WO2023024613A1 - 处理方法、通信设备及存储介质 - Google Patents

处理方法、通信设备及存储介质 Download PDF

Info

Publication number
WO2023024613A1
WO2023024613A1 PCT/CN2022/094751 CN2022094751W WO2023024613A1 WO 2023024613 A1 WO2023024613 A1 WO 2023024613A1 CN 2022094751 W CN2022094751 W CN 2022094751W WO 2023024613 A1 WO2023024613 A1 WO 2023024613A1
Authority
WO
WIPO (PCT)
Prior art keywords
device type
random access
physical uplink
shared channel
identification information
Prior art date
Application number
PCT/CN2022/094751
Other languages
English (en)
French (fr)
Inventor
朱荣昌
黄钧蔚
Original Assignee
深圳传音控股股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳传音控股股份有限公司 filed Critical 深圳传音控股股份有限公司
Priority to CN202280057889.XA priority Critical patent/CN117941451A/zh
Publication of WO2023024613A1 publication Critical patent/WO2023024613A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present application relates to communication technologies, and in particular to a processing method, communication equipment and a storage medium.
  • Redcap type Reduced Capability, light capability
  • Msg1 when the device transmits Msg1, different preambles can be set in Msg1 to distinguish between normal-type devices and Redcap-type devices.
  • Different types of equipment use different RO (PRACH Occasion, random access opportunity) opportunities to distinguish equipment types.
  • the inventors found at least the following problems: the number of preambles carried in one RO opportunity is limited, and if a part of preambles are reserved for Redcap-type devices, the available preambles for common devices will change. less, and/or, if different types of equipment use different RO opportunities, the random access opportunities available to ordinary equipment will be reduced, that is, none of the above schemes can guarantee the access of a large number of Redcap users.
  • the present application provides a processing method, a communication device, and a storage medium, so as to solve the above-mentioned technical problems of increasing system overhead or causing fewer available preambles for common devices.
  • the present disclosure provides a processing method, which is applied to a terminal device, and the method includes the following steps:
  • S1 Determine or generate a random access preamble and/or a physical uplink shared channel; wherein, the determined or generated random access preamble includes device type identification information; the determined or generated physical uplink The shared channel includes device type identification information;
  • S2 Send the random access preamble and/or if sending the physical uplink shared channel.
  • the present disclosure provides a processing method, which is applied to a terminal device, and the method includes the following steps:
  • S1 Receive a system message, and determine a method of reporting the device type according to the system message; the method includes reporting the device type through a random access preamble and/or reporting the device type through a physical uplink shared channel;
  • S2 Report the device type according to the determined method of reporting the device type during random access.
  • the present disclosure provides a processing method, which is applied to a network device, and the method includes:
  • S3 Receive the random access preamble and/or the physical uplink shared channel sent by the terminal device; wherein, the random access preamble and/or the physical uplink shared channel include device type identification information;
  • S4 Identify the type of the terminal device according to the random access preamble and/or the physical uplink shared channel.
  • the present disclosure provides a communication device, including:
  • a computer program is stored in the memory, and when the computer program is executed by the processor, the method according to any one of the first aspect to the third aspect is implemented.
  • the processing method, communication device, and storage medium provided in the embodiments of the present application enable the network device to know the terminal device by sending a preamble including device type information and/or a physical uplink shared channel (Physica uplink shared channel, PUSCH for short). In this way, there is no need to reserve a random access preamble, and no additional system overhead is added, so that the purpose of distinguishing terminal device types can be achieved with a small communication cost.
  • PUSCH Physical uplink shared channel
  • FIG. 1 is a schematic diagram of a hardware structure of a mobile terminal implementing various embodiments of the present application
  • FIG. 2 is a system architecture diagram of a communication network provided by an embodiment of the present application.
  • Fig. 3 is a schematic diagram of a four-step random access process shown in an exemplary embodiment
  • Fig. 4 is a schematic diagram of a two-step random access process shown in an exemplary embodiment
  • FIG. 5 is a schematic flowchart of a processing method shown in a first exemplary embodiment of the present disclosure
  • FIG. 6A is a schematic flowchart of a processing method applied to two-step random access shown in the first exemplary embodiment of the present disclosure
  • FIG. 6B is a schematic flowchart of a processing method applied to two-step random access shown in the second exemplary embodiment of the present disclosure
  • FIG. 6C is a schematic flowchart of a processing method applied to two-step random access shown in the third exemplary embodiment of the present disclosure
  • FIG. 7A is a schematic flowchart of a processing method applied to four-step random access shown in the first exemplary embodiment of the present disclosure
  • FIG. 7B is a schematic flowchart of a processing method applied to four-step random access shown in the second exemplary embodiment of the present disclosure
  • FIG. 7C is a schematic flowchart of a processing method applied to four-step random access shown in the third exemplary embodiment of the present disclosure.
  • FIGS. 8A-8C are schematic structural diagrams of a preamble shown in an exemplary embodiment of the present disclosure.
  • 9A-9C are schematic structural diagrams of a preamble including device type identification information shown in an exemplary embodiment of the present disclosure.
  • Fig. 10 is a schematic diagram of at least one random access preamble shown in an exemplary embodiment of the present disclosure.
  • FIG. 11 shows the relationship between SSB and RO opportunities shown in the first exemplary embodiment of the present disclosure
  • FIG. 12 shows the relationship between SSB and RO opportunities shown in the second exemplary embodiment of the present disclosure
  • Fig. 13 is a time-frequency resource diagram shown in an exemplary embodiment of the present disclosure.
  • FIG. 14A is a schematic flowchart of a processing method applied to four-step random access shown in a fourth exemplary embodiment of the present disclosure
  • FIG. 14B is a schematic flowchart of a processing method applied to two-step random access shown in a fourth exemplary embodiment of the present disclosure.
  • FIG. 15 is a schematic flowchart of a processing method applied to four-step random access shown in a fifth exemplary embodiment of the present disclosure
  • FIG. 16A is a schematic flowchart of a processing method applied to four-step random access shown in the sixth exemplary embodiment of the present disclosure
  • FIG. 16B is a schematic flowchart of a processing method applied to two-step random access shown in the fifth exemplary embodiment of the present disclosure
  • FIG. 17 is a schematic flowchart of a processing method shown in a second exemplary embodiment of the present disclosure.
  • FIG. 18 is a schematic flowchart of a processing method shown in a third exemplary embodiment of the present disclosure.
  • FIG. 19 is a schematic flowchart of a processing method shown in a fourth exemplary embodiment of the present disclosure.
  • FIG. 20 is a schematic flowchart of a processing method shown in a fifth exemplary embodiment of the present disclosure.
  • FIG. 21 is a schematic flowchart of a processing method shown in a sixth exemplary embodiment of the present disclosure.
  • Fig. 22 is a schematic flowchart of a processing method shown in a seventh exemplary embodiment of the present disclosure.
  • FIG. 23A is a schematic flowchart of a processing method applied to two-step random access shown in the sixth exemplary embodiment of the present disclosure
  • FIG. 23B is a schematic flowchart of a processing method applied to two-step random access shown in the seventh exemplary embodiment of the present disclosure
  • FIG. 23C is a schematic flowchart of a processing method applied to two-step random access shown in the eighth exemplary embodiment of the present disclosure.
  • FIG. 24A is a schematic flowchart of a processing method applied to four-step random access shown in the seventh exemplary embodiment of the present disclosure
  • FIG. 24B is a schematic flowchart of a processing method applied to four-step random access shown in the eighth exemplary embodiment of the present disclosure.
  • FIG. 24C is a schematic flowchart of a processing method applied to four-step random access shown in the ninth exemplary embodiment of the present disclosure.
  • Fig. 25 is a structural diagram of a communication device shown in an exemplary embodiment of the present application.
  • first, second, third, etc. may be used herein to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of this document, first information may also be called second information, and similarly, second information may also be called first information.
  • first information may also be called second information, and similarly, second information may also be called first information.
  • second information may also be called first information.
  • the word “if” as used herein may be interpreted as “at” or “when” or “in response to a determination”.
  • the singular forms "a”, “an” and “the” are intended to include the plural forms as well, unless the context indicates otherwise.
