WO2023115449A1 - A/m/x晶体材料、光伏器件及其制备方法 - Google Patents

A/m/x晶体材料、光伏器件及其制备方法 Download PDF

Info

Publication number
WO2023115449A1
WO2023115449A1 PCT/CN2021/140788 CN2021140788W WO2023115449A1 WO 2023115449 A1 WO2023115449 A1 WO 2023115449A1 CN 2021140788 W CN2021140788 W CN 2021140788W WO 2023115449 A1 WO2023115449 A1 WO 2023115449A1
Authority
WO
WIPO (PCT)
Prior art keywords
transport layer
layer
backlight
photoactive
charge transport
Prior art date
Application number
PCT/CN2021/140788
Other languages
English (en)
French (fr)
Inventor
苏硕剑
刘召辉
王燕东
王言芬
郭永胜
陈国栋
欧阳楚英
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP21963474.8A priority Critical patent/EP4236651A4/en
Priority to PCT/CN2021/140788 priority patent/WO2023115449A1/zh
Priority to CN202180095646.0A priority patent/CN116998239A/zh
Priority to US18/325,009 priority patent/US20230299219A1/en
Publication of WO2023115449A1 publication Critical patent/WO2023115449A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/40Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/006Compounds containing, besides lead, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/077Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells the devices comprising monocrystalline or polycrystalline materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present application relates to the field of photovoltaic technology, in particular to an A/M/X crystal material, a photovoltaic device and a preparation method thereof.
  • a perovskite photovoltaic device is a photovoltaic device that uses a photoactive perovskite structure material as a photoactive crystal material layer to perform photoelectric conversion.
  • a typical photoactive perovskite structure material is an organometallic halide, which has a general formula AMX 3 , and generally has an octahedral or cubic structure.
  • the A ion is in the center of the cubic unit cell, and is marked by 12 X ions to obtain a coordination cubic octahedron, forming a three-dimensional periodic structure; the M ion is located at the corner of the cubic unit cell. , around which 6 X ions are coordinated to form an octahedral symmetric structure.
  • the photoactive perovskite structure material forms two kinds of carriers, namely electrons and holes, and collects electrons and holes through two electrodes respectively, that is, obtains photogenerated current.
  • the nature of the perovskite structure is a key factor affecting the power conversion efficiency (PCE) of photovoltaic devices.
  • the purpose of this application is to provide a photovoltaic device with higher energy conversion efficiency.
  • the first aspect of the present application provides a photovoltaic device, including a layer of photoactive crystal material, and the layer of photoactive crystal material includes a first region;
  • the photoactive crystal material layer includes penetrating crystal grains, the penetrating grains are crystal grains penetrating the photoactive crystal material layer, and the number of the penetrating crystal grains accounts for 10% of the photoactive crystal material layer.
  • the percentage of the total number of grains of the material layer in said first region p ⁇ 80%, optionally p ⁇ 90%;
  • the photoactive crystal material layer includes a backlight side and backlight crystal grains, the backlight crystal grains are crystal grains with at least one surface exposed to the backlight side, and the backlight crystal grains are exposed to the backlight crystal grains.
  • the surface on the backlight side is the backlight crystal surface;
  • the backlight side has an average flatness coefficient R avg , R avg ⁇ 75, optionally 10 ⁇ R avg ⁇ 70;
  • R avg of the backlight side is calculated by the following formula:
  • R i is the flatness coefficient of the i-th backlight grain in the first region, and R i is calculated by the following formula:
  • d i is the width of the backlight crystal plane of the i-th backlight grain in the first region
  • h i is the protrusion height of the backlight crystal plane of the ith backlight crystal grain in the first region
  • n is the number of all backlight grains in the first region.
  • Photovoltaic devices based on the above schemes have improved energy conversion efficiency.
  • the photoactive crystalline material comprises an A/M/X crystalline material having the following general formula:
  • [M] comprising one or more first cations comprising metal ions, metalloid ions, or combinations thereof;
  • [A] includes one or more second cations
  • [X] comprises one or more halide anions
  • a is 1 to 6, optionally, a is 1, 2, 3, 4, 5 or 6;
  • b is 1 to 6, optionally, b is 1, 2, 3, 4, 5 or 6;
  • c is 1 to 18, optionally, c is 3, 6, 9, or 18.
  • Photovoltaic devices based on the above schemes have improved energy conversion efficiency.
  • the one or more first cations are selected from Ca 2+ , Sr 2+ , Cd 2+ , Cu 2+ , Ni 2+ , Mn 2+ , Fe 2+ , Co 2+ , Pd 2+ , Ge 2+ , Sn 2+ , Pb 2+ , Yb 2+ , Eu 2+ , Bi3 + , Sb3+, Pd 4+ , W 4+ , Re 4+ , Os 4+ , Ir 4+ , Pt 4 + , Sn 4+ , Pb 4+ , Ge 4+ or Te 4+ .
  • the one or more first cations are selected from Cu 2+ , Pb 2+ , Ge 2+ or Sn 2+ ;
  • the halogen anion is selected from Cl - , Br - or I - .
  • Photovoltaic devices based on the above schemes have improved energy conversion efficiency.
  • the A/M/X crystalline material comprises FAPbI 3 , FAPbBr 3 , FAPbCl 3 , FAPbF 3 , FAPbBr x I 3-x , FAPbBr x Cl 3-x , FAPbI x Br 3-x , FAPbI x Cl 3-x , FAPbCl x Br 3-x , FAPbI 3-x Cl x , CsPbI 3 , CsPbBr 3 , CsPbCl 3 , CsPbF 3 , CsPbBr x I 3-x , CsPbBr x Cl 3-x , CsPbI x Br 3 -x , CsPbI x Cl 3-x , CsPbCl x Br 3-x , CsPbI 3-x Cl x , FA 1-y Cs y PbI 3 , FA 1-y Cs y PbBr 3 , FA 1-y Cs y
  • Photovoltaic devices based on the above schemes have improved energy conversion efficiency.
  • Photovoltaic devices based on the above schemes have improved energy conversion efficiency.
  • the thickness of the photoactive crystal material layer is more than 100nm, optionally 100nm-1000nm, optionally 300nm-700nm.
  • Photovoltaic devices based on the above schemes have improved energy conversion efficiency.
  • the photovoltaic device further comprises a first charge transport layer and a second charge transport layer, the layer of photoactive crystalline material being located between the first charge transport layer and the second charge transport layer;
  • the first charge transport layer and the second charge transport layer are respectively an electron transport layer and the hole transport layer, or
  • the first charge transport layer and the second charge transport layer are respectively a hole transport layer and an electron transport layer.
  • the photovoltaic device further includes a first electrode and a second electrode, the electron transport layer, the hole transport layer, and the layer of photoactive crystalline material positioned between the first electrode and the second electrode;
  • the first electrode comprises a transparent conductive oxide
  • the second electrode comprises metal.
  • Photovoltaic devices based on the above schemes have improved energy conversion efficiency.
  • the second aspect of the present application provides a method for preparing an A/M/X crystal material, and the A/M/X crystal material has the following general formula:
  • [M] comprising one or more first cations comprising metal ions, metalloid ions, or combinations thereof;
  • [A] includes one or more second cations
  • [X] comprises one or more halide anions
  • the method includes disposing a precursor composition on the substrate, the precursor composition comprising the following components:
  • the A/M/X crystal material prepared based on the above scheme is used in photovoltaic devices, and the photovoltaic devices exhibit improved energy conversion efficiency.
  • the surfactant comprises an amphoteric surfactant.
  • the A/M/X crystal material prepared based on the above scheme is used in photovoltaic devices, and the photovoltaic devices exhibit improved energy conversion efficiency.
  • the amino compounds include: nitrile amine compounds, amino acid compounds (such as sulfamic acid compounds), hydrazine compounds, urea compounds (such as urea, urea-formaldehyde, biuret, triuret) , a guanidine compound, or a salt or hydrate thereof.
  • amino acid compounds such as sulfamic acid compounds
  • hydrazine compounds such as urea, urea-formaldehyde, biuret, triuret
  • urea compounds such as urea, urea-formaldehyde, biuret, triuret
  • a guanidine compound such as urea, urea-formaldehyde, biuret, triuret
  • the surfactant comprises laurylaminopropionate, dodecylethoxysulfobetaine, dodecyldimethylhydroxypropylsulfobetaine, zwitterion Polyacrylamide, Octadecyldihydroxyethylamine Oxide, Tetradecyldihydroxyethylamine Oxide, Laurylamidopropylamine Oxide, Lauryl Betaine, L- ⁇ -Phosphotidylcholine, 3 -(N,N-Dimethyltetradecylammonium)propanesulfonate, dodecylbenzenesulfonate, or a combination thereof.
  • the A/M/X crystal material prepared based on the above scheme is used in photovoltaic devices, and the photovoltaic devices exhibit improved energy conversion efficiency.
  • the amino compound includes: urea-formaldehyde (C 3 H 8 N 2 O 3 ), isobutylidene diurea (C 6 H 14 N 4 O 2 ), hydrazine (H 4 N 2 ), guanidine ( CH 3 N 3 O), nitrile amine (CH 2 N 2 ), sulfamic acid (H 3 NO 3 S), or a combination thereof.
  • the A/M/X crystal material prepared based on the above scheme is used in photovoltaic devices, and the photovoltaic devices exhibit improved energy conversion efficiency.
  • the precursor composition includes a first solvent and a second solvent, the boiling point of the first solvent is 40°C-165°C; the boiling point of the second solvent is 170°C-250°C.
  • the A/M/X crystal material prepared based on the above scheme is used in photovoltaic devices, and the photovoltaic devices exhibit improved energy conversion efficiency.
  • the first solvent is selected from one or more of N,N-dimethylformamide (DMF), 2-methoxyethanol, and acetonitrile (ACN).
  • DMF N,N-dimethylformamide
  • ACN acetonitrile
  • the second solvent is selected from one or more of dimethylsulfoxide (DMSO), N-methylpyrrolidone (NMP), and diphenylsulfoxide (DPSO).
  • DMSO dimethylsulfoxide
  • NMP N-methylpyrrolidone
  • DPSO diphenylsulfoxide
  • the volume ratio of the first solvent to the second solvent is (4-10):1.
  • the A/M/X crystal material prepared based on the above scheme is used in photovoltaic devices, and the photovoltaic devices exhibit improved energy conversion efficiency.
  • the precursor composition includes:
  • a second precursor compound containing a second cation A second precursor compound containing a second cation.
  • the A/M/X crystal material prepared based on the above scheme is used in photovoltaic devices, and the photovoltaic devices exhibit improved energy conversion efficiency.
  • the first precursor compound contains a halide anion.
  • the A/M/X crystal material prepared based on the above scheme is used in photovoltaic devices, and the photovoltaic devices exhibit improved energy conversion efficiency.
  • the second precursor compound contains a halide anion.
  • the A/M/X crystal material prepared based on the above scheme is used in photovoltaic devices, and the photovoltaic devices exhibit improved energy conversion efficiency.
  • the first compound comprises lead iodide (PbI 2 ), lead bromide (PbBr 2 ), or a combination thereof;
  • the second compound comprises formamidine hydroiodide (FAI), formamidine hydrobromide (FABr), cesium iodide (CsI), cesium bromide (CsBr), or combinations thereof.
  • FI formamidine hydroiodide
  • FABr formamidine hydrobromide
  • CsI cesium iodide
  • CsBr cesium bromide
  • the A/M/X crystal material prepared based on the above scheme is used in photovoltaic devices, and the photovoltaic devices exhibit improved energy conversion efficiency.
  • the method for preparing A/M/X crystal material also includes the step of curing the precursor composition disposed on the surface of the substrate;
  • the curing treatment includes: vacuum treatment, air blade treatment (air blading), infrared light treatment or a combination thereof.
  • the A/M/X crystal material prepared based on the above scheme is used in photovoltaic devices, and the photovoltaic devices exhibit improved energy conversion efficiency.
  • the method for preparing the A/M/X crystal material further includes annealing the cured product
  • the temperature of the annealing treatment is 100°C-170°C;
  • the time for the annealing treatment is 5 min-60 min.
  • the A/M/X crystal material prepared based on the above scheme is used in photovoltaic devices, and the photovoltaic devices exhibit improved energy conversion efficiency.
  • the third aspect of the present application provides a method for preparing a photovoltaic device, the photovoltaic device comprising a first electrode and a second electrode, a first charge transport layer and a second charge transport layer located between the first electrode and the second electrode layer, and a layer of A/M/X crystal material positioned between said first and second charge transport layers;
  • the methods include:
  • first charge transport layer and the second charge transport layer are respectively the electron transport layer and the hole transport layer, or
  • the first charge transport layer and the second charge transport layer are respectively a hole transport layer and an electron transport layer.
  • the photovoltaic device prepared based on the above scheme has improved energy conversion efficiency.
  • Photovoltaic devices exhibit significantly enhanced power conversion efficiency (Power Conversion Efficiency, PCE);
  • the photoactive crystalline material layer has a relatively high proportion p of through grains
  • the photoactive crystal material layer has a lower average flatness coefficient R avg ;
  • the preparation method has low cost, high efficiency and easy scale-up.
  • Fig. 1 shows the schematic diagram of the photovoltaic device of some embodiments of the present application
  • Figure 2 shows a schematic diagram of a photoactive crystal material layer in some embodiments of the present application
  • FIG. 3 show schematic diagrams of photoactive crystal material layers of some embodiments of the present application and comparative embodiments, respectively;
  • Figure 4 shows a scanning electron micrograph of an intermediate product containing a layer of photoactive crystalline material according to some embodiments of the present application.
  • Incident light 151 reflected light 152 , light receiving surface 112 , and grain boundary 325 .
  • ranges disclosed herein are defined in terms of lower and upper limits, and a given range is defined by selecting a lower limit and an upper limit that define the boundaries of the particular range. Ranges defined in this manner may be inclusive or exclusive and may be combined arbitrarily, ie any lower limit may be combined with any upper limit to form a range. For example, if ranges of 60-120 and 80-110 are listed for a particular parameter, it is understood that ranges of 60-110 and 80-120 are contemplated. Additionally, if the minimum range values 1 and 2 are listed, and if the maximum range values 3, 4, and 5 are listed, the following ranges are all expected: 1-3, 1-4, 1-5, 2- 3, 2-4 and 2-5.
  • the numerical range "a-b” represents an abbreviated representation of any combination of real numbers between a and b, where a and b are both real numbers.
  • the numerical range "0-5" indicates that all real numbers between "0-5" have been listed in this article, and "0-5" is only an abbreviated representation of the combination of these values.
  • a certain parameter is an integer ⁇ 2
  • the method includes steps (a) and (b), which means that the method may include steps (a) and (b) performed in sequence, and may also include steps (b) and (a) performed in sequence.
  • steps (c) means that step (c) may be added to the method in any order, for example, the method may include steps (a), (b) and (c) , may also include steps (a), (c) and (b), may also include steps (c), (a) and (b) and so on.
  • the “comprising” and “comprising” mentioned in this application mean open or closed.
  • the “comprising” and “comprising” may mean that other components not listed may be included or included, or only listed components may be included or included.
  • the term "or” is inclusive unless otherwise stated.
  • the phrase "A or B” means “A, B, or both A and B.” More specifically, the condition "A or B” is satisfied by either of the following: A is true (or exists) and B is false (or does not exist); A is false (or does not exist) and B is true (or exists) ; or both A and B are true (or exist).
  • Photovoltaic devices also known as photovoltaic cells or solar cells
  • solar cells are devices used to convert solar energy into electrical energy.
  • Fig. 1 shows a schematic diagram of a photovoltaic device according to some embodiments of the present application
  • Fig. 2 shows a schematic diagram of a photoactive crystal material layer according to some embodiments of the present application.
  • the present application provides a photovoltaic device, which includes a photoactive crystalline material layer 103, and the photoactive crystalline material layer 103 includes a first region;
  • the photoactive crystal material layer 103 includes a backlight side 113 (backlight side) and backlight crystal grains (31, 32, 33) (backlight crystal), and the backlight crystal grains (31, 32, 33 ) is a crystal grain with at least one surface exposed to the backlight side 113, and the surface of the backlight crystal grain (31, 32, 33) exposed to the backlight side 113 is a backlight crystal face (backlight crystal face);
  • the backlight side 113 has an average flatness coefficient R avg (Average Flatness Index), R avg ⁇ 75, optionally 10 ⁇ R avg ⁇ 70, and optionally the value of R avg is 1-10, 10-20, 20-30, 30-40, 40-50, 50-60 or 60-70;
  • R avg of the backlight side 113 is calculated by the following formula:
  • R i is the flatness coefficient of the i-th backlight grain (31, 32, 33) in the first region, and R i is calculated by the following formula:
  • d i is the width of the backlight crystal plane of the i-th backlight grain (31, 32, 33) in the first region;
  • h i is the protrusion height of the backlight crystal plane of the ith backlight grain (31, 32, 33) in the first region;
  • n is the number of all backlight crystal grains (31, 32, 33) in the first region.
  • the inventors unexpectedly found that by optimizing the grain shape and arrangement of the photoactive crystal material layer, the energy conversion efficiency of the photovoltaic device can be significantly improved. Specifically, the inventors found that when the number of penetrating crystal grains 313 in the photoactive crystal material layer accounts for the percentage p ⁇ 80% of the total crystal grain number of the photoactive crystal material layer 103 in the first region, at the same time, the light When the average flatness coefficient R avg of the backlight crystal grains (31, 32, 33) in at least part of the area on the backlight side of the active crystal material layer is ⁇ 75, the photovoltaic device exhibits significantly enhanced power conversion efficiency (Power Conversion Efficiency, PCE).
  • PCE Power Conversion Efficiency
  • FIG. 2 shows a layer 103 of photoactive crystalline material comprising a backlight side 113 and backlight grains (31, 32, 33) that are exposed to the backlight a die on side 113, said backlight die (31, 32, 33) having a backlight facet exposed to said backlight side;
  • R avg of the backlight side 113 is calculated by the following formula:
  • R i is the flatness coefficient of the i-th backlight grain (31, 32, 33) in the first region, and R i is calculated by the following formula:
  • d i is the width (d 1 , d 2 , d 3 ) of the backlight crystal plane of the ith backlight grain (31, 32, 33) in the first region;
  • h i is the protrusion height (h 1 , h 2 , h 3 ) of the backlight crystal plane of the ith backlight crystal grain (31, 32, 33) in the first region;
  • n is the number of all backlight grains (31, 32, 33) in the first region
  • the number n 3 of all backlight crystal grains ( 31 , 32 , 33 ), therefore, the value of i ranges from 1 to 3.
  • the value of n is above 3, such as above 5, such as above 10, such as above 50, such as above 100, such as above 500, such as above 1000.
  • FIG. 3 (a) and (b) of FIG. 3 respectively show schematic diagrams of two kinds of photoactive crystal material layers.
  • FIG. 3 a schematic diagram of the first photoactive crystal material layer is shown.
  • the incident light 151 enters from the light-receiving surface 112 of the first photoactive crystal material layer. Since the crystal grains of the first photoactive crystal material layer penetrate the crystal grains 313, the incident light 151 can reach the backlight surface 113 almost unobstructed. This enables the first photoactive crystal material layer to be sufficiently irradiated by the incident light 151 .
  • the incident light 151 is incident from the light-receiving surface 112 of the comparative photoactive crystal material layer, since the crystal grains of the comparative photoactive crystal material layer 313 are non-penetrating crystal grains 323 . Therefore, the incident light 151 will be reflected or refracted by the grain boundary 325 before reaching the backlight surface 113 , which results in that the contrast photoactive crystal material layer cannot sufficiently absorb the radiant energy of the incident light 151 .
  • the flatness coefficient is the coefficient of the degree of flatness of the grain from the surface. The higher the flatness coefficient, the backlight crystal surface of the grain is close to the plane, and the lower the flatness coefficient is, the higher the convexity of the backlight crystal plane of the grain is.
  • the backlight grains ( 31 , 32 , 33 ) of the first photoactive crystal material layer have relatively low flatness coefficients ( ⁇ 75), that is, the broadband of the backlight grains ( 31 , 32 , 33 ) is the same as
  • the ratio of raised heights (d/h) is low and the backlight grains (31, 32, 33) have a raised surface, which enables the backlight side 113 of the layer of contrasting light-active crystal material to absorb the reflected light 152 for the most part. Concentrates into the layer of the first layer of photoactive crystalline material rather than reflecting out of the layer. This enables the first photoactive crystal material layer to fully utilize light energy.
  • FIG. 3 shows a schematic diagram of a contrasting photoactive crystal material layer, as shown in the figure, the backlight grains (31, 32, 33) of the contrasting photoactive crystal material layer
  • the flatness factor of is relatively high (>1000), that is, the backlight crystal grains (31, 32, 33) have flat backlight crystal planes.
  • the flat backlit surface will largely reflect the reflected light 152 out of the layer, which prevents the contrast light active crystal material layer 312 from fully utilizing the light energy.
  • the first region refers to a part or all of the region of the photoactive crystal layer 103 along the surface of the layer.
  • the size of the first region in at least one direction is greater than 3 ⁇ m, such as greater than 10 ⁇ m, such as greater than 100 ⁇ m, such as greater than 1 mm, such as greater than 1 cm, such as greater than 10 cm.
  • the size of the first region in at least two mutually perpendicular directions is 3 ⁇ 3 ⁇ m or larger, for example 10 ⁇ 10 ⁇ m or larger, for example 100 ⁇ 100 ⁇ m or larger, for example 1 ⁇ 1 mm or larger, for example 1 ⁇ 1 cm or larger, for example 10 ⁇ More than 10cm, for example, more than 1m ⁇ 1m.
  • the total number of grains in the first region of the photoactive crystal layer is more than 9 (3 ⁇ 3), for example more than 16 (4 ⁇ 4), for example 25 (5 ⁇ 5) ) or more, for example 64 (8 ⁇ 8) or more, for example 100 (10 ⁇ 10) or more, for example 1000 or more.
  • the area of the first region corresponds to more than 10%, such as more than 50%, such as more than 70%, such as more than 90%, such as 100%, of the area of one side of the photoactive crystal layer.
  • the layer of photoactive crystals 103 includes a plurality of crystal grains.
  • the grains penetrating through the photoactive crystal material layer 103 are penetrating grains 313 .
  • the dies with at least one surface exposed to the backlight side 113 are backlight dies (31, 32, 33). It should be understood that a die can belong to both the through die 313 and the backlight die ( 31 , 32 , 33 ). In addition, a die may only belong to the backlight die ( 31 , 32 , 33 ) and not belong to the through die 313 .
  • the term "crystalline" refers to a crystalline compound, which is a compound having an extended 3D crystal structure.
  • Crystalline compounds generally exist in the form of crystals or, in the case of polycrystalline compounds, as microcrystals (ie a plurality of crystals having a particle size of less than or equal to 1 ⁇ m). Crystals together tend to form layers.
  • the crystals of crystalline material may be of any size. When crystals have sizes in the range of 1 nm to 1000 nm in one or more dimensions, they may be referred to as nanocrystals.
  • the term "layer” refers to any structure that is substantially laminar (eg, extending substantially in two perpendicular directions, but having limited extension in a third perpendicular direction).
  • a layer may have a thickness that varies over the extent of the layer. Typically, a layer has an approximately constant thickness.
  • thickness of a layer refers to the average thickness of the layer. The thickness of a layer can be easily measured, for example, by using microscopy, such as electron microscopy of film cross-sections, or by surface profilometry, such as using a stylus profilometer.
  • the term “light receiving surface” refers to the surface of the photovoltaic device facing the light source during operation; the term “backlight surface” refers to the surface of the photovoltaic device facing away from the light source during operation.
  • the term "grain” as used herein refers to a "single crystal grain.”
  • one grain refers to one single crystal grain; the number of grains refers to the number of single crystal grains.
  • single crystal can be defined as "a single crystal body of crystalline material that contains no large-angle boundaries or twin boundaries", such as As described in ASTM F1241.
  • the term "through" means from one side of the photoactive crystal layer to the other side, eg, from the light receiving side to the backlight side.
  • the protrusion height of the backlight crystal plane is measured by micrograph observation of the cross-section of the photoactive crystal material layer.
  • the profile of the crystal plane to be lighted is defined as the raised height of the crystal plane being lighted relative to the height of the basal plane being lighted;
  • the width of the protrusion on the base surface is the width of the crystal surface to be lighted.
  • illuminated base surface is meant a continuous, substantially flat surface that extends substantially through the lowest point of each illuminated crystal surface.
  • the photoactive crystalline material comprises an A/M/X crystalline material having the following general formula:
  • [M] comprising one or more first cations comprising metal ions, metalloid ions, or combinations thereof;
  • [A] includes one or more second cations
  • [X] comprises one or more halide anions
  • a is 1 to 6, optionally, a is 1, 2, 3, 4, 5 or 6;
  • b is 1 to 6, optionally, b is 1, 2, 3, 4, 5 or 6;
  • c is 1 to 18, optionally, c is 3, 6, 9, or 18. Based on the above solutions, photovoltaic devices have improved energy conversion efficiency.
  • the one or more first cations are selected from Ca 2+ , Sr 2+ , Cd 2+ , Cu 2+ , Ni 2+ , Mn 2+ , Fe 2+ , Co 2+ , Pd 2+ , Ge 2+ , Sn 2+ , Pb 2+ , Yb 2+ , Eu 2+ , Bi3 + , Sb3+, Pd 4+ , W 4+ , Re 4+ , Os 4+ , Ir 4+ , Pt 4 + , Sn 4+ , Pb 4+ , Ge 4+ or Te 4+ . Based on the above solutions, photovoltaic devices have improved energy conversion efficiency.
  • the one or more first cations are selected from Cu 2+ , Pb 2+ , Ge 2+ , or Sn 2+ . Based on the above solutions, photovoltaic devices have improved energy conversion efficiency.
  • the halide anion is selected from Cl ⁇ , Br ⁇ or I ⁇ . Based on the above solutions, photovoltaic devices have improved energy conversion efficiency.
  • the A/M/X crystalline material comprises FAPbI 3 , FAPbBr 3 , FAPbCl 3 , FAPbF 3 , FAPbBr x I 3-x , FAPbBr x Cl 3-x , FAPbI x Br 3-x , FAPbI x Cl 3-x , FAPbCl x Br 3-x , FAPbI 3-x Cl x , CsPbI 3 , CsPbBr 3 , CsPbCl 3 , CsPbF 3 , CsPbBr x I 3-x , CsPbBr x Cl 3-x , CsPbI x Br 3 -x , CsPbI x Cl 3-x , CsPbCl x Br 3-x , CsPbI 3-x Cl x , FA 1-y Cs y PbI 3 , FA 1-y Cs y PbBr 3 , FA 1-y Cs y
  • the A/M/X crystalline material is a perovskite material.
  • the A/M/X crystal material is a metal halide perovskite.
  • metal halide perovskite refers to a perovskite having a formula comprising at least one metal cation and at least one halide anion.
  • the A/M/X crystal material is a mixed halide perovskite.
  • mixed halide perovskite refers to a perovskite or mixed perovskite comprising at least two types of halide anions.
  • the A/M/X crystal material is a mixed cation perovskite.
  • mixed cation perovskite refers to a perovskite comprising a mixed perovskite of at least two types of A cations. Based on the above solutions, photovoltaic devices have improved energy conversion efficiency.
  • the term "perovskite” refers to a material having a three-dimensional crystal structure related to the three-dimensional crystal structure of CaTiO3 , or including layer materials having a structure related to the structure of CaTiO3 .
  • Materials with a three-dimensional crystal structure related to CaTiO3 can be referred to as perovskites with a "3D perovskite structure", or as "3D perovskites”.
  • the structure of CaTiO 3 can be represented by the formula AMX 3 , where A and M are cations of different sizes, and X is an anion.
  • cation A is at (0,0,0)
  • cation M is at (1/2,1/2,1/2)
  • anion X is at (1/2,1/2,0) place.
  • Cation A is generally larger than cation M.
  • Materials comprising layers of perovskite materials are well known.
  • a material structure employing a K2NiF4-type structure includes a layer of perovskite material.
  • a 2D layered perovskite can be represented by the formula [A] 2 [M][X] 4 , where [A] is at least one cation, [M] is at least one cation different in size from cation [A], and [X] is at least one anion.
  • the thickness of the photoactive crystal material layer is more than 100 nm, optionally 100-1000 nm, and optionally 300-700 nm. Based on the above solutions, photovoltaic devices have improved energy conversion efficiency.
  • the photovoltaic device further comprises a first charge transport layer 104 and a second charge transport layer 102, the photoactive crystalline material layer 103 is located between the first charge transport layer 104 and the second charge transport layer 102 ;
  • the first charge transport layer 104 and the second charge transport layer 102 are respectively an electron transport layer and the hole transport layer, or
  • the first charge transport layer 104 and the second charge transport layer 102 are respectively a hole transport layer and an electron transport layer. Based on the above solutions, photovoltaic devices have improved energy conversion efficiency.
  • the photovoltaic device further includes a first electrode 105 and a second electrode 101, and the electron transport layer, the hole transport layer and the photoactive crystal material layer are located between the first electrode 105 and the second electrode 101;
  • the first electrode 105 includes a transparent conductive oxide
  • the second electrode 101 includes metal. Based on the above solutions, photovoltaic devices have improved energy conversion efficiency.
  • the present application also provides a method for preparing A/M/X crystalline material, the A/M/X crystalline material has the following general formula:
  • [M] comprising one or more first cations comprising metal ions, metalloid ions, or combinations thereof;
  • [A] includes one or more second cations
  • [X] comprises one or more halide anions
  • the method includes disposing a precursor composition on the substrate, the precursor composition comprising the following components:
  • the inventors unexpectedly found that by applying the surfactant and the amino compound in combination to the precursor composition for preparing the A/M/X crystal material, the A/M/X crystal material prepared has relatively high With a high through-grain ratio and a low flatness coefficient, the A/M/X crystal material is used in photovoltaic devices with improved energy conversion efficiency.
  • the concentration of at least one precursor compound in the precursor composition is 0.5 mol/L-2.5 mol/L, such as 0.5 mol/L-1.5 mol/L, 1.5 mol/L-2.5 mol/L L.
  • the concentration of surfactant in the precursor composition is 0.05wt%-0.5wt%, such as 0.1wt%-0.2wt%, 0.2wt%-0.3wt%, 0.3wt%-0.4wt% Or 0.4wt%-0.5wt%.
  • the concentration of the amino compound in the precursor composition is 1wt%-10wt%, such as 2wt%-4wt%, 4wt%-6wt%, 6wt%-8wt%, or 8wt%-10wt%.
  • surfactant refers to any amphiphilic compound (molecule or ion) that includes hydrophilic and lipophilic moieties.
  • Surfactants generally work by accumulating at the oil-water interface, orienting the hydrophilic portion towards the water phase and the lipophilic portion towards the hydrophobic phase, thereby reducing surface tension.
  • Suitable surfactants include water insoluble surfactants, water dispersible surfactants and water soluble surfactants.
  • the surfactant comprises an amphoteric surfactant.
  • amphoteric surfactant refers to a compound having cationic and anionic centers attached to the same molecule.
  • the cationic moieties are based on primary, secondary or tertiary amines or quaternary ammonium cations.
  • Anionic moieties include, but are not limited to, carboxylates, sulfonates and phosphates.
  • amphoteric surfactant refers to a compound having an N + -O- functional group combined with a C(O)O-, SO 3 H or SO 3 - functional group, a quaternary N + functional group, and a compound with a C( Compounds with tertiary N functional groups in combination with O)OH, C(O)O-, SO 3 H or SO 3 -functional groups.
  • amphoteric surfactants For a review of amphoteric surfactants and their properties, reference may be made to Amphoteric Surfactants, 2nd Edition, edited by E.G. Lomax, 1996, Marcel Decker Press (Amphoteric Surfactants, 2nd ed., E.G. Lomax, Ed. , 1996, Marcel Dekker).
  • Such surfactants include betaines, such as fatty alkyl betaines, fatty alkylamide betaines, sultaines, hydroxysultaines, and betaines derived from imidazolines; amine oxides, such as fatty alkyl betaines; amine oxides and fatty alkyl amidoamine oxides; amphoglycinates and amphopropionates; and so-called "balanced" amphopolycarboxyglycinates and amphopolycarboxypropionates.
  • betaines such as fatty alkyl betaines, fatty alkylamide betaines, sultaines, hydroxysultaines, and betaines derived from imidazolines
  • amine oxides such as fatty alkyl betaines
  • amine oxides and fatty alkyl amidoamine oxides amphoglycinates and amphopropionates
  • the amino compound includes: amino nitrile compounds, amino acid compounds, hydrazine compounds, urea compounds (such as urea, urea-formaldehyde, biuret, triuret), guanidine compounds, or salts thereof or hydrate.
  • amino compounds refers to any compound containing at least one primary, secondary or tertiary amine or quaternary ammonium group.
  • the amino compound is a C1-C20 compound, such as a C1-C15 compound, such as a C1-C10 compound, such as a C1-C5 compound, or a C15-C20 compound.
  • aminonitrile compound refers to a compound containing at least one "amino-methyl-cyano” group.
  • Alternative “aminonitriles” include aminonitriles (AAN), iminodiacetonitrile (IDAN) or ethylenediaminediacetonitrile (EDN).
  • amino acid refers to a molecule having at least one amino group and at least one carboxyl group.
  • sulfamate refers to a molecule containing at least one amino group and at least one sulfo group.
  • hydrazine compound includes hydrazine and substituted hydrazines.
  • substitution means that the H atom of the substituted compound is replaced by one or more of the following groups: alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, cycloalkynyl, aryl, heteroaryl and heterocyclyl
  • Alternative urea compounds include urea (urea), thiourea, urea-formaldehyde, biuret, triuret, and substitutions thereof.
  • the surfactant comprises laurylaminopropionate, dodecylethoxysulfobetaine, dodecyldimethylhydroxypropylsulfobetaine, zwitterion Polyacrylamide, Octadecyldihydroxyethylamine Oxide, Tetradecyldihydroxyethylamine Oxide, Laurylamidopropylamine Oxide, Lauryl Betaine, L- ⁇ -Phosphotidylcholine, 3 -(N,N-Dimethyltetradecylammonium)propanesulfonate, dodecylbenzenesulfonate, or a combination thereof.
  • photovoltaic devices have improved energy conversion efficiency.
  • the A/M/X crystal material prepared based on the above scheme is used in photovoltaic devices, and the photovoltaic devices have improved energy conversion efficiency.
  • the surfactants include lauryl betaine, 3-(N,N-dimethyltetradecylammonium) propanesulfonate, lauryl amidopropylamine oxide, L-alpha - Phosphatidylcholine, or a combination thereof.
  • the A/M/X crystal material prepared based on the above scheme is used in photovoltaic devices, and the photovoltaic devices have improved energy conversion efficiency.
  • the amino compounds include: urea-formaldehyde (C 3 H 8 N 2 O 3 ), isobutylidene diurea (C 6 H 14 N 4 O 2 ), hydrazine (H 4 N 2 ), guanidine (CH 3 N 3 O), nitrile amine (CH 2 N 2 ), sulfamic acid (H 3 NO 3 S), or a combination thereof.
  • photovoltaic devices have improved energy conversion efficiency.
  • the A/M/X crystal material prepared based on the above scheme is used in photovoltaic devices, and the photovoltaic devices have improved energy conversion efficiency.
  • the amino compound includes: guanidine, sulfamic acid, urea, or a combination thereof.
  • the A/M/X crystal material prepared based on the above scheme is used in photovoltaic devices, and the photovoltaic devices have improved energy conversion efficiency.
  • the precursor composition includes a first solvent and a second solvent; the boiling point of the first solvent is 40°C-165°C (eg, 40°C-60°C, 60°C-80°C, 80°C -100°C, 100°C-120°C, 120°C-140°C or 140°C-160°C); the boiling point of the second solvent is 170°C-250°C (such as 170°C-190°C, 190°C-210°C, 210°C-230°C or 230°C-250°C).
  • the combined use of the first solvent with a specific boiling point and the second solvent with a specific boiling point can effectively improve the film coverage and crystallization quality of the A/M/X crystal material.
  • the first solvent is selected from one or more of N,N-dimethylformamide (DMF), 2-methoxyethanol, and acetonitrile (ACN).
  • DMF N,N-dimethylformamide
  • ACN acetonitrile
  • the second solvent is selected from one or more of dimethylsulfoxide (DMSO), N-methylpyrrolidone (NMP), and diphenylsulfoxide (DPSO).
  • DMSO dimethylsulfoxide
  • NMP N-methylpyrrolidone
