the unit of mechanical energy Power rs is joules per minute (J/min).
  • the complete mechanical energy calculation formula can be as follows:
  • the simplified integral method formula can also be used to calculate the mechanical energy, and the calculation formula can be as follows:
  • RR means respiratory rate, the unit is times per minute;
  • VT means tidal volume, C rs represents lung compliance, in ml/cmH2O;
  • I:E represents the ratio of inhalation to respiration (that is, the ratio of inspiratory time to expiratory time);
  • Raw represents airway resistance, in cmH2O/L/s;
  • PEEP means positive end expiratory pressure, the unit is cmH2O;
  • PEEP volume means the tidal volume caused by PEEP, the unit is liter (L), which is the exhaled volume when the positive end expiratory pressure PEEP drops to 0;
  • Paw means the airway pressure , the unit is cmH2O, which can be measured by the preset pressure sensor of the respiratory support device;
  • Flow represents the flow rate, the unit
  • the integral operation of the pressure (that is, the airway pressure) and the flow rate (that is, the gas flow rate) in a single cycle can be performed to obtain the corresponding mechanical energy when ventilating the patient, and the formula is as follows:
  • Energy rs is the mechanical energy applied to the patient's respiratory system by ventilation obtained by integrating the airway pressure and gas flow rate in a single cycle
  • Tinsp is the inspiratory time of each breathing cycle
  • Paw is the airway pressure
  • Flow is the gas flow rate.
  • the mechanical energy calculated in a single cycle combined with the respiratory rate can also be converted into mechanical energy per minute. The formula is as follows:
  • the unit of airway pressure Paw is cmH2O
  • the unit of inspiratory time Tinsp of each breathing cycle is seconds (s)
  • RR is the respiratory rate
  • the unit is per minute
  • the potential energy generated by the tidal volume portion formed by positive end-expiratory pressure may also be considered.
  • Energy is generally a fixed value that does not vary with mechanical ventilation and can often be omitted because of the additional release of positive end-expiratory pressure.
  • the mechanical energy per minute is obtained by unit conversion combined with the respiration rate:
  • PEEP volume is the tidal volume caused by positive end expiratory pressure
  • the unit is L, which is the exhaled volume when the positive end expiratory pressure drops to 0
  • PEEP is the positive end expiratory pressure
  • respiratory support equipment can determine mechanical energy according to the set values of ventilation parameters such as respiratory frequency, tidal volume, inspiratory time, compliance, resistance, and airway pressure corresponding to the ventilation of the patient.
  • ventilation parameters such as respiratory frequency, tidal volume, inspiratory time, compliance, resistance, and airway pressure corresponding to the ventilation of the patient.
  • Compliance is the compliance of the patient's lungs (may also be referred to as lung compliance).
  • the human respiratory system has characteristics such as resistance and compliance.
  • the respiratory support equipment When the respiratory support equipment performs mechanical ventilation, it must overcome the resistance (resistance generated when the flow rate flows through the airway) and compliance (generated when the alveoli are inflated). pressure. Therefore, the respiratory support equipment needs to do work on the patient's respiratory system, and at the same time, in order to maintain the positive end-expiratory pressure, the respiratory support equipment also needs to apply a certain amount of energy to the patient's respiratory system.
  • Mechanical Power during ventilation its formula can be as follows:
  • Power rs represents mechanical energy, in J/min; RR represents respiratory rate (such as the number of breaths of a patient in one minute), VT represents tidal volume (such as the volume of gas inhaled by a patient at one time), and Tinsp represents inspiratory time, for example, it can be every The inspiratory time of a breathing cycle, in seconds (s), C rs represents the compliance of the patient's lungs (a characteristic of the lungs), Raw represents airway pressure (ie, airway resistance), and PEEP represents positive end-expiratory pressure .
  • the adjusting the ventilation parameter configuration according to the mechanical energy so that the adjusted mechanical energy meets a preset condition includes: adjusting the ventilation parameter configuration according to the mechanical energy, so that the adjusted determined mechanical energy conforms to a preset condition.
  • the mechanical energy is less than or equal to a preset mechanical energy threshold, and/or less than or equal to the mechanical energy determined before adjustment.
  • the mechanical energy applied to the patient when ventilating the patient is maintained at a low level, such as less than or equal to a preset mechanical energy threshold; or the adjusted ventilation parameter configuration corresponds to
  • the mechanical energy is less than or equal to the mechanical energy before adjustment, so that the mechanical energy applied to the patient is reduced or kept stable, and the risk of the patient facing ventilator-related lung injury is reduced or avoided.
  • the adjusting the ventilation parameter configuration according to the mechanical energy, so that the adjusted mechanical energy conforms to a preset condition includes: adjusting the ventilation parameter configuration according to the mechanical energy, so that the adjustment determined The increase in mechanical energy compared to the mechanical energy determined before conditioning is less than or equal to the growth threshold.
  • the mechanical energy after adjustment can be made to have a negative increase, that is, decrease, compared with the mechanical energy before adjustment, or the mechanical energy after adjustment can be unchanged compared with the mechanical energy before adjustment, or slightly increased, so that the mechanical energy applied to the patient is reduced or maintained. Stabilize, reduce or avoid a patient's risk of ventilator-related lung injury.
  • the adjusting the ventilation parameter configuration according to the mechanical energy so that the mechanical energy determined after adjustment meets a preset condition includes: adjusting the ventilation parameter configuration according to the mechanical energy, so that the adjustment determined minimum mechanical energy.
  • one of multiple ventilation parameter configurations is determined, and the multiple ventilation parameter configurations can determine different mechanical energies, and the ventilation parameter configuration with the smallest mechanical energy is determined as the adjusted ventilation parameter configuration. , which can keep the mechanical energy applied to the patient at a lower level, reducing or avoiding the risk of the patient being exposed to ventilator-related lung injury.
  • “minimum” in the minimum mechanical energy determined after adjustment is a relative concept, and specifically refers to the minimum among the respective mechanical energies of various ventilation parameter configurations to be determined when adjusting the ventilation parameter configuration.
  • the mechanical energy meets preset conditions, including but not limited to the conditions listed above, nor is it limited to including one of the preset conditions.
  • the ventilation parameter configuration is adjusted according to the mechanical energy, so that the mechanical energy determined after adjustment is both less than or equal to a preset mechanical energy threshold, and the increase compared to the mechanical energy determined before adjustment is less than or equal to the increase threshold.
  • the adjusting the ventilation parameter configuration according to the mechanical energy so that the mechanical energy determined after adjustment meets a preset condition includes: within a preset range of the ventilation parameter setting value corresponding to the ventilation parameter configuration Determine several candidate ventilation parameter configurations; determine the mechanical energy corresponding to each candidate ventilation parameter configuration; determine the candidate ventilation parameter configuration corresponding to the mechanical energy that meets the preset condition as the target ventilation parameter configuration of the respiratory support device, so that the breathing A support device is configured to ventilate the patient according to the target ventilation parameter.
  • the ventilation detection device can detect that the respiratory support equipment is configured according to several candidate ventilation parameters within a preset time period, such as the ventilation parameters such as the pressure and flow rate corresponding to the positive end-expiratory pressure PEEP when ventilating the patient, and then the pressure and gas flow rate are determined. Integrate within a preset time period to obtain the mechanical energy corresponding to each of the several candidate ventilation parameter configurations, determine the mechanical energy that meets the preset conditions, and adjust the ventilation parameter configuration so that the ventilation parameter configuration is close to or meets the preset requirements.
  • the candidate ventilation parameter configuration corresponding to the conditioned mechanical energy.
  • the respiratory support device is configured according to different ventilation parameters, such as the mechanical energy corresponding to the positive end-expiratory pressure when ventilating the patient, to obtain a plurality of mechanical energy corresponding to the different ventilation parameter configurations.
  • the respiratory support device obtains a preset time period.
  • Internal respiratory support equipment is configured according to different ventilation parameters, such as respiratory rate, tidal volume, inspiratory time, compliance, airway resistance and airway pressure corresponding to positive end-expiratory pressure when ventilating the patient; it is configured according to different ventilation parameters, such as Positive end-expiratory pressure and its corresponding respiratory rate, tidal volume, inspiratory time, compliance, airway resistance, and airway pressure determine mechanical energy and obtain multiple mechanical energy.
  • the ventilation parameter configuration corresponding to the mechanical energy that meets the preset condition is determined as the target ventilation parameter configuration of the respiratory support device, so that the respiratory support device ventilates the patient according to the target ventilation parameter configuration.
  • the determining several candidate ventilation parameter configurations within a preset range of the ventilation parameter setting values corresponding to the ventilation parameter configurations includes: determining several candidate ventilation parameter configurations within the preset range of the ventilation parameter setting values according to a preset step size. Ventilation parameter configuration.
  • the candidate ventilation parameter configuration can be determined as 10 cmH2O, 11 cmH2O, 12 cmH2O, 13 cmH2O, 14 cmH2O, 14 cmH2O, and the preset step size is 1 cmH2O.
  • the ventilation parameter configurations may be set to be different candidate ventilation parameter configurations at intervals, and the mechanical energy corresponding to each candidate ventilation parameter configuration is determined. For example, if the current setting value of the ventilation parameter PEEP is 10cmH2O, the ventilation parameter is configured to 11cmH2O at preset intervals, and the mechanical energy corresponding to 11cmH2O for the candidate ventilation parameter is determined; then, at preset intervals, the ventilation parameters are configured as 12cmH2O, determine the mechanical energy corresponding to the candidate ventilation parameter configuration 12cmH2O.
  • the respiratory support device can gradually increase or decrease the candidate ventilation parameters, so as to find the candidate ventilation parameter corresponding to the best mechanical energy according to the change of the mechanical energy corresponding to the different candidate ventilation parameters.
  • the method further comprises obtaining patient specific monitoring parameters and/or specific ventilation parameters of the respiratory support device.
  • the specific monitoring parameters include at least one of the following: end-tidal carbon dioxide (ETCO2), driving pressure ( ⁇ P), minute ventilation (MV), inspiratory plateau pressure (Pplat), blood oxygen saturation (SPO2) ).
  • ECO2 end-tidal carbon dioxide
  • ⁇ P driving pressure
  • MV minute ventilation
  • Pplat inspiratory plateau pressure
  • SPO2 blood oxygen saturation
  • the specific monitoring parameters of the patient can be obtained by at least one of the following: the respiratory support device and the monitor.
  • the specific ventilation parameters include ventilation volume between the respiratory support device and the patient.
  • the adjusting the ventilation parameter configuration according to the mechanical energy so that the mechanical energy conforms to a preset condition includes: adjusting the ventilation parameter according to the mechanical energy, the specific monitoring parameter and the specific ventilation parameter It is configured so that the mechanical energy meets a preset condition when the specific monitoring parameter and the specific ventilation parameter are in corresponding preset safety ranges, respectively.
  • the ventilation parameter configuration is adjusted according to the mechanical energy, the safety of the patient needs to be ensured, and the specific monitoring parameters of the patient and/or the specific ventilation parameters of the respiratory support device are maintained in corresponding preset safety ranges, respectively. For example, ensure that the patient's blood oxygen saturation is in a safe range.
  • the automatic adjustment of ventilation parameters makes mechanical energy meet preset conditions (such as minimum mechanical energy), thereby reducing lung damage.
  • the mechanical energy is respectively within a corresponding preset safety range at the specific monitoring parameter and the specific ventilation parameter.
  • the inspired oxygen concentration FOG2
  • the blood oxygen saturation can be made between 88% and 95% in a safe range. If the blood oxygen saturation exceeds 95%, the FiO2 can be reduced to a minimum of 21%. If the blood oxygen saturation is lower than 88%, the FiO2 can be increased to a maximum of 100%.
  • the ventilation parameter configuration is adjusted according to the mechanical energy, the specific monitoring parameter and the specific ventilation parameter; and/or a preset ventilation parameter configuration Within an adjustment range, the ventilation parameter configuration is adjusted according to the mechanical energy, the specific monitoring parameter and the specific ventilation parameter. So that the mechanical energy meets a preset condition when the specific monitoring parameter and the specific ventilation parameter are in corresponding preset safety ranges respectively.
  • the ventilation parameter configuration is adjusted within a preset adjustment range, and by setting a reasonable adjustment range of the ventilation parameter configuration, the mechanical energy can be in the corresponding preset values for the specific monitoring parameter and the specific ventilation parameter, respectively.
  • the preset conditions are met. For example, set the adjustment range of respiratory rate to 8-35 times/min, and set the adjustment range of positive end-expiratory pressure to 4-20cmH2O.
  • the adjustment range may be determined according to the breathing state of the patient, for example, may be determined according to the compliance and/or airway resistance of the patient's respiratory system.
  • the compliance C rs of the patient's respiratory system is greater than 50-70ml/cmH2O, it can be determined that the patient's lung compliance is basically normal, and patients with compliance C rs less than 50ml/cmH2O can be determined to have acute respiratory distress syndrome (ARDS)
  • ARDS acute respiratory distress syndrome
  • the mechanical energy may meet a preset condition when the specific monitoring parameter and the specific ventilation parameter are in corresponding preset safety ranges, respectively.
  • the initial ventilation parameter configuration may be determined according to the breathing state of the patient.
  • the method further includes: when starting to ventilate the patient, determining the breathing state of the patient, and determining an initial ventilation parameter configuration according to the breathing state of the patient, so that the breathing support device is configured according to the breathing state.
  • Initial ventilation parameters are configured to ventilate the patient.
  • the determining the initial ventilation parameter configuration according to the breathing state of the patient includes: determining the compliance and/or airway resistance of the patient's respiratory system; to determine the initial ventilation parameter configuration.
  • the initial positive end expiratory pressure can be determined as 4-6 cmH2O; when the compliance C rs is less than 50ml/cmH2O, the initial positive end expiratory pressure can be determined as 5cmH2O, 10cmH2O or 15cmH2O.
  • the patient's respiratory status may also include inspired oxygen concentration FiO2 and/or blood oxygen saturation SPO2.
  • the adjustment range of the ventilation parameter configuration and/or the initial ventilation parameter configuration may be determined according to the inspired oxygen concentration FiO2 and/or the blood oxygen saturation SPO2. For example, when the compliance C rs is less than 50ml/cmH2O, the initial positive end-expiratory pressure and the adjustment range of positive end-expiratory pressure are set according to the range of SPO2/FiO2.
  • the adjustment range of PEEP is 5-10 cmH2O, and the initial PEEP is 5 cmH2O; 235>SPO2/FiO2>181 (equivalent to PEEP)
  • the adjustment range of PEEP is 10-15cmH2O
  • the initial positive end-expiratory pressure is 10cmH2O
  • SPO2/FiO2 is less than 181 (equivalent to severe ARDS)
  • the adjustment range of PEEP is 15-20cmH2O
  • the initial end-expiratory pressure is 15-20cmH2O.
  • the positive pressure is 15cmH2O.
  • the initial ventilation parameter configuration can be set according to different conditions of the patient. For example, a severe respiratory disease may require a larger positive end-expiratory pressure value.
  • the mapping relationship between different disease information of different patients and the initial ventilation parameter configuration can be preset, for example, the mapping relationship between patient identification (such as name or account number, etc.), different disease information and different initial ventilation parameter configuration can be established,
  • the mapping relationship may be a historical optimal value adjusted during the patient's historical use of the respiratory support device, the mapping relationship may also be preset by medical staff based on experience, and the mapping relationship may also be generated in other ways.
  • the specific content is here There are no restrictions.
  • the respiratory support device when the respiratory support device starts to run, the breathing state of the patient is obtained, and the initial ventilation parameter configuration is determined according to the breathing state; the respiratory support device is controlled to ventilate the patient according to the initial ventilation parameter configuration; when the respiratory support device is configured to the patient according to the initial ventilation parameters After the ventilation preset time, the initial mechanical energy corresponding to the respiratory support device is obtained. Then, the real-time ventilation parameter configuration can be acquired according to the preset time interval, and the real-time mechanical energy can be determined according to the ventilation parameter configuration, and the time interval can be flexibly set according to actual needs. The ventilation parameter configuration is adjusted if the initial mechanical energy and/or mechanical energy does not meet the preset conditions.