  • A, B, C means “any of the following: A; B; C; A and B; A and C; B and C; A and B and C
  • A, B or C or "A, B and/or C” means "any of the following: A; B; C; A and B; A and C; B and C; A and B and C”. Exceptions to this definition will only arise when combinations of elements, functions, steps or operations are inherently mutually exclusive in some way.
  • the words “if”, “if” as used herein may be interpreted as “at” or “when” or “in response to determining” or “in response to detecting”.
  • the phrases “if determined” or “if detected (the stated condition or event)” could be interpreted as “when determined” or “in response to the determination” or “when detected (the stated condition or event) )” or “in response to detection of (a stated condition or event)”.
  • step codes such as 501 and 502 are used, the purpose of which is to express the corresponding content more clearly and concisely, and does not constitute a substantive limitation on the order.
  • 502 will be executed first and then 501, etc., but these should be within the scope of protection of this application.
  • a communication device may be a terminal device or a network device (such as a base station), which needs to be determined according to the context.
  • the terminal device may be implemented in various forms.
  • the terminal equipment described in this application may include mobile phones, tablet computers, notebook computers, palmtop computers, personal digital assistants (Personal Digital Assistant, PDA), portable media players (Portable Media Player, PMP), navigation devices, Mobile terminals such as wearable devices, smart bracelets, and pedometers, and fixed terminals such as digital TVs and desktop computers.
  • a mobile terminal will be used as an example of a terminal device for illustration, and those skilled in the art will understand that, in addition to elements specially used for mobile purposes, the configurations according to the embodiments of the present application can also be applied to fixed-type terminals .
  • FIG. 1 is a schematic diagram of the hardware structure of a mobile terminal implementing various embodiments of the present application.
  • the mobile terminal 100 may include: an RF (Radio Frequency, radio frequency) unit 101, a WiFi module 102, an audio output unit 103, an A /V (audio/time frequency) input unit 104, sensor 105, display unit 106, user input unit 107, interface unit 108, memory 109, processor 110, power supply 111 and other components.
  • RF Radio Frequency, radio frequency
  • the radio frequency unit 101 can be used for sending and receiving information or receiving and sending signals during a call. Specifically, after receiving the downlink information of the base station, it is processed by the processor 110; in addition, the uplink data is sent to the base station.
  • the radio frequency unit 101 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 101 can also communicate with the network and other devices through wireless communication.
  • the above wireless communication can use any communication standard or protocol, including but not limited to GSM (Global System of Mobile communication, Global System for Mobile Communications), GPRS (General Packet Radio Service, General Packet Radio Service), CDMA2000 (Code Division Multiple Access 2000 , Code Division Multiple Access 2000), WCDMA (Wideband Code Division Multiple Access, Wideband Code Division Multiple Access), TD-SCDMA (Time Division-Synchronous Code Division Multiple Access, Time Division Synchronous Code Division Multiple Access), FDD-LTE (Frequency Division Duplexing-Long Term Evolution, frequency division duplex long-term evolution), TDD-LTE (Time Division Duplexing-Long Term Evolution, time-division duplex long-term evolution) and 5G, etc.
  • GSM Global System of Mobile communication, Global System for Mobile Communications
  • GPRS General Packet Radio Service
  • CDMA2000 Code Division Multiple Access 2000
  • WCDMA Wideband Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access, Time Division Synchro
  • WiFi is a short-distance wireless transmission technology.
  • the mobile terminal can help users send and receive emails, browse web pages, and access streaming media through the WiFi module 102, which provides users with wireless broadband Internet access.
  • Fig. 1 shows the WiFi module 102, it can be understood that it is not an essential component of the mobile terminal, and can be completely omitted as required without changing the essence of the invention.
  • the audio output unit 103 can store the audio received by the radio frequency unit 101 or the WiFi module 102 or in the memory 109 when the mobile terminal 100 is in a call signal receiving mode, a call mode, a recording mode, a voice recognition mode, a broadcast receiving mode, or the like.
  • the audio data is converted into an audio signal and output as sound.
  • the audio output unit 103 can also provide audio output related to a specific function performed by the mobile terminal 100 (eg, call signal reception sound, message reception sound, etc.).
  • the audio output unit 103 may include a speaker, a buzzer, and the like.
  • the A/V input unit 104 is used to receive audio or time-frequency signals.
  • the A/V input unit 104 may include a graphics processor (Graphics Processing Unit, GPU) 1041 and a microphone 1042, and the graphics processor 1041 is used for still pictures obtained by an image capture device (such as a camera) in a time-frequency capture mode or an image capture mode or time-frequency image data for processing.
  • the processed image frames may be displayed on the display unit 106 .
  • the image frames processed by the graphics processor 1041 may be stored in the memory 109 (or other storage media) or sent via the radio frequency unit 101 or the WiFi module 102 .
  • the microphone 1042 can receive sound (audio data) via the microphone 1042 in a phone call mode, a recording mode, a voice recognition mode, and the like operating modes, and can process such sound as audio data.
  • the processed audio (voice) data can be converted into a format transmittable to a mobile communication base station via the radio frequency unit 101 for output in case of a phone call mode.
  • the microphone 1042 may implement various types of noise cancellation (or suppression) algorithms to cancel (or suppress) noise or interference generated in the process of receiving and transmitting audio signals.
  • the mobile terminal 100 also includes at least one sensor 105, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 1061 according to the brightness of the ambient light, and the proximity sensor can turn off the display when the mobile terminal 100 moves to the ear. panel 1061 and/or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (generally three axes), and can detect the magnitude and direction of gravity when it is stationary, and can be used to identify the application of mobile phone posture (such as horizontal and vertical screen switching, related Games, magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tap), etc.; as for mobile phones, fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, Other sensors such as thermometers and infrared sensors will not be described in detail here.
  • the display unit 106 is used to display information input by the user or information provided to the user.
  • the display unit 106 may include a display panel 1061, and the display panel 1061 may be configured in the form of a liquid crystal display (Liquid Crystal Display, LCD), an organic light-emitting diode (Organic Light-Emitting Diode, OLED), or the like.
  • LCD Liquid Crystal Display
  • OLED Organic Light-Emitting Diode
  • the user input unit 107 can be used to receive input numbers or character information, and generate key signal input related to user settings and function control of the mobile terminal.
  • the user input unit 107 may include a touch panel 1071 and other input devices 1072 .
  • the touch panel 1071 also referred to as a touch screen, can collect touch operations of the user on or near it (for example, the user uses any suitable object or accessory such as a finger or a stylus on the touch panel 1071 or near the touch panel 1071). operation), and drive the corresponding connection device according to the preset program.
  • the touch panel 1071 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch orientation, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device and converts it into contact coordinates , and then sent to the processor 110, and can receive the command sent by the processor 110 and execute it.
  • the touch panel 1071 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 107 may also include other input devices 1072 .
  • other input devices 1072 may include, but are not limited to, one or more of physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, etc., which are not specifically described here. limited.
  • the touch panel 1071 may cover the display panel 1061.
  • the touch panel 1071 detects a touch operation on or near it, it transmits to the processor 110 to determine the type of the touch event, and then the processor 110 determines the touch event according to the touch event.
  • the corresponding visual output is provided on the display panel 1061 .
  • the touch panel 1071 and the display panel 1061 are used as two independent components to realize the input and output functions of the mobile terminal, in some embodiments, the touch panel 1071 and the display panel 1061 can be integrated.
  • the implementation of the input and output functions of the mobile terminal is not specifically limited here.
  • the interface unit 108 serves as an interface through which at least one external device can be connected with the mobile terminal 100 .
  • an external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, time-frequency I/O port, headphone port, etc.
  • the interface unit 108 can be used to receive input from an external device (for example, data information, power, etc.) transfer data between devices.
  • the memory 109 can be used to store software programs as well as various data.
  • the memory 109 can mainly include a storage program area and a storage data area.
  • the storage program area can store an operating system, at least one function required application program (such as a sound playback function, an image playback function, etc.) etc.
  • the storage data area can be Store data (such as audio data, phone book, etc.) created according to the use of the mobile phone.
  • the memory 109 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage devices.
