WO2023050108A1 - 一种医疗通气设备及通气控制方法 - Google Patents
一种医疗通气设备及通气控制方法 Download PDFInfo
- Publication number
- WO2023050108A1 WO2023050108A1 PCT/CN2021/121522 CN2021121522W WO2023050108A1 WO 2023050108 A1 WO2023050108 A1 WO 2023050108A1 CN 2021121522 W CN2021121522 W CN 2021121522W WO 2023050108 A1 WO2023050108 A1 WO 2023050108A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- stage
- patient
- target threshold
- respiratory
- Prior art date
Links
- 238000009423 ventilation Methods 0.000 title claims abstract description 76
- 238000000034 method Methods 0.000 title claims abstract description 30
- 230000000241 respiratory effect Effects 0.000 claims abstract description 96
- 230000029058 respiratory gaseous exchange Effects 0.000 claims description 61
- 230000000717 retained effect Effects 0.000 claims description 17
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 12
- 210000002417 xiphoid bone Anatomy 0.000 claims description 8
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 6
- 238000003384 imaging method Methods 0.000 claims description 6
- 239000001569 carbon dioxide Substances 0.000 claims description 4
- 238000005070 sampling Methods 0.000 claims description 4
- 230000014759 maintenance of location Effects 0.000 claims 5
- 239000007789 gas Substances 0.000 description 32
- 210000004072 lung Anatomy 0.000 description 17
- 238000010586 diagram Methods 0.000 description 4
- 238000002593 electrical impedance tomography Methods 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 238000005399 mechanical ventilation Methods 0.000 description 4
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 description 2
- 201000000028 adult respiratory distress syndrome Diseases 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000006213 oxygenation reaction Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 210000002345 respiratory system Anatomy 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 210000000115 thoracic cavity Anatomy 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- 206010020591 Hypercapnia Diseases 0.000 description 1
- 206010021133 Hypoventilation Diseases 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 208000004852 Lung Injury Diseases 0.000 description 1
- 206010069363 Traumatic lung injury Diseases 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 208000035850 clinical syndrome Diseases 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000000004 hemodynamic effect Effects 0.000 description 1
- 208000018875 hypoxemia Diseases 0.000 description 1
- 231100000515 lung injury Toxicity 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000000932 sedative agent Substances 0.000 description 1
- 230000001624 sedative effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
Definitions
- the invention relates to the technical field of medical equipment, in particular to a medical ventilation equipment and a ventilation control method.
- Acute respiratory distress syndrome is a clinical syndrome characterized by refractory hypoxemia caused by intrapulmonary and/or extrapulmonary causes, and has attracted much attention due to its high mortality.
- Mechanical ventilation is an important means of respiratory support for patients with acute respiratory distress syndrome. However, while improving oxygenation to maintain the life of ARDS patients, mechanical ventilation may also cause related lung injury in patients.
- Airway Pressure Release Ventilation is a relatively traditional ventilation mode in mechanical ventilation.
- two pressure levels high pressure level and low pressure level
- the duration of the two pressure levels high pressure time and low pressure time, and the low pressure time is also called pressure release time.
- Airway pressure release ventilation mode can preserve the patient's spontaneous breathing, which can keep the alveoli open at high levels of pressure, improve lung inhomogeneity, thereby improving patient oxygenation, and can increase at low levels of pressure (pressure release) Minute ventilation, which contributes to the removal of carbon dioxide.
- Ventilation parameters in the airway pressure release ventilation mode can better maintain the patient's spontaneous breathing, improve lung inhomogeneity, reduce the use of sedative drugs, and have less impact on hemodynamics, thereby improving the quality of mechanical ventilation.
- the ventilation parameters of the airway pressure release ventilation mode (such as low pressure time and low level pressure value) are manually set, and it is relatively difficult to personalize the steps of setting the pressure release time and low pressure level according to factors such as the condition of different patients.
- an embodiment provides a medical ventilation device, comprising:
- a breathing circuit for connecting to the patient's breathing system through a patient interface to provide breathing gas to the patient;
- a breathing assistance device for ventilating a patient in an airway pressure relief ventilation mode comprising a periodically performed first phase and a second phase in which a first pressure is applied to ventilating the patient, ventilating the patient at a second pressure during the second phase, the first pressure being greater than the second pressure;
- a processor configured to acquire the respiratory mechanics characteristics of the patient, and determine the termination moment of the second stage according to the respiratory mechanics characteristics in the second stage.
- an embodiment provides a ventilation control method, including:
- the patient is ventilated using an airway pressure relief ventilation mode, the airway pressure relief ventilation mode comprising a periodically performed first phase in which the patient is ventilated at a first pressure and a second phase in which the patient is ventilated at a first pressure during which ventilating the patient at a second pressure during the second phase, the first pressure being greater than the second pressure;
- the termination moment of the second stage is determined according to the respiratory mechanics characteristics.
- an embodiment provides a medical ventilation device, comprising:
- a breathing circuit for connecting the patient's breathing system through a patient interface to provide breathing gas for the patient;
- a breathing assistance device for ventilating a patient in an airway pressure relief ventilation mode comprising a periodically performed first phase and a second phase in which a first pressure is applied to ventilating the patient, ventilating the patient at a second pressure during the second phase, the first pressure being greater than the second pressure;
- a processor configured to acquire the respiratory mechanics characteristics of the patient, and adjust the magnitude of the second pressure according to the respiratory mechanics characteristics in the second stage.
- an embodiment provides a computer-readable storage medium including a program, and the program can be executed by a processor to implement the method described in the second aspect.
- the medical ventilation equipment can automatically adjust the low pressure time (the duration of the second stage) in the airway pressure release ventilation mode according to the respiratory mechanics characteristics, thereby reducing the need for medical staff to frequently adjust the low pressure for different patients or different states of the same patient.
- the workload of the time is reduced, and since the respiratory mechanics characteristics are obtained according to the patient itself, personalized and precise ventilation can also be realized.
- Fig. 1 is a schematic diagram of the structural composition of a medical ventilation device of an embodiment
- Fig. 2 is a schematic diagram of airway pressure and airway flow rate in the airway pressure release ventilation mode of an embodiment
- Fig. 3 is a flowchart of a ventilation control method of an embodiment.
- connection and “connection” mentioned in this application all include direct and indirect connection (connection) unless otherwise specified.
- the human respiratory system can be modeled and approximated by a first-order RC model, and the respiratory time constant referred to in this application is one of the characteristics of the first-order model.
- the respiratory time constant In the passive expiratory phase, the patient's exhaled gas flow or volume conforms to the form of exponential decrease, that is: real-time volume
- V 0 is the volume at the beginning of exhalation, that is, the tidal volume (the volume inhaled or exhaled each time during quiet breathing)
- t is the exhalation time
- ⁇ is the breathing time constant, which is the product of the first-order model RC.
- the respiratory time constant can be equal to the product of airway resistance and compliance. Since the airway resistance and compliance of different patients are different, the respiratory time constants are also different. However, for a certain patient, the current physical condition The respiratory time constant under is determined and measurable.
- FIG. 1 provides a schematic diagram of the structural composition of a ventilator.
- a ventilator is taken as an example to illustrate the structure of the medical ventilation equipment in this application.
- the ventilator includes an air source interface 10 , a breathing assistance device 20 , a breathing circuit 30 , a sensor interface 40 , a memory 50 , an external input and output port 60 , a processor 70 and a display 80 .
- FIG. 1 is only an example of a ventilator, and does not constitute a limitation to the ventilator.
- the ventilator may include more or less components than those shown in FIG. 1, or combine certain components, or different components .
- the ventilator may be a pneumatic ventilator or an electric (turbine driven) ventilator.
- the gas source interface 10 is used to connect with a gas source (not shown in the figure), and the gas source is used to provide gas. Usually, oxygen, air and the like can be used as the gas.
- the gas source can be a compressed gas cylinder or a central gas supply source, which supplies gas to the ventilator through the gas source interface 10, and the types of gas supply include oxygen O 2 and air.
