WO2023213257A1 - 数据传输方法、通信设备及存储介质 - Google Patents

数据传输方法、通信设备及存储介质 Download PDF

Info

Publication number
WO2023213257A1
WO2023213257A1 PCT/CN2023/091865 CN2023091865W WO2023213257A1 WO 2023213257 A1 WO2023213257 A1 WO 2023213257A1 CN 2023091865 W CN2023091865 W CN 2023091865W WO 2023213257 A1 WO2023213257 A1 WO 2023213257A1
Authority
WO
WIPO (PCT)
Prior art keywords
time slot
slot offset
control information
time
shared channel
Prior art date
Application number
PCT/CN2023/091865
Other languages
English (en)
French (fr)
Inventor
朱荣昌
黄伟
黄钧蔚
Original Assignee
深圳传音控股股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳传音控股股份有限公司 filed Critical 深圳传音控股股份有限公司
Publication of WO2023213257A1 publication Critical patent/WO2023213257A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows

Definitions

  • This application relates to communication technology, specifically to a data transmission method, communication equipment and storage medium.
  • the UE processing time includes the decoding time of the physical downlink shared channel (PDSCH) and the physical uplink shared channel (physical uplink shared channel). channel (referred to as PUSCH) preparation time.
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • the inventor found that there are at least the following problems: if the PDSCH decoding time is extended, the sending time of the physical uplink control channel (PUCCH) that feeds back the PDSCH reception status is still based on the current time.
  • PUCCH physical uplink control channel
  • ACK acknowledgment
  • NACK negative acknowledgment
  • This application provides a data transmission method, communication equipment and storage medium to solve the above technical problems.
  • this application provides a data transmission method, which can be applied to terminal devices (such as mobile phones), including the following steps:
  • the method also includes at least one of the following:
  • the control information includes at least one of the following: first downlink control information for scheduling downlink transmission, second downlink control information for scheduling uplink transmission, and radio resource control information;
  • the first time slot offset is the time slot offset between the time slot where the physical downlink shared channel is located and the time slot where the physical uplink control channel carrying its corresponding feedback information is located;
  • the second time slot offset is a time slot offset between the time slot where the physical downlink control channel is located and the time slot where the physical uplink shared channel scheduled by the physical downlink control channel is located;
  • the feedback information is carried on the physical uplink control channel
  • the data transmission is carried on a physical uplink shared channel.
  • the method also includes at least one of the following:
  • the first downlink control information includes physical downlink shared channel to hybrid automatic repeat request feedback
  • the timing indication field and/or the device type distinguishing field
  • the second downlink control information includes a time domain resource allocation field.
  • the method also includes at least one of the following:
  • the number of bits corresponding to the timing indication field of the physical downlink shared channel to hybrid automatic repeat request feedback is a positive integer greater than or equal to 3;
  • the number of bits corresponding to the time domain resource allocation field is a positive integer greater than or equal to 4.
  • the device type distinction field is used to specify the terminal type to which the first downlink control information is applicable
  • any bit corresponding to the timing indication field of the physical downlink shared channel to hybrid automatic repeat request feedback satisfies: the device type distinguishing field is different, the bit value is different, and/or the physical downlink sharing
  • the corresponding fields in the specific radio resource control information corresponding to the timing indication field of the feedback from the channel to the hybrid automatic repeat request are different, and the values of the bits are different.
  • step S2 the following steps are also included:
  • the method also includes at least one of the following:
  • the first time slot offset table includes at least one first pre-stored time slot offset
  • the second time slot offset table includes at least one second pre-stored time slot offset
  • a third time slot offset table is pre-stored, and the third time slot offset table includes at least one third pre-stored time slot offset.
  • the first time slot offset includes at least one of the following:
  • the second time slot offset includes at least one of the following:
  • the fourth time slot offset in the specific radio resource control information corresponding to the time domain resource allocation field is the fourth time slot offset in the specific radio resource control information corresponding to the time domain resource allocation field.
  • sending feedback information according to the first time slot offset includes:
  • a physical uplink control channel carrying ACK/NACK information is sent.
  • the data transmission according to the second time slot offset includes:
  • Data transmission on the physical uplink shared channel is performed according to the second sending time.
  • this application provides a data transmission method, which can be applied to terminal devices (such as mobile phones).
  • the method includes the following steps:
  • S200 Send feedback information and perform data transmission according to preset parameters.
  • the preset parameters include at least one of the following:
  • the method for determining the preset parameters includes:
  • control information includes at least one of the following:
  • the method also includes at least one of the following:
  • the feedback information is carried on the physical uplink control channel
  • the data transmission is carried on a physical uplink shared channel.
  • the S200 step includes:
  • the first time slot offset and the second time slot offset are determined according to the preset parameters, feedback information is sent according to the first time slot offset, and data transmission is performed according to the second time slot offset.
  • the method also includes at least one of the following:
  • the first time slot offset is the time slot offset between the time slot where the physical downlink shared channel is located and the time slot where the physical uplink control channel carrying its corresponding feedback information is located;
  • the second time slot offset is a time slot offset between the time slot where the physical downlink control channel is located and the time slot where the physical uplink shared channel scheduled by the physical downlink control channel is located;
  • Sending feedback information according to the first time slot offset includes: determining a first transmission time for sending a physical uplink control channel carrying ACK/NACK information according to the first time slot offset, according to the At the first sending moment, the physical uplink control channel carrying ACK/NACK information is sent;
  • the data transmission according to the second time slot offset includes: determining a second transmission time for data transmission of the physical uplink shared channel according to the second time slot offset, and according to the second transmission Data transmission on the physical uplink shared channel is performed at all times.
  • the method also includes at least one of the following:
  • the number of bits corresponding to the timing indication field of the physical downlink shared channel to hybrid automatic repeat request feedback is a positive integer greater than or equal to 3;
  • the number of bits corresponding to the time domain resource allocation field is a positive integer greater than or equal to 4.
  • the device type distinction field is used to specify the terminal type to which the first downlink control information applies;
  • any bit corresponding to the timing indication field of the hybrid automatic repeat request feedback from the physical downlink shared channel satisfies: the device type distinguishing field is different, the bit value is different, and/or the physical downlink shared channel is The corresponding fields in the specific radio resource control information corresponding to the timing indication field of the hybrid automatic repeat request feedback are different, and the bit values are different.
  • the method also includes at least one of the following:
  • the first time slot offset table includes at least one first pre-stored time slot offset
  • the second time slot offset table includes at least one second pre-stored time slot offset
  • a third time slot offset table is pre-stored, and the third time slot offset table includes at least one third pre-stored time slot offset.
  • the first time slot offset includes at least one of the following:
  • the timing indication field corresponding to the physical downlink shared channel to hybrid automatic repeat request feedback time slot offset
  • the second time slot offset includes at least one of the following:
  • the fourth time slot offset in the specific radio resource control information corresponding to the time domain resource allocation field is the fourth time slot offset in the specific radio resource control information corresponding to the time domain resource allocation field.
  • this application provides a data transmission method, which can be applied to network equipment (such as base stations).
  • the method includes the following steps:
  • the method also includes at least one of the following:
  • the preset parameters include a first time slot offset and/or a second time slot offset
  • the control information includes at least one of the following: first downlink control information for scheduling downlink transmission, second downlink control information for scheduling uplink transmission, and radio resource control information;
  • step S12 includes at least one of the following:
  • the method also includes at least one of the following:
  • the first time slot offset is the time slot offset between the time slot where the physical downlink shared channel is located and the time slot where the physical uplink control channel carrying its corresponding feedback information is located;
  • the second time slot offset is a time slot offset between the time slot where the physical downlink control channel is located and the time slot where the physical uplink shared channel scheduled by the physical downlink control channel is located;
  • the feedback information is carried on the physical uplink control channel
  • the data transmitted according to the second time slot offset is carried on the physical uplink shared channel.
  • the method also includes at least one of the following:
  • the first downlink control information includes a timing indication field from the physical downlink shared channel to hybrid automatic repeat request feedback, and/or a device type differentiation field;
  • the second downlink control information includes a time domain resource allocation field.
  • the method also includes at least one of the following:
  • the number of bits corresponding to the timing indication field of the physical downlink shared channel to hybrid automatic repeat request feedback is a positive integer greater than or equal to 3;
  • the number of bits corresponding to the time domain resource allocation field is a positive integer greater than or equal to 4.
  • the device type distinction field is used to specify the terminal type to which the first downlink control information is applicable
  • any bit corresponding to the timing indication field of the physical downlink shared channel to hybrid automatic repeat request feedback satisfies: the device type distinguishing field is different, the bit value is different, and/or the physical downlink sharing
  • the corresponding fields in the specific radio resource control information corresponding to the timing indication field of the feedback from the channel to the hybrid automatic repeat request are different, and the values of the bits are different.
  • the method also includes at least one of the following:
  • the first time slot offset includes at least one of the following: physical downlink shared channel to hybrid automatic repeat transmission
  • the second time slot offset includes at least one of the following: the sum of the fifth specific time slot offset corresponding to the first time domain resource allocation field and the second prestored time slot offset, the second time domain resource allocation field
  • the sixth specific time slot offset in the corresponding specific table, the sixth specific time slot offset is related to the third pre-stored time slot offset, and the seventh specific time slot in the specific table corresponding to the third time domain resource allocation field
  • this application provides a data transmission device, including:
  • a determination module configured to determine the first time slot offset and the second time slot offset according to the control information
  • a transmission module configured to send feedback information according to the first time slot offset and perform data transmission according to the second time slot offset.
  • this application provides a data transmission device, including:
  • Determination module used to determine preset parameters
  • the transmission module is used to send feedback information and perform data transmission according to preset parameters.
  • this application provides a data transmission device, including:
  • a sending module for sending control information used to determine preset parameters
  • a receiving module configured to receive data transmitted according to the preset parameters.
  • this application provides a communication device, including: a memory and a processor;
  • the memory is used to store program instructions
  • the processor is configured to call program instructions in the memory to execute the data transmission method as described in any one of the first to third aspects.
  • the present application provides a computer-readable storage medium with a computer program stored on the storage medium; when the computer program is executed, the data as described in any one of the first to third aspects is realized. Transmission method.
  • the terminal equipment receives the control information sent by the network equipment, and the terminal equipment determines the first time slot for sending the physical uplink control channel for feedback ACK/NACK based on the control information. offset and the second slot offset for physical uplink shared channel transmission.
  • the determined first time slot offset can ensure the effective transmission of feedback information in the scenario where the PDSCH processing time is extended
  • the determined second time slot offset can ensure the effective transmission of the PUSCH in the scenario where the PUSCH preparation time is extended.
  • This application can effectively determine the reasonable first time slot offset and second time slot offset through specific control information, so that the terminal has completed processing the PDSCH when sending feedback information, and/or has completed the processing when transmitting PUSCH. Preparation processing for sending PUSCH such as bandwidth switching. In this way, the terminal device can be prevented from sending invalid feedback information or transmitting invalid data.
  • the technical solution of this application can effectively ensure the effective transmission of feedback information and/or uplink data information.
  • Figure 1 is a schematic diagram of the hardware structure of a terminal device provided by an embodiment of the present application.
  • FIG. 2 is a communication network system architecture diagram provided by an embodiment of the present application.
  • Figure 3A is a schematic diagram of time slots based on PDSCH processing time provided by an embodiment of the present application
  • Figure 3B is a schematic diagram of time slots based on PUSCH preparation time provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram 1 of the signaling interaction of the data transmission method provided by the embodiment of the present application.
  • Figure 5 is a schematic diagram 2 of the signaling interaction of the data transmission method provided by the embodiment of the present application.
  • Figure 6 is a schematic diagram 1 of a time slot for data transmission provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram 2 of a time slot for data transmission provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram three of time slots for data transmission provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram 4 of a time slot for data transmission provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram 5 of a time slot for data transmission provided by an embodiment of the present application.
  • Figure 11 is a schematic diagram three of the signaling interaction of the data transmission method provided by the embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a data transmission device provided by an embodiment of the present application.
  • Figure 13 is a schematic structural diagram 2 of a data transmission device provided by an embodiment of the present application.
  • Figure 14 is a schematic structural diagram three of the data transmission device provided by the embodiment of the present application.
  • Figure 15 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • first, second, third, etc. may be used herein to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as “when” or “when” or “in response to determining.”
  • singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context indicates otherwise.
  • A, B, C means “any of the following: A; B; C; A and B; A and C; B and C; A and B and C"; another example is, “ A, B or C” or "A, B and/or C” means "any of the following: A; B; C; A and B; A and C; B and C; A and B and C". Exceptions to this definition occur only when the combination of elements, functions, steps, or operations is inherently mutually exclusive in some manner.
  • each step in the flow chart in the embodiment of the present application is displayed in sequence as indicated by the arrows, these steps are not necessarily executed in the order indicated by the arrows. Unless explicitly stated in this article, the execution of these steps is not strictly limited in order, and they can be executed in other orders. Moreover, at least some of the steps in the figure may include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily executed at the same time, but may be executed at different times, and their execution order is not necessarily sequential. may be performed in turn or alternately with other steps or sub-steps of other steps or at least part of stages.
  • the words “if” or “if” as used herein may be interpreted as “when” or “when” or “in response to determination” or “in response to detection.”
  • the phrase “if determined” or “if (stated condition or event) is detected” may be interpreted as “when determined” or “in response to determining” or “when (stated condition or event) is detected )” or “in response to detecting (a stated condition or event)”.
  • step codes such as S1 and S2 are used for the purpose of describing the corresponding content more clearly and concisely, and do not constitute a substantial restriction on the sequence. Those skilled in the art may S2 will be executed first and then S1, etc., but these should be within the scope of protection of this application.
  • the communication device in this application may be a terminal device (such as a mobile phone) or a network device (such as a base station).
  • a terminal device such as a mobile phone
  • a network device such as a base station
  • Terminal devices can be implemented in various forms.
  • the terminal devices described in this application may include mobile phones, tablet computers, notebook computers, PDAs, personal digital assistants (Personal Digital Assistant, PDA), portable media players (Portable Media Player, PMP), navigation devices, Smart terminals such as wearable devices, smart bracelets, and pedometers, as well as fixed terminals such as digital TVs and desktop computers.
  • PDA Personal Digital Assistant
  • PMP portable media players
  • navigation devices Smart terminals such as wearable devices, smart bracelets, and pedometers
  • Smart terminals such as wearable devices, smart bracelets, and pedometers
  • fixed terminals such as digital TVs and desktop computers.
  • the terminal device 100 may include: RF (Radio Frequency, radio frequency) unit 101, WiFi module 102, audio output unit 103, A /V (audio/video) input unit 104, sensor 105, display unit 106, user input unit 107, interface unit 108, memory 109, processor 110, and power supply 111 and other components.
  • RF Radio Frequency, radio frequency
  • WiFi module 102 WiFi module
  • a /V audio/video
  • sensor 105 sensor
  • display unit 106 user input unit 107
  • interface unit 108 user input unit 107
  • memory 109 memory 109
  • processor 110 and power supply 111 and other components.
  • the radio frequency unit 101 can be used to receive and send information or signals during a call. Optionally, after receiving the downlink information of the base station, it is processed by the processor 110; in addition, the uplink data is sent to the base station.
  • the radio frequency unit 101 includes, but is not limited to, an antenna, at least one amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • the radio frequency unit 101 can also communicate with the network and other devices through wireless communication.
  • the above-mentioned wireless communication can use any communication standard or protocol, including but not limited to GSM (Global System of Mobile communication, Global Mobile Communication System), GPRS (General Packet Radio Service, General Packet Radio Service), CDMA2000 (Code Division Multiple Access 2000) , Code Division Multiple Access 2000), WCDMA (Wideband Code Division Multiple Access, wideband code division multiple access), TD-SCDMA (Time Division-Synchronous Code Division Multiple Access, time division synchronous code division multiple access), FDD-LTE (Frequency Division Duplexing-Long Term Evolution, Frequency Division Duplex Long Term Evolution), TDD-LTE (Time Division Duplexing-Long Term Evolution, Time Division Duplex Long Term Evolution) and 5G, etc.
  • GSM Global System of Mobile communication, Global Mobile Communication System
  • GPRS General Packet Radio Service, General Packet Radio Service
  • CDMA2000 Code Division Multiple Access 2000
  • Code Division Multiple Access 2000 Code Division Multiple Access 2000
  • WCDMA Wideband Code Division Multiple Access, wideband code
  • WiFi is a short-distance wireless transmission technology.
  • the terminal device can help users send and receive emails, browse web pages, access streaming media, etc. through the WiFi module 102. It provides users with wireless broadband Internet access.
  • FIG. 1 shows the WiFi module 102, it can be understood that it is not a necessary component of the terminal device and can be omitted as needed without changing the essence of the invention.
  • the audio output unit 103 can, when the terminal device 100 is in a call signal receiving mode, a call mode, a recording mode, a voice recognition mode, a broadcast receiving mode, etc., receive the audio signal received by the radio frequency unit 101 or the WiFi module 102 or store it in the memory 109 The audio data is converted into audio signals and output as sound. Furthermore, the audio output unit 103 may also provide audio output related to a specific function performed by the terminal device 100 (eg, call signal reception sound, message reception sound, etc.). The audio output unit 103 may include a speaker, a buzzer, or the like.
  • the A/V input unit 104 is used to receive audio or video signals.
  • the A/V input unit 104 may include a graphics processor (Graphics Processing Unit, GPU) 1041 and a microphone 1042.
  • the graphics processor 1041 can process still pictures or images obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Video image data is processed.
  • the processed image frames may be displayed on the display unit 106.
  • the image frames processed by the graphics processor 1041 may be stored in the memory 109 (or other storage media) or sent via the radio frequency unit 101 or WiFi module 102.
  • the microphone 1042 can receive sounds (audio data) via the microphone 1042 in operating modes such as a phone call mode, a recording mode, a voice recognition mode, and the like, and can process such sounds into audio data.
  • the processed audio (voice) data can be converted into a format that can be sent to a mobile communication base station via the radio frequency unit 101 for output in a phone call mode.
  • Microphone 1042 may implement various types of noise cancellation (or suppression) algorithms to eliminate (or suppress) noise or interference generated in the process of receiving and transmitting audio signals.
  • the terminal device 100 also includes at least one sensor 105, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 1061 according to the brightness of the ambient light.
  • the proximity sensor can turn off the display when the terminal device 100 moves to the ear. Panel 1061 and/or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three axes). It can detect the magnitude and direction of gravity when stationary.
  • It can be used to identify applications of mobile phone posture (such as horizontal and vertical screen switching, related games, magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tapping), etc.; as for the mobile phone, it can also be configured with fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, Other sensors such as thermometers and infrared sensors will not be described in detail here.
  • the display unit 106 is used to display information input by the user or information provided to the user.
  • the display unit 106 may include a display panel 1061, which may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 107 may be used to receive input numeric or character information and generate key signal input related to user settings and function control of the terminal device.
  • the user input unit 107 may include a touch panel 1071 and other input devices 1072.
  • Touch panel 1071 also known as a touch screen, collects user movements on or Nearby touch operations (such as the user's operations on or near the touch panel 1071 using a finger, stylus, or any other suitable object or accessory), and drive the corresponding connection device according to the preset program.
  • the touch panel 1071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch orientation, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device and converts it into contact point coordinates , and then sent to the processor 110, and can receive the commands sent by the processor 110 and execute them.
  • the touch panel 1071 can be implemented using various types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 107 may also include other input devices 1072.
  • other input devices 1072 may include but are not limited to one or more of physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, joysticks, etc., which are not specifically discussed here. limited.
  • the touch panel 1071 can cover the display panel 1061.
  • the touch panel 1071 detects a touch operation on or near it, it is transmitted to the processor 110 to determine the type of the touch event, and then the processor 110 determines the type of the touch event according to the touch event.
  • the type provides corresponding visual output on the display panel 1061.
  • the touch panel 1071 and the display panel 1061 are used as two independent components to implement the input and output functions of the terminal device, in some embodiments, the touch panel 1071 and the display panel 1061 can be integrated. The implementation of the input and output functions of the terminal device is not limited here.
  • the interface unit 108 serves as an interface through which at least one external device can be connected to the terminal device 100 .
  • external devices may include a wired or wireless headphone port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 108 may be used to receive input from an external device (eg, data information, power, etc.) and transmit the received input to one or more elements within the terminal device 100 or may be used to connect the terminal device 100 and the external device 100 . Transfer data between devices.
  • Memory 109 may be used to store software programs as well as various data.
  • the memory 109 may mainly include a storage program area and a storage data area.
  • the storage program area may store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), etc.;
  • the storage data area may Store data created based on the use of the mobile phone (such as audio data, phone book, etc.), etc.
  • memory 109 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.
  • the processor 110 is the control center of the terminal device, using various interfaces and lines to connect various parts of the entire terminal device, by running or executing software programs and/or modules stored in the memory 109, and calling data stored in the memory 109 , perform various functions of the terminal device and process data, thereby overall monitoring the terminal device.
  • the processor 110 may include one or more processing units; preferably, the processor 110 may integrate an application processor and a modem processor.
  • the application processor mainly processes the operating system, user interface, application programs, etc., and modulation
  • the demodulation processor mainly handles wireless communications. It can be understood that the above modem processor may not be integrated into the processor 110 .
  • the terminal device 100 may also include a power supply 111 (such as a battery) that supplies power to various components.
  • a power supply 111 such as a battery
  • the power supply 111 may be logically connected to the processor 110 through a power management system, thereby achieving management of charging, discharging, and power consumption management through the power management system. and other functions.
  • the terminal device 100 may also include a Bluetooth module, etc., which will not be described again here.
  • FIG. 2 is an architecture diagram of a communication network system provided by an embodiment of the present application.
  • the communication network system is an LTE system of universal mobile communication technology.
  • the LTE system includes UEs (User Equipment, User Equipment) connected in sequence. )201, E-UTRAN (Evolved UMTS Terrestrial Radio Access Network, Evolved UMTS terrestrial wireless access network) 202, EPC (Evolved Packet Core, evolved packet core network) 203 and the operator's IP service 204.
  • UEs User Equipment, User Equipment
  • E-UTRAN Evolved UMTS Terrestrial Radio Access Network
  • EPC Evolved Packet Core, evolved packet core network
  • UE 201 may be the above-mentioned terminal device 100, which will not be described again here.
  • E-UTRAN202 includes eNodeB2021 and other eNodeB2022, etc.
  • eNodeB2021 can be connected to other eNodeB2022 through backhaul (such as X2 interface), eNodeB2021 is connected to EPC203, and eNodeB2021 can provide access from UE 201 to EPC 203.
  • EPC 203 may include MME (Mobility Management Entity, mobility management entity) 2031, HSS (Home Subscriber Server, home user server) 2032, other MME 2033, SGW (Serving Gate Way, service gateway) 2034, PGW (PDN Gate Way, packet data Network Gateway) 2035 and PCRF (Policy and Charging Rules Function, policy and charging functional entity) 2036, etc.
  • MME2031 is a control node that processes signaling between UE201 and EPC203, and provides bearer and connection management.
  • HSS2032 is used to provide some registers to manage functions such as the home location register (not shown in the figure), and to save some user-specific information about service characteristics, data rates, etc. All user data can be sent through SGW2034.
  • PGW2035 can provide IP address allocation and other functions for UE201.
  • PCRF2036 is the policy and charging control policy decision point for business data flows and IP bearer resources. It is a policy and charging execution functional unit (Not shown) Select and provide available policy and billing control decisions.
  • IP services 204 may include the Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) or other IP services.
  • IMS IP Multimedia Subsystem, IP Multimedia Subsystem
  • Figure 3A is a schematic diagram of time slots based on PDSCH processing time provided by an embodiment of the present application.
  • FIG. 3B is a schematic diagram of time slots providing a PUSCH-based preparation time according to an embodiment of the present application.
  • DCI downlink control information
  • T proc,2 max((N 2 +d 2,1 +d 2 )(2048+144) ⁇ K2 - ⁇ ⁇ T is used c +T ext +T switch
  • d 2, 2 represents the processing time from the PDCCH where the uplink authorization UL grant is located to the PUSCH
  • N2 represents the preparation time of the PUSCH related to the UE capability
  • K2 represents the time slot where the PDCCH is located and its scheduled The offset between the timeslots where PUSCH is located.
  • DCI downlink control information
  • PUSCH needs to be sent in time slot n+K2.
  • DCI downlink control information
  • PUSCH is scheduled to be transmitted according to the existing protocol, Then there may be a scenario where PUSCH transmission is performed while the bandwidth is being switched or other services are in progress, resulting in PUSCH being unable to be transmitted and invalid PUSCH transmission.
  • NT,1 + NT,2 +0.5 to replace T proc in Figure 3B ,2 represents the processing time from UL grant to PUSCH, where, N T,1 corresponds to the decoding time of PDSCH with UE processing capability 1, which is N1 symbol duration, and N T,2 corresponds to the preparation time of PUSCH with UE processing capability 1.
  • N2 symbols last length of time. For light-capability equipment, that is, Redcap UE, since it has low latency requirements, its PUSCH preparation time can be relaxed, that is, the PUSCH preparation time N2 can be extended.
  • embodiments of the present application provide a data transmission solution to ensure effective transmission of feedback information and/or PUSCH.
  • FIG 4 is a schematic diagram 1 of signaling interaction of the data transmission method provided by the embodiment of the present application. As shown in Figure 4, the method can be:
  • the network device sends control information.
  • Network equipment can be base station eNB, gNB core network equipment, transmitting and receiving node (Transmission and Reception Point, TRP) relay station or access point, etc.
  • the network device sends control information to the terminal through the physical downlink control channel.
  • control information sent by the network device includes first downlink control information for scheduling downlink transmission, second downlink control information for scheduling uplink transmission, and radio resource control information (Radio Resource Control, At least one of the information (RRC for short) and Medium Access Control (MAC for short) information.
  • radio resource control information Radio Resource Control, At least one of the information (RRC for short) and Medium Access Control (MAC for short) information.
  • the RAR or fallback RAR is located in the MAC message and is carried by the physical downlink shared channel.
  • the terminal device receives the control information.
  • the terminal device After the network device sends the control information to the terminal device, the terminal device can receive the control information.
  • the first downlink control information for scheduling downlink transmission at least includes a timing indication field from the physical downlink shared channel to hybrid automatic repeat request feedback, and/or a device type distinction field.
  • the first downlink control information may be DCI format 1_1 or DCI format 1_0 or other newly added downlink DCI format applicable to Redcap.
  • the device type identification field in the first downlink control information is a new field type indication in the first downlink control information.
  • S43 The terminal device determines the first time slot offset according to the control information.
  • the first time slot offset is the time slot offset between the time slot where the physical downlink shared channel is located and the time slot where the physical uplink control channel carrying its corresponding feedback information is located, which can be used to determine The sending time of the PUCCH carrying feedback physical downlink shared channel ACK/NACK.
  • the timing indication field of the physical downlink shared channel to hybrid automatic repeat request feedback included in the first downlink control information may be the first physical downlink shared channel to hybrid automatic repeat request feedback.
  • Timing indication field, timing indication field from the second physical downlink shared channel to hybrid automatic repeat request feedback, timing indication field from the third physical downlink shared channel to hybrid automatic repeat request feedback, fourth physical downlink A timing indication field for feedback from the shared channel to hybrid automatic repeat request, and a timing indication field for feedback from the fifth physical downlink shared channel to hybrid automatic repeat request is described below.
  • the first specific time slot offset and the first prestored time slot offset corresponding to the timing indication field of the first physical downlink shared channel to hybrid automatic repeat request feedback in the first downlink control information.
  • the sum of the shifts determines the first slot offset.
  • the first pre-stored time slot offset is determined by a first time slot offset table, the first time slot offset table includes at least one first pre-stored time slot offset and the first time slot offset table is pre-stored in the terminal device.
  • the selection of the first specific time slot offset corresponding to the timing indication field of the hybrid automatic repeat request feedback from the first physical downlink shared channel The value corresponds to the radio resource control parameter DL-DataToUL-ACK.
  • the definition of the unlimited resource control parameter DL-DataToUL-ACK is as follows:
  • DL-DataToUL-ACK:: SEQUENCE(SIZE(1..8))OF INTEGER(0,1,....,15).
  • the first time slot offset is determined according to the second specific time slot offset corresponding to the timing indication field of the second physical downlink shared channel to hybrid automatic repeat request feedback in the first downlink control information. shift.
  • the timing indication field of the feedback from the second physical downlink shared channel to the hybrid automatic repeat request is a newly added 3-bit field in the first downlink control information.
  • the timing indication field of the feedback from the second physical downlink shared channel to the hybrid automatic repeat request is recorded as the timing indication field of the feedback from the physical downlink shared channel to the hybrid automatic repeat request, and the second physical downlink shared channel to the hybrid
  • the value of the second specific time slot offset corresponding to the timing indication field of the automatic retransmission request feedback corresponds to the unlimited resource control parameter DL-DataToUL-ACK-redcap.
  • the definition of the unlimited resource control parameter DL-DataToUL-ACK-redcap is as follows:
  • DL-DataToUL-ACK-redcap SEQUENCE(SIZE(1..8))OF INTEGER(0,1,....,31)
  • the first time slot offset is determined according to a third specific time slot offset corresponding to the timing indication field of the third physical downlink shared channel to hybrid automatic repeat request feedback in the first downlink control information. shift.
  • the number of bits corresponding to the timing indication field of the feedback from the third physical downlink shared channel to the hybrid automatic repeat request is a positive integer greater than 3.
  • the number of bits corresponding to the timing indication field of the feedback from the third physical downlink shared channel to the hybrid automatic repeat request is 4.
  • the value range of the third specific time slot offset corresponding to bit 0000 ⁇ bit 0111 is ⁇ 0,1,..., 15 ⁇ , that is, the first time slot offset determined by the third specific time slot offset can still be used for ACK/NACK feedback scheduling of legacy UEs.
  • the value range of the third specific time slot offset corresponding to bit 1000 ⁇ bit 1111 is ⁇ 16, ..., 31 ⁇ , that is, the first time slot offset determined by the third specific time slot offset can satisfy ACK/NACK scheduling requirements for Redcap UE relaxed processing.
  • the first time slot offset is determined based on the third specific time slot offset corresponding to the timing indication field of the hybrid automatic repeat request feedback from the third physical downlink shared channel whose number of bits is a positive integer greater than 3, which can implement traditional
  • the effective scheduling of UE can fully accommodate the scheduling needs of extended scheduling time required by Redcap UE for relaxed processing. That is, using the physical downlink shared channel with a specific number of bits to the timing indication field of the hybrid automatic repeat request feedback to determine the first slot offset can achieve compatible coexistence of Redcap UEs and legacy UEs.
  • the device type distinction field in the first downlink control information and/or the fourth specific time slot offset corresponding to the timing indication field of the fourth physical downlink shared channel to hybrid automatic repeat request feedback Determine the first slot offset.
  • the device type distinction field in the first downlink control information is used to distinguish whether the terminal device type to which the first downlink control information is applied is a Redcap UE or a legacy UE. For example, if the device type distinguishing field is 1, the current first downlink control information is used for Redcap UE, and/or, if the device type distinguishing field is 0, the current first downlink control information is used for legacy UE.
  • the number of bits occupied by the timing indication field of the fourth physical downlink shared channel to hybrid automatic repeat request feedback is 3, and the device type distinguishing field is different.
  • the timing of the fourth physical downlink shared channel to hybrid automatic repeat request feedback The fourth specific time slot offset corresponding to the indication field is different. For example, if the device type distinction field indicates that the current first downlink control information is for Redcap UE, then the fourth physical downlink shared channel to the fourth specific time slot offset of the timing indication field of the hybrid automatic repeat request feedback
  • the value range corresponds to the value range in the radio resource control information DL-DataToUL-ACK-redcap.
  • the fourth specific time slot offset value corresponding to the 3-bit fourth physical downlink shared channel to the timing indication field of the hybrid automatic repeat request feedback is ⁇ 0, 1, ...., 31 ⁇ 8 values.
  • the 3-bit fourth physical downlink shared channel to the fourth specific time corresponding to the timing indication field of the hybrid automatic repeat request feedback The value range of the slot offset corresponds to the value range in the radio resource control information DL-DataToUL-ACK.
  • the 3-bit field fourth physical The values of the timing indication from the downlink shared channel to the hybrid automatic repeat request feedback are 8 values in ⁇ 0, 1, ...., 15 ⁇ .
  • the first time slot offset is determined according to the third time slot offset in the specific radio resource control information corresponding to the timing indication field of the hybrid automatic repeat request feedback from the fifth physical downlink shared channel. If the base station has identified that the current terminal is a Redcap UE, the 3-bit fifth physical downlink shared channel to hybrid automatic repeat request feedback timing indication field in the first downlink control information sent to the terminal corresponds to the specific wireless The third time slot offset in the resource control information.
  • the specific radio resource control information is DL-DataToUL-ACK-redcap, which is defined as follows:
  • DL-DataToUL-ACK-redcap SEQUENCE(SIZE(1..8))OF INTEGER(0,1,....,31)
  • the third time slot offset in the specific radio resource control information is any 8 values in the value range ⁇ 0, 1, ..., 31 ⁇ given by DL-DataToUL-ACK-redcap.
  • specific radio resource control information for specific types of terminals such as Redcap UE
  • the value of the time slot offset corresponding to the 3-bit physical downlink shared channel to the timing indication field of the hybrid automatic repeat request feedback is redefined, so that no need Increase the number of bits in the timing indication field of the physical downlink shared channel to hybrid automatic repeat request feedback in DCI, and determine the effective ACK/NACK feedback time for Redcap UE relaxed processing scenarios by redefining the DCI field, which is beneficial to traditional User and Redcap UE compatibility.
  • the first time slot offset includes: the specific time slot offset corresponding to the timing indication field of the physical downlink shared channel to hybrid automatic repeat request feedback and the first pre-stored time The sum of slot offsets, the specific time slot offset corresponding to the timing indication field from the physical downlink shared channel to hybrid automatic repeat request feedback, the device type distinction field in the first downlink control information and/ Or the specific time slot offset corresponding to the timing indication field from the physical downlink shared channel to the hybrid automatic repeat request feedback, or the specific radio resource control information corresponding to the timing indication field from the physical downlink shared channel to the hybrid automatic repeat request feedback. at least one of the third slot offsets in .
  • the timing indication field of the physical downlink shared channel to hybrid automatic repeat request feedback in at least one item included in the first time slot offset can be configured through the above-mentioned first physical downlink shared channel to hybrid automatic repeat request.
  • S44 The terminal device sends feedback information according to the first time slot offset.
  • the terminal device may determine the first transmission time of sending the physical uplink control channel carrying ACK/NACK information according to the first time slot offset; according to the first time slot offset; At the transmission moment, the physical uplink control channel carrying ACK/NACK information is sent.
  • the feedback information is carried on the physical uplink control channel.
  • the network device receives feedback information.
  • the network device receives the feedback information.
  • the technical solution provided by this application terminal equipment can determine the first time slot offset according to the control information sent by the received network device, and determine the time to send feedback information based on the first time slot offset, so that when sending the corresponding PDSCH The corresponding PDSCH processing has been completed before the time of the ACK/NACK feedback message.
  • the first time slot offset determined by the above method can ensure the effective completion of the transmission of ACK/NACK corresponding to the PDSCH.
  • Figure 5 is a second signaling interaction diagram of the data transmission method provided by the embodiment of the present application. As shown in Figure 5, the method can be:
  • the network device sends control information.
  • control information sent by the network device includes first downlink control information for scheduling downlink transmission, second downlink control information for scheduling uplink transmission, and radio resource control information (Radio Resource Control, At least one of the information (RRC for short) and Medium Access Control (MAC for short) information.
  • radio resource control information Radio Resource Control, At least one of the information (RRC for short) and Medium Access Control (MAC for short) information.
  • the RAR or fallback RAR is located in the MAC message and is carried by the physical downlink shared channel.
  • the terminal device receives the control information.
  • the terminal device After the network device sends the control information to the terminal device, the terminal device can receive the control information.
  • the second downlink control information used for scheduling uplink transmission at least includes a time domain resource allocation field.
  • the second downlink control information may be DCI format 0_1 or DCI format 0_0 or other newly added uplink DCI format applicable to Redcap.
  • the second downlink control information may be used to determine a second time slot offset for data transmission on the physical uplink shared channel.
  • the time domain resource allocation field used for scheduling uplink transmission can also be in RAR or fallback RAR.
  • the second time slot offset used for data transmission of the physical uplink shared channel may be determined according to the RAR or fallback RAR.
  • S53 The terminal device determines the second time slot offset according to the control information.
  • the second time slot offset is between the time slot where the physical downlink control channel is located and the time slot where the physical uplink shared channel scheduled by the physical downlink control channel is located.
  • time slot offset when PUSCH is scheduled by RAR/fallback RAR, the second time slot offset is the time slot where the physical downlink shared channel carrying RAR or fallback RAR is located and the physical uplink scheduled by RAR or fallback
  • the second time slot offset between the time slots where the physical uplink shared channel is located in other words, the second time slot offset can be used to determine the transmission time of the physical uplink shared channel scheduled by the physical downlink control channel.
  • the terminal device determines the second time slot offset according to the second downlink control information and/or the RAR or fallback RAR in the MAC message.
  • the time domain resource allocation field in the second downlink control information may be a first time domain resource allocation field, a second time domain resource allocation field, a third time domain resource allocation field, and a fourth time domain resource. Assign fields.
  • the method for determining the second time slot offset according to the time domain resource allocation field in the second downlink control information will be described below.
  • the second time slot for data transmission according to the sum of the fifth specific time slot offset corresponding to the first time domain resource assignment field (Time domain resource assignment) in the control information and the second prestored time slot offset. offset.
  • the second prestored slot offset is determined from the second slot offset table.
  • the second time slot offset table is pre-stored in the terminal device, and the second time slot offset table includes at least one second pre-stored time slot offset.
  • the number of bits occupied by the first time domain resource allocation field is 4, and the fifth specific time slot offset corresponding to the first time domain resource allocation field (Time domain resource assignment) is determined by Table 10, Table 11 and Table 15.
  • the second time slot offset for data transmission is determined according to the sixth specific time slot offset in the specific table corresponding to the second time domain resource allocation field.
  • the sixth specific time slot offset is the same as the third time slot offset.
  • Pre-stored slot offset related is used to determine the value of j related to the second time slot offset.
  • the third time slot offset table where the third prestored time slot offset is located is shown in Table 1.
  • the value of the third pre-stored time slot offset j can be obtained according to Table 1, and then the sixth specific time determined according to the specific table (Table 10 and Table 11) corresponding to the value of the second time domain resource allocation field. slot offset to determine the second time slot offset for data transmission.
  • the second time slot offset for data transmission is determined according to the seventh time slot offset in the specific table corresponding to the third time domain resource allocation field in the second downlink control information.
  • the number of bits in the third time domain resource allocation field is a positive integer greater than 4. Taking the number of bits of the third time domain resource allocation field as 5 as an example, the specific table corresponding to the third time domain resource allocation field is Table 13 or Table 14.
  • the seventh time slot offset is a specific table corresponding to the value of the third time domain resource allocation field, which is a specific time slot in Table 13 or Table 14.
  • the second time slot offset is determined according to the fourth time slot offset in the specific radio resource control information defined in the second downlink control information corresponding to the fourth time domain resource allocation field.
  • the second time slot offset includes: the sum of the specific time slot offset corresponding to the time domain resource allocation field and the second prestored time slot offset, the time domain The specific time slot offset in the specific table corresponding to the resource allocation field, the specific time slot offset is related to the third pre-stored time slot offset, the specific time slot offset in the specific table corresponding to the time domain resource allocation field, the time domain resource At least one item of the fourth time slot offset in the specific radio resource control information corresponding to the allocation field.
  • time-domain resource allocation field in at least one item included in the second time slot offset can be configured through the above-mentioned first time-domain resource allocation field, second time-domain resource allocation field, and third time-domain resource allocation field. , any implementation in the fourth time domain resource allocation field.
  • S54 The terminal device performs data transmission according to the second time slot offset.
  • the terminal device when the terminal device performs data transmission based on the second time slot offset, the terminal device may determine the second sending time for data transmission on the physical uplink shared channel based on the second time slot offset; based on the second sending time Perform data transmission on the physical uplink shared channel.
  • data transmission is carried on a physical uplink shared channel.
  • the network device receives the transmitted data.
  • the network device receives the transmitted data.
  • the technical solution provided by this application can determine the second time slot offset based on the received control information sent by the network device, and perform data transmission time based on the second time slot offset. Preparations for the PUSCH have been completed before PUSCH transmission. For example, the bandwidth part has been switched from the downlink bandwidth to the uplink bandwidth.
  • the second time slot offset determined by the above method can complete the uplink transmission within the appropriate uplink transmission time and resources.
  • the method for the terminal device to determine the first time slot offset and the second time slot offset is briefly described. Below, the method for determining the first time slot offset and the second time slot will be combined with specific examples. The offset method is described in detail.
  • the first specific time slot offset and the first pre-stored time slot corresponding to the timing indication field of the first physical downlink shared channel to hybrid automatic repeat request feedback in the first downlink control information may be The sum of the offsets determines the first slot offset.
  • the first pre-stored time slot offset delta1 contains the first time slot offset pre-stored in the terminal device.
  • Table, optionally, the first time slot offset table is Table 2 or Table 3 or Table 4. In fact, the value of the first time slot offset determined by this method is K1+delta1.
  • K1 is the 3-bit field in the first downlink control information from the first physical downlink shared channel to the hybrid automatic
  • the first specific time slot offset corresponding to the timing indication of the retransmission request feedback, and the value of the RRC parameter corresponding to the timing indication of the first physical downlink shared channel to the hybrid automatic repeat request feedback is:
  • Figure 6 is a schematic diagram 1 of a time slot for data transmission provided by an embodiment of the present application.
  • the subcarrier intervals of PDSCH, PUCCH, and PDCCH corresponding to the data transmission time slot shown in Figure 6 are all 30KHz. If the N1 value of the PDSCH decoding time of the Redcap UE is expanded to twice the N1 value of the traditional UE, that is, if the N1 value of the traditional UE If the value is 10 symbols, the N1 value of Redcap UE is expanded to 20 symbols.
  • K1 1 time slot can reserve enough time for the traditional UE to perform PDSCH processing; but for the Redcap UE, the PDSCH processing time becomes 20 symbols. , then after the offset of 1 time slot, the Redcap UE may not have completed the PDSCH reception processing work, that is, the ACK/NACK fed back at this time is invalid.
  • a first prestored time slot offset delta1 can be prestored in the terminal device, and the first time slot offset of the Redcap UE is determined based on K1+delta1.
  • delta1 is determined by Table 2 or Table 3 or Table 4 is obtained.
  • the first time slot offset value of 3 time slots is enough to meet the requirements of the Redcap UE's relaxed PDSCH processing duration of 20 symbols.
  • the first prestored time slot offset delta1 may only be related to the subcarrier spacing and has nothing to do with the UE capability.
  • the PDSCH decoding time N1 of the Redcap UE as an example to be extended to twice the original value
  • the first time slot offset table pre-stored in the terminal equipment is described in Table 2 below:
  • the first prestored time slot offset delta1 may be related to both the UE capability and the subcarrier spacing ⁇ .
  • the first time slot offset table pre-stored in the Redcap UE can be seen in Table 3 and Table 4 below.
  • Table 3 corresponds to UE capability 1
  • Table 4 corresponds to UE capability 2
  • represents the minimum subcarrier spacing in PDCCH, PDSCH, and PUCCH.
  • the value of the first prestored time slot offset delta1 in the above Table 2, Table 3, and Table 4 needs to at least meet the processing time requirement of Table 5.
  • T proc, 1, redcap represents the PDSCH processing time of Redcap UE
  • T proc, 1 normal represents the PDSCH processing time of traditional UE
  • T s /T c
  • T s 1/( ⁇ f ref ⁇ N f, ref )
  • T c 1/( ⁇ f max ⁇ N f )
  • ⁇ f max 15 ⁇ 10 3 Hz
  • the first time slot offset is determined through a timing indication field of the third physical downlink shared channel to hybrid automatic repeat request feedback in the first downlink control information.
  • the number of bits in the timing indication field of the third physical downlink shared channel to hybrid automatic repeat request feedback is a positive integer greater than 3. Taking the number of bits occupied by the timing indication field from the third physical downlink shared channel to hybrid automatic repeat request feedback as an example, the value range of bit 0000 ⁇ bit 0111 in the 4-bit representation is ⁇ 0,1,..
  • the timing indication field of the third physical downlink shared channel to hybrid automatic repeat request feedback can achieve scheduling compatibility between Redcap UE and traditional UE, and can solve the scheduling time mismatch caused by the extension of PDSCH decoding time N1 problem to ensure the validity of the sent ACK/NACK message.
  • Figure 7 is a second schematic diagram of time slots for data transmission provided by an embodiment of the present application.
  • the subcarrier intervals of PDSCH, PUCCH, and PDCCH corresponding to the data transmission time slot shown in Figure 7 are all 30KHz, and the PDSCH decoding time N1 value of Redcap UE is extended to twice the N1 value of traditional UE, that is, if the N1 value of traditional UE The value is 10symbol, then the N1 value of the Redcap UE is 20symbol.
  • the PDSCH processing time of Redcap UE increases by at least 10 symbols compared with traditional UE. If the PDSCH processing time of the traditional UE is 206 symbols, then the PDSCH processing time of the Redcap UE is 216 symbols.
  • the maximum value of K1 can be 15 time slots. Obviously, for legacy UEs, 15 time slots are enough to meet the PDSCH processing duration of 206 symbols.
  • Redcap UE since its PDSCH processing time is 216 symbols, the 15 time slots reserved according to the existing protocol are not enough to meet its PDSCH's loose processing time requirement. That is, 15 time slots cannot meet the PDSCH processing duration requirement of 216 symbols. In fact, if the Redcap UE starts to receive PDSCH in time slot n, it has not completed receiving the PDSCH service at time slot n+15, that is, the ACK/NACK information fed back in this time slot is invalid. In this embodiment, it is assumed that the number of bits in the timing indication field of the third physical downlink shared channel to hybrid automatic repeat request feedback is 4, and it is agreed that bits 0000 to 0111 of the 4 bits are used to meet the scheduling offset of traditional UEs.
  • the value range is ⁇ 0,1,....,15 ⁇
  • bit 1000 ⁇ 1111 is used for scheduling offset when the Redcap UE processing delay is large, and the value range can be ⁇ 16,17,... .,31 ⁇ , then in order to meet the processing time requirement of 216 symbols of Redcap UE in this embodiment, the value of the timing indication field of the third physical downlink shared channel to hybrid automatic repeat request feedback corresponds to 16 times. gap.
  • the specific radio resource control information DL-DataToUL-ACK-redcap is defined as follows:
  • DL-DataToUL-ACK-redcap SEQUENCE(SIZE(1..8))OF INTEGER(0,1,....,31)
  • the value range of DL-DataToUL-ACK-redcap can also be ⁇ 1,2,4,6,8,10,13,16 ⁇ , as long as the maximum value in the value range can satisfy the maximum Redcap UE Long processing time is enough.
  • the 3-bit value of the timing indication field of the fifth physical downlink shared channel to hybrid automatic repeat request feedback is ⁇ 2, 5, 9, 10, 14, 16, 17, 18 ⁇ .
  • the PDSCH processing time of the traditional UE is 206 symbols
  • the PDSCH processing time of the Redcap UE is 216 symbols.
  • the value of the timing indication field of the retransmission request feedback can meet the loose processing requirements of the Redcap UE. In fact, if the existing protocol is used, since the maximum value of DL-DataToUL-ACK is 15 time slots, the timing indication value of field physical downlink shared channel to hybrid automatic repeat request feedback cannot meet the Redcap UE extension PDSCH decoding time scenario.
  • the problem of insufficient data transmission time slots shown in Figure 7 can also be solved by adding a device type distinguishing field in the first downlink control information.
  • the terminal type to which the specified first downlink control information is applicable can be determined based on the device distinguishing field, and then the fourth physical downlink shared channel to the hybrid automatic repeat request feedback applicable to the Redcap UE relaxed processing scenario can be determined The bit value of the timing indication field ultimately determines the first time slot offset.
  • the current first downlink control information applies to Redcap UEs, and/or if the device type distinguishing field is 0, the current first downlink control information applies to legacy UEs.
  • Different types of terminal equipment have different understandings of the timing indication field from the 3-bit fourth physical downlink shared channel to hybrid automatic repeat request feedback in the first downlink control information.
  • the 3-bit fourth physical downlink shared channel in the first downlink control information to the hybrid automatic repeat request corresponds to the new RRC parameter DL-DataToUL-ACK-redcap, that is, its value is 8 values among ⁇ 0,1,....,31 ⁇ ; if the current device type distinguishes field indicates that the current first downlink control information is for legacy UE, then the 3-bit fourth physical downlink shared channel in the first downlink control information is taken from the timing indication field of the hybrid automatic repeat request feedback.
  • the value range corresponds to the RRC parameter DL-DataToUL-ACK, that is, its value is 8 values among ⁇ 0, 1, ...., 15 ⁇ .
  • the fifth specific time slot offset and the second prestored time corresponding to the first time domain resource allocation field in the second downlink control information can be used.
  • the summation of the slot offsets determines the second slot offset.
  • the second prestored time slot offset delta2 is included in the second time slot offset table prestored by the terminal device.
  • the sum of the fifth specific time slot offset corresponding to the first time domain resource allocation field in the RAR or fallback RAR and the second prestored time slot offset can be used Determine the second slot offset.
  • the second prestored time slot offset delta2 includes the second time slot offset prestored in the terminal device. Move to table.
  • Figure 8 is a schematic diagram three of time slots for data transmission provided by an embodiment of the present application.
  • the subcarrier intervals of PUSCH, PDCCH, and PDSCH corresponding to the data transmission time slot shown in Figure 8 are all 30KHz.
  • PUSCH uses a normal cyclic prefix.
  • the DCI and PUSCH transmission interval is one time slot. Since there are 14 symbols in one time slot, it can guarantee the processing time of 12 symbols for traditional UEs. However, for Redcap UE, since its PUSCH preparation time changes from 12 to 24, after the offset of one time slot, The Redcap UE may be performing services such as BWP handover, and the PUSCH sent at this time is invalid. In order to meet the relaxed PUSCH processing requirements of the Recap UE, a second prestored time slot offset delta2 can be prestored in the terminal device, that is, for the Redcap UE, the second time slot offset is K2+delta2.
  • N2 is also increased from 12 symbols to 24 symbols, and the first time in its RAR or fallback RAR
  • K2 1
  • the time slot where the RAR is located is n
  • the time slot where the PUSCH scheduled by the RAR or fallback RAR is located is n+K2+delta2+delta; where delta is the RAR or fallback RAR schedule given in the existing protocol.
  • the offset value of PUSCH is a value of PUSCH.
  • the second prestored time slot offset delta2 of the terminal device is included in the prestored second time slot offset table.
  • the value of the second prestored time slot offset may only be related to the subcarrier spacing ⁇ and has nothing to do with the UE capability.
  • the second time slot offset table prestored in the terminal equipment can be seen in Table 6 below:
  • the second time slot offset table includes at least one second prestored time slot offset delta2, and the value of the second prestored time slot offset may be related to both the UE capability and the subcarrier spacing ⁇ .
  • the value of delta2 is shown in Table 7 and Table 8 below.
  • Table 7 is applicable to UE capability 1
  • Table 8 is applicable to UE capability 2.
  • delta2 in the above table must at least meet the processing time requirements of Table 9 below:
  • T proc, 2 redcap represents the preparation and processing time of PUSCH of Redcap UE
  • T proc, 2 normal represents the preparation and processing time of PUSCH of traditional UE
  • T s /T c
  • T s 1/( ⁇ f ref ⁇ N f, ref )
  • T c 1/( ⁇ f max ⁇ N f )
  • ⁇ f max 15 ⁇ 10 3 Hz
  • the second time slot offset may be determined based on the sixth specific time slot offset related to the third prestored time slot offset in the specific table corresponding to the second time domain resource allocation field.
  • the third pre-stored time slot offset is pre-stored in the third time slot offset table.
  • the value of j in the third time slot offset table is related to the subcarrier spacing, that is, if the subcarrier spacing is different, the third prestored time slot offset j value is different.