  • DPSO diphenylsulfoxide
  • the volume ratio of the first solvent to the second solvent is (4-10):1.
  • the combined use of the first solvent with a specific boiling point and the second solvent with a specific boiling point in the above specific ratio can effectively improve the film coverage and crystallization quality of the A/M/X crystal material.
  • the precursor composition includes
  • a second precursor compound containing a second cation is used in photovoltaic devices, and the photovoltaic devices have improved energy conversion efficiency.
  • the first precursor compound contains a halide anion.
  • the A/M/X crystal material prepared based on the above scheme is used in photovoltaic devices, and the photovoltaic devices have improved energy conversion efficiency.
  • the second precursor compound contains a halide anion.
  • the A/M/X crystal material prepared based on the above scheme is used in photovoltaic devices, and the photovoltaic devices have improved energy conversion efficiency.
  • the first compound includes lead iodide (PbI 2 ), lead bromide (PbBr 2 ), or a combination thereof.
  • PbI 2 lead iodide
  • PbBr 2 lead bromide
  • the A/M/X crystal material prepared based on the above scheme is used in photovoltaic devices, and the photovoltaic devices have improved energy conversion efficiency.
  • the second compound comprises formamidine hydroiodide (FAI), formamidine hydrobromide (FABr), cesium iodide (CsI), cesium bromide (CsBr), or combinations thereof.
  • FI formamidine hydroiodide
  • FABr formamidine hydrobromide
  • CsI cesium iodide
  • CsBr cesium bromide
  • the A/M/X crystal material prepared based on the above scheme is used in photovoltaic devices, and the photovoltaic devices have improved energy conversion efficiency.
  • the method for preparing the A/M/X crystal material further includes the step of curing the precursor composition disposed on the surface of the substrate;
  • the curing treatment includes: vacuum treatment, air blade treatment (air blading), infrared light treatment or a combination thereof.
  • the A/M/X crystal material prepared based on the above scheme is used in photovoltaic devices, and the photovoltaic devices have improved energy conversion efficiency.
  • the method for preparing the A/M/X crystalline material further includes annealing the cured product.
  • the A/M/X crystal material prepared based on the above scheme is used in photovoltaic devices, and the photovoltaic devices have improved energy conversion efficiency.
  • the temperature of the annealing treatment is 100°C-170°C (eg, 100°C-120°C, 120°C-140°C, 140°C-160°C, or 160°C-170°C).
  • the A/M/X crystal material prepared based on the above scheme is used in photovoltaic devices, and the photovoltaic devices have improved energy conversion efficiency.
  • the time of the annealing treatment is 5min-60min (for example, 5min-15min, 15min-25min, 25min-35min, 35min-45min or 45min-55min).
  • the A/M/X crystal material prepared based on the above scheme is used in photovoltaic devices, and the photovoltaic devices have improved energy conversion efficiency.
  • the present application also provides a method for preparing a photovoltaic device, the photovoltaic device includes a first electrode 105 and a second electrode 101, and the first electrode 105 and the second electrode 101 are located between the first electrode 105 and the second electrode 101.
  • the methods include:
  • the A/M/X crystal material layer is formed on the surface of the first charge transport layer 104;
  • first charge transport layer 104 and the second charge transport layer 102 are respectively an electron transport layer and the hole transport layer, or
  • the first charge transport layer 104 and the second charge transport layer 102 are respectively a hole transport layer and an electron transport layer. Photovoltaic devices prepared based on the above scheme have improved energy conversion efficiency.
  • a photovoltaic device may include the following layers in the following order:
  • a first electrode eg comprising a transparent conductive oxide
  • a first layer of charge transport material eg a layer of hole transport material
  • a second layer of charge transport material eg, a layer of electron transport material
  • a second electrode for example comprising an elemental metal.
  • Photovoltaic devices prepared based on the above scheme have improved energy conversion efficiency.
  • a photovoltaic device may include the following layers in the following order:
  • a first electrode eg comprising a transparent conductive oxide
  • a first charge transport material layer eg electron transport material layer
  • a second layer of charge transport material eg a layer of hole transport material
  • a second electrode for example comprising an elemental metal.
  • Photovoltaic devices prepared based on the above scheme have improved energy conversion efficiency.
  • photoactive crystalline material refers to a material capable of absorbing light and subsequently generating free charge carriers (eg, electrons and holes).
  • the photoactive crystalline material is generally capable of absorbing and/or emitting photons in the visible region of the spectrum, eg, in the blue region of the visible spectrum.
  • photoactive crystalline materials may be described as light-emitting materials (ie, materials capable of emitting light) or light-absorbing materials (ie, materials capable of absorbing light).
  • a photoactive crystalline material is eg capable of emitting and/or absorbing at least one photon at a wavelength of 450 to 700 nm, such as 450 to 650 nm.
  • the photoactive crystalline material can include greater than or equal to 5 wt% A/M/X crystalline material.
  • the photoactive crystalline material comprises greater than or equal to 80 wt% A/M/X crystalline material, such as greater than or equal to 95 wt% A/M/X crystalline material, such as greater than or equal to 99 wt% A/M/X crystalline material .
  • the photoactive crystalline material may consist of or consist essentially of A/M/X crystalline material.
  • the photoactive crystalline material is, for example, a solid.
  • the layer of photoactive crystalline material comprises a thin film of A/M/X crystalline material.
  • A/M/X crystalline materials are polycrystalline, thus photoactive crystalline materials accordingly include polycrystalline A/M/X crystalline materials.
  • the layer of photoactive crystalline material can include multiple layers. Some or all of the various layers may include A/M/X crystal material.
  • the A/M/X crystalline material can be distributed uniformly or non-uniformly throughout the layer of photoactive crystalline material.
  • the photoactive crystalline material may comprise a layer consisting essentially or exclusively of A/M/X crystalline material.
  • the photoactive crystalline material may comprise the substrate with the A/M/X crystalline material on the substrate (eg in powder form or thin film form).
  • an electron transport layer is a layer comprising an electron transport material (also referred to as an n-type semiconductor material).
  • the electron transport material may be a single electron transport compound or material, or a mixture of two or more electron transport compounds or material.
  • the electron transport compound or elemental material can be undoped or doped with one or more doping elements.
  • Electron transport materials may include fullerenes or fullerene derivatives such as C60, C70, PCBM, PC71BM, bis[C60]BM (i.e., bis-C60-methylbutyrate), ICBA (CAS: 1207461-57- 1)
  • Electron transport materials may include organic electron transport materials such as perylene or its derivatives, P(NDI2OD-T2) (CAS: 1100243-40-0) or bathocuproine (BCP).
  • organic electron transport materials such as perylene or its derivatives, P(NDI2OD-T2) (CAS: 1100243-40-0) or bathocuproine (BCP).
  • Electron transport materials can include inorganic electron transport materials such as metal oxides, metal sulfides, metal selenides, metal tellurides, perovskites, amorphous silicon, n-type Group IV semiconductors, n-type III-V semiconductors, n Type II-VI semiconductors, n-type I-VII semiconductors, n-type IV-VI semiconductors, n-type V-VI semiconductors, and n-type II-V semiconductors, any of which may be doped or unadulterated.
  • inorganic electron transport materials such as metal oxides, metal sulfides, metal selenides, metal tellurides, perovskites, amorphous silicon, n-type Group IV semiconductors, n-type III-V semiconductors, n Type II-VI semiconductors, n-type I-VII semiconductors, n-type IV-VI semiconductors, n-type V-VI semiconductors, and n-type II-V semiconductors, any of which may be doped or unadulterated.
  • a hole transport layer refers to a layer comprising a hole transport (also known as p-type semiconductor material) material.
  • the hole transport material may be a single hole transport compound or material, or a mixture of two or more hole transport compounds or material.
  • the hole transport compound or elemental material can be undoped or doped with one or more doping elements.
  • Organic hole transport materials can include, for example, spiro-OMeTAD, P3HT, PCPDTBT, poly-TPD, spiro(TFSI) 2 , and PVK.
  • Inorganic hole transport materials may include oxides of nickel (such as NiO), vanadium, copper, or molybdenum; CuI, CuBr, CuSCN, Cu2O , CuO, or CIS; perovskites; amorphous silicon; p-type III-V semiconductors, p-type II-VI semiconductors, p-type I-VII semiconductors, p-type IV-VI semiconductors, p-type V-VI semiconductors and p-type II-V semiconductors, these inorganic Materials can be doped or undoped.
  • nickel such as NiO
  • perovskites amorphous silicon
  • p-type III-V semiconductors p-type II-VI semiconductors, p-type I-VII semiconductors, p-type IV-VI semiconductors, p-type V-VI semiconductors and p-type II-V semiconductors, these inorganic Materials can be doped or und
  • electrode means a region or layer consisting or consisting essentially of an electrode material.
  • the photovoltaic device of the present application may further include a first electrode and a second electrode.
  • the first electrode may comprise a metal such as silver, gold, aluminum, or tungsten, an organic conducting material such as PEDOT:PSS, or a transparent conducting oxide such as fluorine-doped tin oxide (FTO), aluminum-doped zinc oxide (AZO) or indium-doped tin oxide (ITO).
  • FTO fluorine-doped tin oxide
  • AZO aluminum-doped zinc oxide
  • ITO indium-doped tin oxide
  • the first electrode is a transparent electrode. Therefore, the first electrode usually includes a transparent conductive oxide, such as FTO, ITO or AZO.
  • the thickness of the layer of the first electrode is eg It is 10nm to 1000nm, another example is 40nm to 400nm.
  • the second electrode may be as defined above for the first electrode, for example, the second electrode may comprise a metal (such as silver, gold, aluminum or tungsten), an organic conductive material (such as PEDOT:PSS) or a transparent conductive oxide (such as Fluorine-doped tin oxide (FTO), aluminum-doped zinc oxide (AZO) or indium-doped tin oxide (ITO).
  • the second electrode comprises a metal (such as a simple metal) or consists essentially of a metal (such as elemental metal).
  • the second electrode material may include an example of a metal or consist essentially of a metal, such as silver, gold, copper, aluminum, platinum, palladium, or tungsten.
  • the second electrode may be deposited by vacuum evaporation.
  • the second electrode The thickness of the material layer is, for example, 10 to 1000 nm, such as 50 nm to 150 nm.
  • the technical solution of the present application will be described in detail below in conjunction with specific examples and comparative examples.
  • the reagents, methods and equipment used in this application are conventional food-grade reagents, methods and equipment in the art.
  • the test conditions used in the examples of the present application are conventional test conditions in the art.
  • all reagents used in the examples of this application are commercially available.
  • the photovoltaic device of embodiment 1 comprises substrate 106, first electrode 105, first charge transport layer 104, photoactive crystal material layer 103, second charge transport layer stacked in sequence 102 and the second electrode 101.
  • the preparation method of the photovoltaic device of embodiment 1 is as follows:
  • Example 1 a surfactant and a nitrogen-containing compound were added to the above solvent, and the weight percentages of the two were 0.1wt% and 5wt%, respectively.
  • the surfactant is lauryl betaine
  • the nitrogen-containing compound is urea.
  • FTO conductive glass is glass with FTO conductive layer on the surface
  • FTO is the abbreviation of Fluorine doped tin oxide
  • FTO conductive glass includes a glass plate and an FTO conductive layer deposited on the glass plate.
  • the FTO conductive layer with a width of 0.66 cm on two opposite edges of the FTO conductive glass was removed by laser engraving technique, and the FTO conductive layer with a size of 2 cm ⁇ 1.34 cm remained on the FTO conductive glass.
  • the glass plate serves as the substrate 106 and the FTO conductive layer serves as the first electrode 105 .
  • a first charge transport layer 104 (nickel oxide layer) is formed on the first electrode 105 (FTO conductive layer), and the thickness of the nickel oxide layer is about 20 nm.
  • the first charge transport layer 104 serves here as a hole transport layer.
  • the sample was transferred to a vacuum chamber, and stood for 120 seconds under a vacuum of 100 Pa, so that the precursor solution was solidified to form a film.
  • the cured sample was placed on a hot stage for annealing treatment, the temperature of the annealing treatment was 150°C, and the annealing treatment time was 30 minutes; after the annealing treatment, a good A/M/X crystal material layer was formed on the nickel oxide layer.
  • the composition of the A/M/X crystal material is FA 0.9 Cs 0.1 PbI 3 .
  • the A/M/X crystalline material layer serves as the photoactive crystalline material layer 103 here.
  • the second charge transport layer 102 is an electron transport layer.
  • the second charge transport layer includes a C 60 (fullerene) layer with a thickness of 30 nm and a BCP (bathocuproine) layer with a thickness of 8 nm formed by sequential evaporation.
  • the second electrode 101 is formed on the second charge transport layer 102 .
  • the second electrode 101 is a metal copper layer with a thickness of 100 nm, and the photovoltaic device of Example 1 is obtained.
  • Example 1 lies in the types of surfactants and/or nitrogen-containing compounds in the precursor solution.
  • Comparative Example 1 The difference between Comparative Example 1 and Example 1 is that the precursor solution does not contain surfactants and nitrogen-containing compounds.
  • Comparative Examples 2-8 and Example 1 The difference between Comparative Examples 2-8 and Example 1 is that the precursor solution does not contain surfactant and the type or content of nitrogen-containing compound is different.
  • Sample preparation according to the scheme of Example 4, implement steps (1) to (4), and use the product of step (6) as an observation sample. Use a glass knife to draw a straight line scratch on the side of the glass plate where the sample is observed, and then break the photovoltaic device along the scratch to expose the cross section.
  • the observation sample includes a substrate 106, a first electrode 105 laminated on the substrate 106, a first charge transport layer 104 laminated on the first electrode 105, and a photoactive crystal material layer 103 laminated on the first charge transport layer 104 .
  • the cross-sectional length of the photoactive crystal material layer 103 is 3.7 ⁇ m, and the total number of complete crystal grains in this area is four.
  • the photoactive crystal material layer 103 includes a backlight side 113 and a backlight grain, the backlight grain is a grain exposed to the backlight side 113, and the backlight grain has a backlight crystal plane exposed to the backlight side 113;
  • the R avg of the photo area is calculated by the following formula:
  • R i is the flatness coefficient of the i-th backlight grain in the photo area, and R i is calculated by the following formula:
  • d i is the width of the backlight crystal plane of the ith backlight grain (31,32,33) in the photo area;
  • hi is the raised height of the backlight crystal plane of the ith backlight grain (31, 32, 33) in the photo area;
  • step (6) obtained by the schemes of Examples 1-4 and Comparative Examples 1-8 were respectively subjected to scanning electron microscope observation, and the section of the photoactive crystal material layer with a length of 3.7 ⁇ m was collected, and calculated:
  • the backlight side has an average flatness coefficient R avg .
  • the energy conversion efficiency of the photovoltaic devices of Examples 1-4 is 20.1%-21.1%, significantly higher than that of Comparative Examples 1-8, which is only 16%-18.9%.
  • the significantly improved energy conversion efficiency of the photovoltaic devices of Examples 1-4 is attributed to the fact that the photoactive crystal layer of the photovoltaic device simultaneously satisfies the following characteristics a) and b)
  • the precursor solutions of Examples 1-4 contain surfactants and nitrogen-containing compounds in addition to the precursor compounds.
  • the present application finds that it is difficult to obtain a photoactive crystal material layer with a ratio of p ⁇ 80 through the crystal grains 313 and an average flatness coefficient R avg ⁇ 75.
  • Comparative Examples 1-8 without adding surfactants and nitrogen-containing compounds to the precursor solution, adding surfactants alone, or adding nitrogen-containing compounds alone, it is not possible to obtain a proportion of 313 through the grains p ⁇ 80 while being flat on average
  • the photoactive crystal material layer with coefficient R avg ⁇ 75 cannot obtain the photoactive crystal material layer with improved light absorption properties.
  • the present applicant unexpectedly found that a photoactive crystal material layer with a penetrating crystal grain 313 proportion p ⁇ 80 and an average flatness coefficient R avg ⁇ 75 can be successfully obtained by simultaneously adding a surfactant and a nitrogen-containing compound in the precursor solution.
  • the light absorption properties of the photoactive crystal material layer are significantly improved, specifically shown in the proportion of the penetrating grains 313 of the active crystal material layer p ⁇ 80, and at the same time
  • the average flatness coefficient R avg is less than or equal to 75, thereby obtaining a photovoltaic device with significantly improved energy conversion efficiency.
  • the present application is not limited to the above-mentioned embodiments.
  • the above-mentioned embodiments are merely examples, and within the scope of the technical solution of the present application, embodiments that have substantially the same configuration as the technical idea and exert the same function and effect are included in the technical scope of the present application.
  • various modifications conceivable by those skilled in the art are added to the embodiments, and other forms constructed by combining some components in the embodiments are also included in the scope of the present application. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本申请提供了一种A/M/X晶体材料、光伏器件及其制备方法,包括光活性晶体材料层;光活性晶体材料层包括贯穿晶粒,贯穿晶粒为贯穿光活性晶体材料层的晶粒,贯穿晶粒的数量占光活性晶体材料层的总晶粒数量的百分比p≥80%;且光活性晶体材料层包括背光侧和背光晶粒,背光晶粒为暴露于背光侧的晶粒,背光晶粒具有暴露于背光侧的背光晶面;其中,背光侧的至少一个区域具有平均平坦系数Ravg≤75。