  • the processor 110 is the control center of the mobile terminal, and uses various interfaces and lines to connect various parts of the entire mobile terminal, by running or executing software programs and/or modules stored in the memory 109, and calling data stored in the memory 109 , execute various functions of the mobile terminal and process data, so as to monitor the mobile terminal as a whole.
  • the processor 110 may include one or more processing units; preferably, the processor 110 may integrate an application processor and a modem processor.
  • the application processor mainly processes operating systems, user interfaces, and application programs, etc.
  • the demodulation processor mainly handles wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 110 .
  • the mobile terminal 100 can also include a power supply 111 (such as a battery) for supplying power to various components.
  • a power supply 111 (such as a battery) for supplying power to various components.
  • the power supply 111 can be logically connected to the processor 110 through a power management system, so as to manage charging, discharging, and power consumption through the power management system. and other functions.
  • the mobile terminal 100 may also include a Bluetooth module, etc., which will not be repeated here.
  • the following describes the communication network system on which the mobile terminal of the present application is based.
  • Fig. 2 is a kind of communication network system architecture diagram that the embodiment of the present application provides, and this communication network system is the LTE system of general mobile communication technology, and this LTE system includes the UE (User Equipment, user equipment) that communication connects sequentially ) 201, E-UTRAN (Evolved UMTS Terrestrial Radio Access Network, Evolved UMTS Terrestrial Radio Access Network) 202, EPC (Evolved Packet Core, Evolved Packet Core Network) 203 and the operator's IP service 204.
  • UE User Equipment, user equipment
  • E-UTRAN Evolved UMTS Terrestrial Radio Access Network
  • EPC Evolved Packet Core, Evolved Packet Core Network
  • the UE 201 may be the above-mentioned terminal 100, which will not be repeated here.
  • E-UTRAN 202 includes eNodeB 2021 and other eNodeB 2022 and so on.
  • the eNodeB 2021 can be connected to other eNodeB 2022 through a backhaul (for example, X2 interface), the eNodeB 2021 is connected to the EPC 203 , and the eNodeB 2021 can provide access from the UE 201 to the EPC 203 .
  • a backhaul for example, X2 interface
  • EPC203 may include MME (Mobility Management Entity, Mobility Management Entity) 2031, HSS (Home Subscriber Server, Home Subscriber Server) 2032, other MME2033, SGW (Serving Gate Way, Serving Gateway) 2034, PGW (PDN Gate Way, packet data Network Gateway) 2035 and PCRF (Policy and Charging Rules Function, Policy and Charging Functional Entity) 2036, etc.
  • MME2031 is a control node that processes signaling between UE201 and EPC203, and provides bearer and connection management.
  • HSS2032 is used to provide some registers to manage functions such as home location register (not shown in the figure), and save some user-specific information about service features and data rates.
  • PCRF2036 is the policy and charging control policy decision point of service data flow and IP bearer resources, it is the policy and charging execution function A unit (not shown) selects and provides available policy and charging control decisions.
  • the IP service 204 may include Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) or other IP services.
  • IMS IP Multimedia Subsystem, IP Multimedia Subsystem
  • LTE system is used as an example above, those skilled in the art should know that this application is not only applicable to the LTE system, but also applicable to other wireless communication systems, such as GSM, CDMA2000, WCDMA, TD-SCDMA and future new wireless communication systems.
  • the network system (such as 5G), etc., is not limited here.
  • terminal devices there are more and more types of terminal devices that can be connected to the network.
  • some household appliances and wearable devices can be connected to the network, such as refrigerators, TVs, air conditioners, smart watches, sports bracelets and other devices.
  • the types of terminal devices may include ordinary devices and may also include light-capable (Redcap) devices, and the network device may handle different terminal devices in different ways. Therefore, the network device needs to determine the type of the terminal device.
  • Redcap light-capable
  • the terminal device may send a random access preamble (preamble) corresponding to its device type in Msg1 or MsgA, and the network device distinguishes whether the current terminal is a normal UE or a Redcap UE according to the received preamble.
  • preamble a random access preamble
  • Fig. 3 is a schematic diagram of a four-step random access process shown in an exemplary embodiment.
  • the terminal device when the terminal device sends a message 1 (Message1, Msg1), it sends a preamble to the network device.
  • message 1 Message1, Msg1
  • Fig. 4 is a schematic diagram of a two-step random access process shown in an exemplary embodiment.
  • different types of devices can be distinguished through different preambles, and because the protocol stipulates that the number of optional preambles in a random access process of a terminal device is at most 64, therefore, if the device type is determined through the existing preamble If the distinction is made, it is necessary to reserve a part of the preamble for the Redcap device, which will result in fewer preambles available for common devices.
  • different types of devices may also use different RO opportunities for random access, so that the network device can distinguish the types of terminal devices according to messages received by different RO opportunities.
  • this approach will result in fewer access opportunities for common devices.
  • the terminal device reports to the device through the improved random access preamble (preamble) and/or the improved physical uplink shared channel (PUSCH) during random access.
  • preamble the improved random access preamble
  • PUSCH physical uplink shared channel
  • Fig. 5 is a schematic flowchart of a processing method shown in the first exemplary embodiment of the present disclosure.
  • the processing method provided in the embodiment of the present application is applied to a terminal device, which can access a network, and may be a common device or a light-capable device.
  • the processing method provided in the embodiment of the present application includes:
  • Step 501 determine or generate a random access preamble and/or a physical uplink shared channel.
  • the determined or generated random access preamble includes device type identification information.
  • the determined or generated physical uplink shared channel includes device type identification information.
  • this solution may be applied to a random access process.
  • the random access process refers to the process from when the terminal device sends a preamble to try to access the network to when a basic signaling connection is established with the network.
  • the terminal device may determine or generate a preamble, and may add device type identification information in the preamble according to its own device type.
  • resource bits can be reserved in the preamble, and terminal devices can add device type identification information to the reserved resource bits. For example, if the type of the terminal device is a common device, add 1 to the reserved resource bits of the preamble. If the device type is a Redcap device, add 0 to the reserved resource bit of the preamble.
  • the determined or generated preamble may be composed of three parts: CP (Cyclic Prefix, cyclic prefix), SEQ (SEQuence, sequence), and GP (Guard Period, guard interval).
  • CP Cyclic Prefix, cyclic prefix
  • SEQ SEQuence, sequence
  • GP Guard Period, guard interval
  • the determined or generated preamble may only include CP and SEQ. If the solution of the embodiment of this application needs to add device type identification information in the GP part of the preamble, the solution of this embodiment is not applicable to the preamble that only includes the two parts of CP and SEQ; if the solution of the embodiment of the application needs to be added in the preamble If the device type identification information is added to the CP part, the solution of this embodiment is applicable to the preambles of the above two construction types.
  • the device type identification information is used to indicate the type of the device.
  • the preamble of the device includes the information corresponding to the normal device type; if the device is a light-capable device, the preamble of the device includes the light-capable Information corresponding to the device type.
  • device type identification information may be set in any preamble.
  • the GP part in the preamble sent by the terminal device has device type identification information
  • a network device such as a base station
  • the specific implementation steps are: the terminal device determines or generates the root sequence of the preamble according to the high-level parameters, and generates the SEQ part of the preamble according to the preamble generation formula given by the protocol, and then adds CP and GP to the SEQ part, and specifies in the GP Resources add device type identification information.
  • the addition of the device type identification information may only be added for one preamble finally used by the terminal, or may be added for at least one preamble that may be used by the terminal.
  • the preamble determined or generated by the terminal device includes device type identification information.
  • the device type identification information can be located in any component of the preamble.
  • device type identification information can be added to the GP of the preamble.
  • At least one resource can be selected in the GP part to indicate the device type. For example, when the device type identification information is not added, the value of each resource in the GP part of the preamble is 0. If the terminal device is a Redcap device, the value of the resource used to indicate the device type in the GP part of the preamble of the terminal device or The indication bit is 1, and/or, if the terminal device is a common device, the value of each resource in the GP part of the preamble of the terminal device is still 0.
  • the specifically indicated bit positions and numbers can be set according to requirements.
  • device type identification information may be added to the CP of the preamble.