  • the mechanical energy corresponding to each candidate ventilation parameter configuration is determined, and the candidate ventilation parameter configuration corresponding to the mechanical energy that meets the preset condition is determined as the target ventilation parameter configuration of the respiratory support device , so that the respiratory support device is configured to ventilate the patient according to the target ventilation parameter, so that the mechanical energy meets the preset condition.
  • the method further includes normalizing the mechanical energy determined according to the ventilation parameter configuration.
  • the adjusting the ventilation parameter configuration according to the mechanical energy includes: adjusting the ventilation parameter configuration according to the normalized mechanical energy.
  • the normalizing process for the mechanical energy determined according to the ventilation parameter configuration includes: according to at least one of the patient's weight, vital capacity, ventilation volume of the current preset duration, respiratory system compliance, and functional residual capacity.
  • One item is to normalize the mechanical energy determined according to the ventilation parameter configuration.
  • the normalized mechanical energy may be the ratio of mechanical energy to lung compliance C rs , or the ratio of mechanical energy to functional residual capacity FRC, the total deterioration of Hu as the ratio of mechanical energy to the patient's body weight, and the like.
  • the mechanical energy is determined according to the ventilation parameter configuration corresponding to the respiratory support device when ventilating the patient, and the mechanical energy is used to indicate the energy that the mechanical ventilation acts on the lung or the respiratory system, and adjusting the ventilation parameter configuration according to the mechanical energy, so that the mechanical energy determined after the adjustment meets the preset conditions, realizes the automatic adjustment of the ventilation parameter configuration without manual manual adjustment, and improves the accuracy of the ventilation parameter configuration adjustment It can reduce or avoid the risk of lung injury of patients, and improve the convenience and reliability of ventilation control of respiratory support equipment.
  • control method of the respiratory support device includes the following steps:
  • the ventilator automatically adopts the VCV mode, or the constant volume mode in the ventilation mode.
  • tidal volume VT is stable at 6ml/PBW (estimated kg body weight)
  • gas flow rate is stable at 30L/min
  • PEEP positive end-expiratory pressure
  • respiratory rate RR is increased to 25-30 times/min to suppress spontaneous breathing
  • the end-expiratory flow rate can be monitored to be 0 to avoid the generation of endogenous positive end-expiratory pressure PEEP.
  • the determination and adjustment of the inspired oxygen concentration FiO2 makes the blood oxygen saturation SPO2 within the safe range of 88%-95%. If the blood oxygen saturation exceeds 95%, the FiO2 can be reduced to a minimum of 21%. If the blood oxygen saturation is lower than 88%, you can increase FiO2 up to 100%.
  • the determination and adjustment of positive end-expiratory pressure PEEP is greater than 50-70ml/cmH2O, it can be determined that the patient's lung compliance is basically normal, and the initial positive end-expiratory pressure can be determined to be 4-6cmH2O; patients with compliance C rs less than 50ml/cmH2O can be determined.
  • ARDS acute respiratory distress syndrome
  • SPO2/FiO2 is greater than 235 (equivalent to mild ARDS)
  • the adjustment range of PEEP is 10-15cmH2O
  • the adjustment range of PEEP is 15-20cmH2O
  • the initial positive end-expiratory pressure is 15cmH2O.
  • the positive end expiratory pressure (PEEP) is adjusted to increase by 1cmH2O every 3 minutes, so that the mechanical energy monitored within the PEEP setting range meets the preset conditions, such as reaching the lowest level.
  • the initial respiratory rate RR is set to the patient's original respiratory rate or 16 times/min, and the adjustment range of the respiratory rate is between 8-35 times/min.
  • the respiratory rate RR is adjusted according to the principle of the lowest mechanical energy.
  • the adjustment target is that the end-tidal carbon dioxide ETCO2 is between 30-50 mmHg, and the minute ventilation MV is not less than 5/min.
  • ETCO2 is greater than 40mmHg, increase the respiratory rate in steps of 2 times/min; if ETCO2 is less than 40mmHg, adjust the tidal volume VT or inspiratory pressure Pinsp first, and monitor the mechanical energy at the same time to make the mechanical energy reach the lowest value. After the tidal volume VT or the inspiratory pressure Pinsp is adjusted, the respiratory rate RR is adjusted again.
  • the inspiratory pressure Pinsp is used to indicate the target value of the ventilation pressure, such as the target value of the airway pressure Paw.
  • the initial tidal volume VT is set to 6ml/PBW (estimated kilogram body weight), and the driving pressure ⁇ P and the inspiratory plateau pressure Pplat are monitored.
  • ⁇ P ⁇ 15cmH2O and Pplat ⁇ 30cmH2O is used as the safe range of VT setting. If it exceeds the safe range, reduce the VT to the safe range in steps of 0.5ml/PBW. Make sure that the end-tidal carbon dioxide ETCO2 is between 30-50mmHg. If ETCO2 ⁇ 40mmHg, reduce the VT in steps of 0.5ml/PBW.
  • the ventilator When adjusting the VT and RR, monitor the mechanical energy at the same time, so that the mechanical energy reaches the lowest value within the safe range. .
  • the initial setting of the gas flow rate Flow is 30L/min, and the mechanical energy is monitored to determine the safe range of the inspiratory time Ti to be 0.6-1.4s.
  • the gas flow rate Flow was gradually adjusted in steps of 5L/min so that the mechanical energy reached the lowest value within the safe range.
  • the inspiratory pressure Pinsp required to initially set the tidal volume of 6ml/PBW is calculated according to the compliance (Crs) and airway resistance (Raw) of the patient's respiratory system.
  • the safe range of the inspiratory time Ti is 0.6-1.4 seconds, and the inspiratory time Ti is adjusted to make the end-inspiratory flow rate 0.
  • Monitor the driving pressure ⁇ P and the inspiratory plateau pressure Pplat and set ⁇ P ⁇ 15cmH2O and Pplat ⁇ 30cmH2O as the safe range for VT setting.
  • End-tidal carbon dioxide ETCO2 is between 30-50mmHg, if ETCO2 ⁇ 40mmHg, reduce the inspiratory pressure Pisnp in steps of 1cmH2O, and monitor the mechanical energy when adjusting the inspiratory pressure Pisnp and respiratory rate RR, so that the mechanical energy reaches a safe range. minimum value.
  • the ventilator adopts the PCV mode, or the constant pressure control ventilation mode, adjust the pressure rise time Ramp when the inspiratory pressure Pisnp is set.
  • the range of the pressure rise time Ramp is 0-0.3s, and the initial setting is 0.05s. If pressure overshoot occurs, reduce the pressure rise time Ramp in steps of 0.05, and monitor the mechanical energy to make the mechanical energy reach the lowest value within the safe range.
  • the patient can optimize the mechanical ventilation parameter setting according to the mechanical energy under the premise of ensuring the safety of ventilation, so as to reduce the lung injury (VILI).
  • VILI lung injury
  • FIG. 2 is a schematic structural diagram of a respiratory support device provided by an embodiment of the present application.
  • the respiratory support device may include an airflow providing device 10 and a breathing circuit 20, and the breathing circuit 20 is in communication with the airflow providing device 10 for delivering the ventilation airflow generated by the airflow providing device 10 to the airway of the patient .
  • the respiratory support device may also include a patient interface 30, which may include a face mask, nasal mask, nasal cannula, and endotracheal tube, etc., which are attached to the patient.
  • the airflow providing device 10 communicates with the patient interface 30 through the breathing circuit 20 to deliver the ventilation airflow to the airway of the patient.
  • the respiratory support device may further include a ventilation detection device 40, and the ventilation detection device 40 is arranged on the breathing circuit or the patient interface to detect ventilation parameters, and the ventilation parameters may include the flow rate of ventilation airflow, airway pressure, Respiratory rate, tidal volume, inspiratory time, compliance of the respiratory system or lungs, etc. It should be noted that the detection of ventilation parameters may be obtained by direct detection, or may be obtained by calculation after certain basic parameters are detected.
  • some ventilation parameters may also be acquired by other devices than the respiratory support device, for example, by a monitor.
  • the respiratory support device includes one or more processors 50, and the one or more processors 50 work individually or together to execute the steps of the control method of the respiratory support device.
  • the processor 50 can be a central processing unit (Central Processing Unit, CPU), and the processor can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuit (Application Specific Integrated Circuit, ASIC) , Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or any other conventional processor.
  • the respiratory support device further includes a memory 60, and the processor 50 and the memory 60 may be connected through a bus, such as an I2C (Inter-integrated Circuit) bus.
  • I2C Inter-integrated Circuit
  • the memory 60 may be a volatile memory (volatile memory), such as a random access memory (Random Access Memory, RAM); or a non-volatile memory (non-volatile memory), such as a read-only memory (Read Only Memory, ROM) , flash memory (flash memory), hard disk (Hard Disk Drive, HDD) or solid-state drive (Solid-State Drive, SSD); or a combination of the above types of memory.
  • volatile memory such as a random access memory (Random Access Memory, RAM); or a non-volatile memory (non-volatile memory), such as a read-only memory (Read Only Memory, ROM) , flash memory (flash memory), hard disk (Hard Disk Drive, HDD) or solid-state drive (Solid-State Drive, SSD); or a combination of the above types of memory.
  • Memory 60 is used to store computer programs that can provide instructions and data to processor 50 .
  • the processor 50 is configured to execute a computer program stored in the memory 60, and when executing the computer program, implement any one of the control methods for the respiratory support device provided in the embodiments of the present application.
  • the respiratory support device may also include a human-computer interaction device, and the human-computer interaction device may include a display for displaying the positive end-expiratory pressure when the respiratory support device ventilates the patient, as well as displaying the patient's status information, ventilation parameters, etc.
  • the content can include text, charts, numbers, colors, waveforms, characters, etc., to visually display various types of information.
  • the human-computer interaction device may also include an input device, through which medical staff can set various parameters, select and control the display interface of the display, etc., to realize information interaction between humans and machines.
  • the display can also be a touch display.
  • the respiratory support device may be a ventilator or an anesthesia machine.
  • one or more processors 50 work individually or together to perform the following steps: acquiring a ventilation parameter configuration corresponding to the breathing support device when ventilating a patient, where the ventilation parameter configuration includes at least one type of ventilation The set value of the parameter; the mechanical energy is determined according to the ventilation parameter configuration, and the mechanical energy is used to indicate the energy that mechanical ventilation acts on the lung or the respiratory system; the ventilation parameter configuration is adjusted according to the mechanical energy, so that the adjusted mechanical energy conforms to preset conditions.
  • the processor performs the adjusting of the ventilation parameter configuration according to the mechanical energy, so that when the adjusted mechanical energy meets a preset condition, the processor is configured to perform: adjusting the ventilation parameter according to the mechanical energy Configured so that the mechanical energy determined after adjustment is less than or equal to a preset mechanical energy threshold, and/or less than or equal to the mechanical energy determined before adjustment.
  • the processor performs the adjusting of the ventilation parameter configuration according to the mechanical energy, so that when the mechanical energy determined after adjustment meets a preset condition, the processor is configured to perform: adjusting the ventilation according to the mechanical energy
  • the parameters are configured so that the increase of the mechanical energy determined after the adjustment compared to the mechanical energy determined before the adjustment is less than or equal to the increase threshold.
  • the processor performs the adjusting of the ventilation parameter configuration according to the mechanical energy, so that when the mechanical energy determined after adjustment meets a preset condition, the processor is configured to perform: adjusting the ventilation according to the mechanical energy Parameter configuration to minimize mechanical energy determined after adjustment.
  • the processor performs the adjusting of the ventilation parameter configuration according to the mechanical energy, so that when the mechanical energy determined after adjustment meets a preset condition, the processor is configured to perform: a ventilation corresponding to the ventilation parameter configuration Determine several candidate ventilation parameter configurations within the preset range of parameter setting values; determine the mechanical energy corresponding to each candidate ventilation parameter configuration; determine the candidate ventilation parameter configuration corresponding to the mechanical energy that meets the preset conditions as the target ventilation of the respiratory support device parameter configuration such that the respiratory support device is configured to ventilate the patient according to the target ventilation parameters.
  • the processor is further configured to perform: obtaining patient-specific monitoring parameters and/or specific ventilation parameters of the respiratory support device.
  • the processor when the processor performs the adjusting of the ventilation parameter configuration according to the mechanical energy, so that the mechanical energy meets a preset condition, the processor is configured to perform: according to the mechanical energy, the specific monitoring parameter and the The specific ventilation parameter adjusts the ventilation parameter configuration, so that the mechanical energy meets a preset condition when the specific monitoring parameter and the specific ventilation parameter are in corresponding preset safety ranges, respectively.
  • the processor when the processor performs the adjusting of the ventilation parameter configuration according to the mechanical energy, the specific monitoring parameter and the specific ventilation parameter, the processor is configured to perform:
  • the ventilation parameter configuration is adjusted according to the mechanical energy, the specific monitoring parameter and the specific ventilation parameter within a preset adjustment range of the ventilation parameter configuration.
  • the processor when the processor performs the acquiring of the specific monitoring parameters of the patient, the processor is configured to perform: acquiring the specific monitoring parameters of the patient through at least one of the following: the respiratory support device and the monitor.
  • the processor is further configured to perform: when starting to ventilate the patient, determine the breathing state of the patient, and determine an initial ventilation parameter configuration according to the breathing state of the patient, so that the breathing support device The patient is ventilated according to the initial ventilation parameter configuration.
  • the processor when the processor performs the determining of the initial ventilation parameter configuration according to the breathing state of the patient, the processor is configured to perform: determining the compliance and/or airway resistance of the breathing system of the patient; at least according to the compliance One of airway resistance and airway resistance determines the initial ventilation parameter configuration.
  • the processor is further configured to perform: normalizing the mechanical energy determined according to the ventilation parameter configuration.
  • the processor when the processor performs the adjusting of the ventilation parameter configuration according to the mechanical energy, the processor is configured to perform: adjusting the ventilation parameter configuration according to the normalized mechanical energy.
  • the processor when the processor performs the normalization process on the mechanical energy determined according to the ventilation parameter configuration, it is used to perform: according to the patient's weight, vital capacity, ventilation volume for the current preset duration, respiratory system compliance at least one of performance and functional residual capacity, and normalize the mechanical energy determined according to the ventilation parameter configuration.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the processor enables the processor to implement the respiratory support device provided by the foregoing embodiments.
  • the steps of the control method are described in detail below.
  • the computer-readable storage medium may be an internal storage unit of the respiratory support device described in any of the foregoing embodiments, such as a hard disk or a memory of the respiratory support device.
  • the computer-readable storage medium can also be an external storage device of the respiratory support device, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital) equipped on the respiratory support device , SD) card, flash memory card (Flash Card), etc.
  • the embodiments of the present application also provide a computer program, the computer program includes program instructions, and the processor executes the program instructions to implement the steps of the control method of the respiratory support device provided by the embodiments of the present application.
  • mechanical energy is determined according to the ventilation parameter configuration corresponding to the respiratory support device when ventilating a patient, where the mechanical energy is used to indicate that the mechanical ventilation acts on the lungs or the respiratory system energy, and adjust the ventilation parameter configuration according to the mechanical energy, so that the mechanical energy determined after adjustment meets the preset conditions, realizes the automatic adjustment of the ventilation parameter configuration without manual manual adjustment, and improves the ventilation parameter configuration.
  • the accuracy and timeliness of adjustment reduces or avoids the risk of lung injury in patients, and improves the convenience and reliability of ventilation control of respiratory support equipment.