  • the Redcap UE's requirements for relaxed PUSCH processing can be met without changing the number of bits and values of the existing DCI.
  • the third time slot offset table is shown in Table 12 below:
  • the subcarrier spacing of PUSCH and PDCCH is 15KHz
  • PUSCH uses a normal cyclic prefix
  • the PUSCH preparation time of Redcap UE is increased by at least 12 symbols compared with traditional UE. That is, if the PUSCH preparation and processing time of the traditional UE is 12 symbols, the PUSCH preparation and processing time of the Redcap UE is 24 symbols.
  • the time is 12 symbols, and one slot offset is enough for PUSCH to complete related service processing. That is, for traditional UEs, such scheduling time allocation is reasonable, but for Redcap UEs, since its PUSCH processing time is 24 symbols, the offset After a time slot, it may be preparing for bandwidth switching, etc. At this time, PUSCH transmission is invalid. In order to solve the problem of invalid PUSCH transmission, this application newly defines Table 12.
  • the method of using the third pre-stored time slot offset to determine the second time slot offset can achieve effective PUSCH scheduling in the loose processing scenario of Redcap UE without any modification to the existing DCI and scheduling tables, ensuring the security of Redcap UE and traditional UE. Effectively compatible.
  • the time slot where the RAR is located is n
  • the time slot where the PUSCH scheduled by the RAR or fallback RAR is located is n+K2+delta; where delta is the PUSCH scheduled by the RAR or fallback RAR given in the existing protocol.
  • the value of K2 is expanded according to the loose processing capability of Redcap UE, such as the value of j corresponding to K2 defined in Table 12.
  • Figure 9 is a schematic diagram 4 of time slots for data transmission provided by an embodiment of the present application.
  • the subcarrier intervals of PUSCH and PDCCH corresponding to the data transmission time slot shown in Figure 9 are both 30KHz.
  • PUSCH uses a normal cyclic prefix.
  • the preparation processing time T proc before PUSCH transmission , 2 max ((N 2 +d 2,1 +d 2 )(2048+144) ⁇ K2 - ⁇ ⁇ T c +T ext +T switch , the values of other variables in d 2,2 ) will not change
  • the PUSCH preparation and processing time of the Redcap UE is increased by at least 12 symbols compared with the traditional UE.
  • the PUSCH preparation and processing time of the traditional UE is 12 symbols
  • the PUSCH preparation and processing time of the Redcap UE is 24 symbols.
  • the first time slot offset is 1 time slot.
  • 1 slot offset can meet the 12-symbol preparation time of traditional UEs.
  • the Redcap UE may Bandwidth partial switching or other service transmission is in progress, that is, for Redcap UE, the offset of one time slot is insufficient at this time.
  • the time slot where the RAR is located is n
  • the time slot where the PUSCH scheduled by the RAR or fallback RAR is located is n+K2+delta; where delta is the PUSCH scheduled by the RAR or fallback RAR given in the existing protocol.
  • the offset value and the value of K2 can be configured with appropriate bit values according to the loose processing capabilities of the Redcap UE.
  • the PUSCH default scheduling table is shown in Table 13 below.
  • the default scheduling The table is shown in Table 14 below.
  • S represents the starting symbol position of PUSCH
  • L represents the symbol length occupied by PUSCH.
  • the first 16 rows in the above Table 13 and Table 14 are still applicable to traditional UEs, and the newly added 14 rows can meet the loose processing of PUSCH preparation time by Redcap UE.
  • the second time slot offset may be determined by using the time slot offset in the specific radio resource control information corresponding to the fourth time domain resource allocation field in the second downlink control information.
  • the newly defined specific RRC parameters can be expressed as:
  • the second time slot offset corresponds to K2 in the specific RRC parameter.
  • the second time slot offset corresponds to K2+delta in the specific RRC parameter, where delta is the offset of PUSCH scheduled by RAR or fallback RAR given in the existing protocol. Shift value.
  • first time slot offset and the second time slot offset can be determined through any of the above optional methods, or through a combination of the above optional methods. In the embodiment of the present application, No restrictions.
  • FIG 11 is a schematic diagram 3 of the signaling interaction of the data transmission method provided by the embodiment of the present application. As shown in Figure 11, the method can be:
  • the network device sends control information, and the control information is used to determine preset parameters.
  • control information sent by the network device includes at least one of first downlink control information for scheduling downlink transmission, second downlink control information for scheduling uplink transmission, and radio resource control information.
  • the preset parameters include the first time slot offset and/or the second time slot offset.
  • the first time slot offset is the time slot offset between the time slot where the physical downlink shared channel is located and the time slot where the physical uplink control channel carrying its corresponding ACK/NACK feedback information is located.
  • the second time slot offset is a time slot offset between the time slot where the physical downlink control channel is located and the time slot where the physical uplink shared channel scheduled by the physical downlink control channel is located.
  • the terminal device receives control information.
  • the terminal device After the network device sends the control information to the terminal device, the terminal device receives the sent control information to schedule uplink transmission according to at least one piece of information included in the control information.
  • the terminal device determines the preset parameters according to the control information.
  • the terminal device may determine the preset parameters according to the control information, that is, determine the first time slot offset and/or the second time slot offset according to the control information.
  • the preset parameters include a timing indication field from the physical downlink shared channel to hybrid automatic repeat request feedback, and/or at least one of a device type differentiation field and a time domain resource allocation field.
  • the device type distinction field is used to specify the terminal type to which the first downlink control information applies.
  • the timing indication field from the physical downlink shared channel to the hybrid automatic repeat request feedback is the timing indication field from the physical downlink shared channel to the hybrid automatic repeat request feedback in the first downlink control information.
  • the time domain resource allocation field is the time domain resource allocation field in the second downlink control information.
  • the first time slot offset determined by the terminal device may be:
  • the sum of the specific time slot offset corresponding to the timing indication field of the physical downlink shared channel to hybrid automatic repeat request feedback and the first prestored time slot offset, the physical downlink shared channel to hybrid automatic repeat request The specific time slot offset corresponding to the feedback timing indication field and the device type distinguishing character in the first downlink control information segment and/or physical downlink shared channel to the specific time slot offset corresponding to the timing indication field of the hybrid automatic repeat request feedback, and the physical downlink shared channel to the specific radio corresponding to the timing indication field of the hybrid automatic repeat request feedback At least one item of the third slot offset in the resource control information.
  • the first prestored time slot offset may be a time slot offset in a first time slot offset table prestored in the terminal device, and the second time slot offset table includes at least one first prestored time slot offset. shift.
  • the first prestored time slot offset is only related to the subcarrier spacing, or the first prestored time slot offset is related to both the subcarrier spacing and the UE capability.
  • any bit corresponding to the timing indication field of the physical downlink shared channel to hybrid automatic repeat request feedback satisfies: different bit values of the device type distinguishing field are different, and/or the physical downlink shared channel to hybrid automatic
  • the corresponding fields in the specific radio resource control information corresponding to the timing indication field of the retransmission request feedback are different, and the bit values are different.
  • the number of bits corresponding to the timing indication field of the physical downlink shared channel to hybrid automatic repeat request feedback may be a positive integer greater than or equal to 3.
  • the second time slot offset determined by the terminal device may be: the sum of the specific time slot offset corresponding to the time domain resource allocation field and the second prestored time slot offset, or the specific time slot offset in the specific table corresponding to the time domain resource allocation field.
  • Slot offset, the specific time slot offset is related to the third pre-stored time slot offset, the specific time slot offset in the specific table corresponding to the time domain resource allocation field, and the specific radio resource control information corresponding to the time domain resource allocation field. At least one of the fourth slot offsets.
  • the second prestored time slot offset may be a time slot offset in a second time slot offset table prestored in the terminal device, and the second time slot offset table includes at least one second prestored time slot offset. shift.
  • the second prestored time slot offset is only related to the subcarrier spacing, or the second prestored time slot offset is related to both the subcarrier spacing and the UE capability.
  • the specific time slot offset in the specific table corresponding to the time domain resource allocation field is related to the third prestored time slot offset.
  • the third prestored time slot offset is a time slot offset in a third time slot offset table prestored in the terminal device, and the third time slot offset table includes at least one third prestored time slot offset.
  • the third pre-stored slot offset is related to the subcarrier spacing.
  • the fourth time slot offset in the specific radio resource control information corresponding to the time domain resource allocation field included in the second time slot offset may be referred to the above embodiments, and will not be described again in this embodiment.
  • S114 The terminal device sends feedback information according to the first time slot offset in the preset parameters.
  • the feedback information sent by the terminal device is carried on the physical uplink control channel.
  • the feedback information is ACK information or NACK information, and feedback is performed according to the actual situation.
  • the terminal device determines a first sending time to send a physical uplink control channel carrying ACK/NACK information based on the first time slot offset, and sends a physical uplink control channel carrying ACK/NACK information based on the first sending time. control channel. For example, if the terminal device receives the PDSCH in time slot n, it will send information carrying ACK/NACK at time slot n+K1.
  • K1 is the first time slot offset.
  • S115 The network device receives feedback information sent according to the first time slot offset.
  • S116 The terminal device performs data transmission according to the second time slot offset in the preset parameters.
  • Data transmitted by terminal equipment is carried on the physical uplink shared channel.
  • the terminal device determines a second sending time for data transmission on the physical uplink shared channel according to the second time slot offset, and performs data transmission on the physical uplink shared channel according to the second sending time. For example, if the terminal device receives the second uplink downlink control information in time slot n, it will perform data transmission at time slot n+K2, where K2 is the second time slot offset.
  • S117 The network device receives the data transmitted according to the second time slot offset.
  • the first time slot and the second time slot offset determined by the terminal equipment can ensure the effective decoding time of the loosely processed PDSCH and the effective preparation time of the loosely processed PUSCH, that is, through the first time slot
  • the offset with the second time slot can ensure the effective transmission of PDSCH-related ACK/NACK information and PUSCH data.
  • Figure 12 is a schematic structural diagram of a data transmission device provided by an embodiment of the present application. As shown in Figure 12, the data transmission device 120 includes:
  • Determining module 121 configured to determine the first time slot offset and the second time slot offset according to the control information
  • the transmission module 122 is configured to send feedback information according to the first time slot offset and perform data transmission according to the second time slot offset.
  • the control information includes at least one of the following: first downlink control information for scheduling downlink transmission, second downlink control information for scheduling uplink transmission, and radio resource control information;
  • the first time slot offset is the time slot offset between the time slot where the physical downlink shared channel is located and the time slot where the physical uplink control channel carrying its corresponding feedback information is located;
  • the second time slot offset is the time slot offset between the time slot where the physical downlink control channel is located and the time slot where the physical uplink shared channel scheduled by the physical downlink control channel is located;
  • Feedback information is carried on the physical uplink control channel
  • Data transmission is carried on the physical uplink shared channel.
  • the first downlink control information includes a timing indication field from the physical downlink shared channel to hybrid automatic repeat request feedback, and/or a device type differentiation field;
  • the second downlink control information includes a time domain resource allocation field.
  • the number of bits corresponding to the timing indication field of the physical downlink shared channel to hybrid automatic repeat request feedback is a positive integer greater than or equal to 3;
  • the number of bits corresponding to the time domain resource allocation field is a positive integer greater than or equal to 4.
  • the device type distinction field is used to specify the terminal type to which the first downlink control information applies;
  • any bit corresponding to the timing indication field of the physical downlink shared channel to hybrid automatic repeat request feedback satisfies: different bit values of the device type distinction field are different, and/or the physical downlink shared channel to hybrid automatic repeat request feedback
  • the corresponding fields in the specific radio resource control information corresponding to the timing indication field are different, and the bit values are different.
  • the device also includes a receiving module 123, which is used to receive control information.
  • the first time slot offset table includes at least one first pre-stored time slot offset
  • the second time slot offset table includes at least one second pre-stored time slot offset
  • a third time slot offset table is pre-stored, and the third time slot offset table includes at least one third pre-stored time slot offset.
  • the first time slot offset includes at least one of the following:
  • the second time slot offset includes at least one of the following:
  • the fourth time slot offset in the specific radio resource control information corresponding to the time domain resource allocation field is the fourth time slot offset in the specific radio resource control information corresponding to the time domain resource allocation field.
  • the transmission module 122 is specifically used for:
  • the first transmission time for transmitting the physical uplink control channel carrying ACK/NACK information is determined; according to the first transmission time, the physical uplink control channel carrying ACK/NACK information is transmitted.
  • the transmission module 122 is specifically used for:
  • the data transmission device provided by the embodiments of the present application can execute the technical solutions shown in the above method embodiments.
  • the implementation principles and beneficial effects are similar and will not be described again here.
  • Figure 13 is a second structural schematic diagram of a data transmission device provided by an embodiment of the present application. As shown in Figure 13, the data transmission device 130 includes:
  • Determination module 131 used to determine preset parameters.
  • the transmission module 132 is used to send feedback information and perform data transmission according to preset parameters.
  • the preset parameters include at least one of the following:
  • the way to determine the preset parameters includes:
  • control information includes at least one of the following:
  • Feedback information is carried on the physical uplink control channel
  • Data transmission is carried on the physical uplink shared channel.
  • the determination module 131 is specifically used for:
  • the first time slot offset and the second time slot offset are determined according to the preset parameters, feedback information is sent according to the first time slot offset, and data transmission is performed according to the second time slot offset.
  • the first time slot offset is the time slot offset between the time slot where the physical downlink shared channel is located and the time slot where the physical uplink control channel carrying its corresponding feedback information is located;
  • the second time slot offset is the time slot offset between the time slot where the physical downlink control channel is located and the time slot where the physical uplink shared channel scheduled by the physical downlink control channel is located;
  • Sending feedback information according to the first time slot offset includes: determining a first transmission time for sending a physical uplink control channel carrying ACK/NACK information according to the first time slot offset, and sending a physical uplink control channel carrying ACK information according to the first transmission time. /Physical uplink control channel for NACK information;
  • Performing data transmission according to the second time slot offset includes: determining a second transmission time for data transmission on the physical uplink shared channel according to the second time slot offset, and performing data transmission on the physical uplink shared channel according to the second transmission time. data transmission.
  • the number of bits corresponding to the timing indication field of the physical downlink shared channel to hybrid automatic repeat request feedback is a positive integer greater than or equal to 3;
  • the number of bits corresponding to the time domain resource allocation field is a positive integer greater than or equal to 4.
  • the device type distinction field is used to specify the terminal type to which the first downlink control information applies;
  • any bit corresponding to the timing indication field of the physical downlink shared channel to hybrid automatic repeat request feedback satisfies: different bit values of the device type distinction field are different, and/or the physical downlink shared channel to hybrid automatic repeat request feedback
  • the corresponding fields in the specific radio resource control information corresponding to the timing indication field are different, and the bit values are different.
  • the first time slot offset table includes at least one first pre-stored time slot offset
  • the second time slot offset table includes at least one second pre-stored time slot offset
  • a third time slot offset table is pre-stored, and the third time slot offset table includes at least one third pre-stored time slot offset.
  • the first time slot offset includes at least one of the following:
  • the second time slot offset includes at least one of the following:
  • the fourth time slot offset in the specific radio resource control information corresponding to the time domain resource allocation field is the fourth time slot offset in the specific radio resource control information corresponding to the time domain resource allocation field.
  • the data transmission device provided by the embodiments of the present application can execute the technical solutions shown in the above method embodiments.
  • the implementation principles and beneficial effects are similar and will not be described again here.
  • Figure 14 is a schematic structural diagram three of a data transmission device provided by an embodiment of the present application. As shown in Figure 14, the data transmission device 140 includes:
  • the sending module 141 is used to send control information used to determine preset parameters.
  • the receiving module 142 is used to receive data transmitted according to preset parameters.
  • the preset parameters include the first time slot offset and/or the second time slot offset
  • the control information includes at least one of the following: first downlink control information for scheduling downlink transmission, second downlink control information for scheduling uplink transmission, and radio resource control information;
  • the receiving module 142 is specifically configured to perform at least one of the following:
  • the first time slot offset is the time slot offset between the time slot where the physical downlink shared channel is located and the time slot where the physical uplink control channel carrying its corresponding feedback information is located;
  • the second time slot offset is the time slot offset between the time slot where the physical downlink control channel is located and the time slot where the physical uplink shared channel scheduled by the physical downlink control channel is located;
  • Feedback information is carried on the physical uplink control channel
  • Data transmitted according to the second time slot offset is carried on the physical uplink shared channel.
  • the first downlink control information includes a timing indication field from the physical downlink shared channel to hybrid automatic repeat request feedback, and/or a device type differentiation field;
  • the second downlink control information includes a time domain resource allocation field.
  • the number of bits corresponding to the timing indication field of the physical downlink shared channel to hybrid automatic repeat request feedback is a positive integer greater than or equal to 3;
  • the number of bits corresponding to the time domain resource allocation field is a positive integer greater than or equal to 4.
  • the device type distinction field is used to specify the terminal type to which the first downlink control information applies;
  • any bit corresponding to the timing indication field of the physical downlink shared channel to hybrid automatic repeat request feedback satisfies: different bit values of the device type distinction field are different, and/or the physical downlink shared channel to hybrid automatic repeat request feedback
  • the corresponding fields in the specific radio resource control information corresponding to the timing indication field are different, and the bit values are different.
  • the first time slot offset includes at least one of the following: the sum of the specific time slot offset corresponding to the timing indication field of the hybrid automatic repeat request feedback from the physical downlink shared channel and the first prestored time slot offset, The physical downlink shared channel to the specific time slot offset corresponding to the timing indication field of the hybrid automatic repeat request feedback, the device type distinction field in the first downlink control information and/or the physical downlink shared channel to The specific time slot offset corresponding to the timing indication field of the hybrid automatic repeat request feedback, and the third time slot offset in the specific radio resource control information corresponding to the timing indication field of the hybrid automatic repeat request feedback from the physical downlink shared channel .
  • the second time slot offset includes at least one of the following: the sum of the specific time slot offset corresponding to the time domain resource allocation field and the second prestored time slot offset, and the specific time slot offset in the specific table corresponding to the time domain resource allocation field.
  • Slot offset, the specific time slot offset is related to the third pre-stored time slot offset, the specific time slot offset in the specific table corresponding to the time domain resource allocation field, and the specific radio resource control information corresponding to the time domain resource allocation field.
  • the fourth slot offset in .
  • the data transmission device provided by the embodiments of the present application can execute the technical solutions shown in the above method embodiments.
  • the implementation principles and beneficial effects are similar and will not be described again here.
  • Figure 15 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 150 in this embodiment may be the terminal device (or a component that can be used for the terminal device) or a network device (or a component that can be used for the network device) mentioned in the previous method embodiment.
  • the communication device 150 may be used to implement the method corresponding to the terminal device or network device described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • the communication device 150 may include one or more processors 151, which may also be called a processing unit, and may implement certain control or processing functions.
  • the processor 151 may be a general-purpose processor or a special-purpose processor, or the like. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication equipment, execute software programs, and process data of software programs.
  • the processor 151 may also store instructions 153 or data (eg, intermediate data).
  • the instruction 153 can be executed by the processor 151, so that the communication device 150 performs the method corresponding to the terminal device or network device described in the above method embodiment.
  • the communication device 150 may include a circuit, which may implement the sending or The function of receiving or communicating.
  • the communication device 150 may include one or more memories 152, on which instructions 154 may be stored, and the instructions may be executed on the processor 151, so that the communication device 150 executes the method described in the above method embodiment.
  • data may also be stored in the memory 152 .
  • the processor 151 and the memory 152 can be provided separately or integrated together.
  • communication device 150 may also include a transceiver 155 and/or an antenna 156.
  • the processor 151 may be called a processing unit and controls the communication device 150 (terminal device or core network device or radio access network device).
  • the transceiver 155 may be called a transceiver unit, a transceiver, a transceiver circuit, a transceiver, etc., and is used to implement the transceiver function of the communication device 150 .
  • the transceiver 155 may receive the configuration information and receive the paging advance indication at the listening opportunity indicated by the configuration information. For example, the transceiver 155 may obtain at least one paging advance indication parameter, the processor 151 determines the monitoring timing of the paging advance indication based on the paging advance indication parameter, and the transceiver 155 receives the paging advance indication based on the monitoring timing.
  • the specific implementation process of the processor 151 and the transceiver 155 can be referred to the relevant descriptions of the above embodiments, and will not be described again here.
  • the transceiver 155 may send configuration information, and the paging indicated in the configuration information may be used to monitor the listening timing in advance. , sending a paging advance indication, which is used to indicate whether there is a paging message in at least one paging opportunity.
  • the specific implementation process of the processor 151 and the transceiver 155 can be referred to the relevant descriptions of the above embodiments, and will not be described again here.
  • the processor 151 and transceiver 155 described in this application can be implemented in IC (Integrated Circuit, integrated circuit), analog integrated circuit, RFIC (Radio Frequency Integrated Circuit, radio frequency integrated circuit), mixed signal integrated circuit, ASIC (Application Specific Integrated Circuit, application specific integrated circuit), PCB (Printed Circuit Board, printed circuit board), electronic equipment, etc.
  • IC Integrated Circuit, integrated circuit
  • RFIC Radio Frequency Integrated Circuit, radio frequency integrated circuit
  • mixed signal integrated circuit aSIC (Application Specific Integrated Circuit, application specific integrated circuit)
  • ASIC Application Specific Integrated Circuit, application specific integrated circuit
  • PCB Print Circuit Board, printed circuit board
  • electronic equipment etc.
  • the processor 151 and the transceiver 155 can also be manufactured using various integrated circuit process technologies, such as CMOS (Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor), NMOS (N Metal-Oxide-Semiconductor, N-type metal oxide semiconductor) ), PMOS (Positive channel Metal Oxide Semiconductor, P-type metal oxide semiconductor), BJT (Bipolar Junction Transistor, bipolar junction transistor), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs) wait.
  • CMOS Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor
  • NMOS N Metal-Oxide-Semiconductor, N-type metal oxide semiconductor
  • PMOS Positive channel Metal Oxide Semiconductor, P-type metal oxide semiconductor
  • BJT Bipolar Junction Transistor, bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • the communication device may be a terminal device or a network device (such as a base station).
  • the terminal device may be implemented in various forms.
  • the terminal devices described in this application may include mobile phones, tablet computers, notebook computers, PDAs, personal digital assistants (Personal Digital Assistant, PDA), portable media players (Portable Media Player, PMP), navigation devices, Mobile terminals such as wearable devices, smart bracelets, and pedometers, as well as fixed terminals such as digital TVs and desktop computers.
  • the communication device is described by taking a terminal device or a network device as an example, the scope of the communication device described in this application is not limited to the above-mentioned terminal device or network device, and the structure of the communication device may not be limited to Limitations of Figure 15.
  • the communication device may be a stand-alone device or may be part of a larger device.
  • An embodiment of the present application also provides a terminal device.
  • the terminal device includes: a memory and a processor; wherein a computer program is stored on the memory, and when the computer program is executed by the processor, the steps of the processing method in any of the above embodiments are implemented.
  • An embodiment of the present application also provides a network device.
  • the network device includes: a memory and a processor; wherein a computer program is stored on the memory, and when the computer program is executed by the processor, the steps of the processing method in any of the above embodiments are implemented.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • a computer program is stored on the storage medium.
  • the computer program is executed by a processor, the steps of the processing method in any of the above embodiments are implemented.
  • Embodiments of the present application also provide a computer program product.
  • the computer program product includes computer program code.
  • the computer program code When the computer program code is run on a computer, it causes the computer to execute the methods in the above various possible implementations.
  • Embodiments of the present application also provide a chip, which includes a memory and a processor.
  • the memory is used to store a computer program.
  • the processor is used to call and run the computer program from the memory, so that the device equipped with the chip executes the above various possible implementations. Methods.
  • the units in the equipment of the embodiments of this application can be merged, divided, and deleted according to actual needs.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or that contributes to the existing technology.
  • the computer software product is stored in one of the above storage media (such as ROM/RAM, magnetic disk, optical disk), including several instructions to cause a terminal device (which can be a mobile phone, a computer, a server, a controlled terminal, or a network device, etc.) to execute the method of each embodiment of the present application.
  • a computer program product includes one or more computer instructions.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, e.g., computer instructions may be transmitted from a website, computer, server or data center via a wired link (e.g.
  • Coaxial cable, optical fiber, digital subscriber line) or wireless means to transmit to another website, computer, server or data center.
  • Computer-readable storage media can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or other integrated media that contains one or more available media. Available media may be magnetic media (e.g., floppy disks, memory disks, magnetic tapes), optical media (e.g., DVDs), Or semiconductor media (such as Solid State Disk (SSD)), etc.
  • SSD Solid State Disk