- the gas source interface 10 may include conventional components such as a pressure gauge, a pressure regulator, a flow meter, a pressure reducing valve, and a proportional regulation and protection device, which are respectively used to control the flow of various gases (such as oxygen and air).
- the gas input from the gas source interface 10 enters the breathing circuit 30 and forms a mixed gas with the original gas in the breathing circuit 30 .
- the breathing assistance device 20 is used to provide power for the patient's involuntary breathing and maintain the airway, that is, to drive the gas input from the gas source interface 10 and the mixed gas in the breathing circuit 30 to the patient's respiratory system, and the breathing assistance device 20 It may be possible to drive the gas at a set pressure for a period of time, so as to ventilate the patient in the airway pressure release ventilation mode.
- the airway pressure release ventilation mode includes the first stage S1 and the second stage S2 that are performed periodically, as shown in Fig. 2 is a schematic diagram of airway pressure and airway flow rate in the airway pressure release ventilation mode.
- the respiratory assistance device 20 ventilates the patient with the first pressure
- the respiratory assistance device 20 ventilates the patient with the first pressure
- the second pressure ventilates the patient
- the first pressure is greater than the second pressure
- the duration of the first stage S1 is the high pressure time in the airway pressure release ventilation mode
- the duration of the second stage S2 is the airway pressure release ventilation mode Low pressure time in.
- the respiratory assistance device 20 generally includes a mechanically controlled ventilation module, and the airflow channel of the mechanically controlled ventilation module communicates with the breathing circuit 30 .
- the mechanically controlled ventilation module is used to provide the patient with breathing power.
- the respiratory circuit 30 may be a double-tube circuit, which includes an inhalation channel 30a and an exhalation channel 30b, and the carbon dioxide absorber 31 is arranged on the pipeline of the exhalation channel 30b.
- the mixed gas of fresh air introduced by the air source interface 10 is input through the inlet of the inhalation passage 30a, and provided to the patient through the patient interface 32 arranged at the outlet of the inhalation passage 30a.
- the breathing circuit 30 can also be a single-tube circuit, for example, the patient interface 32 is a mask worn on the patient's face, the single-tube circuit sends breathing gas into the mask for the patient to inhale, and the patient's exhaled gas are expelled directly through the mask.
- a flow sensor and/or a pressure sensor are also provided in the breathing circuit 30 for detecting the gas flow and/or the pressure in the circuit, respectively.
- the sensor interface 40 is used to receive the ventilation parameters of the patient during ventilation collected by the sensor. Sensors may include but not limited to pressure sensors and flow rate sensors, and ventilation parameters include but not limited to airway pressure, airway flow rate, esophageal pressure, etc.
- the sensor interface 40 is respectively connected to the signal output terminals of the pressure sensor and the flow rate sensor.
- the sensor interface 40 may only serve as a connector between the sensor output terminal and subsequent circuits (such as the processor 70 ), without signal processing.
- the sensor interface 40 can also be integrated into the processor 70 as an interface of the processor 70 for receiving signals.
- the sensor interface 40 may include an amplification circuit, a filter circuit and an A/D conversion circuit, which are used to respectively amplify, filter and analog-to-digital conversion the input analog signal.
- the connection relationship between the amplifier circuit, the filter circuit and the A/D conversion circuit can be changed according to the specific design of the circuit, and a certain circuit can also be reduced, for example, the amplifier circuit or the filter circuit can be reduced, thereby reducing its corresponding function.
- the memory 50 may be used to store data or programs, for example, to store data collected by various sensors, data generated by the processor 70 through calculation, or image frames generated by the processor 70, the image frames may be 2D or 3D images, Alternatively memory 50 may store a graphical user interface, one or more default image display settings, programming instructions for processor 70 .
- the memory 50 may be a tangible and non-transitory computer-readable medium such as flash memory, RAM, ROM, EEPROM, and the like.
- the medical ventilation device can be connected to the human-computer interaction device through the external input and output port 60, so as to receive the instruction signal input by the human-computer interaction device through the external input and output port 60.
- the instruction signal can include the ventilation mode control and ventilation parameters of the medical ventilation device. settings etc.
- the human-computer interaction device may include one or a combination of a keyboard, a mouse, and a mobile input device (a mobile device with a touch screen, a mobile phone, etc.).
- the processor 70 is used to execute instructions or programs, control the various control valves in the breathing assistance device 20, the air source interface 10 and/or the breathing pipeline 30, or process the received data to generate the required calculation or Judgment results, or generate visualization data or graphics, and output the visualization data or graphics to the display 80 for display.
- the processor 70 can obtain the expiratory mechanical characteristics of the patient through the received data, and the respiratory mechanical characteristics are used to characterize the exhalation state of the patient.
- the termination moment of the second stage S2 can be determined according to the acquired respiratory mechanics characteristics. Determining the termination moment of the second stage S2 means determining when to terminate the second stage S2, that is, determining the duration of the low pressure time in the airway pressure release ventilation mode.
- the first stage S1 can be transferred, and the airway pressure release ventilation mode can also be stopped at this point.
- the above respiratory mechanical characteristics may include but not limited to respiratory time constant, retained volume percentage, intrinsic positive end-expiratory pressure, intrapulmonary pressure, transpulmonary pressure, airway pressure and electrical impedance imaging (EIT, Electrical Impedance Tomography) at least one.
- the patient's exhalation state can be reflected to a certain extent, which can be used to adjust the low pressure time.
- the inventors found that due to the unstable measurement of the airway flow rate, It is easy to produce deviations when responding to the state of exhalation.
- the inventor changed the general thinking, and did not focus on how to measure the airway flow velocity more accurately, but instead used the respiratory mechanics characteristics instead of the flow velocity characteristics to reflect the patient's exhalation state.
- the respiratory mechanics feature itself is more stable and therefore more accurately reflects the patient's exhalation state.
- the termination time of the second stage S2 is determined according to the relationship between the respiratory mechanics characteristics and the target threshold, where the target threshold is a set value input by the user.
- the target threshold is a set value input by the user.
- the respiratory mechanics feature is a respiratory time constant
- the target threshold is the number of respiratory time constants.
- the number of respiratory time constants of the target threshold may be defined as N, where N can be an integer or a decimal (fraction), for example, 2 respiratory time constants or 1.5 respiratory time constants are the target threshold.
- the medical staff can set the target threshold to 1.7 through the human-computer interaction interface, that is, set the target threshold to 1.7 breathing time constants, when switching from the first stage S1 to the second stage After S2, the medical ventilation equipment starts timing, and when the timing reaches 1.7 respiratory time constants, the second stage S2 is terminated.
- the characteristic of respiratory mechanics is the retained volume percentage
- the target threshold is a set ratio.
- the reserved volume percentage is the ratio of the remaining gas volume (residual volume) in the patient's lungs to the total gas that can be exhaled by the patient (the total volume that can be exhaled), so the reserved volume percentage can be a good measure of the patient's exhalation state.
- the second stage S2 is terminated.
- medical staff can input the set ratio, and the set ratio can be in the form of points or percentages.
- the medical staff can input the setting ratio as 14%, then the processor 70 can calculate the time required for the percentage of the reserved volume to drop to 14%, and when the second stage S2 lasts for the calculated time length, then stop the second stage S2 .
- the duration of the second stage S2 is measured by the breathing time constant, for example, according to the volume rule of the first-order model passive exhalation, 1 breathing time constant exhales about 63% of the volume (1-e -1 ), two breathing time constants exhale about 86% of the volume (1-e -2 ), and three breathing time constants exhale about 95% of the volume (1-e -3 ), so when the ratio is set to 14%, the processing
- the duration of the second stage S2 calculated by the device 70 is two breathing time constants, and the timing can be started after the first stage S1 is switched to the second stage S2, and the second stage S2 is terminated after two breathing time constants have elapsed.
- the pressure characteristic parameters can also be used as the respiratory mechanics characteristics.
- the target threshold is the target pressure value. In the second stage S2, when the pressure characteristic parameter is detected to be reduced to the target pressure value, the second stage S2 is terminated.