Abstract

一种呼吸支持设备控制方法、呼吸支持设备和存储介质,所述方法包括:获取所述呼吸支持设备在给患者通气时对应的通气参数配置,所述通气参数配置包括至少一种通气参数的设置值(S110);根据所述通气参数配置确定机械能,所述机械能用于指示机械通气作用于肺或呼吸系统的能量(S120);根据所述机械能调节所述通气参数配置,以使调节后确定的机械能符合预设条件(S130)。所述方法能够解决呼吸支持设备的通气参数在手动调节时存在不便等技术问题。

Description

呼吸支持设备及其控制方法和存储介质 技术领域
本申请涉及医疗设备技术领域,尤其涉及一种呼吸支持设备及其控制方法和存储介质。
背景技术
人的呼吸是指周期节律性地吸入和呼出气体,吸收氧气排出二氧化碳,从而实现气体交换。当一些患者无法进行自主呼吸时,则可以通过机械通气来帮助患者完成呼吸,例如对于患者没有自主呼吸的情况,通常可以通过外置的设备如呼吸机等来给患者提供呼吸支持。
目前,在使用呼吸支持设备,如呼吸机或麻醉机给患者通气时,需要将呼吸支持设备的通气参数调节至适合患者的值,当前医护人员主要依靠经验,或食道压辅助等手段手动调整通气参数,由于受到医护人员主观因素的影响以及精力有限,医护人员很难实现实时监测,因此人工手动调节会导致通气参数调整的准确性和及时性降低,使患者面临肺损伤的风险。
发明内容
本申请提供了一种呼吸支持设备及其控制方法和存储介质,旨在降低肺损伤风险,解决呼吸支持设备的通气参数在手动调节时存在不便和不及时等技术问题。
第一方面,本申请实施例提供了一种呼吸支持设备的控制方法,包括:
获取所述呼吸支持设备在给患者通气时对应的通气参数配置,所述通气参数配置包括至少一种通气参数的设置值;
根据所述通气参数配置确定机械能,所述机械能用于指示机械通气作用于肺或呼吸系统的能量;
根据所述机械能调节所述通气参数配置,以使调节后确定的机械能符合预设条件。
第二方面,本申请实施例提供了一种呼吸支持设备,包括:
气流提供装置,用于产生通气气流;
呼吸管路,与所述气流提供装置连通,用于将所述气流提供装置产生的通气气流传送到所述患者的气道;
一个或多个处理器,单独地或共同地工作,用于执行如下步骤:
获取所述呼吸支持设备在给患者通气时对应的通气参数配置,所述通气参数配置包括至少一种通气参数的设置值;
根据所述通气参数配置确定机械能,所述机械能用于指示机械通气作用于肺或呼吸系统的能量;
根据所述机械能调节所述通气参数配置,以使调节后确定的机械能符合预设条件。
第三方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现上述的控制方法。
本申请实施例提供了一种呼吸支持设备及其控制方法和存储介质,通过根据所述呼吸支持设备在给患者通气时对应的通气参数配置确定机械能,所述机械能用于指示机械通气作用于肺或呼吸系统的能量,以及根据所述机械能调节所述通气参数配置,以使调节后确定的机械能符合预设条件,实现了对通气参数配置的自动调节,而不需要人工手动调节,提高了对通气参数配置调节的准确性和及时性,降低或避免患者肺损伤的风险,提高了对呼吸支持设备通气控制的便捷性和可靠性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请实施例的公开内容。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可 以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种呼吸支持设备的控制方法的流程示意图;
图2是本申请实施例提供的一种呼吸支持设备的结构示意图;
图3是本申请实施例提供的一种呼吸机的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,图1是本申请实施例提供的一种呼吸支持设备的控制方法的流程示意图。所述控制方法可以应用在呼吸支持设备或呼吸支持设备的控制装置中,用于调节呼吸支持设备的通气参数配置等过程。
图2是实施本申请实施例提供的呼吸支持设备的控制方法的一场景示意图,如图2所示,该呼吸支持设备可以包括气流提供装置10和呼吸管路20,呼吸管路20与气流提供装置10连通,用于将气流提供装置10产生的通气气流传送到患者的气道。
示例性的,该呼吸支持设备还可以包括患者接口30,患者接口30可以包括面罩、鼻罩、鼻套管、以及气管插管等,其附接到患者。其中,气流提供装置10通过呼吸管路20与患者接口30连通,将通气气流传送到患者的气道。
示例性的,该呼吸支持设备还可以包括通气检测装置40,通气检测装置40设置在呼吸管路或患者接口上,用来检测通气参数,该通气参数可以包括通气气流的流速、气道压力、呼吸频率、潮气量、吸气时间、呼吸系统或肺部的顺应性等。需要说明的是,通气参数的检测可以是直接检测得到,也可以是检测 得到某些基础参数后,再进行计算得出。
示例性的,一些通气参数,如通气量也可以通过呼吸支持设备之外的其他设备获取,例如通过监护仪获取。
具体的,呼吸支持设备包括一个或多个处理器50,一个或多个处理器50单独地或共同地工作,用于执行呼吸支持设备的控制方法的步骤。
示例性的,呼吸支持设备还包括存储器60,处理器50和存储器60之间可以通过总线连接,该总线比如为I2C(Inter-integrated Circuit)总线。
其中,处理器50用于执行存储在存储器60的计算机程序,并在执行所述计算机程序时,实现本申请实施例提供的任一种呼吸支持设备的控制方法。
呼吸支持设备还可以包括人机交互装置,该人机交互装置可以包括显示器,用于显示呼吸支持设备给患者通气时的呼气末正压,以及显示患者的状态信息、通气参数等,显示具体内容可以包括文字、图表、数字、颜色、波形、字符等,用于直观地显示各类信息。实际应用中,人机交互装置还可以包括输入装置,医护人员可以通过该输入装置进行各类参数的设置,以及显示器的显示界面的选择和控制等,实现人机之间的信息交互。该显示器也可以是一触控显示器。
在一些实施方式中,呼吸支持设备可以是呼吸机或麻醉机,以下将进行详细说明。
在一些实施例中呼吸支持设备可以是呼吸机,呼吸机是一种人工的机械通气装置,用以辅助或控制患者的呼吸运动,以实现肺内气体交换,降低病人呼吸做功,以利于呼吸功能的恢复。请参照图3,在一些实施例中呼吸支持设备还可以包括呼吸接口211(即患者接口)、气源接口212、呼吸回路(即呼吸管路)、呼吸辅助装置(即气流提供装置)、用于检测通气参数的通气检测装置、处理器50、存储器60和显示器70等,处理器50可以基于通气检测装置检测得到的通气参数确定目标呼气末正压,以便控制呼吸辅助装置按照该目标呼气末正压给患者通气。
呼吸回路将气源接口212和患者的呼吸系统选择性连通。在一些实施例中呼吸回路包括呼气支路213a和吸气支路213b,呼气支路213a连接在呼吸接口211和排气口213c之间,用于将患者呼出的气导出到排气口213c。排气口213c可以通到外界环境,也可以通道专用的气体回收装置中。气源接口212用于与气源(图中未示出)连接,气源用以提供气体,该气体通常可采用氧气和空气 等;在一些实施例中,该气源可以采用压缩气瓶或中心供气源,通过气源接口212为呼吸机供气,供气种类有氧气和空气等,气源接口212中可以包括压力表、压力调节器、流量计、减压阀和空气-氧气比例调控保护装置等常规组件,分别用于控制各种气体(例如氧气和空气)的流量。吸气支路213b连接在呼吸接口211和气源接口212之间,用于为患者提供氧气或空气,例如从气源接口212输入的气体进入吸气支路213b中,然后通过呼吸接口211进入患者的肺部。呼吸接口211是用于将患者连接到呼吸回路,除了将由吸气支路213b传输过来的气体导入到患者外,还可以将患者呼出的气体通过呼气支路213a导入到排气口213c;根据情况,呼吸接口211可以是鼻插管或用于佩戴在口鼻上的面罩。呼吸辅助装置与气源接口212和呼吸回路连接,控制将外部气源提供的气体通过所述呼吸回路输送给患者;在一些实施例中呼吸辅助装置可以包括呼气控制器214a和吸气控制器214b,呼气控制器214a设置在呼气支路213a上,用于根据控制指令接通呼气支路213a或关闭呼气支路213a,或控制患者呼出气体的流速或压力。具体实现时,呼气控制器214a可以包括呼气阀、单向阀、流量控制器、PEEP阀等能实现对流量或压力控制的器件中的一个或多个。吸气控制器214b设置在吸气支路213b上,用于根据控制指令接通吸气支路213b或关闭吸气支路213b,或控制输出气体的流速或压力。具体实现时,吸气控制器214b可以包括呼气阀、单向阀或流量控制器等能实现对流量或压力控制的器件中的一个或多个。
存储器60可以用于存储数据或者程序,例如用于存储传感器或通气检测装置所采集的数据、以及处理器50经计算所生成的数据或处理器所生成的图像帧,该图像帧可以是2D或3D图像,或者存储器60可以存储图形用户界面、一个或多个默认图像显示设置、用于处理器的编程指令。存储器60可以是有形且非暂态的计算机可读介质,例如闪存、RAM、ROM、EEPROM等。
在一些实施例中处理器50还可以用于执行指令或程序,对呼吸辅助装置、气源接口212和/或呼吸回路中的各种控制阀进行控制,或对接收的数据进行处理,生成所需要的计算或判断结果,或者生成可视化数据或图形,并将可视化数据或图形输出给显示器70进行显示。
以上是呼吸支持设备为呼吸机的一些描述,需要说明的是,上面图3只是呼吸机的一种例子,这并不用于限定呼吸机只能是如此的结构。
所述控制方法也可以应用在呼吸支持设备的控制装置中,该控制设备能够与呼吸支持设备通信连接,用于调节呼吸支持设备的通气参数配置等过程。示例性的,该控制设备例如可以为手机、平板电脑、笔记本电脑、台式电脑、个人数字助理、穿戴式设备、遥控器等中的至少一项。
请参阅图1,本申请实施例的呼吸支持设备的控制方法包括步骤S110至步骤S130,具体可以如下。
S110、获取所述呼吸支持设备在给患者通气时对应的通气参数配置,所述通气参数配置包括至少一种通气参数的设置值。
在一些实施方式中,所述通气参数包括以下至少一种:呼气末正压(PEEP)、呼吸频率(RR)、潮气量(VT)、气体流速(Flow)、吸入氧浓度(FiO2)、气道压力(Paw)、压力上升时间(Ramp)、吸气时间(Ti)。
呼气末正压,即PEEP,可增加呼末肺容积(End Expiratory Lung Volume,EELV),使肺泡在呼气末不易陷闭,使呼气末肺容量增加,提高肺泡-动脉血氧分压差,促进肺间质及肺泡水肿的消退,从而改善肺泡弥散功能和通气/血流比例,减少肺内分流达到改善氧合和肺顺应性的目的。
呼吸频率,又可表示为f,可以为患者一分钟呼吸的次数,潮气量是指平静呼吸时每次吸入或呼出的气量,潮气量与年龄、性别、体积表面、呼吸习惯、以及机体新陈代谢等有关,本实施例设定的潮气量可以是指吸入的气量,例如为患者一次吸入气体的气量。
