WO2023115423A1 - 传输方法、通信设备及存储介质 - Google Patents

传输方法、通信设备及存储介质 Download PDF

Info

Publication number
WO2023115423A1
WO2023115423A1 PCT/CN2021/140635 CN2021140635W WO2023115423A1 WO 2023115423 A1 WO2023115423 A1 WO 2023115423A1 CN 2021140635 W CN2021140635 W CN 2021140635W WO 2023115423 A1 WO2023115423 A1 WO 2023115423A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
carrier
carriers
transmitted
block
Prior art date
Application number
PCT/CN2021/140635
Other languages
English (en)
French (fr)
Inventor
朱荣昌
黄伟
黄钧蔚
Original Assignee
深圳传音控股股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳传音控股股份有限公司 filed Critical 深圳传音控股股份有限公司
Priority to PCT/CN2021/140635 priority Critical patent/WO2023115423A1/zh
Publication of WO2023115423A1 publication Critical patent/WO2023115423A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present application relates to communication technology, in particular to a transmission method, communication equipment and storage medium.
  • the network device can send a transport block (Transport Block, TB) to the terminal device by sending a physical downlink shared channel (PDSCH) on the carrier, or the terminal device can send a physical uplink shared channel on the carrier (Physical Uplink Shared CHannel, PUSCH).
  • Transport Block Transport Block
  • PDSCH physical downlink shared channel
  • PUSCH Physical Uplink Shared CHannel
  • the inventors found at least the following problems: the schemes of transmitting transport blocks through PDSCH or PUSCH are implemented based on one carrier of one cell. For the scenario where at least one carrier constitutes a logical cell, there is no specific solution on how the network device or terminal device transmits and/or receives in this scenario.
  • the present application provides a transmission method, a communication device and a storage medium to solve the above technical problems.
  • the present application provides a transmission method that can be applied to a terminal device, and the method includes the following steps:
  • the S1 step includes:
  • the transmission manner is determined in response to the carrier meeting a preset condition.
  • the preset conditions include:
  • the number of carriers is at least two; and/or,
  • the carriers are carriers under the same logical cell.
  • the S2 step includes:
  • the determining a redundancy version of the transmission block transmitted on at least one carrier includes:
  • the acquiring the redundancy version identifier of the first carrier in the at least one carrier includes: receiving first downlink resource control information on the first carrier, and according to the first downlink The resource control information acquires the redundancy version identifier of the first carrier; and/or,
  • the acquiring the redundancy version identifier of at least one carrier includes: receiving second downlink resource control information on at least one carrier, and acquiring the redundancy version of at least one carrier according to the second downlink resource control information logo.
  • the redundancy version satisfies at least one of the following:
  • the transmission mode is a complete transmission mode, the number of consecutive retransmissions is 1, and the redundancy versions of the transmission blocks transmitted on at least one of the carriers are different;
  • the transmission mode is a complete transmission mode, the number of consecutive retransmissions is 1, and the redundancy versions of the transmission blocks transmitted on at least one of the carriers are the same;
  • the transmission mode is the complete transmission mode, the number of consecutive retransmissions is greater than 1, and the redundancy versions of the transmission blocks transmitted on at least one of the carriers are different;
  • the transmission mode is a distributed transmission mode, and the redundancy versions of the transmission blocks transmitted on at least one of the carriers are the same.
  • the transmission mode is the complete transmission mode, the number of consecutive retransmissions is 1, and a redundancy version of the transmission block transmitted on at least one carrier satisfies a first preset condition.
  • the first preset condition includes at least one of the following:
  • the rv id is the redundancy version identifier of the first carrier in at least one of the carriers
  • mod is a modulo operation
  • the n is a positive integer greater than or equal to 1 and less than or equal to N
  • the N is the number of the carriers
  • the rv1 is the redundancy version of the transport block transmitted on the carrier n.
  • the first preset condition may also be that redundancy versions transmitted on at least one carrier are the same.
  • the transmitting the transport block on the carrier according to the redundancy version, the transmission mode and/or the number of consecutive retransmissions of the transport block includes:
  • the transport block is transmitted on each carrier according to a redundant version of the transmission of the transport block on at least one of the carriers.
  • the transmission mode is the complete transmission mode, the number of consecutive retransmissions K is greater than 1, and the number N of the carriers is greater than or equal to the K; the transmission block is transmitted on at least one of the carriers The redundant version of satisfies the second preset condition.
  • the second preset condition includes at least one of the following:
  • the rv id is the redundancy version identifier of the first carrier in at least one of the carriers, mod is a modulo operation, and the rv2 is the redundancy version of the transmission block transmitted on the carrier n;
  • n is a positive integer greater than or equal to 1 and less than or equal to N, or said n is a positive integer greater than or equal to 1 and less than or equal to K.
  • the transmitting the transport block on the carrier according to the redundancy version, the transmission mode and/or the number of consecutive retransmissions of the transport block includes:
  • the transport block is transmitted on the N carriers according to a redundancy version of the transmission of the transport block on the N carriers.
  • the transmission mode is the complete transmission mode
  • the number of consecutive retransmissions K is greater than 1
  • the number N of the carriers is less than the K
  • the time slot i and the transmission block are on at least one of the carriers
  • the redundant version transmitted upstream satisfies the third preset condition.
  • the third preset condition includes at least one of the following:
  • the rv id is the redundancy version identifier of the first carrier in at least one of the carriers, mod is a modulo operation, the n is a positive integer greater than or equal to 1 and less than or equal to N, and the N is the number of the carriers, and the rv3 is the redundancy version of the transport block transmitted on the carrier n in the time slot i;
  • said n is a positive integer greater than or equal to 1 and less than or equal to N; when said i is equal to , said n is a positive integer greater than or equal to 1 and less than or equal to N, or said n is greater than or equal to 1 and less than or equal to a positive integer, Indicates that K/N is rounded up, Indicates that K/N is rounded down.
  • the transmitting the transport block on the carrier according to the redundancy version, the transmission mode and/or the number of consecutive retransmissions of the transport block includes:
  • the transmission block is transmitted on the N carriers according to the redundancy version of the transmission block transmitted on at least one of the carriers in the transmission slot; or,
  • the transmission block is transmitted on the N carriers according to the redundancy version of the transmission block transmitted on at least one of the carriers in the transmission slot; For the first transmission time slots, according to which in the transmission time slots, the transmission block comes first The redundant version transmitted on the carrier, in the preceding The transport blocks are transmitted on carriers.
  • the transmission mode is the distributed transmission mode; the time slot i and the redundancy version of the transmission block transmitted on at least one carrier satisfy a fourth preset condition.
  • the fourth preset condition includes at least one of the following:
  • the rv id is the redundancy version identifier of the first carrier in at least one of the carriers
  • mod is a modulo operation
  • the i is a positive integer greater than or equal to 0 and less than or equal to (K-1)
  • the K is the number of consecutive retransmissions
  • the rv4 is the redundancy version of the transport block transmitted on at least one carrier in the i-th time slot.
  • the transmitting the transport block on the carrier according to the redundancy version, the transmission mode and/or the number of consecutive retransmissions of the transport block includes:
  • the number of code block groups included in the transmission block is the smaller value of the actual number of code blocks in the transmission block and the maximum number of code block groups allowed by the protocol in the transmission block.
  • At least one index of the code block group transmitted on the carrier satisfies a fifth preset condition.
  • the fifth preset condition includes at least one of the following:
  • the index of the code block group transmitted on the nth carrier is n, and the n is greater than or equal to 1 and less than or equal to the M;
  • the S1 step includes:
  • the transmission mode indication parameter is carried in a system message; and/or,
  • the transmission mode indication parameter is carried in the first radio resource control signaling.
  • the method also includes:
  • the second radio resource control signaling includes an aggregation factor, and the number of consecutive retransmissions is the number indicated by the aggregation factor; and/or,
  • the aggregation factor is not included in the second radio resource control signaling, and the number of consecutive retransmissions is 1.
  • the present application provides a transmission method, which can be applied to a terminal device, and the method includes:
  • the transmission mode of the transmission block is a distributed transmission mode and/or the carrier satisfies the preset condition, transmit the transport block on the carrier according to the distributed transmission mode.
  • the preset conditions include:
  • the number of carriers is at least two; and/or,
  • the carriers are carriers under the same logic cell.
  • the S10 step includes:
  • the transport block is transmitted on the carrier according to the complete transmission mode, the redundancy version of the transmission of the transport block on at least one of the carriers and/or the number of consecutive retransmissions of the transport block.
  • the redundancy version of the transmission block transmitted on at least one carrier satisfies at least one of the following:
  • the number of consecutive retransmissions is 1, and the redundancy versions of the transmission blocks transmitted on at least one of the carriers are different;
  • the number of consecutive retransmissions is 1, and the redundancy version of the transport block transmitted on at least one carrier is the same;
  • the number of consecutive retransmissions is greater than 1, and the redundancy versions of the transmission blocks transmitted on at least one of the carriers are different.
  • the number of consecutive retransmissions is 1, and the redundancy version of the transport block transmitted on at least one carrier satisfies a first preset condition.
  • the first preset condition includes at least one of the following:
  • the rv id is the redundancy version identifier of the first carrier in at least one of the carriers
  • mod is a modulo operation
  • the n is a positive integer greater than or equal to 1 and less than or equal to N
  • the N is the number of the carriers
  • the rv1 is the redundancy version of the transport block transmitted on the carrier n.
  • the first preset condition may also be that redundancy versions transmitted on at least one carrier are the same.
  • the redundancy version of the transmission block transmitted on at least one carrier and/or the number of consecutive retransmissions of the transmission block, transmitting the Transport blocks including:
  • the transport block is transmitted on each carrier according to a redundant version of the transmission of the transport block on at least one of the carriers.
  • the number K of consecutive retransmissions is greater than 1, and the number N of the carriers is greater than or equal to the K; the redundancy version of the transport block transmitted on the carrier satisfies a second preset condition.
  • the second preset condition includes at least one of the following:
  • the rv id is the redundancy version identifier of the first carrier in at least one of the carriers, mod is a modulo operation, and the rv2 is the redundancy version of the transmission block transmitted on the carrier n;
  • n is a positive integer greater than or equal to 1 and less than or equal to N, or said n is a positive integer greater than or equal to 1 and less than or equal to K.
  • the redundancy version of the transmission block transmitted on at least one carrier and/or the number of consecutive retransmissions of the transmission block, transmitting the Transport blocks including:
  • the transport block is transmitted on the N carriers according to a redundancy version of the transmission of the transport block on the N carriers.
  • the number of consecutive retransmissions K is greater than 1, and the number N of the carriers is less than the K; the redundancy version of time slot i and the transmission block transmitted on at least one carrier satisfies a third preset condition.
  • the third preset condition includes at least one of the following:
  • the rv id is the redundancy version identifier of the first carrier in at least one of the carriers, mod is a modulo operation, the n is a positive integer greater than or equal to 1 and less than or equal to N, and the N is the number of the carriers, and the rv3 is the redundancy version of the transport block transmitted on the carrier n in the time slot i;
  • said n is a positive integer greater than or equal to 1 and less than or equal to N; when said i is equal to , said n is a positive integer greater than or equal to 1 and less than or equal to N, or said n is greater than or equal to 1 and less than or equal to a positive integer, Indicates that K/N is rounded up, Indicates that K/N is rounded down.
  • the redundancy version of the transmission block transmitted on at least one carrier and/or the number of consecutive retransmissions of the transmission block, transmitting the Transport blocks including:
  • the transmission block is transmitted on the N carriers according to the redundancy version of the transmission block transmitted on at least one of the carriers in the transmission slot; or,
  • the transmission block is transmitted on the N carriers according to the redundancy version of the transmission block transmitted on at least one of the carriers in the transmission slot; For the first transmission time slots, according to which in the transmission time slots, the transmission block comes first The redundant version transmitted on the carrier, in the preceding The transport blocks are transmitted on carriers.
  • the S20 step includes:
  • the transport block is transmitted on the carrier according to the distributed transmission manner, the redundancy version of the transport block transmitted on at least one of the carriers and/or the number of consecutive retransmissions of the transport block.
  • the redundancy version transmitted by the transmission block on at least one of the carriers is the same.
  • the redundancy version of the transport block transmitted on at least one carrier satisfies a fourth preset condition.
  • the fourth preset condition includes at least one of the following:
  • the rv id is the redundancy version identifier of the first carrier in at least one of the carriers
  • mod is a modulo operation
  • the i is a positive integer greater than or equal to 0 and less than or equal to (K-1)
  • the K is the number of consecutive retransmissions
  • the rv4 is the redundancy version of the transport block transmitted on at least one carrier in the i-th time slot.
  • the redundancy version of the transmission block transmitted on at least one carrier and/or the number of consecutive retransmissions of the transmission block, transmitting the Transport blocks including:
  • the number of code block groups included in the transmission block is the smaller value of the actual number of code blocks in the transmission block and the maximum number of code block groups allowed by the protocol in the transmission block.
  • At least one index of the code block group transmitted on the carrier satisfies a fifth preset condition.
  • the fifth preset condition includes at least one of the following:
  • the index of the code block group transmitted on the nth carrier is n, and the n is greater than or equal to 1 and less than or equal to the M;
  • the method also includes:
  • the acquiring the redundancy version identifier of the first carrier in the at least one carrier includes:
  • the acquisition of at least one redundancy version identifier corresponding to the carrier includes:
  • the method also includes:
  • the second radio resource control signaling includes an aggregation factor, and the number of consecutive retransmissions is the number indicated by the aggregation factor; and/or,
  • the aggregation factor is not included in the second radio resource control signaling, and the number of consecutive retransmissions is 1.
  • the present application provides a transmission method, which can be applied to a network device, and the method includes:
  • the preset conditions include:
  • the number of carriers is at least two; and/or,
  • the carriers are carriers under the same logic cell.
  • the S3 step includes:
  • the transport block is transmitted on the carrier according to the redundancy version of the transport block transmitted on at least one of the carriers, the number of consecutive retransmissions of the transport block, and the transmission mode.
  • the redundancy version satisfies at least one of the following:
  • the transmission mode is a complete transmission mode, the number of consecutive retransmissions is 1, and the redundancy versions of the transmission blocks transmitted on at least one of the carriers are different;
  • the transmission mode is a complete transmission mode, the number of consecutive retransmissions is 1, and the redundancy versions of the transmission blocks transmitted on at least one of the carriers are the same;
  • the transmission mode is the complete transmission mode, the number of consecutive retransmissions is greater than 1, and the redundancy versions of the transmission blocks transmitted on at least one of the carriers are different;
  • the transmission mode is a distributed transmission mode, and the redundancy versions of the transmission blocks transmitted on at least one of the carriers are the same.
  • the transmission mode is the complete transmission mode, the number of consecutive retransmissions is 1, and a redundancy version of the transmission block transmitted on at least one carrier satisfies a first preset condition.
  • the first preset condition includes at least one of the following:
  • the rv id is the redundancy version identifier of the first carrier in at least one of the carriers
  • mod is a modulo operation
  • the n is a positive integer greater than or equal to 1 and less than or equal to N
  • the N is the number of the carriers
  • the rv1 is the redundancy version of the transport block transmitted on the carrier n.
  • the first preset condition may also be that redundancy versions transmitted on at least one carrier are the same.
  • transmitting the transport block on the carrier according to the redundancy version of the transport block transmitted on at least one carrier, the number of consecutive retransmissions of the transport block, and the transmission mode include:
  • the transport block is transmitted on each carrier according to a redundant version of the transmission of the transport block on at least one of the carriers.
  • the transmission mode is the complete transmission mode, the number of consecutive retransmissions K is greater than 1, and the number N of the carriers is greater than or equal to the K; the transmission block is transmitted on at least one of the carriers The redundant version of satisfies the second preset condition.
  • the second preset condition includes at least one of the following:
  • the rv id is the redundancy version identifier of the first carrier in at least one of the carriers, mod is a modulo operation, and the rv2 is the redundancy version of the transmission block transmitted on the carrier n;
  • n is a positive integer greater than or equal to 1 and less than or equal to N, or said n is a positive integer greater than or equal to 1 and less than or equal to K.
  • transmitting the transport block on the carrier according to the redundancy version of the transport block transmitted on at least one carrier, the number of consecutive retransmissions of the transport block, and the transmission mode include:
  • the transport block is transmitted on the N carriers according to a redundancy version of the transmission of the transport block on the N carriers.
  • the transmission mode is the complete transmission mode
  • the number of consecutive retransmissions K is greater than 1
  • the number N of the carriers is less than the K
  • the time slot i and the transmission block are on at least one of the carriers
  • the redundant version transmitted upstream satisfies the third preset condition.
  • the third preset condition includes at least one of the following:
  • the rv id is the redundancy version identifier of the first carrier in at least one of the carriers, mod is a modulo operation, the n is a positive integer greater than or equal to 1 and less than or equal to N, and the N is the number of the carriers, and the rv3 is the redundancy version of the transport block transmitted on the carrier n in the time slot i;
  • said n is a positive integer greater than or equal to 1 and less than or equal to N; when said i is equal to , said n is a positive integer greater than or equal to 1 and less than or equal to N, or said n is greater than or equal to 1 and less than or equal to a positive integer, Indicates that K/N is rounded up, Indicates that K/N is rounded down.
  • transmitting the transport block on the carrier according to the redundancy version of the transport block transmitted on at least one carrier, the number of consecutive retransmissions of the transport block, and the transmission mode include:
  • the transmission block is transmitted on the N carriers according to the redundancy version of the transmission block transmitted on at least one of the carriers in the transmission slot; or,
  • the transmission block for the former any one of the transmission time slots, transmitting the transmission block on the N carriers according to the redundancy version of the transmission block transmitted on at least one of the carriers in the transmission time slot, For the first transmission time slots, according to which in the transmission time slots, the transmission block comes first The redundant version transmitted on the carrier, in the preceding The transport blocks are transmitted on carriers.
  • the transmission mode is the distributed transmission mode; the time slot i and the redundancy version of the transmission block transmitted on at least one carrier satisfy a fourth preset condition.
  • the fourth preset condition includes at least one of the following:
  • the rv id is the redundancy version identifier of the first carrier in at least one of the carriers
  • mod is a modulo operation
  • the i is a positive integer greater than or equal to 0 and less than or equal to (K-1)
  • the K is the number of consecutive retransmissions
  • the rv4 is the redundancy version of the transport block transmitted on at least one carrier in the i-th time slot.
  • the sending the transport block on at least one carrier according to the redundancy version, the number of consecutive retransmissions of the transport block, and the transmission mode includes:
  • the number of code block groups included in the transmission block is the smaller value of the actual number of code blocks in the transmission block and the maximum number of code block groups allowed by the protocol in the transmission block.
  • At least one index of the code block group transmitted on the carrier satisfies a fifth preset condition.
  • the fifth preset condition includes at least one of the following:
  • the index of the code block group transmitted on the nth carrier is n, and the n is greater than or equal to 1 and less than or equal to the M;
  • the method also includes:
  • the sending the redundancy version identifier includes:
  • first downlink resource control information on a first carrier among at least one of the carriers, where the first downlink resource control information includes a redundancy version identifier corresponding to the first carrier; and/or,
  • Second downlink resource control information on at least one of the carriers, where the second downlink resource control information includes a redundancy version identifier corresponding to at least one of the carriers.
  • the method also includes:
  • the transmission mode indication parameter is carried in a system message; and/or,
  • the transmission mode indication parameter is carried in the first radio resource control signaling.
  • the method also includes:
  • the second radio resource control signaling includes an aggregation factor, and the number of consecutive retransmissions is the number indicated by the aggregation factor; and/or,
  • the aggregation factor is not included in the second radio resource control signaling, and the number of consecutive retransmissions is 1.
  • the present application also provides a communication system, including:
  • a terminal device for performing the method described in any one of the first aspect to the second aspect
  • a network device configured to execute the method described in any one of the third aspect.
  • the present application also provides a communication device, including: a memory and a processor;
  • the memory is used to store program instructions
  • the processor is configured to invoke program instructions in the memory to execute the method according to any one of the first aspect to the third aspect.
  • the present application also provides a computer-readable storage medium, on which a computer program is stored; when the computer program is executed, the method described in any one of the above items is implemented.
  • the present application also provides a computer program product, where the computer program product includes a computer program; when the computer program is executed, the method described in any one of the above items is implemented.
  • the transmission method, communication device and storage medium provided by the present application firstly determine the transmission mode of the transmission block, and then transmit the transmission block on the carrier according to the transmission mode.
  • the transmission block can be transmitted on the carrier through the complete transmission method; when the number of carriers is at least two, and at least two carriers are carriers under the same logical cell, the transmission block can be transmitted through the complete transmission method Or transmit the transport block on the carrier in a distributed transmission manner, thereby realizing the transmission of the transport block on the carrier.
  • FIG. 1 is a schematic diagram of a hardware structure of a terminal device provided in an embodiment of the present application
  • FIG. 2 is a system architecture diagram of a communication network provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a hardware structure of a controller provided by the present application.
  • FIG. 4 is a schematic diagram of a hardware structure of a network node provided by the present application.
  • FIG. 5 is a schematic diagram of a hardware structure of a network node provided by the present application.
  • FIG. 6 is a schematic diagram of a hardware structure of a controller provided by the present application.
  • FIG. 7 is a schematic diagram of a hardware structure of a network node provided by the present application.
  • FIG. 8 is a signaling schematic diagram 1 of a transmission method provided by an embodiment of the present application.
  • FIG. 9 is a second signaling schematic diagram of the transmission method provided by the embodiment of the present application.
  • FIG. 10 is a first schematic diagram of transmission block transmission provided by the embodiment of the present application.
  • FIG. 11 is a second schematic diagram of transmission block transmission provided by the embodiment of the present application.
  • FIG. 12 is a third schematic diagram of transmission block transmission provided by the embodiment of the present application.
  • FIG. 13 is a fourth schematic diagram of transmission block transmission provided by the embodiment of the present application.
  • FIG. 14 is a fifth schematic diagram of transmission block transmission provided by the embodiment of the present application.
  • FIG. 15 is a sixth schematic diagram of transmission block transmission provided by the embodiment of the present application.
  • FIG. 16 is a seventh schematic diagram of transmission block transmission provided by the embodiment of the present application.
  • FIG. 17 is a third signaling schematic diagram of the transmission method provided by the embodiment of the present application.
  • FIG. 18 is a fourth signaling schematic diagram of the transmission method provided by the embodiment of the present application.
  • FIG. 19 is a schematic diagram 5 of the signaling of the transmission method provided by the embodiment of the present application.
  • FIG. 20 is a sixth schematic diagram of signaling of the transmission method provided by the embodiment of the present application.
  • FIG. 21 is a schematic structural diagram of a transmission device provided by an embodiment of the present application.
  • FIG. 22 is a schematic structural diagram of a transmission device provided by an embodiment of the present application.
  • FIG. 23 is a schematic structural diagram of a transmission device provided by an embodiment of the present application.
  • FIG. 24 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • first, second, third, etc. may be used herein to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of this document, first information may also be called second information, and similarly, second information may also be called first information.
  • first information may also be called second information, and similarly, second information may also be called first information.
  • second information may also be called first information.
  • the word “if” as used herein may be interpreted as “at” or “when” or “in response to a determination”.
  • the singular forms "a”, “an” and “the” are intended to include the plural forms as well, unless the context indicates otherwise.
  • A, B, C means “any of the following: A; B; C; A and B; A and C; B and C; A and B and C
  • A, B or C or "A, B and/or C” means "any of the following: A; B; C; A and B; A and C; B and C; A and B and C”. Exceptions to this definition will only arise when combinations of elements, functions, steps or operations are inherently mutually exclusive in some way.
  • the words “if”, “if” as used herein may be interpreted as “at” or “when” or “in response to determining” or “in response to detecting”.
  • the phrases “if determined” or “if detected (the stated condition or event)” could be interpreted as “when determined” or “in response to the determination” or “when detected (the stated condition or event) )” or “in response to detection of (a stated condition or event)”.
  • step codes such as S1 and S2 are used, the purpose of which is to express the corresponding content more clearly and concisely, and does not constitute a substantive limitation on the order.
  • S2 will be executed first and then S1, etc., but these should be within the protection scope of this application.
  • the terminal device in this application may be an intelligent terminal, and the intelligent terminal may be implemented in various forms.
  • the smart terminals described in this application may include mobile phones, tablet computers, notebook computers, palmtop computers, personal digital assistants (Personal Digital Assistant, PDA), portable media players (Portable Media Player, PMP), navigation devices, Smart terminals such as wearable devices, smart bracelets, and pedometers, as well as fixed terminals such as digital TVs and desktop computers.
  • PDA Personal Digital Assistant
  • PMP portable media players
  • navigation devices Smart terminals such as wearable devices, smart bracelets, and pedometers
  • Smart terminals such as wearable devices, smart bracelets, and pedometers
  • fixed terminals such as digital TVs and desktop computers.
  • terminal equipment will be taken as an example, and those skilled in the art will understand that, in addition to elements specially used for mobile purposes, the configuration according to the embodiments of the present application can also be applied to fixed-type terminals.
  • FIG. 1 is a schematic diagram of the hardware structure of a terminal device implementing various embodiments of the present application.
  • the terminal device 100 may include: an RF (Radio Frequency, radio frequency) unit 101, a WiFi module 102, an audio output unit 103, an A /V (audio/video) input unit 104, sensor 105, display unit 106, user input unit 107, interface unit 108, memory 109, processor 110, and power supply 111 and other components.
  • RF Radio Frequency, radio frequency
  • the radio frequency unit 101 can be used for sending and receiving information or receiving and sending signals during a call.
  • the radio frequency unit 101 can be processed by the processor 110; in addition, the uplink data can be sent to the base station.
  • the radio frequency unit 101 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 101 can also communicate with the network and other devices through wireless communication.
  • the above wireless communication can use any communication standard or protocol, including but not limited to GSM (Global System of Mobile communication, Global System for Mobile Communications), GPRS (General Packet Radio Service, General Packet Radio Service), CDMA2000 (Code Division Multiple Access 2000 , Code Division Multiple Access 2000), WCDMA (Wideband Code Division Multiple Access, Wideband Code Division Multiple Access), TD-SCDMA (Time Division-Synchronous Code Division Multiple Access, Time Division Synchronous Code Division Multiple Access), FDD-LTE (Frequency Division Duplexing-Long Term Evolution, frequency division duplex long-term evolution), TDD-LTE (Time Division Duplexing-Long Term Evolution, time-division duplex long-term evolution) and 5G, etc.
  • GSM Global System of Mobile communication, Global System for Mobile Communications
  • GPRS General Packet Radio Service
  • CDMA2000 Code Division Multiple Access 2000
  • WCDMA Wideband Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access, Time Division Synchro
  • WiFi is a short-distance wireless transmission technology.
  • the terminal device can help users send and receive emails, browse web pages, and access streaming media, etc. It provides users with wireless broadband Internet access.
  • FIG. 1 shows the WiFi module 102, it can be understood that it is not a necessary component of the terminal device, and can be completely omitted as required without changing the essence of the invention.
  • the audio output unit 103 can store the audio received by the radio frequency unit 101 or the WiFi module 102 or stored in the memory 109 when the terminal device 100 is in a call signal receiving mode, a call mode, a recording mode, a voice recognition mode, a broadcast receiving mode, or the like.
  • the audio data is converted into an audio signal and output as sound.
  • the audio output unit 103 may also provide audio output related to a specific function performed by the terminal device 100 (eg, call signal reception sound, message reception sound, etc.).
  • the audio output unit 103 may include a speaker, a buzzer, and the like.
  • the A/V input unit 104 is used to receive audio or video signals.
  • the A/V input unit 104 may include a graphics processing unit (Graphics Processing Unit, GPU) 1041 and a microphone 1042, and the graphics processing unit 1041 is used for still pictures or The image data of the video is processed.
  • the processed image frames may be displayed on the display unit 106 .
  • the image frames processed by the graphics processor 1041 may be stored in the memory 109 (or other storage media) or sent via the radio frequency unit 101 or the WiFi module 102 .
  • the microphone 1042 can receive sound (audio data) via the microphone 1042 in a phone call mode, a recording mode, a voice recognition mode, and the like operating modes, and can process such sound as audio data.
  • the processed audio (voice) data can be converted into a format transmittable to a mobile communication base station via the radio frequency unit 101 for output in case of a phone call mode.
  • the microphone 1042 may implement various types of noise cancellation (or suppression) algorithms to cancel (or suppress) noise or interference generated in the process of receiving and transmitting audio signals.
  • the terminal device 100 also includes at least one sensor 105, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 1061 according to the brightness of the ambient light, and the proximity sensor can turn off the display when the terminal device 100 moves to the ear. panel 1061 and/or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (generally three axes), and can detect the magnitude and direction of gravity when it is stationary, and can be used for applications that recognize the posture of mobile phones (such as horizontal and vertical screen switching, related Games, magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tap), etc.; as for mobile phones, fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, Other sensors such as thermometers and infrared sensors will not be described in detail here.
  • the display unit 106 is used to display information input by the user or information provided to the user.
  • the display unit 106 may include a display panel 1061, and the display panel 1061 may be configured in the form of a liquid crystal display (Liquid Crystal Display, LCD), an organic light-emitting diode (Organic Light-Emitting Diode, OLED), or the like.
  • LCD Liquid Crystal Display
  • OLED Organic Light-Emitting Diode
  • the user input unit 107 can be used to receive input numbers or character information, and generate key signal input related to user settings and function control of the terminal device.
  • the user input unit 107 may include a touch panel 1071 and other input devices 1072 .
  • the touch panel 1071 also referred to as a touch screen, can collect touch operations of the user on or near it (for example, the user uses any suitable object or accessory such as a finger or a stylus on the touch panel 1071 or near the touch panel 1071). operation), and drive the corresponding connection device according to the preset program.
  • the touch panel 1071 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch orientation, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device and converts it into contact coordinates , and then sent to the processor 110, and can receive the command sent by the processor 110 and execute it.
  • the touch panel 1071 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 107 may also include other input devices 1072.
  • other input devices 1072 may include, but are not limited to, one or more of physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, etc., which are not specifically described here. limited.
  • the touch panel 1071 may cover the display panel 1061.
  • the touch panel 1071 detects a touch operation on or near it, it transmits to the processor 110 to determine the type of the touch event, and then the processor 110 determines the touch event according to the touch event.
  • the corresponding visual output is provided on the display panel 1061 .
  • the touch panel 1071 and the display panel 1061 are used as two independent components to realize the input and output functions of the terminal device, in some embodiments, the touch panel 1071 and the display panel 1061 can be integrated
  • the implementation of the input and output functions of the terminal device is not specifically limited here.
  • the interface unit 108 serves as an interface through which at least one external device can be connected with the terminal device 100 .
  • an external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) ports, video I/O ports, headphone ports, and more.
  • the interface unit 108 can be used to receive input from an external device (for example, data information, power, etc.) transfer data between devices.
  • the memory 109 can be used to store software programs as well as various data.
  • the memory 109 can mainly include a storage program area and a storage data area.
  • the storage program area can store an operating system, at least one function required application program (such as a sound playback function, an image playback function, etc.) etc.
  • the storage data area can be Store data (such as audio data, phone book, etc.) created according to the use of the mobile phone.
  • the memory 109 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage devices.
  • the processor 110 is the control center of the terminal equipment, uses various interfaces and lines to connect various parts of the entire terminal equipment, runs or executes software programs and/or modules stored in the memory 109, and calls data stored in the memory 109 , execute various functions of the terminal equipment and process data, so as to monitor the terminal equipment as a whole.
  • the processor 110 may include one or more processing units; preferably, the processor 110 may integrate an application processor and a modem processor.
  • the application processor mainly processes operating systems, user interfaces, and application programs, etc.
  • the demodulation processor mainly handles wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 110 .
  • the terminal device 100 can also include a power supply 111 (such as a battery) for supplying power to various components.
  • a power supply 111 (such as a battery) for supplying power to various components.
  • the power supply 111 can be logically connected to the processor 110 through a power management system, so as to manage charging, discharging, and power consumption through the power management system. and other functions.
  • the terminal device 100 may also include a Bluetooth module, etc., which will not be repeated here.
  • the following describes the communication network system on which the terminal device of the present application is based.
  • FIG. 2 is a structure diagram of a communication network system provided by an embodiment of the present application.
  • the communication network system is an LTE system of general mobile communication technology.
  • 201 E-UTRAN (Evolved UMTS Terrestrial Radio Access Network, Evolved UMTS Terrestrial Radio Access Network) 202, EPC (Evolved Packet Core, Evolved Packet Core Network) 203 and the operator's IP service 204.
  • E-UTRAN Evolved UMTS Terrestrial Radio Access Network
  • EPC Evolved Packet Core, Evolved Packet Core Network
  • the UE 201 may be the above-mentioned terminal device 100, which will not be repeated here.
  • E-UTRAN 202 includes eNodeB 2021 and other eNodeB 2022 and so on.
  • the eNodeB2021 can be connected to other eNodeB2022 through a backhaul (for example, X2 interface), the eNodeB2021 is connected to the EPC203, and the eNodeB2021 can provide access from the UE 201 to the EPC 203.
  • a backhaul for example, X2 interface
  • EPC203 may include MME (Mobility Management Entity, Mobility Management Entity) 2031, HSS (Home Subscriber Server, Home Subscriber Server) 2032, other MME2033, SGW (Serving Gate Way, Serving Gateway) 2034, PGW (PDN Gate Way, packet data Network Gateway) 2035 and PCRF (Policy and Charging Rules Function, Policy and Charging Functional Entity) 2036, etc.
  • MME2031 is a control node that processes signaling between UE201 and EPC203, and provides bearer and connection management.
  • HSS2032 is used to provide some registers to manage functions such as the home location register (not shown in the figure), and store some user-specific information about service features and data rates.
  • PCRF2036 is the policy and charging control policy decision point of business data flow and IP bearer resources, it is the policy and charging execution functional unit (not shown) Select and provide available policy and charging control decisions.
  • the IP service 204 may include Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) or other IP services.
  • IMS IP Multimedia Subsystem, IP Multimedia Subsystem
  • LTE system is used as an example above, those skilled in the art should know that this application is not only applicable to the LTE system, but also applicable to other wireless communication systems, such as GSM, CDMA2000, WCDMA, TD-SCDMA and future new wireless communication systems.
  • the network system (such as 5G), etc., is not limited here.
  • FIG. 3 is a schematic diagram of a hardware structure of a controller provided by the present application.
  • the controller 140 includes: a memory 1401 and a processor 1402, the memory 1401 is used to store program instructions, and the processor 1402 is used to call the program instructions in the memory 1401 to execute the steps performed by the controller in the first method embodiment above, and its implementation principle and beneficial effects are similar, and will not be repeated here.
  • the foregoing controller further includes a communication interface 1403 , and the communication interface 1403 may be connected to the processor 1402 through a bus 1404 .
  • the processor 1402 can control the communication interface 1403 to implement the receiving and sending functions of the controller 140 .
  • FIG. 4 is a schematic diagram of a hardware structure of a network node provided in the present application.
  • the network node 150 includes: a memory 1501 and a processor 1502, the memory 1501 is used to store program instructions, and the processor 1502 is used to call the program instructions in the memory 1501 to execute the steps performed by the first node in the first method embodiment above, and its implementation principle and beneficial effects are similar, and will not be repeated here.
  • the foregoing network node 150 further includes a communication interface 1503 , where the communication interface 1503 may be connected to the processor 1502 through a bus 1504 .
  • the processor 1502 can control the communication interface 1503 to realize the functions of receiving and sending of the network node 150 .
  • FIG. 5 is a schematic diagram of a hardware structure of a network node provided in the present application.
  • the network node 160 includes: a memory 1601 and a processor 1602, the memory 1601 is used to store program instructions, and the processor 1602 is used to call the program instructions in the memory 1601 to execute the steps performed by the intermediate node and the tail node in the first method embodiment above, The implementation principles and beneficial effects are similar, and will not be repeated here.
  • the foregoing network node 160 further includes a communication interface 1603 , where the communication interface 1603 may be connected to the processor 1602 through a bus 1604 .
  • the processor 1602 can control the communication interface 1603 to realize the functions of receiving and sending of the network node 160 .
  • FIG. 6 is a schematic diagram of a hardware structure of a controller provided by the present application.
  • the controller 170 includes: a memory 1701 and a processor 1702, the memory 1701 is used to store program instructions, and the processor 1702 is used to call the program instructions in the memory 1701 to execute the steps performed by the controller in the second method embodiment above, and its implementation principle and beneficial effects are similar, and will not be repeated here.
  • the above-mentioned controller 170 further includes a communication interface 1703 , and the communication interface 1703 may be connected to the processor 1702 through a bus 1704 .
  • the processor 1702 can control the communication interface 1703 to implement the receiving and sending functions of the controller 170 .
  • FIG. 7 is a schematic diagram of a hardware structure of a network node provided by the present application.
  • the network node 180 includes: a memory 1801 and a processor 1802, the memory 1801 is used to store program instructions, and the processor 1802 is used to invoke the program instructions in the memory 1801 to execute the steps performed by the head node in the second method embodiment above, and its implementation principle and beneficial effects are similar, and will not be repeated here.
  • the foregoing network node 180 further includes a communication interface 1803 , where the communication interface 1803 may be connected to the processor 1802 through a bus 1804 .
  • the processor 1802 can control the communication interface 1803 to realize the functions of receiving and sending of the network node 180 .
  • the above-mentioned integrated modules implemented in the form of software function modules can be stored in a computer-readable storage medium.
  • the above-mentioned software function modules are stored in a storage medium, and include several instructions to enable a computer device (which may be a personal computer, server, or network device, etc.) or a processor (English: processor) to execute the methods of the various embodiments of the present application. partial steps.
  • a computer program product includes one or more computer instructions.
  • a computer can be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, computer instructions may be transmitted from a website site, computer, server or data center by wire (such as Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server, a data center, etc. integrated with one or more available media. Available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, solid state disk, SSD), etc.
  • Fig. 8 is a signaling schematic diagram 1 of the transmission method provided by the embodiment of the present application. As shown in Fig. 8, the method includes:
  • the network device In response to the carrier meeting the preset condition, the network device sends the transport block on the carrier according to the transport mode of the transport block.
  • the number of carriers may be one or more.
  • the transmission mode of the transport block includes a complete transmission mode and a distributed transmission mode.
  • the complete transmission mode means that for any carrier, the transport block is completely transmitted on the carrier.