  • at least one resource in the CP part is used to indicate device type identification information.
  • device type identification information can be added to the SEQ of the preamble.
  • at least one resource in the SEQ part is used to indicate device type identification information.
  • the device type information can be reported through the preamble. This method does not need to reserve a random access preamble, nor does it need to occupy additional random access opportunities, and thus can distinguish terminals with a small communication cost. The purpose of the device type.
  • the terminal device also sends a PUSCH (Physical Uplink Shared Channel, Physical Uplink Shared Channel) to the network device.
  • the PUSCH is used to carry uplink services and upper layer signaling data.
  • the terminal device will send PUSCH when sending Msg A.
  • the terminal device will send PUSCH when sending Msg 3.
  • the terminal device may determine or generate a PUSCH during random access, and the PUSCH includes device type identification information.
  • the terminal device may determine its own device type, and add information corresponding to the device type in the PUSCH.
  • the terminal device may add device type identification information to the reserved resource bits in the PUSCH to distinguish the type of the terminal device.
  • the terminal device can use the processed TC-RNTI value to add information for distinguishing the type of the terminal device in the PUSCH; specifically, the terminal device first processes the TC-RNTI according to the device type, and then uses the processed TC-RNTI value TC-RNTI scrambles PUSCH.
  • the terminal device first processes the TC-RNTI according to the device type, and then uses the processed TC-RNTI value TC-RNTI scrambles PUSCH.
  • the terminal device type of the terminal device is a common device
  • the TC-RNTI carried in Msg 2 can be directly used to scramble PUSCH;
  • the terminal device can scramble the TC-RNTI carried in Msg 2 -
  • After the RNTI is processed use the processed TC-RNTI value to scramble the PUSCH.
  • the network side can descramble the PUSCH according to the processed TC-RNTI value to distinguish the type of the terminal equipment.
  • the terminal device can distinguish the type of the terminal device according to the PUSCH scrambling sequence related to the terminal and the device type; specifically, if the device type of the terminal device is a common device, the terminal device uses the first scrambling formula to scramble the PUSCH ; If the device type of the terminal device is a Redcap device, the terminal device uses a second scrambling formula to scramble the PUSCH, and the second scrambling formula is such as (1) or (2).
  • the network side can quickly distinguish the type of terminal equipment.
  • the values of formulas (1) and (2) are as follows:
  • the nRNTI is equal to the RA-RNTI, and in the four-step random access, the nRNTI is equal to the TC-RNTI delivered by Msg2.
  • n ID is configured by the high-level parameter msgA-DataScramblingIndex, n ID ⁇ 0,1,...,1024 ⁇ , in four-step random access, That is, the cell ID.
  • n RAPID is the index of the random access preamble of Msg A, and delta is the preset offset.
  • the device type information can be reported through PUSCH. This method does not need to reserve a random access preamble, nor does it need to occupy additional random access opportunities, and thus can distinguish terminals with a small communication cost. The purpose of the device type.
  • the preamble determined or generated by the terminal device may include device type identification information
  • the PUSCH determined or generated by the terminal device may also include device type identification information
  • the network device may identify the type of the terminal device based on the information.
  • Step 502 sending a random access preamble and/or a physical uplink shared channel.
  • the terminal device may send a preamble including device type identification information and/or send a PUSCH including device type identification information to the network device, so as to report the device type.
  • the terminal device can choose to report the device type through preamble, or choose to report the device type through PUSCH, or choose to report the device type through preamble and PUSCH at the same time.
  • the terminal device may send the preamble to the network device to report the device type. If the terminal device generates a PUSCH including device type identification information, the terminal device may send the PUSCH to the network device to report the device type.
  • the terminal device may send a preamble including device type identification information when sending Msg A, and may also send a PUSCH including device type identification information when sending Msg A.
  • the terminal device may send a preamble including device type identification information when sending Msg 1, and may also send a PUSCH including device type identification information when sending Msg 3.
  • the network device can obtain the device type identification information therein, and then determine the type of the terminal device, and according to the terminal device The type is processed accordingly. If the PUSCH sent by the terminal device includes device type identification information, after receiving the PUSCH sent by the terminal device, the network device can obtain the device type identification information in it, and then determine the type of the terminal device, and perform corresponding actions according to the type of the terminal device. processing.
  • the terminal device and the network device can pre-agreed on the position of the device type in the preamble and/or PUSCH, or add the device type to the preamble and/or PUSCH, so that the network device receives the preamble and/or After the PUSCH, the device type identification information can be obtained from the preamble and/or PUSCH based on a pre-agreed position or manner, so that the type of the terminal device can be determined.
  • the processing method provided by the embodiment of this application enables the network device to know the type of the terminal device by sending the preamble and/or PUSCH including the device type information. Occupying additional random access opportunities can achieve the purpose of distinguishing terminal device types with a small communication cost.
  • Fig. 6A is a schematic flowchart of a processing method applied to two-step random access shown in the first exemplary embodiment of the present disclosure.
  • the processing method provided in the present disclosure can be applied in the scenario of two-step random access.
  • the processing method provided by the present disclosure may include:
  • Step 601A send Msg A, and Msg A has a preamble containing device type identification information.
  • Step 602A receive Msg B.
  • the terminal device can report the device type through the preamble.
  • a preamble including device type identification information may be generated during random access, and the preamble is sent to the network device through Msg A.
  • the network device can also send Msg B to the terminal device in response to Msg A, and establish a connection with the terminal device.
  • Fig. 6B is a schematic flowchart of a processing method applied to two-step random access shown in the second exemplary embodiment of the present disclosure.
  • the processing method provided in the present disclosure can be applied in the scenario of two-step random access.
  • Step 601B send Msg A, and Msg A has PUSCH including device type identification information.
  • Step 602B receive Msg B.
  • the terminal device may report the device type through the PUSCH.
  • a PUSCH including device type identification information may be generated during random access, and the PUSCH is sent to the network device through Msg A.
  • the network device can also send Msg B to the terminal device in response to Msg A, and establish a connection with the terminal device.
  • Fig. 6C is a schematic flowchart of a processing method applied to two-step random access shown in the third exemplary embodiment of the present disclosure.
  • the processing method provided in the present disclosure can be applied in the scenario of two-step random access.
  • the processing method provided by the present disclosure may include:
  • Step 601C send Msg A, Msg A includes a preamble containing device type identification information and a PUSCH containing device type identification information.
  • Step 602C receive Msg B.
  • the terminal device may report the device type through preamble and PUSCH, which can improve the accuracy of the network device identifying the type of the terminal device.
  • a preamble and PUSCH including device type identification information may be generated, and the preamble and PUSCH are sent to the network device through Msg A.
  • both the preamble and the PUSCH include the device type of the terminal device.
  • the network device can also send Msg B to the terminal device in response to Msg A, and establish a connection with the terminal device.
  • Fig. 7A is a schematic flowchart of a processing method applied to four-step random access shown in the first exemplary embodiment of the present disclosure.
  • the processing method provided in the present disclosure can be applied in the scenario of four-step random access.
  • the processing method provided by the present disclosure may include:
  • Step 701A send Msg 1, which contains a preamble containing device type identification information.
  • Step 702A receiving Msg 2, which includes the preamble ID parsed by the base station, the UL Grant of the uplink resource authorization of Msg 3, the terminal temporary identifier TC_RNTI, and the timing advance TA.
  • Step 703A send Msg 3, first determine that the preamble ID received in Msg 2 is the same as the preamble ID sent by Msg 1, and then adjust the sending time of PUSCH according to the TA value carried in Msg 2, and then send PUSCH.
  • Step 704A receive Msg 4.
  • the terminal device may report the device type to the network device through a preamble.
  • the terminal device may generate or determine a preamble according to the device type, and the preamble includes device type identification information. Then send the preamble through Msg 1 to report the device type. The terminal device sends a random access request to the network device by sending Msg 1 to the network device.
  • the network device may also send Msg 2 to the terminal device, where Msg2 includes preamble_id, TC_RNTI and TA, so as to respond to the random access request of the terminal device.
  • the terminal device may also send Msg 3 to the network device, and Msg 3 may include PUSCH.