示例性的,在给患者通气时的通气参数的设置值可以根据以下方式的至少一种确定:根据用户的设置操作确定、根据预先存储的设置值确定、基于预设的确定逻辑确定。
示例性的,呼吸支持设备提供一可视化界面,能够显示通气参数的设置值,以及供用户通过设置操作确定通气参数的设置值。
示例性的,呼吸支持设备预先存储若干通气参数的设置值,可以确定默认的设置值,或者在可视化界面显示所述若干通气参数的设置值对应的可视化标识,供用户选择确定。
示例性的,基于预设的确定逻辑确定给患者通气时的通气参数的设置值,可以包括根据本申请实施例的控制方法确定给患者通气时的通气参数的设置值。合适的通气参数配置对患者治疗是非常重要的,本申请实施例的控制方法可以 自动对呼气末正压等通气参数的设置值进行动态调节,以使得调节后的设置值能够适合患者。对通气参数的设置值的调节可以是患者开始使用呼吸支持设备进行通气时将通气参数的设置值调节至合适患者的值,或者是在呼吸支持设备运行的过程中对通气参数的设置值进行动态调节。
在一些实施方式中,呼吸支持设备提供的可视化界面,能够供用户操作以确定开启或关闭通气参数配置自动调节的功能。当通气参数配置自动调节的功能开启时,通过本申请实施例的控制方法自动对呼气末正压等通气参数的设置值进行动态调节。
S120、根据所述通气参数配置确定机械能,所述机械能用于指示机械通气作用于肺或呼吸系统的能量。
机械能表示呼吸支持设备对患者施加的能量大小,在通气量相同的情况下,希望机械能保持稳定,或者在一较小的水平,这样可以降低肺损伤。
机械通气过程中,通气参数的设置如潮气量(Vt)、呼气末正压(PEEP)、呼吸频率(RR)及患者在不同机械通气模式下的呼吸力学情况(如气道阻力及呼吸系统顺应性)均影响机械通气作用于肺或呼吸系统的机械能。
本申请实施例的控制方法通过获取所述呼吸支持设备在给患者通气时对应的通气参数配置,根据所述通气参数配置确定机械能,实现机械能的实时监测,以便根据机械能的监测结果自动调整机械通气参数,实现保证在临床患者舒适安全的前提下,无需临床医师调整,自动化的根据机械能的指导调整机械通气参数的设置,降低或避免患者面临呼吸机相关肺损伤的风险。
在一些实施方式中,呼吸支持设备可以通过给患者通气时对应的压力和流速等通气参数来确定机械能,其中,该压力为患者实时的气道压力,该流速为气体流速。
示例性的,可以对气道压力和气体流速在预设单位时间内进行积分,或者对压力和流速在一个呼吸周期内进行积分,或者对压力和气体流速在预设时间周期内进行积分等,得到对应的机械能Power rs,机械能Power rs单位为焦耳每分(J/min)。
例如,完整的机械能计算公式可以如下:
Figure PCTCN2020141088-appb-000001
也可以用压力和流速积分法计算,其计算公式可以如下:
Figure PCTCN2020141088-appb-000002
进一步地,也可以用简化后的积分法公式计算机械能,其计算公式可以如下:
Power rs=∫Paw×Flow dt
其中,0.098为常数值(0.098:1cmH2O×1L/min=0.098J/min),该0.098还可以根据实际需要设置为其他常数值;RR表示呼吸频率,单位为次每分钟;VT表示潮气量,C rs表示肺顺应性,单位为ml/cmH2O;I:E表示吸气与呼吸之比(即吸气时间与呼气时间比值);R aw表示气道阻力,单位为cmH2O/L/s;PEEP表示呼气末正压,单位为cmH2O;PEEP volume表示PEEP所导致的潮气量,单位为升(L),具体为呼气末正压PEEP降为0时呼出的容积;Paw表示气道压力,单位为cmH2O,可通过呼吸支持设备预设的压力传感器测量得到;Flow表示流速,单位为L/min,可通过外接的患者端流量传感器,或者呼吸支持设备的吸气流量传感器与呼气流量传感器差值监测得到;dt表示对时间积分;
具体地,可以对单个周期内压力(即气道压力)和流速(即气体流速)进行积分运算得到给患者通气时对应的机械能,公式如下:
Figure PCTCN2020141088-appb-000003
其中,Energy rs为单个周期由气道压力和气体流速积分得到的通气作用于患者呼吸系统对应的机械能,Tinsp为每个呼吸周期的吸气时间,Paw为气道压力,Flow为气体流速。当然也可以将单个周期计算得到的机械能结合呼吸率换算成每分钟的机械能,公式如下:
Figure PCTCN2020141088-appb-000004
其中,气道压力Paw的单位为cmH2O,每个呼吸周期的吸气时间Tinsp的 单位为秒(s);RR为呼吸率,单位为每分钟;由气道压和气体流速积分得到的通气作用于患者呼吸系统的机械能Power rs的单位为J/min,由于1cmH2O×1L/min=0.098J/min,因此上面的公式中有0.098这一系数。当然,也可以直接将1分钟内所有周期的Energy rs进行累加,得到每分钟的能量。
在一些实施例中,根据气道压和气体流速计算通气(即机械通气)作用于患者呼吸系统的机械能时,还可以考虑由呼气末正压形成的潮气量部分所产生的势能,这一部分能量一般是一个固定的值,并不会随着机械通气产生变化,并且因为需要额外进行呼气末正压释放,所以也常常可以省略。当考虑这一部分势能时,上面的公式可以变为:
Figure PCTCN2020141088-appb-000005
结合呼吸率进行单位换算后得到每分钟的机械能:
Figure PCTCN2020141088-appb-000006
这两个公式中PEEP volume为呼气末正压所导致的潮气量,单位为L,具体为呼气末正压降为0时呼出的容积,PEEP则为呼气末正压。
为了提高机械能确定的精准性和可靠性,呼吸支持设备可以根据给患者通气时对应的呼吸频率、潮气量、吸气时间、顺应性、阻力以及气道压力等通气参数的设置值来确定机械能,顺应性为患者肺部的顺应性(也可以称为肺顺应性)。
由于呼气末正压设置值的大小会影响肺泡的塌陷与过度膨胀,因此呼气末正压会对患者肺顺应性产生较大影响。根据呼吸力学模型,人体呼吸系统存在阻力和顺应性等特性,当呼吸支持设备进行机械通气时要克服阻力(流速流过气道时产生的阻力)和顺应性(肺泡充气时产生的)产生的压力。因此呼吸支持设备需要对患者呼吸系统做功,同时为了维持呼气末正压,呼吸支持设备同样需要对患者呼吸系统施加一定的能量,综合呼吸做功和维持呼气末正压所需的能量得到机械通气时的机械能(Mechanical Power),其公式可以如下:
Figure PCTCN2020141088-appb-000007
其中Power rs表示机械能,单位为J/min;RR表示呼吸频率(例如患者一分钟呼吸的次数),VT表示潮气量(例如患者一次吸入气体的气量),Tinsp表示吸气时间,例如可以是每个呼吸周期的吸气时间,单位为秒(s),C rs表示 患者肺部的顺应性(肺部的特征),Raw表示气道压力(即气道阻力),PEEP表示呼气末正压。
S130、根据所述机械能调节所述通气参数配置,以使调节后确定的机械能符合预设条件。
通过根据机械能的监测结果自动调整机械通气参数,可以实现保证在临床患者舒适安全的前提下,无需临床医师调整,自动化的根据机械能的指导调整机械通气参数的设置,使得机械能符合预设条件,降低或避免患者面临呼吸机相关肺损伤的风险。
在一些实施方式中,所述根据所述机械能调节所述通气参数配置,以使调节后确定的机械能符合预设条件,包括:根据所述机械能调节所述通气参数配置,以使调节后确定的机械能小于或等于预设的机械能阈值,和/或小于或等于调节前确定的机械能。
示例性的,通过调节所述通气参数配置,使得在给患者通气时对患者施加的机械能维持在一较低的水平,如小于或等于预设的机械能阈值;或者使得调节后的通气参数配置对应的机械能小于或等于调节前的机械能,使得对患者施加的机械能降低或保持稳定,降低或避免患者面临呼吸机相关肺损伤的风险。
在另一些实施方式中,所述根据所述机械能调节所述通气参数配置,以使调节后确定的机械能符合预设条件,包括:根据所述机械能调节所述通气参数配置,以使调节后确定的机械能相较调节前确定的机械能的增长小于或等于增长阈值。
示例性的,可以使得调节后的机械能相较调节前的机械能呈负增长,即降低,或者使得调节后的机械能相较调节前的机械能不变,或者略微增长,使得对患者施加的机械能降低或保持稳定,降低或避免患者面临呼吸机相关肺损伤的风险。
在其他一些实施方式中,所述根据所述机械能调节所述通气参数配置,以使调节后确定的机械能符合预设条件,包括:根据所述机械能调节所述通气参数配置,以使调节后确定的机械能最小。
示例性的,在调节所述通气参数配置时,从多种通气参数配置中确定一种,多种通气参数配置可以确定不同的机械能,通过确定机械能最小的通气参数配置为调节后的通气参数配置,可以使得对患者施加的机械能在较低的水平,降 低或避免患者面临呼吸机相关肺损伤的风险。可以理解的,调节后确定的机械能最小中的“最小”是相对的概念,具体是指在调节所述通气参数配置时,在多种待确定的通气参数配置各自的机械能中最小。
需要说明的是,所述机械能符合预设条件,包括但不限于前述列出的条件,也不限于包括其中一个预设条件。例如根据所述机械能调节所述通气参数配置,以使调节后确定的机械能既小于或等于预设的机械能阈值,也相较调节前确定的机械能的增长小于或等于增长阈值。
在一些实施方式中,所述根据所述机械能调节所述通气参数配置,以使调节后确定的机械能符合预设条件,包括:在所述通气参数配置对应的通气参数设置值的预设范围内确定若干候选通气参数配置;确定各所述候选通气参数配置对应的机械能;将符合预设条件的机械能对应的候选通气参数配置确定为所述呼吸支持设备的目标通气参数配置,以使所述呼吸支持设备按照所述目标通气参数配置给所述患者通气。
示例性的,可以确定呼吸支持设备按照候选的通气参数配置给患者通气时对应的压力和流速等通气参数,然后对压力和流速进行积分得到各候选通气参数配置对应的机械能。例如,可以通过通气检测装置检测预设时间周期内呼吸支持设备按照若干候选的通气参数配置,如呼气末正压PEEP给患者通气时对应的压力和流速等通气参数,然后对压力和气体流速在预设时间周期内进行积分,得到所述若干候选的通气参数配置各自对应的机械能,确定符合预设条件的机械能,调节所述通气参数配置,以使得所述通气参数配置接近或达到符合预设条件的机械能对应的候选通气参数配置。
示例性的,呼吸支持设备按照不同通气参数配置,如呼气末正压给患者通气时对应的机械能,得到不同通气参数配置对应的多个机械能,示例性的,呼吸支持设备获取预设时间周期内呼吸支持设备按照不同通气参数配置,如呼气末正压给患者通气时对应的呼吸频率、潮气量、吸气时间、顺应性、气道阻力以及气道压力;根据不同通气参数配置,如呼气末正压及其对应的呼吸频率、潮气量、吸气时间、顺应性、气道阻力以及气道压力确定机械能,得到多个机械能。将符合预设条件的机械能对应的通气参数配置确定为所述呼吸支持设备的目标通气参数配置,以使所述呼吸支持设备按照所述目标通气参数配置给所述患者通气。
示例性的,所述在所述通气参数配置对应的通气参数设置值的预设范围内确定若干候选通气参数配置,包括:按照预设步长在通气参数设置值的预设范围内确定若干候选通气参数配置。