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种数据传输方法、通信设备及存储介质,该方法包括:根据控制信息,确定第一时隙偏移和第二时隙偏移;根据第一时隙偏移发送反馈信息及根据第二时隙偏移进行数据传输。本申请方案可用于解决由于物理下行链路共享信道和或物理上行链路共享信道执行宽松处理而导致的ACK/NACK反馈和或物理上行业务传输时间不足的问题。

Description

数据传输方法、通信设备及存储介质
本申请要求于2022年05月05日提交中国专利局、申请号为202210478249.8、申请名称为“数据传输方法、通信设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术,具体涉及一种数据传输方法、通信设备及存储介质。
背景技术
在新无线电(New Radio,NR)中,UE的处理时间(UE processing time)包括物理下行链路共享信道(physical downlink shared channel,简称PDSCH)的解码时间和物理上行链路共享信道(physical uplink shared channel,简称PUSCH)的准备时间。
在构思及实现本申请过程中,发明人发现至少存在如下问题:若PDSCH解码时间延长,但反馈PDSCH接收状态的物理上行链路控制信道(physical uplink control channel,简称PUCCH)发送的时间仍按照现有协议确定时,会出现在进行确认(acknowledgement,简称ACK)或否定(negative acknowledgement,简称NACK)确认发送的时刻尚未完成物理下行链路共享信道的接收的场景,进而导致ACK/NACK反馈无效。同理,若物理上行链路共享信道(PUSCH)的准备时间延长,而物理下行链路控制信道(physical downlink control channel,简称PDCCH))所在的时隙与由其调度的PUSCH所在的时隙之间的时隙偏移不变时,会出现UE尚未完成PUSCH的准备而需要进行PUSCH数据传输的场景,这会导致PUSCH发送无效。
前面的叙述在于提供一般的背景信息,并不一定构成现有技术。
发明内容
本申请提供一种数据传输方法、通信设备及存储介质,以解决上述技术问题。
第一方面,本申请提供一种数据传输方法,可应用于终端设备(如手机),包括以下步骤:
S2、根据控制信息,确定第一时隙偏移和第二时隙偏移;
S3、根据所述第一时隙偏移发送反馈信息及根据所述第二时隙偏移进行数据传输。
可选地,所述方法还包括以下至少一项:
所述控制信息包括以下至少一项:用于调度下行传输的第一下行链路控制信息、用于调度上行传输的第二下行链路控制信息、无线资源控制信息;
所述第一时隙偏移为物理下行链路共享信道所在的时隙与携带其对应的反馈信息的物理上行链路控制信道所在的时隙之间的时隙偏移;
所述第二时隙偏移为物理下行链路控制信道所在的时隙与由物理下行链路控制信道调度的物理上行链路共享信道所在的时隙之间的时隙偏移;
所述反馈信息承载在物理上行链路控制信道;
所述数据传输承载在物理上行链路共享信道。
可选地,所述方法还包括以下至少一种:
所述第一下行链路控制信息包括物理下行链路共享信道到混合自动重传请求反馈 的定时指示字段,和/或,设备类型区分字段;
所述第二下行链路控制信息包括时域资源分配字段。
可选地,所述方法还包括以下至少一项:
所述物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的比特数为大于或等于3的正整数;
所述时域资源分配字段对应的比特数为大于或等于4的正整数;
所述设备类型区分字段用于指定所述第一下行链路控制信息适用的终端类型;
所述物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的任一比特满足:所述设备类型区分字段不同所述比特取值不同,和/或所述物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定无线资源控制信息中对应的字段不同,所述比特取值不同。
可选地,在所述S2步骤之前,还包括步骤:
S1、接收控制信息。
可选地,所述方法还包括以下至少一项:
预存第一时隙偏移表,所述第一时隙偏移表中包括至少一个第一预存时隙偏移;
预存第二时隙偏移表,所述第二时隙偏移表中包括至少一个第二预存时隙偏移;
预存第三时隙偏移表,所述第三时隙偏移表中包括至少一个第三预存时隙偏移。
可选地,所述第一时隙偏移,包括以下至少一项:
物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定时隙偏移和第一预存时隙偏移量的加和;
所述物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定时隙偏移;
第一下行链路控制信息中设备类型区分字段和/或物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定时隙偏移;
所述物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定资源无线控制信息中的第三时隙偏移。
可选地,所述第二时隙偏移,包括以下至少一项:
时域资源分配字段对应的特定时隙偏移和第二预存时隙偏移的加和;
所述时域资源分配字段对应的特定表格中的特定时隙偏移,所述特定时隙偏移与第三预存时隙偏移相关;
所述时域资源分配字段对应的特定表格中的特定时隙偏移;
所述时域资源分配字段对应的特定无线资源控制信息中的第四时隙偏移。
可选地,所述根据所述第一时隙偏移发送反馈信息,包括:
根据所述第一时隙偏移,确定发送携带ACK/NACK信息的物理上行链路控制信道的第一发送时刻;
根据所述第一发送时刻,发送携带ACK/NACK信息的物理上行链路控制信道。
可选地,所述根据所述第二时隙偏移进行数据传输,包括:
根据所述第二时隙偏移,确定进行物理上行链路共享信道的数据传输的第二发送时刻;
根据所述第二发送时刻进行物理上行链路共享信道的数据传输。
第二方面,本申请提供一种数据传输方法,可应用于终端设备(如手机),所述方法包括以下步骤:
S100:确定预设参数;
S200:根据预设参数发送反馈信息及进行数据传输。
可选地,所述预设参数包括以下至少一项:
物理下行链路共享信道到混合自动重传请求反馈的定时指示字段,和/或,设备类型区分字段;
时域资源分配字段。
可选地,所述预设参数的确定方式,包括:
根据控制信息确定预设参数。
可选地,所述控制信息包括以下至少一项:
用于调度下行传输的第一下行链路控制信息;
用于调度上行传输的第二下行链路控制信息;
无线资源控制信息。
可选地,所述方法还包括以下至少一项:
所述反馈信息承载在物理上行链路控制信道;
所述数据传输承载在物理上行链路共享信道。
可选地,所述S200步骤包括:
根据所述预设参数确定第一时隙偏移和第二时隙偏移,根据所述第一时隙偏移发送反馈信息及根据所述第二时隙偏移进行数据传输。
可选地,所述方法还包括以下至少一项:
所述第一时隙偏移为物理下行链路共享信道所在的时隙与携带其对应的反馈信息的物理上行链路控制信道所在的时隙之间的时隙偏移;
所述第二时隙偏移为物理下行链路控制信道所在的时隙与由物理下行链路控制信道调度的物理上行链路共享信道所在的时隙之间的时隙偏移;
所述根据所述第一时隙偏移发送反馈信息,包括:根据所述第一时隙偏移,确定发送携带ACK/NACK信息的物理上行链路控制信道的第一发送时刻,根据所述第一发送时刻,发送携带ACK/NACK信息的物理上行链路控制信道;
所述根据所述第二时隙偏移进行数据传输,包括:根据所述第二时隙偏移,确定进行物理上行链路共享信道的数据传输的第二发送时刻,根据所述第二发送时刻进行物理上行链路共享信道的数据传输。
可选地,所述方法还包括以下至少一项:
所述物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的比特数为大于或等于3的正整数;
时域资源分配字段对应的比特数为大于或等于4的正整数;
设备类型区分字段用于指定第一下行链路控制信息适用的终端类型;
所述物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的任一比特满足:设备类型区分字段不同所述比特取值不同,和/或所述物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定无线资源控制信息中对应的字段不同,所述比特取值不同。
可选地,所述方法还包括以下至少一项:
预存第一时隙偏移表,所述第一时隙偏移表中包括至少一个第一预存时隙偏移;
预存第二时隙偏移表,所述第二时隙偏移表中包括至少一个第二预存时隙偏移;
预存第三时隙偏移表,所述第三时隙偏移表中包括至少一个第三预存时隙偏移。
可选地,所述第一时隙偏移,包括以下至少一项:
物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定时隙偏移和第一预存时隙偏移量的加和;
所述物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定 时隙偏移;
第一下行链路控制信息中设备类型区分字段和/或物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定时隙偏移;
物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定无线资源控制信息中的第三时隙偏移。
可选地,所述第二时隙偏移,包括以下至少一项:
时域资源分配字段对应的特定时隙偏移和第二预存时隙偏移的加和;
所述时域资源分配字段对应的特定表格中的特定时隙偏移,所述特定时隙偏移与第三预存时隙偏移相关;
所述时域资源分配字段对应的特定表格中的特定时隙偏移;
所述时域资源分配字段对应的特定无线资源控制信息中的第四时隙偏移。
第三方面,本申请提供一种数据传输方法,可应用于网络设备(如基站),所述方法包括以下步骤:
S11、发送用于确定预设参数的控制信息;
S12、接收根据所述预设参数传输的数据。
可选地,所述方法还包括以下至少一项:
所述预设参数包括第一时隙偏移和/或第二时隙偏移;
所述控制信息包括以下至少一项:用于调度下行传输的第一下行链路控制信息、用于调度上行传输的第二下行链路控制信息、无线资源控制信息;
可选地,所述S12步骤包括以下至少一项:
接收根据所述第一时隙偏移发送的反馈信息;
接收根据所述第二时隙偏移传输的数据。
可选地,所述方法还包括以下至少一项:
所述第一时隙偏移为物理下行链路共享信道所在的时隙与携带其对应的反馈信息的物理上行链路控制信道所在的时隙之间的时隙偏移;
所述第二时隙偏移为物理下行链路控制信道所在的时隙与由物理下行链路控制信道调度的物理上行链路共享信道所在的时隙之间的时隙偏移;
所述反馈信息承载在物理上行链路控制信道;
根据所述第二时隙偏移传输的数据承载在物理上行链路共享信道。
可选地,所述方法还包括以下至少一种:
所述第一下行链路控制信息包括物理下行链路共享信道到混合自动重传请求反馈的定时指示字段,和/或,设备类型区分字段;
所述第二下行链路控制信息包括时域资源分配字段。
可选地,所述方法还包括以下至少一项:
所述物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的比特数为大于或等于3的正整数;
所述时域资源分配字段对应的比特数为大于或等于4的正整数;
所述设备类型区分字段用于指定所述第一下行链路控制信息适用的终端类型;
所述物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的任一比特满足:所述设备类型区分字段不同所述比特取值不同,和/或所述物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定无线资源控制信息中对应的字段不同,所述比特取值不同。
可选地,所述方法还包括以下至少一项:
所述第一时隙偏移,包括以下至少一项:物理下行链路共享信道到混合自动重传 请求反馈的定时指示字段对应的特定时隙偏移和第一预存时隙偏移量的加和、所述物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定时隙偏移、第一下行链路控制信息中设备类型区分字段和/或物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定时隙偏移、物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定无线资源控制信息中的第三时隙偏移;
所述第二时隙偏移,包括以下至少一项:第一时域资源分配字段对应的第五特定时隙偏移和第二预存时隙偏移的加和、第二时域资源分配字段对应的特定表格中的第六特定时隙偏移,所述第六特定时隙偏移与第三预存时隙偏移相关、第三时域资源分配字段对应的特定表格中的第七特定时隙偏移、第四时域资源分配字段对应的特定无线资源控制信息中的第四时隙偏移。
第四方面,本申请提供一种数据传输装置,包括:
确定模块,用于根据控制信息,确定第一时隙偏移和第二时隙偏移;
传输模块,用于根据所述第一时隙偏移发送反馈信息及根据所述第二时隙偏移进行数据传输。
第五方面,本申请提供一种数据传输装置,包括:
确定模块,用于确定预设参数;
传输模块,用于根据预设参数发送反馈信息及进行数据传输。
第六方面,本申请提供一种数据传输装置,包括:
发送模块,用于发送用于确定预设参数的控制信息;
接收模块,用于接收根据所述预设参数传输的数据。
第七方面,本申请提供一种通信设备,包括:存储器和处理器;
所述存储器用于存储程序指令;
所述处理器用于调用所述存储器中的程序指令以执行如第一方面至第三方面中任一项所述的数据传输方法。
第八方面,本申请提供一种计算机可读存储介质,所述存储介质上存储有计算机程序;所述计算机程序被执行时,实现如第一方面至第三方面中任一项所述的数据传输方法。
本申请提供的数据传输方法、通信设备及存储介质,终端设备接收网络设备发送的控制信息,终端设备根据控制信息,确定用于反馈ACK/NACK的物理上行链路控制信道发送的第一时隙偏移和用于物理上行链路共享信道发送的第二时隙偏移。确定的第一时隙偏移可确保PDSCH处理时间延长场景下反馈信息的有效发送,确定的第二时隙偏移可确保PUSCH准备时间延长场景下PUSCH的有效发送。本申请通过特定的控制信息能够有效的确定合理的第一时隙偏移和第二时隙偏移,使得终端在发送反馈信息时,已处理完PDSCH,和/或在传输PUSCH时,已完成带宽切换等发送PUSCH的准备处理。如此,便可避免终端设备发送无效的反馈信息,或者,传输无效的数据。本申请的技术方案能够有效地保证反馈信息和或上行数据信息的有效传输。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种终端设备的硬件结构示意图;
图2为本申请实施例提供的一种通信网络系统架构图;
图3A为本申请实施例提供的一种基于PDSCH处理时间的时隙示意图;
图3B为本申请实施例提供的一种基于PUSCH的准备时间的时隙示意图;
图4为本申请实施例提供的数据传输方法的信令交互示意图一;
图5为本申请实施例提供的数据传输方法的信令交互示意图二;
图6为本申请实施例提供的一种数据传输的时隙示意图一;
图7为本申请实施例提供的一种数据传输的时隙示意图二;
图8为本申请实施例提供的一种数据传输的时隙示意图三;
图9为本申请实施例提供的一种数据传输的时隙示意图四;
图10为本申请实施例提供的一种数据传输的时隙示意图五;
图11为本申请实施例提供的数据传输方法的信令交互示意图三;
图12为本申请实施例提供的数据传输装置的结构示意图一;
图13为本申请实施例提供的数据传输装置的结构示意图二;
图14为本申请实施例提供的数据传输装置的结构示意图三;
图15为本申请实施例提供的通信设备的结构示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素,此外,本申请不同实施例中具有同样命名的部件、特征、要素可能具有相同含义,也可能具有不同含义,其具体含义需以其在该具体实施例中的解释或者进一步结合该具体实施例中上下文进行确定。
应当理解,尽管在本文可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本文范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语"如果"可以被解释成为"在……时"或"当……时"或"响应于确定"。再者,如同在本文中所使用的,单数形式“一”、“一个”和“该”旨在也包括复数形式,除非上下文中有相反的指示。应当进一步理解,术语“包含”、“包括”表明存在所述的特征、步骤、操作、元件、组件、项目、种类、和/或组,但不排除一个或多个其他特征、步骤、操作、元件、组件、项目、种 类、和/或组的存在、出现或添加。本申请使用的术语“或”、“和/或”、“包括以下至少一个”等可被解释为包括性的,或意味着任一个或任何组合。例如,“包括以下至少一个:A、B、C”意味着“以下任一个:A;B;C;A和B;A和C;B和C;A和B和C”,再如,“A、B或C”或者“A、B和/或C”意味着“以下任一个:A;B;C;A和B;A和C;B和C;A和B和C”。仅当元件、功能、步骤或操作的组合在某些方式下内在地互相排斥时,才会出现该定义的例外。
应该理解的是,虽然本申请实施例中的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
取决于语境,如在此所使用的词语“如果”、“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
需要说明的是,在本文中,采用了诸如S1、S2等步骤代号,其目的是为了更清楚简要地表述相应内容,不构成顺序上的实质性限制,本领域技术人员在具体实施时,可能会先执行S2后执行S1等,但这些均应在本申请的保护范围之内。
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或者“单元”的后缀仅为了有利于本申请的说明,其本身没有特定的意义。因此,“模块”、“部件”或者“单元”可以混合地使用。
本申请中的通信设备,可以是终端设备(如手机),也可以是网络设备(如基站),具体所指需要结合上下文加以确定。
终端设备可以以各种形式来实施。例如,本申请中描述的终端设备可以包括诸如手机、平板电脑、笔记本电脑、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、便捷式媒体播放器(Portable Media Player,PMP)、导航装置、可穿戴设备、智能手环、计步器等智能终端,以及诸如数字TV、台式计算机等固定终端。
本领域技术人员将理解的是,除了特别用于移动目的的元件之外,根据本申请的实施方式的构造也能够应用于固定类型的终端。
请参阅图1,其为实现本申请各个实施例的一种终端设备的硬件结构示意图,该终端设备100可以包括:RF(Radio Frequency,射频)单元101、WiFi模块102、音频输出单元103、A/V(音频/视频)输入单元104、传感器105、显示单元106、用户输入单元107、接口单元108、存储器109、处理器110、以及电源111等部件。本领域技术人员可以理解,图1中示出的终端设备结构并不构成对终端设备的限定,终端设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图1对终端设备的各个部件进行具体的介绍:
射频单元101可用于收发信息或通话过程中,信号的接收和发送,可选地,将基站的下行信息接收后,给处理器110处理;另外,将上行的数据发送给基站。通常,射频单元101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元101还可以通过无线通信与网络和其他设备通信。上 述无线通信可以使用任一通信标准或协议,包括但不限于GSM(Global System of Mobile communication,全球移动通讯系统)、GPRS(General Packet Radio Service,通用分组无线服务)、CDMA2000(Code Division Multiple Access 2000,码分多址2000)、WCDMA(Wideband Code Division Multiple Access,宽带码分多址)、TD-SCDMA(Time Division-Synchronous Code Division Multiple Access,时分同步码分多址)、FDD-LTE(Frequency Division Duplexing-Long Term Evolution,频分双工长期演进)、TDD-LTE(Time Division Duplexing-Long Term Evolution,分时双工长期演进)和5G等。
WiFi属于短距离无线传输技术,终端设备通过WiFi模块102可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图1示出了WiFi模块102,但是可以理解的是,其并不属于终端设备的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
音频输出单元103可以在终端设备100处于呼叫信号接收模式、通话模式、记录模式、语音识别模式、广播接收模式等等模式下时,将射频单元101或WiFi模块102接收的或者在存储器109中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元103还可以提供与终端设备100执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元103可以包括扬声器、蜂鸣器等等。
A/V输入单元104用于接收音频或视频信号。A/V输入单元104可以包括图形处理器(Graphics Processing Unit,GPU)1041和麦克风1042,图形处理器1041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元106上。经图形处理器1041处理后的图像帧可以存储在存储器109(或其它存储介质)中或者经由射频单元101或WiFi模块102进行发送。麦克风1042可以在电话通话模式、记录模式、语音识别模式等等运行模式中经由麦克风1042接收声音(音频数据),并且能够将这样的声音处理为音频数据。处理后的音频(语音)数据可以在电话通话模式的情况下转换为可经由射频单元101发送到移动通信基站的格式输出。麦克风1042可以实施各种类型的噪声消除(或抑制)算法以消除(或抑制)在接收和发送音频信号的过程中产生的噪声或者干扰。
终端设备100还包括至少一种传感器105,比如光传感器、运动传感器以及其他传感器。可选地,光传感器包括环境光传感器及接近传感器,可选地,环境光传感器可根据环境光线的明暗来调节显示面板1061的亮度,接近传感器可在终端设备100移动到耳边时,关闭显示面板1061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
显示单元106用于显示由用户输入的信息或提供给用户的信息。显示单元106可包括显示面板1061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1061。
用户输入单元107可用于接收输入的数字或字符信息,以及产生与终端设备的用户设置以及功能控制有关的键信号输入。可选地,用户输入单元107可包括触控面板1071以及其他输入设备1072。触控面板1071,也称为触摸屏,可收集用户在其上或 附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1071上或在触控面板1071附近的操作),并根据预先设定的程式驱动相应的连接装置。触控面板1071可包括触摸检测装置和触摸控制器两个部分。可选地,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器110,并能接收处理器110发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1071。除了触控面板1071,用户输入单元107还可以包括其他输入设备1072。可选地,其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种,具体此处不做限定。
可选地,触控面板1071可覆盖显示面板1061,当触控面板1071检测到在其上或附近的触摸操作后,传送给处理器110以确定触摸事件的类型,随后处理器110根据触摸事件的类型在显示面板1061上提供相应的视觉输出。虽然在图1中,触控面板1071与显示面板1061是作为两个独立的部件来实现终端设备的输入和输出功能,但是在某些实施例中,可以将触控面板1071与显示面板1061集成而实现终端设备的输入和输出功能,具体此处不做限定。
接口单元108用作至少一个外部装置与终端设备100连接可以通过的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元108可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端设备100内的一个或多个元件或者可以用于在终端设备100和外部装置之间传输数据。
存储器109可用于存储软件程序以及各种数据。存储器109可主要包括存储程序区和存储数据区,可选地,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器109可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器110是终端设备的控制中心,利用各种接口和线路连接整个终端设备的各个部分,通过运行或执行存储在存储器109内的软件程序和/或模块,以及调用存储在存储器109内的数据,执行终端设备的各种功能和处理数据,从而对终端设备进行整体监控。处理器110可包括一个或多个处理单元;优选的,处理器110可集成应用处理器和调制解调处理器,可选地,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器110中。
终端设备100还可以包括给各个部件供电的电源111(比如电池),优选的,电源111可以通过电源管理系统与处理器110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
尽管图1未示出,终端设备100还可以包括蓝牙模块等,在此不再赘述。
为了便于理解本申请实施例,下面对本申请的终端设备所基于的通信网络系统进行描述。
请参阅图2,图2为本申请实施例提供的一种通信网络系统架构图,该通信网络系统为通用移动通信技术的LTE系统,该LTE系统包括依次通讯连接的UE(User Equipment,用户设备)201,E-UTRAN(Evolved UMTS Terrestrial Radio Access Network, 演进式UMTS陆地无线接入网)202,EPC(Evolved Packet Core,演进式分组核心网)203和运营商的IP业务204。
可选地,UE201可以是上述终端设备100,此处不再赘述。
E-UTRAN202包括eNodeB2021和其它eNodeB2022等。可选地,eNodeB2021可以通过回程(backhaul)(例如X2接口)与其它eNodeB2022连接,eNodeB2021连接到EPC203,eNodeB2021可以提供UE 201到EPC 203的接入。
EPC203可以包括MME(Mobility Management Entity,移动性管理实体)2031,HSS(Home Subscriber Server,归属用户服务器)2032,其它MME2033,SGW(Serving Gate Way,服务网关)2034,PGW(PDN Gate Way,分组数据网络网关)2035和PCRF(Policy and Charging Rules Function,政策和资费功能实体)2036等。可选地,MME2031是处理UE201和EPC203之间信令的控制节点,提供承载和连接管理。HSS2032用于提供一些寄存器来管理诸如归属位置寄存器(图中未示)之类的功能,并且保存有一些有关服务特征、数据速率等用户专用的信息。所有用户数据都可以通过SGW2034进行发送,PGW2035可以提供UE201的IP地址分配以及其它功能,PCRF2036是业务数据流和IP承载资源的策略与计费控制策略决策点,它为策略与计费执行功能单元(图中未示)选择及提供可用的策略和计费控制决策。
IP业务204可以包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)或其它IP业务等。
虽然上述以LTE系统为例进行了介绍,但本领域技术人员应当知晓,本申请不仅仅适用于LTE系统,也可以适用于其他无线通信系统,例如GSM、CDMA2000、WCDMA、TD-SCDMA以及未来新的网络系统(如5G)等,此处不做限定。
图3A为本申请实施例提供的一种基于PDSCH处理时间的时隙示意图。使用Tproc,1=(N1+d1,1+d2)(2048+144)·K2·Tc+Text表示PDSCH的处理时间,N1表示PDSCH所需的解码时间,K1表示PDSCH所在的时隙与携带其ACK/NACK反馈信息的PUCCH所在的时隙之间的时隙偏移。可以理解的是,若在时隙n接收PDSCH,则需在时隙n+K1发送携带ACK/NACK反馈信息的PUCCH。对于轻型能力设备,即Redcap UE,由于其对时延的要求不高,可以放宽其PDSCH解码时间N1,此场景下,如果按照现有协议规定的调度进行ACK/NACK反馈,则可能出现未处理完接收到的PDSCH,但却要求终端发送携带其对应ACK/NACK的PUCCH的问题,即出现ACK/NACK反馈无效的场景。
图3B为本申请实施例提供一种基于PUSCH的准备时间的时隙示意图。当由下行链路控制信息(Downlink control information,简称DCI)调度PUSCH时,使用Tproc,2=max((N2+d2,1+d2)(2048+144)·K2·Tc+Text+Tswitch,d2,2)表示上行授权UL grant所在的PDCCH到PUSCH的处理时间,N2表示与UE能力有关的PUSCH的准备时间,K2表示PDCCH所在的时隙与其所调度的PUSCH所在的时隙之间的偏移。可以理解的是,若在时隙n接收用于上行调度的下行链路控制信息(Downlink control information,简称,DCI),则需在时隙n+K2发送PUSCH。对于轻型能力设备,即Redcap UE,由于其对时延的要求不高,可以放宽其PUSCH的准备时间,即延长PUSCH的准备时间N2,此场景下,若按照现有协议进行PUSCH的调度传输,则可能出现带宽正在切换或其他业务正在进行时进行PUSCH传输,而使得PUSCH无法传输,出现PUSCH无效传输的场景。