  • the opposite of the complete transmission method is the decentralized transmission method.
  • the decentralized transmission method refers to that for any carrier, the transmission block only transmits a part of the code block group (Code Block Group, CBG) of the transmission block on the carrier, that is, using
  • CBG Code Block Group
  • a transmission block is divided into at least one code block group, and different code block groups of the transmission block are transmitted on different carriers, thereby realizing the transmission of all code block groups of the transmission block.
  • the transport block can only be transmitted in a complete transmission mode on this carrier; when the number of carriers is at least two, the transport block can be transmitted in a complete transmission mode on at least one carrier, or It is transmitted in a distributed transmission manner on at least one carrier.
  • the network device can transmit the transport block to the terminal device on the carrier according to the transmission mode of the transport block, that is, perform downlink service PDSCH transmission.
  • the preset condition includes that the number of carriers is at least two, and/or, the carriers are carriers under the same logical cell.
  • the network device may send the transport block on the at least two carriers.
  • the at least two carriers are carriers under the same logical cell.
  • the network device sends the transmission block to the terminal device on the at least two carriers, it may select a complete transmission mode or a decentralized transmission mode for transmission.
  • the terminal device determines the transmission mode of the transmission block.
  • the terminal device Since the transmission mode of the transmission block may be a complete transmission mode or a decentralized transmission mode, the terminal device must first determine the transmission mode of the transmission block before receiving the transmission block.
  • the terminal device determines the transmission manner of the transmission block in response to the carrier meeting the preset condition.
  • the preset condition includes that the number of carriers is at least two, and/or, the carriers are carriers under the same logical cell.
  • the network device sends a transmission mode indication parameter to the terminal device, where the transmission mode indication parameter is used to indicate a transmission mode of the transport block.
  • the transmission mode indication parameter is carried in the system message, and/or, the transmission mode indication parameter is carried in the first radio resource control signaling.
  • the network device sends the system message to the terminal device, and the system message includes the transmission mode indication parameter.
  • the terminal device obtains the transmission mode indication parameter according to the system message, and then determines the transmission mode of the transmission block according to the transmission mode indication parameter.
  • the system message may be a system information block (System Information Block, SIB).
  • SIB System Information Block
  • the network device when the transmission mode indication parameter is carried in the first radio resource control signaling, the network device sends the first radio resource control signaling to the terminal device, where the first radio resource control signaling includes the transmission mode indication parameter.
  • the terminal device After receiving the first radio resource control signaling from the network device, the terminal device acquires the transmission mode indication parameter according to the first radio resource control signaling, and then determines the transmission mode of the transmission block according to the transmission mode indication parameter.
  • the first radio resource control signaling may be a radio resource control (Radio Resource Control) RRC message.
  • Radio Resource Control Radio Resource Control
  • the terminal device receives the transmission block on the carrier according to the transmission mode.
  • the terminal device After the terminal device determines the transmission mode of the transmission block, it can receive the transmission block sent by the network device on the carrier.
  • the terminal device determines a redundancy version of the transport block transmitted on at least one carrier, and then receives the transport block on the carrier according to the redundancy version, the transmission manner of the transport block, and the number of consecutive retransmissions of the transport block.
  • the redundant version is used to realize incremental redundancy Hybrid Automatic Repeat reQuest (HARQ) transmission.
  • the channel-coded data of the transmission block includes three sections. The first section can be considered as basic data, and the remaining two sections For redundant data, these three pieces of data are placed in a buffer in turn, and the redundant version indicates where to fetch data from this buffer.
  • the network device may send the redundancy version identifier of the carrier to the terminal device on the carrier, and then the terminal device determines the redundancy version of the transport block transmitted on the carrier according to the redundancy version identifier.
  • the network device may send the redundancy version identifier of the first carrier in the at least one carrier to the terminal device.
  • the terminal device After receiving the redundancy version identifier of the first carrier in the at least one carrier, the terminal device determines the redundancy of the transmission block transmitted on the at least one carrier according to the redundancy version identifier of the first carrier, the number of consecutive retransmissions, and the transmission mode. remaining version.
  • the terminal device can receive the redundant The rest of the version identifiers determine the redundancy versions of the transport block transmitted on the carrier 0, carrier 2 and carrier 4 according to the redundancy version identifier of the carrier 0, the number of consecutive retransmissions, and the transmission mode.
  • carrier 0 is used as an example for introduction, and the terminal device may receive the redundancy version identifier of the first carrier through carrier 0.
  • the first carrier may also be carrier 2 or carrier 4.
  • the terminal device may receive the redundancy version identifier of the first carrier through carrier 2, and when the first The same applies when one carrier is carrier 4.
  • the redundancy version identifier of the first carrier is carried in the first downlink resource control information.
  • the network device sends the first downlink resource control information to the terminal device on the first carrier, and the terminal device obtains the first downlink resource control information according to the first downlink resource control information after receiving the first downlink resource control information on the first carrier. Redundancy version identifier of a carrier.
  • the network device may send the redundancy version identifier of at least one carrier to the terminal device.
  • the terminal device determines the redundancy version of the transport block transmitted on the at least one carrier according to the redundancy version identifier of the at least one carrier. For example, when the number of carriers constituting a logical cell is three, namely carrier 0, carrier 2 and carrier 4, the terminal device may receive the redundancy version identifiers of carrier 0, carrier 2 and carrier 4.
  • the redundancy version identification of carrier 0 determines the redundancy version of the transport block transmitted on carrier 0; according to the redundancy version identification of carrier 2, determine the redundancy version of the transport block transmitted on carrier 2; according to the redundancy version of carrier 4 Version identifier, which determines the redundancy version of the transport block transmitted on carrier 4.
  • the redundancy version identifier of at least one carrier is carried in the second downlink resource control information.
  • the network device sends second downlink resource control information to the terminal device on at least one carrier, and after receiving the second downlink resource control information on at least one carrier, the terminal device acquires the redundancy version of at least one carrier according to the second downlink resource control information logo.
  • FIG. 9 is a second signaling schematic diagram of the transmission method provided by the embodiment of the present application. As shown in FIG. 9, the method includes:
  • the terminal device determines a transmission mode of the transmission block.
  • the number of carriers may be one or more.
  • the transmission mode of the transport block includes a complete transmission mode and a distributed transmission mode.
  • the complete transmission mode means that for any carrier, the transport block is completely transmitted on the carrier.
  • the opposite of the complete transmission method is the decentralized transmission method.
  • the decentralized transmission method means that for any carrier, the transmission block only transmits a part of the code block group of the transmission block on the carrier, that is, when the distributed transmission method is used, one transmission
  • the block will be divided into at least one code block group, and different code block groups of the transmission block are transmitted on different carriers, thereby realizing the transmission of all code block groups of the transmission block.
  • the transport block can only be transmitted in a complete transmission mode on this carrier; when the number of carriers is at least two, the transport block can be transmitted in a complete transmission mode on at least one carrier, or It is transmitted in a distributed transmission manner on at least one carrier.
  • the terminal device Since the transmission mode of the transmission block may be a complete transmission mode or a decentralized transmission mode, the terminal device must first determine the transmission mode of the transmission block before receiving the transmission block.
  • the terminal device determines the transmission manner of the transmission block in response to the carrier meeting the preset condition.
  • the preset condition includes that the number of carriers is at least two, and/or, the carriers are carriers under the same logical cell.
  • the network device sends a transmission mode indication parameter to the terminal device, where the transmission mode indication parameter is used to indicate a transmission mode of the transport block.
  • the transmission mode indication parameter is carried in the system message, and/or, the transmission mode indication parameter is carried in the first radio resource control signaling.
  • the network device sends the system message to the terminal device, and the system message includes the transmission mode indication parameter.
  • the terminal device obtains the transmission mode indication parameter according to the system message, and then determines the transmission mode of the transmission block according to the transmission mode indication parameter.
  • the system message may be an SIB.
  • the network device when the transmission mode indication parameter is carried in the first radio resource control signaling, the network device sends the first radio resource control signaling to the terminal device, where the first radio resource control signaling includes the transmission mode indication parameter.
  • the terminal device After receiving the first radio resource control signaling from the network device, the terminal device acquires the transmission mode indication parameter according to the first radio resource control signaling, and then determines the transmission mode of the transmission block according to the transmission mode indication parameter.
  • the first radio resource control signaling may be an RRC message.
  • the terminal device sends the transport block on the carrier according to the transmission mode.
  • the terminal device After the terminal device determines the transmission mode of the transport block, it can send the transport block to the network device on the carrier.
  • the terminal device determines a redundancy version of the transport block transmitted on at least one carrier, and then sends the transport block on the carrier according to the redundancy version, the transmission manner of the transport block, and the number of consecutive retransmissions of the transport block.
  • the network device may send the redundancy version identifier of the carrier to the terminal device on the carrier, and then the terminal device determines the redundancy version of the transport block transmitted on the carrier according to the redundancy version identifier.
  • the network device may send the redundancy version identifier of the first carrier in the at least one carrier to the terminal device.
  • the terminal device After receiving the redundancy version identifier of the first carrier in the at least one carrier, the terminal device determines the redundancy of the transmission block transmitted on the at least one carrier according to the redundancy version identifier of the first carrier, the number of consecutive retransmissions, and the transmission mode. remaining version.
  • the terminal device can receive the redundant The rest of the version identifiers determine the redundancy versions of the transport block transmitted on the carrier 0, carrier 2 and carrier 4 according to the redundancy version identifier of the carrier 0, the number of consecutive retransmissions, and the transmission mode.
  • carrier 0 is used as an example for introduction, and the terminal device may receive the redundancy version identifier of the first carrier through carrier 0.
  • the first carrier may also be carrier 2 or carrier 4.
  • the terminal device may receive the redundancy version identifier of the first carrier through carrier 2, and when the first The same applies when one carrier is carrier 4.
  • the redundancy version identifier of the first carrier is carried in the first downlink resource control information.
  • the network device sends the first downlink resource control information to the terminal device on the first carrier, and the terminal device obtains the first downlink resource control information according to the first downlink resource control information after receiving the first downlink resource control information on the first carrier. Redundancy version identifier of a carrier.
  • the network device may send the redundancy version identifier of at least one carrier to the terminal device.
  • the terminal device determines the redundancy version of the transport block transmitted on the at least one carrier according to the redundancy version identifier of the at least one carrier. For example, when the number of carriers constituting a logical cell is three, namely carrier 0, carrier 2 and carrier 4, the terminal device may receive the redundancy version identifiers of carrier 0, carrier 2 and carrier 4.
  • the redundancy version identification of carrier 0 determines the redundancy version of the transport block transmitted on carrier 0; according to the redundancy version identification of carrier 2, determine the redundancy version of the transport block transmitted on carrier 2; according to the redundancy version of carrier 4 Version identifier, which determines the redundancy version of the transport block transmitted on carrier 4.
  • the redundancy version identifier of at least one carrier is carried in the second downlink resource control information.
  • the network device sends second downlink resource control information to the terminal device on at least one carrier, and after receiving the second downlink resource control information on at least one carrier, the terminal device acquires the redundancy version of at least one carrier according to the second downlink resource control information logo.
  • the network device receives the transport block on the carrier according to the transport mode of the transport block.
  • the terminal device When the carrier satisfies the preset condition, the terminal device transmits the transport block to the network device on the carrier according to the transmission mode of the transport block, that is, performs uplink service PUSCH transmission.
  • the preset condition includes that the number of carriers is at least two, and/or, the carriers are carriers under the same logical cell.
  • the network device can receive the transport block on the at least two carriers.
  • the at least two carriers are carriers under the same logic cell.
  • the network device may receive the transport block according to the transmission manner of the transport block.
  • transmitting a certain transport block on a carrier may mean sending the transport block on the carrier, or may mean receiving the transport block on the carrier.
  • the terminal device transmits the transport block on the carrier means receiving the transport block on the carrier
  • the network device transmits the transport block on the carrier means sending the transport block on the carrier (as shown in Figure 8);
  • the terminal device transmits the transport block on the carrier means that the transport block is sent on the carrier, and
  • the network device transmits the transport block on the carrier means that the transport block is received on the carrier (as shown in Figure 9).
  • the transmission method of the present application can be applied to both downlink service PDSCH transmission and uplink service PUSCH transmission.
  • the PDSCH transmission of the downlink service is taken as an example for introduction. It can be understood that the solutions in the following embodiments can also be used for the PUSCH transmission of the uplink service.
  • the redundancy versions transmitted by the transport block on at least one carrier may be the same or different.
  • the redundancy versions of the transport blocks transmitted on at least one carrier are different.
  • the redundancy versions of transmission blocks transmitted on at least 2 of the 3 carriers are different.
  • the redundancy versions of the transmission blocks transmitted on at least one carrier are the same.
  • the redundancy versions of the transmission blocks transmitted on at least 2 of the 3 carriers are the same.
  • the redundancy versions of the transmission blocks transmitted on at least one carrier are different.
  • the redundancy versions of transmission blocks transmitted on at least two of the three carriers are different.
  • the transmission block The redundancy version transmitted on at least one carrier satisfies a first preset condition.
  • the redundancy versions of the transport block transmitted on at least one carrier are different, and at this time, the first preset condition includes at least one of the following:
  • rv id is the redundancy version identifier of the first carrier in at least one carrier
  • mod is a modulo operation
  • n is a positive integer greater than or equal to 0 and less than N
  • N is the number of carriers
  • rv1 is the transmission block in Redundant version of the transmission on carrier n.
  • the first preset condition above can be expressed in the form of Table 1:
  • the network device may send the redundancy version identifier of the first carrier among the N carriers, that is, rv id , to the terminal device. Then, according to the redundancy version identifier rv id of the first carrier, the terminal device determines the redundancy version of the transport block transmitted on each carrier. In another implementation manner, the network device may send the redundancy version identifiers of the N carriers to the terminal device, and then the terminal device determines the redundancy version of the transmission block transmitted on each carrier according to the redundancy version identifier of each carrier.
  • the network device may send the transport block to the terminal device on each carrier according to the redundancy version of the transport block transmitted on at least one carrier.
  • the terminal device may receive the transport block sent by the network device on each carrier according to the redundancy version of the transport block transmitted on at least one carrier.
  • Figure 10 is a first schematic diagram of transmission block transmission provided by the embodiment of the present application.
  • the redundancy versions of the transport blocks transmitted on at least one carrier are the same, and in this case, the first preset condition is that the redundancy versions of the transport blocks transmitted on at least two carriers are the same.
  • the carriers that constitute a logical cell include carrier 0, carrier 1, and carrier 2, then the redundancy versions of the transport blocks transmitted on carrier 0 and carrier 1 can be the same, and the redundancy versions of the transport blocks transmitted on carrier 2 are the same as those transmitted on carrier 0.
  • the redundancy version of the transport block transmitted on carrier 1 and carrier 2 is the same; for example, the redundancy version of the transport block transmitted on carrier 0 and carrier 2 is the same; for example, the transmission
  • the redundancy versions of the blocks transmitted on Carrier 0, Carrier 1 and Carrier 2 are all the same.
  • a transmission block is repeatedly transmitted on different carriers on at least two carriers.
  • transmitting the transport block on each carrier on at least two carriers can improve the probability of successful transmission of the transport block, thereby reducing the HARQ repetition rate of the transport block. probability of transmission.
  • the transmission scheme of the transmission block when the number of consecutive retransmissions is 1 in the complete transmission mode is introduced, and the transmission scheme when the number of consecutive retransmissions is greater than 1 will be introduced below.
  • N is a positive integer greater than or equal to 2.
  • K is greater than 1 (that is, the aggregation factor included in the second radio resource control signaling, and the aggregation factor pdsch-AggregationFactor is greater than 1), according to the relationship between N and K, it can be divided into two cases.
  • the transmission block can implement K repeated transmissions only through one transmission time slot.
  • the redundant version of the transport block transmitted on at least one carrier satisfies the second preset condition.
  • the second preset condition includes at least one of the following:
  • rv id is the redundancy version identifier of the first carrier in at least one carrier, mod is a modulo operation, and rv2 is the redundancy version of the transport block transmitted on the carrier n;
  • n is a positive integer greater than or equal to 0 and less than N, or n is a positive integer greater than or equal to 0 and less than K.
  • the second preset condition can be expressed in the form of Table 2:
  • K retransmissions can be achieved through the first K carriers, and from the K+1th carrier to the Nth carrier can be used to retransmit the transmission block, and may not be used to retransmit the transport block, for example, may be used to transmit other transport blocks.
  • the redundant version of the transport block transmitted on the K+1-th carrier to the N-th carrier can adopt the rules in Table 2 (that is, satisfy the (2) preset conditions), or the rules in Table 2 may not be used, for example, the redundancy version of the transmission block transmitted on the K+1th carrier to the Nth carrier may be customized.
  • an implementation manner is to transmit the transport block on N carriers according to the redundancy version of the transport block transmitted on N carriers, and at this time, n in the second preset condition is greater than or equal to 0 and a positive integer less than N.
  • the K+1-th carrier to the N-th carrier is also used to retransmit the transport block, and the redundancy version used for transmission from the K+1-th carrier to the N-th carrier satisfies the rules shown in Table 2 .
  • Figure 11 is the second schematic diagram of transmission block transmission provided by the embodiment of the present application.
  • the network device can send the TBO to the terminal device on the three carriers, and the redundant version of the TBO transmitted on each carrier is shown in FIG. 11 .
  • rv id 2
  • the network device may also send the redundancy version identifier of each carrier to the terminal device on each carrier, and the terminal device determines the redundancy version of the transmission block transmitted on the corresponding carrier according to the redundancy version identifier of each carrier. No matter which one of the above two redundancy version indication modes is selected by the network device, the redundancy version transmitted by the transport block on the carrier satisfies the above second preset condition.
  • K or N carriers are used to realize K transmissions of transmission blocks, so that the number of repeated transmissions of a transmission block is evenly divided into different carriers, thereby reducing the length of time for repeated transmissions of PDSCH on one carrier.
  • another implementation manner is to transmit the transport block on the first K carriers according to the redundancy version of the transport block transmitted on the first K carriers, and at this time, n in the second preset condition is greater than Or a positive integer equal to 0 and less than K.
  • the K+1 th carrier to the N th carrier are not used for retransmission of the transport block.
  • the K+1 th carrier to the N th carrier may be used to transmit other transport blocks, or may not transmit any transport block, or may transmit any redundant version of the transport block.
  • Figure 12 is the third schematic diagram of transmission block transmission provided by the embodiment of the present application.
  • the network device can send the TBO to the terminal device on the two carriers, and the redundant version of the TBO transmitted on each carrier is shown in FIG. 12 .
  • Carrier 2 may not be used to transmit the transport block TBO, for example, may transmit other transport blocks, for example may not transmit any transport block, for example may also be used for transmitting the transport block TBO. As shown in FIG.
  • carrier 2 can be used to transmit TBx, and TBx can be TB0 or other transport blocks, and carrier 2 can also not transmit any transport block.
  • the redundancy version transmitted by TBO on carrier 2 may be any one of redundancy version 1, redundancy version 2, redundancy version 3, and redundancy version 0.
  • the transmission block can be transmitted K times through the first K carriers in one transmission time slot, so that the number of repeated transmissions of a transmission block can be evenly distributed to different carriers, thereby shortening the transmission time.
  • the duration of repeated transmission of PDSCH on one carrier is not limited to one carrier.
  • the first case in which the number of consecutive retransmissions is greater than 1 in the complete transmission mode is introduced, that is, the case where N is greater than or equal to K
  • the second case in which the number of consecutive retransmissions is greater than 1 in the complete transmission mode is introduced below , that is, the case where N is less than K.
  • the transmission block needs to pass transmission slots, Indicates that K/N is rounded up. For example, etc.
  • the redundant version of the transport block transmitted on at least one carrier satisfies the third preset condition.
  • the third preset condition includes at least one of the following:
  • rv id is the redundancy version identifier of the first carrier in at least one carrier
  • mod is a modulo operation
  • n is a positive integer greater than or equal to 0 and less than N
  • N is the number of carriers
  • rv3 is time slot i In, the redundant version of the transport block transmitted on carrier n;
  • n is a positive integer greater than or equal to 0 and less than N; when i is equal to , n is a positive integer greater than or equal to 0 and less than N, or n is greater than or equal to 0 and less than or equal to a positive integer, Indicates that K/N is rounded up, Indicates that K/N is rounded down.
  • the third preset condition can be expressed in the form of Table 3:
  • the Nth carrier that is, carrier (N-1)
  • the Nth carrier may be used to retransmit the transport block, or may not be used to retransmit the transport block, for example, may be used to transmit other transport blocks.
  • i is greater than or equal to 0 and less than or equal to 1 (ie )
  • the transmission block needs to be transmitted on 3 carriers, so that 6 retransmissions can be achieved on time slot 0 and time slot 1.
  • i is equal to 2 (ie )
  • the transmission block can only be preceded by transmission on carriers, that is, carrier 0 to carrier 1 (ie ) on the transmission.
  • the transport block may also transmit the transport block on N carriers.
  • the network device can send the redundancy version identifier of the first carrier among the N carriers to the terminal device, and the terminal device uses the first The redundancy version identifier of each carrier determines the redundancy version of the transport block transmitted on each carrier.
  • the network device may also send the redundancy version identifier of each carrier to the terminal device on each carrier, and the terminal device determines the redundancy version of the transmission block transmitted on each carrier according to the redundancy version identifier of each carrier. No matter which of the above two indication manners is selected by the network device, the redundancy version of the transport block transmitted on the carrier all satisfies the above third preset condition.
  • the network device sends the redundancy version identifier of the first carrier as an example for introduction.
  • one way of doing this is to target In any one of the transmission time slots, the transmission block is transmitted on N carriers according to the redundancy version of the transmission block transmitted on at least one carrier in the transmission time slot.
  • Figure 13 is a schematic diagram 4 of the transmission block transmission provided by the embodiment of the present application.
  • another implementation is to target the former In any one of the transmission slots, the transmission block is transmitted on N carriers according to the redundancy version of the transmission block transmitted on at least one carrier in the transmission slot; for the first transmission slots, according to the transmission block in the transmission slot, the transmission block in front The redundant version transmitted on the carriers, the first Transport blocks are transmitted on carriers.
  • on the second time slot on carrier 1 and on the carrier TB0 is not transmitted on the second time slot on 2.
  • carrier 1 and carrier 2 can be used to transmit other transport blocks or not transmit any transport blocks.
  • carrier 1 in the second time slot, can be used to transmit TBx, or not transmit any transport block, TBx can be TB0, or other transport blocks, and the redundant transmission of TBx on carrier 1
  • the remaining version can be any one of redundancy version 1, redundancy version 2, redundancy version 3, redundancy version 0;
  • carrier 2 on the second time slot, can be used to transmit TBy, or not transmit any transmission TBy can be TB0 or other transmission blocks, and the redundancy version transmitted by TBy on carrier 1 can be any one of redundancy version 1, redundancy version 2, redundancy version 3, and redundancy version 0 item.
  • N carriers When the number of consecutive retransmissions is greater than 1, K time slots are required to realize K transmissions on a single carrier.
  • N carriers can be used to realize the transmission block K times of transmission, so that the number of repeated transmissions of a transmission block is evenly distributed to different carriers, thereby reducing the length of time for repeated transmissions of the PDSCH on a carrier.
  • the transmission scheme of the transmission block when the transmission mode is the complete transmission mode is introduced, and the transmission scheme when the transmission mode is the decentralized transmission mode will be introduced below.
  • the terminal device may determine an index of a code block group transmitted on at least one carrier according to the number of code block groups included in the transmission block and the number of carriers.
  • the number of code block groups included in the transport block is the smaller value of the actual number of code blocks in the transport block and the maximum number of code block groups allowed by the protocol in the transport block.
  • At least one code block group of the transport block is transmitted on at least one carrier according to the redundancy version of the transport block transmitted on at least one carrier and the index of the code block group.
  • the transmission mode is a distributed transmission mode
  • the redundant version of the time slot i and the transmission block transmitted on at least one carrier satisfies the fourth preset condition.
  • the fourth preset condition includes at least one of the following:
  • rv id is the redundancy version identifier of the first carrier in at least one carrier
  • mod is a modulo operation
  • i is a positive integer greater than or equal to 0 and less than K
  • K is the number of consecutive retransmissions
  • rv4 is the time On slot i, the redundant version of the transport block transmitted on at least one carrier.
  • the fourth preset condition can be expressed in the form of Table 4:
  • the transmission block can be divided into at least one code block group for transmission, only one transmission of the transmission block can be realized in one transmission time slot. If the number of consecutive retransmissions is greater than 1, for example, when the number of consecutive retransmissions is K, K time slots are required to transmit the transmission block.
  • the redundancy version of the transmission block transmitted on the carrier in the time slot i is determined according to a fourth preset condition.
  • the index of the code block group transmitted on at least one carrier satisfies the fifth preset condition.
  • the fifth preset condition includes:
  • the index of the code block group transmitted on the carrier n is n, and n is greater than or equal to 0 and less than M;
  • Figure 15 is a sixth schematic diagram of transmission block transmission provided by the embodiment of the present application.
  • CBG 0 and CBG 1 constituting TB0 are transmitted on carrier 0.
  • Figure 16 is a schematic diagram of transmission block transmission provided by the embodiment of the present application VII.
  • the index of the code block group transmitted on carrier n is n, then CBG 0 constituting TB0 is transmitted on carrier 0, CBG 1 constituting TB0 is transmitted on carrier 1, and TB0 may not be transmitted on carrier 2, For example, it may be used for transmission of other TBs, for example, no transmission block may be transmitted.
  • carrier 2 can be used to transmit CBGx, or not transmit any code block group, and CBGx can be CBG0 or CBG1 forming TB0, or CBG forming other transport blocks.
  • the solution of the embodiment of the present application can disperse a transmission block with an excessively large number of bits for transmission on different carriers, thereby reducing the transmission code rate on each carrier, and further improving the demodulation of the code block group data by the terminal device to successfully receive The success rate of transferring blocks.
  • the transmission mode of the transmission block is the complete transmission mode
  • the redundant version of the transmission block transmitted on the carrier is shown in Table 5:
  • FIG. 17 is a third signaling schematic diagram of the transmission method provided by the embodiment of the present application. As shown in FIG. 17, the method includes:
  • the network device In response to the carrier meeting the preset condition, the network device sends the transport block on the carrier according to the transport mode of the transport block.
  • the number of carriers may be one or more.
  • the transmission mode of the transport block includes a complete transmission mode and a distributed transmission mode.
  • the complete transmission mode means that for any carrier, the transport block is completely transmitted on the carrier.
  • the opposite of the complete transmission method is the decentralized transmission method.
  • the decentralized transmission method means that for any carrier, the transmission block only transmits a part of the code block group of the transmission block on the carrier, that is, when the distributed transmission method is used, one transmission
  • the block will be divided into at least one code block group, and different code block groups of the transmission block are transmitted on different carriers, thereby realizing the transmission of all code block groups of the transmission block.
  • the transport block can only be transmitted in a complete transmission mode on this carrier; when the number of carriers is at least two, the transport block can be transmitted in a complete transmission mode on at least one carrier, or It is transmitted in a distributed transmission manner on at least one carrier.
  • the network device can send the transport block to the terminal device on the carrier according to the transmission mode of the transport block, that is, perform downlink service PDSCH transmission.
  • the preset condition includes that the number of carriers is at least two, and/or, the carriers are carriers under the same logical cell.
  • the network device may send the transport block on the at least two carriers.
  • the at least two carriers are carriers under the same logical cell.
  • the network device sends the transmission block to the terminal device on the at least two carriers, it may select a complete transmission mode or a decentralized transmission mode for transmission.
  • the terminal device receives the transport block on the carrier according to the complete transmission mode.
  • the terminal device Since the transmission mode of the transmission block may be a complete transmission mode or a decentralized transmission mode, the terminal device must first determine the transmission mode of the transmission block before receiving the transmission block.
  • the terminal device determines the transmission manner of the transmission block in response to the carrier meeting the preset condition.
  • the preset condition includes that the number of carriers is at least two, and/or, the carriers are carriers under the same logical cell.
  • the network device sends a transmission mode indication parameter to the terminal device, where the transmission mode indication parameter is used to indicate a transmission mode of the transport block.
  • the transmission mode indication parameter is carried in the system message, and/or, the transmission mode indication parameter is carried in the first radio resource control signaling.
  • the system message may be an SIB.
  • the first radio resource control signaling may be an RRC message.
  • the network device sends the system message to the terminal device, and the system message includes the transmission mode indication parameter.
  • the terminal device obtains the transmission mode indication parameter according to the system message, and then determines the transmission mode of the transmission block according to the transmission mode indication parameter.
  • the network device when the transmission mode indication parameter is carried in the first radio resource control signaling, the network device sends the first radio resource control signaling to the terminal device, where the first radio resource control signaling includes the transmission mode indication parameter.
  • the terminal device After receiving the first radio resource control signaling from the network device, the terminal device acquires the transmission mode indication parameter according to the first radio resource control signaling, and then determines the transmission mode of the transmission block according to the transmission mode indication parameter.
  • the transmission mode is a complete transmission mode.
  • Fig. 18 is a signaling schematic diagram 4 of the transmission method provided by the embodiment of the present application. As shown in Fig. 18, the method includes:
  • the terminal device In response to the fact that the transmission mode of the transport block is the complete transmission mode and/or the carrier satisfies a preset condition, the terminal device sends the transport block on the carrier according to the complete transmission mode.
  • the number of carriers may be one or more.
  • the transmission mode of the transport block includes a complete transmission mode and a distributed transmission mode.
  • the complete transmission mode means that for any carrier, the transport block is completely transmitted on the carrier.
  • the opposite of the complete transmission method is the decentralized transmission method.
  • the decentralized transmission method means that for any carrier, the transmission block only transmits a part of the code block group of the transmission block on the carrier, that is, when the distributed transmission method is used, one transmission
  • the block will be divided into at least one code block group, and different code block groups of the transmission block are transmitted on different carriers, thereby realizing the transmission of all code block groups of the transmission block.
  • the transport block can only be transmitted in a complete transmission mode on this carrier; when the number of carriers is at least two, the transport block can be transmitted in a complete transmission mode on at least one carrier, or It is transmitted in a distributed transmission manner on at least one carrier.
  • the terminal device Since the transmission mode of the transmission block may be a complete transmission mode or a decentralized transmission mode, the terminal device must first determine the transmission mode of the transmission block before sending the transmission block.
  • the terminal device determines the transmission manner of the transmission block in response to the carrier meeting the preset condition.
  • the preset condition includes that the number of carriers is at least two, and/or, the carriers are carriers under the same logical cell.
  • the network device sends a transmission mode indication parameter to the terminal device, where the transmission mode indication parameter is used to indicate a transmission mode of the transport block.
  • the transmission mode indication parameter is carried in the system message, and/or, the transmission mode indication parameter is carried in the first radio resource control signaling.
  • the system message may be an SIB.
  • the first radio resource control signaling may be an RRC message.
  • the network device sends the system message to the terminal device, and the system message includes the transmission mode indication parameter.
  • the terminal device obtains the transmission mode indication parameter according to the system message, and then determines the transmission mode of the transmission block according to the transmission mode indication parameter.
  • the network device when the transmission mode indication parameter is carried in the first radio resource control signaling, the network device sends the first radio resource control signaling to the terminal device, where the first radio resource control signaling includes the transmission mode indication parameter.
  • the terminal device After receiving the first radio resource control signaling from the network device, the terminal device acquires the transmission mode indication parameter according to the first radio resource control signaling, and then determines the transmission mode of the transmission block according to the transmission mode indication parameter.
  • the transmission mode is a complete transmission mode.
  • the network device receives the transport block on the carrier according to the transport mode of the transport block.
  • the network device can receive the transport block on the carrier according to the transmission mode of the transport block, that is, perform uplink service PUSCH transmission.
  • the preset condition includes that the number of carriers is at least two, and/or, the carriers are carriers under the same logical cell.
  • the network device can receive the transport block on the at least two carriers.
  • the at least two carriers are carriers under the same logical cell.
  • the network device receives the transport block on the at least two carriers, it may select a complete transmission mode or a distributed transmission mode to receive.
  • the transport block is transmitted between the network device and the terminal device in a complete transmission manner.
  • transmitting a certain transport block on a carrier may mean sending the transport block on the carrier, or may mean receiving the transport block on the carrier.
  • the terminal device transmits the transport block on the carrier means receiving the transport block on the carrier
  • the network device transmits the transport block on the carrier means sending the transport block on the carrier (as shown in Figure 17);
  • the terminal device transmits the transport block on the carrier means that when the transport block is sent on the carrier, "the network device transmits the transport block on the carrier” means that the transport block is received on the carrier (as shown in Figure 18).
  • the transmission method of the present application can be applied to both downlink service PDSCH transmission and uplink service PUSCH transmission.
  • the PDSCH transmission of the downlink service is taken as an example for introduction. It can be understood that the solutions in the following embodiments can also be used for the PUSCH transmission of the uplink service.
  • the terminal device determines a redundancy version of the transport block transmitted on at least one carrier, and then receives the transport block on the carrier according to the redundancy version, the transmission manner of the transport block, and the number of consecutive retransmissions of the transport block.
  • the network device may send the redundancy version identifier of the carrier to the terminal device on the carrier, and then determine the redundancy version of the transmission block transmitted on the carrier according to the redundancy version identifier.
  • the network device may send the redundancy version identifier of the first carrier in the at least one carrier to the terminal device.
  • the terminal device After receiving the redundancy version identifier of the first carrier in the at least one carrier, the terminal device determines the redundancy of the transmission block transmitted on the at least one carrier according to the redundancy version identifier of the first carrier, the number of consecutive retransmissions, and the transmission mode. remaining version.
  • the terminal device can receive the redundant The rest of the version identifiers determine the redundancy versions of the transport block transmitted on the carrier 0, carrier 2 and carrier 4 according to the redundancy version identifier of the carrier 0, the number of consecutive retransmissions, and the transmission mode.
  • carrier 0 is used as an example for introduction, and the terminal device may receive the redundancy version identifier of the first carrier through carrier 0.
  • the first carrier may also be carrier 2 or carrier 4.
  • the terminal device may receive the redundancy version identifier of the first carrier through carrier 2, and when the first The same applies when one carrier is carrier 4.
  • the redundancy version identifier of the first carrier is carried in the first downlink resource control information.
  • the network device sends the first downlink resource control information to the terminal device on the first carrier, and the terminal device obtains the first downlink resource control information according to the first downlink resource control information after receiving the first downlink resource control information on the first carrier. Redundancy version identifier of a carrier.
  • the network device may send the redundancy version identifier of at least one carrier to the terminal device.
  • the terminal device determines the redundancy version of the transport block transmitted on the at least one carrier according to the redundancy version identifier of the at least one carrier. For example, when the number of carriers constituting a logical cell is three, namely carrier 0, carrier 2 and carrier 4, the terminal device may receive the redundancy version identifiers of carrier 0, carrier 2 and carrier 4.
  • the redundancy version identification of carrier 0 determines the redundancy version of the transport block transmitted on carrier 0; according to the redundancy version identification of carrier 2, determine the redundancy version of the transport block transmitted on carrier 2; according to the redundancy version of carrier 4 Version identifier, which determines the redundancy version of the transport block transmitted on carrier 4.
  • the redundancy version identifier of at least one carrier is carried in the second downlink resource control information.
  • the network device sends second downlink resource control information to the terminal device on at least one carrier, and after receiving the second downlink resource control information on at least one carrier, the terminal device acquires the redundancy version of at least one carrier according to the second downlink resource control information logo.
  • the redundancy versions transmitted by the transport block on at least one carrier may be the same or different.
  • the redundancy versions of the transport blocks transmitted on at least one carrier are different.
  • the redundancy versions of transmission blocks transmitted on at least 2 of the 3 carriers are different.
  • the redundancy versions of the transmission blocks transmitted on at least one carrier are the same.
  • the redundancy versions of the transmission blocks transmitted on at least 2 of the 3 carriers are the same.
  • the redundancy versions of the transmission blocks transmitted on at least one carrier are different.
  • the redundancy versions of transmission blocks transmitted on at least two of the three carriers are different.
  • the transmission block The redundancy version transmitted on at least one carrier satisfies a first preset condition.
  • the redundancy versions of the transport block transmitted on at least one carrier are different, and at this time, the first preset condition includes at least one of the following:
  • rv id is the redundancy version identifier of the first carrier in at least one carrier
  • mod is a modulo operation
  • n is a positive integer greater than or equal to 0 and less than N
  • N is the number of carriers
  • rv1 is the transmission block in Redundant version of the transmission on carrier n.
  • the network device may send the redundancy version identifier of the first carrier among the N carriers, that is, rv id , to the terminal device. Then, according to the redundancy version identifier rv id of the first carrier, the terminal device determines the redundancy version of the transport block transmitted on each carrier. In another implementation manner, the network device may send the redundancy version identifiers of the N carriers to the terminal device, and then the terminal device determines the redundancy version of the transmission block transmitted on each carrier according to the redundancy version identifier of each carrier.
  • the network device may send the transport block to the terminal device on each carrier according to the redundancy version of the transport block transmitted on at least one carrier.
  • the terminal device may receive the transport block sent by the network device on each carrier according to the redundancy version of the transport block transmitted on at least one carrier.
  • the redundancy versions of the transport blocks transmitted on at least one carrier are the same, and in this case, the first preset condition is that the redundancy versions of the transport blocks transmitted on at least two carriers are the same.
  • the carriers that constitute a logical cell include carrier 0, carrier 1, and carrier 2, then the redundancy versions of the transport blocks transmitted on carrier 0 and carrier 1 can be the same, and the redundancy versions of the transport blocks transmitted on carrier 2 are the same as those transmitted on carrier 0.
  • the redundancy version of the transport block transmitted on carrier 1 and carrier 2 is the same; for example, the redundancy version of the transport block transmitted on carrier 0 and carrier 2 is the same; for example, the transmission
  • the redundancy versions of the blocks transmitted on Carrier 0, Carrier 1 and Carrier 2 are all the same.
  • a transmission block is repeatedly transmitted on different carriers on at least two carriers.
  • transmitting the transport block on each carrier on at least two carriers can improve the probability of successful transmission of the transport block, thereby reducing the HARQ repetition rate of the transport block. probability of transmission.
  • the transmission scheme of the transmission block when the number of consecutive retransmissions is 1 in the complete transmission mode is introduced, and the transmission scheme when the number of consecutive retransmissions is greater than 1 will be introduced below.