例如,所述通气参数配置对应的通气参数PEEP的设置值的预设范围为10-15cmH2O,则可以确定候选通气参数配置10cmH2O、11cmH2O、12cmH2O、13cmH2O、14cmH2O、14cmH2O,预设步长为1cmH2O。通过确定呼吸支持设备按照各候选的通气参数配置给患者通气时对应的压力和流速等通气参数,然后对压力和流速进行积分得到各候选通气参数配置对应的机械能,从而可以在气参数设置值的预设范围内确定机械能符合预设条件的候选通气参数配置为所述呼吸支持设备的目标通气参数配置,以使所述呼吸支持设备按照所述目标通气参数配置给所述患者通气。
示例性的,可以间隔性设置通气参数配置为不同的候选通气参数配置,确定各候选通气参数配置对应的机械能。例如,若当前的通气参数PEEP的设置值为10cmH2O,则间隔预设周期时将通气参数配置为11cmH2O,确定该候选通气参数配置11cmH2O对应的机械能;之后再次间隔预设周期时将通气参数配置为12cmH2O,确定该候选通气参数配置12cmH2O对应的机械能。
呼吸支持设备在按照不同候选通气参数配置给患者通气的过程中,可以梯度增大或减小候选通气参数,以便根据不同候选通气参数对应的机械能的变化,寻找最佳机械能对应的候选通气参数。
在一些实施方式中,所述方法还包括:获取患者的特定监测参数和/或所述呼吸支持设备的特定通气参数。
示例性的,所述特定监测参数包括以下至少一种:呼气末二氧化碳(ETCO2)、驱动压(ΔP)、分钟通气量(MV)、吸气平台压(Pplat)、血氧饱和度(SPO2)。
示例性的,可以通过以下至少一种获取患者的特定监测参数:所述呼吸支持设备、监护仪。
示例性的,所述特定通气参数包括呼吸支持设备和患者之间的通气量。
示例性的,所述根据所述机械能调节所述通气参数配置,以使所述机械能符合预设条件,包括:根据所述机械能、所述特定监测参数和所述特定通气参数调节所述通气参数配置,以使所述机械能在所述特定监测参数和所述特定通气参数分别处于对应的预设安全范围的情况下,符合预设条件。
可以理解的,在根据所述机械能调节所述通气参数配置时,需要保证患者的安全,维持患者的特定监测参数和/或所述呼吸支持设备的特定通气参数分别处于对应的预设安全范围。例如保证患者的血氧饱和度处于安全范围。使得保证病人通气量或维持病人生理指标(如氧合和CO2水平)的前提下,通过通气参数的自动调整使得机械能符合预设条件(如机械能最小),减小肺损伤。
示例性的,通过调节所述通气参数配置以使所述机械能在所述特定监测参数和所述特定通气参数分别处于对应的预设安全范围。例如,通过设置吸入氧浓度(FiO2),可以使得血氧饱和度在88%-95%的安全范围之间。若血氧饱和度超过95%则可以减低FiO2最低至21%,若血氧饱和度低于88%,则可以调高FiO2最高至100%。
在一些实施方式中,基于预设的初始通气参数配置,根据所述机械能、所述特定监测参数和所述特定通气参数调节所述通气参数配置;和/或在所述通气参数配置预设的调节范围内,根据所述机械能、所述特定监测参数和所述特定通气参数调节所述通气参数配置。以使所述机械能在所述特定监测参数和所述特定通气参数分别处于对应的预设安全范围的情况下,符合预设条件。
示例性的,在预设的调节范围内调节通气参数配置,通过设置合理的通气参数配置的调节范围,可以使得所述机械能在所述特定监测参数和所述特定通气参数分别处于对应的预设安全范围的情况下,符合预设条件。例如设置呼吸频率的调节范围为8-35次/min,设置呼气末正压的调节范围为4-20cmH2O。
示例性的,调节范围可以根据患者的呼吸状态确定,例如可以根据患者呼吸系统的顺应性和/或气道阻力确定。例如,患者呼吸系统的顺应性C rs大于50-70ml/cmH2O时,可以确定患者的肺顺应性基本正常,顺应性C rs小于50ml/cmH2O的患者可以确定为具有急性呼吸窘迫综合征(ARDS),C rs大于50-70ml/cmH2O时确定的呼气末正压的调节范围中至少部分值小于C rs小于50ml/cmH2O时确定的呼气末正压的调节范围中的值。
示例性的,通过确定合适的初始通气参数配置,可以使得所述机械能在所述特定监测参数和所述特定通气参数分别处于对应的预设安全范围的情况下,符合预设条件。
示例性的,初始通气参数配置可以根据患者的呼吸状态确定。在一些实施方式中,所述方法还包括:在开始给患者通气时,确定所述患者的呼吸状态, 根据所述患者的呼吸状态确定初始通气参数配置,以使所述呼吸支持设备按照所述初始通气参数配置给所述患者通气。
示例性的,所述根据所述患者的呼吸状态确定初始通气参数配置,包括:确定所述患者呼吸系统的顺应性和/或气道阻力;至少根据所述顺应性、气道阻力中的一种确定所述初始通气参数配置。例如,患者呼吸系统的顺应性C rs大于50-70ml/cmH2O时,可以确定初始呼气末正压为4-6cmH2O;顺应性C rs小于50ml/cmH2O时,可以确定初始呼气末正压为5cmH2O、10cmH2O或15cmH2O。
在一些实施方式中,患者的呼吸状态还可以包括吸入氧浓度FiO2和/或血氧饱和度SPO2。示例性的,可以根据吸入氧浓度FiO2和/或血氧饱和度SPO2确定通气参数配置的调节范围和/或初始通气参数配置。例如,顺应性C rs小于50ml/cmH2O时,按照SPO2/FiO2的范围设置初始呼气末正压和呼气末正压的调节范围。具体的,SPO2/FiO2大于235(相当于轻度ARDS)时,呼气末正压PEEP的调节范围为5-10cmH2O,初始呼气末正压为5cmH2O;235>SPO2/FiO2>181(相当于中度ARDS)时,PEEP的调节范围为10-15cmH2O,初始呼气末正压为10cmH2O,SPO2/FiO2小于181(相当于重度ARDS)时,PEEP的调节范围为15-20cmH2O,初始呼气末正压为15cmH2O。
为了提高对初始通气参数配置的便捷性,可以根据患者不同病情来设置初始通气参数配置,例如呼吸疾病比较严重的可能需要呼气末正压的值比较大。具体地,可以预先设置不同患者的不同病情信息与初始通气参数配置之间的映射关系,例如建立患者标识(如姓名或账号等)、不同病情信息与不同初始通气参数配置之间的映射关系,该映射关系可以是患者历史使用呼吸支持设备的过程中调节得到的历史最优值,该映射关系还可以是医护人员根据经验预先设置的,该映射关系还可以通过其他方式生成,具体内容在此处不做限定。
示例性,在呼吸支持设备开始运行时,获取患者的呼吸状态,根据呼吸状态确定初始通气参数配置;控制呼吸支持设备按照初始通气参数配置给患者通气;在呼吸支持设备按照初始通气参数配置给患者通气预设时间后,获取呼吸支持设备对应的初始机械能。之后可以根据预设的时间间隔获取实时的通气参数配置和根据所述通气参数配置确定实时的机械能,该时间间隔可以根据实际需要进行灵活设置。若初始机械能和/或机械能不符合预设条件,则调节所述通气参数配置。例如在调节范围内确定若干候选通气参数配置,确定各所述候选 通气参数配置对应的机械能,以及将符合预设条件的机械能对应的候选通气参数配置确定为所述呼吸支持设备的目标通气参数配置,以使所述呼吸支持设备按照所述目标通气参数配置给所述患者通气,使得机械能符合预设条件。
在一些实施方式中,所述方法还包括:对根据所述通气参数配置确定的机械能进行归一化处理。示例性的,所述根据所述机械能调节所述通气参数配置,包括:根据所述归一化处理后的机械能调节所述通气参数配置。通过对机械能进行归一化处理可以根据个体患者病情严重程度和/或体质等信息标化机械能大小,根据所述机械能调节的通气参数配置可以更符合患者。
示例性的,所述对根据所述通气参数配置确定的机械能进行归一化处理,包括:根据患者的体重、肺活量、当前预设时长的通气量、呼吸系统顺应性、功能残气量中的至少一项,对根据所述通气参数配置确定的机械能进行归一化处理。示例性的,归一化的机械能可以为机械能与肺顺应性C rs的比值,或者为机械能与功能残气量FRC的比值,胡总恶化为机械能与患者的体重的比值等。
本申请实施例提供的呼吸支持设备的控制方法,通过根据所述呼吸支持设备在给患者通气时对应的通气参数配置确定机械能,所述机械能用于指示机械通气作用于肺或呼吸系统的能量,以及根据所述机械能调节所述通气参数配置,以使调节后确定的机械能符合预设条件,实现了对通气参数配置的自动调节,而不需要人工手动调节,提高了对通气参数配置调节的准确性和及时性,降低或避免患者肺损伤的风险,提高了对呼吸支持设备通气控制的便捷性和可靠性。
在一些实施方式中,本申请实施例提供的呼吸支持设备的控制方法包括以下步骤:
一、患者呼吸系统的顺应性(Crs)和/或气道阻力(Raw)的确定。
其中,顺应性Crs可以通过下式确定:Crs=VT÷ΔP=VT÷(Pplat-PEEP),VT表示潮气量,ΔP表示驱动压,Pplat表示吸气平台压,PEEP表示呼气末正压。气道阻力可以通过下式确定:Raw=(PIP-Plat)÷Flow,PIP表示气道峰压,Flow表示气体流速。
示例性的,开启机械能导向的肺保护性通气自动功能(或称为通气参数配置自动调节的功能,以下简称自动功能)后,呼吸机自动采用VCV模式,或称为通气模式中的定容模式,潮气量VT稳定在6ml/PBW(预计公斤体重),气体流速稳定在30L/min,PEEP(呼气末正压)保持不变,增加呼吸频率RR至25-30次/ 分以抑制自主呼吸,同时可以监测呼气末流速为0,避免产生内源性呼气末正压PEEP。获取VCV模式达到稳定状态时的潮气量VT、吸气平台压Pplat和呼气末正压PEEP以确定患者呼吸系统顺应性Crs,以及获取稳定状态时的气道峰压、吸气平台压和气体流速Flow以确定患者呼吸系统的气道阻力Raw。
二、确定初始通气参数配置和/或通气参数配置的调节范围。
其一,吸入氧浓度FiO2的确定和调整。吸入氧浓度FiO2的确定和调整使得血氧饱和度SPO2在88%-95%的安全范围之间,若血氧饱和度超过95%则可以减低FiO2最低至21%,若血氧饱和度低于88%,则可以调高FiO2最高至100%。
其二,呼气末正压PEEP的确定和调整。患者呼吸系统的顺应性C rs大于50-70ml/cmH2O时,可以确定患者的肺顺应性基本正常,可以确定初始呼气末正压为4-6cmH2O;顺应性C rs小于50ml/cmH2O的患者可以确定为具有急性呼吸窘迫综合征(ARDS),按照SPO2/FiO2的范围设置初始呼气末正压和呼气末正压的调节范围,具体的,SPO2/FiO2大于235(相当于轻度ARDS)时,呼气末正压PEEP的调节范围为5-10cmH2O,初始呼气末正压为5cmH2O;235>SPO2/FiO2>181(相当于中度ARDS)时,PEEP的调节范围为10-15cmH2O,初始呼气末正压为10cmH2O,SPO2/FiO2小于181(相当于重度ARDS)时,PEEP的调节范围为15-20cmH2O,初始呼气末正压为15cmH2O。在呼气末正压PEEP之外的其他通气参数配置不变的情况下每3min调节呼气末正压PEEP增加1cmH2O,使得在PEEP设置范围内监测的机械能符合预设条件,如达到最低。