- the pressure characteristic parameter is intrinsic positive end-expiratory pressure (PEEPi).
- PEEPi intrinsic positive end-expiratory pressure
- APRV low-pressure release is to increase the patient's ventilation volume and help the patient's CO2 discharge.
- the lung volume will be released too much to cause alveolar collapse.
- the inventor realized that the reserved part of the lung volume will generate endogenous positive end-expiratory pressure due to incomplete expiration, so a certain amount of lung volume can be guaranteed by ensuring a certain endogenous positive end-expiratory pressure. Therefore, the medical staff can set the target pressure value of the endogenous positive end-expiratory pressure.
- the second stage S2 will be terminated, thereby automatically adjusting the APRV mode. low pressure time.
- the pressure characteristic parameter is intrapulmonary pressure.
- the inventor realized that in order to ensure that the alveoli do not collapse at the end of expiration, it is necessary to ensure that the intrapulmonary pressure at the end of expiration reaches a certain value, so the low pressure time can be automatically adjusted by setting the target pressure value corresponding to the intrapulmonary pressure, that is, the medical staff can input The target pressure value.
- the intrapulmonary pressure drops to the target pressure value in the second stage S2, the second stage S2 is terminated.
- the pressure at the patient's xiphoid process can be measured through the sampling tube at the end of the cannula, and the pressure at the xiphoid process can be used as the patient's intrapulmonary pressure.
- the intrapulmonary pressure can also be calculated according to the airway pressure and airway flow rate during ventilation. For example, intrapulmonary pressure can be calculated according to the following formula:
- P Lung P aw -F*R, where P Lung is the intrapulmonary pressure of the patient during expiration, Paw is the airway pressure, R is the airway resistance, and F is the airway flow rate.
- the pressure characteristic parameter is transpulmonary pressure.
- the transpulmonary pressure is the difference between the intrapulmonary pressure and the thoracic pressure, which directly acts on the lungs.
- the inventor realized that the transpulmonary pressure can directly reflect the expansion and collapse of the alveoli, so the target pressure value corresponding to the transpulmonary pressure can be set to automatically adjust the low pressure time.
- the transpulmonary pressure is not easy to measure directly.
- the esophageal pressure of the patient can be obtained first through an esophageal pressure catheter and other devices, and then the difference between the airway pressure and the esophageal pressure can be used as the transpulmonary pressure, or the difference between the intrapulmonary pressure and the esophageal pressure The difference is taken as the transpulmonary pressure.
- the above-mentioned respiratory mechanics features are not isolated and can be used in combination.
- the target values corresponding to transpulmonary pressure and intrapulmonary pressure can be set at the same time. When any one of them drops to the target threshold, the second stage S2 is terminated.
- the processor 70 adjusts the magnitude of the second pressure according to the respiratory mechanical characteristics in the second stage S2 after obtaining the respiratory mechanical characteristics.
- the size of the second pressure may include, but are not limited to, respiratory time constant, percent retained volume, intrinsic positive end-expiratory pressure, intrapulmonary pressure, transpulmonary pressure, airway pressure, carbon dioxide concentration, and electrical impedance imaging wait.
- this embodiment provides a ventilation control method, including steps:
- Step 1000 ventilate the patient in an airway pressure release ventilation mode.
- the airway pressure release ventilation mode includes a first stage S1 and a second stage S2 that are performed periodically.
- the first stage S1 the patient is ventilated with the first pressure
- the second stage S2 the patient is ventilated with the second pressure.
- the first pressure is greater than the second pressure. That is to say, the first stage S1 is the high pressure time in the APRV mode, and the second stage S2 is the low pressure time in the APRV mode.
- Step 2000 acquire the respiratory mechanics characteristics of the patient.
- the respiratory mechanics feature is used to characterize the patient's exhalation state.
- the patient's exhalation state can be reflected to a certain extent, which can be used to adjust the low pressure time.
- the inventors found that due to the unstable measurement of the airway flow rate, It is easy to produce deviations when responding to the state of exhalation.
- the inventor changed the general thinking, and did not focus on how to measure the airway flow rate more accurately, but instead used the respiratory mechanics feature instead of the flow rate feature to reflect the patient's exhalation state.
- the respiratory mechanics feature itself is more stable and therefore more accurately reflects the patient's exhalation state.
- the above respiratory mechanical characteristics may include but not limited to respiratory time constant, retained volume percentage, intrinsic positive end-expiratory pressure, intrapulmonary pressure, transpulmonary pressure, airway pressure and electrical impedance imaging (EIT, Electrical Impedance Tomography) at least one.
- EIT Electrical Impedance Tomography
- Step 3000 in the second stage S2, according to the characteristics of respiratory mechanics, determine the end time of the second stage S2. Determining the termination moment of the second stage S2 means determining when to terminate the second stage S2, that is, determining the duration of the low pressure time in the airway pressure release ventilation mode. After the second stage S2 is terminated, the first stage S1 can be transferred, and the airway pressure release ventilation mode can also be stopped at this point.
- the termination time of the second stage S2 is determined according to the relationship between the respiratory mechanics characteristics and the target threshold, where the target threshold is a set value input by the user. Step 3000 is described below with an example.
- the respiratory mechanics feature is a respiratory time constant
- the target threshold is the number of respiratory time constants.
- the number of respiratory time constants of the target threshold may be defined as N, where N can be an integer or a decimal (fraction), for example, 2 respiratory time constants or 1.5 respiratory time constants are the target threshold.
- the respiratory mechanics characteristic is the retained volume percentage
- the target threshold is a set ratio.
- the reserved volume percentage is the ratio of the remaining gas volume (residual volume) in the patient's lungs to the total gas that can be exhaled by the patient (the total volume that can be exhaled), so the reserved volume percentage can be a good measure of the patient's exhalation state.
- the second stage S2 is terminated.
- medical staff can input the set ratio, and the set ratio can be in the form of points or percentages.
- the medical staff can input the set ratio as 14%, then calculate the time required for the percentage of the reserved volume to drop to 14%, and stop the second stage S2 when the second stage S2 lasts for the calculated time.
- the duration of the second stage S2 is measured by the breathing time constant, for example, according to the volume rule of the first-order model passive exhalation, 1 breathing time constant exhales about 63% of the volume (1-e -1 ), two breathing time constants exhale about 86% of the volume (1-e -2 ), and three breathing time constants exhale about 95% of the volume (1-e -3 ), so when the ratio is set to 14%, the calculation
- the duration of the second stage S2 is two breathing time constants, which can be counted after switching from the first stage S1 to the second stage S2, and the second stage S2 is terminated after two breathing time constants have elapsed.
- the pressure characteristic parameters can also be used as the respiratory mechanics characteristics.
- the target threshold is the target pressure value. In the second stage S2, when the pressure characteristic parameter is detected to be reduced to the target pressure value, the second stage S2 is terminated.
- the pressure characteristic parameter is intrinsic positive end-expiratory pressure (PEEPi).
- PEEPi intrinsic positive end-expiratory pressure
- APRV low-pressure release is to increase the patient's ventilation volume and help the patient's CO2 discharge.
- the lung volume will be released too much to cause alveolar collapse.
- the inventor realized that the reserved part of the lung volume will generate endogenous positive end-expiratory pressure due to incomplete expiration, so a certain amount of lung volume can be guaranteed by ensuring a certain endogenous positive end-expiratory pressure. Therefore, the medical staff can set the target pressure value of the endogenous positive end-expiratory pressure.
- the second stage S2 will be terminated, thereby automatically adjusting the APRV mode. low pressure time.
- the pressure characteristic parameter is intrapulmonary pressure.
- the inventor realized that in order to ensure that the alveoli do not collapse at the end of expiration, it is necessary to ensure that the intrapulmonary pressure at the end of expiration reaches a certain value, so the low pressure time can be automatically adjusted by setting the target pressure value corresponding to the intrapulmonary pressure, that is, the medical staff can input The target pressure value.