Description

A/M/X晶体材料、光伏器件及其制备方法 技术领域
本申请涉及光伏技术领域,尤其涉及一种A/M/X晶体材料、光伏器件及其制备方法。
背景技术
钙钛矿光伏器件是以光活性钙钛矿结构材料为光活性晶体材料层进行光电转换的一种光伏器件。
典型的光活性钙钛矿结构材料为有机金属卤化物,其具有通式AMX 3,一般为八面体或立方体结构。在典型的钙钛矿晶体中,A离子处于立方晶胞的中心位置,被12个X离子标为得到配位立芳八面体,形成三维的周期性结构;M离子位于立方晶胞的角顶,周围分布6个X离子配位成八面体对称结构。
光活性钙钛矿结构材料在光的辐射下,形成两种载流子,即电子和空穴,通过两个电极分别收集电子和空穴,即获得光生电流。钙钛矿结构的性质是影响光伏器件的能量转换效率(PCE)的关键因素。
发明内容
本申请的目的在于提供一种能量转换效率更高的光伏器件。
本申请第一方面提供一种光伏器件,包括光活性晶体材料层,所述光活性晶体材料层包括第一区域;
在所述第一区域,所述光活性晶体材料层包括贯穿晶粒,所述贯穿晶粒为贯穿所述光活性晶体材料层的晶粒,所述贯穿晶粒的数量占所述光活性晶体材料层的在所述第一区域的总晶粒数量的百分比p≥80%,可选地,p≥90%;且
在所述第一区域,所述光活性晶体材料层包括背光侧和背光晶粒,所述背光晶粒为至少一个面暴露于所述背光侧的晶粒,所述背光晶粒的暴露于所述背光侧的面为背光晶面;
其中,所述背光侧具有平均平坦系数R avg,R avg≤75,可选地10≤R avg≤70;
其中,所述背光侧的R avg通过下式计算:
Figure PCTCN2021140788-appb-000001
其中,R i为所述第一区域内第i个背光晶粒的平坦系数,R i通过下式计算:
R i=d i/h i
其中,d i为所述第一区域内第i个背光晶粒的背光晶面的宽度;
其中,h i为所述第一区域内第i个背光晶粒的背光晶面的凸起高度;
其中,n为所述第一区域内全部背光晶粒的数量。
基于上述方案的光伏器件具有提高的能量转换效率。
在一些实施方式中,所述光活性晶体材料包括A/M/X晶体材料,所述A/M/X晶体材料具有以下通式:
[A] a[M] b[X] c
[M]包括一种或多种第一阳离子,所述第一阳离子包括金属离子、准金属离子、或其组合;
[A]包括一种或多种第二阳离子;
[X]包括一种或多种卤素阴离子;
a为1至6,可选地,a为1、2、3、4、5或6;
b为1至6,可选地,b为1、2、3、4、5或6;
c为1至18,可选地,c为3、6、9、或18。
基于上述方案的光伏器件具有提高的能量转换效率。
在一些实施方式中,所述一种或多种第一阳离子选自Ca 2+、Sr 2+、Cd 2+、Cu 2+、Ni 2+、Mn 2+、Fe 2+、Co 2+、Pd 2+、Ge 2+、Sn 2+、Pb 2+、Yb 2+、Eu 2+、Bi3+、Sb3+、Pd 4+、W 4+、Re 4+、Os 4+、Ir 4+、Pt 4+、Sn 4+、Pb 4+、Ge 4+或Te 4+
可选地,所述一种或多种第一阳离子选自Cu 2+、Pb 2+、Ge 2+或Sn 2+
(2)所述一种或多种第二阳离子选自Cs +、(NR 1R 2R 3R 4) +、(R 1R 2N=CR 3R 4) +、(R 1R 2N-C(R 5)=NR 3R 4) +或(R 1R 2N-C(NR 5R 6)=R 3R 4) +,其中,R 1,R 2,R 3,R 4,R 5和R 6各自独立地选自H、取代或非取代的C 1-20烷基或取代或非取代的芳基;
可选地,所述一种或多种第二阳离子选自Cs +、(CH 3NH 3) +、(H 2N-C(H)=NH 2) +
(3)所述卤素阴离子选自Cl -、Br -或I -
基于上述方案的光伏器件具有提高的能量转换效率。
在一些实施方式中,所述A/M/X晶体材料包括FAPbI 3、FAPbBr 3、FAPbCl 3、FAPbF 3、FAPbBr xI 3-x、FAPbBr xCl 3-x、FAPbI xBr 3-x、FAPbI xCl 3-x、FAPbCl xBr 3-x、FAPbI 3-xCl x、CsPbI 3、CsPbBr 3、CsPbCl 3、CsPbF 3、CsPbBr xI 3-x、CsPbBr xCl 3-x、CsPbI xBr 3-x、CsPbI xCl 3-x、CsPbCl xBr 3-x、CsPbI 3-xCl x、FA 1-yCs yPbI 3、FA 1-yCs yPbBr 3、FA 1-yCs yPbCl 3、FA 1-yCs yPbF 3、FA 1-yCs yPbBr xI 3-x、FA 1-yCs yPbBr xCl 3-x、FA 1-yCs yPbI xBr 3-x、FA 1-yCs yPbI xCl 3-x、FA 1-yCs yPbCl xBr 3-x、FA 1-yCs yPbI 3-xCl x、或其组合;
其中,x=0-3,y=0.01-0.25。
基于上述方案的光伏器件具有提高的能量转换效率。
在一些实施方式中,所述A/M/X晶体材料包括FAPbI 3、CsPbI 3、FA 1-yCs yPbI 3、或其组合,其中,y=0.01-0.25。
基于上述方案的光伏器件具有提高的能量转换效率。
在一些实施方式中,所述光活性晶体材料层的厚度为100nm以上,可选为 100nm-1000nm,可选为300nm-700nm。
基于上述方案的光伏器件具有提高的能量转换效率。
在一些实施方式中,光伏器件还包括第一电荷传输层和第二电荷传输层,所述光活性晶体材料层位于所述第一电荷传输层和第二电荷传输层之间;
所述第一电荷传输层和第二电荷传输层分别为电子传输层和所述空穴传输层,或者
所述第一电荷传输层和第二电荷传输层分别为空穴传输层和电子传输层。
在一些实施方式中,光伏器件还包括第一电极和第二电极,所述电子传输层、空穴传输层和光活性晶体材料层位于所述第一电极和第二电极之间;
可选地,所述第一电极包括透明导电氧化物;
可选地,所述第二电极包括金属。
基于上述方案的光伏器件具有提高的能量转换效率。
本申请第二方面提供一种制备A/M/X晶体材料的方法,所述A/M/X晶体材料具有以下通式:
[A] a[M] b[X] c
[M]包括一种或多种第一阳离子,所述第一阳离子包括金属离子、准金属离子、或其组合;
[A]包括一种或多种第二阳离子;
[X]包括一种或多种卤素阴离子;
a为1至6,例如a=1;
b为1至6,例如b=1;
c为1至18,例如c=3;
所述方法包括在基体上设置前体组合物,所述前体组合物包含以下组分:
(a)至少一种前体化合物;
(b)溶剂;
(c)表面活性剂;以及
(d)氨基类化合物。
基于上述方案制备的A/M/X晶体材料用于光伏器件,光伏器件表现出提高的能量转换效率。
在一些实施方式中,所述表面活性剂包括两性表面活性剂。基于上述方案制备的A/M/X晶体材料用于光伏器件,光伏器件表现出提高的能量转换效率。
在一些实施方式中,所述氨基化合物包括:腈胺类化合物、氨基酸类化合物(例如氨基磺酸类化合物)、肼类化合物、脲类化合物(例如尿素、脲醛、缩二脲、缩三脲)、胍类化合物、或其盐或水合物。基于上述方案制备的A/M/X晶体材料用于光伏器件,光伏器件表现出提高的能量转换效率。
在一些实施方式中,所述表面活性剂包括十二烷基氨基丙酸盐、十二烷基乙氧基磺基甜菜碱、十二烷基二甲基羟丙基磺基甜菜碱、两性离子聚丙烯酰胺、十八烷基二羟乙基氧化胺、十四烷基二羟乙基氧化胺、月桂酰胺丙基氧化胺、十二烷基甜菜碱、L-α-磷酸脂胆碱、3-(N,N-二甲基十四烷基铵)丙烷磺酸盐、十二烷基苯磺酸盐、或其组合。基于上述方案制备的A/M/X晶体材料用于光伏器件,光伏器件表现出提高的能量转换效率。
在一些实施方式中,所述氨基化合物包括:脲醛(C 3H 8N 2O 3)、异丁叉二脲(C 6H 14N 4O 2)、肼(H 4N 2)、胍(CH 3N 3O)、腈胺(CH 2N 2)、氨基磺酸(H 3NO 3S)、或其组合。基于上述方案制备的A/M/X晶体材料用于光伏器件,光伏器件表现出提高的能量转换效率。
在一些实施方式中,所述前体组合物包括第一溶剂和第二溶剂,所述第一溶剂的沸点为40℃-165℃;所述第二溶剂的沸点为170℃-250℃。基于上述方案制备的A/M/X晶体材料用于光伏器件,光伏器件表现出提高的能量转换效率。
在一些实施方式中,所述第一溶剂选自N,N-二甲基甲酰胺(DMF)、2-甲氧基乙醇、乙腈(ACN)中的一种或多种。基于上述方案制备的A/M/X晶体材料用于光伏器件,光伏器件表现出提高的能量转换效率。
在一些实施方式中,所述第二溶剂选自二甲基亚砜(DMSO)、N-甲基吡咯烷酮(NMP)、二苯亚砜(DPSO)中的一种或多种。基于上述方案制备的A/M/X晶体材料用于光伏器件,光伏器件表现出提高的能量转换效率。
在一些实施方式中,所述第一溶剂与第二溶剂的体积比为(4-10):1。基于上述方案制备的A/M/X晶体材料用于光伏器件,光伏器件表现出提高的能量转换效率。
在一些实施方式中,所述前体组合物包括:
第一前体化合物,所述第一前体化合物含有第一阳离子;以及
第二前体化合物,所述第二前体化合物含有第二阳离子。
基于上述方案制备的A/M/X晶体材料用于光伏器件,光伏器件表现出提高的能量转换效率。
在一些实施方式中,所述第一前体化合物含有卤素阴离子。基于上述方案制备的A/M/X晶体材料用于光伏器件,光伏器件表现出提高的能量转换效率。
在一些实施方式中,所述第二前体化合物含有卤素阴离子。基于上述方案制备的A/M/X晶体材料用于光伏器件,光伏器件表现出提高的能量转换效率。
在一些实施方式中,所述第一化合物包括碘化铅(PbI 2)、溴化铅(PbBr 2)、或其组合;
在一些实施方式中,所述第二化合物包括甲脒氢碘酸盐(FAI)、甲脒氢溴酸盐(FABr)、碘化铯(CsI)、溴化铯(CsBr)、或其组合。
基于上述方案制备的A/M/X晶体材料用于光伏器件,光伏器件表现出提高的能量转换效率。
在一些实施方式中,制备A/M/X晶体材料的方法还包括对设置在基体表面的前体组合 物实施固化处理的步骤;
可选地,所述固化处理包括:真空处理、风刀处理(air blading)、红外光处理或其组合。基于上述方案制备的A/M/X晶体材料用于光伏器件,光伏器件表现出提高的能量转换效率。
在一些实施方式中,制备A/M/X晶体材料的方法还包括对固化处理的产物进行退火处理;
可选地,所述退火处理的温度为100℃-170℃;
可选地,所述退火处理的时间为5min-60min。
基于上述方案制备的A/M/X晶体材料用于光伏器件,光伏器件表现出提高的能量转换效率。
本申请第三方面提供一种制备光伏器件的方法,所述光伏器件包括第一电极和第二电极,位于所述第一电极和第二电极之间的第一电荷传输层和第二电荷传输层,以及位于所述第一电荷传输层和第二电荷传输层之间的A/M/X晶体材料层;
所述方法包括:
提供表面设置有第一电荷传输层的第一电极;
按照上述任一项所述的制备A/M/X晶体材料的方法,在所述第一电荷传输层的表面形成所述A/M/X晶体材料层;
在所述A/M/X晶体材料层上形成第二电荷传输层;
在所述第二电荷传输层上形成第二电极;
其中,所述第一电荷传输层和第二电荷传输层分别为电子传输层和所述空穴传输层,或者
所述第一电荷传输层和第二电荷传输层分别为空穴传输层和电子传输层。
基于上述方案制备的光伏器件具有提高的能量转换效率。
有益效果
本申请一项或多项技术方案表现出以下一项或多项有益效果:
(1)光伏器件表现出显著增强的能力转换效率(Power Conversion Efficiency,PCE);
(2)光活性晶体材料层具有较高的贯穿晶粒占比p;
(3)光活性晶体材料层具有较低的平均平坦系数R avg
(4)表面活性剂和含氮化合物在制备光活性晶体层的方法中发挥了预料不到的协同增效作用;
(5)制备方法成本低、效率高、容易规模化。
附图说明
图1示出本申请一些实施方式的光伏器件的示意图;
图2示出本申请一些实施方式的光活性晶体材料层的示意图;
图3的(a)和(b)分别示出本申请一些实施方式的和对比实施方式的光活性晶体材料层的示意图;
图4示出本申请一些实施例的含有光活性晶体材料层的中间产物的扫描电子显微镜照片。
图标记说明:
基底106、第一电极105、第一电荷传输层104、光活性晶体材料层103、第二电荷传输层102、第二电极101;贯穿晶粒(313);背光晶粒(31,32,33)、背光晶粒的宽度d i、背光晶粒的凸起高度h i、背光面113;
入射光151、反射光152、受光面112、晶界325。
具体实施方式
以下,适当地参照附图详细说明具体公开了本申请的A/M/X晶体材料、光伏器件及其制备方法的实施方式。但是会有省略不必要的详细说明的情况。例如,有省略对已众所周知的事项的详细说明、实际相同结构的重复说明的情况。这是为了避免以下的说明不必要地变得冗长,便于本领域技术人员的理解。此外,附图及以下说明是为了本领域技术人员充分理解本申请而提供的,并不旨在限定权利要求书所记载的主题。
本申请所公开的“范围”以下限和上限的形式来限定,给定范围是通过选定一个下限和一个上限进行限定的,选定的下限和上限限定了特别范围的边界。这种方式进行限定的范围可以是包括端值或不包括端值的,并且可以进行任意地组合,即任何下限可以与任何上限组合形成一个范围。例如,如果针对特定参数列出了60-120和80-110的范围,理解为60-110和80-120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1-3、1-4、1-5、2-3、2-4和2-5。在本申请中,除非有其他说明,数值范围“a-b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0-5”表示本文中已经全部列出了“0-5”之间的全部实数,“0-5”只是这些数值组合的缩略表示。另外,当表述某个参数为≥2的整数,则相当于公开了该参数为例如整数2、3、4、5、6、7、8、9、10、11、12等。