其三,呼吸频率RR的设置及调整。初始呼吸频率RR设置为患者原有呼吸频率或16次/min,呼吸频率的调整范围在8-35次/min之间。在潮气量VT等通气参数配置恒定的情况下,根据最低机械能的原则调整呼吸频率RR,调整的目标为呼气末二氧化碳ETCO2在30-50mmHg之间,分钟通气量MV不低于5/min。若ETCO2大于40mmHg,以2次/min的步长上调呼吸频率;若ETCO2小于40mmHg,则先调整潮气量VT或吸气压力Pinsp,同时监测机械能,使机械能达到最低值。潮气量VT或吸气压力Pinsp调整后再次调整呼吸频率RR。其中吸气压力Pinsp用于指示通气压力的目标值,如气道压力Paw的目标值。
其四,确定初始通气参数配置。若呼吸机采用VCV模式,或称为通气模式中的定容模式,初始设置潮气量VT为6ml/PBW(预计公斤体重),监测驱动压ΔP及吸气平台压Pplat,以ΔP<15cmH2O且Pplat<30cmH2O作为VT设置的安全 范围,如超出安全范围,以0.5ml/PBW的步长降低VT至安全范围。确定呼气末二氧化碳ETCO2在30-50mmHg之间,若ETCO2<40mmHg,则以0.5ml/PBW的步长降低VT,在调整VT及RR时,同时监测机械能,使机械能达到安全范围内的最低值。若呼吸机采用VCV模式,初始设置气体流速Flow为30L/min,监测机械能,确定吸气时间Ti的安全范围为0.6-1.4s,在除气体流速之外的其他通气参数配置不变的情况下以5L/min的步长逐步调节气体流速Flow,使机械能达到安全范围内的最低值。若呼吸机采用PCV模式,或称为定压控制通气模式,根据患者呼吸系统的顺应性(Crs)和气道阻力(Raw)计算出初始设置6ml/PBW的潮气量所需的吸气压力Pinsp,吸气时间Ti的安全范围为0.6-1.4秒,调整吸气时间Ti使吸气末流速为0。监测驱动压ΔP及吸气平台压Pplat,以ΔP<15cmH2O且Pplat<30cmH2O作为VT设置的安全范围,如超出安全范围,以1cmH2O的步长降低吸气压力Pisnp至安全范围。呼气末二氧化碳ETCO2在30-50mmHg之间,若ETCO2<40mmHg,则以1cmH2O的步长降低吸气压力Pisnp,在调整吸气压力Pisnp和呼吸频率RR时监测机械能,使机械能达到安全范围内的最低值。若呼吸机采用PCV模式,或称为定压控制通气模式,在吸气压力Pisnp设置完成的情况下调整压力上升时间Ramp,压力上升时间Ramp的范围为0-0.3s,初始设置为0.05s,若出现压力过射,则以0.05的步长降低压力上升时间Ramp,同时监测机械能,使机械能达到安全范围内的最低值。
通过上述自动化的调整通气参数配置,使患者在保证通气安全的前提下,根据机械能优化机械通气参数设置,以减缓肺损伤(VILI)。
请结合上述实施例参阅图2,图2是本申请实施例提供的呼吸支持设备的结构示意图。
如图2所示,该呼吸支持设备可以包括气流提供装置10和呼吸管路20,呼吸管路20与气流提供装置10连通,用于将气流提供装置10产生的通气气流传送到患者的气道。
示例性的,该呼吸支持设备还可以包括患者接口30,患者接口30可以包括面罩、鼻罩、鼻套管、以及气管插管等,其附接到患者。其中,气流提供装置10通过呼吸管路20与患者接口30连通,将通气气流传送到患者的气道。
示例性的,该呼吸支持设备还可以包括通气检测装置40,通气检测装置40设置在呼吸管路或患者接口上,用来检测通气参数,该通气参数可以包括通气 气流的流速、气道压力、呼吸频率、潮气量、吸气时间、呼吸系统或肺部的顺应性等。需要说明的是,通气参数的检测可以是直接检测得到,也可以是检测得到某些基础参数后,再进行计算得出。
示例性的,一些通气参数,如通气量也可以通过呼吸支持设备之外的其他设备获取,例如通过监护仪获取。
具体的,呼吸支持设备包括一个或多个处理器50,一个或多个处理器50单独地或共同地工作,用于执行呼吸支持设备的控制方法的步骤。处理器50可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。其中,通用处理器可以是微处理器或者其他任何常规的处理器。
示例性的,呼吸支持设备还包括存储器60,处理器50和存储器60之间可以通过总线连接,该总线比如为I2C(Inter-integrated Circuit)总线。
存储器60可以是易失性存储器(volatile memory),例如随机存取存储器(Random Access Memory,RAM);或者非易失性存储器(non-volatile memory),例如只读存储器(Read Only Memory,ROM),快闪存储器(flash memory),硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD);或者以上种类的存储器的组合。存储器60用于存储计算机程序,可以向处理器50提供指令和数据。
其中,处理器50用于执行存储在存储器60的计算机程序,并在执行所述计算机程序时,实现本申请实施例提供的任一种呼吸支持设备的控制方法。
呼吸支持设备还可以包括人机交互装置,该人机交互装置可以包括显示器,用于显示呼吸支持设备给患者通气时的呼气末正压,以及显示患者的状态信息、通气参数等,显示具体内容可以包括文字、图表、数字、颜色、波形、字符等,用于直观地显示各类信息。实际应用中,人机交互装置还可以包括输入装置,医护人员可以通过该输入装置进行各类参数的设置,以及显示器的显示界面的选择和控制等,实现人机之间的信息交互。该显示器也可以是一触控显示器。
在一些实施方式中,呼吸支持设备可以是呼吸机或麻醉机。
具体的,一个或多个处理器50单独地或共同地工作,用于执行如下步骤:获取所述呼吸支持设备在给患者通气时对应的通气参数配置,所述通气参数配置包括至少一种通气参数的设置值;根据所述通气参数配置确定机械能,所述机械能用于指示机械通气作用于肺或呼吸系统的能量;根据所述机械能调节所述通气参数配置,以使调节后确定的机械能符合预设条件。
在一些实施方式中,所述处理器执行所述根据所述机械能调节所述通气参数配置,以使调节后确定的机械能符合预设条件时,用于执行:根据所述机械能调节所述通气参数配置,以使调节后确定的机械能小于或等于预设的机械能阈值,和/或小于或等于调节前确定的机械能。
在另一些实施方式中,所述处理器执行所述根据所述机械能调节所述通气参数配置,以使调节后确定的机械能符合预设条件时,用于执行:根据所述机械能调节所述通气参数配置,以使调节后确定的机械能相较调节前确定的机械能的增长小于或等于增长阈值。
在其他一些实施方式中,所述处理器执行所述根据所述机械能调节所述通气参数配置,以使调节后确定的机械能符合预设条件时,用于执行:根据所述机械能调节所述通气参数配置,以使调节后确定的机械能最小。
在一些实施方式中,所述处理器执行所述根据所述机械能调节所述通气参数配置,以使调节后确定的机械能符合预设条件时,用于执行:在所述通气参数配置对应的通气参数设置值的预设范围内确定若干候选通气参数配置;确定各所述候选通气参数配置对应的机械能;将符合预设条件的机械能对应的候选通气参数配置确定为所述呼吸支持设备的目标通气参数配置,以使所述呼吸支持设备按照所述目标通气参数配置给所述患者通气。
在一些实施方式中,所述处理器还用于执行:获取患者的特定监测参数和/或所述呼吸支持设备的特定通气参数。
示例性的,所述处理器执行所述根据所述机械能调节所述通气参数配置,以使所述机械能符合预设条件时,用于执行:根据所述机械能、所述特定监测参数和所述特定通气参数调节所述通气参数配置,以使所述机械能在所述特定监测参数和所述特定通气参数分别处于对应的预设安全范围的情况下,符合预设条件。
示例性的,所述处理器执行所述根据所述机械能、所述特定监测参数和所述特定通气参数调节所述通气参数配置时,用于执行:
基于预设的初始通气参数配置,根据所述机械能、所述特定监测参数和所述特定通气参数调节所述通气参数配置;和/或
在所述通气参数配置预设的调节范围内,根据所述机械能、所述特定监测参数和所述特定通气参数调节所述通气参数配置。
示例性的,所述处理器执行所述获取患者的特定监测参数时,用于执行:通过以下至少一种获取患者的特定监测参数:所述呼吸支持设备、监护仪。
在一些实施方式中,所述处理器还用于执行:在开始给患者通气时,确定所述患者的呼吸状态,根据所述患者的呼吸状态确定初始通气参数配置,以使所述呼吸支持设备按照所述初始通气参数配置给所述患者通气。
示例性的,所述处理器执行所述根据所述患者的呼吸状态确定初始通气参数配置时,用于执行:确定所述患者呼吸系统的顺应性和/或气道阻力;至少根据所述顺应性、气道阻力中的一种确定所述初始通气参数配置。
在一些实施方式中,所述处理器还用于执行:对根据所述通气参数配置确定的机械能进行归一化处理。
示例性的,所述处理器执行所述根据所述机械能调节所述通气参数配置时,用于执行:根据所述归一化处理后的机械能调节所述通气参数配置。
示例性的,所述处理器执行所述对根据所述通气参数配置确定的机械能进行归一化处理时,用于执行:根据患者的体重、肺活量、当前预设时长的通气量、呼吸系统顺应性、功能残气量中的至少一项,对根据所述通气参数配置确定的机械能进行归一化处理。
本申请实施例提供的呼吸支持设备的具体原理和实现方式均与前述实施例的呼吸支持设备的控制方法类似,此处不再赘述。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现上述实施例提供的呼吸支持设备的控制方法的步骤。
其中,所述计算机可读存储介质可以是前述任一实施例所述的呼吸支持设备的内部存储单元,例如所述呼吸支持设备的硬盘或内存。所述计算机可读存储介质也可以是所述呼吸支持设备的外部存储设备,例如所述呼吸支持设备上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
本申请的实施例中还提供一种计算机程序,该计算机程序中包括程序指令,处理器执行程序指令,实现本申请实施例提供的呼吸支持设备的控制方法的步骤。
本申请实施例提供的呼吸支持设备和计算机可读存储介质,通过根据所述呼吸支持设备在给患者通气时对应的通气参数配置确定机械能,所述机械能用于指示机械通气作用于肺或呼吸系统的能量,以及根据所述机械能调节所述通气参数配置,以使调节后确定的机械能符合预设条件,实现了对通气参数配置的自动调节,而不需要人工手动调节,提高了对通气参数配置调节的准确性和及时性,降低或避免患者肺损伤的风险,提高了对呼吸支持设备通气控制的便捷性和可靠性。
应当理解,在此本申请中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。
还应当理解,在本申请和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (25)