  • N is a positive integer greater than or equal to 2.
  • K is greater than 1 (that is, the aggregation factor included in the second radio resource control signaling, and the aggregation factor pdsch-AggregationFactor is greater than 1), according to the relationship between N and K, it can be divided into two situations.
  • the transmission block can implement K repeated transmissions only through one transmission time slot.
  • the redundant version of the transport block transmitted on at least one carrier satisfies the second preset condition.
  • the second preset condition includes at least one of the following:
  • rv id is the redundancy version identifier of the first carrier in at least one carrier, mod is a modulo operation, and rv2 is the redundancy version of the transport block transmitted on the carrier n;
  • n is a positive integer greater than or equal to 0 and less than N, or n is a positive integer greater than or equal to 0 and less than K.
  • K retransmissions can be achieved through the first K carriers, and from the K+1th carrier to the Nth carrier can be used to retransmit the transmission block, and may not be used to retransmit the transport block, for example, may be used to transmit other transport blocks.
  • the redundant version of the transport block transmitted on the K+1-th carrier to the N-th carrier can adopt the rules in Table 2 (that is, satisfy the (2) preset conditions), or the rules in Table 2 may not be used, for example, the redundancy version of the transmission block transmitted on the K+1th carrier to the Nth carrier may be customized.
  • an implementation manner is to transmit the transport block on N carriers according to the redundancy version of the transport block transmitted on N carriers, and at this time, n in the second preset condition is greater than or equal to 0 and a positive integer less than N.
  • the K+1-th carrier to the N-th carrier is also used to retransmit the transport block, and the redundancy version used for transmission from the K+1-th carrier to the N-th carrier satisfies the rules shown in Table 2 .
  • the network device can send the TBO to the terminal device on the three carriers, and the redundant version of the TBO transmitted on each carrier is shown in FIG. 11 .
  • rv id 2
  • the network device may also send the redundancy version identifier of each carrier to the terminal device on each carrier, and the terminal device determines the redundancy version of the transmission block transmitted on the corresponding carrier according to the redundancy version identifier of each carrier. No matter which one of the above two redundancy version indication modes is selected by the network device, the redundancy version transmitted by the transport block on the carrier satisfies the above second preset condition.
  • another implementation manner is to transmit the transport block on the first K carriers according to the redundancy version of the transport block transmitted on the first K carriers, and at this time, n in the second preset condition is greater than Or a positive integer equal to 0 and less than K.
  • the K+1 th carrier to the N th carrier are not used for retransmission of the transport block.
  • the K+1 th carrier to the N th carrier may be used to transmit other transport blocks, or may not transmit any transport block, or may transmit any redundant version of the transport block.
  • N carriers are used to implement K transmissions of the transport block, so that the number of repeated transmissions of a transport block is evenly distributed to different carriers, thereby reducing the time length of repeated transmissions of the PDSCH on one carrier.
  • the network device can send the TBO to the terminal device on the two carriers, and the redundant version of the TBO transmitted on each carrier is shown in FIG. 12 .
  • Carrier 2 may not be used to transmit the transport block TBO, for example, may transmit other transport blocks, for example may not transmit any transport block, for example may also be used for transmitting the transport block TBO. As shown in FIG.
  • carrier 2 can be used to transmit TBx, and TBx can be TB0 or other transport blocks, and carrier 2 can also not transmit any transport block.
  • the redundancy version transmitted by TBO on carrier 3 may be any one of redundancy version 1, redundancy version 2, redundancy version 3, and redundancy version 0.
  • the transmission block can be transmitted K times through the first K carriers in one transmission time slot, so that the number of repeated transmissions of a transmission block can be evenly distributed to different carriers, thereby shortening the transmission time.
  • the duration of repeated transmission of PDSCH on a carrier is not limited to 1.
  • the first case in which the number of consecutive retransmissions is greater than 1 in the complete transmission mode is introduced, that is, the case where N is greater than or equal to K
  • the second case in which the number of consecutive retransmissions is greater than 1 in the complete transmission mode is introduced below , that is, the case where N is less than K.
  • the transmission block needs to pass transmission slots, Indicates that K/N is rounded up. For example, etc.
  • the redundant version of the transport block transmitted on at least one carrier satisfies the third preset condition.
  • the third preset condition includes at least one of the following:
  • rv id is the redundancy version identifier of the first carrier in at least one carrier
  • mod is a modulo operation
  • n is a positive integer greater than or equal to 0 and less than N
  • N is the number of carriers
  • rv3 is the i-th the redundant version of the transport block transmitted on carrier n in the slot;
  • n is a positive integer greater than or equal to 0 and less than N; when i is equal to , n is a positive integer greater than or equal to 0 and less than N, or n is greater than or equal to 0 and less than or equal to a positive integer, Indicates that K/N is rounded up, Indicates that K/N is rounded down.
  • the Nth carrier that is, carrier (N-1)
  • the Nth carrier may be used to retransmit the transport block, or may not be used to retransmit the transport block, for example, may be used to transmit other transport blocks.
  • i is greater than or equal to 0 and less than or equal to 1 (ie )
  • the transmission block needs to be transmitted on 3 carriers, so that 6 retransmissions can be achieved on time slot 0 and time slot 1.
  • i is equal to 2 (ie )
  • the transmission block can only be preceded by transmission on carriers, that is, carrier 0 to carrier 1 (ie upload.
  • the transport block may also transmit the transport block on N carriers.
  • the network device can send the redundancy version identifier of the first carrier among the N carriers to the terminal device, and the terminal device uses the first The redundancy version identifier of each carrier determines the redundancy version of the transport block transmitted on each carrier.
  • the network device may also send the redundancy version identifier of each carrier to the terminal device on each carrier, and the terminal device determines the redundancy version of the transmission block transmitted on each carrier according to the redundancy version identifier of each carrier. No matter which of the above two indication manners is selected by the network device, the redundancy version of the transport block transmitted on the carrier all satisfies the above third preset condition.
  • the network device sends the redundancy version identifier of the first carrier as an example for introduction.
  • one way of doing this is to target In any one of the transmission time slots, the transmission block is transmitted on N carriers according to the redundancy version of the transmission block transmitted on at least one carrier in the transmission time slot.
  • another implementation is to target the former In any one of the transmission slots, the transmission block is transmitted on N carriers according to the redundancy version of the transmission block transmitted on at least one carrier in the transmission slot; for the first transmission slots, according to the transmission block in the transmission slot, the transmission block in front The redundant version transmitted on the carrier, in the first Transport blocks are transmitted on carriers.
  • on the second time slot on carrier 1 and on the carrier TB0 is not transmitted on the second time slot on 2.
  • carrier 1 and carrier 2 can be used to transmit other transport blocks or not transmit any transport blocks.
  • carrier 1 in the second time slot, can be used to transmit TBx, or not transmit any transport block, TBx can be TB0, or other transport blocks, and the redundant transmission of TBx on carrier 1
  • the remaining version can be any one of redundancy version 1, redundancy version 2, redundancy version 3, redundancy version 0;
  • carrier 2 on the second time slot, can be used to transmit TBy, or not transmit any transmission TBy can be TB0 or other transmission blocks, and the redundancy version transmitted by TBy on carrier 1 can be any one of redundancy version 1, redundancy version 2, redundancy version 3, and redundancy version 0 item.
  • N carriers When the number of consecutive retransmissions is greater than 1, K time slots are required to realize K transmissions on a single carrier.
  • N carriers can be used to realize the transmission block K times of transmission, so that the number of repeated transmissions of a transmission block is evenly distributed to different carriers, thereby reducing the duration of repeated transmissions of the PDSCH on a carrier.
  • Fig. 19 is a schematic diagram of the fifth signaling of the transmission method provided by the embodiment of the present application. As shown in Fig. 19, the method includes:
  • the network device In response to the carrier meeting the preset condition, the network device sends the transport block on the carrier according to the transport mode of the transport block.
  • the number of carriers may be one or more.
  • the transmission mode of the transport block includes a complete transmission mode and a distributed transmission mode.
  • the complete transmission mode means that for any carrier, the transport block is completely transmitted on the carrier.
  • the opposite of the complete transmission method is the decentralized transmission method.
  • the decentralized transmission method means that for any carrier, the transmission block only transmits a part of the code block group of the transmission block on the carrier, that is, when the distributed transmission method is used, one transmission
  • the block will be divided into at least one code block group, and different code block groups of the transmission block are transmitted on different carriers, thereby realizing the transmission of all code block groups of the transmission block.
  • the transport block can only be transmitted in a complete transmission mode on this carrier; when the number of carriers is at least two, the transport block can be transmitted in a complete transmission mode on at least one carrier, or It is transmitted in a distributed transmission manner on at least one carrier.
  • the network device can send the transport block to the terminal device on the carrier according to the transmission mode of the transport block, that is, perform downlink service PDSCH transmission.
  • the preset condition includes that the number of carriers is at least two, and/or, the carriers are carriers under the same logical cell.
  • the network device may send the transport block on the at least two carriers. At least two carriers are carriers under the same logical cell.
  • the network device transmits the block to the terminal device on the at least two carriers, it may select a complete transmission mode or a distributed transmission mode for transmission.
  • the terminal device receives the transport block on the carrier according to the distributed transmission mode.
  • the terminal device Since the transmission mode of the transmission block may be a complete transmission mode or a decentralized transmission mode, the terminal device must first determine the transmission mode of the transmission block before receiving the transmission block.
  • the terminal device determines the transmission manner of the transmission block in response to the carrier meeting the preset condition.
  • the preset condition includes that the number of carriers is at least two, and/or, the carriers are carriers under the same logical cell.
  • the network device sends a transmission mode indication parameter to the terminal device, where the transmission mode indication parameter is used to indicate a transmission mode of the transport block.
  • the transmission mode indication parameter is carried in the system message, and/or, the transmission mode indication parameter is carried in the first radio resource control signaling.
  • the system message may be an SIB.
  • the first radio resource control signaling may be an RRC message.
  • the network device sends the system message to the terminal device, and the system message includes the transmission mode indication parameter.
  • the terminal device obtains the transmission mode indication parameter according to the system message, and then determines the transmission mode of the transmission block according to the transmission mode indication parameter.
  • the network device when the transmission mode indication parameter is carried in the first radio resource control signaling, the network device sends the first radio resource control signaling to the terminal device, where the first radio resource control signaling includes the transmission mode indication parameter.
  • the terminal device After receiving the first radio resource control signaling from the network device, the terminal device acquires the transmission mode indication parameter according to the first radio resource control signaling, and then determines the transmission mode of the transmission block according to the transmission mode indication parameter.
  • the transmission mode is a distributed transmission mode.
  • FIG. 20 is a sixth signaling schematic diagram of the transmission method provided by the embodiment of the present application. As shown in FIG. 20, the method includes:
  • the terminal device In response to the fact that the transmission mode of the transport block is a distributed transmission mode and/or the carrier satisfies a preset condition, the terminal device sends the transport block on the carrier according to the distributed transmission mode.
  • the number of carriers may be one or more.
  • the transmission mode of the transport block includes a complete transmission mode and a distributed transmission mode.
  • the complete transmission mode means that for any carrier, the transport block is completely transmitted on the carrier.
  • the opposite of the complete transmission method is the decentralized transmission method.
  • the decentralized transmission method means that for any carrier, the transmission block only transmits a part of the code block group of the transmission block on the carrier, that is, when the distributed transmission method is used, one transmission
  • the block will be divided into at least one code block group, and different code block groups of the transmission block are transmitted on different carriers, thereby realizing the transmission of all code block groups of the transmission block.
  • the transport block can only be transmitted in a complete transmission mode on this carrier; when the number of carriers is at least two, the transport block can be transmitted in a complete transmission mode on at least one carrier, or It is transmitted in a distributed transmission manner on at least one carrier.
  • the terminal device Since the transmission mode of the transmission block may be a complete transmission mode or a decentralized transmission mode, the terminal device must first determine the transmission mode of the transmission block before sending the transmission block.
  • the terminal device determines the transmission manner of the transmission block in response to the carrier meeting the preset condition.
  • the preset condition includes that the number of carriers is at least two, and/or, the carriers are carriers under the same logical cell.
  • the network device sends a transmission mode indication parameter to the terminal device, where the transmission mode indication parameter is used to indicate a transmission mode of the transport block.
  • the transmission mode indication parameter is carried in the system message, and/or, the transmission mode indication parameter is carried in the first radio resource control signaling.
  • the system message may be an SIB.
  • the first radio resource control signaling may be an RRC message.
  • the network device sends the system message to the terminal device, and the system message includes the transmission mode indication parameter.
  • the terminal device obtains the transmission mode indication parameter according to the system message, and then determines the transmission mode of the transmission block according to the transmission mode indication parameter.
  • the network device when the transmission mode indication parameter is carried in the first radio resource control signaling, the network device sends the first radio resource control signaling to the terminal device, where the first radio resource control signaling includes the transmission mode indication parameter.
  • the terminal device After receiving the first radio resource control signaling from the network device, the terminal device acquires the transmission mode indication parameter according to the first radio resource control signaling, and then determines the transmission mode of the transmission block according to the transmission mode indication parameter.
  • the transmission mode is a distributed transmission mode.
  • the network device receives the transport block on the carrier according to the transport mode of the transport block.
  • the network device can receive the transport block on the carrier according to the transmission mode of the transport block, that is, perform uplink service PUSCH transmission.
  • the preset condition includes that the number of carriers is at least two, and/or, the carriers are carriers under the same logical cell.
  • the network device can receive the transport block on the at least two carriers.
  • the at least two carriers are carriers under the same logical cell.
  • the network device receives the transport block on the at least two carriers, it may select a complete transmission mode or a distributed transmission mode to receive.
  • transmitting a certain transport block on a carrier may mean sending the transport block on the carrier, or may mean receiving the transport block on the carrier.
  • the transmission method of the present application can be applied to both downlink service PDSCH transmission and uplink service PUSCH transmission.
  • the PDSCH transmission of the downlink service is taken as an example for introduction. It can be understood that the solutions in the following embodiments can also be used for the PUSCH transmission of the uplink service.
  • the terminal device determines a redundancy version of the transport block transmitted on at least one carrier, and then receives the transport block on the carrier according to the redundancy version, the transmission manner of the transport block, and the number of consecutive retransmissions of the transport block.
  • the network device may send the redundancy version identifier of the carrier to the terminal device on the carrier, and then determine the redundancy version of the transmission block transmitted on the carrier according to the redundancy version identifier.
  • the network device may send the redundancy version identifier of the first carrier in the at least one carrier to the terminal device.
  • the terminal device After receiving the redundancy version identifier of the first carrier in the at least one carrier, the terminal device determines the redundancy of the transmission block transmitted on the at least one carrier according to the redundancy version identifier of the first carrier, the number of consecutive retransmissions, and the transmission mode. remaining version.
  • the redundancy version identifier of the first carrier is carried in the first downlink resource control information.
  • the network device sends the first downlink resource control information to the terminal device on the first carrier, and the terminal device obtains the first downlink resource control information according to the first downlink resource control information after receiving the first downlink resource control information on the first carrier. Redundancy version identifier of a carrier.
  • the network device may send the redundancy version identifier of at least one carrier to the terminal device. After receiving the redundancy version identifier of the at least one carrier, the terminal device determines the redundancy version of the transport block transmitted on the at least one carrier according to the redundancy version identifier of the at least one carrier.
  • the redundancy version identifier of at least one carrier is carried in the second downlink resource control information.
  • the network device sends second downlink resource control information to the terminal device on at least one carrier, and after receiving the second downlink resource control information on at least one carrier, the terminal device acquires the redundancy version of at least one carrier according to the second downlink resource control information logo.
  • the terminal device may determine an index of a code block group transmitted on at least one carrier according to the number of code block groups included in the transmission block and the number of carriers.
  • the number of code block groups included in the transport block is the smaller value of the actual number of code blocks in the transport block and the maximum number of code block groups allowed by the protocol in the transport block.
  • At least one code block group of the transport block is transmitted on at least one carrier according to the redundancy version of the transport block transmitted on at least one carrier and the index of the code block group.
  • the transmission mode is a distributed transmission mode
  • the redundant version of the time slot i and the transmission block transmitted on at least one carrier satisfies the fourth preset condition.
  • the fourth preset condition includes at least one of the following:
  • rv id is the redundancy version identifier of the first carrier in at least one carrier
  • mod is a modulo operation
  • i is a positive integer greater than or equal to 0 and less than K
  • K is the number of consecutive retransmissions
  • rv4 is the time On slot i, the redundant version of the transport block transmitted on at least one carrier.
  • the transmission block can be divided into at least one code block group for transmission, only one transmission of the transmission block can be realized in one transmission time slot. If the number of consecutive retransmissions is greater than 1, for example, when the number of consecutive retransmissions is K, K time slots are required to transmit the transmission block.
  • the redundancy version of the transmission block transmitted on the carrier in the time slot i is determined according to a fourth preset condition.
  • the index of the code block group transmitted on at least one carrier satisfies the fifth preset condition.
  • the fifth preset condition includes:
  • the index of the code block group transmitted on the carrier n is n, and n is greater than or equal to 0 and less than M;
  • the actual number of code blocks included in TB0 is 7.
  • CBG 0 and CBG 1 constituting TB0 are transmitted on carrier 0.
  • the index of the code block group transmitted on carrier n is n, then CBG 0 constituting TB0 is transmitted on carrier 0, CBG 1 constituting TB0 is transmitted on carrier 1, and TB0 may not be transmitted on carrier 2, For example, it may be used for transmission of other TBs, for example, no transmission block may be transmitted.
  • carrier 2 can be used to transmit CBGx, or not transmit any code block group, and CBGx can be CBG0 or CBG1 forming TB0, or CBG forming other transport blocks.
  • the solution of the embodiment of the present application can disperse a transmission block with an excessively large number of bits for transmission on different carriers, thereby reducing the transmission code rate on each carrier, and further improving the demodulation of the code block group data by the terminal device to successfully receive The success rate of transferring blocks.
  • FIG. 21 is a schematic structural diagram of a transmission device provided in an embodiment of the present application. As shown in FIG. 21, the transmission device 210 includes:
  • a processing module 211 configured to determine the transmission mode of the transmission block
  • the transmission module 212 is configured to transmit the transmission block on the carrier according to the transmission mode.
  • processing module 211 is specifically configured to:
  • the transmission manner is determined in response to the carrier meeting a preset condition.
  • the preset conditions include:
  • the number of carriers is at least two; and/or,
  • the carriers are carriers under the same logic cell.
  • the transmission module 212 is specifically configured to:
  • the transmission module 212 is specifically configured to:
  • the transmission module 212 is specifically configured to: receive first downlink resource control information on the first carrier, and obtain redundancy information of the first carrier according to the first downlink resource control information. version identification; and/or,
  • the transmission module 212 is specifically configured to: receive second downlink resource control information on at least one of the carriers, and acquire a redundancy version identifier of at least one of the carriers according to the second downlink resource control information.
  • the redundancy version satisfies at least one of the following:
  • the transmission mode is a complete transmission mode, the number of consecutive retransmissions is 1, and the redundancy versions of the transmission blocks transmitted on at least one of the carriers are different;
  • the transmission mode is a complete transmission mode, the number of consecutive retransmissions is 1, and the redundancy versions of the transmission blocks transmitted on at least one of the carriers are the same;
  • the transmission mode is the complete transmission mode, the number of consecutive retransmissions is greater than 1, and the redundancy versions of the transmission blocks transmitted on at least one of the carriers are different;
  • the transmission mode is a distributed transmission mode, and the redundancy versions of the transmission blocks transmitted on at least one of the carriers are the same.
  • the transmission mode is the complete transmission mode, the number of consecutive retransmissions is 1, and a redundancy version of the transmission block transmitted on at least one carrier satisfies a first preset condition.
  • the first preset condition includes at least one of the following:
  • the rv id is the redundancy version identifier of the first carrier in at least one of the carriers
  • mod is a modulo operation
  • the n is a positive integer greater than or equal to 1 and less than or equal to N
  • the N is the number of the carriers
  • the rv1 is the redundancy version of the transport block transmitted on the carrier n.
  • the first preset condition is that redundancy versions transmitted on at least one of the carriers are the same.
  • the transmission module 212 is specifically configured to:
  • the transport block is transmitted on each carrier according to a redundant version of the transmission of the transport block on at least one of the carriers.
  • the transmission mode is the complete transmission mode, the number of consecutive retransmissions K is greater than 1, and the number N of the carriers is greater than or equal to the K; the transmission block is transmitted on at least one of the carriers The redundant version of satisfies the second preset condition.
  • the second preset condition includes at least one of the following:
  • the rv id is the redundancy version identifier of the first carrier in at least one of the carriers, mod is a modulo operation, and the rv2 is the redundancy version of the transmission block transmitted on the carrier n;
  • n is a positive integer greater than or equal to 1 and less than or equal to N, or said n is a positive integer greater than or equal to 1 and less than or equal to K.
  • the transmission module 212 is specifically configured to:
  • the transport block is transmitted on the N carriers according to a redundancy version of the transmission of the transport block on the N carriers.
  • the transmission mode is the complete transmission mode
  • the number of consecutive retransmissions K is greater than 1
  • the number N of the carriers is less than the K
  • the time slot i and the transmission block are on at least one of the carriers
  • the redundant version transmitted upstream satisfies the third preset condition.
  • the third preset condition includes at least one of the following:
  • the rv id is the redundancy version identifier of the first carrier in at least one of the carriers, mod is a modulo operation, the n is a positive integer greater than or equal to 1 and less than or equal to N, and the N is the number of the carriers, and the rv3 is the redundancy version of the transport block transmitted on the carrier n in the time slot i;
  • said n is a positive integer greater than or equal to 1 and less than or equal to N; when said i is equal to , said n is a positive integer greater than or equal to 1 and less than or equal to N, or said n is greater than or equal to 1 and less than or equal to a positive integer, Indicates that K/N is rounded up, Indicates that K/N is rounded down.
  • the transmission module 212 is specifically configured to:
  • the transmission block is transmitted on the N carriers according to the redundancy version of the transmission block transmitted on at least one of the carriers in the transmission slot; or,
  • the transmission block is transmitted on the N carriers according to the redundancy version of the transmission block transmitted on at least one of the carriers in the transmission slot; For the first transmission time slots, according to which in the transmission time slots, the transmission block comes first The redundant version transmitted on the carrier, in the preceding The transport blocks are transmitted on carriers.
  • the transmission mode is the distributed transmission mode; the time slot i and the redundancy version of the transmission block transmitted on at least one carrier satisfy a fourth preset condition.
  • the fourth preset condition includes at least one of the following:
  • the rv id is the redundancy version identifier of the first carrier in at least one of the carriers
  • mod is a modulo operation
  • the i is a positive integer greater than or equal to 0 and less than or equal to (K-1)
  • the K is the number of consecutive retransmissions
  • the rv4 is the redundancy version of the transport block transmitted on at least one carrier in the i-th time slot.
  • the transmission module 212 is specifically configured to:
  • the number of code block groups included in the transmission block is the smaller value of the actual number of code blocks in the transmission block and the maximum number of code block groups allowed by the protocol in the transmission block.
  • At least one index of the code block group transmitted on the carrier satisfies a fifth preset condition.
  • the fifth preset condition includes at least one of the following:
  • the index of the code block group transmitted on the nth carrier is n, and the n is greater than or equal to 1 and less than or equal to the M;
  • processing module 211 is specifically configured to:
  • the transmission mode indication parameter is carried in a system message; and/or,
  • the transmission mode indication parameter is carried in the first radio resource control signaling.
  • processing module 211 is specifically configured to:
  • the second radio resource control signaling includes an aggregation factor, and the number of consecutive retransmissions is the number indicated by the aggregation factor; and/or,
  • the aggregation factor is not included in the second radio resource control signaling, and the number of consecutive retransmissions is 1.
  • the transmission device provided in the embodiment of the present application can execute the technical solutions shown in the above method embodiments, and its implementation principles and beneficial effects are similar, and will not be repeated here.
  • FIG. 22 is a schematic structural diagram of a transmission device provided in an embodiment of the present application. As shown in FIG. 22, the transmission device 220 includes:
  • the first transmission module 221 is configured to transmit the transport block on the carrier according to the complete transmission mode in response to that the transmission mode of the transport block is a complete transmission mode and/or the carrier satisfies a preset condition; and/or ,
  • the second transmission module 222 is configured to transmit the transmission block on the carrier according to the distributed transmission mode in response to the transmission mode of the transmission block being a distributed transmission mode and/or the carrier meeting the preset condition .
  • the preset conditions include:
  • the number of carriers is at least two; and/or,
  • the carriers are carriers under the same logical cell.
  • the first transmission module 221 is specifically configured to:
  • the transport block is transmitted on the carrier according to the complete transmission mode, the redundancy version of the transmission of the transport block on at least one of the carriers and/or the number of consecutive retransmissions of the transport block.
  • the redundancy version of the transmission block transmitted on at least one carrier satisfies at least one of the following:
  • the number of consecutive retransmissions is 1, and the redundancy versions of the transmission blocks transmitted on at least one of the carriers are different;
  • the number of consecutive retransmissions is 1, and the redundancy version of the transport block transmitted on at least one carrier is the same;
  • the number of consecutive retransmissions is greater than 1, and the redundancy versions of the transmission blocks transmitted on at least one of the carriers are different.
  • the number of consecutive retransmissions is 1, and the redundancy version of the transport block transmitted on at least one carrier satisfies a first preset condition.
  • the first preset condition includes at least one of the following:
  • the rv id is the redundancy version identifier of the first carrier in at least one of the carriers
  • mod is a modulo operation
  • the n is a positive integer greater than or equal to 1 and less than or equal to N
  • the N is the number of the carriers
  • the rv1 is the redundancy version of the transport block transmitted on the carrier n.
  • the first preset condition is that redundancy versions transmitted on at least one of the carriers are the same.
  • the first transmission module 221 is specifically configured to:
  • the transport block is transmitted on each carrier according to a redundant version of the transmission of the transport block on at least one of the carriers.
  • the number K of consecutive retransmissions is greater than 1, and the number N of the carriers is greater than or equal to the K; the redundancy version of the transport block transmitted on the carrier satisfies a second preset condition.
  • the second preset condition includes at least one of the following:
  • the rv id is the redundancy version identifier of the first carrier in at least one of the carriers, mod is a modulo operation, and the rv2 is the redundancy version of the transmission block transmitted on the carrier n;
  • n is a positive integer greater than or equal to 1 and less than or equal to N, or said n is a positive integer greater than or equal to 1 and less than or equal to K.
  • the first transmission module 221 is specifically configured to:
  • the transport block is transmitted on the N carriers according to a redundancy version of the transmission of the transport block on the N carriers.
  • the number of consecutive retransmissions K is greater than 1, and the number N of the carriers is less than the K; the redundancy version of time slot i and the transmission block transmitted on at least one carrier satisfies a third preset condition.
  • the third preset condition includes at least one of the following:
  • the rv id is the redundancy version identifier of the first carrier in at least one of the carriers, mod is a modulo operation, the n is a positive integer greater than or equal to 1 and less than or equal to N, and the N is the number of the carriers, and the rv3 is the redundancy version of the transport block transmitted on the carrier n in the time slot i;
  • said n is a positive integer greater than or equal to 1 and less than or equal to N; when said i is equal to , said n is a positive integer greater than or equal to 1 and less than or equal to N, or said n is greater than or equal to 1 and less than or equal to a positive integer, Indicates that K/N is rounded up, Indicates that K/N is rounded down.
  • the first transmission module 221 is specifically configured to:
  • the transmission block is transmitted on the N carriers according to the redundancy version of the transmission block transmitted on at least one of the carriers in the transmission slot; or,
  • the transmission block is transmitted on the N carriers according to the redundancy version of the transmission block transmitted on at least one of the carriers in the transmission slot; For the first transmission time slots, according to which in the transmission time slots, the transmission block comes first The redundant version transmitted on the carrier, in the preceding The transport blocks are transmitted on carriers.
  • the second transmission module 222 is specifically configured to:
  • the transport block is transmitted on the carrier according to the distributed transmission manner, the redundancy version of the transport block transmitted on at least one of the carriers and/or the number of consecutive retransmissions of the transport block.
  • the redundancy version transmitted by the transmission block on at least one of the carriers is the same.
  • the redundancy version of the transport block transmitted on at least one carrier satisfies a fourth preset condition.
  • the fourth preset condition includes at least one of the following:
  • the rv id is the redundancy version identifier of the first carrier in at least one of the carriers
  • mod is a modulo operation
  • the i is a positive integer greater than or equal to 0 and less than or equal to (K-1)
  • the K is the number of consecutive retransmissions
  • the rv4 is the redundancy version of the transport block transmitted on at least one carrier in the i-th time slot.
  • the second transmission module 222 is specifically configured to:
  • the number of code block groups included in the transmission block is the smaller value of the actual number of code blocks in the transmission block and the maximum number of code block groups allowed by the protocol in the transmission block.
  • At least one index of the code block group transmitted on the carrier satisfies a fifth preset condition.
  • the fifth preset condition includes at least one of the following:
  • the index of the code block group transmitted on the nth carrier is n, and the n is greater than or equal to 1 and less than or equal to the M;
  • transceiver module is also included, and the transceiver module is used for:
  • transceiver module is also included, and the transceiver module is used for:
  • transceiver module Also includes a transceiver module, the transceiver module is used for:
  • the transceiver module is used for:
  • the second radio resource control signaling includes an aggregation factor, and the number of consecutive retransmissions is the number indicated by the aggregation factor; and/or,
  • the aggregation factor is not included in the second radio resource control signaling, and the number of consecutive retransmissions is 1.
  • the transmission device provided in the embodiment of the present application can execute the technical solutions shown in the above method embodiments, and its implementation principles and beneficial effects are similar, and will not be repeated here.
  • FIG. 23 is a schematic structural diagram of a transmission device provided in an embodiment of the present application. As shown in FIG. 23, the transmission device 230 includes:
  • the transmission module 231 is configured to transmit the transmission block on the carrier according to the transmission mode of the transmission block in response to the carrier meeting the preset condition.
  • the preset conditions include:
  • the number of carriers is at least two; and/or,
  • the carriers are carriers under the same logical cell.
  • the transmission module 231 is specifically configured to:
  • the transport block is transmitted on the carrier according to the redundancy version of the transport block transmitted on at least one of the carriers, the number of consecutive retransmissions of the transport block, and the transmission mode.
  • the redundancy version satisfies at least one of the following:
  • the transmission mode is a complete transmission mode, the number of consecutive retransmissions is 1, and the redundancy versions of the transmission blocks transmitted on at least one of the carriers are different;
  • the transmission mode is a complete transmission mode, the number of consecutive retransmissions is 1, and the redundancy versions of the transmission blocks transmitted on at least one of the carriers are the same;
  • the transmission mode is the complete transmission mode, the number of consecutive retransmissions is greater than 1, and the redundancy versions of the transmission blocks transmitted on at least one of the carriers are different;
  • the transmission mode is a distributed transmission mode, and the redundancy versions of the transmission blocks transmitted on at least one of the carriers are the same.
  • the transmission mode is the complete transmission mode, the number of consecutive retransmissions is 1, and a redundancy version of the transmission block transmitted on at least one carrier satisfies a first preset condition.
  • the first preset condition includes at least one of the following:
  • the rv id is the redundancy version identifier of the first carrier in at least one of the carriers
  • mod is a modulo operation
  • the n is a positive integer greater than or equal to 1 and less than or equal to N
  • the N is the number of the carriers
  • the rv1 is the redundancy version of the transport block transmitted on the carrier n.
  • the first preset condition is that redundancy versions transmitted on at least one of the carriers are the same.
  • the transmission module 231 is specifically configured to:
  • the transport block is transmitted on each carrier according to a redundant version of the transmission of the transport block on at least one of the carriers.
  • the transmission mode is the complete transmission mode, the number of consecutive retransmissions K is greater than 1, and the number N of the carriers is greater than or equal to the K; the transmission block is transmitted on at least one of the carriers The redundant version of satisfies the second preset condition.
  • the second preset condition includes at least one of the following:
  • the rv id is the redundancy version identifier of the first carrier in at least one of the carriers, mod is a modulo operation, and the rv2 is the redundancy version of the transmission block transmitted on the carrier n;
  • n is a positive integer greater than or equal to 1 and less than or equal to N, or said n is a positive integer greater than or equal to 1 and less than or equal to K.
  • the transmission module 231 is specifically configured to:
  • the transport block is transmitted on the N carriers according to a redundancy version of the transmission of the transport block on the N carriers.
  • the transmission mode is the complete transmission mode
  • the number of consecutive retransmissions K is greater than 1
  • the number N of the carriers is less than the K
  • the time slot i and the transmission block are on at least one of the carriers
  • the redundant version transmitted upstream satisfies the third preset condition.
  • the third preset condition includes at least one of the following:
  • the rv id is the redundancy version identifier of the first carrier in at least one of the carriers, mod is a modulo operation, the n is a positive integer greater than or equal to 1 and less than or equal to N, and the N is the number of the carriers, and the rv3 is the redundancy version of the transport block transmitted on the carrier n in the time slot i;
  • said n is a positive integer greater than or equal to 1 and less than or equal to N; when said i is equal to , said n is a positive integer greater than or equal to 1 and less than or equal to N, or said n is greater than or equal to 1 and less than or equal to a positive integer, Indicates that K/N is rounded up, Indicates that K/N is rounded down.
  • the transmission module 231 is specifically configured to:
  • the transmission block is transmitted on the N carriers according to the redundancy version of the transmission block transmitted on at least one of the carriers in the transmission slot; or,
  • the transmission block for the former any one of the transmission time slots, transmitting the transmission block on the N carriers according to the redundancy version of the transmission block transmitted on at least one of the carriers in the transmission time slot, For the first transmission time slots, according to which in the transmission time slots, the transmission block comes first The redundant version transmitted on the carrier, in the preceding The transport blocks are transmitted on carriers.
  • the transmission mode is the distributed transmission mode; the time slot i and the redundancy version of the transmission block transmitted on at least one carrier satisfy a fourth preset condition.
  • the fourth preset condition includes at least one of the following:
  • the rv id is the redundancy version identifier of the first carrier in at least one of the carriers
  • mod is a modulo operation
  • the i is a positive integer greater than or equal to 0 and less than or equal to (K-1)
  • the K is the number of consecutive retransmissions
  • the rv4 is the redundancy version of the transport block transmitted on at least one carrier in the i-th time slot.
  • the transmission module 231 is specifically configured to:
  • the number of code block groups included in the transmission block is the smaller value of the actual number of code blocks in the transmission block and the maximum number of code block groups allowed by the protocol in the transmission block.
  • At least one index of the code block group transmitted on the carrier satisfies a fifth preset condition.
  • the fifth preset condition includes at least one of the following:
  • the index of the code block group transmitted on the nth carrier is n, and the n is greater than or equal to 1 and less than or equal to the M;
  • the transmission module 231 is also used for:
  • the transmission module 231 is also used for:
  • first downlink resource control information on a first carrier among at least one of the carriers, where the first downlink resource control information includes a redundancy version identifier corresponding to the first carrier; and/or,
  • Second downlink resource control information on at least one of the carriers, where the second downlink resource control information includes a redundancy version identifier corresponding to at least one of the carriers.
  • the transmission module 231 is also used for:
  • the transmission mode indication parameter is carried in a system message; and/or,
  • the transmission mode indication parameter is carried in the first radio resource control signaling.
  • the transmission module 231 is also used for:
  • the second radio resource control signaling includes an aggregation factor, and the number of consecutive retransmissions is the number indicated by the aggregation factor; and/or,
  • the aggregation factor is not included in the second radio resource control signaling, and the number of consecutive retransmissions is 1.
  • the transmission device provided in the embodiment of the present application can execute the technical solutions shown in the above method embodiments, and its implementation principles and beneficial effects are similar, and will not be repeated here.
  • FIG. 24 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 240 in this embodiment may be the terminal device (or a component applicable to a terminal device) or a network device (or a component applicable to a network device) mentioned in the foregoing method embodiments.
  • the communication device 240 may be configured to implement the method corresponding to the terminal device or the network device described in the foregoing method embodiments, and for details, refer to the description in the foregoing method embodiments.
  • the communication device 240 may include one or more processors 241, and the processors 241 may also be referred to as processing units, and may implement certain control or processing functions.
  • the processor 241 may be a general purpose processor or a special purpose processor or the like. For example, it may be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices, execute software programs, and process data of software programs.
  • the processor 241 may also store instructions 243 or data (such as intermediate data).
  • the instruction 243 may be executed by the processor 241, so that the communication device 240 executes the method corresponding to the terminal device or the network device described in the foregoing method embodiments.
  • the communication device 240 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the communication device 240 may include one or more memories 242, on which instructions 244 may be stored, and the instructions may be executed on the processor 241, so that the communication device 240 executes the methods described in the foregoing method embodiments.
  • data may also be stored in the memory 242 .
  • the processor 241 and the memory 242 can be set separately or integrated together.
  • the communication device 240 may further include a transceiver 245 and/or an antenna 246 .
  • the processor 241 may be called a processing unit, and controls the communication device 240 (terminal device or core network device or radio access network device).
  • the transceiver 245 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and is used to realize the transceiver function of the communication device 240 .
  • the transceiver 245 may respond to the carrier meeting the preset condition, according to the transmission mode of the transmission block, on the carrier transmit the transport block.
  • the processor 241 and transceiver 245 described in this application can be implemented in IC (Integrated Circuit, integrated circuit), analog integrated circuit, RFIC (Radio Frequency Integrated Circuit, radio frequency integrated circuit), mixed signal integrated circuit, ASIC (Application Specific Integrated Circuit, ASIC), PCB (Printed Circuit Board, printed circuit board), electronic equipment, etc.
  • IC Integrated Circuit, integrated circuit
  • RFIC Radio Frequency Integrated Circuit, radio frequency integrated circuit
  • mixed signal integrated circuit ASIC (Application Specific Integrated Circuit, ASIC)
  • ASIC Application Specific Integrated Circuit
  • PCB Print Circuit Board, printed circuit board
  • electronic equipment etc.
  • the processor 241 and the transceiver 245 can also be manufactured with various integrated circuit technology, such as CMOS (Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor), NMOS (N Metal-Oxide-Semiconductor, N-type metal oxide semiconductor ), PMOS (Positive channel Metal Oxide Semiconductor, P-type metal oxide semiconductor), BJT (Bipolar Junction Transistor, bipolar junction transistor), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs) wait.