- the intrapulmonary pressure drops to the target pressure value in the second stage S2, the second stage S2 is terminated.
- the pressure at the patient's xiphoid process can be measured through the sampling tube at the end of the cannula, and the pressure at the xiphoid process can be used as the patient's intrapulmonary pressure.
- the intrapulmonary pressure can also be calculated according to the airway pressure and airway flow rate during ventilation. For example, intrapulmonary pressure can be calculated according to the following formula:
- P Lung P aw -F*R, where P Lung is the intrapulmonary pressure of the patient during expiration, Paw is the airway pressure, R is the airway resistance, and F is the airway flow rate.
- the pressure characteristic parameter is transpulmonary pressure.
- the transpulmonary pressure is the difference between the intrapulmonary pressure and the thoracic pressure, which directly acts on the lungs.
- the inventor realized that the transpulmonary pressure can directly reflect the expansion and collapse of the alveoli, so the target pressure value corresponding to the transpulmonary pressure can be set to automatically adjust the low pressure time.
- the transpulmonary pressure is not easy to measure directly, so the esophageal pressure of the patient can be obtained first through the esophageal pressure catheter, and then the difference between the airway pressure and the esophageal pressure can be used as the transpulmonary pressure, or the difference between the intrapulmonary pressure and the esophageal pressure The difference is taken as the transpulmonary pressure.
- the above-mentioned respiratory mechanics features are not isolated and can be used in combination.
- the target values corresponding to transpulmonary pressure and intrapulmonary pressure can be set at the same time. When any one of them drops to the target threshold, the second stage S2 is terminated.
- the above embodiments can automatically adjust the low-pressure time in the airway pressure release ventilation mode, reduce the workload of medical staff, and can also achieve personalized and precise ventilation. Low pressure time is more accurate.
Landscapes
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Pulmonology (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
一种医疗通气设备及通气控制方法,该方法包括采用气道压力释放通气模式对患者进行通气(1000),气道压力释放通气模式包括周期性进行的第一阶段(S1)和第二阶段(S2),在第一阶段(S1)以第一压力对患者进行通气,在第二阶段(S2)以第二压力对患者进行通气,第一压力大于第二压力;获取患者的呼吸力学特征(2000);在第二阶段(S2)中根据呼吸力学特征,确定第二阶段(S2)的终止时刻(3000)。通过该方法可以针对不同患者的不同情况,自动调整气道压力释放通气模式中的低压时间,以减少医护人员的操作,实现个性化精准通气。
Description
本发明涉及医疗设备技术领域,具体涉及一种医疗通气设备,以及一种通气控制方法。
急性呼吸窘迫综合征(ARDS)是由肺内原因和/或肺外原因引起的,以顽固性低氧血症为显著特征的临床综合征,因高病死率而倍受关注。机械通气对于急性呼吸窘迫综合征的患者而言,是重要的呼吸支持手段,但是,机械通气在改善氧合维持ARDS患者生命的同时,也可能导致患者的相关肺损伤。
气道压力释放通气模式(APRV,Airway Pressure Release Ventil ation)是机械通气中一种较为传统的通气模式。该模式通气时需要设置两个压力水平(高压水平和低压水平),以及两个压力水平的持续时间(高压时间和低压时间,低压时间又被称为压力释放时间)。气道压力释放通气模式下可以保留患者的自主呼吸,其在高水平压力下可保持肺泡开放,改善肺的不均一性,从而改善患者氧合,在低水平压力下(压力释放)可以增大分钟通气量,从而有助于二氧化碳的排出。气道压力释放通气模式的通气参数设置得当可以较好地维持患者自主呼吸,改善肺的不均一性,减少镇静药物使用,对血流动力学的影响也较小,从而可以提高机械通气质量。但是,目前在临床中,气道压力释放通气模式的通气参数(例如低压时间和低水平压力值)为手动设置的,根据不同患者病情等因素去个性化设置压力释放时间和低压大小的步骤较为繁琐,这阻碍了气道压力释放通气模式在临床上的应用,并且,压力释放的主要目的是增大呼气潮气量,该释放潮气量过大会导致患者肺容积减少,引起肺泡塌陷,而释放过少则可能导致通气不足,产生高碳酸血症。
发明内容
根据第一方面,一种实施例提供了一种医疗通气设备,包括:
呼吸管路,用于通过患者接口连接所述患者的呼吸系统,以为所述 患者提供呼吸气体;
呼吸辅助装置,用于采用气道压力释放通气模式对患者进行通气,所述气道压力释放通气模式包括周期性进行的第一阶段和第二阶段,在所述第一阶段以第一压力对患者进行通气,在所述第二阶段以第二压力对患者进行通气,所述第一压力大于第二压力;
处理器,用于获取所述患者的呼吸力学特征,并在所述第二阶段中根据所述呼吸力学特征,确定所述第二阶段的终止时刻。
根据第二方面,一种实施例提供了一种通气控制方法,包括:
采用气道压力释放通气模式对患者进行通气,所述气道压力释放通气模式包括周期性进行的第一阶段和第二阶段,在所述第一阶段以第一压力对患者进行通气,在所述第二阶段以第二压力对患者进行通气,所述第一压力大于第二压力;
获取所述患者的呼吸力学特征;
在所述第二阶段中根据所述呼吸力学特征,确定所述第二阶段的终止时刻。
根据第三方面,一种实施例提供了一种医疗通气设备,包括:
呼吸管路,用于通过患者接口连接所述患者的呼吸系统,以为所述患者提供呼吸气体;