  1. 一种呼吸支持设备的控制方法,其特征在于,包括:
    获取所述呼吸支持设备在给患者通气时对应的通气参数配置,所述通气参数配置包括至少一种通气参数的设置值;
    根据所述通气参数配置确定机械能,所述机械能用于指示机械通气作用于肺或呼吸系统的能量;
    根据所述机械能调节所述通气参数配置,以使调节后确定的机械能符合预设条件。
  2. 根据权利要求1所述的控制方法,其特征在于,所述根据所述机械能调节所述通气参数配置,以使调节后确定的机械能符合预设条件,包括:
    根据所述机械能调节所述通气参数配置,以使调节后确定的机械能小于或等于预设的机械能阈值,和/或小于或等于调节前确定的机械能。
  3. 根据权利要求1所述的控制方法,其特征在于,所述根据所述机械能调节所述通气参数配置,以使调节后确定的机械能符合预设条件,包括:
    根据所述机械能调节所述通气参数配置,以使调节后确定的机械能相较调节前确定的机械能的增长小于或等于增长阈值。
  4. 根据权利要求1所述的控制方法,其特征在于,所述根据所述机械能调节所述通气参数配置,以使调节后确定的机械能符合预设条件,包括:
    根据所述机械能调节所述通气参数配置,以使调节后确定的机械能最小。
  5. 根据权利要求1-4中任一项所述的控制方法,其特征在于,所述根据所述机械能调节所述通气参数配置,以使调节后确定的机械能符合预设条件,包括:
    在所述通气参数配置对应的通气参数设置值的预设范围内确定若干候选通气参数配置;
    确定各所述候选通气参数配置对应的机械能;
    将符合预设条件的机械能对应的候选通气参数配置确定为所述呼吸支持设备的目标通气参数配置,以使所述呼吸支持设备按照所述目标通气参数配置给所述患者通气。
  6. 根据权利要求1-4中任一项所述的控制方法,其特征在于,所述方法还 包括:
    获取患者的特定监测参数和/或所述呼吸支持设备的特定通气参数;
    所述根据所述机械能调节所述通气参数配置,以使所述机械能符合预设条件,包括:
    根据所述机械能、所述特定监测参数和所述特定通气参数调节所述通气参数配置,以使所述机械能在所述特定监测参数和所述特定通气参数分别处于对应的预设安全范围的情况下,符合预设条件。
  7. 根据权利要求6所述的控制方法,其特征在于,所述根据所述机械能、所述特定监测参数和所述特定通气参数调节所述通气参数配置,包括:
    基于预设的初始通气参数配置,根据所述机械能、所述特定监测参数和所述特定通气参数调节所述通气参数配置;和/或
    在所述通气参数配置预设的调节范围内,根据所述机械能、所述特定监测参数和所述特定通气参数调节所述通气参数配置。
  8. 根据权利要求6所述的控制方法,其特征在于,所述获取患者的特定监测参数,包括:
    通过以下至少一种获取患者的特定监测参数:所述呼吸支持设备、监护仪。
  9. 根据权利要求1-4中任一项所述的控制方法,其特征在于,所述方法还包括:
    在开始给患者通气时,确定所述患者的呼吸状态,根据所述患者的呼吸状态确定初始通气参数配置,以使所述呼吸支持设备按照所述初始通气参数配置给所述患者通气。
  10. 根据权利要求9所述的控制方法,其特征在于,所述根据所述患者的呼吸状态确定初始通气参数配置,包括:
    确定所述患者呼吸系统的顺应性和/或气道阻力;
    至少根据所述顺应性、气道阻力中的一种确定所述初始通气参数配置。
  11. 根据权利要求1-4中任一项所述的控制方法,其特征在于,所述方法还包括:
    对根据所述通气参数配置确定的机械能进行归一化处理;
    所述根据所述机械能调节所述通气参数配置,包括:
    根据所述归一化处理后的机械能调节所述通气参数配置。
  12. 根据权利要求11所述的控制方法,其特征在于,所述对根据所述通气 参数配置确定的机械能进行归一化处理,包括:
    根据患者的体重、肺活量、当前预设时长的通气量、呼吸系统顺应性、功能残气量中的至少一项,对根据所述通气参数配置确定的机械能进行归一化处理。
  13. 一种呼吸支持设备,其特征在于,包括:
    气流提供装置,用于产生通气气流;
    呼吸管路,与所述气流提供装置连通,用于将所述气流提供装置产生的通气气流传送到患者的气道;
    一个或多个处理器,单独地或共同地工作,用于执行如下步骤:
    获取所述呼吸支持设备在给患者通气时对应的通气参数配置,所述通气参数配置包括至少一种通气参数的设置值;
    根据所述通气参数配置确定机械能,所述机械能用于指示机械通气作用于肺或呼吸系统的能量;
    根据所述机械能调节所述通气参数配置,以使调节后确定的机械能符合预设条件。
  14. 根据权利要求13所述的呼吸支持设备,其特征在于,所述处理器执行所述根据所述机械能调节所述通气参数配置,以使调节后确定的机械能符合预设条件时,用于执行:
    根据所述机械能调节所述通气参数配置,以使调节后确定的机械能小于或等于预设的机械能阈值,和/或小于或等于调节前确定的机械能。
  15. 根据权利要求13所述的呼吸支持设备,其特征在于,所述处理器执行所述根据所述机械能调节所述通气参数配置,以使调节后确定的机械能符合预设条件时,用于执行:
    根据所述机械能调节所述通气参数配置,以使调节后确定的机械能相较调节前确定的机械能的增长小于或等于增长阈值。
  16. 根据权利要求13所述的呼吸支持设备,其特征在于,所述处理器执行所述根据所述机械能调节所述通气参数配置,以使调节后确定的机械能符合预设条件时,用于执行:
    根据所述机械能调节所述通气参数配置,以使调节后确定的机械能最小。
  17. 根据权利要求13-16中任一项所述的呼吸支持设备,其特征在于,所述处理器执行所述根据所述机械能调节所述通气参数配置,以使调节后确定的 机械能符合预设条件时,用于执行:
    在所述通气参数配置对应的通气参数设置值的预设范围内确定若干候选通气参数配置;
    确定各所述候选通气参数配置对应的机械能;
    将符合预设条件的机械能对应的候选通气参数配置确定为所述呼吸支持设备的目标通气参数配置,以使所述呼吸支持设备按照所述目标通气参数配置给所述患者通气。
  18. 根据权利要求13-16中任一项所述的呼吸支持设备,其特征在于,所述处理器还用于执行:
    获取患者的特定监测参数和/或所述呼吸支持设备的特定通气参数;
    所述处理器执行所述根据所述机械能调节所述通气参数配置,以使所述机械能符合预设条件时,用于执行:
    根据所述机械能、所述特定监测参数和所述特定通气参数调节所述通气参数配置,以使所述机械能在所述特定监测参数和所述特定通气参数分别处于对应的预设安全范围的情况下,符合预设条件。
  19. 根据权利要求18所述的呼吸支持设备,其特征在于,所述处理器执行所述根据所述机械能、所述特定监测参数和所述特定通气参数调节所述通气参数配置时,用于执行:
    基于预设的初始通气参数配置,根据所述机械能、所述特定监测参数和所述特定通气参数调节所述通气参数配置;和/或
    在所述通气参数配置预设的调节范围内,根据所述机械能、所述特定监测参数和所述特定通气参数调节所述通气参数配置。
  20. 根据权利要求18所述的呼吸支持设备,其特征在于,所述处理器执行所述获取患者的特定监测参数时,用于执行:
    通过以下至少一种获取患者的特定监测参数:所述呼吸支持设备、监护仪。
  21. 根据权利要求13-16中任一项所述的呼吸支持设备,其特征在于,所述处理器还用于执行:
    在开始给患者通气时,确定所述患者的呼吸状态,根据所述患者的呼吸状态确定初始通气参数配置,以使所述呼吸支持设备按照所述初始通气参数配置给所述患者通气。
  22. 根据权利要求21所述的呼吸支持设备,其特征在于,所述处理器执行 所述根据所述患者的呼吸状态确定初始通气参数配置时,用于执行:
    确定所述患者呼吸系统的顺应性和/或气道阻力;
    至少根据所述顺应性、气道阻力中的一种确定所述初始通气参数配置。
  23. 根据权利要求13-16中任一项所述的呼吸支持设备,其特征在于,所述处理器还用于执行:
    对根据所述通气参数配置确定的机械能进行归一化处理;
    所述处理器执行所述根据所述机械能调节所述通气参数配置时,用于执行:
    根据所述归一化处理后的机械能调节所述通气参数配置。
  24. 根据权利要求23所述的呼吸支持设备,其特征在于,所述处理器执行所述对根据所述通气参数配置确定的机械能进行归一化处理时,用于执行:
    根据患者的体重、肺活量、当前预设时长的通气量、呼吸系统顺应性、功能残气量中的至少一项,对根据所述通气参数配置确定的机械能进行归一化处理。
  25. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如权利要求1-12中任一项所述的控制方法。
PCT/CN2020/141088 2020-12-29 2020-12-29 呼吸支持设备及其控制方法和存储介质 WO2022141125A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20967473.8A EP4272788A4 (en) 2020-12-29 2020-12-29 RESPIRATORY SUPPORT DEVICE AND CONTROL METHOD THEREOF AND STORAGE MEDIUM
PCT/CN2020/141088 WO2022141125A1 (zh) 2020-12-29 2020-12-29 呼吸支持设备及其控制方法和存储介质
CN202080015622.5A CN113490523B (zh) 2020-12-29 2020-12-29 呼吸支持设备及其控制方法和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/141088 WO2022141125A1 (zh) 2020-12-29 2020-12-29 呼吸支持设备及其控制方法和存储介质