  • CMOS Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor
  • NMOS N Metal-Oxide-Semiconductor, N-type metal oxide semiconductor
  • PMOS Positive channel Metal Oxide Semiconductor, P-type metal oxide semiconductor
  • BJT Bipolar Junction Transistor, bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs
  • a communication device may be a terminal device or a network device (such as a base station), which needs to be determined according to the context.
  • the terminal device may be implemented in various forms.
  • the terminal equipment described in this application may include mobile phones, tablet computers, notebook computers, palmtop computers, personal digital assistants (Personal Digital Assistant, PDA), portable media players (Portable Media Player, PMP), navigation devices, Mobile terminals such as wearable devices, smart bracelets, and pedometers, and fixed terminals such as digital TVs and desktop computers.
  • the communication device is described by taking the terminal device or network device as an example, the scope of the communication device described in this application is not limited to the above-mentioned terminal device or network device, and the structure of the communication device may not be limited Limitations of Figure 24.
  • a communication device may be a stand-alone device or may be part of a larger device.
  • An embodiment of the present application further provides a communication system, including: the terminal device in any one of the above method embodiments; and the network device in any one of the above method embodiments.
  • An embodiment of the present application further provides a terminal device, and the terminal device includes: a memory and a processor; wherein, a computer program is stored in the memory, and when the computer program is executed by the processor, the steps of the transmission method in any of the foregoing embodiments are implemented.
  • An embodiment of the present application also provides a network device, and the network device includes: a memory and a processor; wherein, a computer program is stored in the memory, and when the computer program is executed by the processor, the steps of the transmission method in any of the foregoing embodiments are implemented.
  • An embodiment of the present application further provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps of the transmission method in any of the foregoing embodiments are implemented.
  • An embodiment of the present application further provides a computer program product, the computer program product includes computer program code, and when the computer program code is run on the computer, the computer is made to execute the methods in the above various possible implementation manners.
  • the embodiment of the present application also provides a chip, including a memory and a processor.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the device installed with the chip executes the above various possible implementation modes. Methods.
  • Units in the device in the embodiment of the present application may be combined, divided and deleted according to actual needs.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in other words, the part that contributes to the prior art, and the computer software product is stored in one of the above storage media (such as ROM/RAM, magnetic CD, CD), including several instructions to make a terminal device (which may be a mobile phone, computer, server, controlled terminal, or network device, etc.) execute the method of each embodiment of the present application.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • a computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, special purpose computer, a computer network, or other programmable apparatus.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, e.g. Coaxial cable, optical fiber, digital subscriber line) or wireless (such as infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server, a data center, etc. integrated with one or more available media.
  • Usable media may be magnetic media, (eg, floppy disk, memory disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), among others.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本申请提供一种传输方法、通信设备及存储介质,该方法包括:确定传输块的传输方式;根据该传输方式,在载波上接收或发送该传输块。当载波的数量为一个时,可以通过完整传输方式在该载波上接收或发送该传输块;当载波的数量为至少两个,且至少两个载波为同一逻辑小区下的载波时,可以通过完整传输方式或分散传输方式在载波上接收或发送具有不同或相同冗余版本的该传输块,从而实现了在该载波上的传输块的传输。

Description

传输方法、通信设备及存储介质 技术领域
本申请涉及通信技术,具体涉及一种传输方法、通信设备及存储介质。
背景技术
一些实现中,网络设备可以通过在载波上发送物理下行共享信道(Physical Downlink Shared CHannel,PDSCH)来向终端设备发送传输块(Transport Block,TB),或者终端设备通过在载波上发送物理上行共享信道(Physical Uplink Shared CHannel,PUSCH)。
在构思及实现本申请过程中,发明人发现至少存在如下问题:由于通过PDSCH或PUSCH来发送传输块的方案都是基于一个小区的一个载波实现的。针对至少一个载波构成一个逻辑小区的场景,还没有关于网络设备或终端设备在该场景下如何传输和/或接收的具体解决方案。
前面的叙述在于提供一般的背景信息,并不一定构成现有技术。
申请内容
本申请提供一种传输方法、通信设备及存储介质,以解决上述技术问题。
第一方面,本申请提供一种传输方法,可应用于终端设备,所述方法包括以下步骤:
S1,确定传输块的传输方式;
S2,根据所述传输方式,在载波上传输所述传输块。
可选地,所述S1步骤包括:
响应于所述载波满足预设条件,确定所述传输方式。
可选地,所述预设条件包括:
所述载波的数量为至少两个;和/或,
所述载波为同一逻辑小区下的载波。
可选地,所述S2步骤包括:
确定所述传输块在至少一个所述载波上传输的冗余版本;
根据所述冗余版本、所述传输方式和/或所述传输块的连续重传次数,在所述载波上传输所述传输块。
可选地,所述确定所述传输块在至少一个所述载波上传输的冗余版本,包括:
获取至少一个所述载波中的第一个载波的冗余版本标识,根据所述第一个载波的冗余版本标识、所述连续重传次数和所述传输方式,确定所述至少一个所述载波上传输的冗余版本;和/或,
获取至少一个所述载波的冗余版本标识,根据至少一个所述载波的冗余版本标识,确定所述至少一个所述载波上传输的冗余版本。
可选地,所述获取至少一个所述载波中的第一个载波的冗余版本标识,包括:在所述第一个载波上接收第一下行资源控制信息,根据所述第一下行资源控制信息获取所述第一个载波的冗余版本标识;和/或,
所述获取至少一个所述载波的冗余版本标识,包括:在至少一个所述载波上接收第二下行资源控制信息,根据所述第二下行资源控制信息获取至少一个所述载波的冗余版本标识。
可选地,针对任一传输时隙,所述冗余版本满足以下至少一项:
所述传输方式为完整传输方式,所述连续重传次数为1,所述传输块在至少一个所述载波上传输的冗余版本不同;
所述传输方式为完整传输方式,所述连续重传次数为1,所述传输块在至少一个所述载波上传输的冗余版本相同;
所述传输方式为所述完整传输方式,所述连续重传次数大于1,所述传输块在至少一个所述载波上传输的冗余版本不同;
所述传输方式为分散传输方式,所述传输块在至少一个所述载波上传输的冗余版本相同。
可选地,所述传输方式为所述完整传输方式,所述连续重传次数为1,所述传输块在至少一个所述载波上传输的冗余版本满足第一预设条件。
可选地,所述第一预设条件包括以下至少一项:
rv id=0,若n mod 4=0,则rv1为0;若n mod 4=1,则所述rv1为2;若n mod 4=2,则所述rv1为3,n mod 4=3,则所述rv1为1;
rv id=2,若n mod 4=0,则所述rv1为2;若n mod 4=1,则所述rv1为3;若n mod 4=2,则所述rv1为1,若n mod 4=3,则所述rv1为0;
rv id=3,若n mod 4=0,则所述rv1为3;若n mod 4=1,则所述rv1为1;若n mod 4=2,则所述rv1为0,若n mod 4=3,则所述rv1为2;
rv id=1,若n mod 4=0,则所述rv1为1;若n mod 4=1,则所述rv1为0;若n mod 4=2,则所述rv1为2,若n mod 4=3,则所述rv1为3;
其中,所述rv id为至少一个所述载波中的第一个载波的冗余版本标识,mod为取模操作,所述n为大于或等于1且小于或等于N的正整数,所述N为所述载波的数量,所述rv1为所述传输块在载波n上传输的冗余版本。
可选地,所述第一预设条件还可以为在至少一个所述载波上传输的冗余版本相同。
可选地,所述根据所述冗余版本、所述传输方式和/或所述传输块的连续重传次数,在所述载波上传输所述传输块,包括:
根据所述传输块在至少一个所述载波上传输的冗余版本,在每个载波上传输所述传输块。
可选地,所述传输方式为所述完整传输方式,所述连续重传次数K大于1,所述载波的数量N大于或等于所述K;所述传输块在至少一个所述载波上传输的冗余版本满足第二预设条件。
可选地,所述第二预设条件包括以下至少一项:
rv id=0,若(n mod K)mod 4=0,则rv2为0;若(n mod K)mod 4=1,则所述rv2为2;若(n mod K)mod 4=2,则所述rv2为3,(n mod K)mod 4=3,则所述rv2为1;
rv id=2,若(n mod K)mod 4=0,则所述rv2为2;若(n mod K)mod 4=1,则所述rv2为3;若(n mod K)mod 4=2,则所述rv2为1,若(n mod K)mod 4=3,则所述rv2为0;
rv id=3,若(n mod K)mod 4=0,则所述rv2为3;若(n mod K)mod 4=1,则所述rv2为1;若(n mod K)mod 4=2,则所述rv2为0,若(n mod K)mod 4=3,则所述rv2为2;
rv id=1,若(n mod K)mod 4=0,则所述rv2为1;若(n mod K)mod 4=1,则所述rv2为0;若(n mod K)mod 4=2,则所述rv2为2,若(n mod K)mod 4,则所述rv2为3;
其中,所述rv id为至少一个所述载波中的第一个载波的冗余版本标识,mod为取模操作,所述rv2为所述传输块在载波n上传输的冗余版本;
所述n为大于或等于1且小于或等于N的正整数,或者,所述n为大于或等于1且小于或等于K的正整数。
可选地,所述根据所述冗余版本、所述传输方式和/或所述传输块的连续重传次数,在所述载波上传输所述传输块,包括:
根据所述传输块在前K个载波上传输的冗余版本,在所述前K个载波上传输所述传输块;或者,
根据所述传输块在所述N个载波上传输的冗余版本,在所述N个载波上传输所述传输块。
可选地,所述传输方式为所述完整传输方式,所述连续重传次数K大于1,所述载波的 数量N小于所述K,时隙i与所述传输块在至少一个所述载波上传输的冗余版本满足第三预设条件。
可选地,所述第三预设条件包括以下至少一项:
rv id=0,若(n+i*N)mod 4=0,则rv3为0;若(n+i*N)mod 4=1,则所述rv3为2;若(n+i*N)mod 4=2,则所述rv3为3,(n+i*N)mod 4=3,则所述rv3为1;
rv id=2,若(n+i*N)mod 4=0,则所述rv3为2;若(n+i*N)mod 4=1,则所述rv3为3;若(n+i*N)mod 4=2,则所述rv3为1,若(n+i*N)mod 4=3,则所述rv3为0;
rv id=3,若(n+i*N)mod 4=0,则所述rv3为3;若(n+i*N)mod 4=1,则所述rv3为1;若(n+i*N)mod 4=2,则所述rv3为0,若(n+i*N)mod 4=3,则所述rv3为2;
rv id=1,若(n+i*N)mod 4=0,则所述rv3为1;若(n+i*N)mod 4=1,则所述rv3为0;若(n+i*N)mod 4=2,则所述rv3为2,若n(n+i*N)mod 4=3,则所述rv3为3;
其中,所述rv id为至少一个所述载波中的第一个载波的冗余版本标识,mod为取模操作,所述n为大于或等于1且小于或等于N的正整数,所述N为所述载波的数量,所述rv3为时隙i中、所述传输块在载波n上传输的冗余版本;
当所述i大于或等于0且小于或等于
Figure PCTCN2021140635-appb-000001
时,所述n为大于或等于1且小于或等于N的正整数;当所述i等于
Figure PCTCN2021140635-appb-000002
时,所述n为大于或等于1且小于或等于N的正整数,或者,所述n为大于或等于1且小于或等于
Figure PCTCN2021140635-appb-000003
的正整数,
Figure PCTCN2021140635-appb-000004
表示对K/N向上取整,
Figure PCTCN2021140635-appb-000005
表示对K/N向下取整。
可选地,所述根据所述冗余版本、所述传输方式和/或所述传输块的连续重传次数,在所述载波上传输所述传输块,包括:
针对
Figure PCTCN2021140635-appb-000006
个传输时隙中的任意一个传输时隙,根据所述传输时隙中、所述传输块在至少一个所述载波上传输的冗余版本,在所述N个载波上传输所述传输块;或者,
针对前
Figure PCTCN2021140635-appb-000007
个传输时隙中的任意一个传输时隙,根据所述传输时隙中、所述传输块在至少一个所述载波上传输的冗余版本,在所述N个载波上传输所述传输块;针对第
Figure PCTCN2021140635-appb-000008
个传输时隙,根据所述传输时隙中、所述传输块在前
Figure PCTCN2021140635-appb-000009
个载波上传输的冗余版本,在所述前
Figure PCTCN2021140635-appb-000010
个载波上传输所述传输块。
可选地,所述传输方式为所述分散传输方式;时隙i与所述传输块在至少一个所述载波上传输的冗余版本满足第四预设条件。
可选地,所述第四预设条件包括以下至少一项:
rv id=0,若i mod 4=0,则rv4为0;若i mod 4=1,则所述rv4为2;若i mod 4=2,则所述rv4为3,i mod 4=3,则所述rv4为1;
rv id=2,若i mod 4=0,则所述rv4为2;若i mod 4=1,则所述rv4为3;若i mod 4=2,则所述rv4为1,若i mod 4=3,则所述rv4为0;
rv id=3,若i mod 4=0,则所述rv4为3;若i mod 4=1,则所述rv4为1;若i mod 4=2,则所述rv4为0,若i mod 4=3,则所述rv4为2;
rv id=1,若i mod 4=0,则所述rv4为1;若i mod 4=1,则所述rv4为0;若i mod 4=2,则所述rv4为2,若i mod 4=3,则所述rv4为3;
其中,所述rv id为至少一个所述载波中的第一个载波的冗余版本标识,mod为取模操作,所述i为大于或等于0且小于或等于(K-1)的正整数,所述K为所述连续重传次数,所述rv4为在第i个时隙上、传输块在至少一个所述载波上传输的冗余版本。
可选地,所述根据所述冗余版本、所述传输方式和/或所述传输块的连续重传次数,在所述载波上传输所述传输块,包括:
根据所述传输块包括的码块组的数目和所述载波的数量,确定至少一个所述载波上传输的码块组的索引;
针对所述K个传输时隙中的任意一个传输时隙,根据所述传输块在至少一个所述载波上 传输的冗余版本和所述码块组的索引,在至少一个所述载波上传输所述传输块的至少一个码块组。
可选地,所述传输块包括的码块组的数目为所述传输块中真实的码块数目和所述传输块中协议允许的最大码块组的数目中的较小值。
可选地,至少一个所述载波上传输的码块组的索引满足第五预设条件。
可选地,所述第五预设条件包括以下至少一项:
当M大于N,n∈{0,1,...,T 1-1}时,载波n上传输的码块组的索引为(n*N 1+k 1),k 1=0,1,...,N 1-1;n∈{T 1,T 1+1,...,N-1}时,载波n上传输的码块组的索引为(T 1*N 1+(n-T 1)N 2+k 2),k 2=0,1,...,N 2-1,所述n大于或等于1且小于或等于所述N;和/或,
当M小于或等于所述N,第n个载波上传输的码块组的索引为n,所述n大于或等于1且小于或等于所述M;
其中,所述M为所述传输块包括的码块组的数目,所述M为大于或等于1的正整数,所述N为所述载波的数量,所述N为大于或等于2的正整数,T 1=M mod N,
Figure PCTCN2021140635-appb-000011
Figure PCTCN2021140635-appb-000012
表示对(M/N)上取整,
Figure PCTCN2021140635-appb-000013
表示对(M/N)下取整。
可选地,所述S1步骤包括:
接收传输方式指示参数;
根据所述传输方式指示参数,确定所述传输方式。
可选地,
所述传输方式指示参数承载于系统消息中;和/或,
所述传输方式指示参数承载于第一无线资源控制信令中。
可选地,所述方法还包括:
接收第二无线资源控制信令;
根据所述第二无线资源控制信令,获取所述连续重传次数。
可选地:所述第二无线资源控制信令中包括聚合因子,所述连续重传次数为所述聚合因子指示的次数;和/或,
所述第二无线资源控制信令中不包括所述聚合因子,所述连续重传次数为1。
第二方面,本申请提供一种传输方法,可应用于终端设备,所述方法包括:
S10,响应于所述传输块的传输方式为完整传输方式和/或载波满足预设条件,根据所述完整传输方式在所述载波上传输所述传输块;和/或,
S20,响应于所述传输块的传输方式为分散传输方式和/或所述载波满足所述预设条件,根据所述分散传输方式在所述载波上传输所述传输块。
可选地,所述预设条件包括:
所述载波的数量为至少两个;和/或,
所述载波为同一逻辑小区下的载波。
可选地,所述S10步骤包括:
根据所述完整传输方式、所述传输块在至少一个所述载波上传输的冗余版本和/或所述传输块的连续重传次数,在所述载波上传输所述传输块。
可选地,针对任一传输时隙,所述传输块在至少一个所述载波上传输的冗余版本满足以下至少一项:
所述连续重传次数为1,所述传输块在至少一个所述载波上传输的冗余版本不同;
所述连续重传次数为1,所述传输块在至少一个所述载波上传输的冗余版本相同;
所述连续重传次数大于1,所述传输块在至少一个所述载波上传输的冗余版本不同。
可选地,所述连续重传次数为1,所述传输块在至少一个所述载波上传输的冗余版本满足第一预设条件。
可选地,所述第一预设条件包括以下至少一项:
rv id=0,若n mod 4=0,则rv1为0;若n mod 4=1,则所述rv1为2;若n mod 4=2,则所述rv1为3,n mod 4=3,则所述rv1为1;
rv id=2,若n mod 4=0,则所述rv1为2;若n mod 4=1,则所述rv1为3;若n mod 4=2,则所述rv1为1,若n mod 4=3,则所述rv1为0;
rv id=3,若n mod 4=0,则所述rv1为3;若n mod 4=1,则所述rv1为1;若n mod 4=2,则所述rv1为0,若n mod 4=3,则所述rv1为2;
rv id=1,若n mod 4=0,则所述rv1为1;若n mod 4=1,则所述rv1为0;若n mod 4=2,则所述rv1为2,若n mod 4=3,则所述rv1为3;
其中,所述rv id为至少一个所述载波中的第一个载波的冗余版本标识,mod为取模操作,所述n为大于或等于1且小于或等于N的正整数,所述N为所述载波的数量,所述rv1为所述传输块在载波n上传输的冗余版本。
可选地,所述第一预设条件还可以为在至少一个所述载波上传输的冗余版本相同。
可选地,所述根据所述完整传输方式、所述传输块在至少一个所述载波上传输的冗余版本和/或所述传输块的连续重传次数,在所述载波上传输所述传输块,包括:
根据所述传输块在至少一个所述载波上传输的冗余版本,在每个载波上传输所述传输块。
可选地,所述连续重传次数K大于1,所述载波的数量N大于或等于所述K;所述传输块在所述载波上传输的冗余版本满足第二预设条件。
可选地,所述第二预设条件包括以下至少一项:
rv id=0,若(n mod K)mod 4=0,则rv2为0;若(n mod K)mod 4=1,则所述rv2为2;若(n mod K)mod 4=2,则所述rv2为3,(n mod K)mod 4=3,则所述rv2为1;
rv id=2,若(n mod K)mod 4=0,则所述rv2为2;若(n mod K)mod 4=1,则所述rv2为3;若(n mod K)mod 4=2,则所述rv2为1,若(n mod K)mod 4=3,则所述rv2为0;
rv id=3,若(n mod K)mod 4=0,则所述rv2为3;若(n mod K)mod 4=1,则所述rv2为1;若(n mod K)mod 4=2,则所述rv2为0,若(n mod K)mod 4=3,则所述rv2为2;
rv id=1,若(n mod K)mod 4=0,则所述rv2为1;若(n mod K)mod 4=1,则所述rv2为0;若(n mod K)mod 4=2,则所述rv2为2,若(n mod K)mod 4,则所述rv2为3;
其中,所述rv id为至少一个所述载波中的第一个载波的冗余版本标识,mod为取模操作,所述rv2为所述传输块在载波n上传输的冗余版本;
所述n为大于或等于1且小于或等于N的正整数,或者,所述n为大于或等于1且小于或等于K的正整数。
可选地,所述根据所述完整传输方式、所述传输块在至少一个所述载波上传输的冗余版本和/或所述传输块的连续重传次数,在所述载波上传输所述传输块,包括:
根据所述传输块在前K个载波上传输的冗余版本,在所述前K个载波上传输所述传输块;或者,
根据所述传输块在所述N个载波上传输的冗余版本,在所述N个载波上传输所述传输块。
可选地,所述连续重传次数K大于1,所述载波的数量N小于所述K;时隙i与所述传输块在至少一个所述载波上传输的冗余版本满足第三预设条件。
可选地,所述第三预设条件包括以下至少一项:
rv id=0,若(n+i*N)mod 4=0,则rv3为0;若(n+i*N)mod 4=1,则所述rv3为2;若(n+i*N)mod 4=2,则所述rv3为3,(n+i*N)mod 4=3,则所述rv3为1;
rv id=2,若(n+i*N)mod 4=0,则所述rv3为2;若(n+i*N)mod 4=1,则所述rv3为3;若(n+i*N)mod 4=2,则所述rv3为1,若(n+i*N)mod 4=3,则所述rv3为0;
rv id=3,若(n+i*N)mod 4=0,则所述rv3为3;若(n+i*N)mod 4=1,则所述rv3为1;若(n+i*N)mod 4=2,则所述rv3为0,若(n+i*N)mod 4=3,则所述rv3为2;
rv id=1,若(n+i*N)mod 4=0,则所述rv3为1;若(n+i*N)mod 4=1,则所述rv3为0;若(n+i*N) mod 4=2,则所述rv3为2,若n(n+i*N)mod 4=3,则所述rv3为3;
其中,所述rv id为至少一个所述载波中的第一个载波的冗余版本标识,mod为取模操作,所述n为大于或等于1且小于或等于N的正整数,所述N为所述载波的数量,所述rv3为时隙i中、所述传输块在载波n上传输的冗余版本;
当所述i大于或等于0且小于或等于
Figure PCTCN2021140635-appb-000014
时,所述n为大于或等于1且小于或等于N的正整数;当所述i等于
Figure PCTCN2021140635-appb-000015
时,所述n为大于或等于1且小于或等于N的正整数,或者,所述n为大于或等于1且小于或等于
Figure PCTCN2021140635-appb-000016
的正整数,
Figure PCTCN2021140635-appb-000017
表示对K/N向上取整,
Figure PCTCN2021140635-appb-000018
表示对K/N向下取整。
可选地,所述根据所述完整传输方式、所述传输块在至少一个所述载波上传输的冗余版本和/或所述传输块的连续重传次数,在所述载波上传输所述传输块,包括:
针对
Figure PCTCN2021140635-appb-000019
个传输时隙中的任意一个传输时隙,根据所述传输时隙中、所述传输块在至少一个所述载波上传输的冗余版本,在所述N个载波上传输所述传输块;或者,
针对前
Figure PCTCN2021140635-appb-000020
个传输时隙中的任意一个传输时隙,根据所述传输时隙中、所述传输块在至少一个所述载波上传输的冗余版本,在所述N个载波上传输所述传输块;针对第
Figure PCTCN2021140635-appb-000021
个传输时隙,根据所述传输时隙中、所述传输块在前
Figure PCTCN2021140635-appb-000022
个载波上传输的冗余版本,在所述前
Figure PCTCN2021140635-appb-000023
个载波上传输所述传输块。
可选地,所述S20步骤包括:
根据所述分散传输方式、所述传输块在至少一个所述载波上传输的冗余版本和/或所述传输块的连续重传次数,在所述载波上传输所述传输块。
可选地,针对任一传输时隙,所述传输块在至少一个所述载波上传输的冗余版本相同。
可选地,在时隙i上、所述传输块在至少一个所述载波上传输的冗余版本满足第四预设条件。
可选地,所述第四预设条件包括以下至少一项:
rv id=0,若i mod 4=0,则rv4为0;若i mod 4=1,则所述rv4为2;若i mod 4=2,则所述rv4为3,i mod 4=3,则所述rv4为1;
rv id=2,若i mod 4=0,则所述rv4为2;若i mod 4=1,则所述rv4为3;若i mod 4=2,则所述rv4为1,若i mod 4=3,则所述rv4为0;
rv id=3,若i mod 4=0,则所述rv4为3;若i mod 4=1,则所述rv4为1;若i mod 4=2,则所述rv4为0,若i mod 4=3,则所述rv4为2;
rv id=1,若i mod 4=0,则所述rv4为1;若i mod 4=1,则所述rv4为0;若i mod 4=2,则所述rv4为2,若i mod 4=3,则所述rv4为3;
其中,所述rv id为至少一个所述载波中的第一个载波的冗余版本标识,mod为取模操作,所述i为大于或等于0且小于或等于(K-1)的正整数,所述K为所述连续重传次数,所述rv4为在第i个时隙上、传输块在至少一个所述载波上传输的冗余版本。
可选地,所述根据所述分散传输方式、所述传输块在至少一个所述载波上传输的冗余版本和/或所述传输块的连续重传次数,在所述载波上传输所述传输块,包括:
根据所述传输块包括的码块组的数目和所述载波的数量,确定至少一个所述载波上传输的码块组的索引;
针对K个传输时隙中的任意一个传输时隙,根据所述传输块在至少一个所述载波上传输的冗余版本和所述码块组的索引,在至少一个所述载波上传输所述传输块的至少一个码块组。
可选地,所述传输块包括的码块组的数目为所述传输块中真实的码块数目和所述传输块中协议允许的最大码块组的数目中的较小值。
可选地,至少一个所述载波上传输的码块组的索引满足第五预设条件。
可选地,所述第五预设条件包括以下至少一项:
当M大于N,n∈{0,1,...,T 1-1}时,载波n上传输的码块组的索引为(n*N 1+k 1), k 1=0,1,...,N 1-1;n∈{T 1,T 1+1,...,N-1}时,载波n上传输的码块组的索引为(T 1*N 1+(n-T 1)N 2+k 2),k 2=0,1,...,N 2-1,所述n大于或等于1且小于或等于所述N;和/或,
当M小于或等于所述N,第n个载波上传输的码块组的索引为n,所述n大于或等于1且小于或等于所述M;
其中,所述M为所述传输块包括的码块组的数目,所述M为大于或等于1的正整数,所述N为所述载波的数量,所述N为大于或等于2的正整数,T 1=M mod N,
Figure PCTCN2021140635-appb-000024
Figure PCTCN2021140635-appb-000025
表示对(M/N)上取整,
Figure PCTCN2021140635-appb-000026
表示对(M/N)下取整。
可选地,所述方法还包括:
获取至少一个所述载波中的第一个载波对应的冗余版本标识,根据所述第一个载波对应的冗余版本标识、所述连续重传次数和所述传输方式,确定所述传输块在至少一个所述载波上传输的冗余版本;和/或,
获取至少一个所述载波对应的冗余版本标识,根据至少一个所述载波的冗余版本标识,确定所述传输块在至少一个所述载波上传输的冗余版本。
可选地,所述获取至少一个所述载波中的第一个载波的冗余版本标识,包括:
在所述第一个载波上接收第一下行资源控制信息,根据所述第一下行资源控制信息获取所述第一个载波对应的冗余版本标识;
所述获取至少一个所述载波对应的冗余版本标识,包括:
在至少一个所述载波上接收第二下行资源控制信息,根据所述第二下行资源控制信息获取至少一个所述载波对应的冗余版本标识。
可选地,所述方法还包括:
接收第二无线资源控制信令;
根据所述第二无线资源控制信令,获取所述连续重传次数。
可选地:所述第二无线资源控制信令中包括聚合因子,所述连续重传次数为所述聚合因子指示的次数;和/或,
所述第二无线资源控制信令中不包括所述聚合因子,所述连续重传次数为1。
第三方面,本申请提供一种传输方法,可应用于网络设备,所述方法包括:
S3,响应于载波满足预设条件,根据传输块的传输方式,在载波上传输所述传输块。
可选地,所述预设条件包括:
所述载波的数量为至少两个;和/或,
所述载波为同一逻辑小区下的载波。
可选地,所述S3步骤包括:
根据所述传输块在至少一个所述载波上传输的冗余版本、所述传输块的连续重传次数和所述传输方式,在所述载波上传输所述传输块。
可选地,针对任一传输时隙,所述冗余版本满足以下至少一项:
所述传输方式为完整传输方式,所述连续重传次数为1,所述传输块在至少一个所述载波上传输的冗余版本不同;
所述传输方式为完整传输方式,所述连续重传次数为1,所述传输块在至少一个所述载波上传输的冗余版本相同;
所述传输方式为所述完整传输方式,所述连续重传次数大于1,所述传输块在至少一个所述载波上传输的冗余版本不同;
所述传输方式为分散传输方式,所述传输块在至少一个所述载波上传输的冗余版本相同。
可选地,所述传输方式为所述完整传输方式,所述连续重传次数为1,所述传输块在至少一个所述载波上传输的冗余版本满足第一预设条件。
可选地,所述第一预设条件包括以下至少一项:
rv id=0,若n mod 4=0,则rv1为0;若n mod 4=1,则所述rv1为2;若n mod 4=2,则所 述rv1为3,n mod 4=3,则所述rv1为1;
rv id=2,若n mod 4=0,则所述rv1为2;若n mod 4=1,则所述rv1为3;若n mod 4=2,则所述rv1为1,若n mod 4=3,则所述rv1为0;
rv id=3,若n mod 4=0,则所述rv1为3;若n mod 4=1,则所述rv1为1;若n mod 4=2,则所述rv1为0,若n mod 4=3,则所述rv1为2;
rv id=1,若n mod 4=0,则所述rv1为1;若n mod 4=1,则所述rv1为0;若n mod 4=2,则所述rv1为2,若n mod 4=3,则所述rv1为3;
其中,所述rv id为至少一个所述载波中的第一个载波的冗余版本标识,mod为取模操作,所述n为大于或等于1且小于或等于N的正整数,所述N为所述载波的数量,所述rv1为所述传输块在载波n上传输的冗余版本。
可选地,所述第一预设条件还可以为在至少一个所述载波上传输的冗余版本相同。
可选地,所述根据所述传输块在至少一个所述载波上传输的冗余版本、所述传输块的连续重传次数和所述传输方式,在所述载波上传输所述传输块,包括:
根据所述传输块在至少一个所述载波上传输的冗余版本,在每个载波上传输所述传输块。
可选地,所述传输方式为所述完整传输方式,所述连续重传次数K大于1,所述载波的数量N大于或等于所述K;所述传输块在至少一个所述载波上传输的冗余版本满足第二预设条件。
可选地,所述第二预设条件包括以下至少一项:
rv id=0,若(n mod K)mod 4=0,则rv2为0;若(n mod K)mod 4=1,则所述rv2为2;若(n mod K)mod 4=2,则所述rv2为3,(n mod K)mod 4=3,则所述rv2为1;
rv id=2,若(n mod K)mod 4=0,则所述rv2为2;若(n mod K)mod 4=1,则所述rv2为3;若(n mod K)mod 4=2,则所述rv2为1,若(n mod K)mod 4=3,则所述rv2为0;
rv id=3,若(n mod K)mod 4=0,则所述rv2为3;若(n mod K)mod 4=1,则所述rv2为1;若(n mod K)mod 4=2,则所述rv2为0,若(n mod K)mod 4=3,则所述rv2为2;
rv id=1,若(n mod K)mod 4=0,则所述rv2为1;若(n mod K)mod 4=1,则所述rv2为0;若(n mod K)mod 4=2,则所述rv2为2,若(n mod K)mod 4,则所述rv2为3;
其中,所述rv id为至少一个所述载波中的第一个载波的冗余版本标识,mod为取模操作,所述rv2为所述传输块在载波n上传输的冗余版本;
所述n为大于或等于1且小于或等于N的正整数,或者,所述n为大于或等于1且小于或等于K的正整数。
可选地,所述根据所述传输块在至少一个所述载波上传输的冗余版本、所述传输块的连续重传次数和所述传输方式,在所述载波上传输所述传输块,包括:
根据所述传输块在前K个载波上传输的冗余版本,在所述前K个载波上传输所述传输块;或者,
根据所述传输块在所述N个载波上传输的冗余版本,在所述N个载波上传输所述传输块。
可选地,所述传输方式为所述完整传输方式,所述连续重传次数K大于1,所述载波的数量N小于所述K,时隙i与所述传输块在至少一个所述载波上传输的冗余版本满足第三预设条件。
可选地,所述第三预设条件包括以下至少一项:
rv id=0,若(n+i*N)mod 4=0,则rv3为0;若(n+i*N)mod 4=1,则所述rv3为2;若(n+i*N)mod 4=2,则所述rv3为3,(n+i*N)mod 4=3,则所述rv3为1;
rv id=2,若(n+i*N)mod 4=0,则所述rv3为2;若(n+i*N)mod 4=1,则所述rv3为3;若(n+i*N)mod 4=2,则所述rv3为1,若(n+i*N)mod 4=3,则所述rv3为0;
rv id=3,若(n+i*N)mod 4=0,则所述rv3为3;若(n+i*N)mod 4=1,则所述rv3为1;若(n+i*N)mod 4=2,则所述rv3为0,若(n+i*N)mod 4=3,则所述rv3为2;
rv id=1,若(n+i*N)mod 4=0,则所述rv3为1;若(n+i*N)mod 4=1,则所述rv3为0;若(n+i*N)mod 4=2,则所述rv3为2,若n(n+i*N)mod 4=3,则所述rv3为3;
其中,所述rv id为至少一个所述载波中的第一个载波的冗余版本标识,mod为取模操作,所述n为大于或等于1且小于或等于N的正整数,所述N为所述载波的数量,所述rv3为时隙i中、所述传输块在载波n上传输的冗余版本;
当所述i大于或等于0且小于或等于
Figure PCTCN2021140635-appb-000027
时,所述n为大于或等于1且小于或等于N的正整数;当所述i等于
Figure PCTCN2021140635-appb-000028
时,所述n为大于或等于1且小于或等于N的正整数,或者,所述n为大于或等于1且小于或等于
Figure PCTCN2021140635-appb-000029
的正整数,
Figure PCTCN2021140635-appb-000030
表示对K/N向上取整,
Figure PCTCN2021140635-appb-000031