如果没有特别的说明,本申请的所有实施方式以及可选实施方式可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有技术特征以及可选技术特征可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有步骤可以顺序进行,也可以随机进行,例如是顺序进行的。例如,所述方法包括步骤(a)和(b),表示所述方法可包括顺序进行的步骤(a)和(b), 也可以包括顺序进行的步骤(b)和(a)。例如,所述提到所述方法还可包括步骤(c),表示步骤(c)可以任意顺序加入到所述方法,例如,所述方法可以包括步骤(a)、(b)和(c),也可包括步骤(a)、(c)和(b),也可以包括步骤(c)、(a)和(b)等。
如果没有特别的说明,本申请所提到的“包括”和“包含”表示开放式,也可以是封闭式。例如,所述“包括”和“包含”可以表示还可以包括或包含没有列出的其他组分,也可以仅包括或包含列出的组分。
如果没有特别的说明,在本申请中,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”。更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。
[光伏器件]
光伏器件(也称为光伏电池或太阳能电池)是用于将太阳能转换为电能的器件。
图1示出本申请一些实施方式的光伏器件的示意图;图2示出本申请一些实施方式的光活性晶体材料层的示意图。
参考图1-2,在一些实施方式中,本申请提供一种光伏器件,其包括光活性晶体材料层103,所述光活性晶体材料层103包括第一区域;
在所述第一区域,所述光活性晶体材料层103包括贯穿晶粒313(penetrating crystal),所述贯穿晶粒313为贯穿所述光活性晶体材料层103的晶粒(crystal),所述贯穿晶粒313的数量占所述光活性晶体材料层103在所述第一区域的总晶粒数量的百分比p≥80%,可选地,p≥90%,可选地,p≥95%,可选地p≥99%,可选地p=100%;且
在所述第一区域,所述光活性晶体材料层103包括背光侧113(backlight side)和背光晶粒(31,32,33)(backlight crystal),所述背光晶粒(31,32,33)为至少一个面暴露于所述背光侧113的晶粒,所述背光晶粒(31,32,33)的暴露于所述背光侧113的面为背光晶面(backlight crystal face);
其中,所述背光侧113具有平均平坦系数R avg(Average Flatness Index),R avg≤75,可选地10≤R avg≤70,可选地R avg的值为1-10、10-20、20-30、30-40、40-50、50-60或60-70;
其中,所述背光侧113的R avg通过下式计算:
Figure PCTCN2021140788-appb-000002
其中,R i为所述第一区域内第i个背光晶粒(31,32,33)的平坦系数,R i通过下式计算:
R i=d i/h i
其中,d i为所述第一区域内第i个背光晶粒(31,32,33)的背光晶面的宽度;
其中,h i为所述第一区域内第i个背光晶粒(31,32,33)的背光晶面的凸起高度;
其中,n为所述第一区域内全部背光晶粒(31,32,33)的数量。
在上述方案中,发明人意外地发现,通过优化光活性晶体材料层的晶粒形状和排布, 能够显著改善光伏器件的能量转换效率。具体地,发明人发现,当光活化晶体材料层中贯穿晶粒313的数量占所述光活性晶体材料层103在所述第一区域的总晶粒数量的百分比p≥80%,同时,光活性晶体材料层的背光侧的至少部分区域的背光晶粒(31,32,33)的平均平坦系数R avg≤75时,光伏器件表现出显著增强的能力转换效率(Power Conversion Efficiency,PCE)。
参考图2,在一些实施方式中,平均平坦系数R avg的测量和计算方案在图2中详细描述。图2示出了晶体材料层103,光活性晶体材料层103包括背光侧113和背光晶粒(31,32,33),所述背光晶粒(31,32,33)为暴露于所述背光侧113的晶粒,所述背光晶粒(31,32,33)具有暴露于所述背光侧的背光晶面;
其中,所述背光侧113的R avg通过下式计算:
Figure PCTCN2021140788-appb-000003
其中,R i为所述第一区域内第i个背光晶粒(31,32,33)的平坦系数,R i通过下式计算:
R i=d i/h i
其中,d i为所述第一区域内第i个背光晶粒(31,32,33)的背光晶面的宽度(d 1,d 2,d 3);
其中,h i为所述第一区域内第i个背光晶粒(31,32,33)的背光晶面的凸起高度(h 1,h 2,h 3);
其中,n为所述第一区域内全部背光晶粒(31,32,33)的数量;
对于图2中示出的光活性晶体层103的区域,全部背光晶粒(31,32,33)的数量n=3,因此,i的取值遍历1至3。
在一些实施方案中,n的取值为3以上,例如5以上,例如10以上,例如50以上,例如100以上,例如500以上,例如1000以上。
参考图3,图3的(a)和(b)分别示出了两种光活性晶体材料层的示意图。
参考图3的(a),其中示出了第一光活性晶体材料层的示意图。如图所示,该第一光活性晶体材料层的贯穿晶粒313的数量占所述光活性晶体材料层103在图示区域内的总晶粒数量的百分比p=100%。入射光151从第一光活性晶体材料层的受光面112射入,由于第一光活性晶体材料层的晶粒为贯穿晶粒313,入射光151能够几乎不受阻挡地抵达背光面113,这使得第一光活性晶体材料层能够充分地被入射光151辐射。
参考图3的(b),其中示出了一个对比光活性晶体材料层的示意图。如图所示,该对比光活性晶体材料层的全部晶粒为非贯穿晶粒323,贯穿晶粒的数量占所述光活性晶体材料层103在图示区域内的总晶粒数量的百分比p=0%。入射光151从对比光活性晶体材料层的受光面112射入,由于对比光活性晶体材料层313的晶粒均为非贯穿晶粒323。因此,入射光151在抵达背光面113之前会被晶界325反射或折射,这导致对比光活性晶体材料层不能够充分地吸收入射光151辐射能量。
平坦系数是程度晶粒从表面平坦程度的系数。平坦系数越高,说明晶粒的背光晶面约 接近平面,平坦系数越低,说明晶粒的背光晶面的凸起程度越高。
参考图3的(a),第一光活性晶体材料层的背光晶粒(31,32,33)的平坦系数较低(≤75),即背光晶粒(31,32,33)的宽带与凸起高度的比值(d/h)值较低,背光晶粒(31,32,33)具有凸起的表面,这使得对比光活性晶体材料层的背光侧113能够将反射光152大部分地汇聚至第一光活性晶体材料层的层内,而不是反射出层外。这使得第一光活性晶体材料层能够充分地利用光能。
再参考图3的(b),图3的(b)示出一个对比光活性晶体材料层的示意图,如图所示,该对比光活性晶体材料层的背光晶粒(31,32,33)的平坦系数较高(>1000),即背光晶粒(31,32,33)具有平坦的背光晶面。该平坦的背光表面会将反射光152大部分地反射出层外,这使得对比光活性晶体材料层312不能充分地利用光能。
在一些实施方式中,第一区域是指光活性晶体层103沿层表面方向的部分或全部区域。
在一些实施方式中,第一区域在至少一个方向上的尺寸为3μm以上,例如10μm以上,例如100μm以上,例如1mm以上,例如1cm以上,例如10cm以上。可选地,第一区域在至少两个相互垂直方向上的尺寸为3×3μm以上,例如10×10μm以上,例如100×100μm以上,例如1×1mm以上,例如1×1cm以上,例如10×10cm以上,例如1m×1m以上。
在一些实施方式中,光活性晶体层的第一区域内的总晶粒数量为9个(3×3个)以上,例如16个(4×4个)以上,例如25个(5×5个)以上,例如64个(8×8个)以上,例如100个(10×10个)以上,例如1000个以上。
在一些实施方案中,第一区域的面积相当于光活性晶体层一侧面积的10%以上,例如50%以上,例如70%以上,例如90%以上,例如100%。
在一些实施方式中,光活性晶体层103包括多个晶粒。贯穿所述光活性晶体材料层103的晶粒为贯穿晶粒313。至少一个面暴露于所述背光侧113的晶粒为背光晶粒(31,32,33)。应当理解,一个晶粒可以既属于贯穿晶粒313也属于背光晶粒(31,32,33)。另外,一个晶粒可以只属于背光晶粒(31,32,33)而不属于贯穿晶粒313。
在一些实施方式中,术语“晶体”表示晶体化合物,它是具有延伸3D晶体结构的化合物。晶体化合物通常以晶体的形式存在,或者,在多晶化合物的情况下,以微晶(即具有小于或等于1μm粒径的多个晶体)的形式存在。晶体在一起往往形成层。晶体材料的晶体可以是任何大小。当晶体在一维或多维具有1nm至1000nm范围内的尺寸时,它们可以被称为纳米晶体。
在一些实施方式中,术语“层”是指任何基本上为层状的任何结构(例如基本上在两个垂直方向上延伸,但其在第三垂直方向上的延伸受到限制)。层可具有在该层延伸的范围内变化的厚度。通常情况下,层具有的厚度是近似恒定的。本文所用的层的“厚度”是指层的平均厚度。层的厚度可以很容易地测量,例如通过使用显微镜法,例如薄膜横截面的电子显微镜测定法,或者通过表面轮廓测定法,例如使用测针轮廓仪。
在一些实施方式中,术语“受光面”是指光伏器件工作时面向光源的面;术语“背光面”是指光伏器件工作时背向光源的面。
在一些实施方式中,本申请使用的术语“晶粒”是指“单晶晶粒”。例如,一个晶粒是指一个单晶晶粒;晶粒的数量是指单晶晶粒的数量。术语“单晶晶粒”(single crystal)可定义为“不包含大角度边界或双晶界的晶体材料的单晶体(a single crystal body of crystalline material that contains no large-angle boundaries or twin boundaries),如ASTM F1241中所述。
在一些实施方案中,术语“贯穿”是指从光活性晶体层的一侧到另一侧,例如从受光侧到背光侧。
在一些实施方案中,背光晶面的凸起高度是通过光活性晶体材料层横截面的显微照片观察测量获得。在上述横截面的显微照片中,被光晶面的轮廓相对于被光面基面凸起的高度背定义为被光晶面的凸起高度;被光晶面的轮廓相对于被光面基面凸起的宽度为被光晶面的宽度。被光面基面是指基本贯穿每个被光晶面最低点的连续的基本为平的表面。
在一些实施方式中,所述光活性晶体材料包括A/M/X晶体材料,所述A/M/X晶体材料具有以下通式:
[A] a[M] b[X] c
[M]包括一种或多种第一阳离子,所述第一阳离子包括金属离子、准金属离子、或其组合;
[A]包括一种或多种第二阳离子;
[X]包括一种或多种卤素阴离子;
a为1至6,可选地,a为1、2、3、4、5或6;
b为1至6,可选地,b为1、2、3、4、5或6;
c为1至18,可选地,c为3、6、9、或18。基于上述方案,光伏器件具有改善的能量转换效率。
在一些实施方式中,所述一种或多种第一阳离子选自Ca 2+、Sr 2+、Cd 2+、Cu 2+、Ni 2+、Mn 2+、Fe 2+、Co 2+、Pd 2+、Ge 2+、Sn 2+、Pb 2+、Yb 2+、Eu 2+、Bi3+、Sb3+、Pd 4+、W 4+、Re 4+、Os 4+、Ir 4+、Pt 4+、Sn 4+、Pb 4+、Ge 4+或Te 4+。基于上述方案,光伏器件具有改善的能量转换效率。
在一些实施方式中,所述一种或多种第一阳离子选自Cu 2+、Pb 2+、Ge 2+或Sn 2+。基于上述方案,光伏器件具有改善的能量转换效率。
在一些实施方式中,所述一种或多种第二阳离子选自Cs +、(NR 1R 2R 3R 4) +、(R 1R 2N=CR 3R 4) +、(R 1R 2N-C(R 5)=NR 3R 4) +或(R 1R 2N-C(NR 5R 6)=R 3R 4) +,其中,R 1,R 2,R 3,R 4,R 5和R 6各自独立地选自H、取代或非取代的C 1-20烷基或取代或非取代的芳基。基于上述方案,光伏器件具有改善的能量转换效率。
在一些实施方式中,所述一种或多种第二阳离子选自Cs +、(CH 3NH 3) +、 (H 2N-C(H)=NH 2) +。基于上述方案,光伏器件具有改善的能量转换效率。
在一些实施方式中,所述卤素阴离子选自Cl -、Br -或I -。基于上述方案,光伏器件具有改善的能量转换效率。
在一些实施方式中,所述A/M/X晶体材料包括FAPbI 3、FAPbBr 3、FAPbCl 3、FAPbF 3、FAPbBr xI 3-x、FAPbBr xCl 3-x、FAPbI xBr 3-x、FAPbI xCl 3-x、FAPbCl xBr 3-x、FAPbI 3-xCl x、CsPbI 3、CsPbBr 3、CsPbCl 3、CsPbF 3、CsPbBr xI 3-x、CsPbBr xCl 3-x、CsPbI xBr 3-x、CsPbI xCl 3-x、CsPbCl xBr 3-x、CsPbI 3-xCl x、FA 1-yCs yPbI 3、FA 1-yCs yPbBr 3、FA 1-yCs yPbCl 3、FA 1-yCs yPbF 3、FA 1-yCs yPbBr xI 3-x、FA 1-yCs yPbBr xCl 3-x、FA 1-yCs yPbI xBr 3-x、FA 1-yCs yPbI xCl 3-x、FA 1-yCs yPbCl xBr 3-x、FA 1-yCs yPbI 3-xCl x、或其组合;