可选地,当随机接入响应(Random access Response,简称RAR)或者回退随机接入响应(fallback RAR)调度PUSCH时,使用NT,1+NT,2+0.5取代图3B中Tproc,2表示UL grant到PUSCH的处理时间,其中,NT,1对应UE处理能力1的PDSCH的解码时间为N1个符号持续时间长度,NT,2对应UE处理能力1的PUSCH的准备时间为N2个符号持续 时间长度。对于轻型能力设备,即Redcap UE,由于其对时延的要求不高,可以放宽其PUSCH的准备时间,即延长PUSCH的准备时间N2,此场景下,若按照现有协议进行PUSCH的调度传输,则可能出现带宽正在切换或其他业务正在进行时进行PUSCH传输,而使得PUSCH无法传输,出现PUSCH无效传输的场景。
基于上述技术问题,本申请实施例提供一种数据传输的方案,以确保反馈信息和/或PUSCH的有效传输。
基于上述终端设备硬件结构以及通信网络系统,提出本申请各个实施例。
图4为本申请实施例提供的数据传输方法的信令交互示意图一,如图4所示,该方法可以为:
S41,网络设备发送控制信息。
网络设备可以为基站eNB、gNB核心网设备、发射接收节点(Transmission and Reception Point,TRP)中继站或接入点等。网络设备通过物理下行链路控制信道将控制信息发送给终端。
可选地,网络设备发送的控制信息中包括用于调度下行传输的第一下行链路控制信息、用于调度上行传输的第二下行链路控制信息、无线资源控制信息(Radio Resource Control,简称RRC)、媒体接入控制(Medium Access Control,简称MAC)信息中的至少一项。
可选地,RAR或fallback RAR位于MAC消息中,且由物理下行链路共享信道承载。
S42,终端设备接收控制信息。
在网络设备向终端设备发送控制信息后,终端设备可以接收控制信息。
可选地,用于调度下行传输的第一下行链路控制信息中至少包括物理下行链路共享信道到混合自动重传请求反馈的定时指示字段,和/或,设备类型区分字段。
可选地,第一下行链路控制信息可能是DCI format 1_1或DCI format 1_0或其他新增的适用于Redcap的新增下行DCI format。
可选地,第一下行链路控制信息中的设备类型区分字段为第一下行链路控制信息中的新增字段type indication。
S43,终端设备根据控制信息,确定第一时隙偏移。
可选地,第一时隙偏移为物理下行链路共享信道所在的时隙与携带其对应的反馈信息的物理上行链路控制信道所在的时隙之间的时隙偏移,可用于确定携带反馈物理下行链路共享信道ACK/NACK的PUCCH的发送时刻。
下面,对终端设备根据第一下行链路控制信息确定第一时隙偏移的方法进行说明。可以理解的是,第一下行链路控制信息包括的物理下行链路共享信道到混合自动重传请求反馈的定时指示字段可以是第一物理下行链路共享信道到混合自动重传请求反馈的定时指示字段、第二物理下行链路共享信道到混合自动重传请求反馈的定时指示字段、第三物理下行链路共享信道到混合自动重传请求反馈的定时指示字段、第四物理下行链路共享信道到混合自动重传请求反馈的定时指示字段、第五物理下行链路共享信道到混合自动重传请求反馈的定时指示字段。下面对根据第一下行链路控制信息中物理下行链路共享信道到混合自动重传请求反馈的定时指示字段确定第一时隙偏移的方法进行说明。
可选地,根据第一下行链路控制信息中的第一物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的第一特定时隙偏移和第一预存时隙偏移的加和确定第一时隙偏移。第一预存时隙偏移由第一时隙偏移表确定,第一时隙偏移表中包括至少一个第一预存时隙偏移且第一时隙偏移表预先存储在终端设备中。第一物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的第一特定时隙偏移的取 值对应于无线资源控制参数DL-DataToUL-ACK。无限资源控制参数DL-DataToUL-ACK的定义如下:
DL-DataToUL-ACK::=SEQUENCE(SIZE(1..8))OF INTEGER(0,1,....,15)。
可选地,根据第一下行链路控制信息中的第二物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的第二特定时隙偏移,确定第一时隙偏移。第二物理下行链路共享信道到混合自动重传请求反馈的定时指示字段为第一下行链路控制信息中新增的3bit字段。第二物理下行链路共享信道到混合自动重传请求反馈的定时指示字段记为物理下行链路共享信道到混合自动重传请求反馈的定时指示字段,且第二物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的第二特定时隙偏移的取值对应于无限资源控制参数DL-DataToUL-ACK-redcap。无限资源控制参数DL-DataToUL-ACK-redcap的定义如下:
DL-DataToUL-ACK-redcap::=SEQUENCE(SIZE(1..8))OF INTEGER(0,1,....,31)
可选地,根据第一下行链路控制信息中的第三物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的第三特定时隙偏移,确定第一时隙偏移。第三物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的比特数为大于3的正整数。以第三物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的bit数为4举例。4bit第三物理下行链路共享信道到混合自动重传请求反馈的定时指示字段中,bit 0000~bit 0111对应的第三特定时隙偏移的取值范围为{0,1,...,15},即通过第三特定时隙偏移确定的第一时隙偏移仍可用于传统UE的ACK/NACK反馈调度。而bit 1000~bit 1111对应的第三特定时隙偏移的取值范围为{16,....,31},即通过第三特定时隙偏移确定的第一时隙偏移能够满足Redcap UE宽松处理时的ACK/NACK调度需求。根据比特数为大于3的正整数的第三物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的第三特定时隙偏移确定第一时隙偏移,既可以实现传统UE的有效调度,又可以充分容纳Redcap UE用于宽松处理时所需的延长调度时间的调度需求。也就是说,使用具有特定比特数的物理下行链路共享信道到混合自动重传请求反馈的定时指示字段确定第一时隙偏移可以实现Redcap UE和传统UE的兼容共存。
可选地,根据第一下行链路控制信息中的设备类型区分字段和/或第四物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的第四特定时隙偏移确定第一时隙偏移。第一下行链路控制信息中的设备类型区分字段用于区分第一下行链路控制信息应用的终端设备类型为Redcap UE还是传统UE。例如,若设备类型区分字段为1,则当前第一下行链路控制信息用于Redcap UE,和/或,若设备类型区分字段为0,则当前第一下行链路控制信息用于传统UE。第四物理下行链路共享信道到混合自动重传请求反馈的定时指示字段所占的比特数为3,设备类型区分字段不同,第四物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的第四特定时隙偏移不同。例如,若设备类型区分字段指示当前第一下行链路控制信息用于Redcap UE,则第四物理下行链路共享信道到混合自动重传请求反馈的定时指示字段的第四特定时隙偏移的取值范围对应于无线资源控制信息DL-DataToUL-ACK-redcap中的取值范围。换言之,3比特的第四物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的第四特定时隙偏移取值为{0,1,....,31}中的8个值。若当前设备类型区分字段指示当前第一下行链路控制信息用于传统UE,则3比特的第四物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的第四特定时隙偏移的取值范围对应无线资源控制信息DL-DataToUL-ACK中的取值范围。换言之,3比特字段第四物理 下行链路共享信道到混合自动重传请求反馈的定时指示的取值为{0,1,....,15}中的8个值。
可选地,根据第五物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定无线资源控制信息中的第三时隙偏移确定第一时隙偏移。若基站已经识别出当前终端是Redcap UE,则向终端发送的第一下行链路控制信息中的3bit的第五物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应特定无线资源控制信息中的第三时隙偏移,该特定无线资源控制信息为DL-DataToUL-ACK-redcap,定义如下:
DL-DataToUL-ACK-redcap::=SEQUENCE(SIZE(1..8))OF INTEGER(0,1,....,31)
该特定无线资源控制信息中的第三时隙偏移为DL-DataToUL-ACK-redcap给出的取值范围{0,1,....,31}中的任意8个值。通过特定无线资源控制信息为特定类型的终端,例如Redcap UE,重新定义了3bit的物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的时隙偏移的取值,使得无需增加DCI中物理下行链路共享信道到混合自动重传请求反馈的定时指示字段的比特数,通过对DCI字段的重定义确定用于Redcap UE宽松处理场景的有效ACK/NACK反馈时间,有益于传统用户和Redcap UE的兼容。
根据以上确定第一时隙偏移的描述,第一时隙偏移,包括:物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定时隙偏移和第一预存时隙偏移量的加和、所述物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定时隙偏移、第一下行链路控制信息中设备类型区分字段和/或物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定时隙偏移、物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定无线资源控制信息中的第三时隙偏移中的至少一项。可以理解的是,第一时隙偏移中包括的至少一项中的物理下行链路共享信道到混合自动重传请求反馈的定时指示字段可以通过上述第一物理下行链路共享信道到混合自动重传请求反馈的定时指示字段、第二物理下行链路共享信道到混合自动重传请求反馈的定时指示字段、第三物理下行链路共享信道到混合自动重传请求反馈的定时指示字段、第四物理下行链路共享信道到混合自动重传请求反馈的定时指示字段、第五物理下行链路共享信道到混合自动重传请求反馈的定时指示字段中的任一种实现。
S44,终端设备根据第一时隙偏移发送反馈信息。
可选地,终端设备在根据第一时隙偏移发送反馈信息时,可以根据第一时隙偏移,确定发送携带ACK/NACK信息的物理上行链路控制信道的第一发送时刻;根据第一发送时刻,发送携带ACK/NACK信息的物理上行链路控制信道。可选地,反馈信息承载在物理上行链路控制信道。
S45,网络设备接收反馈信息。
可选地,终端设备将承载在物理上行链路控制信道上的反馈信息发送给网络设备之后,网络设备接收该反馈信息。
由此可见,本申请提供的技术方案终端设备可以根据接收到的网络设备发送的控制信息确定第一时隙偏移,根据第一时隙偏移确定发送反馈信息的时刻,使得在发送对应PDSCH的ACK/NACK反馈消息的时刻之前已完成对应PDSCH的处理。通过如上方法确定的第一时隙偏移能够保证PDSCH对应的ACK/NACK的传输的有效完成。
图5为本申请实施例提供的数据传输方法的信令交互示意图二,如图5所示,该方法可以为:
S51,网络设备发送控制信息。
可选地,网络设备发送的控制信息中包括用于调度下行传输的第一下行链路控制信息、用于调度上行传输的第二下行链路控制信息、无线资源控制信息(Radio Resource Control,简称RRC)、媒体接入控制(Medium Access Control,简称MAC)信息中的至少一项。
可选地,RAR或fallback RAR位于MAC消息中,且由物理下行链路共享信道承载。
S52,终端设备接收控制信息。
在网络设备向终端设备发送控制信息后,终端设备可以接收控制信息。
可选地,用于调度上行传输的第二下行链路控制信息中至少包括时域资源分配字段。
可选地,第二下行链路控制信息可能是DCI format 0_1或DCI format 0_0或其他新增的适用于Redcap的新增的上行DCI format。第二下行链路控制信息可用于确定用于进行物理上行链路共享信道的数据传输的第二时隙偏移。
可选地,用于调度上行传输的时域资源分配字段还可以处于RAR或fallback RAR中。
可选地,可以根据RAR或fallback RAR确定用于进行物理上行链路共享信道的数据传输的第二时隙偏移。
S53,终端设备根据控制信息,确定第二时隙偏移。
可选地,当由DCI调度PUSCH时,第二时隙偏移为物理下行链路控制信道所在的时隙与由物理下行链路控制信道调度的物理上行链路共享信道所在的时隙之间的时隙偏移;当由RAR/fall back RAR调度PUSCH时,第二时隙偏移为承载RAR或fallback RAR的物理下行链路共享信道所在的时隙与由RAR或fallback调度的物理上行链路共享信道所在的时隙之间的时隙偏移;换言之,第二时隙偏移可用于确定由物理下行链路控制信道调度的物理上行链路共享信道的发送时刻。终端设备根据第二下行链路控制信息和/或MAC消息中的RAR或fallback RAR确定第二时隙偏移。
下面对终端设备根据第二下行链路控制信息确定第二时隙偏移的方法进行说明。可以理解的是,第二下行链路控制信息中的时域资源分配字段可以是第一时域资源分配字段、第二时域资源分配字段、第三时域资源分配字段、第四时域资源分配字段。下面对根据第二下行链路控制信息中时域资源分配字段确定第二时隙偏移的方法进行说明。
可选地,根据控制信息中的第一时域资源分配字段(Time domain resource assignment)对应的第五特定时隙偏移和第二预存时隙偏移的加和确定数据传输的第二时隙偏移。第二预存时隙偏移由第二时隙偏移表确定。第二时隙偏移表预先存储在终端设备中,且第二时隙偏移表中包括至少一个第二预存时隙偏移。第一时域资源分配字段所占比特数为4,且第一时域资源分配字段(Time domain resource assignment)对应的第五特定时隙偏移由表10、表11和表15确定。
可选地,根据第二时域资源分配字段对应的特定表格中的第六特定时隙偏移确定数据传输的第二时隙偏移,可选地,第六特定时隙偏移与第三预存时隙偏移相关。可选地,第三预存时隙偏移用于确定第二时隙偏移相关的j的取值。
可选地,第三预存时隙偏移所在的第三时隙偏移表参见表1所示。
表1
可选地,可根据表1获取第三预存时隙偏移j的取值,再根据第二时域资源分配字段的取值对应的特定表格(表10和表11)确定的第六特定时隙偏移,进而确定数据传输的第二时隙偏移。
可选地,根据第二下行链路控制信息中的第三时域资源分配字段对应的特定表格中的第七时隙偏移确定数据传输的第二时隙偏移。第三时域资源分配字段的比特数为大于4的正整数。以第三时域资源分配字段的比特数为5举例,第三时域资源分配字段对应的特定表格为表13或表14。第七时隙偏移为第三时域资源分配字段取值对应的特定表格为表13或表14中的具体时隙。
可选地,根据第四时域资源分配字段对应的第二下行链路控制信息中的定义的特定无线资源控制信息中的第四时隙偏移确定第二时隙偏移。
根据以上对确定第二时隙偏移的方法的描述,第二时隙偏移,包括:时域资源分配字段对应的特定时隙偏移和第二预存时隙偏移的加和、时域资源分配字段对应的特定表格中的特定时隙偏移,特定时隙偏移与第三预存时隙偏移相关、时域资源分配字段对应的特定表格中的特定时隙偏移、时域资源分配字段对应的特定无线资源控制信息中的第四时隙偏移中的至少一项。可以理解的是,第二时隙偏移中包括的至少一项中的时域资源分配字段可以通过上述第一时域资源分配字段、第二时域资源分配字段、第三时域资源分配字段、第四时域资源分配字段中的任一种实现。
S54,终端设备根据第二时隙偏移进行数据传输。
可选地,终端设备在根据第二时隙偏移进行数据传输时,可以根据第二时隙偏移,确定进行物理上行链路共享信道的数据传输的第二发送时刻;根据第二发送时刻进行物理上行链路共享信道的数据传输。可选地,数据传输承载在物理上行链路共享信道。
S55,网络设备接收传输的数据。
可选地,终端设备将承载在物理上行链路共享信道上的数据传输给网络设备时,网络设备接收该传输的数据。
本申请提供的技术方案可以根据接收到的网络设备发送的控制信息确定第二时隙偏移,根据第二时隙偏移进行数据传输的时刻。在进行PUSCH发送之前已完成对应PUSCH的准备工作,比如带宽部分已从下行带宽切换到上行带宽,通过如上方法确定的第二时隙偏移能够在合适的上行发送时间和资源内完成上行发送。
上述实施例中对终端设备确定第一时隙偏移和第二时隙偏移的方法进行了简单的描述,以下,将结合具体的例子,对确定第一时隙偏移和第二时隙偏移的方法进行详细的描述。
首先,结合具体实施例,对确定第一时隙偏移进行详细的描述。
可选地,可以根据第一下行链路控制信息中的第一物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的第一特定时隙偏移和第一预存时隙偏移的加和确定第一时隙偏移。第一预存时隙偏移delta1包含在终端设备预存的第一时隙偏移 表,可选地,第一时隙偏移表为表2或表3或表4。事实上,通过此方法确定的第一时隙偏移取值为K1+delta1,可选地,K1为第一下行链路控制信息中的3bit字段第一物理下行链路共享信道到混合自动重传请求反馈的定时指示对应的第一特定时隙偏移,第一物理下行链路共享信道到混合自动重传请求反馈的定时指示对应的RRC参数的取值为:
DL-DataToUL-ACK::=SEQUENCE(SIZE(1..8))OF INTEGER(0,1,....,15)
图6为本申请实施例提供的一种数据传输的时隙示意图一。图6所示的数据传输时隙对应的PDSCH、PUCCH、PDCCH的子载波间隔均为30KHz,若Redcap UE的PDSCH解码时间N1值扩展为传统UE的N1值的2倍,即若传统UE的N1值为10个symbol,则Redcap UE的N1值扩展为20个symbol。若UE处理时间计算公式Tproc,1=(N1+d1,1+d2)(2048+144)·K2·Tc+Text中相关其他其他变量取值不发生改变,则Redcap UE的PDSCH的处理时间相较于传统UE至少增加了10个symbol。假设传统UE的PDSCH处理时间为10symbol,Redcap UE的PDSCH处理时间为20symbol,且第一物理下行链路共享信道到混合自动重传请求反馈的定时指示对应的K1=1个时隙。由于本实施例中传统UE的处理时间为10个符号,所以K1=1个时隙能预留足够的时间给传统UE进行PDSCH处理;但对于Redcap UE,由于其PDSCH处理时间变为20个符号,则1个时隙的偏移后,Redcap UE可能尚未完成PDSCH的接收处理工作,即此时反馈的ACK/NACK是无效的。为了满足Recap UE的宽松的PUSCH的处理需求,可以在终端设备中预存一个第一预存时隙偏移delta1,且根据K1+delta1确定Redcap UE的第一时隙偏移,可选地,delta1由表2或表3或表4获得。事实上,由于PUCCH/PDSCH/PDCCH的子载波间隔为30KHz,即μ=1,则以表2为例,可得delta1=2,进而确定第一时隙偏移为K1+delta1=1+2=3个时隙,显然3个时隙的第一时隙偏移值足以满足Redcap UE的20个符号的宽松PDSCH处理时长的需求。
可选地,第一预存时隙偏移delta1可以仅与子载波间隔有关,而与UE能力无关。以Redcap UE的PDSCH解码时间N1延长为原来的2倍为例,终端设备中预存的第一时隙偏移表参见下述表2所述:
表2
可选地,第一预存时隙偏移delta1可以与UE能力和子载波间隔μ均有关。以PDSCH解码时间N1扩展为原来的2倍为例,Redcap UE中预存的第一时隙偏移表可参见下述表3,表4所示。可选地,表3对应UE能力1,表4对应UE能力2,μ表示PDCCH、PDSCH、PUCCH中的最小子载波间隔。
表3
表4
可选地,上述表2,表3,表4中第一预存时隙偏移delta1的取值至少还需要满足表5的处理时间需求。
表5
上述表5中的公式中,Tproc,1,redcap表示Redcap UE的PDSCH处理时间,Tproc,1,normal表示传统UE的PDSCH处理时间,κ=Ts/Tc,Ts=1/(Δfref·Nf,ref),Tc=1/(Δfmax·Nf),Δfmax=15×103Hz,Nf,ref=2048,Nf=4096。
可选地,通过第一下行链路控制信息中的第三物理下行链路共享信道到混合自动重传请求反馈的定时指示字段确定第一时隙偏移。第三物理下行链路共享信道到混合自动重传请求反馈的定时指示字段的比特数为大于3的正整数。以第三物理下行链路共享信道到混合自动重传请求反馈的定时指示字段所占比特数是4为例,4bit表示中的bit 0000~bit 0111的取值范围为{0,1,...,15},bit 1000~bit 1111的取值范围为{16,....,31},即bit 0000~bit 0111用于保证正常用户的ACK/NACK调度,bit1000~bit 1111用于保证Redcap UE采用宽松PDSCH处理时的ACK/NACK调度。综上所述,第三物理下行链路共享信道到混合自动重传请求反馈的定时指示字段可以实现Redcap UE和传统UE的调度兼容,且可以解决因PDSCH解码时间N1延长导致的调度时间不匹配的问题,保证了发送的ACK/NACK消息的有效性。
图7为本申请实施例提供的一种数据传输的时隙示意图二。图7所示的数据传输时隙对应的PDSCH、PUCCH、PDCCH的子载波间隔均为30KHz,且Redcap UE的PDSCH解码时间N1值扩展为传统UE的N1值的2倍,即若传统UE的N1值为10symbol,则Redcap UE的N1值为20symbol,在UE的PDSCH处理时间计算公式Tproc,1=(N1+d1,1+d2)(2048+144)·K2·Tc+Text中其他变量取值不变的情况下,Redcap UE的PDSCH的处理时间相较于传统UE至少增加了10个symbol。若设传统UE的PDSCH处理时间为206symbol,则Redcap UE的PDSCH处理时间为216symbol,按照现有协议规定的K1的可能取值,K1的取值最大可以为15个时隙。显然,对于传统UE,15个时隙足以满足206个符号的PDSCH处理时长。但对于Redcap UE,由于其PDSCH的处理时长为216个符号,则按照现有协议规定预留的15个时隙的时长不足以满足其PDSCH的宽松处理时长的需求。即15个时隙不能满足216个符号PDSCH处理时长的需求。事实上,若Redcap UE在时隙n开始接收PDSCH,则在时隙n+15时刻时,其尚未完成对于PDSCH业务的接收,即在此时隙反馈的ACK/NACK信息是无效。本实施例中设第三物理下行链路共享信道到混合自动重传请求反馈的定时指示字段的比特数是4,且约定4bit中bit 0000~bit 0111用于满足传统UE的调度偏移,其取值范围为{0,1,....,15},bit 1000~1111用于Redcap UE处理时延较大时的调度偏移,其取值范围可以为{16,17,....,31},则为满足本实施例中Redcap UE的216个符号的处理时间的需求,第三物理下行链路共享信道到混合自动重传请求反馈的定时指示字段的取值对应16个时隙。
可选地,根据第五物理下行链路共享信道到混合自动重传请求反馈的定时指示字 段对应的特定无线资源控制信息中的第三时隙偏移确定第一时隙偏移。可选地,特定无线资源控制信息DL-DataToUL-ACK-redcap定义如下:
DL-DataToUL-ACK-redcap::=SEQUENCE(SIZE(1..8))OF INTEGER(0,1,....,31)
事实上,DL-DataToUL-ACK-redcap的取值范围还可以为{1,2,4,6,8,10,13,16},只要保证取值范围内的最大值可以满足Redcap UE的最长处理时间即可。
假设第五物理下行链路共享信道到混合自动重传请求反馈的定时指示字段的3bit取值为{2,5,9,10,14,16,17,18}。同图7所示实施例,若将Redcap UE的PDSCH解码时间N1值扩展为传统UE的N1值的2倍,且UE处理时间计算公式Tproc,1=(N1+d1,1+d2)(2048+144)·K2·Tc+Text中相关其他变量取值不发生改变的情况下,则Redcap UE的PDSCH的处理时间相较于传统UE至少增加了10个symbol。事实上,若传统UE的PDSCH处理时间为206symbol,则Redcap UE的PDSCH处理时间为216symbol。为满足PDSCH的216个符号的处理时间,物理下行链路共享信道到混合自动重传请求反馈的定时指示的3bit取值可以为‘101’,其对应的偏移为16个时隙。由于16个时隙包含16*14=224个符号,224个符号时长大于216个符号的处理时间,所以对应特定RRC参数DL-DataToUL-ACK-redcap的第五物理下行链路共享信道到混合自动重传请求反馈的定时指示字段取值可满足Redcap UE的宽松处理需求。事实上,若沿用现有协议,由于DL-DataToUL-ACK最大取值为15个时隙,则字段物理下行链路共享信道到混合自动重传请求反馈的定时指示取值是不能满足Redcap UE延长PDSCH解码时间的场景的。
可选地,图7所示的数据传输时隙不足的问题,还可以通过在第一下行链路控制信息中新增设备类型区分字段的方法解决。可选地,可以根据设备区分字段确定指定的第一下行链路控制信息适用的终端类型,进而确定适用于Redcap UE宽松处理场景的第四物理下行链路共享信道到混合自动重传请求反馈的定时指示字段的比特取值,最终确定第一时隙偏移。
若设备类型区分字段为1,则当前第一下行链路控制信息应用于Redcap UE,和/或若设备类型区分字段为0,则当前第一下行链路控制信息应用于传统UE。终端设备类型不同,其对第一下行链路控制信息中的3比特第四物理下行链路共享信道到混合自动重传请求反馈的定时指示字段理解不同。例如,若当前设备类型区分字段指示当前第一下行链路控制信息应用于Redcap UE,则第一下行链路控制信息中的3比特第四物理下行链路共享信道到混合自动重传请求反馈的定时指示字段的取值范围对应新增RRC参数DL-DataToUL-ACK-redcap,即其取值为{0,1,....,31}中的8个值;若当前设备类型区分字段指示当前第一下行链路控制信息用于传统UE,则第一下行链路控制信息中的3比特第四物理下行链路共享信道到混合自动重传请求反馈的定时指示字段的取值范围对应RRC参数DL-DataToUL-ACK,即其取值为{0,1,....,15}中的8个值。
接下来,结合具体实施例,对确定第二时隙偏移进行详细的描述。
可选地,当由第二下行链路控制信息调度PUSCH时,则可以通过第二下行链路控制信息中的第一时域资源分配字段对应的第五特定时隙偏移和第二预存时隙偏移的加和确定第二时隙偏移。其中第二预存时隙偏移delta2包含在终端设备预存的第二时隙偏移表中。
可选地,当由RAR或fallback RAR调度PUSCH时,则可以通过RAR或fallback RAR中的第一时域资源分配字段对应的第五特定时隙偏移和第二预存时隙偏移的加和确定第二时隙偏移。其中第二预存时隙偏移delta2包含在终端设备预存的第二时隙偏 移表中。
图8为本申请实施例提供的一种数据传输的时隙示意图三。图8所示的数据传输时隙对应的PUSCH、PDCCH、PDSCH的子载波间隔均为30KHz,PUSCH使用正常循环前缀,PUSCH的时域映射类型为Type B且PUSCH的起始符号为S=4,PUSCH持续符号时长为L=10,即第二下行链路控制信息中的第一时域资源分配字段为’0101’(第一时域资源分配字段应用的表格为表10、表11)。若保持PUSCH的时域映射类型不变,而将PUSCH的准备时间N2值扩展为现有N2值的2倍后,如设传统UE的N2值为12symbol,则在PUSCH传输前的准备处理时间Tproc,2=max((N2+d2,1+d2)(2048+144)·K2·Tc+Text+Tswitch,d2,2)中的其他变量取值不发生改变的情况下,Redcap UE的PUSCH的准备时间相较于传统UE至少增加了12个symbol。即若传统UE的PUSCH的准备处理时间为12symbol,则Redcap UE的PUSCH的准备处理时间为24symbol。根据第一时域资源分配字段取值为’0101’可知DCI和PUSCH传输间隔为1个时隙。由于1个时隙有14个符号,其能够保证传统UE的12个符号的处理时间,但是对于Redcap UE,由于其PUSCH的准备时间由12变为24,则1个时隙的偏移后,Redcap UE可能正在进行BWP切换等业务,此时发送的PUSCH是无效的。为了满足Recap UE的宽松的PUSCH的处理需求,可以在终端设备中预存一个第二预存时隙偏移delta2,即对于Redcap UE,其第二时隙偏移为K2+delta2。根据PUSCH的子载波间隔为30KHz,可知μ=1,再根据新增偏移表格6,可知delta2=1。即此实施例场景中,对于Redcap UE,其PDCCH相对于PUSCH的偏移为K2+delta2=1+1=2个时隙。由于2个时隙包含14*2=28个符号,其可以满足Redcap UE的24个符号的PUSCH传输准备处理时间,即保证PUSCH的有效传输。
同理,若PUSCH传输前的准备处理时间替换为NT,1+NT,2+0.5msec,同样将N2的取值由12符号增加为24符号,其RAR或fallback RAR中的第一时域资源分配字段取值为’0101’,则K2=1,这样仅可以保证传统UE的RAR到PUSCH的处理时间,而无法满足Redcap UE的RAR或fallback RAR到PUSCH的处理时间。因此,可以通过K2+delta2的方式增加RAR或fallback RAR到PUSCH的处理时间。具体地,设RAR所在的时隙为n,则RAR或fallback RAR所调度的PUSCH所在的时隙为n+K2+delta2+delta;其中delta为现有协议中给出的RAR或fallback RAR调度的PUSCH的偏移值。
可选地,终端设备第二预存时隙偏移delta2包含在预存的第二时隙偏移表中。第二预存时隙偏移的取值可以仅与子载波间隔μ有关,而与UE能力无关。以PUSCH的准备时间N2延长为原来的2倍为例,终端设备中预存的第二时隙偏移表可以参见下述表6所述:
表6
可选地,第二时隙偏移表中包括至少一个第二预存时隙偏移delta2,且第二预存时隙偏移取值可以与UE能力和子载波间隔μ均有关。delta2的取值参见下述表7和表8所示。可选地,表7适用于UE能力1,表8适用于UE能力2。
表7
表8
可选地,上述表格中的delta2至少还需要满足下述表9的处理时间需求:
表9
上述表9中的公式中,Tproc,2,redcap表示Redcap UE的PUSCH的准备处理时间,Tproc,2,normal表示传统UE的PUSCH的准备处理时间,κ=Ts/Tc,Ts=1/(Δfref·Nf,ref),Tc=1/(Δfmax·Nf),Δfmax=15×103Hz,Nf,ref=2048,Nf=4096。