呼吸辅助装置,用于采用气道压力释放通气模式对患者进行通气,所述气道压力释放通气模式包括周期性进行的第一阶段和第二阶段,在所述第一阶段以第一压力对患者进行通气,在所述第二阶段以第二压力对患者进行通气,所述第一压力大于第二压力;
处理器,用于获取所述患者的呼吸力学特征,并在所述第二阶段中根据所述呼吸力学特征,调节所述第二压力的大小。
根据第四方面,一种实施例提供了一种计算机可读存储介质,包括程序,所述程序能够被处理器执行以实现第二方面所述的方法。
上述实施例中医疗通气设备可以根据呼吸力学特征自动调整气道压力释放通气模式中的低压时间(第二阶段的持续时间),从而减少了医护人员针对不同患者或同一患者不同状态时频繁调节低压时间的工作量,并且,由于呼吸力学特征是根据患者自身获取的,故也可以实现个性化精准通气。
图1为一种实施例的医疗通气设备的结构组成示意图;
图2为一种实施例的气道压力释放通气模式中气道压和气道流速的示意图;
图3为一种实施例的通气控制方法的流程图。
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
人体呼吸系统可通过一阶RC模型建模近似,而本申请中所称的呼吸时间常数是一阶模型的特性之一。在被动呼气阶段患者呼出气流量或容量符合指数递减的形式,即:实时容积
式中V
0为呼气开始时的容积,即潮气量(平静呼吸时每次吸入或呼出的气量),t为呼气时间,τ为呼吸时间常数,即为一阶模型RC的乘积。呼吸时间常数可以等于气道阻力与顺应性之乘积,由于不同患者的气道阻力和顺应性各不相同,故其呼吸时间常数也不相同,但对于某一确定的患者,其在当前身体状况下的呼吸时间常数是确定并可测量的。
请参考图1所示实施例,该实施例提供了一种呼吸机的结构组成示意图。本实施例中以呼吸机为例说明本申请中医疗通气设备的结构。在本实施例中,呼吸机包括气源接口10、呼吸辅助装置20、呼吸管路30、传感器接口40、存储器50、外部输入输出端口60、处理器70和显示器80。应当理解的是,图1仅是呼吸机的示例,并不构成对呼吸机的限定,呼吸机可以包括比图1所示更多或更少的部件,或者组合某些部件,或者不同的部件。在具体实施例中,呼吸机可以是气动式呼吸机,也可以是电动式(涡轮驱动)呼吸机。
气源接口10用于与气源(图中未示出)连接,气源用以提供气体。该气体通常可采用氧气和空气等。一些实施例中,该气源可以采用压缩气瓶或中心供气源,通过气源接口10为呼吸机供气,供气种类有氧气O
2和空气等。气源接口10中可以包括压力表、压力调节器、流量计、减压阀和比例调控保护装置等常规组件,分别用于控制各种气体(例如氧气和空气)的流量。气源接口10输入的气体进入呼吸管路30中,和呼吸管路30中原有的气体组成混合气体。
呼吸辅助装置20用于为患者的非自主呼吸提供动力,维持气道通畅,即将气源接口10输入的气体和呼吸管路30中的混合气体驱动到患者的呼吸系统,并且,呼吸辅助装置20可以能够在一段时间内以设定的压力驱动气体,从而实现以气道压力释放通气模式对患者进行通气,气道压力释放通气模式包括周期性进行的第一阶段S1和第二阶段S2,图2所示为气道压力释放通气模式中气道压和气道流速的示意图,在第一阶段S1呼吸辅助装置20以第一压力对患者进行通气,而在第二阶段S2呼吸辅助装置20则以第二压力对患者进行通气,第一压力大于第二压力,故第一阶段S1的持续时长就是气道压力释放通气模式中的高压时间,第二阶段S2的持续时长就是气道压力释放通气模式中的低压时间。
在具体实施例中,呼吸辅助装置20通常包括机控通气模块,机控通气模块的气流管道和呼吸管路30连通。例如在患者没有自主呼吸时,采用机控通气模块为患者提供呼吸的动力。
本申请中呼吸管路30可以为双管回路,其包括吸气通路30a和呼气通路30b,二氧化碳吸收器31设置在呼气通路30b的管路上。气源接口10引入的新鲜空气的混合气体由吸气通路30a的入口输入,通过设置在吸气通路30a的出口处的患者接口32提供给患者。在其他实施例中,呼 吸管路30也可以是单管管路,例如,患者接口32为佩戴在患者面部的面罩,单管管路将呼吸气体送入面罩中供患者吸入,患者呼出的气体则直接经由面罩排出。在有的实施例中,在呼吸管路30中还设置有流量传感器和/或压力传感器,分别用于检测气体流量和/或管路中的压力。
传感器接口40用于接收传感器采集的患者在通气中的通气参数。传感器可以包括但不限于压力传感器和流速传感器,通气参数则包括但不限于气道压、气道流速、食道压等。传感器接口40分别连接压力传感器以及流速传感器的信号输出端。
在一种实施例中,传感器接口40可以只是作为传感器输出端和后续电路(例如处理器70)的一个连接器,不对信号进行处理。传感器接口40还可以作为处理器70的用于接入信号的接口而集成到处理器70中。在另一种实施例中,传感器接口40可以包括放大电路、滤波电路和A/D转换电路,用于对输入的模拟信号分别进行放大、滤波和模数转换处理。当然,技术人员应当理解,放大电路、滤波电路和A/D转换电路三者的连接关系可以根据电路的具体设计而变化,也可以减少某一个电路,例如可以减少放大电路或滤波电路,从而减少其相应的功能。
存储器50可以用于存储数据或者程序,例如用于存储各传感器所采集的数据、处理器70经计算所生成的数据或处理器70所生成的图像帧,该图像帧可以是2D或3D图像,或者存储器50可以存储图形用户界面、一个或多个默认图像显示设置、用于处理器70的编程指令。存储器50可以是有形且非暂态的计算机可读介质,例如闪存、RAM、ROM、EEPROM等。
医疗通气设备可以通过外部输入输出端口60与人机交互设备连接,以通过外部输入输出端口60接收人机交互设备输入的指令信号,该指令信号可以包括对医疗通气设备的通气模式控制、通气参数设置等。人机交互设备则可以包括键盘、鼠标以及移动式输入设备(带触摸显示屏的移动设备、手机等)等等其中之一或者多个的组合。
处理器70用于执行指令或程序,对呼吸辅助装置20、气源接口10和/或呼吸管路30中的各种控制阀进行控制,或对接收的数据进行处理,生成所需要的计算或判断结果,或者生成可视化数据或图形,并将可视化数据或图形输出给显示器80进行显示。
本实施例中,处理器70可以通过接收到的数据得到患者的呼气力学 特征,该呼吸力学特征用于表征患者的呼气状态。在第二阶段S2,可以根据得到的呼吸力学特征,确定第二阶段S2的终止时刻。确定第二阶段S2的终止时刻,意味着能够确定何时终止第二阶段S2,也就是说,可以确定气道压力释放通气模式时的低压时间的时长。在第二阶段S2终止后,可以转入第一阶段S1,也可以就此停止气道压力释放通气模式。上述呼吸力学特征可以包括但不限于呼吸时间常数、保留容积百分比、内源性呼气末正压、肺内压、跨肺压、气道压和电阻抗成像(EIT,Electrical Impedance Tomography)中的至少一种。
通过测量与患者的气道流速相关的特征,可以在一定程度上反应患者的呼气状态,以此可以用来调整低压时间,但是在实践中发明人发现,由于气道流速的测量不稳定,在反应呼气状态时容易产生偏差。对于该技术问题,发明人转换了一般的思路,并不着力于如何将气道流速测量地更加准确,而是以呼吸力学特征替代流速特征来反应患者的呼气状态,相比与流速特征,呼吸力学特征本身更加稳定,因此可以更准确地反应患者的呼气状态。
在一些实施例中,是根据呼吸力学特征与目标阈值的关系,来确定第二阶段S2的终止时刻,该目标阈值是用户输入的设定值。下面举例说明。
在一些实施例中,呼吸力学特征为呼吸时间常数,与之对应的,目标阈值为呼吸时间常数的数量。不妨将目标阈值的呼吸时间常数的数量定义为N,其中,N可以是整数或小数(分数),例如2个呼吸时间常数或者1.5个呼吸时间常数为目标阈值。由第一阶段S1切换至第二阶段S2后,当确定到经过N个呼吸时间常数时,终止第二阶段S2。例如,在气道压力释放通气模式时,医护人员可以通过人机交互接口将目标阈值设置为1.7的指令,即将目标阈值为设置1.7个呼吸时间常数,当由第一阶段S1切换为第二阶段S2后医疗通气设备开始计时,计时达到1.7个呼吸时间常数时则终止第二阶段S2。
通过设置的目标阈值自动调整第二阶段S2的持续时间,医护人员可以不必根据具体的患者调整低压时间,从而可以针对不同患者保证压力释放状态(保留多少呼末容积)的一致,并且,对于医护人员来说操作简便,只需要输入呼吸时间常数的数量即可。
在一些实施例中,呼吸力学特征为保留容积百分比,与之对应的, 目标阈值为设定比值。其中,保留容积百分比为患者肺部剩余气体量(剩余容积)占该患者所能呼出总气体(所能呼出的总容积)的比例,故保留容积百分比可以很好地衡量患者的呼气状态,当保留容积百分比下降至设定比值时,则终止第二阶段S2。在具体实施时,医护人员可以输入该设定比值,设定比值可以是分数或百分数等形式。例如,医护人员可以输入设定比值为14%,则可以处理器70计算保留容积百分比下降至14%所需的时长,当第二阶段S2持续了计算出的时长后,则停止第二阶段S2。在一些实施例中,该第二阶段S2的持续时长是通过呼吸时间常数来衡量的,例如,根据一阶模型被动呼气的容积规律,1个呼吸时间常数呼出约63%容积(1-e