其中,x=0-3,y=0.01-0.25。基于上述方案,光伏器件具有改善的能量转换效率。
在一些实施方式中,所述A/M/X晶体材料包括FAPbI 3、CsPbI 3、FA 1-yCs yPbI 3、或其组合,其中,y=0.01-0.25。基于上述方案,光伏器件具有改善的能量转换效率。
在一些实施方式中,A/M/X晶体材料是钙钛矿材料。可选地,A/M/X晶体材料是金属卤化物钙钛矿。术语“金属卤化物钙钛矿”是指式中包含至少一种金属阳离子和至少一种卤阴离子的钙钛矿。可选地,A/M/X晶体材料是混合卤化物钙钛矿。术语“混合卤化物钙钛矿”是指包含至少两种类型的卤阴离子的钙钛矿或混合钙钛矿。可选地,A/M/X晶体材料是混合阳离子钙钛矿。术语“混合阳离子钙钛矿”是指包含至少两种类型的A阳离子的混合钙钛矿的钙钛矿。基于上述方案,光伏器件具有改善的能量转换效率。
在一些实施方式中,术语“钙钛矿”是指一种具有与CaTiO 3的三维晶体结构相关的三维晶体结构的材料,或包括具有与CaTiO 3的结构相关的结构的层材料。具有与CaTiO 3的三维晶体结构相关的材料可称为具有“3D钙钛矿结构”的钙钛矿,或称为“3D钙钛矿”。CaTiO 3的结构可以由式AMX 3表示,其中,A和M是不同大小的阳离子,且X为阴离子。在晶胞中,阳离子A在(0,0,0)处,阳离子M在(1/2,1/2,1/2)处,并且阴离子X在(1/2,1/2,0)处。阳离子A通常比阳离子M大。本领域技术人员将理解,当A、M和X变化时,不同的离子尺寸可能引起钙钛矿材料的结构从CaTiO 3所采用的结构畸变至较低对称性的畸变结构。包含钙钛矿材料层的材料是公知的。例如,采用K2NiF4-型结构的材料结构包括钙钛矿材料层。这些在本领域中被称为“2D层状钙钛矿”,在结构上不同于上述3D钙钛矿。2D层状钙钛矿可以由式[A] 2[M][X] 4表示,其中,[A]是至少一种阳离子,[M]是至少一种与阳离子[A]不同大小的阳离子,并且[X]是至少一种阴离子。
在一些实施方式中,所述光活性晶体材料层的厚度为100nm以上,可选为100-1000nm,可选为300-700nm。基于上述方案,光伏器件具有改善的能量转换效率。
在一些实施方式中,光伏器件还包括第一电荷传输层104和第二电荷传输层102,所述光活性晶体材料层103位于所述第一电荷传输层104和第二电荷传输层102之间;
所述第一电荷传输层104和第二电荷传输层102分别为电子传输层和所述空穴传输层, 或者
所述第一电荷传输层104和第二电荷传输层102分别为空穴传输层和电子传输层。基于上述方案,光伏器件具有改善的能量转换效率。
在一些实施方式中,光伏器件还包括第一电极105和第二电极101,所述电子传输层、空穴传输层和光活性晶体材料层位于所述第一电极105和第二电极101之间;
可选地,所述第一电极105包括透明导电氧化物;
可选地,所述第二电极101包括金属。基于上述方案,光伏器件具有改善的能量转换效率。
在一些实施方式中,本申请还提供一种制备A/M/X晶体材料的方法,所述A/M/X晶体材料具有以下通式:
[A] a[M] b[X] c
[M]包括一种或多种第一阳离子,所述第一阳离子包括金属离子、准金属离子、或其组合;
[A]包括一种或多种第二阳离子;
[X]包括一种或多种卤素阴离子;
a为1至6,例如a=1;
b为1至6,例如b=1;
c为1至18,例如c=3。
所述方法包括在基体上设置前体组合物,所述前体组合物包含以下组分:
(a)至少一种前体化合物;
(b)溶剂;
(c)表面活性剂;以及
(d)氨基化合物(Organic nitrogen-containing compounds)。
在上述方案中,发明人意外地发现,通过将表面活性剂与氨基化合物联合应用于制备A/M/X晶体材料的前体组合物中,制备获得的A/M/X晶体材料兼具较高的贯穿晶粒比例和较低的平坦系数,该A/M/X晶体材料用于光伏器件,光伏器件具有改善的能量转换效率。
在一些实施方案中,至少一种前体化合物在前体组合物中的浓度为0.5mol/L-2.5mol/L,例如0.5mol/L-1.5mol/L、1.5mol/L-2.5mol/L。
在一些实施方案中,表面活性剂在前体组合物中的浓度为0.05wt%-0.5wt%,例如0.1wt%-0.2wt%、0.2wt%-0.3wt%、0.3wt%-0.4wt%或0.4wt%-0.5wt%。
在一些实施方案中,氨基化合物在前体组合物中的浓度为1wt%-10wt%,例如2wt%-4wt%、4wt%-6wt%、6wt%-8wt%或8wt%-10wt%。
在一些实施方式中,术语“表面活性剂”是指包括亲水和亲油部分的任何两亲性化合物(分子或离子)。表面活性剂通常通过在油-水界面处积累而起作用,使得亲水部分朝向水相, 而亲油部分朝向疏水相取向,从而降低表面张力。合适的表面活性剂包括水不溶性表面活性剂、水分散性表面活性剂和水溶性表面活性剂。
在一些实施方式中,所述表面活性剂包括两性表面活性剂。
术语“两性表面活性剂”是指具有连接到相同分子上的阳离子和阴离子中心的化合物。特别地,阳离子部分基于伯胺,仲胺或叔胺或季铵阳离子。阴离子部分包括但不限于羧酸盐,磺酸盐和磷酸盐。更特别地,该“两性表面活性剂”是指具有与C(O)O-、SO 3H或SO 3-官能团结合的N +-O-官能团、季N +官能团的化合物,以及与C(O)OH、C(O)O-、SO 3H或SO 3-官能团结合的具有的叔N官能团的化合物。
对于两性表面活性剂和它们特性的综述,可以参考两性表面活性剂,第2版,E.G.Lomax编辑,1996,马塞尔·德克尔出版社(Amphoteric Surfactants,2nd ed.,E.G.Lomax,Ed.,1996,Marcel Dekker)。这类表面活性剂包括甜菜碱,例如脂肪烷基甜菜碱、脂肪烷基酰胺甜菜碱、磺基甜菜碱、羟基磺基甜菜碱、以及衍生自咪唑啉的甜菜碱;胺氧化物,例如脂肪烷基胺氧化物和脂肪烷基酰胺胺氧化物;两性甘氨酸盐和两性丙酸盐;以及所谓“平衡的”两性聚羧基甘氨酸盐和两性聚羧基丙酸盐。
在一些实施方式中,所述氨基化合物包括:氨基腈类化合物、氨基酸类化合物、肼类化合物、脲类化合物(例如尿素、脲醛、缩二脲、缩三脲)、胍类化合物、或其盐或水合物。
在一些实施方式中,术语“氨基类化合物”(amino compounds)是指含有至少一个伯胺,仲胺或叔胺或季铵基团的任何化合物。
在一些实施方式中,氨基类化合物是C1-C20化合物,例如C1-C15化合物,例如C1-C10化合物,例如C1-C5化合物,C15-C20化合物,。
在一些实施方式中,术语“氨基腈类化合物”是指含有至少一个“氨基-甲基-氰基”的化合物。可选的“氨基腈类化合物”包括氨基腈(AAN),亚氨基二乙腈(IDAN)或乙二胺二乙腈(EDN)。
在一些实施方式中,术语“氨基酸”指的是具有至少一个氨基基团和至少一个羧基基团的分子。
在一些实施方式中,术语“氨基磺酸类化合物”是指含有至少一个氨基基团和至少一个磺基基团的分子。
在一些实施方式中,术语“肼类化合物”包括肼和被取代的肼。
在一些实施方案中,取代是指被取代化合物的H原子被以下一个或多个基团取代:烷基,链烯基,炔基,环烷基,环烯基,环炔基,芳基,杂芳基和杂环基
在一些实施方式中,术语“脲类化合物”是指具有-NR 1R 2-C(=S)-NR 3R 4-基团的化合物,每个R 1,R 2,R 3和R 4独立地选自H,烷基,链烯基,炔基,环烷基,环烯基,环炔基,芳基,杂芳基和杂环基。可选的脲类化合物包括脲(尿素)、硫脲、脲醛、缩二脲、缩三 脲和它们的取代物。
在一些实施方式中,所述表面活性剂包括十二烷基氨基丙酸盐、十二烷基乙氧基磺基甜菜碱、十二烷基二甲基羟丙基磺基甜菜碱、两性离子聚丙烯酰胺、十八烷基二羟乙基氧化胺、十四烷基二羟乙基氧化胺、月桂酰胺丙基氧化胺、十二烷基甜菜碱、L-α-磷酸脂胆碱、3-(N,N-二甲基十四烷基铵)丙烷磺酸盐、十二烷基苯磺酸盐、或其组合。基于上述方案,光伏器件具有改善的能量转换效率。基于上述方案制备的A/M/X晶体材料用于光伏器件,光伏器件具有改善的能量转换效率。
在一些实施方式中,所述表面活性剂包括十二烷基甜菜碱、3-(N,N-二甲基十四烷基铵)丙烷磺酸盐、月桂酰胺丙基氧化胺、L-α-磷酸脂胆碱、或其组合。基于上述方案制备的A/M/X晶体材料用于光伏器件,光伏器件具有改善的能量转换效率。
在一些实施方式中,所述氨基类化合物包括:脲醛(C 3H 8N 2O 3)、异丁叉二脲(C 6H 14N 4O 2)、肼(H 4N 2)、胍(CH 3N 3O)、腈胺(CH 2N 2)、氨基磺酸(H 3NO 3S)、或其组合。基于上述方案,光伏器件具有改善的能量转换效率。基于上述方案制备的A/M/X晶体材料用于光伏器件,光伏器件具有改善的能量转换效率。
在一些实施方式中,所述氨基类化合物包括:胍、氨基磺酸、尿素、或其组合。基于上述方案制备的A/M/X晶体材料用于光伏器件,光伏器件具有改善的能量转换效率。
在一些实施方式中,所述前体组合物包括第一溶剂和第二溶剂;所述第一溶剂的沸点为40℃-165℃(例如40℃-60℃、60℃-80℃、80℃-100℃、100℃-120℃、120℃-140℃或140℃-160℃);所述第二溶剂的沸点为170℃-250℃(例如170℃-190℃、190℃-210℃、210℃-230℃或230℃-250℃)。该方案中,将特定沸点的第一溶剂和特定沸点的第二溶剂组合使用,能够有效改善A/M/X晶体材料的成膜覆盖度和结晶质量。
在一些实施方式中,所述第一溶剂选自N,N-二甲基甲酰胺(DMF)、2-甲氧基乙醇、乙腈(ACN)中的一种或多种。基于上述方案制备的A/M/X晶体材料用于光伏器件,光伏器件具有改善的能量转换效率。
在一些实施方式中,所述第二溶剂选自二甲基亚砜(DMSO)、N-甲基吡咯烷酮(NMP)、二苯亚砜(DPSO)中的一种或多种。基于上述方案制备的A/M/X晶体材料用于光伏器件,光伏器件具有改善的能量转换效率。
在一些实施方式中,所述第一溶剂与第二溶剂的体积比为(4-10):1。将特定沸点的第一溶剂和特定沸点的第二溶剂以上述特定比例组合使用,能够有效改善A/M/X晶体材料的成膜覆盖度和结晶质量。
在一些实施方式中,所述前体组合物包括
第一前体化合物,所述第一前体化合物含有第一阳离子;以及
第二前体化合物,所述第二前体化合物含有第二阳离子。基于上述方案制备的A/M/X晶体材料用于光伏器件,光伏器件具有改善的能量转换效率。
在一些实施方式中,所述第一前体化合物含有卤素阴离子。基于上述方案制备的A/M/X晶体材料用于光伏器件,光伏器件具有改善的能量转换效率。
在一些实施方式中,所述第二前体化合物含有卤素阴离子。基于上述方案制备的A/M/X晶体材料用于光伏器件,光伏器件具有改善的能量转换效率。
在一些实施方式中,所述第一化合物包括碘化铅(PbI 2)、溴化铅(PbBr 2)、或其组合。基于上述方案制备的A/M/X晶体材料用于光伏器件,光伏器件具有改善的能量转换效率。
在一些实施方式中,所述第二化合物包括甲脒氢碘酸盐(FAI)、甲脒氢溴酸盐(FABr)、碘化铯(CsI)、溴化铯(CsBr)、或其组合。基于上述方案制备的A/M/X晶体材料用于光伏器件,光伏器件具有改善的能量转换效率。
在一些实施方式中,制备A/M/X晶体材料的方法还包括对设置在基体表面的前体组合物实施固化处理的步骤;
可选地,所述固化处理包括:真空处理、风刀处理(air blading)、红外光处理或其组合。基于上述方案制备的A/M/X晶体材料用于光伏器件,光伏器件具有改善的能量转换效率。
在一些实施方式中,制备A/M/X晶体材料的方法还包括对固化处理的产物进行退火处理。基于上述方案制备的A/M/X晶体材料用于光伏器件,光伏器件具有改善的能量转换效率。
在一些实施方案中,所述退火处理的温度为100℃-170℃(例如100℃-120℃、120℃-140℃、140℃-160℃或160℃-170℃)。基于上述方案制备的A/M/X晶体材料用于光伏器件,光伏器件具有改善的能量转换效率。
在一些实施方案中,所述退火处理的时间为5min-60min(例如5min-15min、15min-25min、25min-35min、35min-45min或45min-55min)。基于上述方案制备的A/M/X晶体材料用于光伏器件,光伏器件具有改善的能量转换效率。
在一些实施方式中,本申请还提供一种制备光伏器件的方法,所述光伏器件包括第一电极105和第二电极101,位于所述第一电极105和第二电极101之间的第一电荷传输层104和第二电荷传输层102,以及位于所述第一电荷传输层104和第二电荷传输层102之间的A/M/X晶体材料层;
所述方法包括:
提供表面设置有第一电荷传输层104的第一电极105;
按上述任一项所述的制备A/M/X晶体材料的方法,在所述第一电荷传输层104的表面形成所述A/M/X晶体材料层;
在所述A/M/X晶体材料层上形成第二电荷传输层102;
在所述第二电荷传输层102上形成第二电极101;
其中,所述第一电荷传输层104和第二电荷传输层102分别为电子传输层和所述空穴 传输层,或者
所述第一电荷传输层104和第二电荷传输层102分别为空穴传输层和电子传输层。基于上述方案制备的光伏器件具有改善的能量转换效率。
在一些实施方式中,光伏器件可以按照以下顺序包括下列层:
·第一电极(例如包括透明导电氧化物);
·第一电荷传输材料层(例如空穴传输材料层);
·光活性晶体材料层;
·第二电荷传输材料层(例如电子传输材料层);
·第二电极(例如包括单质金属)。基于上述方案制备的光伏器件具有改善的能量转换效率。