可选地,可以通过第二时域资源分配字段对应的特定表格中的与第三预存时隙偏移相关的第六特定时隙偏移确定第二时隙偏移。第三预存时隙偏移预存在第三时隙偏移表。
表10
表11
可选地,第三时隙偏移表中j的取值与子载波间隔有关,即子载波间隔不同,第三预存时隙偏移j值不同。通过在终端设备中预存第三时隙偏移表,可以在不改变现有DCI的比特数和取值的情况下,满足Redcap UE对于PUSCH宽松处理的需求。第三时隙偏移表如下表12所示:
表12
例如,PUSCH、PDCCH的子载波间隔为15KHz,PUSCH使用正常循环前缀,PUSCH的时域映射类型为Type B且PUSCH的起始符号为S=4,PUSCH持续符号时长为L=10,即第二下行链路控制信息中的第二时域资源分配字段为’0101’。若保持PUSCH的时域映射类型不变,而将PUSCH的准备时间N2值扩展为现有N2值的2倍后,如设传统UE的Tproc,2值为12个symbol,则在PUSCH传输前的准备处理时间Tproc,2=max((N2+d2,1+d2)(2048+144)·K2·Tc+Text+Tswitch,d2,2)中的其他变量取值不发生改变的情况下,Redcap UE的PUSCH的准备时间相较于传统UE至少增加了12个symbol。即若传统UE的PUSCH的准备处理时间为12个symbol,则Redcap UE的PUSCH的准备处理时间为24个symbol。根据第二时域资源分配字段取值为’0101’和表10、表15及PUSCH的子载波间隔可知DCI到PUSCH的时隙偏移为j=1个时隙,对于传统UE,由于其处理时间是12个符号,偏移一个时隙足够PUSCH完成相关业务处理,即对于传统UE,这样的调度时间分配是合理的,但是对于Redcap UE,由于其PUSCH的处理时间为24个符号,偏移一个时隙后,其可能正在进行带宽切换等准备工作,此时进行PUSCH的传输是无效的。为了解决PUSCH传输无效的问题,本申请新定义了表格12,对于Redcap UE,根据表格12中j的取值和第二时域资源分配字段的bit’0101’可知第二时隙偏移调整为j=2个时隙。由于2个时隙包含2*14=28个符号,因此,通过新定义的调度表格可以满足PUSCH的24个符号的准备时间,进而可以保证PUSCH的有效传输。采用第三预存时隙偏移确定第二时隙偏移的方法可以不对现有DCI和调度表格进行任何修改,便能实现Redcap UE宽松处理场景下的有效PUSCH调度,保证Redcap UE和传统UE的有效兼容。
同理,若PUSCH传输前的准备处理时间替换为NT,1+NT,2+0.5msec,同样将N2值由12符号增加为24符号,其RAR或fallback RAR中的第二时域资源分配字段取值为’0101’,则K2=1,这样仅可以保证传统UE的RAR到PUSCH的处理时间,但是无法满足Redcap UE的RAR或fallback RAR到PUSCH的处理时间。因此,可以通过新定义的第二时域资源分配字段取值的方式,比如新增表格12,增加RAR或fallback RAR到PUSCH的处理时间。具体地,设RAR所在的时隙为n,则RAR或fallback RAR所调度的PUSCH所在的时隙为n+K2+delta;其中delta为现有协议中给出的RAR或fallback RAR调度的PUSCH的偏移值,K2的取值根据Redcap UE的宽松处理能力进行了扩大,比如表12中定义的K2对应的j的取值。
图9为本申请实施例提供的一种数据传输的时隙示意图四。图9所示的数据传输时隙对应的PUSCH、PDCCH的子载波间隔均为30KHz,PUSCH使用正常循环前缀,PUSCH的时域映射类型为Type B且PUSCH的起始符号为S=4,PUSCH持续符号时长为L=10,即第二下行链路控制信息中的字段第三时域资源分配字段的bit为’0101’。若保持PUSCH的时域映射类型不变,而将PUSCH的准备时间N2值扩展为现N2值的2倍后,如设传统UE的N2值为12symbol,则在PUSCH传输前的准备处理时间Tproc,2=max((N2+d2,1+d2)(2048+144)·K2·Tc+Text+Tswitch,d2,2)中的其他变量取值不发生改变的情况下,Redcap UE的PUSCH的准备处理时间相较于传统UE至少增加了12个symbol。事实上,若传统UE的PUSCH的准备处理时间为12symbol,则Redcap UE的PUSCH准备处理时间为24symbol。同时,根据第三时域资源分配字段的bit取值’0101’和表10、表12可知第一时隙偏移为1个时隙。对于传统UE,1个时隙偏移可以满足传统UE的12个符号的准备时间,但对于Redcap UE,由于其PDSCH的处理时间为24个符号,则1个时隙偏移后,Redcap UE可能正在进行带宽部分切换或其他业务发送,即对于Redcap UE而言,此时一个时隙的偏移是不足的。因此,对于Redcap UE,本实施例将第三时域资源分配字段所占的比特设定为5bit,且新增默认调度表13 和调度表14。即对于Redcap UE,不改变PUSCH时域映射的情况下,其字段时域资源分配字段的bit值为’10011’,此时,第一时隙偏移为K2=j+3=4个时隙。显然4个时隙的偏移可以满足Redcap UE的24个符号的处理时长。因此,通过扩展第三时域资源分配字段和其对应的新增调度表格可以满足Redcap UE的宽松处理需求。
同理,若PUSCH传输前的准备处理时间替换为NT,1+NT,2+0.5msec,同样将N2值由12符号增加为24符号,其RAR或fallback RAR中的第三时域资源分配字段取值为’0101’,则K2=1,这样仅可以保证传统UE的RAR到PUSCH的处理时间,但是无法满足Redcap UE的RAR或fallback RAR到PUSCH的处理时间。因此,可以通过扩展第三时域资源分配字段所占的比特数目及对应表格的方式,比如新增表格13或表格14,增加RAR或fallback RAR到PUSCH的处理时间。具体地,设RAR所在的时隙为n,则RAR或fallback RAR所调度的PUSCH所在的时隙为n+K2+delta;其中delta为现有协议中给出的RAR或fallback RAR调度的PUSCH的偏移值,K2的取值可根据Redcap UE的宽松处理能力配置合适的比特取值。
第二下行链路控制信息、RAR或fallback RAR中的第三时域资源分配字段对应的比特数为5bit时,对于正常CP,PUSCH默认调度表格参见下表13所示,对于扩展CP,默认调度表格参见下表14所示。
表13
表14
在上述表13和表14中,S表示PUSCH的起始符号位置,L表示PUSCH所占的符号长度。
表13和表14中的j的取值参见表15所示,且j值与子载波间隔μ相关
表15
可选地,上述表13和表14中的前面16行依然适用于传统UE,新增的14行可满足Redcap UE对于PUSCH准备时间的宽松处理。
可选地,可以通过第二下行链路控制信息中的第四时域资源分配字段对应的特定无线资源控制信息中的时隙偏移可用来确定第二时隙偏移。例如,图10所示,图10 为本申请实施例提供的一种数据传输的时隙示意图五。设PUSCH的准备时间为458symbol,若使用当前的时域资源分配字段对应的RRC参数,可知其偏移的最大时隙为32,即最大是32*14=448个符号,其不能满足Redcap UE的PUSCH准备时间为458个符号的需求;本申请中新定义的特定无线资源控制信息中的时隙偏移可取值为33时隙=32*14=462个符号,满足458个符号的PUSCH处理时长。新定义的特定RRC参数可以表示为:
可选地,当由DCI调度PUSCH时,第二时隙偏移对应特定RRC参数中的K2,本实施例中第四时隙偏移确定的第二时隙偏移K2=33个时隙。
可选地,当由RAR或fallback RAR调度PUSCH时,第二时隙偏移对应特定RRC参数中的K2+delta,其中,delta为现有协议中给出的RAR或fallback RAR调度的PUSCH的偏移值。
可以理解的是,在确定第一时隙偏移和第二时隙偏移时,可通过上述任一种可选地方式确定,或者,通过上述可选地方式进行结合确定,本申请实施例不做限定。
图11为本申请实施例提供的数据传输方法的信令交互示意图三,如图11所示,该方法可以为:
S111,网络设备发送控制信息,控制信息用于确定预设参数。
可选地,网络设备发送的控制信息包括用于调度下行传输的第一下行链路控制信息、用于调度上行传输的第二下行链路控制信息、无线资源控制信息中的至少一项。
可选地,预设参数包括第一时隙偏移和/或第二时隙偏移。第一时隙偏移为物理下行链路共享信道所在的时隙与携带其对应的ACK/NACK反馈信息的物理上行链路控制信道所在的时隙之间的时隙偏移。第二时隙偏移为物理下行链路控制信道所在的时隙与由物理下行链路控制信道调度的物理上行链路共享信道所在的时隙之间的时隙偏移。
S112,终端设备接收控制信息。
网络设备在向终端设备发送控制信息后,终端设备接收发送的控制信息,以根据控制信息中包括的至少一项信息调度上行传输。
S113,终端设备根据控制信息确定预设参数。
终端设备可以根据控制信息确定预设参数,即根据控制信息确定第一时隙偏移和/或第二时隙偏移。可选地,预设参数包括物理下行链路共享信道到混合自动重传请求反馈的定时指示字段,和/或,设备类型区分字段、时域资源分配字段中的至少一种。设备类型区分字段用于指定第一下行链路控制信息适用的终端类型。物理下行链路共享信道到混合自动重传请求反馈的定时指示字段为第一下行链路控制信息中的物理下行链路共享信道到混合自动重传请求反馈的定时指示字段。时域资源分配字段为第二下行链路控制信息中的时域资源分配字段。
可选地,终端设备确定的第一时隙偏移可以为:
物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定时隙偏移和第一预存时隙偏移量的加和、述物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定时隙偏移、第一下行链路控制信息中设备类型区分字 段和/或物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定时隙偏移、物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定无线资源控制信息中的第三时隙偏移中的至少一项。
可选地,第一预存时隙偏移可以为终端设备中预存的第一时隙偏移表中的时隙偏移量,第二时隙偏移表中包括至少一个第一预存时隙偏移。第一预存时隙偏移仅与子载波间隔相关,或,第一预存时隙偏移与子载波间隔和UE能力均相关。
可选地,物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的任一比特满足:设备类型区分字段不同比特取值不同,和/或物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定无线资源控制信息中对应的字段不同,比特取值不同。
可选地,物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的比特数可以为大于或等于3的正整数。
终端设备确定的第二时隙偏移可以为:时域资源分配字段对应的特定时隙偏移和第二预存时隙偏移的加和、时域资源分配字段对应的特定表格中的特定时隙偏移,特定时隙偏移与第三预存时隙偏移相关、时域资源分配字段对应的特定表格中的特定时隙偏移、时域资源分配字段对应的特定无线资源控制信息中的第四时隙偏移中的至少一项。
可选地,第二预存时隙偏移可以为终端设备中预存的第二时隙偏移表中的时隙偏移量,第二时隙偏移表中包括至少一个第二预存时隙偏移。第二预存时隙偏移仅与子载波间隔相关,或,第二预存时隙偏移与子载波间隔和UE能力均相关。
可选地,时域资源分配字段对应的特定表格中的特定时隙偏移与第三预存时隙偏移相关。第三预存时隙偏移为终端设备中预存的第三时隙偏移表中的时隙偏移量,第三时隙偏移表中包括至少一个第三预存时隙偏移。第三预存时隙偏移与子载波间隔相关。
第二时隙偏移包括的时域资源分配字段对应的特定无线资源控制信息中的第四时隙偏移可参见上述实施例所述,本实施例在此不再赘述。
S114,终端设备根据预设参数中的第一时隙偏移发送反馈信息。
终端设备发送的反馈信息承载在物理上行链路控制信道上,反馈信息为ACK信息或NACK信息,根据实际情况进行反馈。
可选地,终端设备根据第一时隙偏移,确定发送携带ACK/NACK信息的物理上行链路控制信道的第一发送时刻,根据第一发送时刻,发送携带ACK/NACK信息的物理上行链路控制信道。例如,终端设备在时隙n接收PDSCH,则在时隙n+K1时刻发送携带ACK/NACK的信息。可选地,K1为第一时隙偏移。
S115,网络设备接收根据第一时隙偏移发送的反馈信息。
S116,终端设备根据预设参数中的第二时隙偏移进行数据传输。
终端设备传输的数据承载在物理上行链路共享信道上。
可选地,终端设备根据第二时隙偏移,确定进行物理上行链路共享信道的数据传输的第二发送时刻,根据第二发送时刻进行物理上行链路共享信道的数据传输。例如,终端设备在时隙n接收上行第二下行链路控制信息,则在时隙n+K2时刻进行数据传输,其中K2为第二时隙偏移。
S117,网络设备接收根据第二时隙偏移传输的数据。
在本申请提供的技术方案中,终端设备确定的第一时隙和第二时隙偏移,能够确保宽松处理的PDSCH有效解码时间和宽松处理的PUSCH的有效准备时间,即通过第一时隙和第二时隙偏移可以保证PDSCH相关的ACK/NACK信息和PUSCH数据的有效传输。
图12为本申请实施例提供的数据传输装置的结构示意图一,如图12所示,该数据传输装置120包括:
确定模块121,用于根据控制信息,确定第一时隙偏移和第二时隙偏移;
传输模块122,用于根据第一时隙偏移发送反馈信息及根据第二时隙偏移进行数据传输。
可选地,包括以下至少一项:
控制信息包括以下至少一项:用于调度下行传输的第一下行链路控制信息、用于调度上行传输的第二下行链路控制信息、无线资源控制信息;
第一时隙偏移为物理下行链路共享信道所在的时隙与携带其对应的反馈信息的物理上行链路控制信道所在的时隙之间的时隙偏移;
第二时隙偏移为物理下行链路控制信道所在的时隙与由物理下行链路控制信道调度的物理上行链路共享信道所在的时隙之间的时隙偏移;
反馈信息承载在物理上行链路控制信道;
数据传输承载在物理上行链路共享信道。
可选地,包括以下至少一种:
第一下行链路控制信息包括物理下行链路共享信道到混合自动重传请求反馈的定时指示字段,和/或,设备类型区分字段;
第二下行链路控制信息包括时域资源分配字段。
可选地,包括以下至少一项:
物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的比特数为大于或等于3的正整数;
时域资源分配字段对应的比特数为大于或等于4的正整数;
设备类型区分字段用于指定第一下行链路控制信息适用的终端类型;
物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的任一比特满足:设备类型区分字段不同比特取值不同,和/或物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定无线资源控制信息中对应的字段不同,比特取值不同。
可选地,装置还包括接收模块123,接收模块,用于接收控制信息。
可选地,包括以下至少一项:
预存第一时隙偏移表,第一时隙偏移表中包括至少一个第一预存时隙偏移;
预存第二时隙偏移表,第二时隙偏移表中包括至少一个第二预存时隙偏移;
预存第三时隙偏移表,第三时隙偏移表中包括至少一个第三预存时隙偏移。
可选地,包括以下至少一项:
第一时隙偏移,包括以下至少一项:
物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定时隙偏移和第一预存时隙偏移量的加和;
物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定时隙偏移;
第一下行链路控制信息中设备类型区分字段和/或物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定时隙偏移;
物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定无线资源控制信息中的第三时隙偏移。
第二时隙偏移,包括以下至少一项:
时域资源分配字段对应的特定时隙偏移和第二预存时隙偏移的加和;
时域资源分配字段对应的特定表格中的特定时隙偏移,特定时隙偏移与第三预存时隙偏移相关;
时域资源分配字段对应的特定表格中的特定时隙偏移;
时域资源分配字段对应的特定无线资源控制信息中的第四时隙偏移。
可选地,传输模块122,具体用于:
根据第一时隙偏移,确定发送携带ACK/NACK信息的物理上行链路控制信道的第一发送时刻;根据第一发送时刻,发送携带ACK/NACK信息的物理上行链路控制信道。
可选地,传输模块122,具体用于:
根据第二时隙偏移,确定进行物理上行链路共享信道的数据传输的第二发送时刻;根据第二发送时刻进行物理上行链路共享信道的数据传输。
本申请实施例提供的数据传输装置可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
图13为本申请实施例提供的数据传输装置的结构示意图二,如图13所示,该数据传输装置130包括:
确定模块131,用于确定预设参数.
传输模块132,用于根据预设参数发送反馈信息及进行数据传输。
可选地,预设参数包括以下至少一项:
物理下行链路共享信道到混合自动重传请求反馈的定时指示字段,和/或,设备类型区分字段;
时域资源分配字段。
可选地,预设参数的确定方式,包括:
根据控制信息确定预设参数。
可选地,控制信息包括以下至少一项:
用于调度下行传输的第一下行链路控制信息;
用于调度上行传输的第二下行链路控制信息;
无线资源控制信息。
可选地,包括以下至少一项:
反馈信息承载在物理上行链路控制信道;
数据传输承载在物理上行链路共享信道。
可选地,确定模块131,具体用于:
根据预设参数确定第一时隙偏移和第二时隙偏移,根据第一时隙偏移发送反馈信息及根据第二时隙偏移进行数据传输。
可选地,包括以下至少一项:
第一时隙偏移为物理下行链路共享信道所在的时隙与携带其对应的反馈信息的物理上行链路控制信道所在的时隙之间的时隙偏移;
第二时隙偏移为物理下行链路控制信道所在的时隙与由物理下行链路控制信道调度的物理上行链路共享信道所在的时隙之间的时隙偏移;
根据第一时隙偏移发送反馈信息,包括:根据第一时隙偏移,确定发送携带ACK/NACK信息的物理上行链路控制信道的第一发送时刻,根据第一发送时刻,发送携带ACK/NACK信息的物理上行链路控制信道;
根据第二时隙偏移进行数据传输,包括:根据第二时隙偏移,确定进行物理上行链路共享信道的数据传输的第二发送时刻,根据第二发送时刻进行物理上行链路共享信道的数据传输。
可选地,包括以下至少一项:
物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的比特数为大于或等于3的正整数;
时域资源分配字段对应的比特数为大于或等于4的正整数;
设备类型区分字段用于指定第一下行链路控制信息适用的终端类型;
物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的任一比特满足:设备类型区分字段不同比特取值不同,和/或物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定无线资源控制信息中对应的字段不同,比特取值不同。
可选地,包括以下至少一项:
预存第一时隙偏移表,第一时隙偏移表中包括至少一个第一预存时隙偏移;
预存第二时隙偏移表,第二时隙偏移表中包括至少一个第二预存时隙偏移;
预存第三时隙偏移表,第三时隙偏移表中包括至少一个第三预存时隙偏移。
可选地,包括以下至少一项:
第一时隙偏移,包括以下至少一项:
物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定时隙偏移和第一预存时隙偏移量的加和;
物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定时隙偏移;
第一下行链路控制信息中设备类型区分字段和/或所述物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定时隙偏移;
物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定无线资源控制信息中的第三时隙偏移。
第二时隙偏移,包括以下至少一项:
时域资源分配字段对应的特定时隙偏移和第二预存时隙偏移的加和;
时域资源分配字段对应的特定表格中的特定时隙偏移,特定时隙偏移与第三预存时隙偏移相关;
时域资源分配字段对应的特定表格中的特定时隙偏移;
时域资源分配字段对应的特定无线资源控制信息中的第四时隙偏移。
本申请实施例提供的数据传输装置可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
图14为本申请实施例提供的数据传输装置的结构示意图三,如图14所示,该数据传输装置140包括:
发送模块141,用于发送用于确定预设参数的控制信息。
接收模块142,用于接收根据预设参数传输的数据。
可选地,包括以下至少一项:
预设参数包括第一时隙偏移和/或第二时隙偏移;
控制信息包括以下至少一项:用于调度下行传输的第一下行链路控制信息、用于调度上行传输的第二下行链路控制信息、无线资源控制信息;
可选地,接收模块142,具体用于执行以下至少一项:
接收根据第一时隙偏移发送的反馈信息;
接收根据第二时隙偏移传输的数据。
可选地,包括以下至少一项:
第一时隙偏移为物理下行链路共享信道所在的时隙与携带其对应的反馈信息的物理上行链路控制信道所在的时隙之间的时隙偏移;
第二时隙偏移为物理下行链路控制信道所在的时隙与由物理下行链路控制信道调度的物理上行链路共享信道所在的时隙之间的时隙偏移;
反馈信息承载在物理上行链路控制信道;
根据第二时隙偏移传输的数据承载在物理上行链路共享信道。
可选地,包括以下至少一种:
第一下行链路控制信息包括物理下行链路共享信道到混合自动重传请求反馈的定时指示字段,和/或,设备类型区分字段;
第二下行链路控制信息包括时域资源分配字段。
可选地,包括以下至少一项:
物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的比特数为大于或等于3的正整数;
时域资源分配字段对应的比特数为大于或等于4的正整数;
设备类型区分字段用于指定第一下行链路控制信息适用的终端类型;
物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的任一比特满足:设备类型区分字段不同比特取值不同,和/或物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定无线资源控制信息中对应的字段不同,比特取值不同。
可选地,包括以下至少一项:
第一时隙偏移,包括以下至少一项:物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定时隙偏移和第一预存时隙偏移量的加和、物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定时隙偏移、第一下行链路控制信息中设备类型区分字段和/或所述物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定时隙偏移、物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定无线资源控制信息中的第三时隙偏移。
第二时隙偏移,包括以下至少一项:时域资源分配字段对应的特定时隙偏移和第二预存时隙偏移的加和、时域资源分配字段对应的特定表格中的特定时隙偏移,所述特定时隙偏移与第三预存时隙偏移相关、时域资源分配字段对应的特定表格中的特定时隙偏移、时域资源分配字段对应的特定无线资源控制信息中的第四时隙偏移。
本申请实施例提供的数据传输装置可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
图15为本申请实施例提供的通信设备的结构示意图。如图15所示,本实施例所述的通信设备150可以是前述方法实施例中提到的终端设备(或者可用于终端设备的部件)或者网络设备(或者可用于网络设备的部件)。通信设备150可用于实现上述方法实施例中描述的对应于终端设备或者网络设备的方法,具体参见上述方法实施例中的说明。
通信设备150可以包括一个或多个处理器151,该处理器151也可以称为处理单元,可以实现一定的控制或者处理功能。处理器151可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信设备进行控制,执行软件程序,处理软件程序的数据。
可选地,处理器151也可以存有指令153或者数据(例如中间数据)。可选地,指令153可以被处理器151运行,使得通信设备150执行上述方法实施例中描述的对应于终端设备或者网络设备的方法。
可选地,通信设备150可以包括电路,该电路可以实现前述方法实施例中发送或 接收或者通信的功能。
可选地,通信设备150中可以包括一个或多个存储器152,其上可以存有指令154,该指令可在处理器151上被运行,使得通信设备150执行上述方法实施例中描述的方法。
可选地,存储器152中也可以是存储有数据。处理器151和存储器152可以单独设置,也可以集成在一起。
可选地,通信设备150还可以包括收发器155和/或天线156。处理器151可以称为处理单元,对通信设备150(终端设备或核心网设备或者无线接入网设备)进行控制。收发器155可以称为收发单元、收发机、收发电路、或者收发器等,用于实现通信设备150的收发功能。
可选地,若该通信设备150用于实现对应于上述各实施例中终端设备的操作时,例如,可以由收发器155接收配置信息,并在配置信息指示的监听时机接收寻呼提前指示。例如,可以由收发器155获取至少一寻呼提前指示参数,由处理器151根据寻呼提前指示参数确定寻呼提前指示的监听时机,由收发器155根据监听时机,接收寻呼提前指示。
可选地,处理器151和收发器155的具体实现过程可以参见上述各实施例的相关描述,此处不再赘述。
可选地,若该通信设备150用于实现对应于上述各实施例中网络设备的操作时,例如:可以由收发器155,发送配置信息,并在配置信息指示的寻呼提前指示的监听时机,发送寻呼提前指示,寻呼提前指示用于指示至少一个寻呼时机中是否有寻呼消息。
可选地,处理器151和收发器155的具体实现过程可以参见上述各实施例的相关描述,此处不再赘述。
本申请中描述的处理器151和收发器155可实现在IC(Integrated Circuit,集成电路)、模拟集成电路、RFIC(Radio Frequency Integrated Circuit,射频集成电路)、混合信号集成电路、ASIC(Application Specific Integrated Circuit,专用集成电路)、PCB(Printed Circuit Board,印刷电路板)、电子设备等上。该处理器151和收发器155也可以用各种集成电路工艺技术来制造,例如CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)、NMOS(N Metal-Oxide-Semiconductor,N型金属氧化物半导体)、PMOS(Positive channel Metal Oxide Semiconductor,P型金属氧化物半导体)、BJT(Bipolar Junction Transistor,双极结型晶体管)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
本申请中,通信设备可以为终端设备,也可以为网络设备(如基站),具体需要根据上下文来加以确定,另外,终端设备可以以各种形式来实施。例如,本申请中描述的终端设备可以包括诸如手机、平板电脑、笔记本电脑、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、便捷式媒体播放器(Portable Media Player,PMP)、导航装置、可穿戴设备、智能手环、计步器等移动终端,以及诸如数字TV、台式计算机等固定终端。
虽然在以上的实施例描述中,通信设备以终端设备或者网络设备为例来描述,但本申请中描述的通信设备的范围并不限于上述终端设备或网络设备,而且通信设备的结构可以不受图15的限制。通信设备可以是独立的设备或者可以是较大设备的一部分。
本申请实施例还提供一种终端设备,终端设备包括:存储器、处理器;其中,存储器上存储有计算机程序,计算机程序被处理器执行时实现上述任一实施例中的处理方法的步骤。
本申请实施例还提供一种网络设备,网络设备包括:存储器、处理器;其中,存储器上存储有计算机程序,计算机程序被处理器执行时实现上述任一实施例中的处理方法的步骤。
本申请实施例还提供一种计算机可读存储介质,存储介质上存储有计算机程序,计算机程序被处理器执行时实现上述任一实施例中的处理方法的步骤。
在本申请实施例提供的终端设备、网络设备和计算机可读存储介质的实施例中,可以包含任一上述处理方法实施例的全部技术特征,说明书拓展和解释内容与上述方法的各实施例基本相同,在此不做再赘述。
本申请实施例还提供一种计算机程序产品,计算机程序产品包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行如上各种可能的实施方式中的方法。
本申请实施例还提供一种芯片,包括存储器和处理器,存储器用于存储计算机程序,处理器用于从存储器中调用并运行计算机程序,使得安装有芯片的设备执行如上各种可能的实施方式中的方法。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请实施例设备中的单元可以根据实际需要进行合并、划分和删减。
在本申请中,对于相同或相似的术语概念、技术方案和/或应用场景描述,一般只在第一次出现时进行详细描述,后面再重复出现时,为了简洁,一般未再重复阐述,在理解本申请技术方案等内容时,对于在后未详细描述的相同或相似的术语概念、技术方案和/或应用场景描述等,可以参考其之前的相关详细描述。
在本申请中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本申请技术方案的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本申请记载的范围。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,被控终端,或者网络设备等)执行本申请每个实施例的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络,或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、存储盘、磁带)、光介质(例如,DVD), 或者半导体介质(例如固态存储盘Solid State Disk(SSD))等。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (26)