  • the network device can also send Msg 4 to the terminal device to establish a connection with the terminal device.
  • Fig. 7B is a schematic flowchart of a processing method applied to four-step random access shown in the second exemplary embodiment of the present disclosure.
  • the processing method provided in the present disclosure can be applied in the scenario of four-step random access.
  • Step 701B send Msg 1, and Msg 1 includes preamble.
  • Step 702B receiving Msg 2, which includes the preamble ID parsed by the base station, the UL Grant of the uplink resource authorization of Msg 3, the terminal temporary identifier TC_RNTI, and the timing advance TA.
  • Step 703B send Msg 3, first determine that the preamble ID received in Msg 2 is the same as the preamble ID sent by Msg1, then adjust the sending time of PUSCH according to the TA value carried in Msg2, and then send in Msg 3 a device type identification PUSCH INFORMATION.
  • Step 704B receive Msg 4.
  • the terminal device may report the device type to the network device through the PUSCH.
  • the terminal device may generate a preamble, and then send the preamble through Msg 1.
  • the method of generating the preamble is the same as the solution in the prior art.
  • the terminal device sends a random access request to the network device by sending Msg 1 to the network device.
  • the network device may also send Msg 2 to the terminal device, so as to respond to the random access request of the terminal device.
  • the terminal device may also generate or determine a PUSCH according to its own device type, and the generated or determined PUSCH includes device type identification information.
  • the terminal device sends the PUSCH including device type identification information to the network device through Msg 3 to report the device type.
  • the network device can also send Msg 4 to the terminal device to establish a connection with the terminal device.
  • Fig. 7C is a schematic flowchart of a processing method applied to four-step random access shown in the third exemplary embodiment of the present disclosure.
  • the processing method provided in the present disclosure can be applied in the scenario of four-step random access.
  • the processing method provided by the present disclosure may include:
  • Step 701C send Msg 1, which contains a preamble containing device type identification information.
  • Step 702C receiving Msg 2, which includes the preamble ID parsed by the base station, the UL Grant of the uplink resource authorization of Msg 3, the terminal temporary identifier TC_RNTI, and the timing advance TA.
  • Step 703C send Msg 3, determine that the preamble ID received in Msg 2 is the same as the preamble ID sent by Msg 1, then adjust the sending time of PUSCH according to the TA value carried in Msg 2, and then send in Msg 3 the device type PUSCH for identification information.
  • Step 704C receive Msg 4.
  • the terminal device may report the device type to the network device through preamble and PUSCH.
  • the terminal device may generate or determine a preamble according to the device type, and the preamble includes device type identification information. Then send the preamble through Msg 1 to report the device type. The terminal device sends a random access request to the network device by sending Msg 1 to the network device.
  • the network device may also send Msg 2 to the terminal device, so as to respond to the random access request of the terminal device.
  • the terminal device may also generate or determine a PUSCH according to its own device type, and the generated PUSCH includes device type identification information.
  • the terminal device sends the PUSCH including device type identification information to the network device through Msg 3 to report the device type.
  • the network device can also send Msg 4 to the terminal device to establish a connection with the terminal device.
  • the terminal device can report the device type to the network device through preamble and PUSCH, which can improve the accuracy of the network device in identifying the type of the terminal device.
  • the terminal device determines whether to select a two-step random access method or a four-step random access method to access the network based on the distance from the terminal to the cell site or the received signal strength (RSRP).
  • RSRP received signal strength
  • the preamble determined or generated by the terminal device may include device type identification information.
  • the network device can determine the type of the terminal device according to the device type identification information therein.
  • the device type identification information may be located in the GP in the preamble.
  • GP is a guard interval, and the GP in the prior art is not used to carry signaling data. Therefore, by adding device type identification information to the GP, the structure of the preamble can be made the same as that in the prior art.
  • the terminal equipment can report the equipment type identification information, and since the GP in the prior art is not used to carry signaling data, setting the equipment type identification information in the GP also It will not affect other data carried in the preamble.
  • FIGS. 8A-8C are schematic structural diagrams of a preamble shown in an exemplary embodiment of the present disclosure.
  • any preamble provided by the present disclosure includes three parts: CP 81, SEQ 82, and GP 83.
  • Device type identification information can be set in GP 83.
  • the preambles shown in FIGS. 8A-8C are only schematic expressions, and other forms of preambles can also be set according to requirements.
  • the device type identification information is located in a designated resource unit of the GP.
  • a resource unit may be specified in the GP in advance, so that the specified resource unit is used to place the device type identification information.
  • the network device and the terminal device may pre-agreed on a designated resource unit of the GP, so that the terminal device can set the device type identification information in the designated resource unit of the GP, so that the network device reads from the designated resource unit of the GP. Get device type identification information.
  • 9A-9C are schematic structural diagrams of a preamble including device type identification information shown in an exemplary embodiment of the present disclosure.
  • device type identification information can be set in the first resource unit 831 of the GP of the preamble.
  • the device type identification information may be set in the last resource unit 832 of the GP of the preamble.
  • device type identification information may be set in any resource unit 833 between the first resource unit and the last resource unit of the preamble.
  • any setting method of device type identification information can be applied to any type of preamble.
  • the device type identification information may be set in the first resource unit of the GP of the preamble as shown in FIG. 8B or FIG. 8C .
  • the device type identification information may be set in the last resource unit of the GP of the preamble as shown in FIG. 8A or FIG. 8C .
  • device type identification information may be set in any resource unit between the first resource unit and the last resource unit of the preamble as shown in FIG. 8A or FIG. 8B .
  • the random access preamble generated by the terminal device includes at least one of the following:
  • the third part is random access preamble.
  • the first part of preamble is used for contention-based random access.
  • the second part of preamble is used for non-contention based random access.
  • the third part of preamble is used for random access based on other purposes.
  • the number of preambles generated by the terminal device is 64.
  • the 64 preambles may include at least one of the above-mentioned first part preamble, second part preamble, and third part preamble.
  • the number of preambles generated by the terminal device may also be other preset fixed values.
  • the number of preambles may be determined according to the maximum number of terminals accommodated in the cell. For example, when the maximum number of terminals accommodated in the cell is 128, The number of preambles generated by the terminal is 128.
  • Fig. 10 is a schematic diagram showing at least one random access preamble according to an exemplary embodiment of the present disclosure.
  • the 0-3, 7-10, 14-17...49-52 preambles function as contention-based random access, and the 4-6, 11- 13.
  • the role of the 53-55 preambles is non-contention-based random access, and the role of the 56-63 preambles is random access based on other purposes.
  • any preamble among the 64 preambles corresponds to a corresponding SSB (Synchronization Signal Block, synchronization signal block).
  • SSB Synchronization Signal Block, synchronization signal block
  • the terminal device may determine the SSB, and then send the preamble corresponding to the SSB.
  • a PRACH (Physical Random Access Channel, Physical Random Access Channel) time slot may have multiple RO opportunities, and one RO opportunity occupies several symbols in the time domain and several subcarriers in the frequency domain.
  • An RO opportunity represents a time-frequency resource for preamble transmission.
  • Fig. 11 shows the association relationship between SSB and RO opportunities according to the first exemplary embodiment of the present disclosure.
  • a PRACH configuration period (PRACH configuration period) includes two PRACH time slots, and can include 4 RO opportunities in one PRACH time slot, where RO#0 and RO #1 occupies the same symbol, but occupies different subcarriers, RO#2 and RO#3 occupy the same symbols, but occupies different subcarriers. RO#0 and RO#2 occupy different symbols.
  • RO#0 is associated with SSB 0 and SSB1
  • RO#1 is associated with SSB 2 and SSB 3
  • RO#2 is associated with SSB 4 and SSB 5
  • RO#3 is associated with SSB 6 and SSB 7.
  • which preamble to send can be determined according to the SSB indicated by the network device, for example, which preamble to send can be determined in combination with the correspondence between the SSB and the preamble shown in FIG. 10 .
  • the RO opportunity for sending the preamble may also be selected according to the correspondence between the SSB and the RO opportunity.
  • Fig. 12 shows the association relationship between SSB and RO opportunities according to the second exemplary embodiment of the present disclosure.