在一些实施方式中,光伏器件可以按照以下顺序包括下列层:
·第一电极(例如包括透明导电氧化物);
·第一电荷传输材料层(例如电子传输材料层);
·光活性晶体材料层;
·第二电荷传输材料层(例如空穴传输材料层);
·第二电极(例如包括单质金属)。基于上述方案制备的光伏器件具有改善的能量转换效率。
[光活性晶体材料层]
在一些实施方式中,“光活性晶体材料”是指能够吸收光并随后产生自由载流子(如电子和空穴)的材料。
在一些实施方式中,光活性晶体材料一般能够吸收和/或发射光谱中可见区域的光子,例如可见光谱中的蓝光区域中的光子。因此,光活性晶体材料可以被描述为光发射材料(即能发光的材料)或光吸收材料(即能吸收光的材料)。例如,光活性晶体材料例如能发射和/或吸收至少一种波长在450至700nm,例如450至650nm的光子。
在一些实施方式中,光活性晶体材料可包括大于或等于5wt%的A/M/X晶体材料。例如,光活性晶体材料包括大于或等于80wt%的A/M/X晶体材料,例如大于或等于95wt%的A/M/X晶体材料,例如大于或等于99wt%的A/M/X晶体材料。光活性晶体材料可由或基本上由A/M/X晶体材料组成。
在一些实施方式中,光活性晶体材料例如为固体。
在一些实施方式中,光活性晶体材料层包括A/M/X晶体材料的薄膜。通常,A/M/X晶体材料是多晶的,因此光活性晶体材料相应地包括多晶A/M/X晶体材料。
在一些实施方式中,光活性晶体材料层可包括多个层。各个层的部分或全部可包括A/M/X晶体材料。
在一些实施方式中,A/M/X晶体材料可均匀或不均匀地分布在整个光活性晶体材料层中。例如,光活性晶体材料可包括层,所述层基本上由或仅由A/M/X晶体材料组成的层。可替代地或附加地,光活性晶体材料可包括在基板上具有A/M/X晶体材料的所述基板(例如以粉末形式或薄膜形式)。
[电子传输层]
在一些实施方式中,电子传输层是含有电子传输材料(也称为n型半导体材料)的层。电子传输材料可以是单种电子传输化合物或单质材料,或者两种或更多种电子传输化合物或单质材料的混合物。电子传输化合物或单质材料可以未掺杂的或掺杂有一种或多种掺杂元素。
电子传输材料的实例是技术人员已知的。
电子传输材料可以包括富勒烯或富勒烯衍生物,例如C60、C70、PCBM、PC71BM、双[C60]BM(即,双-C60-丁酸甲酯)、ICBA(CAS:1207461-57-1)
电子传输材料可以包括有机电子传输材料,例如苝或其衍生物,P(NDI2OD-T2)(CAS:1100243-40-0)或浴铜灵(BCP)。
电子传输材料可以包括无机电子传输材料,例如金属氧化物、金属硫化物、金属硒化物、金属碲化物、钙钛矿、非晶硅、n型IV族半导体、n型III-V族半导体、n型II-VI族半导体、n型I-VII族半导体、n型IV-VI族半导体、n型V-VI族半导体和n型II-V族半导体,它们中的任何一种可以是掺杂的或未掺杂的。
[空穴传输层]
在一些实施方式中,空穴传输层是指含有空穴传输(也称为p型半导体材料)材料的层。
空穴传输材料的实例是技术人员已知的。空穴传输材料可以是单种空穴传输化合物或单质材料,或者两种或更多种空穴传输化合物或单质材料的混合物。空穴传输化合物或单质材料可以未掺杂的或掺杂有一种或多种掺杂元素。
有机空穴传输材料可以包括例如螺-OMeTAD、P3HT、PCPDTBT、聚-TPD、螺环(TFSI) 2和PVK。
无机空穴传输材料可以包括镍(例如NiO)、钒、铜或钼的氧化物;CuI、CuBr、CuSCN、Cu 2O、CuO或CIS;钙钛矿;非晶硅;p型IV族半导体、p型III-V族半导体、p型II-VI族半导体、p型I-VII族半导体、p型IV-VI族半导体、p型V-VI族半导体和p型II-V族半导体,这些无机材料可以是掺杂的或未掺杂的。
[电极]
术语“电极”表示由电极材料组成或基本上由电极材料组成的区域或层。
本申请的光伏器件可进一步包括第一电极和第二电极。
第一电极可以包括金属(例如银、金、铝或钨)、有机导电材料例如PEDOT:PSS,或透明导电氧化物(例如氟掺杂的锡氧化物(FTO)、铝掺杂的氧化锌(AZO)或铟掺杂的氧化锡(ITO)。通常,第一电极是透明电极。因此,第一电极通常包括透明导电氧化物,例如为FTO、ITO或AZO。第一电极的层的厚度例如为10nm至1000nm,再例如为40nm至400nm。
第二电极可以如上文针对第一电极所进行的限定,例如,第二电极可以包括金属(例如银、金、铝或钨)、有机导电材料(例如PEDOT:PSS)或透明导电氧化物(例如氟掺杂的锡氧化物(FTO)、铝掺杂的氧化锌(AZO)或铟掺杂的氧化锡(ITO)。通常,第二电极包括金属(例如单质金属)或基本上由金属(例如单质金属)组成。第二电极材料可以包括金属或者基本上由金属组成的实例,例如银、金、铜、铝、铂、钯或钨。第二电极可以通过真空蒸发来沉积形成。第二电极材料层的厚度例如为10至1000nm,例如为50nm至150nm。
[实施例]
下面结合具体实施例和对比例详细描述本申请的技术方案。除非特别说明,本申请采用的试剂、方法和设备为本领域常规食品级试剂、方法和设备。除非特别说明,本申请实施例所用试验条件为本领域常规试验条件。除非特别说明,本申请实施例所用试剂均为市购。
部分原料和试剂的CAS号如下:
  CAS
3-(N,N-二甲基十四烷基铵)丙烷磺酸盐 14933-09-6
十二烷基甜菜碱 683-10-3
月桂酰胺丙基氧化胺 61792-31-2
L-α-磷脂酰胆碱 8002-43-5
实施例1
参考图1,图中箭头所示的关照方向,实施例1的光伏器件包括依次层叠的基底106、第一电极105、第一电荷传输层104、光活性晶体材料层103、第二电荷传输层102和第二电极101。
实施例1的光伏器件的制备方法如下:
(1)将1362mg甲脒氢碘酸盐(FAI)、228.6mg碘化铯(CsI)和4056.9mg碘化铅(PbI 2)溶解于8mL溶剂中,配制成钙钛矿前驱体溶液,其中FAI的摩尔浓度为0.99mol/L, CsI的摩尔浓度为0.11mol/L,PbI2的摩尔浓度为1.1mol/L。溶剂为体积比为7:1的DMF(N,N-二甲基甲酰胺)和NMP(N-甲基吡咯烷酮)的混合物。然后,还在上述溶剂中加入表面活性剂和含氮化合物,二者的重量百分含量分别为0.1wt%和5wt%。在实施例1中,表面活性剂为十二烷基甜菜碱,含氮化合物为尿素。
(2)提供2cm×2cm的FTO导电玻璃(FTO导电玻璃是表面覆有FTO导电层的玻璃,FTO是Fluorine doped tin oxide的缩写)。FTO导电玻璃包括玻璃板和沉积在玻璃板上的FTO导电层。采用激光雕刻技术(laser engraving technique)将FTO导电玻璃两个相对边缘0.66cm宽度的FTO导电层去除,在FTO导电玻璃上保留尺寸为2cm×1.34cm的FTO导电层。在此处,玻璃板作为基底106,FTO导电层作为第一电极105。
(3)采用磁控溅射技术,在第一电极105(FTO导电层)上形成第一电荷传输层104(氧化镍层),氧化镍层的厚度为约20nm。第一电荷传输层104在此处作为空穴传输层。
(4)将前体溶液涂布于氧化镍层上。然后样品被转移至真空腔,在100Pa的真空度以下静置120秒,使得前体溶液固化成膜。将固化后的样品置于热台上进行退火处理,退火处理的温度为150℃,退火处理的时间为30min;退火处理后,氧化镍层上形成了良好的A/M/X晶体材料层。在本实施例中,A/M/X晶体材料的成分为FA 0.9Cs 0.1PbI 3。A/M/X晶体材料层在此处作为光活性晶体材料层103。
(6)将上一步所得样品置于蒸镀系统,在光活性晶体材料层103上沉积第二电荷传输层102。在此处,第二电荷传输层102是电子传输层。第二电荷传输层包括依次蒸镀形成的厚度30nm的C 60(富勒烯)层和厚度8nm的BCP(浴铜灵,bathocuproine)层。
(7)仍然在上述蒸镀系统中,在第二电荷传输层102上形成第二电极101。第二电极101为厚度100nm的金属铜层,获得实施例1的光伏器件。
实施例2-4
实施例2-4与实施例1的区别在于前体溶液中表面活性剂和/或含氮化合物的种类不同。
详细的表面活性剂和含氮化合物的区别参见表1。
对比例1-8
对比例1与实施例1的区别在于前体溶液不含有表面活性剂和含氮化合物。
对比例2-8与实施例1的区别在于前体溶液不含有表面活性剂和含氮化合物的种类或含量不同。
详细的表面活性剂和含氮化合物的区别参见表1。
分析检测
1、形貌表征:
(1)样品准备:按照实施例4的方案,实施步骤(1)至(4),将步骤(6)的产物作为观察样品。用玻璃刀在观察样品的玻璃板一侧划出一道直线划痕,然后将光伏器件沿该划痕掰断,露出断面。
(2)样品观察:使用扫描电子显微镜(SEM)观察断面,并在30000倍的放大倍数下拍摄照片。该照片如图4所示。该观察样品包括基底106,层叠在基底106上的第一电极105,层叠在第一电极105上的第一电荷传输层104,以及层叠在第一电荷传输层104上的光活性晶体材料层103。
(3)光活性晶体材料层的晶体形貌
如图4所示,在照片区域内,光活性晶体材料层103的断面长度为3.7μm,该区域内完整的总晶粒数量为4。
第一、光活性晶体材料层103包括贯穿晶粒313,贯穿晶粒313为贯穿光活性晶体材料层103的晶粒,贯穿晶粒313的数量为4,占光活性晶体材料层103在图示区域内的总晶粒数量的百分比p=100%。
第二、光活性晶体材料层103包括背光侧113和背光晶粒,背光晶粒为暴露于所述背光侧113的晶粒,背光晶粒具有暴露于背光侧113的背光晶面;
在照片区域内,背光侧具有平均平坦系数R avg=11.4;
其中,照片区域的R avg通过下式计算:
Figure PCTCN2021140788-appb-000004
其中,R i为照片区域内第i个背光晶粒的平坦系数,R i通过下式计算:
R i=d i/h i
其中,d i为照片区域内第i个背光晶粒(31,32,33)的背光晶面的宽度;
其中,h i为照片区域内第i个背光晶粒(31,32,33)的背光晶面的凸起高度;
其中,n为区域内全部背光晶粒的数量,n=4。
对实施例1-4和对比例1-8的方案获得的步骤(6)的产物分别进行扫描电子显微镜观察,采集长度为3.7μm的光活性晶体材料层断面,并计算:
(1)贯穿晶粒313占光活性晶体材料层照片区域内的总晶粒数量的百分比p;
(2)背光侧具有平均平坦系数R avg
具体结果详见表1。
2、能量转化效率表征
对实施例1-4和对比例1-8的方案获得的光伏器件,在标准模拟太阳光(AM 1.5G,100mW/cm 2)照射下测试光伏器件的能量转换效率(PCE)。测试方法具体可以参考文献Stabilizing perovskite-substrate interfaces for high-performance perovskite modules,Science  373,902(2021),测试结果详见表1。
Figure PCTCN2021140788-appb-000005
分析结论:
(1)关于光伏器件
实施例1-4的光伏器件的能量转化效率为20.1%-21.1%,显著高于对比例1-8,其仅为16%-18.9%。
实施例1-4的光伏器件的显著提高的能量转化效率归功于该光伏器件的光活性晶体层同时满足以下特征a)和b)
a)贯穿晶粒313占光活性晶体材料层在照片区域内的总晶粒数量的百分比p≥80,例如达到p=100;且
b)背光侧具有平均平坦系数R avg≤75,例如达到R avg=16-59。
(2)关于表面活性剂和含氮化合物的协同作用
相较于对比例1-8,实施例1-4的前体溶液中除了含有前体化合物之外,还含有表面活性剂和含氮化合物。
本申请发现,获得贯穿晶粒313占比p≥80同时平均平坦系数R avg≤75的光活性晶体材料层是困难的。如对比例1-8所示,前体溶液中不添加表面活性剂和含氮化合物、单独添加表面活性剂、或单独添加含氮化合物,不能获得贯穿晶粒313占比p≥80同时平均平坦系数R avg≤75的光活性晶体材料层,不能获得光吸收性质改善光活性晶体材料层。
本申请意外地发现,在前体溶液中同时表面活性剂与含氮化合物,能够成功地获得贯穿晶粒313占比p≥80且平均平坦系数R avg≤75的光活性晶体材料层。
需要强调的是,表面活性剂与含氮化合物发生了协同作用,显著改善了光活性晶体材料层的光电转换性能。表1的最后一列以对比例1的光转换效率为空白基准,计算了其它对比例和实施例1-4相较于对比例1的光转换效率的提升率。能够发现:
实施例1的PCE提升率(26%)显著高于对比例4和6的提升率的简单和(18%+3%=21%);
实施例2的PCE提升率(28%)显著高于对比例2和5的提升率的简单和(3%+2%=5%);
实施例3的PCE提升率(31%)显著高于对比例3和7的提升率的简单和(7%+8%=15%);
实施例4的PCE提升率(32%)显著高于对比例4和8的提升率的简单和(18+12%=30%);
由于表面活性剂和含氮化合物的发生了预料不到的协同作用,显著改善了光活性晶体材料层的光吸收性质,具体表现为活性晶体材料层的贯穿晶粒313占比p≥80,同时平均平坦系数R avg≤75,进而获得了能量转换效率显著提高的光伏器件。
需要说明的是,本申请不限定于上述实施方式。上述实施方式仅为示例,在本申请的技术方案范围内具有与技术思想实质相同的构成、发挥相同作用效果的实施方式均包含在本申请的技术范围内。此外,在不脱离本申请主旨的范围内,对实施方式施加本领域技术人员能够想到的各种变形、将实施方式中的一部分构成要素加以组合而 构筑的其它方式也包含在本申请的范围内。