-1),两个呼吸时间常数呼出约86%容积(1-e
-2),3个呼吸时间常数呼出约95%容积(1-e
-3),故设定比值为14%时,处理器70计算出的第二阶段S2的持续时长是两个呼吸时间常数,可以在第一阶段S1切换至第二阶段S2后开始计时,当经过两个呼吸时间常数后,终止第二阶段S2。
除了将采用上述参数作为呼吸力学特征外,还可以将压力特征参数作为呼吸力学特征,与之相对的,目标阈值是目标压力值,在第二阶段S2,当检测到压力特征参数降低至目标压力值时,终止第二阶段S2。
在一些实施例中,压力特征参数为内源性呼气末正压(PEEPi)。APRV低压释放是为了增大患者的通气量,帮助患者的CO2排出,同时也不希望肺容积释放过多导致肺泡塌陷。发明人意识到保留部分的肺容积由于未完全呼出会产生内源性呼气末正压,因此可以通过保证一定的内源性呼气末正压来保证一定量的肺容积。故医护人员可以设定内源性呼气末正压的目标压力值,当检测到内源性呼气末正压下降至目标压力值时,终止第二阶段S2,由此自动调整APRV模式中的低压时间。
在一些实施例中,压力特征参数为肺内压。发明人意识到为了保证呼气末肺泡不塌陷,需要保证呼气末的肺内压力达到一定值以上,因此可以通过设置肺内压对应的目标压力值来自动调整低压时间,即医护人员可以输入目标压力值,在第二阶段S2肺内压下降至目标压力值时,终止第二阶段S2。在有创通气时,可以通过插管末端的采样管测量患者剑突处的压力,将剑突处的压力作为患者的肺内压。此外,还可以根据通气过程中的气道压和气道流速,计算得到肺内压。例如,肺内压可以根据以下公式计算得到:
P
Lung=P
aw-F*R,其中,P
Lung为患者在呼气阶段的肺内压,Paw为气道压,R为气道阻力,F为气道流速。
在一些实施例中,压力特征参数为跨肺压。跨肺压为肺内压与胸腔压力之差,该压力直接作用于肺上,发明人意识到跨肺压能够直接反应肺泡的膨胀和塌陷状态,故可以通过设置跨肺压对应的目标压力值来自动调整低压时间。跨肺压不易直接测量,可以首先通过食道压导管等装置获取患者的食道压,然后将气道压和食道压之间的差值作为跨肺压,也可以将肺内压和食道压之间的差值作为跨肺压。
需要说明的是,上述各呼吸力学特征并不是孤立的,各呼吸力学特征之间可以组合使用,例如,可以同时设置跨肺压和肺内压对应的目标值,在跨肺压和肺内压中的任何一个下降至目标阈值时,终止第二阶段S2。
在一些实施例中,处理器70在获取呼吸力学特征后,在第二阶段S2中根据呼吸力学特征,调节第二压力的大小,具体的,可以根据呼吸力学特征与目标阈值之间关系,调节第二压力的大小。在该些实施例中,呼吸力学特征可以包括但不限于呼吸时间常数、保留容积百分比、内源性呼气末正压、肺内压、跨肺压、气道压、二氧化碳浓度和电阻抗成像等。
请参照图3所示的实施例,该实施例提供了一种通气控制方法,包括步骤:
步骤1000、采用气道压力释放通气模式对患者进行通气。气道压力释放通气模式包括周期性进行的第一阶段S1和第二阶段S2,在第一阶段S1以第一压力对患者进行通气,在第二阶段S2以第二压力对患者进行通气,第一压力大于第二压力。也就是说,第一阶段S1为APRV模式中的高压时间,第二阶段S2为APRV模式中的低压时间。
步骤2000、获取患者的呼吸力学特征。该呼吸力学特征用于表征患者的呼气状态。
通过测量与患者的气道流速相关的特征,可以在一定程度上反应患者的呼气状态,以此可以用来调整低压时间,但是在实践中发明人发现,由于气道流速的测量不稳定,在反应呼气状态时容易产生偏差。对于该技术问题,发明人转换了一般的思路,并不着力于如何将气道流速测量地更加准确,而是以呼吸力学特征替代流速特征来反应患者的呼气状态, 相比与流速特征,呼吸力学特征本身更加稳定,因此可以更准确地反应患者的呼气状态。
上述呼吸力学特征可以包括但不限于呼吸时间常数、保留容积百分比、内源性呼气末正压、肺内压、跨肺压、气道压和电阻抗成像(EIT,Electrical Impedance Tomography)中的至少一种。
步骤3000、在第二阶段S2中根据呼吸力学特征,确定第二阶段S2的终止时刻。确定第二阶段S2的终止时刻,意味着能够确定何时终止第二阶段S2,也就是说,可以确定气道压力释放通气模式时的低压时间的时长。在第二阶段S2终止后,可以转入第一阶段S1,也可以就此停止气道压力释放通气模式。
在一些实施例中,是根据呼吸力学特征与目标阈值的关系,来确定第二阶段S2的终止时刻,该目标阈值是用户输入的设定值。下面举例对步骤3000进行说明。
在一些实施例中,呼吸力学特征为呼吸时间常数,与之对应的,目标阈值为呼吸时间常数的数量。不妨将目标阈值的呼吸时间常数的数量定义为N,其中,N可以是整数或小数(分数),例如2个呼吸时间常数或者1.5个呼吸时间常数为目标阈值。由第一阶段S1切换至第二阶段S2后,当确定到经过N个呼吸时间常数时,终止第二阶段S2。例如,医护人员可以设置在进行APRV模式进行通气时,目标阈值为1.7个呼吸时间常数,当由第一阶段S1切换为第二阶段S2后开始计时,计时达到1.7个呼吸时间常数时则终止第二阶段S2。
通过设置的目标阈值自动调整第二阶段S2的持续时间,医护人员可以不必根据具体的患者调整低压时间,从而可以针对不同患者保证压力释放状态(保留多少呼末容积)的一致,并且,对于医护人员来说操作简便,只需要输入呼吸时间常数的数量即可。
在一些实施例中,呼吸力学特征为保留容积百分比,与之对应的,目标阈值为设定比值。其中,保留容积百分比为患者肺部剩余气体量(剩余容积)占该患者所能呼出总气体(所能呼出的总容积)的比例,故保留容积百分比可以很好地衡量患者的呼气状态,当保留容积百分比下降至设定比值时,则终止第二阶段S2。在具体实施时,医护人员可以输入该设定比值,设定比值可以是分数或百分数等形式。例如,医护人员可以输入设定比值为14%,则可以计算保留容积百分比下降至14%所需的时 长,当第二阶段S2持续了计算出的时长后,则停止第二阶段S2。在一些实施例中,该第二阶段S2的持续时长是通过呼吸时间常数来衡量的,例如,根据一阶模型被动呼气的容积规律,1个呼吸时间常数呼出约63%容积(1-e
-1),两个呼吸时间常数呼出约86%容积(1-e
-2),3个呼吸时间常数呼出约95%容积(1-e
-3),故设定比值为14%时,计算出的第二阶段S2的持续时长是两个呼吸时间常数,可以在第一阶段S1切换至第二阶段S2后开始计时,当经过两个呼吸时间常数后,终止第二阶段S2。
除了将采用上述参数作为呼吸力学特征外,还可以将压力特征参数作为呼吸力学特征,与之相对的,目标阈值是目标压力值,在第二阶段S2,当检测到压力特征参数降低至目标压力值时,终止第二阶段S2。
在一些实施例中,压力特征参数为内源性呼气末正压(PEEPi)。APRV低压释放是为了增大患者的通气量,帮助患者的CO2排出,同时也不希望肺容积释放过多导致肺泡塌陷。发明人意识到保留部分的肺容积由于未完全呼出会产生内源性呼气末正压,因此可以通过保证一定的内源性呼气末正压来保证一定量的肺容积。故医护人员可以设定内源性呼气末正压的目标压力值,当检测到内源性呼气末正压下降至目标压力值时,终止第二阶段S2,由此自动调整APRV模式中的低压时间。
在一些实施例中,压力特征参数为肺内压。发明人意识到为了保证呼气末肺泡不塌陷,需要保证呼气末的肺内压力达到一定值以上,因此可以通过设置肺内压对应的目标压力值来自动调整低压时间,即医护人员可以输入目标压力值,在第二阶段S2肺内压下降至目标压力值时,终止第二阶段S2。在有创通气时,可以通过插管末端的采样管测量患者剑突处的压力,将剑突处的压力作为患者的肺内压。此外,还可以根据通气过程中的气道压和气道流速,计算得到肺内压。例如,肺内压可以根据以下公式计算得到:
P
Lung=P
aw-F*R,其中,P
Lung为患者在呼气阶段的肺内压,Paw为气道压,R为气道阻力,F为气道流速。
在一些实施例中,压力特征参数为跨肺压。跨肺压为肺内压与胸腔压力之差,该压力直接作用于肺上,发明人意识到跨肺压能够直接反应肺泡的膨胀和塌陷状态,故可以通过设置跨肺压对应的目标压力值来自动调整低压时间。跨肺压不易直接测量,故可以首先通过食道压导管获取患者的食道压,然后将气道压和食道压之间的差值作为跨肺压,也可 以将肺内压和食道压之间的差值作为跨肺压。
需要说明的是,上述各呼吸力学特征并不是孤立的,各呼吸力学特征之间可以组合使用,例如,可以同时设置跨肺压和肺内压对应的目标值,在跨肺压和肺内压中的任何一个下降至目标阈值时,终止第二阶段S2。
上述实施例能自动调整气道压力释放通气模式中的低压时间,并减少医护人员的工作量,还可以实现个性化精准通气,此外,相较于使用流速相关特征调整低压时间,本申请中调整低压时间更为准确。