Publications (1)

Publication Number Publication Date
WO2022141125A1 true WO2022141125A1 (zh) 2022-07-07

Family

ID=77933696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141088 WO2022141125A1 (zh) 2020-12-29 2020-12-29 呼吸支持设备及其控制方法和存储介质

Country Status (3)

Country Link
EP (1) EP4272788A4 (zh)
CN (1) CN113490523B (zh)
WO (1) WO2022141125A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116688272A (zh) * 2023-08-07 2023-09-05 遂宁市中心医院 一种重症患者血压血氧维持方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090229611A1 (en) * 2008-03-10 2009-09-17 Martin Anatole D Automated Inspiratory Muscle Training for Patients Receiving Mechanical Ventilation
CN102451506A (zh) * 2010-10-19 2012-05-16 袁含光 一种呼吸机气流控制方法以及控制装置
US20140318541A1 (en) * 2009-07-25 2014-10-30 Fleur Taher Tehrani Automatic control system for mechanical ventilation for active or passive subjects
CN107209797A (zh) * 2014-12-23 2017-09-26 皇家飞利浦有限公司 用于对机械通气的基于模型的优化的系统和方法
CN107519562A (zh) * 2017-02-10 2017-12-29 钱家杰 呼吸机气流输出控制方法
CN109718442A (zh) * 2018-12-28 2019-05-07 北京谊安医疗系统股份有限公司 呼吸支持设备的呼吸参数调节方法、装置及呼吸支持设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5711661B2 (ja) * 2008-10-01 2015-05-07 ブリーズ・テクノロジーズ・インコーポレーテッド バイオフィードバックモニタリング及び患者の活動及び健康を改善する制御装置を有するベンチレータ
US8607791B2 (en) * 2010-06-30 2013-12-17 Covidien Lp Ventilator-initiated prompt regarding auto-PEEP detection during pressure ventilation
US8844526B2 (en) * 2012-03-30 2014-09-30 Covidien Lp Methods and systems for triggering with unknown base flow
WO2017077417A1 (en) * 2015-11-02 2017-05-11 Koninklijke Philips N.V. Breath by breath reassessment of patient lung parameters to improve estimation performance
CN110545872B (zh) * 2017-02-22 2022-11-08 皇家飞利浦有限公司 机械通气的自动peep选择
CN110812638B (zh) * 2019-11-20 2022-04-12 军事科学院系统工程研究院卫勤保障技术研究所 基于ards肺保护性策略的智能闭环机械通气控制系统及方法
CN112955204B (zh) * 2020-11-23 2022-09-02 深圳迈瑞生物医疗电子股份有限公司 呼吸支持设备及其通气控制方法和计算机可读存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090229611A1 (en) * 2008-03-10 2009-09-17 Martin Anatole D Automated Inspiratory Muscle Training for Patients Receiving Mechanical Ventilation
US20140318541A1 (en) * 2009-07-25 2014-10-30 Fleur Taher Tehrani Automatic control system for mechanical ventilation for active or passive subjects
CN102451506A (zh) * 2010-10-19 2012-05-16 袁含光 一种呼吸机气流控制方法以及控制装置
CN107209797A (zh) * 2014-12-23 2017-09-26 皇家飞利浦有限公司 用于对机械通气的基于模型的优化的系统和方法
CN107519562A (zh) * 2017-02-10 2017-12-29 钱家杰 呼吸机气流输出控制方法
CN109718442A (zh) * 2018-12-28 2019-05-07 北京谊安医疗系统股份有限公司 呼吸支持设备的呼吸参数调节方法、装置及呼吸支持设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4272788A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116688272A (zh) * 2023-08-07 2023-09-05 遂宁市中心医院 一种重症患者血压血氧维持方法
CN116688272B (zh) * 2023-08-07 2023-10-20 遂宁市中心医院 一种控制ecmo系统的方法

Also Published As

Publication number Publication date
EP4272788A1 (en) 2023-11-08
CN113490523A (zh) 2021-10-08
EP4272788A4 (en) 2024-01-24
CN113490523B (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
US11541200B2 (en) Ventilation system
US9089657B2 (en) Methods and systems for gating user initiated increases in oxygen concentration during ventilation
US20140261424A1 (en) Methods and systems for phase shifted pressure ventilation
US20130158370A1 (en) Spontaneous breathing trial manager
US20180304034A1 (en) Anomaly detection device and method for respiratory mechanics parameter estimation
US11298484B2 (en) Method and systems for executing nasal high flow therapy with settings determined from flow outputs during a previous ventilation mode
WO2022104808A1 (zh) 呼吸支持设备及其通气控制方法和计算机可读存储介质
CN111760140B (zh) 呼吸器及其控制方法
WO2021189197A1 (zh) 一种呼吸监测装置及方法
US20230173208A1 (en) Flow therapy system and method
MX2013002835A (es) Sistema de ventilacion.
US20210228832A1 (en) Continuous positive airway pressure device for neonates
US11020554B2 (en) Artificial ventilation apparatus with ventilation modes suited to cardiac massage
US20240066243A1 (en) High flow respiratory therapy device and method through breath synchronization
WO2022141125A1 (zh) 呼吸支持设备及其控制方法和存储介质
WO2021189198A1 (zh) 一种对患者进行通气监测的方法和装置
WO2017079860A1 (zh) 呼吸机压力控制方法
WO2023115531A1 (zh) 一种呼吸监测方法和呼吸监测装置
US20230157574A1 (en) End tidal carbon dioxide measurement during high flow oxygen therapy
KR102578530B1 (ko) 혈중 산소 포화도 기반 고유량 호흡 장치 및 방법
WO2023004542A1 (zh) 医疗通气设备及其通气控制方法、存储介质
CN117642201A (zh) 一种医疗通气设备及通气控制方法
CN113940781A (zh) 一种动物用呼吸通气设备及其智能触发方法
CN117642203A (zh) 通气控制方法及装置
SE532701C2 (sv) Anordning för inställning av obligatoriska mekaniska ventileringsparametrar baserat på patientfysiologi

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020967473

Country of ref document: EP

Effective date: 20230731