  1. 一种数据传输方法,其特征在于,所述方法包括以下步骤:
    S2、根据控制信息,确定第二时隙偏移,
    所述第二时隙偏移,包括以下至少一项:
    时域资源分配字段对应的第五特定时隙偏移和第二预存时隙偏移的加和,所述第二预存时隙偏移与子载波间隔有关,且不同子载波间隔对应的所述第二预存时隙偏移不完全相同;
    所述时域资源分配字段对应的特定表格中的第七时隙偏移,所述特定表格的行数为N,所述特定表格的每一行均对应有一个时隙偏移,所述特定表格中第M行对应的时隙偏移大于所述特定表格的前16行中任一行对应的时隙偏移;所述N和所述M均为大于16的整数,且所述N大于或等于所述M;
    S3、根据所述第二时隙偏移进行数据传输。
  2. 根据权利要求1所述的方法,其特征在于,所述第二时隙偏移还包括以下至少一项:
    所述时域资源分配字段对应的特定无线资源控制信息中的第四时隙偏移;
    所述时域资源分配字段对应的特定表格中的第六特定时隙偏移,所述第六特定时隙偏移与第三预存时隙偏移相关,所述第三预存时隙偏移与子载波间隔有关。
  3. 根据权利要求1所述的方法,其特征在于,包括以下至少一项:
    所述控制信息包括以下至少一项:用于调度上行传输的第二下行链路控制信息、无线资源控制信息、媒体接入控制信息;
    所述第二时隙偏移为物理下行链路控制信道所在的时隙与由物理下行链路控制信道调度的物理上行链路共享信道所在的时隙之间的时隙偏移;
    所述数据传输承载在物理上行链路共享信道。
  4. 根据权利要求3所述的方法,其特征在于,包括:
    所述第二下行链路控制信息包括时域资源分配字段。
  5. 根据权利要求4所述的方法,其特征在于,包括以下至少一项:
    所述时域资源分配字段对应的比特数为大于或等于4的正整数;
    所述物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的任一比特满足:所述物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定无线资源控制信息中对应的字段不同,所述比特取值不同。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,在所述S2步骤之前,还包括步骤:
    S1、接收控制信息。
  7. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括以下至少一项:
    预存第二时隙偏移表,所述第二时隙偏移表中包括至少一个第二预存时隙偏移;
    预存第三时隙偏移表,所述第三时隙偏移表中包括至少一个第三预存时隙偏移。
  8. 根据权利要求1至5中任一项所述的方法,其特征在于,所述根据所述第二时隙偏移进行数据传输,包括:
    根据所述第二时隙偏移,确定进行物理上行链路共享信道的数据传输的第二发送时刻;
    根据所述第二发送时刻进行物理上行链路共享信道的数据传输。
  9. 一种数据传输方法,其特征在于,所述方法包括以下步骤:
    S100:确定预设参数;
    S200:根据预设参数进行数据传输;
    所述S200步骤包括:
    根据所述预设参数确定第二时隙偏移,根据所述第二时隙偏移进行数据传输;
    其中,所述第二时隙偏移,包括以下至少一项:
    时域资源分配字段对应的第五特定时隙偏移和第二预存时隙偏移的加和,所述第二预存时隙偏移与子载波间隔有关,且不同子载波间隔对应的所述第二预存时隙偏移不完全相同;
    所述时域资源分配字段对应的特定表格中的第七时隙偏移,所述特定表格的行数为N,所述特定表格的每一行均对应有一个时隙偏移,所述特定表格中第M行对应的时隙偏移大于所述特定表格的前16行中任一行对应的时隙偏移;所述N和所述M均为大于16的整数,且所述N大于或等于所述M。
  10. 根据权利要求9所述的方法,其特征在于,所述第二时隙偏移还包括以下至少一项:
    所述时域资源分配字段对应的特定无线资源控制信息中的第四时隙偏移;
    所述时域资源分配字段对应的特定表格中的第六特定时隙偏移,所述第六特定时隙偏移与第三预存时隙偏移相关,所述第三预存时隙偏移与子载波间隔有关。
  11. 根据权利要求9所述的方法,其特征在于,所述预设参数包括:
    时域资源分配字段。
  12. 根据权利要求9所述的方法,其特征在于,所述预设参数的确定方式,包括:
    根据控制信息确定预设参数。
  13. 根据权利要求12所述的方法,其特征在于,所述控制信息包括以下至少一项:
    用于调度上行传输的第二下行链路控制信息;
    无线资源控制信息;
    媒体接入控制信息。
  14. 根据权利要求9至13中任一项所述的方法,其特征在于,包括:
    所述数据传输承载在物理上行链路共享信道。
  15. 根据权利要求9所述的方法,其特征在于,所述根据所述第二时隙偏移进行数据传输,包括:根据所述第二时隙偏移,确定进行物理上行链路共享信道的数据传输的第二发送时刻,根据所述第二发送时刻进行物理上行链路共享信道的数据传输。
  16. 根据权利要求15所述的方法,其特征在于,包括以下至少一项:
    时域资源分配字段对应的比特数为大于或等于4的正整数;
    所述物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的任一比特满足:所述物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定无线资源控制信息中对应的字段不同,所述比特取值不同。
  17. 根据权利要求9所述的方法,其特征在于,所述方法还包括以下至少一项:
    预存第二时隙偏移表,所述第二时隙偏移表中包括至少一个第二预存时隙偏移;
    预存第三时隙偏移表,所述第三时隙偏移表中包括至少一个第三预存时隙偏移。
  18. 一种数据传输方法,其特征在于,所述方法包括以下步骤:
    S11、发送用于确定预设参数的控制信息,所述预设参数包括第二时隙偏移,其中,所述第二时隙偏移,包括以下至少一项:时域资源分配字段对应的第五特定时隙偏移和第二预存时隙偏移的加和,所述第二预存时隙偏移与子载波间隔有关,且不同子载波间隔对应的所述第二预存时隙偏移不完全相同;所述时域资源分配字段对应的特定表格中的第七时隙偏移,所述特定表格的行数为N,所述特定表格的每一行均对应有一个时隙偏移,所述特定表格中第M行对应的时隙偏移大于所述特定表格的前16行中任一行对应的时隙偏移;所述N和所述M均为大于16的整数,且所述N大于或等于所述M;
    S12、接收根据所述预设参数传输的数据。
  19. 根据权利要求18所述的方法,其特征在于,所述第二时隙偏移还包括以下至少一项:
    所述时域资源分配字段对应的特定无线资源控制信息中的第四时隙偏移;
    所述时域资源分配字段对应的特定表格中的第六特定时隙偏移,所述第六特定时隙偏移与第三预存时隙偏移相关,所述第三预存时隙偏移与子载波间隔有关。
  20. 根据权利要求18所述的方法,其特征在于,包括以下至少一项:
    所述控制信息包括以下至少一项:用于调度上行传输的第二下行链路控制信息、无线资源控制信息、媒体接入控制信息。
  21. 根据权利要求20所述的方法,其特征在于,所述S12步骤包括:
    接收根据所述第二时隙偏移传输的数据。
  22. 根据权利要求20或21所述的方法,其特征在于,包括以下至少一种:
    所述第二下行链路控制信息包括时域资源分配字段。
  23. 根据权利要求22所述的方法,其特征在于,包括:
    根据所述第二时隙偏移传输的数据承载在物理上行链路共享信道。
  24. 根据权利要求23所述的方法,其特征在于,包括以下至少一项:
    所述时域资源分配字段对应的比特数为大于或等于4的正整数;
    所述物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的任一比特满足:所述物理下行链路共享信道到混合自动重传请求反馈的定时指示字段对应的特定无线资源控制信息中对应的字段不同,所述比特取值不同。
  25. 一种通信设备,其特征在于,包括:存储器和处理器;
    所述存储器用于存储程序指令;
    所述处理器用于调用所述程序指令以执行如权利要求1至24中任一项所述的数据传输方法。
  26. 一种计算机可读存储介质,其特征在于,所述存储介质上存储有计算机程序,所述计算机程序被执行时,实现如权利要求1至24中任一项所述的数据传输方法。
PCT/CN2023/091865 2022-05-05 2023-04-28 数据传输方法、通信设备及存储介质 WO2023213257A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210478249.8 2022-05-05
CN202210478249.8A CN114641077B (zh) 2022-05-05 2022-05-05 数据传输方法、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023213257A1 true WO2023213257A1 (zh) 2023-11-09