以上应用了具体个例对本发明进行阐述,只是用于帮助理解本发明,并不用以限制本发明。对于本领域的一般技术人员,依据本发明的思想,可以对上述具体实施方式进行变化。
Claims (31)
- 一种医疗通气设备,其特征在于,包括:呼吸管路,用于通过患者接口连接所述患者的呼吸系统,以为所述患者提供呼吸气体;呼吸辅助装置,用于采用气道压力释放通气模式对患者进行通气,所述气道压力释放通气模式包括周期性进行的第一阶段和第二阶段,在所述第一阶段以第一压力对患者进行通气,在所述第二阶段以第二压力对患者进行通气,所述第一压力大于第二压力;处理器,用于获取所述患者的呼吸力学特征,并在所述第二阶段中根据所述呼吸力学特征,确定所述第二阶段的终止时刻。
- 如权利要求1所述的设备,其特征在于,所述呼吸力学特征用于表征患者的呼气状态。
- 如权利要求1所述的设备,其特征在于,所述呼吸力学特征包括呼吸时间常数、保留容积百分比、内源性呼气末正压、肺内压、跨肺压、气道压和电阻抗成像中的至少一种。
- 如权利要求1至3中任一项所述的设备,其特征在于,所述根据所述呼吸力学特征,确定所述第二阶段的终止时刻,包括:根据所述呼吸力学特征与目标阈值的关系,确定所述第二阶段的终止时刻。
- 如权利要求4所述的设备,其特征在于,所述呼吸力学特征为呼吸时间常数,所述目标阈值为呼吸时间常数的数量,所述根据所述呼吸力学特征与目标阈值的关系,确定所述第二阶段的终止时刻,包括:由所述第一阶段切换至第二阶段后,确定到经过N个呼吸时间常数时,终止所述第二阶段,其中,N为所述目标阈值。
- 如权利要求4所述的设备,其特征在于,所述呼吸力学特征为保留容积百分比,所述目标阈值为设定比值,所述根据所述呼吸力学特征与目标阈值的关系,确定所述第二阶段的终止时刻,包括:当所述保留容积百分比下降至目标阈值时,终止所述第二阶段。
- 如权利要求6所述的设备,其特征在于,当所述保留容积百分比下降至目标阈值时,终止所述第二阶段,包括:根据所述目标阈值,计算所述第二阶段开始至所述保留容积百分比 下降至目标阈值所需时长;由所述第一阶段切换至第二阶段后,当经过所需时长,终止所述第二阶段。
- 如权利要求7所述的设备,其特征在于,所述计算所述第二阶段开始至所述保留容积百分比下降至目标阈值所需时长,包括:计算所述第二阶段开始至所述保留容积百分比下降至目标阈值时所需呼吸时间常数的数目;由所述第一阶段切换至第二阶段后,确定到经过所需呼吸时间常数的数目时,终止所述第二阶段。
- 如权利要求4所述的设备,其特征在于,所述呼吸力学特征为压力特征参数,所述目标阈值为目标压力值,所述根据所述呼吸力学特征与目标阈值的关系,确定所述第二阶段的终止时刻,包括:在所述第二阶段,当检测到所述压力特征参数降低至所述目标压力值时,终止所述第二阶段。
- 如权利要求9所述的设备,其特征在于,所述压力特征参数为内源性呼气末正压、肺内压、跨肺压和气道压中的至少一个。
- 如权利要求10所述的设备,其特征在于,获取所述患者的肺内压的方式,包括:通过插管末端的采样管测量所述患者的剑突处的压力,将所述剑突处的压力作为所述患者的肺内压;或者根据通气过程中的气道压和气道流速,计算得到呼气阶段的肺内压。
- 如权利要求10所述的设备,其特征在于,获取所述患者的跨肺压的方式,包括:获取所述患者的食道压;获取患者的肺内压或气道压;将所述气道压和食道压的差值作为跨肺压,或者,将所述肺内压和食道压的差值作为跨肺压。
- 如权利要求4至12中任一项所述的设备,其特征在于,所述目标阈值为用户输入的设定值。
- 一种通气控制方法,其特征在于,包括:采用气道压力释放通气模式对患者进行通气,所述气道压力释放通气模式包括周期性进行的第一阶段和第二阶段,在所述第一阶段以第一 压力对患者进行通气,在所述第二阶段以第二压力对患者进行通气,所述第一压力大于第二压力;获取所述患者的呼吸力学特征;在所述第二阶段中根据所述呼吸力学特征,确定所述第二阶段的终止时刻。
- 如权利要求14所述的方法,其特征在于,所述呼吸力学特征用于表征患者的呼气状态。
- 如权利要求14所述的方法,其特征在于,所述呼吸力学特征包括呼吸时间常数、保留容积百分比、内源性呼气末正压、肺内压、跨肺压、气道压和电阻抗成像中的至少一种。
- 如权利要求14至16中任一项所述的方法,其特征在于,所述根据所述呼吸力学特征,确定所述第二阶段的终止时刻,包括:根据所述呼吸力学特征与目标阈值的关系,确定所述第二阶段的终止时刻。
- 如权利要求17所述的方法,其特征在于,所述呼吸力学特征为呼吸时间常数,所述目标阈值为呼吸时间常数的数量,所述根据所述呼吸力学特征与目标阈值的关系,确定所述第二阶段的终止时刻,包括:由所述第一阶段切换至第二阶段后,确定到经过N个呼吸时间常数时,终止所述第二阶段,其中,N为所述目标阈值。
- 如权利要求17所述的方法,其特征在于,所述呼吸力学特征为保留容积百分比,所述目标阈值为设定比值,所述根据所述呼吸力学特征与目标阈值的关系,确定所述第二阶段的终止时刻,包括:当所述保留容积百分比下降至目标阈值时,终止所述第二阶段。
- 如权利要求19所述的方法,其特征在于,当所述保留容积百分比下降至目标阈值时,终止所述第二阶段,包括:根据所述目标阈值,计算所述第二阶段开始至所述保留容积百分比下降至目标阈值所需时长;由所述第一阶段切换至第二阶段后,当经过所需时长,终止所述第二阶段。
- 如权利要求20所述的方法,其特征在于,所述计算所述第二阶段开始至所述保留容积百分比下降至目标阈值所需时长,包括:计算所述第二阶段开始至所述保留容积百分比下降至目标阈值时所 需呼吸时间常数的数目;由所述第一阶段切换至第二阶段后,确定到经过所需呼吸时间常数的数目时,终止所述第二阶段。
- 如权利要求17所述的方法,其特征在于,所述呼吸力学特征为压力特征参数,所述目标阈值为目标压力值,所述根据所述呼吸力学特征与目标阈值的关系,确定所述第二阶段的终止时刻,包括:在所述第二阶段,当检测到所述压力特征参数降低至所述目标压力值时,终止所述第二阶段。
- 如权利要求22所述的方法,其特征在于,所述压力特征参数为内源性呼气末正压、肺内压、跨肺压和气道压中的至少一个,且所述内源性呼气末正压、肺内压和跨肺压均具有对应的目标压力值。
- 如权利要求23所述的方法,其特征在于,获取所述患者的肺内压的方式,包括:通过插管末端的采样管测量所述患者的剑突处的压力,将所述剑突处的压力作为所述患者的肺内压;或者根据通气过程中的气道压和气道流速,计算得到呼气阶段的肺内压。
- 如权利要求23所述的方法,其特征在于,获取所述患者的肺内压的方式,包括:获取所述患者的食道压;获取患者的肺内压或气道压力;将所述气道压和食道压的差值作为跨肺压,或者,将所述肺内压和食道压的差值作为跨肺压。
- 如权利要求17至25中任一项所述的方法,其特征在于,所述目标阈值为用户输入的设定值。
- 一种医疗通气设备,其特征在于,包括:呼吸管路,用于通过患者接口连接所述患者的呼吸系统,以为所述患者提供呼吸气体;呼吸辅助装置,用于采用气道压力释放通气模式对患者进行通气,所述气道压力释放通气模式包括周期性进行的第一阶段和第二阶段,在所述第一阶段以第一压力对患者进行通气,在所述第二阶段以第二压力对患者进行通气,所述第一压力大于第二压力;处理器,用于获取所述患者的呼吸力学特征,并在所述第二阶段中 根据所述呼吸力学特征,调节所述第二压力的大小。
- 如权利要求27所述的设备,其特征在于,所述呼吸力学特征用于表征患者的呼气状态。
- 如权利要求27所述的设备,其特征在于,所述呼吸力学特征包括呼吸时间常数、保留容积百分比、内源性呼气末正压、肺内压、跨肺压、气道压、二氧化碳浓度和电阻抗成像中的至少一种。
- 如权利要求27至29中任一项所述的设备,其特征在于,所述根据所述呼吸力学特征,调节所述第二压力的大小,包括:根据所述呼吸力学特征与目标阈值的关系,调节所述第二压力的大小。
- 一种计算机可读存储介质,其特征在于,包括程序,所述程序能够被处理器执行以实现如权利要求14-26中任一项所述的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180100446.XA CN117642201A (zh) | 2021-09-29 | 2021-09-29 | 一种医疗通气设备及通气控制方法 |
PCT/CN2021/121522 WO2023050108A1 (zh) | 2021-09-29 | 2021-09-29 | 一种医疗通气设备及通气控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/121522 WO2023050108A1 (zh) | 2021-09-29 | 2021-09-29 | 一种医疗通气设备及通气控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023050108A1 true WO2023050108A1 (zh) | 2023-04-06 |