Claims (20)

  1. 一种光伏器件,其中,包括光活性晶体材料层(103),所述光活性晶体材料层(103)包括第一区域;
    在所述第一区域,所述光活性晶体材料层(103)包括贯穿晶粒(313),所述贯穿晶粒(313)为贯穿所述光活性晶体材料层(103)的晶粒,所述贯穿晶粒(313)的数量占所述光活性晶体材料层(103)在所述第一区域的总晶粒数量的百分比p≥80%,可选地,p≥90%;且
    在所述第一区域,所述光活性晶体材料层(103)包括背光侧(113)和背光晶粒(31,32,33),所述背光晶粒(31,32,33)为至少一个面暴露于所述背光侧(113)的晶粒,所述背光晶粒(31,32,33)的暴露于所述背光侧(113)的面为背光晶面;
    其中,所述背光侧(113)具有平均平坦系数R avg,R avg≤75,可选地10≤R avg≤70;
    其中,所述背光侧(113)的R avg通过下式计算:
    Figure PCTCN2021140788-appb-100001
    其中,R i为所述第一区域内第i个背光晶粒(31,32,33)的平坦系数,R i通过下式计算:
    R i=d i/h i
    其中,d i为所述第一区域内第i个背光晶粒(31,32,33)的背光晶面的宽度;
    其中,h i为所述第一区域内第i个背光晶粒(31,32,33)的背光晶面的凸起高度;
    其中,n为所述第一区域内全部背光晶粒(31,32,33)的数量。
  2. 根据权利要求1所述的光伏器件,其中,所述光活性晶体材料包括A/M/X晶体材料,所述A/M/X晶体材料具有以下通式:
    [A] a[M] b[X] c
    [M]包括一种或多种第一阳离子,所述第一阳离子包括金属离子、准金属离子、或其组合;
    [A]包括一种或多种第二阳离子;
    [X]包括一种或多种卤素阴离子;
    a为1至6,可选地,a为1、2、3、4、5或6;
    b为1至6,可选地,b为1、2、3、4、5或6;
    c为1至18,可选地,c为3、6、9、或18。
  3. 根据权利要求2所述的光伏器件,其具有以下一项或多项特征:
    (1)所述一种或多种第一阳离子选自Ca 2+、Sr 2+、Cd 2+、Cu 2+、Ni 2+、Mn 2+、Fe 2+、Co 2+、Pd 2+、Ge 2+、Sn 2+、Pb 2+、Yb 2+、Eu 2+、Bi3+、Sb3+、Pd 4+、W 4+、Re 4+、Os 4+、Ir 4+、Pt 4+、Sn 4+、Pb 4+、Ge 4+或Te 4+
    可选地,所述一种或多种第一阳离子选自Cu 2+、Pb 2+、Ge 2+或Sn 2+
    (2)所述一种或多种第二阳离子选自Cs +、(NR 1R 2R 3R 4) +、(R 1R 2N=CR 3R 4) +、(R 1R 2N-C(R 5)=NR 3R 4) +或(R 1R 2N-C(NR 5R 6)=R 3R 4) +,其中,R 1,R 2,R 3,R 4,R 5和R 6各自独立地选自H、取代或非取代的C 1-20烷基或取代或非取代的芳基;
    可选地,所述一种或多种第二阳离子选自Cs +、(CH 3NH 3) +、(H 2N-C(H)=NH 2) +
    (3)所述卤素阴离子选自Cl -、Br -或I -
  4. 根据权利要求2-3任一项所述的光伏器件,其中,所述A/M/X晶体材料包括FAPbI 3、FAPbBr 3、FAPbCl 3、FAPbF 3、FAPbBr xI 3-x、FAPbBr xCl 3-x、FAPbI xBr 3-x、FAPbI xCl 3-x、FAPbCl xBr 3-x、FAPbI 3-xCl x、CsPbI 3、CsPbBr 3、CsPbCl 3、CsPbF 3、CsPbBr xI 3-x、CsPbBr xCl 3-x、CsPbI xBr 3-x、CsPbI xCl 3-x、CsPbCl xBr 3-x、CsPbI 3-xCl x、FA 1-yCs yPbI 3、FA 1-yCs yPbBr 3、FA 1-yCs yPbCl 3、FA 1-yCs yPbF 3、FA 1-yCs yPbBr xI 3-x、FA 1-yCs yPbBr xCl 3-x、FA 1-yCs yPbI xBr 3-x、FA 1-yCs yPbI xCl 3-x、FA 1-yCs yPbCl xBr 3-x、FA 1-yCs yPbI 3-xCl x、或其组合;
    其中,x=0-3,y=0.01-0.25。
  5. 根据权利要求2-4任一项所述的光伏器件,其中,所述A/M/X晶体材料包括FAPbI 3、CsPbI 3、FA 1-yCs yPbI 3、或其组合,其中,y=0.01-0.25。
  6. 根据权利要求2-5任一项所述的光伏器件,其中,所述光活性晶体材料层的厚度为100nm以上,可选为100-1000nm,可选为300-700nm。
  7. 根据权利要求1-6任一项所述的光伏器件,其中,还包括第一电荷传输层(104)和第二电荷传输层(102),所述光活性晶体材料层(103)位于所述第一电荷传输层(104)和第二电荷传输层(102)之间;
    所述第一电荷传输层(104)和第二电荷传输层(102)分别为电子传输层和所述空穴传输层,或者
    所述第一电荷传输层(104)和第二电荷传输层(102)分别为空穴传输层和电子传输层。
  8. 根据权利要求1所述的光伏器件,其中,还包括第一电极(105)和第二电极(101),所述电子传输层、空穴传输层和光活性晶体材料层位于所述第一电极(105)和第二电极(101)之间;
    可选地,所述第一电极(105)包括透明导电氧化物;
    可选地,所述第二电极(101)包括金属。
  9. 一种制备A/M/X晶体材料的方法,所述A/M/X晶体材料具有以下通式:
    [A] a[M] b[X] c
    [M]包括一种或多种第一阳离子,所述第一阳离子包括金属离子、准金属离子、或其组合;
    [A]包括一种或多种第二阳离子;
    [X]包括一种或多种卤素阴离子;
    a为1至6,例如a=1;
    b为1至6,例如b=1;
    c为1至18,例如c=3;
    所述方法包括在基体上设置前体组合物,所述前体组合物包含以下组分:
    (a)至少一种前体化合物;
    (b)溶剂;
    (c)表面活性剂;以及
    (d)氨基类化合物。
  10. 根据权利要求9所述的方法,其包括以下一项或多项:
    (1)所述表面活性剂包括两性表面活性剂;
    (2)所述氨基化合物包括:腈胺类化合物、氨基酸类化合物(例如氨基磺酸类化合物)、肼类化合物、脲类化合物(例如尿素、脲醛、缩二脲、缩三脲)、胍类化合物、或其盐或水合物。
  11. 根据权利要求9-10任一项所述的方法,其中,所述表面活性剂包括十二烷基氨基丙酸盐、十二烷基乙氧基磺基甜菜碱、十二烷基二甲基羟丙基磺基甜菜碱、两性离子聚丙烯酰胺、十八烷基二羟乙基氧化胺、十四烷基二羟乙基氧化胺、月桂酰胺丙基氧化胺、十二烷基甜菜碱、L-α-磷酸脂胆碱、3-(N,N-二甲基十四烷基铵)丙烷磺酸盐、十二烷基苯磺酸盐、或其组合。
  12. 根据权利要求9-11任一项所述的方法,其中,所述氨基化合物包括:脲醛(C 3H 8N 2O 3)、异丁叉二脲(C 6H 14N 4O 2)、肼(H 4N 2)、胍(CH 3N 3O)、腈胺(CH 2N 2)、氨基磺酸(H 3NO 3S)、或其组合。
  13. 根据权利要求9-12任一项所述的方法,所述前体组合物包括第一溶剂和第二溶剂,所述第一溶剂的沸点为40-165℃;所述第二溶剂的沸点为170-250℃。
  14. 根据权利要求13所述的方法,其包括以下一项或多项:
    (1)所述第一溶剂选自N,N-二甲基甲酰胺(DMF)、2-甲氧基乙醇、乙腈(ACN)中的一种或多种;
    (2)所述第二溶剂选自二甲基亚砜(DMSO)、N-甲基吡咯烷酮(NMP)、二苯亚砜(DPSO)中的一种或多种。
    (3)所述第一溶剂与第二溶剂的体积比为(4-10):1。
  15. 根据权利要求9-14任一项所述的方法,所述前体组合物包括
    第一前体化合物,所述第一前体化合物含有第一阳离子;以及
    第二前体化合物,所述第二前体化合物含有第二阳离子。
  16. 根据权利要求15所述的方法,其包括以下一项或多项;
    (1)所述第一前体化合物含有卤素阴离子;
    (2)所述第二前体化合物含有卤素阴离子。
  17. 根据权利要求9-16任一项所述的方法,其包括以下一项或多项;
    (1)所述第一化合物包括碘化铅(PbI 2)、溴化铅(PbBr 2)、或其组合;
    (2)所述第二化合物包括甲脒氢碘酸盐(FAI)、甲脒氢溴酸盐(FABr)、碘化铯(CsI)、溴化铯(CsBr)、或其组合。
  18. 根据权利要求9-17任一项所述的方法,还包括对设置在基体表面的前体组合物实施固化处理的步骤;
    可选地,所述固化处理包括:真空处理、风刀处理、红外光处理或其组合。
  19. 根据权利要求18所述的方法,还包括对固化处理的产物进行退火处理;
    可选地,所述退火处理的温度为100℃-170℃;
    可选地,所述退火处理的时间为5min-60min。
  20. 一种制备光伏器件的方法,所述光伏器件包括第一电极(105)和第二电极(101),位于所述第一电极(105)和第二电极(101)之间的第一电荷传输层(104)和第二电荷传输层(102),以及位于所述第一电荷传输层(104)和第二电荷传输层(102)之间的A/M/X晶体材料层;
    所述方法包括:
    提供表面设置有第一电荷传输层(104)的第一电极(105);
    按照权利要求9-19任一项所述的制备A/M/X晶体材料的方法,在所述第一电荷传输层(104)的表面形成所述A/M/X晶体材料层;
    在所述A/M/X晶体材料层上形成第二电荷传输层(102);
    在所述第二电荷传输层(102)上形成第二电极(101);
    其中,所述第一电荷传输层(104)和第二电荷传输层(102)分别为电子传输层和所述空穴传输层,或者
    所述第一电荷传输层(104)和第二电荷传输层(102)分别为空穴传输层和电子传输层。
PCT/CN2021/140788 2021-12-23 2021-12-23 A/m/x晶体材料、光伏器件及其制备方法 WO2023115449A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21963474.8A EP4236651A4 (en) 2021-12-23 2021-12-23 A/M/X CRYSTAL MATERIAL, PHOTOVOLTAIC DEVICE AND PRODUCTION METHOD THEREOF
PCT/CN2021/140788 WO2023115449A1 (zh) 2021-12-23 2021-12-23 A/m/x晶体材料、光伏器件及其制备方法
CN202180095646.0A CN116998239A (zh) 2021-12-23 2021-12-23 A/m/x晶体材料、光伏器件及其制备方法
US18/325,009 US20230299219A1 (en) 2021-12-23 2023-05-29 A/m/x crystalline material, photovoltaic device, and preparation methods thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/140788 WO2023115449A1 (zh) 2021-12-23 2021-12-23 A/m/x晶体材料、光伏器件及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/325,009 Continuation US20230299219A1 (en) 2021-12-23 2023-05-29 A/m/x crystalline material, photovoltaic device, and preparation methods thereof

Publications (1)

Publication Number Publication Date
WO2023115449A1 true WO2023115449A1 (zh) 2023-06-29

Family

ID=86901132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140788 WO2023115449A1 (zh) 2021-12-23 2021-12-23 A/m/x晶体材料、光伏器件及其制备方法

Country Status (4)

Country Link
US (1) US20230299219A1 (zh)
EP (1) EP4236651A4 (zh)
CN (1) CN116998239A (zh)
WO (1) WO2023115449A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6608326B1 (en) * 1999-07-13 2003-08-19 Hitachi, Ltd. Semiconductor film, liquid-crystal display using semiconductor film, and method of manufacture thereof
CN107849446A (zh) * 2015-07-31 2018-03-27 凡泰姆股份公司 发光晶体及其制造
CN108305937A (zh) * 2017-01-11 2018-07-20 南京工业大学 一种三维钙钛矿薄膜纳米尺度晶粒的调控方法及其应用和器件
CN109496370A (zh) * 2016-07-29 2019-03-19 埃塞格运营公司 光吸收层和包括光吸收层的光伏器件
CN113272986A (zh) * 2018-11-28 2021-08-17 牛津大学科技创新有限公司 长期稳定的光电器件

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020209916A2 (en) * 2019-01-14 2020-10-15 The University Of North Carolina At Chapel Hill Bilateral amines for defect passivation and surface protection in perovskite solar cells
WO2020147939A1 (en) * 2019-01-15 2020-07-23 Toyota Motor Europe Ink formulation for inkjet printing of perovskite active layers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6608326B1 (en) * 1999-07-13 2003-08-19 Hitachi, Ltd. Semiconductor film, liquid-crystal display using semiconductor film, and method of manufacture thereof
CN107849446A (zh) * 2015-07-31 2018-03-27 凡泰姆股份公司 发光晶体及其制造
CN109496370A (zh) * 2016-07-29 2019-03-19 埃塞格运营公司 光吸收层和包括光吸收层的光伏器件
CN108305937A (zh) * 2017-01-11 2018-07-20 南京工业大学 一种三维钙钛矿薄膜纳米尺度晶粒的调控方法及其应用和器件
CN113272986A (zh) * 2018-11-28 2021-08-17 牛津大学科技创新有限公司 长期稳定的光电器件

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Amphoteric Surfactants", 1996, MARCEL DEKKER
"Stabilizing perovskite-substrate interfaces for high-performance perovskite modules", SCIENCE, vol. 373, 2021, pages 902
See also references of EP4236651A4

Also Published As

Publication number Publication date
EP4236651A4 (en) 2023-12-13
US20230299219A1 (en) 2023-09-21
CN116998239A (zh) 2023-11-03
EP4236651A1 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
US20230420192A1 (en) Method of depositing a perovskite material
US20200279890A1 (en) Photovoltaic device
Hoffman et al. From 2D to 1D electronic dimensionality in halide perovskites with stepped and flat layers using propylammonium as a spacer
US20200118767A1 (en) Methods for producing and using perovskite materials and devices therefrom
US10937972B2 (en) Complex and perovskite material, and perovskite-type solar cell using complex or perovskite material
Zhu et al. Low‐dimensional perovskite materials and their optoelectronics
JP2022000910A (ja) ペロブスカイト材料を堆積させる方法
CN109564948B (zh) 有机铅卤化物钙钛矿薄膜及制造其的方法
US20210399246A1 (en) Multi-junction device production process
JP2022513818A (ja) デバイス中間層を含む多接合光電子デバイス
Chen et al. Synergistic improvements in the performance and stability of inverted planar MAPbI 3-based perovskite solar cells incorporating benzylammonium halide salt additives
EP3888148A1 (en) Long-term stable optoelectronic device
Jiang et al. Recent advances of monolithic all‐perovskite tandem solar cells: from materials to devices
WO2023115449A1 (zh) A/m/x晶体材料、光伏器件及其制备方法
Parra et al. Optical study and ruthenizer (II) N3 dye-sensitized solar cell application of ZnO nanorod-arrays synthesized by combine two-step process
WO2021220926A1 (ja) 太陽電池
AU2021479832A1 (en) A/m/x crystalline material, photovoltaic device, and preparation methods thereof
WO2020240947A1 (ja) 光電変換膜およびそれを用いた太陽電池、ならびに光電変換膜の製造方法
Baron et al. Fabrication of a Solar Cells by Organic–Inorganic Hybrid Perovskites
Ebadi et al. Achieving highly efficient and stable MAPbI3 planar solar cell by embedding Cs+, Fe2+, and Cd2+ metal inorganic cations in perovskite structure
Gan et al. Two-dimensional benzylammonium based perovskites incorporated with hexamethylendiammonium for solar cell application
Sen et al. Tin‐Based Eco‐Friendly Perovskites for Sustainable Future
Hung et al. Performance enhancement of a hydrothermally grown ZnO-based ultraviolet photodetector using substrate transfer and pyramid-like surface texture
Raju et al. Understanding the Correlation between the Crystallization Kinetics and Defect Formation in (FA) 1.5 Cs0. 5AgBi (Cl0. 75Br0. 25) 6 Double Perovskites
Ren et al. Steering device-quality perovskites with unique substrate tolerance

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021963474

Country of ref document: EP

Effective date: 20230522

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963474

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180095646.0

Country of ref document: CN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024012395

Country of ref document: BR