表示对K/N向下取整。
可选地,所述根据所述传输块在至少一个所述载波上传输的冗余版本、所述传输块的连续重传次数和所述传输方式,在所述载波上传输所述传输块,包括:
针对
Figure PCTCN2021140635-appb-000032
个传输时隙中的任意一个传输时隙,根据所述传输时隙中、所述传输块在至少一个所述载波上传输的冗余版本,在所述N个载波上传输所述传输块;或者,
针对前
Figure PCTCN2021140635-appb-000033
个传输时隙中的任意一个传输时隙,根据所述传输时隙中、所述传输块在至少一个所述载波上传输的冗余版本,在所述N个载波上传输所述传输块,针对第
Figure PCTCN2021140635-appb-000034
个传输时隙,根据所述传输时隙中、所述传输块在前
Figure PCTCN2021140635-appb-000035
个载波上传输的冗余版本,在所述前
Figure PCTCN2021140635-appb-000036
个载波上传输所述传输块。
可选地,所述传输方式为所述分散传输方式;时隙i与所述传输块在至少一个所述载波上传输的冗余版本满足第四预设条件。
可选地,所述第四预设条件包括以下至少一项:
rv id=0,若i mod 4=0,则rv4为0;若i mod 4=1,则所述rv4为2;若i mod 4=2,则所述rv4为3,i mod 4=3,则所述rv4为1;
rv id=2,若i mod 4=0,则所述rv4为2;若i mod 4=1,则所述rv4为3;若i mod 4=2,则所述rv4为1,若i mod 4=3,则所述rv4为0;
rv id=3,若i mod 4=0,则所述rv4为3;若i mod 4=1,则所述rv4为1;若i mod 4=2,则所述rv4为0,若i mod 4=3,则所述rv4为2;
rv id=1,若i mod 4=0,则所述rv4为1;若i mod 4=1,则所述rv4为0;若i mod 4=2,则所述rv4为2,若i mod 4=3,则所述rv4为3;
其中,所述rv id为至少一个所述载波中的第一个载波的冗余版本标识,mod为取模操作,所述i为大于或等于0且小于或等于(K-1)的正整数,所述K为所述连续重传次数,所述rv4为在第i个时隙上、传输块在至少一个所述载波上传输的冗余版本。
可选地,所述根据冗余版本、所述传输块的连续重传次数和所述传输方式,在至少一个所述载波上发送所述传输块,包括:
根据所述传输块包括的码块组的数目和所述载波的数量,确定至少一个所述载波上传输的码块组的索引;
针对所述K个传输时隙中的任意一个传输时隙,根据所述传输块在至少一个所述载波上传输的冗余版本和所述码块组的索引,在至少一个所述载波上发送所述传输块的至少一个码块组。
可选地,所述传输块包括的码块组的数目为所述传输块中真实的码块数目和所述传输块中协议允许的最大码块组的数目中的较小值。
可选地,至少一个所述载波上传输的码块组的索引满足第五预设条件。
可选地,所述第五预设条件包括以下至少一项:
当M大于N,n∈{0,1,...,T 1-1}时,载波n上传输的码块组的索引为(n*N 1+k 1),k 1=0,1,...,N 1-1;n∈{T 1,T 1+1,...,N-1}时,载波n上传输的码块组的索引为(T 1*N 1+(n-T 1)N 2+k 2),k 2=0,1,...,N 2-1,所述n大于或等于1且小于或等于所述N;和/或,
当M小于或等于所述N,第n个载波上传输的码块组的索引为n,所述n大于或等于1且小于或等于所述M;
其中,所述M为所述传输块包括的码块组的数目,所述M为大于或等于1的正整数,所述N为所述载波的数量,所述N为大于或等于2的正整数,T 1=M mod N,
Figure PCTCN2021140635-appb-000037
Figure PCTCN2021140635-appb-000038
表示对(M/N)上取整,
Figure PCTCN2021140635-appb-000039
表示对(M/N)下取整。
可选地,所述方法还包括:
发送冗余版本标识,所述冗余版本标识用于指示所述冗余版本。
可选地,所述发送冗余版本标识,包括:
在至少一个所述载波中的第一个载波上发送第一下行资源控制信息,所述第一下行资源控制信息中包括所述第一个载波对应的冗余版本标识;和/或,
在至少一个所述载波上发送第二下行资源控制信息,所述第二下行资源控制信息中包括至少一个所述载波对应的冗余版本标识。
可选地,所述方法还包括:
发送传输方式指示参数,所述传输方式指示参数用于指示所述传输方式。
可选地,所述传输方式指示参数承载于系统消息中;和/或,
所述传输方式指示参数承载于第一无线资源控制信令中。
可选地,所述方法还包括:
发送第二无线资源控制信令。
可选地:所述第二无线资源控制信令中包括聚合因子,所述连续重传次数为所述聚合因子指示的次数;和/或,
所述第二无线资源控制信令中不包括所述聚合因子,所述连续重传次数为1。
本申请还提供一种通信系统,包括:
用于执行如第一方面至第二方面中任一所述方法的终端设备;
用于执行如第三方面中任一所述方法的网络设备。
本申请还提供一种通信设备,包括:存储器和处理器;
所述存储器用于存储程序指令;
所述处理器用于调用所述存储器中的程序指令以执行如第一方面至第三方面中任一项所述的方法。
本申请还提供一种计算机可读存储介质,所述存储介质上存储有计算机程序;所述计算机程序被执行时,实现如上任一项所述的方法。
本申请还提供一种计算机程序产品,所述计算机程序产品包括计算机程序;所述计算机程序被执行时,实现如上任一项所述的方法。
本申请提供的传输方法、通信设备及存储介质,首先确定传输块的传输方式,然后根据该传输方式,在载波上传输该传输块。当载波的数量为一个时,可以通过完整传输方式在该载波上传输该传输块;当载波的数量为至少两个,且至少两个载波为同一逻辑小区下的载波时,可以通过完整传输方式或分散传输方式在载波上传输该传输块,从而实现了在载波上的传输块的传输。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种终端设备的硬件结构示意图;
图2为本申请实施例提供的一种通信网络系统架构图;
图3为本申请提供的一种控制器的硬件结构示意图;
图4为本申请提供的一种网络节点的硬件结构示意图;
图5为本申请提供的一种网络节点的硬件结构示意图;
图6为本申请提供的一种控制器的硬件结构示意图;
图7为本申请提供的一种网络节点的硬件结构示意图;
图8为本申请实施例提供的传输方法的信令示意图一;
图9为本申请实施例提供的传输方法的信令示意图二;
图10为本申请实施例提供的传输块传输示意图一;
图11为本申请实施例提供的传输块传输示意图二;
图12为本申请实施例提供的传输块传输示意图三;
图13为本申请实施例提供的传输块传输示意图四;
图14为本申请实施例提供的传输块传输示意图五;
图15为本申请实施例提供的传输块传输示意图六;
图16为本申请实施例提供的传输块传输示意图七;
图17为本申请实施例提供的传输方法的信令示意图三;
图18为本申请实施例提供的传输方法的信令示意图四;
图19为本申请实施例提供的传输方法的信令示意图五;
图20为本申请实施例提供的传输方法的信令示意图六;
图21为本申请实施例提供的一种传输装置的结构示意图;
图22为本申请实施例提供的一种传输装置的结构示意图;
图23为本申请实施例提供的一种传输装置的结构示意图;
图24为本申请实施例提供的通信设备的结构示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素,此外,本申请不同实施例中具有同样命名的部件、特征、要素可能具有相同含义,也可能具有不同含义,其具体含义需以其在该具体实施例中的解释或者进一步结合该具体实施例中上下文进行确定。
应当理解,尽管在本文可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本文范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语"如果"可以被解释成为"在……时"或"当……时"或"响应于确定"。再者,如同在本文中所使用的,单数形式“一”、“一个”和“该”旨在也包括复数形式,除非上下文中有相反的指示。应当进一步理解,术语“包含”、“包括”表明存在所述的特征、 步骤、操作、元件、组件、项目、种类、和/或组,但不排除一个或多个其他特征、步骤、操作、元件、组件、项目、种类、和/或组的存在、出现或添加。本申请使用的术语“或”、“和/或”、“包括以下至少一个”等可被解释为包括性的,或意味着任一个或任何组合。例如,“包括以下至少一个:A、B、C”意味着“以下任一个:A;B;C;A和B;A和C;B和C;A和B和C”,再如,“A、B或C”或者“A、B和/或C”意味着“以下任一个:A;B;C;A和B;A和C;B和C;A和B和C”。仅当元件、功能、步骤或操作的组合在某些方式下内在地互相排斥时,才会出现该定义的例外。
应该理解的是,虽然本申请实施例中的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
取决于语境,如在此所使用的词语“如果”、“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
需要说明的是,在本文中,采用了诸如S1、S2等步骤代号,其目的是为了更清楚简要地表述相应内容,不构成顺序上的实质性限制,本领域技术人员在具体实施时,可能会先执行S2后执行S1等,但这些均应在本申请的保护范围之内。
需要说明的是,在本申请中,M、N、K等单个大写字母,除非有另外的说明,该单个大写字母默认是指大于或等于1的正整数。
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或者“单元”的后缀仅为了有利于本申请的说明,其本身没有特定的意义。因此,“模块”、“部件”或者“单元”可以混合地使用。
本申请中的终端设备,可以是智能终端,智能终端可以以各种形式来实施。例如,本申请中描述的智能终端可以包括诸如手机、平板电脑、笔记本电脑、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、便捷式媒体播放器(Portable Media Player,PMP)、导航装置、可穿戴设备、智能手环、计步器等智能终端,以及诸如数字TV、台式计算机等固定终端。
后续描述中将以终端设备为例进行说明,本领域技术人员将理解的是,除了特别用于移动目的的元件之外,根据本申请的实施方式的构造也能够应用于固定类型的终端。
请参阅图1,其为实现本申请各个实施例的一种终端设备的硬件结构示意图,该终端设备100可以包括:RF(Radio Frequency,射频)单元101、WiFi模块102、音频输出单元103、A/V(音频/视频)输入单元104、传感器105、显示单元106、用户输入单元107、接口单元108、存储器109、处理器110、以及电源111等部件。本领域技术人员可以理解,图1中示出的终端设备结构并不构成对终端设备的限定,终端设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图1对终端设备的各个部件进行具体的介绍:
射频单元101可用于收发信息或通话过程中,信号的接收和发送,可选地,将基站的下行信息接收后,给处理器110处理;另外,将上行的数据发送给基站。通常,射频单元101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元101还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于GSM(Global System of Mobile communication,全球移动通讯系 统)、GPRS(General Packet Radio Service,通用分组无线服务)、CDMA2000(Code Division Multiple Access 2000,码分多址2000)、WCDMA(Wideband Code Division Multiple Access,宽带码分多址)、TD-SCDMA(Time Division-Synchronous Code Division Multiple Access,时分同步码分多址)、FDD-LTE(Frequency Division Duplexing-Long Term Evolution,频分双工长期演进)、TDD-LTE(Time Division Duplexing-Long Term Evolution,分时双工长期演进)和5G等。
WiFi属于短距离无线传输技术,终端设备通过WiFi模块102可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图1示出了WiFi模块102,但是可以理解的是,其并不属于终端设备的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
音频输出单元103可以在终端设备100处于呼叫信号接收模式、通话模式、记录模式、语音识别模式、广播接收模式等等模式下时,将射频单元101或WiFi模块102接收的或者在存储器109中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元103还可以提供与终端设备100执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元103可以包括扬声器、蜂鸣器等等。
A/V输入单元104用于接收音频或视频信号。A/V输入单元104可以包括图形处理器(Graphics Processing Unit,GPU)1041和麦克风1042,图形处理器1041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元106上。经图形处理器1041处理后的图像帧可以存储在存储器109(或其它存储介质)中或者经由射频单元101或WiFi模块102进行发送。麦克风1042可以在电话通话模式、记录模式、语音识别模式等等运行模式中经由麦克风1042接收声音(音频数据),并且能够将这样的声音处理为音频数据。处理后的音频(语音)数据可以在电话通话模式的情况下转换为可经由射频单元101发送到移动通信基站的格式输出。麦克风1042可以实施各种类型的噪声消除(或抑制)算法以消除(或抑制)在接收和发送音频信号的过程中产生的噪声或者干扰。
终端设备100还包括至少一种传感器105,比如光传感器、运动传感器以及其他传感器。可选地,光传感器包括环境光传感器及接近传感器,可选地,环境光传感器可根据环境光线的明暗来调节显示面板1061的亮度,接近传感器可在终端设备100移动到耳边时,关闭显示面板1061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
显示单元106用于显示由用户输入的信息或提供给用户的信息。显示单元106可包括显示面板1061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1061。
用户输入单元107可用于接收输入的数字或字符信息,以及产生与终端设备的用户设置以及功能控制有关的键信号输入。可选地,用户输入单元107可包括触控面板1071以及其他输入设备1072。触控面板1071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1071上或在触控面板1071附近的操作),并根据预先设定的程式驱动相应的连接装置。触控面板1071可包括触摸检测装置和触摸控制器两个部分。可选地,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器110,并能接收处理器110发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1071。除了触控面板 1071,用户输入单元107还可以包括其他输入设备1072。可选地,其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种,具体此处不做限定。
可选地,触控面板1071可覆盖显示面板1061,当触控面板1071检测到在其上或附近的触摸操作后,传送给处理器110以确定触摸事件的类型,随后处理器110根据触摸事件的类型在显示面板1061上提供相应的视觉输出。虽然在图1中,触控面板1071与显示面板1061是作为两个独立的部件来实现终端设备的输入和输出功能,但是在某些实施例中,可以将触控面板1071与显示面板1061集成而实现终端设备的输入和输出功能,具体此处不做限定。
接口单元108用作至少一个外部装置与终端设备100连接可以通过的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元108可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端设备100内的一个或多个元件或者可以用于在终端设备100和外部装置之间传输数据。
存储器109可用于存储软件程序以及各种数据。存储器109可主要包括存储程序区和存储数据区,可选地,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器109可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器110是终端设备的控制中心,利用各种接口和线路连接整个终端设备的各个部分,通过运行或执行存储在存储器109内的软件程序和/或模块,以及调用存储在存储器109内的数据,执行终端设备的各种功能和处理数据,从而对终端设备进行整体监控。处理器110可包括一个或多个处理单元;优选的,处理器110可集成应用处理器和调制解调处理器,可选地,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器110中。
终端设备100还可以包括给各个部件供电的电源111(比如电池),优选的,电源111可以通过电源管理系统与处理器110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
尽管图1未示出,终端设备100还可以包括蓝牙模块等,在此不再赘述。
为了便于理解本申请实施例,下面对本申请的终端设备所基于的通信网络系统进行描述。
请参阅图2,图2为本申请实施例提供的一种通信网络系统架构图,该通信网络系统为通用移动通信技术的LTE系统,该LTE系统包括依次通讯连接的UE(User Equipment,用户设备)201,E-UTRAN(Evolved UMTS Terrestrial Radio Access Network,演进式UMTS陆地无线接入网)202,EPC(Evolved Packet Core,演进式分组核心网)203和运营商的IP业务204。
可选地,UE201可以是上述终端设备100,此处不再赘述。
E-UTRAN202包括eNodeB2021和其它eNodeB2022等。可选地,eNodeB2021可以通过回程(backhaul)(例如X2接口)与其它eNodeB2022连接,eNodeB2021连接到EPC203,eNodeB2021可以提供UE 201到EPC 203的接入。
EPC203可以包括MME(Mobility Management Entity,移动性管理实体)2031,HSS(Home Subscriber Server,归属用户服务器)2032,其它MME2033,SGW(Serving Gate Way,服务网关)2034,PGW(PDN Gate Way,分组数据网络网关)2035和PCRF(Policy and Charging Rules Function,政策和资费功能实体)2036等。可选地,MME2031是处理UE201和EPC203之间信令的控制节点,提供承载和连接管理。HSS2032用于提供一些寄存器来管理诸如归属位置寄存器(图中未示)之类的功能,并且保存有一些有关服务特征、数据速率等用户专用 的信息。所有用户数据都可以通过SGW2034进行发送,PGW2035可以提供UE201的IP地址分配以及其它功能,PCRF2036是业务数据流和IP承载资源的策略与计费控制策略决策点,它为策略与计费执行功能单元(图中未示)选择及提供可用的策略和计费控制决策。
IP业务204可以包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)或其它IP业务等。
虽然上述以LTE系统为例进行了介绍,但本领域技术人员应当知晓,本申请不仅仅适用于LTE系统,也可以适用于其他无线通信系统,例如GSM、CDMA2000、WCDMA、TD-SCDMA以及未来新的网络系统(如5G)等,此处不做限定。
图3为本申请提供的一种控制器的硬件结构示意图。该控制器140包括:存储器1401和处理器1402,存储器1401用于存储程序指令,处理器1402用于调用存储器1401中的程序指令执行上述方法实施例一中控制器所执行的步骤,其实现原理以及有益效果类似,此处不再进行赘述。
可选地,上述控制器还包括通信接口1403,该通信接口1403可以通过总线1404与处理器1402连接。处理器1402可以控制通信接口1403来实现控制器140的接收和发送的功能。
图4为本申请提供的一种网络节点的硬件结构示意图。该网络节点150包括:存储器1501和处理器1502,存储器1501用于存储程序指令,处理器1502用于调用存储器1501中的程序指令执行上述方法实施例一中首节点所执行的步骤,其实现原理以及有益效果类似,此处不再进行赘述。
可选地,上述网络节点150还包括通信接口1503,该通信接口1503可以通过总线1504与处理器1502连接。处理器1502可以控制通信接口1503来实现网络节点150的接收和发送的功能。
图5为本申请提供的一种网络节点的硬件结构示意图。该网络节点160包括:存储器1601和处理器1602,存储器1601用于存储程序指令,处理器1602用于调用存储器1601中的程序指令执行上述方法实施例一中中间节点和尾节点所执行的步骤,其实现原理以及有益效果类似,此处不再进行赘述。
可选地,上述网络节点160还包括通信接口1603,该通信接口1603可以通过总线1604与处理器1602连接。处理器1602可以控制通信接口1603来实现网络节点160的接收和发送的功能。
图6为本申请提供的一种控制器的硬件结构示意图。该控制器170包括:存储器1701和处理器1702,存储器1701用于存储程序指令,处理器1702用于调用存储器1701中的程序指令执行上述方法实施例二中控制器所执行的步骤,其实现原理以及有益效果类似,此处不再进行赘述。
可选地,上述控制器170还包括通信接口1703,该通信接口1703可以通过总线1704与处理器1702连接。处理器1702可以控制通信接口1703来实现控制器170的接收和发送的功能。
图7为本申请提供的一种网络节点的硬件结构示意图。该网络节点180包括:存储器1801和处理器1802,存储器1801用于存储程序指令,处理器1802用于调用存储器1801中的程序指令执行上述方法实施例二中首节点所执行的步骤,其实现原理以及有益效果类似,此处不再进行赘述。
可选地,上述网络节点180还包括通信接口1803,该通信接口1803可以通过总线1804与处理器1802连接。处理器1802可以控制通信接口1803来实现网络节点180的接收和发送的功能。
上述以软件功能模块的形式实现的集成的模块,可以存储在一个计算机可读取存储介质中。上述软件功能模块存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(英文:processor)执行本申请各个实施例 方法的部分步骤。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk,SSD)等。
基于上述终端设备硬件结构以及通信网络系统,提出本申请各个实施例。
图8为本申请实施例提供的传输方法的信令示意图一,如图8所示,该方法包括:
S81,响应于载波满足预设条件,网络设备根据传输块的传输方式,在载波上发送传输块。
可选地,载波的数量可以为一个或多个。
传输块的传输方式包括完整传输方式和分散传输方式,可选地,完整传输方式指的是针对任意一个载波而言,传输块在该载波上完整传输。与完整传输方式相对的是分散传输方式,分散传输方式指的是针对任意一个载波而言,传输块只在该载波上传输该传输块的部分码块组(Code Block Group,CBG),即采用分散传输方式时,一个传输块将分为至少一个码块组,不同的载波上传输该传输块的不同码块组,进而实现该传输块的所有码块组的传输。
当载波的数量为一个时,传输块只能在这个载波上以完整传输方式来传输,当载波的数量为至少两个时,传输块可以在至少一个载波上以完整传输方式来传输,也可以在至少一个载波上以分散传输方式来传输。
在载波满足预设条件时,网络设备可以根据传输块的传输方式,在载波上向终端设备传输该传输块,即进行下行业务PDSCH传输。
可选地,预设条件包括载波的数量为至少两个,和/或,载波为同一逻辑小区下的载波。当载波的数量为至少两个时,网络设备可以在这至少两个载波上发送该传输块。这至少两个载波为同一逻辑小区下的载波。网络设备在这至少两个载波上向终端设备发送传输块时,可以选择完整传输方式或分散传输方式进行传输。
S82,终端设备确定传输块的传输方式。
由于传输块的传输方式可能为完整传输方式,也可能为分散传输方式,因此终端设备在接收传输块之前,首先要确定传输块的传输方式。
可选地,终端设备响应于载波满足预设条件,确定传输块的传输方式。可选地,预设条件包括载波的数量为至少两个,和/或,载波为同一逻辑小区下的载波。
可选地,网络设备向终端设备发送传输方式指示参数,该传输方式指示参数用于指示传输块的传输方式。
可选地,传输方式指示参数承载于系统消息中,和/或,传输方式指示参数承载于第一无线资源控制信令中。
可选地,当传输方式指示参数承载于系统消息中时,网络设备向终端设备发送系统消息,系统消息中包括该传输方式指示参数。终端设备从网络设备接收该系统消息后,根据该系统消息获取传输方式指示参数,然后根据传输方式指示参数确定传输块的传输方式。
可选地,该系统消息可以为系统消息块(System Information Block,SIB)。
可选地,当传输方式指示参数承载于第一无线资源控制信令中时,网络设备向终端设备发送第一无线资源控制信令,第一无线资源控制信令中包括该传输方式指示参数。终端设备 从网络设备接收该第一无线资源控制信令后,根据该第一无线资源控制信令获取传输方式指示参数,然后根据传输方式指示参数确定传输块的传输方式。
可选地,该第一无线资源控制信令可以为无线资源控制(Radio Resource Control)RRC消息。
S83,终端设备根据传输方式,在载波上接收传输块。
终端设备确定了传输块的传输方式后,可以在载波上接收网络设备发送的传输块。
可选地,终端设备确定传输块在至少一个载波上传输的冗余版本,然后根据该冗余版本、传输块的传输方式和传输块的连续重传次数,在载波上接收该传输块。
冗余版本是用于实现增量冗余混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)传输的,传输块经过信道编码的数据包括三段,第一段可以认为是基本数据,其余两段为冗余数据,这三段数据依次放在一个缓冲区内,冗余版本指示的是从这个缓冲区的哪个位置来取数据。
当载波的数量为一个时,网络设备可以在该载波上向终端设备发送该载波的冗余版本标识,然后终端设备根据该冗余版本标识,确定传输块在该载波上传输的冗余版本。
当载波的数量为至少两个时,网络设备可以向终端设备发送至少一个载波中的第一个载波的冗余版本标识。终端设备在接收至少一个载波中的第一个载波的冗余版本标识后,根据第一个载波的冗余版本标识、连续重传次数和传输方式,确定传输块在至少一个载波上传输的冗余版本。例如,当构成一个逻辑小区的载波的数量为三个,分别是载波0、载波2和载波4,其中载波0为这三个载波中的第一个载波,则终端设备可以接收载波0的冗余版本标识,根据载波0的冗余版本标识、连续重传次数和传输方式,确定传输块在载波0、载波2和载波4上传输的冗余版本。在该实施例中,是以载波0为第一个载波为例进行介绍,则终端设备可以通过载波0接收第一个载波的冗余版本标识。在另一些实施例中,第一个载波也可以为载波2或载波4,例如当第一个载波为载波2时,终端设备可以通过载波2接收第一个载波的冗余版本标识,当第一个载波为载波4时同理。
可选地,第一个载波的冗余版本标识承载在第一下行资源控制信息中。网络设备在第一个载波上向终端设备发送第一下行资源控制信息,终端设备在第一个载波上接收到第一下行资源控制信息后,根据第一下行资源控制信息获取第一个载波的冗余版本标识。
当载波的数量为至少两个时,网络设备可以向终端设备发送至少一个载波的冗余版本标识。终端设备在接收至少一个载波的冗余版本标识后,根据至少一个载波的冗余版本标识,确定传输块在至少一个载波上传输的冗余版本。例如,当构成一个逻辑小区的载波的数量为三个,分别是载波0、载波2和载波4,则终端设备可以接收载波0、载波2和载波4的冗余版本标识。根据载波0的冗余版本标识,确定传输块在载波0上传输的冗余版本;根据载波2的冗余版本标识,确定传输块在载波2上传输的冗余版本;根据载波4的冗余版本标识,确定传输块在载波4上传输的冗余版本。
可选地,至少一个载波的冗余版本标识承载在第二下行资源控制信息中。网络设备在至少一个载波上向终端设备发送第二下行资源控制信息,终端设备在至少一个载波上接收到第二下行资源控制信息后,根据第二下行资源控制信息获取至少一个载波的冗余版本标识。
图9为本申请实施例提供的传输方法的信令示意图二,如图9所示,该方法包括:
S91,终端设备确定传输块的传输方式。
可选地,载波的数量可以为一个或多个。
传输块的传输方式包括完整传输方式和分散传输方式,可选地,完整传输方式指的是针对任意一个载波而言,传输块在该载波上完整传输。与完整传输方式相对的是分散传输方式,分散传输方式指的是针对任意一个载波而言,传输块只在该载波上传输该传输块的部分码块组,即采用分散传输方式时,一个传输块将分为至少一个码块组,不同的载波上传输该传输块的不同码块组,进而实现该传输块的所有码块组的传输。
当载波的数量为一个时,传输块只能在这个载波上以完整传输方式来传输,当载波的数量为至少两个时,传输块可以在至少一个载波上以完整传输方式来传输,也可以在至少一个载波上以分散传输方式来传输。
由于传输块的传输方式可能为完整传输方式,也可能为分散传输方式,因此终端设备在接收传输块之前,首先要确定传输块的传输方式。
可选地,终端设备响应于载波满足预设条件,确定传输块的传输方式。可选地,预设条件包括载波的数量为至少两个,和/或,载波为同一逻辑小区下的载波。
可选地,网络设备向终端设备发送传输方式指示参数,该传输方式指示参数用于指示传输块的传输方式。
可选地,传输方式指示参数承载于系统消息中,和/或,传输方式指示参数承载于第一无线资源控制信令中。
可选地,当传输方式指示参数承载于系统消息中时,网络设备向终端设备发送系统消息,系统消息中包括该传输方式指示参数。终端设备从网络设备接收该系统消息后,根据该系统消息获取传输方式指示参数,然后根据传输方式指示参数确定传输块的传输方式。
可选地,该系统消息可以为SIB。
可选地,当传输方式指示参数承载于第一无线资源控制信令中时,网络设备向终端设备发送第一无线资源控制信令,第一无线资源控制信令中包括该传输方式指示参数。终端设备从网络设备接收该第一无线资源控制信令后,根据该第一无线资源控制信令获取传输方式指示参数,然后根据传输方式指示参数确定传输块的传输方式。
可选地,该第一无线资源控制信令可以为RRC消息。
S92,终端设备根据传输方式,在载波上发送传输块。
终端设备确定了传输块的传输方式后,可以在载波上向网络设备发送传输块。
可选地,终端设备确定传输块在至少一个载波上传输的冗余版本,然后根据该冗余版本、传输块的传输方式和传输块的连续重传次数,在载波上发送该传输块。
当载波的数量为一个时,网络设备可以在该载波上向终端设备发送该载波的冗余版本标识,然后终端设备根据该冗余版本标识,确定传输块在该载波上传输的冗余版本。
当载波的数量为至少两个时,网络设备可以向终端设备发送至少一个载波中的第一个载波的冗余版本标识。终端设备在接收至少一个载波中的第一个载波的冗余版本标识后,根据第一个载波的冗余版本标识、连续重传次数和传输方式,确定传输块在至少一个载波上传输的冗余版本。例如,当构成一个逻辑小区的载波的数量为三个,分别是载波0、载波2和载波4,其中载波0为这三个载波中的第一个载波,则终端设备可以接收载波0的冗余版本标识,根据载波0的冗余版本标识、连续重传次数和传输方式,确定传输块在载波0、载波2和载波4上传输的冗余版本。在该实施例中,是以载波0为第一个载波为例进行介绍,则终端设备可以通过载波0接收第一个载波的冗余版本标识。在另一些实施例中,第一个载波也可以为载波2或载波4,例如当第一个载波为载波2时,终端设备可以通过载波2接收第一个载波的冗余版本标识,当第一个载波为载波4时同理。
可选地,第一个载波的冗余版本标识承载在第一下行资源控制信息中。网络设备在第一个载波上向终端设备发送第一下行资源控制信息,终端设备在第一个载波上接收到第一下行资源控制信息后,根据第一下行资源控制信息获取第一个载波的冗余版本标识。
当载波的数量为至少两个时,网络设备可以向终端设备发送至少一个载波的冗余版本标识。终端设备在接收至少一个载波的冗余版本标识后,根据至少一个载波的冗余版本标识,确定传输块在至少一个载波上传输的冗余版本。例如,当构成一个逻辑小区的载波的数量为三个,分别是载波0、载波2和载波4,则终端设备可以接收载波0、载波2和载波4的冗余版本标识。根据载波0的冗余版本标识,确定传输块在载波0上传输的冗余版本;根据载波 2的冗余版本标识,确定传输块在载波2上传输的冗余版本;根据载波4的冗余版本标识,确定传输块在载波4上传输的冗余版本。
可选地,至少一个载波的冗余版本标识承载在第二下行资源控制信息中。网络设备在至少一个载波上向终端设备发送第二下行资源控制信息,终端设备在至少一个载波上接收到第二下行资源控制信息后,根据第二下行资源控制信息获取至少一个载波的冗余版本标识。
S93,响应于载波满足预设条件,网络设备根据传输块的传输方式,在载波上接收传输块。
在载波满足预设条件时,由终端设备在该载波上,根据传输块的传输方式向网络设备传输该传输块,即进行上行业务PUSCH传输。
可选地,预设条件包括载波的数量为至少两个,和/或,载波为同一逻辑小区下的载波。当载波的数量为至少两个时,网络设备可以在这至少两个载波上接收该传输块。这至少两个载波为同一逻辑小区下的载波。网络设备在这至少两个载波上接收传输块时,可以根据传输块的传输方式来接收传输块。
在上述实施例中,结合图8和图9对传输块在网络设备和终端设备之间的传输进行了介绍。本申请实施例中,在载波上传输某传输块,可以表示在载波上发送传输块,也可以表示在载波上接收传输块。当“终端设备在载波上传输传输块”表示的是在载波上接收传输块时,“网络设备在载波上传输传输块”表示的是在载波上发送传输块(如图8中示例);当“终端设备在载波上传输传输块”表示的是在载波上发送传输块时,“网络设备在载波上传输传输块”表示的是在载波上接收传输块(如图9中示例)。即,本申请的传输方法,既可以适用于进行下行业务PDSCH传输,也可以适用于上行业务PUSCH传输。在下述实施例中,均以下行业务PDSCH传输为例进行介绍,可以理解的是,下述实施例的方案,也可以用于上行业务PUSCH传输。
下面将结合附图,对不同的传输方式下传输块的传输进行介绍。
首先介绍完整传输方式下的传输块的传输。
在传输块的传输方式为完整传输方式时,针对任意一个传输时隙,传输块在至少一个载波上传输的冗余版本可能相同,也可能不同。
可选地,当连续重传次数为1时,传输块在至少一个载波上传输的冗余版本不同。例如,当构成同一逻辑小区的载波的数量为3个时,在同一传输时隙上,传输块在这3个载波中的至少2个载波上传输的冗余版本不同。
可选地,当连续重传次数为1时,传输块在至少一个载波上传输的冗余版本相同。例如,当构成同一逻辑小区的载波的数量为3个时,在同一传输时隙上,传输块在这3个载波中的至少2个载波上传输的冗余版本相同。
可选地,当连续重传次数大于1时,传输块在至少一个载波上传输的冗余版本不同。例如,当载波的数量为3个时,在同一传输时隙上,传输块在这3个载波中的至少2个载波上传输的冗余版本不同。
下面分别对这几种可能的实现方式进行介绍。
设构成一个逻辑小区的载波的数量为N,N为大于或等于2的正整数。当连续重传次数为1时(即第二无线资源控制信令中包括聚合因子,聚合因子pdsch-AggregationFactor=1时,或者,第二无线资源控制信令中不包括聚合因子时),传输块在至少一个载波上传输的冗余版本满足第一预设条件。
可选地,在一种实现方式中,传输块在至少一个载波上传输的冗余版本不同,此时,第一预设条件包括以下中的至少一项:
rv id=0,若n mod 4=0,则rv1为0;若n mod 4=1,则rv1为2;若n mod 4=2,则rv1为3,n mod 4=3,则rv1为1;
rv id=2,若n mod 4=0,则rv1为2;若n mod 4=1,则rv1为3;若n mod 4=2,则rv1为1,若n mod 4=3,则rv1为0;
rv id=3,若n mod 4=0,则rv1为3;若n mod 4=1,则rv1为1;若n mod 4=2,则rv1为0,若n mod 4=3,则rv1为2;
rv id=1,若n mod 4=0,则rv1为1;若n mod 4=1,则rv1为0;若n mod 4=2,则rv1为2,若n mod 4=3,则rv1为3;
其中,rv id为至少一个载波中的第一个载波的冗余版本标识,mod为取模操作,n为大于或等于0且小于N的正整数,N为载波的数量,rv1为传输块在载波n上传输的冗余版本。
上述第一预设条件可以表示为表1的形式:
表1
Figure PCTCN2021140635-appb-000040
当传输方式为完整传输方式,且连续重传次数为1时,仅通过一个传输时隙就可以实现传输块的传输。一种实现方式中,网络设备可以向终端设备发送N个载波中的第一个载波的冗余版本标识,即rv id。然后,终端设备根据第一个载波的冗余版本标识rv id,确定传输块在各个载波上传输的冗余版本。另一种实现方式中,网络设备可以向终端设备发送这N个载波的冗余版本标识,然后终端设备根据每个载波的冗余版本标识,确定传输块在各个载波上传输的冗余版本。
当传输方式为完整传输方式,且连续重传次数为1时,网络设备可以根据传输块在至少一个载波上传输的冗余版本,在每个载波上向终端设备发送该传输块。终端设备可以根据传输块在至少一个载波上传输的冗余版本,在每个载波上接收网络设备发送的传输块。
图10为本申请实施例提供的传输块传输示意图一,如图10所示,构成逻辑小区的载波的数量为3,即N=3,这3个载波分别为载波0、载波1和载波2。传输块的连续重传次数K=1,调度PDSCH的DCI中的第一个载波的冗余版本标识rv id=3。
根据rv id=3,以及表1,可得传输块TB0在载波0(0 mod 4=0)上传输的冗余版本为3,在载波1(1 mod 4=1)传输的冗余版本为1,在载波2(2 mod 4=2)传输的冗余版本为0。
图10中示例的是rv id=3的情形,rv id也可以为其他的取值。例如,若rv id=1,则传输块TB0在载波0上传输的冗余版本为1,在载波1传输的冗余版本为0,在载波2传输的冗余版本为2。
可选地,在另一种实现方式中,传输块在至少一个载波上传输的冗余版本相同,此时,第一预设条件为传输块在至少两个载波上传输的冗余版本相同。例如构成一个逻辑小区的载波包括载波0、载波1和载波2,则传输块在载波0和载波1上传输的冗余版本可以相同,传输块在载波2上传输的冗余版本与在载波0和载波1上传输的冗余版本不同;例如,传输块在载波1和载波2上传输的冗余版本相同;例如,传输块在载波0和载波2上传输的冗余版本相同;例如,传输块在载波0、载波1和载波2上传输的冗余版本均相同。
本申请实施例的方案,在连续重传次数为1时,由于载波的数量为至少两个,从而在至少两个载波上将一个传输块在不同的载波上进行重复传输。相较于载波数量为1个时在载波上传输该传输块,通过至少两个载波上的每个载波传输该传输块,能够提高该传输块传输成功的概率,从而可以降低该传输块HARQ重传的概率。
在上述实施例中,介绍了完整传输方式下、连续重传次数为1次时传输块的传输方案,下面将介绍连续重传次数大于1时的传输方案。
设构成一个逻辑小区的载波的数量为N,N为大于或等于2的正整数。当连续重传次数K大于1时(即第二无线资源控制信令中包括聚合因子,聚合因子pdsch-AggregationFactor 大于1时),根据N和K的大小关系,可分为两种情况。
第一种情况,若N大于或等于K,则传输块实现K次重复传输仅通过一个传输时隙即可。在该情况下,传输块在至少一个载波上传输的冗余版本满足第二预设条件。
可选地,第二预设条件包括以下中的至少一项:
rv id=0,若(n mod K)mod 4=0,则rv2为0;若(n mod K)mod 4=1,则rv2为2;若(n mod K)mod 4=2,则rv2为3,(n mod K)mod 4=3,则rv2为1;
rv id=2,若(n mod K)mod 4=0,则所述rv2为2;若(n mod K)mod 4=1,则rv2为3;若(n mod K)mod 4=2,则rv2为1,若(n mod K)mod 4=3,则rv2为0;
rv id=3,若(n mod K)mod 4=0,则所述rv2为3;若(n mod K)mod 4=1,则rv2为1;若(n mod K)mod 4=2,则rv2为0,若(n mod K)mod 4=3,则rv2为2;