Family
ID=85781006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/121522 WO2023050108A1 (zh) | 2021-09-29 | 2021-09-29 | 一种医疗通气设备及通气控制方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117642201A (zh) |
WO (1) | WO2023050108A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030111078A1 (en) * | 2001-06-21 | 2003-06-19 | Habashi Nader Maher | Ventilation method and control of a ventilator based on same |
US20080295839A1 (en) * | 2007-06-01 | 2008-12-04 | Habashi Nader M | Ventilator Apparatus and System of Ventilation |
CN102245242A (zh) * | 2008-12-10 | 2011-11-16 | 皇家飞利浦电子股份有限公司 | 气道压力释放通气 |
CN103143094A (zh) * | 2007-06-04 | 2013-06-12 | 德尔格医疗有限责任公司 | 用于运行人工呼吸及/或麻醉装置的方法及相应运行装置 |
CN106456923A (zh) * | 2014-04-11 | 2017-02-22 | 康尔福盛2200公司 | 用于控制机械肺通气的方法 |
CN109107007A (zh) * | 2018-07-10 | 2019-01-01 | 上海敏恒企业咨询有限公司 | 一种智能APRVplus呼吸机通气系统及使用方法 |
CN110975087A (zh) * | 2019-12-09 | 2020-04-10 | 武云珍 | 一种机械通气中吸气触发时的呼吸力学分析方法 |
-
2021
- 2021-09-29 CN CN202180100446.XA patent/CN117642201A/zh active Pending
- 2021-09-29 WO PCT/CN2021/121522 patent/WO2023050108A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030111078A1 (en) * | 2001-06-21 | 2003-06-19 | Habashi Nader Maher | Ventilation method and control of a ventilator based on same |
US20080295839A1 (en) * | 2007-06-01 | 2008-12-04 | Habashi Nader M | Ventilator Apparatus and System of Ventilation |
CN103143094A (zh) * | 2007-06-04 | 2013-06-12 | 德尔格医疗有限责任公司 | 用于运行人工呼吸及/或麻醉装置的方法及相应运行装置 |
CN102245242A (zh) * | 2008-12-10 | 2011-11-16 | 皇家飞利浦电子股份有限公司 | 气道压力释放通气 |
CN106456923A (zh) * | 2014-04-11 | 2017-02-22 | 康尔福盛2200公司 | 用于控制机械肺通气的方法 |
CN109107007A (zh) * | 2018-07-10 | 2019-01-01 | 上海敏恒企业咨询有限公司 | 一种智能APRVplus呼吸机通气系统及使用方法 |
CN110975087A (zh) * | 2019-12-09 | 2020-04-10 | 武云珍 | 一种机械通气中吸气触发时的呼吸力学分析方法 |
Also Published As
Publication number | Publication date |
---|---|
CN117642201A (zh) | 2024-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10864336B2 (en) | Methods and systems for breath delivery synchronization | |
CN109803708B (zh) | 呼吸设备和通气机设备 | |
RU2606663C2 (ru) | Система и способ для инсуффляции и экссуффляции субъекта | |
CN107405107B (zh) | 呼吸器及其控制方法 | |
JP6783253B2 (ja) | 保護ベンチレーションのための方法、システム、及びソフトウェア | |
WO2021189197A1 (zh) | 一种呼吸监测装置及方法 | |
US10758693B2 (en) | Method and system for adjusting a level of ventilatory assist to a patient | |
WO2022104808A1 (zh) | 呼吸支持设备及其通气控制方法和计算机可读存储介质 | |
US20230364369A1 (en) | Systems and methods for automatic cycling or cycling detection | |
JP4855803B2 (ja) | 呼吸機能検査装置 | |
JP6908583B2 (ja) | 非侵襲的換気のための患者気道流量および漏出流量推定のための方法およびシステム | |
US20240335631A1 (en) | Respiration monitoring method and respiration monitoring apparatus | |
WO2020093331A1 (zh) | 一种呼吸识别方法及装置、通气设备、存储介质 | |
WO2022141125A1 (zh) | 呼吸支持设备及其控制方法和存储介质 | |
WO2021189198A1 (zh) | 一种对患者进行通气监测的方法和装置 | |
WO2023050108A1 (zh) | 一种医疗通气设备及通气控制方法 | |
CN108245750A (zh) | 一种氧疗仪输出气量的控制方法、装置和系统 | |
JP2012511339A (ja) | 被験者の機能的残気量の決定 | |
WO2017079860A1 (zh) | 呼吸机压力控制方法 | |
CN113348516A (zh) | 人工呼吸设备和人工呼吸方法 | |
US11491271B2 (en) | Method for controlling a device for extracorporeal blood gas exchange, device for extracorporeal blood gas exchange, as well as control device for controlling a device for extracorporeal blood gas exchange | |
US20230157574A1 (en) | End tidal carbon dioxide measurement during high flow oxygen therapy | |
CN112999479A (zh) | 呼吸机吸气触发方法及应用 | |
WO2023019551A1 (zh) | 一种通气设备及压力上升时间的调节方法 | |
EP4454688A1 (en) | Respiration monitoring method and respiration monitoring apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21958701 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180100446.X Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21958701 Country of ref document: EP Kind code of ref document: A1 |