  • a PRACH configuration period (PRACH configuration period) includes a PRACH slot, and can include 8 RO opportunities in a PRACH slot.
  • the RO opportunities located in the same row occupy the same frequency domain resources
  • the RO opportunities located in the same column occupy the same time domain resources.
  • SSB 0 corresponds to RO#0 and RO#1
  • SSB 1 corresponds to RO#2 and RO#3
  • SSB 8 corresponds to RO#4 and RO#5
  • SSB 9 corresponds to RO#6 and RO#7
  • SSB 16 Corresponds to RO#8 and RO#9
  • SSB 17 corresponds to RO#10 and RO#11
  • SSB 24 corresponds to RO#12 and RO#13
  • SSB 25 corresponds to RO#14 and RO#15
  • SSB 32 corresponds to RO #16 corresponds to RO#17
  • SSB 33 corresponds to RO#18 and RO#19.
  • the RO opportunity for sending the preamble may be selected according to the SSB indicated by the network device and the correspondence between the SSB and the RO opportunity.
  • the determined or generated PUSCH includes device type identification information, then:
  • the device type identification information may be located in the reserved time-frequency resource of PUSCH;
  • the device type identification information may also be located in the identity of the terminal device
  • the device type identification information may also be included in a scrambling sequence for scrambling the physical uplink shared channel.
  • the device type is reported through the PUSCH, then during the four-step random access, determine or generate the PUSCH, including at least one of the following:
  • the PUSCH is scrambled using a scrambling sequence corresponding to the device type identification information.
  • At least one of the above-mentioned implementation methods may be used to report the device type through the PUSCH, or to report the device type through the PUSCH and preamble.
  • the device type is reported through the PUSCH, then during the two-step random access, determine or generate the PUSCH, including at least one of the following:
  • the PUSCH is scrambled using a scrambling sequence corresponding to the device type identification information.
  • At least one of the above implementation methods may be used to report the device type through the PUSCH, or to report the device type through the PUSCH and preamble.
  • the terminal device when the terminal device adds device type identification information to the reserved time-frequency resource position of the PUSCH, it may specifically determine the reserved time-frequency resource position of the PUSCH according to a preset mapping formula, and then add Device type identification information.
  • the preset mapping formula includes a frequency domain mapping formula and a time domain mapping formula.
  • the frequency domain mapping formula is used to determine the frequency domain position where the device type identification information is added in the PUSCH
  • the time domain mapping formula is used to determine the time domain position where the device type identification information is added to the PUSCH.
  • the terminal device can determine the frequency domain position of the device type identification information in the bandwidth part occupied by the PUSCH according to the frequency domain mapping formula, and determine the time domain position of the device type identification information in the time slot occupied by the PUSCH according to the time domain mapping formula .
  • the frequency domain position of the device type identification information may be determined in the bandwidth part occupied by the PUSCH based on the following formula:
  • k takes any value from 0-11, The number of RBs available in the bandwidth portion occupied by PUSCH.
  • k in the above formula can take any two values from 0 to 11.
  • the time domain position of the device type identification information may be determined in the time slot occupied by the PUSCH based on the following formula:
  • l l 0 +m; m is a random integer, I ⁇ 13, and l 0 is the index of the first symbol occupied by the PUSCH in the time slot.
  • mapping formula used to determine other time-domain positions needs to be redefined with rules.
  • Fig. 13 is a time-frequency resource diagram showing an exemplary embodiment of the present disclosure.
  • frequency domain resources are represented vertically, and time-frequency resources are represented horizontally.
  • one RB in the frequency domain and one symbol in the time domain are used as an example to illustrate resource positions reserved for device type identification information in each RB occupied by the PUSCH.
  • the determined reserved time-frequency resource position cannot overlap with the position of the DMRS (Demodulation Reference Signal, demodulation reference signal) in the PUSCH, and the determined reserved time-frequency resource position cannot overlap with the SRS (SRS) in the PUSCH Sounding Reference Signal, channel sounding reference signal) where the positions overlap.
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • SRS SRS
  • the terminal is a normal device, do not perform any operation on the reserved resource position in PUSCH that meets the above mapping conditions; if the terminal is a Redcap device, place ZC sequence or PN or Walsh sequence for type identification.
  • This method can be applied in the application scenario of PUSCH transmission in the four-step random access process, refer to FIG. 14A for details, and can also be applied in the application scenario of PUSCH transmission in the two-step random access process, and refer to FIG. 14B for details.
  • Fig. 14A is a schematic flowchart of a processing method applied to four-step random access shown in a fourth exemplary embodiment of the present disclosure.
  • the processing method provided by the present disclosure includes:
  • Step 1401A send Msg 1.
  • Step 1402A receiving Msg2, which includes the preamble ID analyzed by the base station, the UL Grant of the uplink resource authorization of Msg3, the terminal temporary identifier TC_RNTI, and the timing advance TA.
  • Step 1403A send Msg 3, determine that the preamble ID received in Msg 2 is the same as the preamble ID sent by Msg 1, and then adjust the sending time of PUSCH according to the TA value carried by Msg 2; Msg 3 has a device type identification information For PUSCH, the device type identification information is located at the reserved time-frequency resource position of PUSCH.
  • Step 1404A receive Msg4.
  • the reserved time-frequency resource position of the PUSCH can be determined according to a preset time-frequency domain mapping formula; a ZC or PN or Walsh sequence used for device type identification is placed at the reserved time-frequency resource position.
  • the frequency domain position of the device type identification information may be determined in the bandwidth part occupied by the PUSCH according to the frequency domain mapping formula, and the time domain position of the device type identification information may be determined in the time slot occupied by the PUSCH according to the time domain mapping formula; Then determine the reserved time-frequency resource position in the PUSCH according to the frequency domain position and the time domain position; wherein, the reserved time-frequency resource position does not overlap with the position where the DMRS is located in the PUSCH, and the reserved time-frequency resource position is the same as the position where the SRS is located in the PUSCH The positions do not overlap.
  • Fig. 14B is a schematic flowchart of a processing method applied to two-step random access shown in the fourth exemplary embodiment of the present disclosure.
  • the processing method provided by the present disclosure includes:
  • Step 1401B send Msg A, Msg A has a PUSCH containing device type identification information, and the device type identification information is located at the reserved time-frequency resource position of the PUSCH.
  • Step 1402B receive Msg B.
  • the reserved time-frequency resource position of the PUSCH may be determined according to a preset time-frequency domain mapping formula; a ZC or PN or Walsh sequence used for device type identification is placed at the reserved time-frequency resource position.
  • the frequency domain position of the device type identification information may be determined in the bandwidth part occupied by the PUSCH according to the frequency domain mapping formula, and the time domain position of the device type identification information may be determined in the time slot occupied by the PUSCH according to the time domain mapping formula; Then determine the reserved time-frequency resource position in the PUSCH according to the frequency domain position and the time domain position; wherein, the reserved time-frequency resource position does not overlap with the position where the DMRS is located in the PUSCH, and the reserved time-frequency resource position is the same as the position where the SRS is located in the PUSCH The positions do not overlap.
  • the terminal device adds device type identification information to the identity in the PUSCH
  • the value of the device type identification information in the PUSCH is Msg 2 issued the first identity
  • the terminal device is a light-capable device
  • the value of the device type identification information in the PUSCH is the second identity.
  • the first identity is the TC-RNTI issued by Msg 2
  • the second identity is the sum of the TC-RNTI issued by Msg 2 and delta
  • the value of delta can be a fixed value or an RRC parameter
  • the optional range of configuration values, and the value of delta must be greater than 65522 to ensure that it is distinguished from other normal devices.
  • the network device can use the first identity to perform descrambling. If the descrambling is successful, it can determine that the terminal device is an ordinary device. Set the offset parameter delta to obtain the second identity of the terminal device, and use the second identity to descramble the PUSCH. If the descrambling is successful, it is determined that the terminal device is a Redcap device.
  • the terminal device can generate the scrambling sequence C init according to the following formula:
  • n RNTI is the first identity assigned in Msg 2 sent by the network device to the terminal device, and if the terminal device is a Redcap device, then n RNTI is the second identity.