Family

ID=81953160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/091865 WO2023213257A1 (zh) 2022-05-05 2023-04-28 数据传输方法、通信设备及存储介质

Country Status (2)

Country Link
CN (1) CN114641077B (zh)
WO (1) WO2023213257A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114641077B (zh) * 2022-05-05 2023-04-07 深圳传音控股股份有限公司 数据传输方法、通信设备及存储介质
CN117320168B (zh) * 2023-11-24 2024-03-08 中国星网网络系统研究院有限公司 上行及下行数据传输调度方法、装置及cu设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200100223A1 (en) * 2018-09-21 2020-03-26 Samsung Electronics Co., Ltd. Method and apparatus for low latency and high reliability data transmission in wireless communication system
US20220030607A1 (en) * 2018-09-27 2022-01-27 Sharp Kabushiki Kaisha Base station apparatus, terminal apparatus and communication method
WO2022027250A1 (en) * 2020-08-04 2022-02-10 JRD Communication (Shenzhen) Ltd. Harq feedback processing method, base station and user equipment
CN114342505A (zh) * 2019-06-25 2022-04-12 株式会社Ntt都科摩 终端以及无线通信方法
CN114641077A (zh) * 2022-05-05 2022-06-17 深圳传音控股股份有限公司 数据传输方法、通信设备及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282881B (zh) * 2017-01-06 2020-12-15 华为技术有限公司 一种资源配置方法及装置
KR102656023B1 (ko) * 2019-04-02 2024-04-08 지티이 코포레이션 슬롯 오프셋 정보 관리를 위한 시스템 및 방법
US20220407637A1 (en) * 2019-11-06 2022-12-22 Beijing Xiaomi Mobile Software Co., Ltd. Harq-ack processing method and apparatus, communication device and storage medium
CN113767583B (zh) * 2020-04-07 2024-05-31 北京小米移动软件有限公司 非授权频段反馈信息传输方法、装置及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200100223A1 (en) * 2018-09-21 2020-03-26 Samsung Electronics Co., Ltd. Method and apparatus for low latency and high reliability data transmission in wireless communication system
US20220030607A1 (en) * 2018-09-27 2022-01-27 Sharp Kabushiki Kaisha Base station apparatus, terminal apparatus and communication method
CN114342505A (zh) * 2019-06-25 2022-04-12 株式会社Ntt都科摩 终端以及无线通信方法
WO2022027250A1 (en) * 2020-08-04 2022-02-10 JRD Communication (Shenzhen) Ltd. Harq feedback processing method, base station and user equipment
CN114641077A (zh) * 2022-05-05 2022-06-17 深圳传音控股股份有限公司 数据传输方法、通信设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "FL Summary #1 of Channel Structure for 2-step RACH", 3GPP DRAFT; R1-1913265, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 25 November 2019 (2019-11-25), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051830587 *

Also Published As

Publication number Publication date
CN114641077B (zh) 2023-04-07
CN114641077A (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
WO2023213257A1 (zh) 数据传输方法、通信设备及存储介质
WO2021008430A1 (zh) 传输方法和通信设备
WO2020038181A1 (zh) 上行信息的发送方法及终端
WO2020063241A1 (zh) 信息传输方法及终端
WO2021031908A1 (zh) 传输方法、配置方法、终端及网络侧设备
WO2020011096A1 (zh) 上行传输方法及终端
WO2021155787A1 (zh) Bwp切换方法、终端和网络侧设备
WO2023088485A1 (zh) 处理方法、通信设备、通信系统及存储介质
WO2021057655A1 (zh) 信息指示方法、设备及系统
WO2023082688A1 (zh) 寻呼周期更新方法、通信设备、通信系统及存储介质
WO2023024613A1 (zh) 处理方法、通信设备及存储介质
WO2021027716A1 (zh) 能力协商方法、终端及网络设备
WO2023221831A1 (zh) 处理方法、通信设备及存储介质
WO2020151706A1 (zh) 随机接入传输方法及终端
WO2023130954A1 (zh) 处理方法、通信设备及存储介质
WO2019242568A1 (zh) 功率分配方法及终端
WO2023082603A1 (zh) 提醒方法、终端设备、网络设备及存储介质
WO2021147777A1 (zh) 一种通信处理方法及相关设备
WO2020151708A1 (zh) 信息传输方法及终端
CN113556217A (zh) 通信方法、网络设备、终端设备及存储介质
WO2023216036A1 (zh) 处理方法、通信设备及存储介质
WO2023070467A1 (zh) 处理方法、通信设备、通信系统及存储介质
WO2023225959A1 (zh) 处理方法、通信设备及存储介质
WO2023133693A1 (zh) 通信方法、通信设备以及存储介质
WO2024050835A1 (zh) 处理方法、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23799243

Country of ref document: EP

Kind code of ref document: A1