rv id=1,若(n mod K)mod 4=0,则rv2为1;若(n mod K)mod 4=1,则rv2为0;若(n mod K)mod 4=2,则rv2为2,若(n mod K)mod 4,则rv2为3;
其中,rv id为至少一个载波中的第一个载波的冗余版本标识,mod为取模操作,rv2为传输块在载波n上传输的冗余版本;
n为大于或等于0且小于N的正整数,或者,n为大于或等于0且小于K的正整数。
第二预设条件可以表示为表2的形式:
表2
Figure PCTCN2021140635-appb-000041
由于当连续重传次数K小于或等于载波的数量N时,通过前K个载波就可以实现K次重传,而从第K+1个载波至第N个载波,可以用于重传该传输块,也可以不用于重传该传输块,例如可以用于传输其他的传输块。当第K+1个载波至第N个载波用于传输该传输块时,传输块在第K+1个载波至第N个载波上传输的冗余版本可以采用表2的规律(即满足第二预设条件),也可以不采用表2的规律,例如可以自定义传输块在第K+1个载波至第N个载波上传输的冗余版本。
可选地,一种实现方式是,根据传输块在N个载波上传输的冗余版本,在N个载波上传输该传输块,此时,第二预设条件中的n为大于或等于0且小于N的正整数。在该实现方式中,第K+1个载波至第N个载波也用于重传该传输块,且第K+1个载波至第N个载波传输所用的冗余版本满足表2所示规律。
图11为本申请实施例提供的传输块传输示意图二,如图11所示,构成一个逻辑小区的载波的数量为3,即N=3,这3个载波分为为载波0、载波1和载波2。传输块的连续重传次数K=2,调度PDSCH的DCI中的第一个载波的冗余版本标识rv id=2。
根据rv id=2,以及表2,可得传输块TB0在载波0((0 mod 2)mod 4=0)上传输的冗余版本为2,在载波1((1 mod 2)mod 4=1)传输的冗余版本为3,在载波2((2 mod 2)mod 4=0)传输的冗余版本为2。因此,网络设备可以在这3个载波上向终端设备发送该TB0,TB0在每个载波上传输的冗余版本如图11中示意。
图11中示例的是rv id=2的情形,rv id也可以为其他的取值。例如,若rv id=1,则传输块TB0在载波0上传输的冗余版本为1,在载波1传输的冗余版本为0,在载波2传输的冗余版本为1。
网络设备可以向终端设备发送3个载波中的第一个载波的冗余版本标识,即rv id=2。根 据第一个载波的冗余版本标识,可以得到传输块在每个载波上传输的冗余版本。网络设备也可以在各个载波向终端设备发送各个载波的冗余版本标识,终端设备根据各个载波的冗余版本标识来确定传输块在对应的载波上传输的冗余版本。无论网络设备选择上述两种冗余版本指示方式中的哪一种,传输块在载波上传输的冗余版本均满足上述第二预设条件。
当连续重传次数大于1时,按照现有协议规定,需要在K个时隙上实现传输块的K次传输,而在多载波构成一个逻辑小区且N大于或等于K的方案中,能够在一个传输时隙中通过K或N个载波来实现传输块的K次传输,从而将一个传输块的重复传输次数均分到不同的载波上,进而降低了PDSCH在一个载波上重复传输的时间长度。
可选地,另一种实现方式是,根据传输块在前K个载波上传输的冗余版本,在前K个载波上传输该传输块,此时,第二预设条件中的n为大于或等于0且小于K的正整数。在该实现方式中,第K+1个载波至第N个载波不用于重传该传输块。第K+1个载波至第N个载波可以用于传输其他的传输块,或者,可以不传输任何传输块,或者,可以传输该传输块的任意冗余版本。
图12为本申请实施例提供的传输块传输示意图三,如图12所示,构成逻辑小区的载波的数量为3,即N=3,这3个载波分为为载波0、载波1和载波2。传输块的连续重传次数K=2,调度PDSCH的DCI中的第一个载波的冗余版本标识rv id=2。
根据rv id=2,以及表2,可得传输块TB0在载波0上传输的冗余版本为2,在载波1传输的冗余版本为3。由于K=2,即连续重传次数为2,此时通过载波0和载波1即可实现2次重传。因此,网络设备可以在这2个载波上向终端设备发送该TB0,TB0在每个载波上传输的冗余版本如图12中示意。载波2可以不用于传输该传输块TB0,例如可以传输其他的传输块,例如也可以不传输任何传输块,例如也可以用于传输该传输块TB0。如图12中所示,载波2上可以用于传输TBx,TBx可以为TB0,也可以为其他的传输块,载波2上也可以不传输任何传输块。当载波2用于传输该传输块TB0时,TB0在载波2上传输的冗余版本可以是冗余版本1、冗余版本2、冗余版本3、冗余版本0中的任意一项。
当连续重传次数大于1时,能够在一个传输时隙中通过前K个载波来实现传输块的K次传输,从而将一个传输块的重复传输次数均分到不同的载波上,进而缩短了PDSCH在一个载波上重复传输时长。
在上述实施例中,介绍了完整传输方式下连续重传次数大于1的第一种情况,即N大于或等于K的情况,下面介绍完整传输方式下连续重传次数大于1的第二种情况,即N小于K的情况。
第二种情况,若N小于K,则传输块实现K次重复传输需要通过
Figure PCTCN2021140635-appb-000042
个传输时隙,
Figure PCTCN2021140635-appb-000043
表示对K/N进行向上取整。例如,
Figure PCTCN2021140635-appb-000044
等等。在该情况下,传输块在至少一个载波上传输的冗余版本满足第三预设条件。
可选地,第三预设条件包括以下中的至少一项:
rv id=0,若(n+i*N)mod 4=0,则rv3为0;若(n+i*N)mod 4=1,则rv3为2;若(n+i*N)mod 4=2,则rv3为3,(n+i*N)mod 4=3,则rv3为1;
rv id=2,若(n+i*N)mod 4=0,则rv3为2;若(n+i*N)mod 4=1,则rv3为3;若(n+i*N)mod 4=2,则rv3为1,若(n+i*N)mod 4=3,则rv3为0;
rv id=3,若(n+i*N)mod 4=0,则rv3为3;若(n+i*N)mod 4=1,则rv3为1;若(n+i*N)mod 4=2,则rv3为0,若(n+i*N)mod 4=3,则rv3为2;
rv id=1,若(n+i*N)mod 4=0,则rv3为1;若(n+i*N)mod 4=1,则rv3为0;若(n+i*N)mod 4=2,则rv3为2,若(n+i*N)mod 4=3,则rv3为3;
其中,rv id为至少一个载波中的第一个载波的冗余版本标识,mod为取模操作,n为大于或等于0且小于N的正整数,N为载波的数量,rv3为时隙i中、传输块在载波n上传输的冗余版本;
当i大于或等于0且小于或等于
Figure PCTCN2021140635-appb-000045
时,n为大于或等于0且小于N的正整数;当i等于
Figure PCTCN2021140635-appb-000046
时,n为大于或等于0且小于N的正整数,或者,n为大于或等于0且小于或等于
Figure PCTCN2021140635-appb-000047
的正整数,
Figure PCTCN2021140635-appb-000048
表示对K/N向上取整,
Figure PCTCN2021140635-appb-000049
表示对K/N向下取整。
第三预设条件可以表示为表3的形式:
表3
Figure PCTCN2021140635-appb-000050
由于当连续重传次数K大于载波的数量N时,通过N个载波在一个传输时隙中无法实现K次重传,至少需要
Figure PCTCN2021140635-appb-000051
个时隙实现K次重传。当i大于或等于0且小于或等于
Figure PCTCN2021140635-appb-000052
时,传输块需要在N个载波上传输,n为大于或等于0且小于N的正整数;当i等于
Figure PCTCN2021140635-appb-000053
时,传输块需要在前
Figure PCTCN2021140635-appb-000054
个载波上传输,或者,在N个载波上传输。即,在时隙
Figure PCTCN2021140635-appb-000055
上,从第
Figure PCTCN2021140635-appb-000056
个载波(即载波
Figure PCTCN2021140635-appb-000057
)至第N个载波(即载波(N-1)),可以用于重传该传输块,也可以不用于重传该传输块,例如可以用于传输其他的传输块。
本申请实施例中,时隙i是从0开始计数的。以K=8、N=3为例,在3个载波上实现8次重传,至少需要
Figure PCTCN2021140635-appb-000058
个时隙实现。当i大于或等于0且小于或等于1(即
Figure PCTCN2021140635-appb-000059
)时,传输块需要在3个载波上传输,从而在时隙0和时隙1上可以实现6次重传。当i等于2(即
Figure PCTCN2021140635-appb-000060
)时,传输块可以仅在前
Figure PCTCN2021140635-appb-000061
个载波上传输,即载波0至载波1(即
Figure PCTCN2021140635-appb-000062
)上传输。当i等于2(即
Figure PCTCN2021140635-appb-000063
)时,传输块也可以在N个载波上传输该传输块。
下面结合图13和图14对这两种不同的实现方案进行介绍,需要说明的是,网络设备可以向终端设备发送N个载波中的第一个载波的冗余版本标识,终端设备根据第一个载波的冗余版本标识确定传输块在每个载波上传输的冗余版本。网络设备也可以在各个载波上向终端设备发送各个载波的冗余版本标识,终端设备根据各个载波的冗余版本标识来确定传输块在各个载波上传输的冗余版本。无论网络设备选择上述两种指示方式中的哪一种,传输块在载波上传输的冗余版本均满足上述第三预设条件。在图13和图14的示例中,均以网络设备发送第一个载波的冗余版本标识为例进行介绍。
可选地,一种实现方式是,针对
Figure PCTCN2021140635-appb-000064
个传输时隙中的任意一个传输时隙,根据传输时隙中、传输块在至少一个载波上传输的冗余版本,在N个载波上传输该传输块。
图13为本申请实施例提供的传输块传输示意图四,如图13所示,构成逻辑小区的载波的数量为3,即N=3,这3个载波分为为载波0、载波1和载波2。传输块的连续重传次数K=4,调度PDSCH的DCI中的第一个载波的冗余版本标识rv id=1。
根据rv id=1,以及表3,可得传输块TB0在载波0上第一个时隙(即时隙0)上传输的冗余版本为1((0+0*3)mod 4=0),在载波1上第一个时隙上传输的冗余版本为0((1+0*3)mod 4=1),在载波2上第一个时隙上传输的冗余版本为2((2+0*3)mod 4=2)。TB0在载波0上第二个时隙(即时隙1)上传输的冗余版本为3((0+1*3)mod 4=3),在载波1上第二个时隙上传输的冗余版本为1((1+1*3)mod 4=0),在载波2上第二个时隙上传输的冗余版本为0((2+1*3)mod 4=1)。
可选地,另一种实现方式是,针对前
Figure PCTCN2021140635-appb-000065
个传输时隙中的任意一个传输时隙,根据传输时隙中、传输块在至少一个载波上传输的冗余版本,在N个载波上传输传输块;针对第
Figure PCTCN2021140635-appb-000066
个传输时隙,根据传输时隙中、传输块在前
Figure PCTCN2021140635-appb-000067
个载波上传输的冗余版本, 在前
Figure PCTCN2021140635-appb-000068
个载波上传输传输块。
图14为本申请实施例提供的传输块传输示意图五,如图14所示,构成逻辑小区的载波的数量为3,即N=3,这3个载波分为为载波0、载波1和载波2。传输块的连续重传次数K=4,调度PDSCH的DCI中的第一个载波的冗余版本标识rv id=1。
根据rv id=1,以及表3,可得传输块TB0在载波0上第一个时隙(即时隙0)上传输的冗余版本为1((0+0*3)mod 4=0),在载波1上第一个时隙上传输的冗余版本为0((1+0*3)mod 4=1),在载波2上第一个时隙上传输的冗余版本为2((2+0*3)mod 4=2)。TB0在载波0上第二个时隙(即时隙1)上传输的冗余版本为3((0+1*3)mod 4=3),在载波1上第二个时隙上和在载波2上第二个时隙上不传输TB0。在第二个时隙上,载波1和载波2可以用于传输其他的传输块,也可以不传输任何传输块。
例如在图14中,在第二个时隙上,载波1可以用于传输TBx,或者不传输任何传输块,TBx可以为TB0,也可以为其他的传输块,TBx在载波1上传输的冗余版本可以是冗余版本1、冗余版本2、冗余版本3、冗余版本0中的任意一项;在第二个时隙上,载波2可以用于传输TBy,或者不传输任何传输块,TBy可以为TB0,也可以为其他的传输块,TBy在载波1上传输的冗余版本可以是冗余版本1、冗余版本2、冗余版本3、冗余版本0中的任意一项。
在单个载波上实现4次重复传输,需要4个传输时隙才能够完成,本申请的方案相较于单个载波传输传输块的方案,将重复传输次数均分到不同的载波上,从而只需要2个传输时隙就能够实现4次重复传输。
当连续重传次数大于1时,在单个载波上实现K次传输需要K个时隙才能实现,本申请的方案中,针对构成一个逻辑小区的N个载波,能够通过N个载波来实现传输块的K次传输,从而将一个传输块的重复传输次数均分到不同的载波上,进而降低了PDSCH在一个载波上重复传输的时间长度。
在上述实施例中,介绍了传输方式为完整传输方式时传输块的传输方案,下面将对传输方式为分散传输方式时的传输方案进行介绍。
当传输方式为分散传输方式时,终端设备可以根据传输块包括的码块组的数目和载波的数量,确定至少一个载波上传输的码块组的索引。
可选地,传输块包括的码块组的数目为传输块中真实的码块数目和传输块中协议允许的最大码块组的数目中的较小值。
针对K个传输时隙中的任意一个传输时隙,根据传输块在至少一个载波上传输的冗余版本和码块组的索引,在至少一个载波上传输该传输块的至少一个码块组。
可选地,当传输方式为分散传输方式时,时隙i与传输块在至少一个载波上传输的冗余版本满足第四预设条件。
可选地,第四预设条件包括以下中的至少一项:
rv id=0,若i mod 4=0,则rv4为0;若i mod 4=1,则rv4为2;若i mod 4=2,则rv4为3,i mod 4=3,则rv4为1;
rv id=2,若i mod 4=0,则rv4为2;若i mod 4=1,则rv4为3;若i mod 4=2,则rv4为1,若i mod 4=3,则rv4为0;
rv id=3,若i mod 4=0,则rv4为3;若i mod 4=1,则rv4为1;若i mod 4=2,则rv4为0,若i mod 4=3,则rv4为2;
rv id=1,若i mod 4=0,则rv4为1;若i mod 4=1,则rv4为0;若i mod 4=2,则rv4为2,若i mod 4=3,则rv4为3;
其中,rv id为至少一个载波中的第一个载波的冗余版本标识,mod为取模操作,i为大于或等于0且小于K的正整数,K为连续重传次数,rv4为在时隙i上、传输块在至少一个载波上传输的冗余版本。
第四预设条件可以表示为表4的形式:
表4
Figure PCTCN2021140635-appb-000069
由于可以将传输块分为至少一个码块组进行传输,因此在一个传输时隙上只能实现传输块的一次传输。若连续重传次数大于1,例如连续重传次数为K时,则需要K个时隙实现传输块的传输。可选地,针对任意一个传输时隙i,在时隙i上传输块在载波上传输的冗余版本根据第四预设条件确定。
可选地,至少一个载波上传输的码块组的索引满足第五预设条件。
可选地,第五预设条件包括:
当M大于N,n∈{0,1,...,T 1-1}时,载波n上传输的码块组的索引为(n*N 1+k 1),k 1=0,1,...,N 1-1;n∈{T 1,T 1+1,...,N-1}时,载波n上传输的码块组的索引为(T 1*N 1+(n-T 1)N 2+k 2),k 2=0,1,...,N 2-1,n大于或等于0且小于N;和/或,
当M小于或等于N,载波n上传输的码块组的索引为n,n大于或等于0且小于M;
其中,M为传输块包括的码块组的数目,M为大于或等于1的正整数,N为载波的数量,N为大于或等于2的正整数,T 1=M mod N,
Figure PCTCN2021140635-appb-000070
表示对(M/N)上取整,
Figure PCTCN2021140635-appb-000071
表示对(M/N)下取整。
图15为本申请实施例提供的传输块传输示意图六,如图15所示,构成逻辑小区的载波的数量为3,即N=3,这3个载波分为为载波0、载波1和载波2,TB0中包括的真实的码块个数为7,高层参数maxCodeBlockGroupPerTransportBlock配置的最大CBG个数为4,则一个TB可以传输的CBG个数M=min(N,C)=4。
T 1=4mod 3=1,
Figure PCTCN2021140635-appb-000072
根据第五预设条件,当n∈{0,1,...,T 1-1}(即n∈{0})时,载波0上传输的码块组的索引为(n*N 1+k 1)=(0*2+k 1),k 1=0,1,...,N 1-1=0,1,则构成TB0的CBG 0和CBG 1在载波0上传输。n∈{T 1,T 1+1,...,N-1}(即n∈{1,2})时,载波n上传输的码块组的索引为(T 1*N 1+(n-T 1)N 2+k 2)=(1*2+(n-1)1+0)=n+1,构成TB0的CBG 2在载波1上传输,构成TB0的CBG3在载波2上传输,如图15中所示。
图16为本申请实施例提供的传输块传输示意图七,如图16所示,构成逻辑小区的载波的数量为3,即N=3,这3个载波分为为载波0、载波1和载波2,TB0中包括的真实的码块个数为7,高层参数maxCodeBlockGroupsPerTransportBlock配置的最大CBG个数=2,所以一个TB可以传输的CBG个数M=min(N,C)=2。
根据第五预设条件,载波n上传输的码块组的索引为n,则构成TB0的CBG 0在载波0上传输,构成TB0的CBG 1在载波1上传输,载波2上可不传输TB0,例如可以用于其他TB的传输,例如可以不传输任何传输块。如图16中所示,载波2可以用于传输CBGx,或者不传输任何码块组,CBGx可以为组成TB0的CBG0或CBG1,也可以为组成其他传输块的CBG。
本申请实施例的方案,可以将一个比特数目过大的传输块分散在不同的载波上传输,从而降低每个载波上的传输码率,进而提升终端设备对码块组数据解调进而成功接收传输块的成功率。
若载波的数量为1个,则传输块的传输方式为完整传输方式,传输块在该载波上传输的冗余版本如表5所示:
表5
Figure PCTCN2021140635-appb-000073
图17为本申请实施例提供的传输方法的信令示意图三,如图17所示,该方法包括:
S171,响应于载波满足预设条件,网络设备根据传输块的传输方式,在载波上发送传输块。
可选地,载波的数量可以为一个或多个。
传输块的传输方式包括完整传输方式和分散传输方式,可选地,完整传输方式指的是针对任意一个载波而言,传输块在该载波上完整传输。与完整传输方式相对的是分散传输方式,分散传输方式指的是针对任意一个载波而言,传输块只在该载波上传输该传输块的部分码块组,即采用分散传输方式时,一个传输块将被分为至少一个码块组,不同的载波上传输该传输块的不同码块组,进而实现该传输块的所有码块组的传输。
当载波的数量为一个时,传输块只能在这个载波上以完整传输方式来传输,当载波的数量为至少两个时,传输块可以在至少一个载波上以完整传输方式来传输,也可以在至少一个载波上以分散传输方式来传输。
在载波满足预设条件时,网络设备可以根据传输块的传输方式,在载波上向终端设备发送该传输块,即进行下行业务PDSCH传输。
可选地,预设条件包括载波的数量为至少两个,和/或,载波为同一逻辑小区下的载波。当载波的数量为至少两个时,网络设备可以在这至少两个载波上发送该传输块。这至少两个载波为同一逻辑小区下的载波。网络设备在这至少两个载波上向终端设备发送传输块时,可以选择完整传输方式或分散传输方式进行传输。
S172,响应于传输块的传输方式为完整传输方式和/或载波满足预设条件,终端设备根据完整传输方式在载波上接收传输块。
由于传输块的传输方式可能为完整传输方式,也可能为分散传输方式,因此终端设备在接收传输块之前,首先要确定传输块的传输方式。
可选地,终端设备响应于载波满足预设条件,确定传输块的传输方式。可选地,预设条件包括载波的数量为至少两个,和/或,载波为同一逻辑小区下的载波。
可选地,网络设备向终端设备发送传输方式指示参数,该传输方式指示参数用于指示传输块的传输方式。
可选地,传输方式指示参数承载于系统消息中,和/或,传输方式指示参数承载于第一无线资源控制信令中。
可选地,该系统消息可以为SIB。
可选地,该第一无线资源控制信令可以为RRC消息。
可选地,当传输方式指示参数承载于系统消息中时,网络设备向终端设备发送系统消息,系统消息中包括该传输方式指示参数。终端设备从网络设备接收该系统消息后,根据该系统消息获取传输方式指示参数,然后根据传输方式指示参数确定传输块的传输方式。
可选地,当传输方式指示参数承载于第一无线资源控制信令中时,网络设备向终端设备发送第一无线资源控制信令,第一无线资源控制信令中包括该传输方式指示参数。终端设备从网络设备接收该第一无线资源控制信令后,根据该第一无线资源控制信令获取传输方式指示参数,然后根据传输方式指示参数确定传输块的传输方式。
可选地,本申请实施例中,传输方式为完整传输方式。
图18为本申请实施例提供的传输方法的信令示意图四,如图18所示,该方法包括:
S181,响应于传输块的传输方式为完整传输方式和/或载波满足预设条件,终端设备根据完整传输方式在载波上发送传输块。
可选地,载波的数量可以为一个或多个。
传输块的传输方式包括完整传输方式和分散传输方式,可选地,完整传输方式指的是针对任意一个载波而言,传输块在该载波上完整传输。与完整传输方式相对的是分散传输方式,分散传输方式指的是针对任意一个载波而言,传输块只在该载波上传输该传输块的部分码块组,即采用分散传输方式时,一个传输块将被分为至少一个码块组,不同的载波上传输该传输块的不同码块组,进而实现该传输块的所有码块组的传输。
当载波的数量为一个时,传输块只能在这个载波上以完整传输方式来传输,当载波的数量为至少两个时,传输块可以在至少一个载波上以完整传输方式来传输,也可以在至少一个载波上以分散传输方式来传输。
由于传输块的传输方式可能为完整传输方式,也可能为分散传输方式,因此终端设备在发送传输块之前,首先要确定传输块的传输方式。
可选地,终端设备响应于载波满足预设条件,确定传输块的传输方式。可选地,预设条件包括载波的数量为至少两个,和/或,载波为同一逻辑小区下的载波。
可选地,网络设备向终端设备发送传输方式指示参数,该传输方式指示参数用于指示传输块的传输方式。
可选地,传输方式指示参数承载于系统消息中,和/或,传输方式指示参数承载于第一无线资源控制信令中。
可选地,该系统消息可以为SIB。
可选地,该第一无线资源控制信令可以为RRC消息。
可选地,当传输方式指示参数承载于系统消息中时,网络设备向终端设备发送系统消息,系统消息中包括该传输方式指示参数。终端设备从网络设备接收该系统消息后,根据该系统消息获取传输方式指示参数,然后根据传输方式指示参数确定传输块的传输方式。
可选地,当传输方式指示参数承载于第一无线资源控制信令中时,网络设备向终端设备发送第一无线资源控制信令,第一无线资源控制信令中包括该传输方式指示参数。终端设备从网络设备接收该第一无线资源控制信令后,根据该第一无线资源控制信令获取传输方式指示参数,然后根据传输方式指示参数确定传输块的传输方式。
可选地,本申请实施例中,传输方式为完整传输方式。
S182,响应于载波满足预设条件,网络设备根据传输块的传输方式,在载波上接收传输块。
在载波满足预设条件时,网络设备可以根据传输块的传输方式,在载波上接收该传输块,即进行上行业务PUSCH传输。
可选地,预设条件包括载波的数量为至少两个,和/或,载波为同一逻辑小区下的载波。当载波的数量为至少两个时,网络设备可以在这至少两个载波上接收该传输块。这至少两个载波为同一逻辑小区下的载波。网络设备在这至少两个载波上接收传输块时,可以选择完整传输方式或分散传输方式进行接收。
在图17和图18的实施例中对传输块在网络设备和终端设备之间通过完整传输方式进行传输块的传输进行了介绍。本申请实施例中,在载波上传输某传输块,可以表示在载波上发送传输块,也可以表示在载波上接收传输块。当“终端设备在载波上传输传输块”表示的是在载波上接收传输块时,“网络设备在载波上传输传输块”表示的是在载波上发送传输块(如图17中示例);当“终端设备在载波上传输传输块”表示的是在载波上发送传输块时,“网络设备在载波上传输传输块”表示的是在载波上接收传输块(如图18中示例)。即,本申请的传输方法,既可以适用于进行下行业务PDSCH传输,也可以适用于上行业务PUSCH传输。 在下述实施例中,均以下行业务PDSCH传输为例进行介绍,可以理解的是,下述实施例的方案,也可以用于上行业务PUSCH传输。
可选地,终端设备确定传输块在至少一个载波上传输的冗余版本,然后根据该冗余版本、传输块的传输方式和传输块的连续重传次数,在载波上接收该传输块。
当载波的数量为一个时,网络设备可以在该载波上向终端设备发送该载波的冗余版本标识,然后根据该冗余版本标识,确定传输块在该载波上传输的冗余版本。
当载波的数量为至少两个时,网络设备可以向终端设备发送至少一个载波中的第一个载波的冗余版本标识。终端设备在接收至少一个载波中的第一个载波的冗余版本标识后,根据第一个载波的冗余版本标识、连续重传次数和传输方式,确定传输块在至少一个载波上传输的冗余版本。例如,当构成一个逻辑小区的载波的数量为三个,分别是载波0、载波2和载波4,其中载波0为这三个载波中的第一个载波,则终端设备可以接收载波0的冗余版本标识,根据载波0的冗余版本标识、连续重传次数和传输方式,确定传输块在载波0、载波2和载波4上传输的冗余版本。在该实施例中,是以载波0为第一个载波为例进行介绍,则终端设备可以通过载波0接收第一个载波的冗余版本标识。在另一些实施例中,第一个载波也可以为载波2或载波4,例如当第一个载波为载波2时,终端设备可以通过载波2接收第一个载波的冗余版本标识,当第一个载波为载波4时同理。
可选地,第一个载波的冗余版本标识承载在第一下行资源控制信息中。网络设备在第一个载波上向终端设备发送第一下行资源控制信息,终端设备在第一个载波上接收到第一下行资源控制信息后,根据第一下行资源控制信息获取第一个载波的冗余版本标识。
当载波的数量为至少两个时,网络设备可以向终端设备发送至少一个载波的冗余版本标识。终端设备在接收至少一个载波的冗余版本标识后,根据至少一个载波的冗余版本标识,确定传输块在至少一个载波上传输的冗余版本。例如,当构成一个逻辑小区的载波的数量为三个,分别是载波0、载波2和载波4,则终端设备可以接收载波0、载波2和载波4的冗余版本标识。根据载波0的冗余版本标识,确定传输块在载波0上传输的冗余版本;根据载波2的冗余版本标识,确定传输块在载波2上传输的冗余版本;根据载波4的冗余版本标识,确定传输块在载波4上传输的冗余版本。
可选地,至少一个载波的冗余版本标识承载在第二下行资源控制信息中。网络设备在至少一个载波上向终端设备发送第二下行资源控制信息,终端设备在至少一个载波上接收到第二下行资源控制信息后,根据第二下行资源控制信息获取至少一个载波的冗余版本标识。
在传输块的传输方式为完整传输方式时,针对任意一个传输时隙,传输块在至少一个载波上传输的冗余版本可能相同,也可能不同。
可选地,当连续重传次数为1时,传输块在至少一个载波上传输的冗余版本不同。例如,当构成同一逻辑小区的载波的数量为3个时,在同一传输时隙上,传输块在这3个载波中的至少2个载波上传输的冗余版本不同。
可选地,当连续重传次数为1时,传输块在至少一个载波上传输的冗余版本相同。例如,当构成同一逻辑小区的载波的数量为3个时,在同一传输时隙上,传输块在这3个载波中的至少2个载波上传输的冗余版本相同。
可选地,当连续重传次数大于1时,传输块在至少一个载波上传输的冗余版本不同。例如,当载波的数量为3个时,在同一传输时隙上,传输块在这3个载波中的至少2个载波上传输的冗余版本不同。
下面分别对这几种可能的实现方式进行介绍。
设构成一个逻辑小区的载波的数量为N,N为大于或等于2的正整数。当连续重传次数为1时(即第二无线资源控制信令中包括聚合因子,聚合因子pdsch-AggregationFactor=1时,或者,第二无线资源控制信令中不包括聚合因子时),传输块在至少一个载波上传输的冗余版本满足第一预设条件。
可选地,在一种实现方式中,传输块在至少一个载波上传输的冗余版本不同,此时,第一预设条件包括以下中的至少一项:
rv id=0,若n mod 4=0,则rv1为0;若n mod 4=1,则rv1为2;若n mod 4=2,则rv1为3,n mod 4=3,则rv1为1;
rv id=2,若n mod 4=0,则rv1为2;若n mod 4=1,则rv1为3;若n mod 4=2,则rv1为1,若n mod 4=3,则rv1为0;
rv id=3,若n mod 4=0,则rv1为3;若n mod 4=1,则rv1为1;若n mod 4=2,则rv1为0,若n mod 4=3,则rv1为2;
rv id=1,若n mod 4=0,则rv1为1;若n mod 4=1,则rv1为0;若n mod 4=2,则rv1为2,若n mod 4=3,则rv1为3;
其中,rv id为至少一个载波中的第一个载波的冗余版本标识,mod为取模操作,n为大于或等于0且小于N的正整数,N为载波的数量,rv1为传输块在载波n上传输的冗余版本。
当传输方式为完整传输方式,且连续重传次数为1时,仅通过一个传输时隙就可以实现传输块的传输。一种实现方式中,网络设备可以向终端设备发送N个载波中的第一个载波的冗余版本标识,即rv id。然后,终端设备根据第一个载波的冗余版本标识rv id,确定传输块在各个载波上传输的冗余版本。另一种实现方式中,网络设备可以向终端设备发送这N个载波的冗余版本标识,然后终端设备根据每个载波的冗余版本标识,确定传输块在各个载波上传输的冗余版本。
当传输方式为完整传输方式,且连续重传次数为1时,网络设备可以根据传输块在至少一个载波上传输的冗余版本,在每个载波上向终端设备发送该传输块。终端设备可以根据传输块在至少一个载波上传输的冗余版本,在每个载波上接收网络设备发送的传输块。
例如在图10中,示例的是构成逻辑小区的载波的数量为3,即N=3,这3个载波分为为载波0、载波1和载波2的情形。传输块的连续重传次数K=1,调度PDSCH的DCI中的第一个载波的冗余版本标识rv id=3。
根据rv id=3,以及表1,可得传输块TB0在载波0(0 mod 4=0)上传输的冗余版本为3,在载波1(1 mod 4=1)传输的冗余版本为1,在载波2(2 mod 4=2)传输的冗余版本为0。
可选地,在另一种实现方式中,传输块在至少一个载波上传输的冗余版本相同,此时,第一预设条件为传输块在至少两个载波上传输的冗余版本相同。例如构成一个逻辑小区的载波包括载波0、载波1和载波2,则传输块在载波0和载波1上传输的冗余版本可以相同,传输块在载波2上传输的冗余版本与在载波0和载波1上传输的冗余版本不同;例如,传输块在载波1和载波2上传输的冗余版本相同;例如,传输块在载波0和载波2上传输的冗余版本相同;例如,传输块在载波0、载波1和载波2上传输的冗余版本均相同。
本申请实施例的方案,在连续重传次数为1时,由于载波的数量为至少两个,从而在至少两个载波上将一个传输块在不同的载波上进行重复传输。相较于载波数量为1个时在载波上传输该传输块,通过至少两个载波上的每个载波传输该传输块,能够提高该传输块传输成功的概率,从而可以降低该传输块HARQ重传的概率。
在上述实施例中,介绍了完整传输方式下、连续重传次数为1次时传输块的传输方案,下面将介绍连续重传次数大于1时的传输方案。
设构成一个逻辑小区的载波的数量为N,N为大于或等于2的正整数。当连续重传次数K大于1时(即第二无线资源控制信令中包括聚合因子,聚合因子pdsch-AggregationFactor大于1时),根据N和K的大小关系,可分为两种情况。
第一种情况,若N大于或等于K,则传输块实现K次重复传输仅通过一个传输时隙即可。在该情况下,传输块在至少一个载波上传输的冗余版本满足第二预设条件。
可选地,第二预设条件包括以下中的至少一项:
rv id=0,若(n mod K)mod 4=0,则rv2为0;若(n mod K)mod 4=1,则rv2为2;若(n mod  K)mod 4=2,则rv2为3,(n mod K)mod 4=3,则rv2为1;
rv id=2,若(n mod K)mod 4=0,则所述rv2为2;若(n mod K)mod 4=1,则rv2为3;若(n mod K)mod 4=2,则rv2为1,若(n mod K)mod 4=3,则rv2为0;
rv id=3,若(n mod K)mod 4=0,则所述rv2为3;若(n mod K)mod 4=1,则rv2为1;若(n mod K)mod 4=2,则rv2为0,若(n mod K)mod 4=3,则rv2为2;
rv id=1,若(n mod K)mod 4=0,则rv2为1;若(n mod K)mod 4=1,则rv2为0;若(n mod K)mod 4=2,则rv2为2,若(n mod K)mod 4,则rv2为3;
其中,rv id为至少一个载波中的第一个载波的冗余版本标识,mod为取模操作,rv2为传输块在载波n上传输的冗余版本;
n为大于或等于0且小于N的正整数,或者,n为大于或等于0且小于K的正整数。
由于当连续重传次数K小于或等于载波的数量N时,通过前K个载波就可以实现K次重传,而从第K+1个载波至第N个载波,可以用于重传该传输块,也可以不用于重传该传输块,例如可以用于传输其他的传输块。当第K+1个载波至第N个载波用于传输该传输块时,传输块在第K+1个载波至第N个载波上传输的冗余版本可以采用表2的规律(即满足第二预设条件),也可以不采用表2的规律,例如可以自定义传输块在第K+1个载波至第N个载波上传输的冗余版本。
可选地,一种实现方式是,根据传输块在N个载波上传输的冗余版本,在N个载波上传输该传输块,此时,第二预设条件中的n为大于或等于0且小于N的正整数。在该实现方式中,第K+1个载波至第N个载波也用于重传该传输块,且第K+1个载波至第N个载波传输所用的冗余版本满足表2所示规律。
例如在图11中,构成一个逻辑小区的载波的数量为3,即N=3,这3个载波分为为载波0、载波1和载波2。传输块的连续重传次数K=2,调度PDSCH的DCI中的第一个载波的冗余版本标识rv id=2。
根据rv id=2,以及表2,可得传输块TB0在载波0((0 mod 2)mod 4=0)上传输的冗余版本为2,在载波1((1 mod 2)mod 4=1)传输的冗余版本为3,在载波2((2 mod 2)mod 4=0)传输的冗余版本为2。因此,网络设备可以在这3个载波上向终端设备发送该TB0,TB0在每个载波上传输的冗余版本如图11中示意。
图11中示例的是rv id=2的情形,rv id也可以为其他的取值。例如,若rv id=1,则传输块TB0在载波0上传输的冗余版本为1,在载波1传输的冗余版本为0,在载波2传输的冗余版本为1。
网络设备可以向终端设备发送3个载波中的第一个载波的冗余版本标识,即rv id=2。根据第一个载波的冗余版本标识,可以得到传输块在每个载波上传输的冗余版本。网络设备也可以在各个载波向终端设备发送各个载波的冗余版本标识,终端设备根据各个载波的冗余版本标识来确定传输块在对应的载波上传输的冗余版本。无论网络设备选择上述两种冗余版本指示方式中的哪一种,传输块在载波上传输的冗余版本均满足上述第二预设条件。
可选地,另一种实现方式是,根据传输块在前K个载波上传输的冗余版本,在前K个载波上传输该传输块,此时,第二预设条件中的n为大于或等于0且小于K的正整数。在该实现方式中,第K+1个载波至第N个载波不用于重传该传输块。第K+1个载波至第N个载波可以用于传输其他的传输块,或者,可以不传输任何传输块,或者可以传输该传输块的任意冗余版本。
当连续重传次数大于1时,按照现有协议规定,需要在K个时隙上实现传输块的K次传输,而在多载波构成一个逻辑小区的方案中,能够在一个传输时隙中通过N个载波来实现传输块的K次传输,从而将一个传输块的重复传输次数均分到不同的载波上,进而降低了PDSCH在一个载波上重复传输的时间长度。
例如在图12中,构成逻辑小区的载波的数量为3,即N=3,这3个载波分为为载波0、 载波1和载波2。传输块的连续重传次数K=2,调度PDSCH的DCI中的第一个载波的冗余版本标识rv id=2。
根据rv id=2,以及表2,可得传输块TB0在载波0上传输的冗余版本为2,在载波1传输的冗余版本为3。由于K=2,即连续重传次数为2,此时通过载波0和载波1即可实现2次重传。因此,网络设备可以在这2个载波上向终端设备发送该TB0,TB0在每个载波上传输的冗余版本如图12中示意。载波2可以不用于传输该传输块TB0,例如可以传输其他的传输块,例如也可以不传输任何传输块,例如也可以用于传输该传输块TB0。如图12中所示,载波2上可以用于传输TBx,TBx可以为TB0,也可以为其他的传输块,载波2上也可以不传输任何传输块。当载波2用于传输该传输块TB0时,TB0在载波3上传输的冗余版本可以是冗余版本1、冗余版本2、冗余版本3、冗余版本0中的任意一项。
当连续重传次数大于1时,能够在一个传输时隙中通过前K个载波来实现传输块的K次传输,从而将一个传输块的重复传输次数均分到不同的载波上,进而缩短了PDSCH在一个载波上重复传输的时长。
在上述实施例中,介绍了完整传输方式下连续重传次数大于1的第一种情况,即N大于或等于K的情况,下面介绍完整传输方式下连续重传次数大于1的第二种情况,即N小于K的情况。
第二种情况,若N小于K,则传输块实现K次重复传输需要通过
Figure PCTCN2021140635-appb-000074
个传输时隙,
Figure PCTCN2021140635-appb-000075
表示对K/N进行向上取整。例如,
Figure PCTCN2021140635-appb-000076
等等。在该情况下,传输块在至少一个载波上传输的冗余版本满足第三预设条件。
可选地,第三预设条件包括以下中的至少一项:
rv id=0,若(n+i*N)mod 4=0,则rv3为0;若(n+i*N)mod 4=1,则rv3为2;若(n+i*N)mod 4=2,则rv3为3,(n+i*N)mod 4=3,则rv3为1;
rv id=2,若(n+i*N)mod 4=0,则rv3为2;若(n+i*N)mod 4=1,则rv3为3;若(n+i*N)mod 4=2,则rv3为1,若(n+i*N)mod 4=3,则rv3为0;
rv id=3,若(n+i*N)mod 4=0,则rv3为3;若(n+i*N)mod 4=1,则rv3为1;若(n+i*N)mod 4=2,则rv3为0,若(n+i*N)mod 4=3,则rv3为2;
rv id=1,若(n+i*N)mod 4=0,则rv3为1;若(n+i*N)mod 4=1,则rv3为0;若(n+i*N)mod 4=2,则rv3为2,若(n+i*N)mod 4=3,则rv3为3;
其中,rv id为至少一个载波中的第一个载波的冗余版本标识,mod为取模操作,n为大于或等于0且小于N的正整数,N为载波的数量,rv3为第i个时隙中、传输块在载波n上传输的冗余版本;
当i大于或等于0且小于或等于
Figure PCTCN2021140635-appb-000077
时,n为大于或等于0且小于N的正整数;当i等于
Figure PCTCN2021140635-appb-000078
时,n为大于或等于0且小于N的正整数,或者,n为大于或等于0且小于或等于
Figure PCTCN2021140635-appb-000079
的正整数,
Figure PCTCN2021140635-appb-000080
表示对K/N向上取整,
Figure PCTCN2021140635-appb-000081
表示对K/N向下取整。
由于当连续重传次数K大于载波的数量N时,通过N个载波在一个传输时隙中无法实现K次重传,至少需要
Figure PCTCN2021140635-appb-000082
个时隙实现K次重传。当i大于或等于0且小于或等于
Figure PCTCN2021140635-appb-000083
时,传输块需要在N个载波上传输,n为大于或等于0且小于N的正整数;当i等于
Figure PCTCN2021140635-appb-000084
时,传输块需要在前
Figure PCTCN2021140635-appb-000085
个载波上传输,或者,在N个载波上传输。即,在时隙
Figure PCTCN2021140635-appb-000086
上,从第
Figure PCTCN2021140635-appb-000087
个载波(即载波
Figure PCTCN2021140635-appb-000088
)至第N个载波(即载波(N-1)),可以用于重传该传输块,也可以不用于重传该传输块,例如可以用于传输其他的传输块。
本申请实施例中,时隙i是从0开始计数的。以K=8、N=3为例,在3个载波上实现8次重传,至少需要
Figure PCTCN2021140635-appb-000089
个时隙实现。当i大于或等于0且小于或等于1(即
Figure PCTCN2021140635-appb-000090
)时,传输块需要在3个载波上传输,从而在时隙0和时隙1上可以实现6次重传。当i等于2(即
Figure PCTCN2021140635-appb-000091
)时,传输块可以仅在前
Figure PCTCN2021140635-appb-000092
个载波上传输,即载波0至载波1(即
Figure PCTCN2021140635-appb-000093