  • this implementation manner may be applied in an application scenario of four-step random access, specifically refer to FIG. 15 .
  • Fig. 15 is a schematic flowchart of a processing method applied to four-step random access shown in a fifth exemplary embodiment of the present disclosure.
  • the processing method provided by the present disclosure includes:
  • Step 1501 send Msg 1.
  • Step 1502 receiving Msg 2, which includes the preamble ID parsed by the base station, the UL Grant of the uplink resource authorization of Msg 3, the terminal temporary identifier TC_RNTI, and the timing advance TA.
  • Step 1503 send Msg 3, determine that the preamble ID received in Msg 2 is the same as the preamble ID sent by Msg 1, then adjust the sending time of PUSCH according to the TA value carried by Msg 2, and send PUSCH;
  • Msg 3 contains PUSCH with identity identification, wherein, if the terminal device is a common device, the identity in PUSCH is TC_RNTI, and if the terminal device is a light-capable device, the identity in PUSCH is the second identity; the second identity is TC_RNTI and Addition of deltas.
  • Step 1504 receive Msg 4.
  • the TC_RNTI can be used to generate a scrambling sequence, and then the PUSCH can be scrambled by using the scrambling sequence.
  • the identity in the PUSCH has the device type identification information corresponding to the ordinary device.
  • the second identity can be used to generate a scrambling sequence, and then the scrambling sequence is used to scramble the PUSCH.
  • the identity in the PUSCH has a device type identification corresponding to the Redcap device type information.
  • the second identity is the sum of TC_RNTI and delta.
  • the terminal device uses the scrambling sequence corresponding to the device type to scramble the PUSCH
  • the terminal device is an ordinary device
  • the terminal device is a Redcap device
  • Two scrambling sequences scramble the PUSCH, and the second scrambling sequence is the sum of the first scrambling sequence and a preset offset.
  • the network device uses the first scrambling sequence to descramble the PUSCH. If the descrambling is successful, it determines that the terminal device is an ordinary device; if the descrambling fails, it uses the second scrambling sequence to descramble the PUSCH. If the descrambling is successful, it is determined that the terminal device is a Redcap device.
  • the terminal device can determine the scrambling sequence based on the following formula:
  • n RNTI in four-step random access TC-RNTI, issued by Msg 2; delta is the preset offset, and the value of delta can be a fixed value, or an optional range value for RRC parameter configuration, delta The value of must be greater than the hexadecimal number FFF2042B.
  • the terminal device can determine the scrambling sequence C init based on the following formula:
  • This method can be applied in the application scenario of four-step random access, refer to FIG. 16A for details, and can also be applied in the application scenario of two-step random access, refer to FIG. 16B for details.
  • Fig. 16A is a schematic flowchart of a processing method applied to four-step random access shown in the sixth exemplary embodiment of the present disclosure.
  • the processing method provided by the present disclosure includes:
  • Step 1601A send Msg 1.
  • Step 1602A receive Msg 2, which includes the preamble ID parsed by the base station, the UL Grant of the uplink resource authorization of Msg 3, the terminal temporary identifier TC_RNTI, and the timing advance TA.
  • Step 1603A send Msg 3, determine that the preamble ID received in Msg 2 is the same as the preamble ID sent by Msg 1, and then adjust the sending time of PUSCH according to the TA value carried by Msg 2, and send PUSCH;
  • the scrambling sequence is scrambled; wherein, if the terminal device is a common device, the scrambling sequence is the first scrambling sequence, and if the terminal device is a Redcap device, the scrambling sequence is the second scrambling sequence.
  • Step 1604A receive Msg 4.
  • Msg 2 may include the identity identifier TC_RNTI assigned by the network device to the terminal device.
  • the terminal device uses the first scrambling sequence to scramble the PUSCH.
  • the PUSCH sent by the terminal device has device type identification information corresponding to the common device.
  • the first scrambling sequence may be determined based on the following formula:
  • the terminal device can determine the second scrambling sequence based on the following formula, and then use the second scrambling sequence to scramble the PUSCH:
  • C init n RNTI ⁇ 2 16 +n ID +delta.
  • Fig. 16B is a schematic flowchart of a processing method applied to two-step random access shown in the fifth exemplary embodiment of the present disclosure.
  • the processing method provided by the present disclosure includes:
  • Step 1601B send Msg A, Msg A has a PUSCH scrambled with a scrambling sequence; wherein, if the terminal device is a common device, the scrambling sequence is the first scrambling sequence, and if the terminal device is a Redcap device, then scrambling The sequence is the second scrambling sequence.
  • Step 1602B receive Msg B.
  • the terminal device may obtain an identity, and use the identity to generate a scrambling sequence.
  • the terminal device uses the first scrambling sequence to scramble the PUSCH.
  • the PUSCH sent by the terminal device has device type identification information corresponding to the common device.
  • the first scrambling sequence may be determined based on the following formula:
  • C init n RNTI ⁇ 2 16 + n RAPID ⁇ 2 10 + n ID ;
  • the terminal device can determine the second scrambling sequence based on the following formula, and then use the second scrambling sequence to scramble the PUSCH:
  • C init n RNTI ⁇ 2 16 + n RAPID ⁇ 2 10 + n ID + delta.
  • Fig. 17 is a schematic flowchart of a processing method shown in the second exemplary embodiment of the present disclosure.
  • the terminal device may also receive a system message from the network side, and the system message is used to indicate the device type to be reported through preamble and/or PUSCH.
  • Step 1701 receiving a system message, and determining according to the system message that the device type is reported through a random access preamble and/or a physical uplink shared channel.
  • the network side may send a system message to the terminal device, and the system message may be, for example, a SIB (System Information Block, system information block), or a MIB (Master Information Block, master system information block).
  • SIB System Information Block, system information block
  • MIB Master Information Block, master system information block
  • the specific manner may include reporting through the preamble, may also include reporting through the PUSCH, and may also report through the preamble and the PUSCH at the same time.
  • the terminal device After receiving the system message, the terminal device can determine the method of reporting the device type according to the system message. For example, a bit used to indicate the reporting mode of the device type may be added to the system message, and the terminal device determines the reporting mode of the device type by obtaining information in the corresponding bit.
  • the terminal device does not need to report the device type during random access. If the bit used to indicate the reporting mode of the device type is 01, the device type is reported through the preamble. If the bit used to indicate the reporting mode of the device type is 10, the device type is reported through the PUSCH. If the bit used to indicate the reporting mode of the device type is 11, the device type is reported through the preamble and the PUSCH at the same time.
  • Step 1702 if the system message indicates that the device type is reported through the random access preamble, then during random access, determine or generate the random access preamble; if the system message indicates that the device type is reported through the physical uplink shared channel, then in During random access, determine or generate a physical uplink shared channel.
  • the terminal device if the system message indicates that the terminal device reports the device type through the preamble, the terminal device generates or determines a preamble including device type identification information, and if the system message indicates that the terminal device reports the device type through the PUSCH, the terminal device generates or determines the PUSCH for type identification information.
  • the terminal device reports the device type by sending the preamble that includes the device type identification information in Msg A; if the system message indicates that the terminal device reports the device type through the preamble PUSCH reports the device type, then the terminal device reports the device type by sending PUSCH that includes the device type identification information in Msg A; if the system message indicates that the device type is reported through preamble and PUSCH at the same time, the terminal device sends Msg A that includes the device type identification information The preamble and the PUSCH including the device type identification information report the device type.
  • the terminal device reports the device type by sending the preamble that includes the device type identification information in Msg 1; if the system message indicates that the device type is reported through the PUSCH , the terminal device reports the device type by sending PUSCH that includes device type identification information in Msg 3; if the system message indicates that the device type is reported through preamble and PUSCH, the terminal device sends the preamble that includes device type identification information in Msg 1, and sends Msg 3 includes the PUSCH of the device type identification information, and reports the device type.
  • the network device may send the device type identification result to the UE.
  • the device sending type identification result can be sent to the UE through Msg B or Msg 2.
  • the UE determines whether to report the device type identification information again through the PUSCH.