上传输。当i等于2(即
Figure PCTCN2021140635-appb-000094
)时,传输块也可以在N个载波上传输该传输 块。
下面结合图13和图14对这两种不同的实现方案进行介绍,需要说明的是,网络设备可以向终端设备发送N个载波中的第一个载波的冗余版本标识,终端设备根据第一个载波的冗余版本标识确定传输块在每个载波上传输的冗余版本。网络设备也可以在各个载波上向终端设备发送各个载波的冗余版本标识,终端设备根据各个载波的冗余版本标识来确定传输块在各个载波上传输的冗余版本。无论网络设备选择上述两种指示方式中的哪一种,传输块在载波上传输的冗余版本均满足上述第三预设条件。在图13和图14的示例中,均以网络设备发送第一个载波的冗余版本标识为例进行介绍。
可选地,一种实现方式是,针对
Figure PCTCN2021140635-appb-000095
个传输时隙中的任意一个传输时隙,根据传输时隙中、传输块在至少一个载波上传输的冗余版本,在N个载波上传输该传输块。
例如在图13中,构成逻辑小区的载波的数量为3,即N=3,这3个载波分为为载波0、载波1和载波2。传输块的连续重传次数K=4,调度PDSCH的DCI中的第一个载波的冗余版本标识rv id=1。
根据rv id=1,以及表3,可得传输块TB0在载波0上第一个时隙(即时隙0)上传输的冗余版本为1((0+0*3)mod 4=0),在载波1上第一个时隙上传输的冗余版本为0((1+0*3)mod 4=1),在载波2上第一个时隙上传输的冗余版本为2((2+0*3)mod 4=2)。TB0在载波0上第二个时隙(即时隙1)上传输的冗余版本为3((0+1*3)mod 4=3),在载波1上第二个时隙上传输的冗余版本为1((1+1*3)mod 4=0),在载波2上第二个时隙上传输的冗余版本为0((2+1*3)mod 4=1)。
可选地,另一种实现方式是,针对前
Figure PCTCN2021140635-appb-000096
个传输时隙中的任意一个传输时隙,根据传输时隙中、传输块在至少一个载波上传输的冗余版本,在N个载波上传输传输块;针对第
Figure PCTCN2021140635-appb-000097
个传输时隙,根据传输时隙中、传输块在前
Figure PCTCN2021140635-appb-000098
个载波上传输的冗余版本,在前
Figure PCTCN2021140635-appb-000099
个载波上传输传输块。
例如在图14中,构成逻辑小区的载波的数量为3,即N=3,这3个载波分为为载波0、载波1和载波2。传输块的连续重传次数K=4,调度PDSCH的DCI中的第一个载波的冗余版本标识rv id=1。
根据rv id=1,以及表3,可得传输块TB0在载波0上第一个时隙(即时隙0)上传输的冗余版本为1((0+0*3)mod 4=0),在载波1上第一个时隙上传输的冗余版本为0((1+0*3)mod 4=1),在载波2上第一个时隙上传输的冗余版本为2((2+0*3)mod 4=2)。TB0在载波0上第二个时隙(即时隙1)上传输的冗余版本为3((0+1*3)mod 4=3),在载波1上第二个时隙上和在载波2上第二个时隙上不传输TB0。在第二个时隙上,载波1和载波2可以用于传输其他的传输块,也可以不传输任何传输块。
例如在图14中,在第二个时隙上,载波1可以用于传输TBx,或者不传输任何传输块,TBx可以为TB0,也可以为其他的传输块,TBx在载波1上传输的冗余版本可以是冗余版本1、冗余版本2、冗余版本3、冗余版本0中的任意一项;在第二个时隙上,载波2可以用于传输TBy,或者不传输任何传输块,TBy可以为TB0,也可以为其他的传输块,TBy在载波1上传输的冗余版本可以是冗余版本1、冗余版本2、冗余版本3、冗余版本0中的任意一项。
在单个载波上实现4次重复传输,需要4个传输时隙才能够完成,本申请的方案相较于单个载波传输传输块的方案,将重复传输次数均分到不同的载波上,从而只需要2个传输时隙就能够实现4次重复传输。
当连续重传次数大于1时,在单个载波上实现K次传输需要K个时隙才能实现,本申请的方案中,针对构成一个逻辑小区的N个载波,能够通过N个载波来实现传输块的K次传输,从而将一个传输块的重复传输次数均分到不同的载波上,进而降低了PDSCH在一个载波上重复传输的时长。
图19为本申请实施例提供的传输方法的信令示意图五,如图19所示,该方法包括:
S191,响应于载波满足预设条件,网络设备根据传输块的传输方式,在载波上发送传输块。
可选地,载波的数量可以为一个或多个。
传输块的传输方式包括完整传输方式和分散传输方式,可选地,完整传输方式指的是针对任意一个载波而言,传输块在该载波上完整传输。与完整传输方式相对的是分散传输方式,分散传输方式指的是针对任意一个载波而言,传输块只在该载波上传输该传输块的部分码块组,即采用分散传输方式时,一个传输块将被分为至少一个码块组,不同的载波上传输该传输块的不同码块组,进而实现该传输块的所有码块组的传输。
当载波的数量为一个时,传输块只能在这个载波上以完整传输方式来传输,当载波的数量为至少两个时,传输块可以在至少一个载波上以完整传输方式来传输,也可以在至少一个载波上以分散传输方式来传输。
在载波满足预设条件时,网络设备可以根据传输块的传输方式,在载波上向终端设备发送该传输块,即进行下行业务PDSCH传输。
可选地,预设条件包括载波的数量为至少两个,和/或,载波为同一逻辑小区下的载波。当载波的数量为至少两个时,网络设备可以在这至少两个载波上发送该传输块。至少两个载波为同一逻辑小区下的载波。网络设备在这至少两个载波上向终端设备方式传输块时,可以选择完整传输方式或分散传输方式进行传输。
S192,响应于传输块的传输方式为分散传输方式和/或载波满足预设条件,终端设备根据分散传输方式在载波上接收传输块。
由于传输块的传输方式可能为完整传输方式,也可能为分散传输方式,因此终端设备在接收传输块之前,首先要确定传输块的传输方式。
可选地,终端设备响应于载波满足预设条件,确定传输块的传输方式。可选地,预设条件包括载波的数量为至少两个,和/或,载波为同一逻辑小区下的载波。
可选地,网络设备向终端设备发送传输方式指示参数,该传输方式指示参数用于指示传输块的传输方式。
可选地,传输方式指示参数承载于系统消息中,和/或,传输方式指示参数承载于第一无线资源控制信令中。
可选地,该系统消息可以为SIB。
可选地,该第一无线资源控制信令可以为RRC消息。
可选地,当传输方式指示参数承载于系统消息中时,网络设备向终端设备发送系统消息,系统消息中包括该传输方式指示参数。终端设备从网络设备接收该系统消息后,根据该系统消息获取传输方式指示参数,然后根据传输方式指示参数确定传输块的传输方式。
可选地,当传输方式指示参数承载于第一无线资源控制信令中时,网络设备向终端设备发送第一无线资源控制信令,第一无线资源控制信令中包括该传输方式指示参数。终端设备从网络设备接收该第一无线资源控制信令后,根据该第一无线资源控制信令获取传输方式指示参数,然后根据传输方式指示参数确定传输块的传输方式。
可选地,本申请实施例中,传输方式为分散传输方式。
图20为本申请实施例提供的传输方法的信令示意图六,如图20所示,该方法包括:
S2001,响应于传输块的传输方式为分散传输方式和/或载波满足预设条件,终端设备根据分散传输方式在载波上发送传输块。
可选地,载波的数量可以为一个或多个。
传输块的传输方式包括完整传输方式和分散传输方式,可选地,完整传输方式指的是针对任意一个载波而言,传输块在该载波上完整传输。与完整传输方式相对的是分散传输方式,分散传输方式指的是针对任意一个载波而言,传输块只在该载波上传输该传输块的部分码块组,即采用分散传输方式时,一个传输块将被分为至少一个码块组,不同的载波上传输该传 输块的不同码块组,进而实现该传输块的所有码块组的传输。
当载波的数量为一个时,传输块只能在这个载波上以完整传输方式来传输,当载波的数量为至少两个时,传输块可以在至少一个载波上以完整传输方式来传输,也可以在至少一个载波上以分散传输方式来传输。
由于传输块的传输方式可能为完整传输方式,也可能为分散传输方式,因此终端设备在发送传输块之前,首先要确定传输块的传输方式。
可选地,终端设备响应于载波满足预设条件,确定传输块的传输方式。可选地,预设条件包括载波的数量为至少两个,和/或,载波为同一逻辑小区下的载波。
可选地,网络设备向终端设备发送传输方式指示参数,该传输方式指示参数用于指示传输块的传输方式。
可选地,传输方式指示参数承载于系统消息中,和/或,传输方式指示参数承载于第一无线资源控制信令中。
可选地,该系统消息可以为SIB。
可选地,该第一无线资源控制信令可以为RRC消息。
可选地,当传输方式指示参数承载于系统消息中时,网络设备向终端设备发送系统消息,系统消息中包括该传输方式指示参数。终端设备从网络设备接收该系统消息后,根据该系统消息获取传输方式指示参数,然后根据传输方式指示参数确定传输块的传输方式。
可选地,当传输方式指示参数承载于第一无线资源控制信令中时,网络设备向终端设备发送第一无线资源控制信令,第一无线资源控制信令中包括该传输方式指示参数。终端设备从网络设备接收该第一无线资源控制信令后,根据该第一无线资源控制信令获取传输方式指示参数,然后根据传输方式指示参数确定传输块的传输方式。
可选地,本申请实施例中,传输方式为分散传输方式。
S2002,响应于载波满足预设条件,网络设备根据传输块的传输方式,在载波上接收传输块。
在载波满足预设条件时,网络设备可以根据传输块的传输方式,在载波上接收该传输块,即进行上行业务PUSCH传输。
可选地,预设条件包括载波的数量为至少两个,和/或,载波为同一逻辑小区下的载波。当载波的数量为至少两个时,网络设备可以在这至少两个载波上接收该传输块。这至少两个载波为同一逻辑小区下的载波。网络设备在这至少两个载波上接收传输块时,可以选择完整传输方式或分散传输方式进行接收。在图19和图20的实施例中对传输块在网络设备和终端设备之间通过完整传输方式进行传输块的传输进行了介绍。本申请实施例中,在载波上传输某传输块,可以表示在载波上发送传输块,也可以表示在载波上接收传输块。当“终端设备在载波上传输传输块”表示的是在载波上接收传输块时,“网络设备在载波上传输传输块”表示的是在载波上发送传输块(如图19中示例);当“终端设备在载波上传输传输块”表示的是在载波上发送传输块时,“网络设备在载波上传输传输块”表示的是在载波上接收传输块(如图20中示例)。即,本申请的传输方法,既可以适用于进行下行业务PDSCH传输,也可以适用于上行业务PUSCH传输。在下述实施例中,均以下行业务PDSCH传输为例进行介绍,可以理解的是,下述实施例的方案,也可以用于上行业务PUSCH传输。
可选地,终端设备确定传输块在至少一个载波上传输的冗余版本,然后根据该冗余版本、传输块的传输方式和传输块的连续重传次数,在载波上接收该传输块。
当载波的数量为一个时,网络设备可以在该载波上向终端设备发送该载波的冗余版本标识,然后根据该冗余版本标识,确定传输块在该载波上传输的冗余版本。
当载波的数量为至少两个时,网络设备可以向终端设备发送至少一个载波中的第一个载波的冗余版本标识。终端设备在接收至少一个载波中的第一个载波的冗余版本标识后,根据 第一个载波的冗余版本标识、连续重传次数和传输方式,确定传输块在至少一个载波上传输的冗余版本。
可选地,第一个载波的冗余版本标识承载在第一下行资源控制信息中。网络设备在第一个载波上向终端设备发送第一下行资源控制信息,终端设备在第一个载波上接收到第一下行资源控制信息后,根据第一下行资源控制信息获取第一个载波的冗余版本标识。
当载波的数量为至少两个时,网络设备可以向终端设备发送至少一个载波的冗余版本标识。终端设备在接收至少一个载波的冗余版本标识后,根据至少一个载波的冗余版本标识,确定传输块在至少一个载波上传输的冗余版本。
可选地,至少一个载波的冗余版本标识承载在第二下行资源控制信息中。网络设备在至少一个载波上向终端设备发送第二下行资源控制信息,终端设备在至少一个载波上接收到第二下行资源控制信息后,根据第二下行资源控制信息获取至少一个载波的冗余版本标识。
当传输方式为分散传输方式时,终端设备可以根据传输块包括的码块组的数目和载波的数量,确定至少一个载波上传输的码块组的索引。
可选地,传输块包括的码块组的数目为传输块中真实的码块数目和传输块中协议允许的最大码块组的数目中的较小值。
针对K个传输时隙中的任意一个传输时隙,根据传输块在至少一个载波上传输的冗余版本和码块组的索引,在至少一个载波上传输该传输块的至少一个码块组。
可选地,当传输方式为分散传输方式时,时隙i与传输块在至少一个载波上传输的冗余版本满足第四预设条件。
可选地,第四预设条件包括以下中的至少一项:
rv id=0,若i mod 4=0,则rv4为0;若i mod 4=1,则rv4为2;若i mod 4=2,则rv4为3,i mod 4=3,则rv4为1;
rv id=2,若i mod 4=0,则rv4为2;若i mod 4=1,则rv4为3;若i mod 4=2,则rv4为1,若i mod 4=3,则rv4为0;
rv id=3,若i mod 4=0,则rv4为3;若i mod 4=1,则rv4为1;若i mod 4=2,则rv4为0,若i mod 4=3,则rv4为2;
rv id=1,若i mod 4=0,则rv4为1;若i mod 4=1,则rv4为0;若i mod 4=2,则rv4为2,若i mod 4=3,则rv4为3;
其中,rv id为至少一个载波中的第一个载波的冗余版本标识,mod为取模操作,i为大于或等于0且小于K的正整数,K为连续重传次数,rv4为在时隙i上、传输块在至少一个载波上传输的冗余版本。
由于可以将传输块分为至少一个码块组进行传输,因此在一个传输时隙上只能实现传输块的一次传输。若连续重传次数大于1,例如连续重传次数为K时,则需要K个时隙实现传输块的传输。可选地,针对任意一个传输时隙i,在时隙i上传输块在载波上传输的冗余版本根据第四预设条件确定。
可选地,至少一个载波上传输的码块组的索引满足第五预设条件。
可选地,第五预设条件包括:
当M大于N,n∈{0,1,...,T 1-1}时,载波n上传输的码块组的索引为(n*N 1+k 1),k 1=0,1,...,N 1-1;n∈{T 1,T 1+1,...,N-1}时,载波n上传输的码块组的索引为(T 1*N 1+(n-T 1)N 2+k 2),k 2=0,1,...,N 2-1,n大于或等于0且小于N;和/或,
当M小于或等于N,载波n上传输的码块组的索引为n,n大于或等于0且小于M;
其中,M为传输块包括的码块组的数目,M为大于或等于1的正整数,N为载波的数量,N为大于或等于2的正整数,T 1=M mod N,
Figure PCTCN2021140635-appb-000100
表示对(M/N)上取整,
Figure PCTCN2021140635-appb-000101
表示对(M/N)下取整。
例如在图15中,构成逻辑小区的载波的数量为3,即N=3,这3个载波分为载波0、载 波1和载波2,TB0中包括的真实的码块个数为7,高层参数maxCodeBlockGroupPerTransportBlock配置的最大CBG个数为4,则一个TB可以传输的CBG个数M=min(N,C)=4。
T 1=4mod 3=1,
Figure PCTCN2021140635-appb-000102
根据第五预设条件,当n∈{0,1,...,T 1-1}(即n∈{0})时,载波0上传输的码块组的索引为(n*N 1+k 1)=(0*2+k 1),k 1=0,1,...,N 1-1=0,1,则构成TB0的CBG 0和CBG 1在载波0上传输。n∈{T 1,T 1+1,...,N-1}(即n∈{1,2})时,载波n上传输的码块组的索引为(T 1*N 1+(n-T 1)N 2+k 2)=(1*2+(n-1)1+0)=n+1,构成TB0的CBG 2在载波1上传输,构成TB0的CBG3在载波上2上传输,如图15中所示。
例如在图16中,构成逻辑小区的载波的数量为3,即N=3,这3个载波分为为载波0、载波1和载波2,TB0中包括的真实的码块个数为7,高层参数maxCodeBlockGroupsPerTransportBlock配置的最大CBG个数=2,所以一个TB可以传输的CBG个数M=min(N,C)=2。
根据第五预设条件,载波n上传输的码块组的索引为n,则构成TB0的CBG 0在载波0上传输,构成TB0的CBG 1在载波1上传输,载波2上可不传输TB0,例如可以用于其他TB的传输,例如可以不传输任何传输块。如图16中所示,载波2可以用于传输CBGx,或者不传输任何码块组,CBGx可以为组成TB0的CBG0或CBG1,也可以为组成其他传输块的CBG。
本申请实施例的方案,可以将一个比特数目过大的传输块分散在不同的载波上传输,从而降低每个载波上的传输码率,进而提升终端设备对码块组数据解调进而成功接收传输块的成功率。
图21为本申请实施例提供的一种传输装置的结构示意图,如图21所示,该传输装置210包括:
处理模块211,用于确定传输块的传输方式;
传输模块212,用于根据所述传输方式,在载波上传输所述传输块。
可选地,所述处理模块211具体用于:
响应于所述载波满足预设条件,确定所述传输方式。
可选地,所述预设条件包括:
所述载波的数量为至少两个;和/或,
所述载波为同一逻辑小区下的载波。
可选地,所述传输模块212具体用于:
确定所述传输块在至少一个所述载波上传输的冗余版本;
根据所述冗余版本、所述传输方式和/或所述传输块的连续重传次数,在所述载波上传输所述传输块。
可选地,所述传输模块212具体用于:
获取至少一个所述载波中的第一个载波的冗余版本标识,根据所述第一个载波的冗余版本标识、所述连续重传次数和所述传输方式,确定所述至少一个所述载波上传输的冗余版本;和/或,
获取至少一个所述载波的冗余版本标识,根据至少一个所述载波的冗余版本标识,确定所述至少一个所述载波上传输的冗余版本。
可选地,所述传输模块212具体用于:在所述第一个载波上接收第一下行资源控制信息,根据所述第一下行资源控制信息获取所述第一个载波的冗余版本标识;和/或,
所述传输模块212具体用于:在至少一个所述载波上接收第二下行资源控制信息,根据所述第二下行资源控制信息获取至少一个所述载波的冗余版本标识。
可选地,针对任一传输时隙,所述冗余版本满足以下至少一项:
所述传输方式为完整传输方式,所述连续重传次数为1,所述传输块在至少一个所述载波上传输的冗余版本不同;
所述传输方式为完整传输方式,所述连续重传次数为1,所述传输块在至少一个所述载波上传输的冗余版本相同;
所述传输方式为所述完整传输方式,所述连续重传次数大于1,所述传输块在至少一个所述载波上传输的冗余版本不同;
所述传输方式为分散传输方式,所述传输块在至少一个所述载波上传输的冗余版本相同。
可选地,所述传输方式为所述完整传输方式,所述连续重传次数为1,所述传输块在至少一个所述载波上传输的冗余版本满足第一预设条件。
可选地,所述第一预设条件包括以下至少一项:
rv id=0,若n mod 4=0,则rv1为0;若n mod 4=1,则所述rv1为2;若n mod 4=2,则所述rv1为3,n mod 4=3,则所述rv1为1;
rv id=2,若n mod 4=0,则所述rv1为2;若n mod 4=1,则所述rv1为3;若n mod 4=2,则所述rv1为1,若n mod 4=3,则所述rv1为0;
rv id=3,若n mod 4=0,则所述rv1为3;若n mod 4=1,则所述rv1为1;若n mod 4=2,则所述rv1为0,若n mod 4=3,则所述rv1为2;
rv id=1,若n mod 4=0,则所述rv1为1;若n mod 4=1,则所述rv1为0;若n mod 4=2,则所述rv1为2,若n mod 4=3,则所述rv1为3;
其中,所述rv id为至少一个所述载波中的第一个载波的冗余版本标识,mod为取模操作,所述n为大于或等于1且小于或等于N的正整数,所述N为所述载波的数量,所述rv1为所述传输块在载波n上传输的冗余版本。
可选地,所述第一预设条件为在至少一个所述载波上传输的冗余版本相同。
可选地,所述传输模块212具体用于:
根据所述传输块在至少一个所述载波上传输的冗余版本,在每个载波上传输所述传输块。
可选地,所述传输方式为所述完整传输方式,所述连续重传次数K大于1,所述载波的数量N大于或等于所述K;所述传输块在至少一个所述载波上传输的冗余版本满足第二预设条件。
可选地,所述第二预设条件包括以下至少一项:
rv id=0,若(n mod K)mod 4=0,则rv2为0;若(n mod K)mod 4=1,则所述rv2为2;若(n mod K)mod 4=2,则所述rv2为3,(n mod K)mod 4=3,则所述rv2为1;
rv id=2,若(n mod K)mod 4=0,则所述rv2为2;若(n mod K)mod 4=1,则所述rv2为3;若(n mod K)mod 4=2,则所述rv2为1,若(n mod K)mod 4=3,则所述rv2为0;
rv id=3,若(n mod K)mod 4=0,则所述rv2为3;若(n mod K)mod 4=1,则所述rv2为1;若(n mod K)mod 4=2,则所述rv2为0,若(n mod K)mod 4=3,则所述rv2为2;
rv id=1,若(n mod K)mod 4=0,则所述rv2为1;若(n mod K)mod 4=1,则所述rv2为0;若(n mod K)mod 4=2,则所述rv2为2,若(n mod K)mod 4,则所述rv2为3;
其中,所述rv id为至少一个所述载波中的第一个载波的冗余版本标识,mod为取模操作,所述rv2为所述传输块在载波n上传输的冗余版本;
所述n为大于或等于1且小于或等于N的正整数,或者,所述n为大于或等于1且小于或等于K的正整数。
可选地,所述传输模块212具体用于:
根据所述传输块在前K个载波上传输的冗余版本,在所述前K个载波上传输所述传输块;或者,
根据所述传输块在所述N个载波上传输的冗余版本,在所述N个载波上传输所述传输块。
可选地,所述传输方式为所述完整传输方式,所述连续重传次数K大于1,所述载波的 数量N小于所述K,时隙i与所述传输块在至少一个所述载波上传输的冗余版本满足第三预设条件。
可选地,所述第三预设条件包括以下至少一项:
rv id=0,若(n+i*N)mod 4=0,则rv3为0;若(n+i*N)mod 4=1,则所述rv3为2;若(n+i*N)mod 4=2,则所述rv3为3,(n+i*N)mod 4=3,则所述rv3为1;
rv id=2,若(n+i*N)mod 4=0,则所述rv3为2;若(n+i*N)mod 4=1,则所述rv3为3;若(n+i*N)mod 4=2,则所述rv3为1,若(n+i*N)mod 4=3,则所述rv3为0;
rv id=3,若(n+i*N)mod 4=0,则所述rv3为3;若(n+i*N)mod 4=1,则所述rv3为1;若(n+i*N)mod 4=2,则所述rv3为0,若(n+i*N)mod 4=3,则所述rv3为2;
rv id=1,若(n+i*N)mod 4=0,则所述rv3为1;若(n+i*N)mod 4=1,则所述rv3为0;若(n+i*N)mod 4=2,则所述rv3为2,若n(n+i*N)mod 4=3,则所述rv3为3;
其中,所述rv id为至少一个所述载波中的第一个载波的冗余版本标识,mod为取模操作,所述n为大于或等于1且小于或等于N的正整数,所述N为所述载波的数量,所述rv3为时隙i中、所述传输块在载波n上传输的冗余版本;
当所述i大于或等于0且小于或等于
Figure PCTCN2021140635-appb-000103
时,所述n为大于或等于1且小于或等于N的正整数;当所述i等于
Figure PCTCN2021140635-appb-000104
时,所述n为大于或等于1且小于或等于N的正整数,或者,所述n为大于或等于1且小于或等于
Figure PCTCN2021140635-appb-000105
的正整数,
Figure PCTCN2021140635-appb-000106
表示对K/N向上取整,
Figure PCTCN2021140635-appb-000107
表示对K/N向下取整。
可选地,所述传输模块212具体用于:
针对
Figure PCTCN2021140635-appb-000108
个传输时隙中的任意一个传输时隙,根据所述传输时隙中、所述传输块在至少一个所述载波上传输的冗余版本,在所述N个载波上传输所述传输块;或者,
针对前
Figure PCTCN2021140635-appb-000109
个传输时隙中的任意一个传输时隙,根据所述传输时隙中、所述传输块在至少一个所述载波上传输的冗余版本,在所述N个载波上传输所述传输块;针对第
Figure PCTCN2021140635-appb-000110
个传输时隙,根据所述传输时隙中、所述传输块在前
Figure PCTCN2021140635-appb-000111
个载波上传输的冗余版本,在所述前
Figure PCTCN2021140635-appb-000112
个载波上传输所述传输块。
可选地,所述传输方式为所述分散传输方式;时隙i与所述传输块在至少一个所述载波上传输的冗余版本满足第四预设条件。
可选地,所述第四预设条件包括以下至少一项:
rv id=0,若i mod 4=0,则rv4为0;若i mod 4=1,则所述rv4为2;若i mod 4=2,则所述rv4为3,i mod 4=3,则所述rv4为1;
rv id=2,若i mod 4=0,则所述rv4为2;若i mod 4=1,则所述rv4为3;若i mod 4=2,则所述rv4为1,若i mod 4=3,则所述rv4为0;
rv id=3,若i mod 4=0,则所述rv4为3;若i mod 4=1,则所述rv4为1;若i mod 4=2,则所述rv4为0,若i mod 4=3,则所述rv4为2;
rv id=1,若i mod 4=0,则所述rv4为1;若i mod 4=1,则所述rv4为0;若i mod 4=2,则所述rv4为2,若i mod 4=3,则所述rv4为3;
其中,所述rv id为至少一个所述载波中的第一个载波的冗余版本标识,mod为取模操作,所述i为大于或等于0且小于或等于(K-1)的正整数,所述K为所述连续重传次数,所述rv4为在第i个时隙上、传输块在至少一个所述载波上传输的冗余版本。
可选地,所述传输模块212具体用于:
根据所述传输块包括的码块组的数目和所述载波的数量,确定至少一个所述载波上传输的码块组的索引;
针对所述K个传输时隙中的任意一个传输时隙,根据所述传输块在至少一个所述载波上传输的冗余版本和所述码块组的索引,在至少一个所述载波上传输所述传输块的至少一个码块组。
可选地,所述传输块包括的码块组的数目为所述传输块中真实的码块数目和所述传输块中协议允许的最大码块组的数目中的较小值。
可选地,至少一个所述载波上传输的码块组的索引满足第五预设条件。
可选地,所述第五预设条件包括以下至少一项:
当M大于N,n∈{0,1,...,T 1-1}时,载波n上传输的码块组的索引为(n*N 1+k 1),k 1=0,1,...,N 1-1;n∈{T 1,T 1+1,...,N-1}时,载波n上传输的码块组的索引为(T 1*N 1+(n-T 1)N 2+k 2),k 2=0,1,...,N 2-1,所述n大于或等于1且小于或等于所述N;和/或,
当M小于或等于所述N,第n个载波上传输的码块组的索引为n,所述n大于或等于1且小于或等于所述M;
其中,所述M为所述传输块包括的码块组的数目,所述M为大于或等于1的正整数,所述N为所述载波的数量,所述N为大于或等于2的正整数,T 1=M mod N,
Figure PCTCN2021140635-appb-000113
Figure PCTCN2021140635-appb-000114
表示对(M/N)上取整,
Figure PCTCN2021140635-appb-000115
表示对(M/N)下取整。
可选地,所述处理模块211具体用于:
接收传输方式指示参数;
根据所述传输方式指示参数,确定所述传输方式。
可选地,
所述传输方式指示参数承载于系统消息中;和/或,
所述传输方式指示参数承载于第一无线资源控制信令中。
可选地,所述处理模块211具体用于:
接收第二无线资源控制信令;
根据所述第二无线资源控制信令,获取所述连续重传次数。
可选地:所述第二无线资源控制信令中包括聚合因子,所述连续重传次数为所述聚合因子指示的次数;和/或,
所述第二无线资源控制信令中不包括所述聚合因子,所述连续重传次数为1。
本申请实施例提供的传输装置可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
图22为本申请实施例提供的一种传输装置的结构示意图,如图22所示,该传输装置220包括:
第一传输模块221,用于响应于所述传输块的传输方式为完整传输方式和/或载波满足预设条件,根据所述完整传输方式在所述载波上传输所述传输块;和/或,
第二传输模块222,用于响应于所述传输块的传输方式为分散传输方式和/或所述载波满足所述预设条件,根据所述分散传输方式在所述载波上传输所述传输块。
可选地,所述预设条件包括:
所述载波的数量为至少两个;和/或,
所述载波为同一逻辑小区下的载波。
可选地,所述第一传输模块221具体用于:
根据所述完整传输方式、所述传输块在至少一个所述载波上传输的冗余版本和/或所述传输块的连续重传次数,在所述载波上传输所述传输块。
可选地,针对任一传输时隙,所述传输块在至少一个所述载波上传输的冗余版本满足以下至少一项:
所述连续重传次数为1,所述传输块在至少一个所述载波上传输的冗余版本不同;
所述连续重传次数为1,所述传输块在至少一个所述载波上传输的冗余版本相同;
所述连续重传次数大于1,所述传输块在至少一个所述载波上传输的冗余版本不同。
可选地,所述连续重传次数为1,所述传输块在至少一个所述载波上传输的冗余版本满足第一预设条件。
可选地,所述第一预设条件包括以下至少一项:
rv id=0,若n mod 4=0,则rv1为0;若n mod 4=1,则所述rv1为2;若n mod 4=2,则所述rv1为3,n mod 4=3,则所述rv1为1;
rv id=2,若n mod 4=0,则所述rv1为2;若n mod 4=1,则所述rv1为3;若n mod 4=2,则所述rv1为1,若n mod 4=3,则所述rv1为0;
rv id=3,若n mod 4=0,则所述rv1为3;若n mod 4=1,则所述rv1为1;若n mod 4=2,则所述rv1为0,若n mod 4=3,则所述rv1为2;
rv id=1,若n mod 4=0,则所述rv1为1;若n mod 4=1,则所述rv1为0;若n mod 4=2,则所述rv1为2,若n mod 4=3,则所述rv1为3;
其中,所述rv id为至少一个所述载波中的第一个载波的冗余版本标识,mod为取模操作,所述n为大于或等于1且小于或等于N的正整数,所述N为所述载波的数量,所述rv1为所述传输块在载波n上传输的冗余版本。
可选地,所述第一预设条件为在至少一个所述载波上传输的冗余版本相同。
可选地,所述第一传输模块221具体用于:
根据所述传输块在至少一个所述载波上传输的冗余版本,在每个载波上传输所述传输块。
可选地,所述连续重传次数K大于1,所述载波的数量N大于或等于所述K;所述传输块在所述载波上传输的冗余版本满足第二预设条件。
可选地,所述第二预设条件包括以下至少一项:
rv id=0,若(n mod K)mod 4=0,则rv2为0;若(n mod K)mod 4=1,则所述rv2为2;若(n mod K)mod 4=2,则所述rv2为3,(n mod K)mod 4=3,则所述rv2为1;
rv id=2,若(n mod K)mod 4=0,则所述rv2为2;若(n mod K)mod 4=1,则所述rv2为3;若(n mod K)mod 4=2,则所述rv2为1,若(n mod K)mod 4=3,则所述rv2为0;
rv id=3,若(n mod K)mod 4=0,则所述rv2为3;若(n mod K)mod 4=1,则所述rv2为1;若(n mod K)mod 4=2,则所述rv2为0,若(n mod K)mod 4=3,则所述rv2为2;
rv id=1,若(n mod K)mod 4=0,则所述rv2为1;若(n mod K)mod 4=1,则所述rv2为0;若(n mod K)mod 4=2,则所述rv2为2,若(n mod K)mod 4,则所述rv2为3;
其中,所述rv id为至少一个所述载波中的第一个载波的冗余版本标识,mod为取模操作,所述rv2为所述传输块在载波n上传输的冗余版本;
所述n为大于或等于1且小于或等于N的正整数,或者,所述n为大于或等于1且小于或等于K的正整数。
可选地,所述第一传输模块221具体用于:
根据所述传输块在前K个载波上传输的冗余版本,在所述前K个载波上传输所述传输块;或者,
根据所述传输块在所述N个载波上传输的冗余版本,在所述N个载波上传输所述传输块。
可选地,所述连续重传次数K大于1,所述载波的数量N小于所述K;时隙i与所述传输块在至少一个所述载波上传输的冗余版本满足第三预设条件。
可选地,所述第三预设条件包括以下至少一项:
rv id=0,若(n+i*N)mod 4=0,则rv3为0;若(n+i*N)mod 4=1,则所述rv3为2;若(n+i*N)mod 4=2,则所述rv3为3,(n+i*N)mod 4=3,则所述rv3为1;
rv id=2,若(n+i*N)mod 4=0,则所述rv3为2;若(n+i*N)mod 4=1,则所述rv3为3;若(n+i*N)mod 4=2,则所述rv3为1,若(n+i*N)mod 4=3,则所述rv3为0;
rv id=3,若(n+i*N)mod 4=0,则所述rv3为3;若(n+i*N)mod 4=1,则所述rv3为1;若(n+i*N)mod 4=2,则所述rv3为0,若(n+i*N)mod 4=3,则所述rv3为2;
rv id=1,若(n+i*N)mod 4=0,则所述rv3为1;若(n+i*N)mod 4=1,则所述rv3为0;若(n+i*N)mod 4=2,则所述rv3为2,若n(n+i*N)mod 4=3,则所述rv3为3;
其中,所述rv id为至少一个所述载波中的第一个载波的冗余版本标识,mod为取模操作,所述n为大于或等于1且小于或等于N的正整数,所述N为所述载波的数量,所述rv3为时隙i中、所述传输块在载波n上传输的冗余版本;
当所述i大于或等于0且小于或等于
Figure PCTCN2021140635-appb-000116
时,所述n为大于或等于1且小于或等于N的正整数;当所述i等于
Figure PCTCN2021140635-appb-000117
时,所述n为大于或等于1且小于或等于N的正整数,或者,所述n为大于或等于1且小于或等于
Figure PCTCN2021140635-appb-000118
的正整数,
Figure PCTCN2021140635-appb-000119
表示对K/N向上取整,
Figure PCTCN2021140635-appb-000120
表示对K/N向下取整。
可选地,所述第一传输模块221具体用于:
针对
Figure PCTCN2021140635-appb-000121
个传输时隙中的任意一个传输时隙,根据所述传输时隙中、所述传输块在至少一个所述载波上传输的冗余版本,在所述N个载波上传输所述传输块;或者,
针对前
Figure PCTCN2021140635-appb-000122
个传输时隙中的任意一个传输时隙,根据所述传输时隙中、所述传输块在至少一个所述载波上传输的冗余版本,在所述N个载波上传输所述传输块;针对第
Figure PCTCN2021140635-appb-000123
个传输时隙,根据所述传输时隙中、所述传输块在前
Figure PCTCN2021140635-appb-000124
个载波上传输的冗余版本,在所述前
Figure PCTCN2021140635-appb-000125
个载波上传输所述传输块。
可选地,所述第二传输模块222具体用于:
根据所述分散传输方式、所述传输块在至少一个所述载波上传输的冗余版本和/或所述传输块的连续重传次数,在所述载波上传输所述传输块。
可选地,针对任一传输时隙,所述传输块在至少一个所述载波上传输的冗余版本相同。
可选地,在时隙i上、所述传输块在至少一个所述载波上传输的冗余版本满足第四预设条件。
可选地,所述第四预设条件包括以下至少一项:
rv id=0,若i mod 4=0,则rv4为0;若i mod 4=1,则所述rv4为2;若i mod 4=2,则所述rv4为3,i mod 4=3,则所述rv4为1;
rv id=2,若i mod 4=0,则所述rv4为2;若i mod 4=1,则所述rv4为3;若i mod 4=2,则所述rv4为1,若i mod 4=3,则所述rv4为0;
rv id=3,若i mod 4=0,则所述rv4为3;若i mod 4=1,则所述rv4为1;若i mod 4=2,则所述rv4为0,若i mod 4=3,则所述rv4为2;
rv id=1,若i mod 4=0,则所述rv4为1;若i mod 4=1,则所述rv4为0;若i mod 4=2,则所述rv4为2,若i mod 4=3,则所述rv4为3;
其中,所述rv id为至少一个所述载波中的第一个载波的冗余版本标识,mod为取模操作,所述i为大于或等于0且小于或等于(K-1)的正整数,所述K为所述连续重传次数,所述rv4为在第i个时隙上、传输块在至少一个所述载波上传输的冗余版本。
可选地,所述第二传输模块222具体用于:
根据所述传输块包括的码块组的数目和所述载波的数量,确定至少一个所述载波上传输的码块组的索引;
针对K个传输时隙中的任意一个传输时隙,根据所述传输块在至少一个所述载波上传输的冗余版本和所述码块组的索引,在至少一个所述载波上传输所述传输块的至少一个码块组。
可选地,所述传输块包括的码块组的数目为所述传输块中真实的码块数目和所述传输块中协议允许的最大码块组的数目中的较小值。
可选地,至少一个所述载波上传输的码块组的索引满足第五预设条件。
可选地,所述第五预设条件包括以下至少一项:
当M大于N,n∈{0,1,...,T 1-1}时,载波n上传输的码块组的索引为(n*N 1+k 1),k 1=0,1,...,N 1-1;n∈{T 1,T 1+1,...,N-1}时,载波n上传输的码块组的索引为(T 1*N 1+(n-T 1)N 2+k 2),k 2=0,1,...,N 2-1,所述n大于或等于1且小于或等于所述N;和/或,
当M小于或等于所述N,第n个载波上传输的码块组的索引为n,所述n大于或等于1 且小于或等于所述M;
其中,所述M为所述传输块包括的码块组的数目,所述M为大于或等于1的正整数,所述N为所述载波的数量,所述N为大于或等于2的正整数,T 1=M mod N,
Figure PCTCN2021140635-appb-000126
Figure PCTCN2021140635-appb-000127
表示对(M/N)上取整,
Figure PCTCN2021140635-appb-000128
表示对(M/N)下取整。
可选地,还包括收发模块,所述收发模块用于:
获取至少一个所述载波中的第一个载波对应的冗余版本标识,根据所述第一个载波对应的冗余版本标识、所述连续重传次数和所述传输方式,确定所述传输块在至少一个所述载波上传输的冗余版本;和/或,
获取至少一个所述载波对应的冗余版本标识,根据至少一个所述载波对应的冗余版本标识,确定所述传输块在至少一个所述载波上传输的冗余版本。
可选地,还包括收发模块,所述收发模块用于:
在所述第一个载波上接收第一下行资源控制信息,根据所述第一下行资源控制信息获取所述第一个载波对应的冗余版本标识;和/或,
还包括收发模块,所述收发模块用于:
在至少一个所述载波上接收第二下行资源控制信息,根据所述第二下行资源控制信息获取至少一个所述载波对应的冗余版本标识。
可选地,所述收发模块用于:
接收第二无线资源控制信令;
根据所述第二无线资源控制信令,获取所述连续重传次数。
可选地:所述第二无线资源控制信令中包括聚合因子,所述连续重传次数为所述聚合因子指示的次数;和/或,
所述第二无线资源控制信令中不包括所述聚合因子,所述连续重传次数为1。
本申请实施例提供的传输装置可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
图23为本申请实施例提供的一种传输装置的结构示意图,如图23所示,该传输装置230包括:
传输模块231,用于响应于载波满足预设条件,根据传输块的传输方式,在载波上传输所述传输块。
可选地,所述预设条件包括:
所述载波的数量为至少两个;和/或,
所述载波为同一逻辑小区下的载波。
可选地,所述传输模块231具体用于:
根据所述传输块在至少一个所述载波上传输的冗余版本、所述传输块的连续重传次数和所述传输方式,在所述载波上传输所述传输块。
可选地,针对任一传输时隙,所述冗余版本满足以下至少一项:
所述传输方式为完整传输方式,所述连续重传次数为1,所述传输块在至少一个所述载波上传输的冗余版本不同;
所述传输方式为完整传输方式,所述连续重传次数为1,所述传输块在至少一个所述载波上传输的冗余版本相同;
所述传输方式为所述完整传输方式,所述连续重传次数大于1,所述传输块在至少一个所述载波上传输的冗余版本不同;
所述传输方式为分散传输方式,所述传输块在至少一个所述载波上传输的冗余版本相同。
可选地,所述传输方式为所述完整传输方式,所述连续重传次数为1,所述传输块在至少一个所述载波上传输的冗余版本满足第一预设条件。
可选地,所述第一预设条件包括以下至少一项:
rv id=0,若n mod 4=0,则rv1为0;若n mod 4=1,则所述rv1为2;若n mod 4=2,则所述rv1为3,n mod 4=3,则所述rv1为1;
rv id=2,若n mod 4=0,则所述rv1为2;若n mod 4=1,则所述rv1为3;若n mod 4=2,则所述rv1为1,若n mod 4=3,则所述rv1为0;
rv id=3,若n mod 4=0,则所述rv1为3;若n mod 4=1,则所述rv1为1;若n mod 4=2,则所述rv1为0,若n mod 4=3,则所述rv1为2;
rv id=1,若n mod 4=0,则所述rv1为1;若n mod 4=1,则所述rv1为0;若n mod 4=2,则所述rv1为2,若n mod 4=3,则所述rv1为3;
其中,所述rv id为至少一个所述载波中的第一个载波的冗余版本标识,mod为取模操作,所述n为大于或等于1且小于或等于N的正整数,所述N为所述载波的数量,所述rv1为所述传输块在载波n上传输的冗余版本。
可选地,所述第一预设条件为在至少一个所述载波上传输的冗余版本相同。
可选地,所述传输模块231具体用于:
根据所述传输块在至少一个所述载波上传输的冗余版本,在每个载波上传输所述传输块。
可选地,所述传输方式为所述完整传输方式,所述连续重传次数K大于1,所述载波的数量N大于或等于所述K;所述传输块在至少一个所述载波上传输的冗余版本满足第二预设条件。
可选地,所述第二预设条件包括以下至少一项:
rv id=0,若(n mod K)mod 4=0,则rv2为0;若(n mod K)mod 4=1,则所述rv2为2;若(n mod K)mod 4=2,则所述rv2为3,(n mod K)mod 4=3,则所述rv2为1;
rv id=2,若(n mod K)mod 4=0,则所述rv2为2;若(n mod K)mod 4=1,则所述rv2为3;若(n mod K)mod 4=2,则所述rv2为1,若(n mod K)mod 4=3,则所述rv2为0;
rv id=3,若(n mod K)mod 4=0,则所述rv2为3;若(n mod K)mod 4=1,则所述rv2为1;若(n mod K)mod 4=2,则所述rv2为0,若(n mod K)mod 4=3,则所述rv2为2;
rv id=1,若(n mod K)mod 4=0,则所述rv2为1;若(n mod K)mod 4=1,则所述rv2为0;若(n mod K)mod 4=2,则所述rv2为2,若(n mod K)mod 4,则所述rv2为3;
其中,所述rv id为至少一个所述载波中的第一个载波的冗余版本标识,mod为取模操作,所述rv2为所述传输块在载波n上传输的冗余版本;
所述n为大于或等于1且小于或等于N的正整数,或者,所述n为大于或等于1且小于或等于K的正整数。
可选地,所述传输模块231具体用于:
根据所述传输块在前K个载波上传输的冗余版本,在所述前K个载波上传输所述传输块;或者,
根据所述传输块在所述N个载波上传输的冗余版本,在所述N个载波上传输所述传输块。
可选地,所述传输方式为所述完整传输方式,所述连续重传次数K大于1,所述载波的数量N小于所述K,时隙i与所述传输块在至少一个所述载波上传输的冗余版本满足第三预设条件。
可选地,所述第三预设条件包括以下至少一项:
rv id=0,若(n+i*N)mod 4=0,则rv3为0;若(n+i*N)mod 4=1,则所述rv3为2;若(n+i*N)mod 4=2,则所述rv3为3,(n+i*N)mod 4=3,则所述rv3为1;
rv id=2,若(n+i*N)mod 4=0,则所述rv3为2;若(n+i*N)mod 4=1,则所述rv3为3;若(n+i*N)mod 4=2,则所述rv3为1,若(n+i*N)mod 4=3,则所述rv3为0;
rv id=3,若(n+i*N)mod 4=0,则所述rv3为3;若(n+i*N)mod 4=1,则所述rv3为1;若(n+i*N)mod 4=2,则所述rv3为0,若(n+i*N)mod 4=3,则所述rv3为2;
rv id=1,若(n+i*N)mod 4=0,则所述rv3为1;若(n+i*N)mod 4=1,则所述rv3为0;若(n+i*N) mod 4=2,则所述rv3为2,若n(n+i*N)mod 4=3,则所述rv3为3;
其中,所述rv id为至少一个所述载波中的第一个载波的冗余版本标识,mod为取模操作,所述n为大于或等于1且小于或等于N的正整数,所述N为所述载波的数量,所述rv3为时隙i中、所述传输块在载波n上传输的冗余版本;
当所述i大于或等于0且小于或等于
Figure PCTCN2021140635-appb-000129
时,所述n为大于或等于1且小于或等于N的正整数;当所述i等于
Figure PCTCN2021140635-appb-000130
时,所述n为大于或等于1且小于或等于N的正整数,或者,所述n为大于或等于1且小于或等于
Figure PCTCN2021140635-appb-000131
的正整数,
Figure PCTCN2021140635-appb-000132
表示对K/N向上取整,
Figure PCTCN2021140635-appb-000133
表示对K/N向下取整。
可选地,所述传输模块231具体用于:
针对
Figure PCTCN2021140635-appb-000134
个传输时隙中的任意一个传输时隙,根据所述传输时隙中、所述传输块在至少一个所述载波上传输的冗余版本,在所述N个载波上传输所述传输块;或者,
针对前
Figure PCTCN2021140635-appb-000135
个传输时隙中的任意一个传输时隙,根据所述传输时隙中、所述传输块在至少一个所述载波上传输的冗余版本,在所述N个载波上传输所述传输块,针对第
Figure PCTCN2021140635-appb-000136
个传输时隙,根据所述传输时隙中、所述传输块在前
Figure PCTCN2021140635-appb-000137
个载波上传输的冗余版本,在所述前
Figure PCTCN2021140635-appb-000138
个载波上传输所述传输块。
可选地,所述传输方式为所述分散传输方式;时隙i与所述传输块在至少一个所述载波上传输的冗余版本满足第四预设条件。
可选地,所述第四预设条件包括以下至少一项:
rv id=0,若i mod 4=0,则rv4为0;若i mod 4=1,则所述rv4为2;若i mod 4=2,则所述rv4为3,i mod 4=3,则所述rv4为1;
rv id=2,若i mod 4=0,则所述rv4为2;若i mod 4=1,则所述rv4为3;若i mod 4=2,则所述rv4为1,若i mod 4=3,则所述rv4为0;
rv id=3,若i mod 4=0,则所述rv4为3;若i mod 4=1,则所述rv4为1;若i mod 4=2,则所述rv4为0,若i mod 4=3,则所述rv4为2;
rv id=1,若i mod 4=0,则所述rv4为1;若i mod 4=1,则所述rv4为0;若i mod 4=2,则所述rv4为2,若i mod 4=3,则所述rv4为3;
其中,所述rv id为至少一个所述载波中的第一个载波的冗余版本标识,mod为取模操作,所述i为大于或等于0且小于或等于(K-1)的正整数,所述K为所述连续重传次数,所述rv4为在第i个时隙上、传输块在至少一个所述载波上传输的冗余版本。
可选地,所述传输模块231具体用于:
根据所述传输块包括的码块组的数目和所述载波的数量,确定至少一个所述载波上传输的码块组的索引;
针对所述K个传输时隙中的任意一个传输时隙,根据所述传输块在至少一个所述载波上传输的冗余版本和所述码块组的索引,在至少一个所述载波上发送所述传输块的至少一个码块组。
可选地,所述传输块包括的码块组的数目为所述传输块中真实的码块数目和所述传输块中协议允许的最大码块组的数目中的较小值。
可选地,至少一个所述载波上传输的码块组的索引满足第五预设条件。
可选地,所述第五预设条件包括以下至少一项:
当M大于N,n∈{0,1,...,T 1-1}时,载波n上传输的码块组的索引为(n*N 1+k 1),k 1=0,1,...,N 1-1;n∈{T 1,T 1+1,...,N-1}时,载波n上传输的码块组的索引为(T 1*N 1+(n-T 1)N 2+k 2),k 2=0,1,...,N 2-1,所述n大于或等于1且小于或等于所述N;和/或,
当M小于或等于所述N,第n个载波上传输的码块组的索引为n,所述n大于或等于1且小于或等于所述M;
其中,所述M为所述传输块包括的码块组的数目,所述M为大于或等于1的正整数, 所述N为所述载波的数量,所述N为大于或等于2的正整数,T 1=M mod N,
Figure PCTCN2021140635-appb-000139
Figure PCTCN2021140635-appb-000140
表示对(M/N)上取整,
Figure PCTCN2021140635-appb-000141
表示对(M/N)下取整。
可选地,所述传输模块231还用于:
发送冗余版本标识,所述冗余版本标识用于指示所述冗余版本。
可选地,所述传输模块231还用于:
在至少一个所述载波中的第一个载波上发送第一下行资源控制信息,所述第一下行资源控制信息中包括所述第一个载波对应的冗余版本标识;和/或,
在至少一个所述载波上发送第二下行资源控制信息,所述第二下行资源控制信息中包括至少一个所述载波对应的冗余版本标识。
可选地,所述传输模块231还用于:
发送传输方式指示参数,所述传输方式指示参数用于指示所述传输方式。
可选地,所述传输方式指示参数承载于系统消息中;和/或,
所述传输方式指示参数承载于第一无线资源控制信令中。
可选地,所述传输模块231还用于:
发送第二无线资源控制信令。
可选地:所述第二无线资源控制信令中包括聚合因子,所述连续重传次数为所述聚合因子指示的次数;和/或,
所述第二无线资源控制信令中不包括所述聚合因子,所述连续重传次数为1。
本申请实施例提供的传输装置可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
图24为本申请实施例提供的通信设备的结构示意图。如图24所示,本实施例所述的通信设备240可以是前述方法实施例中提到的终端设备(或者可用于终端设备的部件)或者网络设备(或者可用于网络设备的部件)。通信设备240可用于实现上述方法实施例中描述的对应于终端设备或者网络设备的方法,具体参见上述方法实施例中的说明。
通信设备240可以包括一个或多个处理器241,该处理器241也可以称为处理单元,可以实现一定的控制或者处理功能。处理器241可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信设备进行控制,执行软件程序,处理软件程序的数据。
可选地,处理器241也可以存有指令243或者数据(例如中间数据)。可选地,指令243可以被处理器241运行,使得通信设备240执行上述方法实施例中描述的对应于终端设备或者网络设备的方法。
可选地,通信设备240可以包括电路,该电路可以实现前述方法实施例中发送或接收或者通信的功能。
可选地,通信设备240中可以包括一个或多个存储器242,其上可以存有指令244,该指令可在处理器241上被运行,使得通信设备240执行上述方法实施例中描述的方法。
可选地,存储器242中也可以是存储有数据。处理器241和存储器242可以单独设置,也可以集成在一起。
可选地,通信设备240还可以包括收发器245和/或天线246。处理器241可以称为处理单元,对通信设备240(终端设备或核心网设备或者无线接入网设备)进行控制。收发器245可以称为收发单元、收发机、收发电路、或者收发器等,用于实现通信设备240的收发功能。
可选地,处理器241和收发器245的具体实现过程可以参见上述各实施例的相关描述,此处不再赘述。
可选地,若该通信设备240用于实现对应于上述各实施例中网络设备的操作时,例如:可以由收发器245,响应于载波满足预设条件,根据传输块的传输方式,在载波上传输所述传输块。
可选地,处理器241和收发器245的具体实现过程可以参见上述各实施例的相关描述,此处不再赘述。
本申请中描述的处理器241和收发器245可实现在IC(Integrated Circuit,集成电路)、模拟集成电路、RFIC(Radio Frequency Integrated Circuit,射频集成电路)、混合信号集成电路、ASIC(Application Specific Integrated Circuit,专用集成电路)、PCB(Printed Circuit Board,印刷电路板)、电子设备等上。该处理器241和收发器245也可以用各种集成电路工艺技术来制造,例如CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)、NMOS(N Metal-Oxide-Semiconductor,N型金属氧化物半导体)、PMOS(Positive channel Metal Oxide Semiconductor,P型金属氧化物半导体)、BJT(Bipolar Junction Transistor,双极结型晶体管)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
本申请中,通信设备可以为终端设备,也可以为网络设备(如基站),具体需要根据上下文来加以确定,另外,终端设备可以以各种形式来实施。例如,本申请中描述的终端设备可以包括诸如手机、平板电脑、笔记本电脑、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、便捷式媒体播放器(Portable Media Player,PMP)、导航装置、可穿戴设备、智能手环、计步器等移动终端,以及诸如数字TV、台式计算机等固定终端。
虽然在以上的实施例描述中,通信设备以终端设备或者网络设备为例来描述,但本申请中描述的通信设备的范围并不限于上述终端设备或网络设备,而且通信设备的结构可以不受图24的限制。通信设备可以是独立的设备或者可以是较大设备的一部分。
本申请实施例还提供一种通信系统,包括:如上任一方法实施例中的终端设备;以及,如上任一方法实施例中的网络设备。
本申请实施例还提供一种终端设备,终端设备包括:存储器、处理器;其中,存储器上存储有计算机程序,计算机程序被处理器执行时实现上述任一实施例中的传输方法的步骤。
本申请实施例还提供一种网络设备,网络设备包括:存储器、处理器;其中,存储器上存储有计算机程序,计算机程序被处理器执行时实现上述任一实施例中的传输方法的步骤。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现上述任一实施例中的传输方法的步骤。
在本申请实施例提供的终端设备、网络设备和计算机可读存储介质的实施例中,可以包含任一上述处理方法实施例的全部技术特征,说明书拓展和解释内容与上述方法的各实施例基本相同,在此不做再赘述。
本申请实施例还提供一种计算机程序产品,计算机程序产品包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行如上各种可能的实施方式中的方法。
本申请实施例还提供一种芯片,包括存储器和处理器,存储器用于存储计算机程序,处理器用于从存储器中调用并运行计算机程序,使得安装有芯片的设备执行如上各种可能的实施方式中的方法。
可以理解,上述场景仅是作为示例,并不构成对于本申请实施例提供的技术方案的应用场景的限定,本申请的技术方案还可应用于其他场景。例如,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请实施例设备中的单元可以根据实际需要进行合并、划分和删减。
在本申请中,对于相同或相似的术语概念、技术方案和/或应用场景描述,一般只在第一次出现时进行详细描述,后面再重复出现时,为了简洁,一般未再重复阐述,在理解本申请技术方案等内容时,对于在后未详细描述的相同或相似的术语概念、技术方案和/或应用场景描述等,可以参考其之前的相关详细描述。
在本申请中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本申请技术方案的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本申请记载的范围。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,被控终端,或者网络设备等)执行本申请每个实施例的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络,或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、存储盘、磁带)、光介质(例如,DVD),或者半导体介质(例如固态存储盘Solid State Disk(SSD))等。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (63)

  1. 一种传输方法,其中,包括以下步骤:
    S1,确定传输块的传输方式;
    S2,根据所述传输方式,在载波上传输所述传输块。
  2. 根据权利要求1所述的方法,其中,所述S1步骤包括:
    响应于所述载波满足预设条件,确定所述传输方式。
  3. 根据权利要求2所述的方法,其中,所述预设条件包括:
    所述载波的数量为至少两个;和/或,
    所述载波为同一逻辑小区下的载波。
  4. 根据权利要求3所述的方法,其中,所述S2步骤包括:
    确定所述传输块在至少一个所述载波上传输的冗余版本;
    根据所述冗余版本、所述传输方式和/或所述传输块的连续重传次数,在所述载波上传输所述传输块。
  5. 根据权利要求4所述的方法,其中,所述确定所述传输块在至少一个所述载波上传输的冗余版本,包括:
    获取至少一个所述载波中的第一个载波的冗余版本标识,根据所述第一个载波的冗余版本标识、所述连续重传次数和所述传输方式,确定至少一个所述载波上传输的冗余版本;和/或,
    获取至少一个所述载波的冗余版本标识,根据至少一个所述载波的冗余版本标识,确定至少一个所述载波上传输的冗余版本。
  6. 根据权利要求5所述的方法,其中,所述获取至少一个所述载波中的第一个载波的冗余版本标识,包括:在所述第一个载波上接收第一下行资源控制信息,根据所述第一下行资源控制信息获取所述第一个载波的冗余版本标识;和/或,
    所述获取至少一个所述载波的冗余版本标识,包括:在至少一个所述载波上接收第二下行资源控制信息,根据所述第二下行资源控制信息获取至少一个所述载波的冗余版本标识。
  7. 根据权利要求4至6中任一项所述的方法,其中,针对任一传输时隙,所述冗余版本满足以下至少一项:
    所述传输方式为完整传输方式,所述连续重传次数为1,所述传输块在至少一个所述载波上传输的冗余版本不同;
    所述传输方式为所述完整传输方式,所述连续重传次数为1,所述传输块在至少一个所述载波上传输的冗余版本相同;
    所述传输方式为所述完整传输方式,所述连续重传次数大于1,所述传输块在至少一个所述载波上传输的冗余版本不同;
    所述传输方式为分散传输方式,所述传输块在至少一个所述载波上传输的冗余版本相同。
  8. 根据权利要求7所述的方法,其中,所述传输方式为所述完整传输方式,所述连续重传次数为1,所述传输块在至少一个所述载波上传输的冗余版本满足第一预设条件。
  9. 根据权利要求8所述的方法,其中,所述根据所述冗余版本、所述传输方式和/或所述传输块的连续重传次数,在所述载波上传输所述传输块,包括:
    根据所述传输块在至少一个所述载波上传输的冗余版本,在每个载波上传输所述传输块。
  10. 根据权利要求7所述的方法,其中,所述传输方式为所述完整传输方式,所述连续重传次数K大于1,所述载波的数量N大于或等于所述K;所述传输块在至少一个所述载波上传输的冗余版本满足第二预设条件。
  11. 根据权利要求10所述的方法,其中,所述根据所述冗余版本、所述传输方式和/或所述传输块的连续重传次数,在所述载波上传输所述传输块,包括:
    根据所述传输块在前K个载波上传输的冗余版本,在所述前K个载波上传输所述传输块;或者,
    根据所述传输块在所述N个载波上传输的冗余版本,在所述N个载波上传输所述传输块。
  12. 根据权利要求7所述的方法,其中,所述传输方式为所述完整传输方式,所述连续重传次数K大于1,所述载波的数量N小于所述K,时隙i与所述传输块在至少一个所述载波上传输的冗余版本满足第三预设条件。
  13. 根据权利要求12所述的方法,其中,所述根据所述冗余版本、所述传输方式和/或所述传输块的连续重传次数,在所述载波上传输所述传输块,包括:
    针对
    Figure PCTCN2021140635-appb-100001
    个传输时隙中的任意一个传输时隙,根据所述传输时隙中、所述传输块在至少一个所述载波上传输的冗余版本,在所述N个载波上传输所述传输块;或者,
    针对前
    Figure PCTCN2021140635-appb-100002
    个传输时隙中的任意一个传输时隙,根据所述传输时隙中、所述传输块在至少一个所述载波上传输的冗余版本,在所述N个载波上传输所述传输块;针对第
    Figure PCTCN2021140635-appb-100003
    个传输时隙,根据所述传输时隙中、所述传输块在前
    Figure PCTCN2021140635-appb-100004
    个载波上传输的冗余版本,在所述前
    Figure PCTCN2021140635-appb-100005
    个载波上传输所述传输块。
  14. 根据权利要求7所述的方法,其中,所述传输方式为所述分散传输方式;时隙i与所述传输块在至少一个所述载波上传输的冗余版本满足第四预设条件。
  15. 根据权利要求14所述的方法,其中,所述根据所述冗余版本、所述传输方式和/或所述传输块的连续重传次数,在所述载波上传输所述传输块,包括:
    根据所述传输块包括的码块组的数目和所述载波的数量,确定至少一个所述载波上传输的码块组的索引;
    针对所述K个传输时隙中的任意一个传输时隙,根据所述传输块在至少一个所述载波上传输的冗余版本和所述码块组的索引,在至少一个所述载波上传输所述传输块的至少一个码块组。
  16. 根据权利要求15所述的方法,其中,所述传输块包括的码块组的数目为所述传输块中真实的码块数目和所述传输块中协议允许的最大码块组的数目中的较小值。
  17. 根据权利要求16所述的方法,其中,至少一个所述载波上传输的码块组的索引满足第五预设条件。
  18. 根据权利要求2至6中任一项所述的方法,其中,所述响应于所述载波满足预设条件,确定所述传输方式,包括:
    响应于所述载波满足预设条件,接收传输方式指示参数;
    根据所述传输方式指示参数,确定所述传输方式。
  19. 根据权利要求18所述的方法,其中,所述传输方式指示参数承载于系统消息中;和/或,
    所述传输方式指示参数承载于第一无线资源控制信令中。
  20. 根据权利要求4至6中任一项所述的方法,其中,所述方法还包括:
    接收第二无线资源控制信令;
    根据所述第二无线资源控制信令,获取所述连续重传次数。
  21. 根据权利要求20所述的方法,其中:所述第二无线资源控制信令中包括聚合因子,所述连续重传次数为所述聚合因子指示的次数;和/或,
    所述第二无线资源控制信令中不包括所述聚合因子,所述连续重传次数为1。
  22. 一种传输方法,其中,应用于终端设备,所述方法包括:
    S10,响应于所述传输块的传输方式为完整传输方式和/或载波满足预设条件,根据所述完整传输方式在所述载波上传输所述传输块;和/或,
    S20,响应于所述传输块的传输方式为分散传输方式和/或所述载波满足所述预设条件,根据所述分散传输方式在所述载波上传输所述传输块。
  23. 根据权利要求22所述的方法,其中,所述预设条件包括:
    所述载波的数量为至少两个;和/或,
    所述载波为同一逻辑小区下的载波。
  24. 根据权利要求23所述的方法,其中,所述S10步骤包括:
    根据所述完整传输方式、所述传输块在至少一个所述载波上传输的冗余版本和/或所述传输块的连续重传次数,在所述载波上传输所述传输块。
  25. 根据权利要求24所述的方法,其中,针对任一传输时隙,所述传输块在至少一个所述载波上传输的冗余版本满足以下至少一项:
    所述连续重传次数为1,所述传输块在至少一个所述载波上传输的冗余版本不同;
    所述连续重传次数为1,所述传输块在至少一个所述载波上传输的冗余版本相同;
    所述连续重传次数大于1,所述传输块在至少一个所述载波上传输的冗余版本不同。
  26. 根据权利要求25所述的方法,其中,所述连续重传次数为1,所述传输块在至少一个所述载波上传输的冗余版本满足第一预设条件。
  27. 根据权利要求26所述的方法,其中,所述根据所述完整传输方式、所述传输块在至少一个所述载波上传输的冗余版本和/或所述传输块的连续重传次数,在所述载波上传输所述传输块,包括:
    根据所述传输块在至少一个所述载波上传输的冗余版本,在每个载波上传输所述传输块。
  28. 根据权利要求25所述的方法,其中,所述连续重传次数K大于1,所述载波的数量N大于或等于所述K;所述传输块在所述载波上传输的冗余版本满足第二预设条件。
  29. 根据权利要求28所述的方法,其中,所述根据所述完整传输方式、所述传输块在至少一个所述载波上传输的冗余版本和/或所述传输块的连续重传次数,在所述载波上传输所述传输块,包括:
    根据所述传输块在前K个载波上传输的冗余版本,在所述前K个载波上传输所述传输块;或者,
    根据所述传输块在所述N个载波上传输的冗余版本,在所述N个载波上传输所述传输块。
  30. 根据权利要求25所述的方法,其中,所述连续重传次数K大于1,所述载波的数量N小于所述K;时隙i与所述传输块在至少一个所述载波上传输的冗余版本满足第三预设条件。
  31. 根据权利要求30所述的方法,其中,所述根据所述完整传输方式、所述传输块在至少一个所述载波上传输的冗余版本和/或所述传输块的连续重传次数,在所述载波上传输所述传输块,包括:
    针对
    Figure PCTCN2021140635-appb-100006
    个传输时隙中的任意一个传输时隙,根据所述传输时隙中、所述传输块在至少一个所述载波上传输的冗余版本,在所述N个载波上传输所述传输块;或者,
    针对前
    Figure PCTCN2021140635-appb-100007
    个传输时隙中的任意一个传输时隙,根据所述传输时隙中、所述传输块在至少一个所述载波上传输的冗余版本,在所述N个载波上传输所述传输块;针对第
    Figure PCTCN2021140635-appb-100008
    个传输时隙,根据所述传输时隙中、所述传输块在前
    Figure PCTCN2021140635-appb-100009
    个载波上传输的冗余版本,在所述前
    Figure PCTCN2021140635-appb-100010
    个载波上传输所述传输块。
  32. 根据权利要求23至31中任一项所述的方法,其中,所述S20步骤包括:
    根据所述分散传输方式、所述传输块在至少一个所述载波上传输的冗余版本和/或所述传输块的连续重传次数,在所述载波上传输所述传输块。
  33. 根据权利要求32所述的方法,其中,针对任一传输时隙,所述传输块在至少一个所述载波上传输的冗余版本相同。
  34. 根据权利要求33所述的方法,其中,在时隙i上、所述传输块在至少一个所述载波上传输的冗余版本满足第四预设条件。
  35. 根据权利要求34所述的方法,其中,所述根据所述分散传输方式、所述传输块在至 少一个所述载波上传输的冗余版本和/或所述传输块的连续重传次数,在所述载波上传输所述传输块,包括:
    根据所述传输块包括的码块组的数目和所述载波的数量,确定至少一个所述载波上传输的码块组的索引;
    针对K个传输时隙中的任意一个传输时隙,根据所述传输块在至少一个所述载波上传输的冗余版本和所述码块组的索引,在至少一个所述载波上传输所述传输块的至少一个码块组。
  36. 根据权利要求35所述的方法,其中,所述传输块包括的码块组的数目为所述传输块中真实的码块数目和所述传输块中协议允许的最大码块组的数目中的较小值。
  37. 根据权利要求36所述的方法,其中,至少一个所述载波上传输的码块组的索引满足第五预设条件。
  38. 根据权利要求24至31中任一项所述的方法,其中,所述方法还包括:
    获取至少一个所述载波中的第一个载波的冗余版本标识,根据所述第一个载波的冗余版本标识、所述连续重传次数和所述传输方式,确定所述传输块在至少一个所述载波上传输的冗余版本;和/或,
    获取至少一个所述载波对应的冗余版本标识,根据至少一个所述载波对应的冗余版本标识,确定所述传输块在至少一个所述载波上传输的冗余版本。
  39. 根据权利要求38所述的方法,其中,所述获取至少一个所述载波中的第一个载波对应的冗余版本标识,包括:
    在所述第一个载波上接收第一下行资源控制信息,根据所述第一下行资源控制信息获取所述第一个载波的冗余版本标识;
    所述获取至少一个所述载波对应的冗余版本标识,包括:
    在至少一个所述载波上接收第二下行资源控制信息,根据所述第二下行资源控制信息获取至少一个所述载波对应的冗余版本标识。
  40. 根据权利要求24至31中任一项所述的方法,其中,所述方法还包括:
    接收第二无线资源控制信令;
    根据所述第二无线资源控制信令,获取所述连续重传次数。
  41. 根据权利要求40所述的方法,其中:所述第二无线资源控制信令中包括聚合因子,所述连续重传次数为所述聚合因子指示的次数;和/或,
    所述第二无线资源控制信令中不包括所述聚合因子,所述连续重传次数为1。
  42. 一种传输方法,其中,所述方法包括:
    S3,响应于载波满足预设条件,根据传输块的传输方式,在载波上传输所述传输块。
  43. 根据权利要求42所述的方法,其中,所述预设条件包括:
    所述载波的数量为至少两个;和/或,
    所述载波为同一逻辑小区下的载波。
  44. 根据权利要求43所述的方法,其中,所述S3步骤包括:
    根据所述传输块在至少一个所述载波上传输的冗余版本、所述传输块的连续重传次数和所述传输方式,在所述载波上传输所述传输块。
  45. 根据权利要求44所述的方法,其中,针对任一传输时隙,所述冗余版本满足以下至少一项:
    所述传输方式为完整传输方式,所述连续重传次数为1,所述传输块在至少一个所述载波上传输的冗余版本不同;
    所述传输方式为完整传输方式,所述连续重传次数为1,所述传输块在至少一个所述载波上传输的冗余版本相同;
    所述传输方式为所述完整传输方式,所述连续重传次数大于1,所述传输块在至少一个所述载波上传输的冗余版本不同;
    所述传输方式为分散传输方式,所述传输块在至少一个所述载波上传输的冗余版本相同。
  46. 根据权利要求45所述的方法,其中,所述传输方式为所述完整传输方式,所述连续重传次数为1,所述传输块在至少一个所述载波上传输的冗余版本满足第一预设条件。
  47. 根据权利要求46所述的方法,其中,所述根据所述传输块在至少一个所述载波上传输的冗余版本、所述传输块的连续重传次数和所述传输方式,在所述载波上传输所述传输块,包括:
    根据所述传输块在至少一个所述载波上传输的冗余版本,在每个载波上传输所述传输块。
  48. 根据权利要求45所述的方法,其中,所述传输方式为所述完整传输方式,所述连续重传次数K大于1,所述载波的数量N大于或等于所述K;所述传输块在至少一个所述载波上传输的冗余版本满足第二预设条件。
  49. 根据权利要求48所述的方法,其中,所述根据所述传输块在至少一个所述载波上传输的冗余版本、所述传输块的连续重传次数和所述传输方式,在所述载波上传输所述传输块,包括:
    根据所述传输块在前K个载波上传输的冗余版本,在所述前K个载波上传输所述传输块;或者,
    根据所述传输块在所述N个载波上传输的冗余版本,在所述N个载波上传输所述传输块。
  50. 根据权利要求45所述的方法,其中,所述传输方式为所述完整传输方式,所述连续重传次数K大于1,所述载波的数量N小于所述K,时隙i与所述传输块在至少一个所述载波上传输的冗余版本满足第三预设条件。
  51. 根据权利要求50所述的方法,其中,所述根据所述传输块在至少一个所述载波上传输的冗余版本、所述传输块的连续重传次数和所述传输方式,在所述载波上传输所述传输块,包括:
    针对
    Figure PCTCN2021140635-appb-100011
    个传输时隙中的任意一个传输时隙,根据所述传输时隙中、所述传输块在至少一个所述载波上传输的冗余版本,在所述N个载波上传输所述传输块;或者,
    针对前
    Figure PCTCN2021140635-appb-100012
    个传输时隙中的任意一个传输时隙,根据所述传输时隙中、所述传输块在至少一个所述载波上传输的冗余版本,在所述N个载波上传输所述传输块,针对第
    Figure PCTCN2021140635-appb-100013
    个传输时隙,根据所述传输时隙中、所述传输块在前
    Figure PCTCN2021140635-appb-100014
    个载波上传输的冗余版本,在所述前
    Figure PCTCN2021140635-appb-100015
    个载波上传输所述传输块。
  52. 根据权利要求45所述的方法,其中,所述传输方式为所述分散传输方式;时隙i与所述传输块在至少一个所述载波上传输的冗余版本满足第四预设条件。
  53. 根据权利要求52所述的方法,其中,所述根据冗余版本、所述传输块的连续重传次数和所述传输方式,在至少一个所述载波上发送所述传输块,包括:
    根据所述传输块包括的码块组的数目和所述载波的数量,确定至少一个所述载波上传输的码块组的索引;
    针对所述K个传输时隙中的任意一个传输时隙,根据所述传输块在至少一个所述载波上传输的冗余版本和所述码块组的索引,在至少一个所述载波上发送所述传输块的至少一个码块组。
  54. 根据权利要求53所述的方法,其中,所述传输块包括的码块组的数目为所述传输块中真实的码块数目和所述传输块中协议允许的最大码块组的数目中的较小值。
  55. 根据权利要求54所述的方法,其中,至少一个所述载波上传输的码块组的索引满足第五预设条件。
  56. 根据权利要求44至55中任一项所述的方法,其中,所述方法还包括:
    发送冗余版本标识,所述冗余版本标识用于指示所述冗余版本。
  57. 根据权利要求56所述的方法,其中,所述发送冗余版本标识,包括:
    在至少一个所述载波中的第一个载波上发送第一下行资源控制信息,所述第一下行资源 控制信息中包括所述第一个载波对应的冗余版本标识;和/或,
    在至少一个所述载波上发送第二下行资源控制信息,所述第二下行资源控制信息中包括至少一个所述载波对应的冗余版本标识。
  58. 根据权利要求44至55中任一项所述的方法,其中,所述方法还包括:
    发送传输方式指示参数,所述传输方式指示参数用于指示所述传输方式。
  59. 根据权利要求58所述的方法,其中,所述传输方式指示参数承载于系统消息中;和/或,
    所述传输方式指示参数承载于第一无线资源控制信令中。
  60. 根据权利要求44至55中任一项所述的方法,其中,所述方法还包括:
    发送第二无线资源控制信令。
  61. 根据权利要求60所述的方法,其中:所述第二无线资源控制信令中包括聚合因子,所述连续重传次数为所述聚合因子指示的次数;和/或,
    所述第二无线资源控制信令中不包括所述聚合因子,所述连续重传次数为1。
  62. 一种通信设备,其中,包括:存储器和处理器;
    所述存储器用于存储程序指令;
    所述处理器用于调用所述存储器中的程序指令以执行如权利要求1至61中任一项所述的方法。
  63. 一种计算机可读存储介质,其中,所述存储介质上存储有计算机程序;所述计算机程序被执行时,实现如权利要求1至61中任一项所述的方法。
PCT/CN2021/140635 2021-12-22 2021-12-22 传输方法、通信设备及存储介质 WO2023115423A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/140635 WO2023115423A1 (zh) 2021-12-22 2021-12-22 传输方法、通信设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/140635 WO2023115423A1 (zh) 2021-12-22 2021-12-22 传输方法、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023115423A1 true WO2023115423A1 (zh) 2023-06-29

Family

ID=86901115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140635 WO2023115423A1 (zh) 2021-12-22 2021-12-22 传输方法、通信设备及存储介质

Country Status (1)

Country Link
WO (1) WO2023115423A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109560896A (zh) * 2017-09-25 2019-04-02 中国信息通信研究院 一种5g系统中基于码块组进行数据传输的方法和系统
WO2020118520A1 (zh) * 2018-12-11 2020-06-18 Oppo广东移动通信有限公司 数据传输的方法和设备
CN112088509A (zh) * 2018-05-09 2020-12-15 高通股份有限公司 基于码块组的自主上行链路传输
US20210044392A1 (en) * 2018-05-10 2021-02-11 Lg Electronics Inc. Method by which terminal transmits data in unlicensed band, and apparatus for using method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109560896A (zh) * 2017-09-25 2019-04-02 中国信息通信研究院 一种5g系统中基于码块组进行数据传输的方法和系统
CN112088509A (zh) * 2018-05-09 2020-12-15 高通股份有限公司 基于码块组的自主上行链路传输
US20210044392A1 (en) * 2018-05-10 2021-02-11 Lg Electronics Inc. Method by which terminal transmits data in unlicensed band, and apparatus for using method
WO2020118520A1 (zh) * 2018-12-11 2020-06-18 Oppo广东移动通信有限公司 数据传输的方法和设备

Similar Documents

Publication Publication Date Title
WO2020258928A1 (zh) 数据传输方法及终端设备
WO2020063241A1 (zh) 信息传输方法及终端
WO2021008430A1 (zh) 传输方法和通信设备
WO2021088751A1 (zh) 混合自动重传请求应答harq-ack反馈位置的确定方法及通信设备
WO2020192718A1 (zh) 传输块大小确定方法和通信设备
WO2023213257A1 (zh) 数据传输方法、通信设备及存储介质
WO2021032001A1 (zh) 半持续调度物理下行共享信道的反馈方法及终端设备
WO2021197202A1 (zh) Harq-ack反馈的触发方法、反馈方法及设备
WO2020119243A1 (zh) 物理上行控制信道传输方法、网络侧设备和终端
WO2020192673A1 (zh) 资源配置方法、资源确定方法、网络侧设备和终端
WO2023221831A1 (zh) 处理方法、通信设备及存储介质
WO2023130954A1 (zh) 处理方法、通信设备及存储介质
WO2020143382A1 (zh) 上行传输方法、终端及网络设备
WO2020063271A1 (zh) 接收方法、发送方法、终端及网络侧设备
WO2023041069A1 (zh) 通信方法、网络设备、终端设备及存储介质
WO2023115423A1 (zh) 传输方法、通信设备及存储介质
WO2023082603A1 (zh) 提醒方法、终端设备、网络设备及存储介质
WO2021147781A1 (zh) 上行传输方法、装置、设备及存储介质
WO2023015774A1 (zh) 切换方法、移动终端及存储介质
WO2021147777A1 (zh) 一种通信处理方法及相关设备
CN111614443B (zh) 终端能力上报、信息接收方法、终端及网络设备
WO2023115422A1 (zh) 处理方法、通信设备及存储介质
CN117318907B (zh) 处理方法、通信设备及存储介质
WO2024082146A1 (zh) 码本确定方法、通信设备及存储介质
WO2024055251A1 (zh) 控制方法、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968572

Country of ref document: EP

Kind code of ref document: A1