  • a type identification field can be added to the DCI (Downlink Control Information, downlink control information) of Msg 2 or Msg B, and the UE parses the bit value of the newly added type identification field in the DCI to determine the device type identification of the network device result. For example, if the bit in the type identification field is 1, the representative network device determines that the UE is a Redcap device; if the bit in the type identification field is 0, the representative network device determines that the UE is a common type of device.
  • DCI Downlink Control Information, downlink control information
  • the UE can obtain the device type identification result from Msg 2, for example, the device type identification result can be obtained from the DCI of Msg 2.
  • the device type identification result may be obtained from the DCI of Msg B.
  • the UE will no longer report the device type identification information through the PUSCH again, In order to save PUSCH transmission resources and reduce PUSCH resource collisions; and/or, if the device type identification result of the network device is inconsistent with the device type of the UE and the PUSCH type identification reporting mechanism is enabled in the system message or high-level signaling, the UE passes the PUSCH again Report the device type identification information to increase the reliability of the network side for UE type identification.
  • the network device can add the device type identification result in Msg B.
  • the device type reported by the UE through the preamble of Msg A is a common type, and the information carried in the DCI of Msg B indicates that the device type identification result on the network side is Redcap type, then the UE reports the device type identification again by retransmitting Msg A information.
  • the device type reported by the UE through the preamble of Msg A is a common type, and the information carried in the DCI of Msg B indicates that the device type identification result on the network side is a common type, so the UE does not retransmit Msg A.
  • the device type reported by the UE through the preamble of Msg A is Redcap type, and the information carried in the DCI of Msg B indicates that the device type identification result on the network side is Redcap type, then the UE does not retransmit Msg A.
  • the device type reported by the UE through the preamble of Msg A is the Redcap type, and the information carried in the DCI of Msg B indicates that the device type identification result on the network side is a common type, then the UE reports the device type identification information again by retransmitting Msg A.
  • the network device when the network device performs random access configuration, it can configure two sets of RO opportunities with different times but effective at the same time for the UE, so as to meet the requirement of the UE to be able to retransmit Msg A.
  • the network device may add the device type identification result in Msg 2.
  • the device type reported by the UE through the preamble is a common type, and the information carried in the DCI indicates that the device type identification result on the network side is the Redcap type, then the UE reports the device type identification information again through the PUSCH of Msg 3;
  • the device type reported by the UE through the preamble is a common type, and the information carried in the DCI indicates that the device type identification result on the network side is a common type, so the UE does not report the device type identification information again through the PUSCH of Msg 3;
  • the device type reported by the UE through the preamble is the Redcap type, and the information carried in the DCI indicates that the device type identification result on the network side is the Redcap type, so the UE does not report the device type identification information again through the PUSCH of Msg 3;
  • the device type reported by the UE through the preamble is the Redcap type, and the information carried in the DCI indicates that the device type identification result on the network side is a common type, so the UE reports the device type identification information again through the PUSCH of Msg 3.
  • Step 1703 sending the random access preamble and/or the physical uplink shared channel.
  • the terminal device may send a preamble and/or PUSCH to the network device, and the preamble and/or PUSCH includes device type identification information, so the terminal device can report the device type.
  • Fig. 18 is a schematic flowchart of a processing method shown in a third exemplary embodiment of the present disclosure.
  • the terminal device may also receive a system message from the network side, where the system message is used to indicate whether to allow the Redcap device to access.
  • the system message is used to indicate whether the Redcap device is allowed to access, and is also used to indicate that the random access preamble and/or physical uplink
  • the link sharing channel reports the device type.
  • Step 1801 Receive a system message, and the system message includes information about whether to allow light-capable devices to access.
  • the network device may broadcast a system message, and the terminal device may receive the system message.
  • the MIB Master Information Block, main system information block
  • the SIB System Information Block, system information block
  • the DCI or RRC signaling that schedules the SIB contains information about whether to allow the Redcap device to access.
  • information about whether Redcap devices are allowed to access can also be carried in other high-level signaling, and the terminal device can obtain information about which capabilities of devices are allowed to access by analyzing the signaling. For example, if the indication bit used to indicate whether to allow Redcap device access is 1, it means that Redcap device access is allowed, and/or, if the indication bit used to indicate whether Redcap device access is allowed is 0, it means that Redcap device access is not allowed. Device access. For another example, if the indicated bit is 00, it means that any type of device cannot be connected; when the indicated bit is 01, it means that ordinary equipment can be connected; when the indicated bit is 10, it means that Redcap devices can be connected; All Redcap devices can be connected.
  • the terminal equipment can choose the access method according to the specific scenario of the current service, such as a smart meter, then use
  • the type of redcap device is connected, such as a voice call, it is connected as a normal device.
  • the network device and the terminal device may agree in advance which resource to use in the system message to indicate whether the Redcap device is allowed to access, so that after receiving the system message, the terminal device can obtain indication information from corresponding signaling to determine Whether the network device allows the Redcap device to access.
  • Step 1802 when at least one of the following is satisfied, during random access, determine or generate a random access preamble and/or a physical uplink shared channel: if the terminal device is a lightweight capability device, and the system message characterization allows the lightweight capability device access; or if the terminal device has the capabilities of light-capable devices and ordinary devices, the terminal device accesses the network with ordinary device capabilities, and the system message indicates that light-capable devices are not allowed to access and ordinary devices are allowed to access; or if The terminal device is an ordinary device, and the system message indicates that ordinary devices are allowed to access.
  • the terminal device may specifically determine whether to access the network according to the system message when it needs to perform a random access procedure.
  • the terminal device may determine or generate a preamble, and/or determine or generate a PUSCH; if the terminal device determines that it cannot access the network according to the system message, the terminal device may not determine or generate a preamble, Also unsure or not generating PUSCH.
  • the terminal device determines or generates a preamble and/or a PUSCH.
  • the terminal device determines or generates a preamble and/or PUSCH.
  • the terminal device determines or generates a preamble and/or PUSCH.
  • the preamble and/or PUSCH of the terminal device includes device type identification information of the terminal device, which may specifically be device type identification information corresponding to common devices.
  • the terminal device will not generate or determine the preamble and/or PUSCH.
  • Step 1803 sending a random access preamble and/or if sending a physical uplink shared channel.
  • the terminal device may determine or generate a preamble and/or PUSCH, and send the preamble and/or PUSCH to the network device; wherein, the preamble and/or PUSCH include The device type identification information of the terminal device, therefore, the device type can be reported in this way.
  • Fig. 19 is a schematic flowchart of a processing method shown in a fourth exemplary embodiment of the present disclosure.
  • the processing method provided in the present disclosure can be applied to a terminal device having the capabilities of a light-capable device and an ordinary device. During random access, the terminal device can choose which role to use to access the network based on service requirements.
  • the solution provided in this embodiment can be applied to any of the above embodiments.
  • the processing method provided by the present disclosure includes:
  • Step 1901 Determine or generate a random access preamble and/or a physical uplink shared channel, where the random access preamble and/or the physical uplink shared channel include a device type determined according to service requirements.
  • the terminal device when it determines or generates the preamble and/or PUSCH, it may determine the device type according to service requirements. Specifically, it is possible to determine which type of network device to access according to service requirements to be processed, and determine or generate a preamble and/or PUSCH corresponding to the device type. For example, if the terminal device determines to access the network device as a common device type, the determined or generated preamble and/or PUSCH includes device type identification information corresponding to the common device. If the terminal device determines to access the network device as a Redcap device, the determined or generated preamble and/or PUSCH includes device type identification information corresponding to the Redcap device.
  • the device type of the terminal device does not change during one access to the network, but may change its device type during multiple accesses to the network based on business requirements.
  • the device type selected in the first network access process is different from the second network access process.
  • Step 1902 sending a random access preamble and/or if sending a physical uplink shared channel.
  • Fig. 20 is a schematic flowchart of a processing method shown in a fifth exemplary embodiment of the present disclosure.
  • the processing method provided by the present disclosure includes:
  • Step 2001 receiving system information, and determining the method of reporting the device type according to the system information; the method includes reporting the device type through the random access preamble and/or reporting the device type through the physical uplink shared channel.
  • the network device may broadcast a system message, where the system message is used to instruct the terminal device in what manner to report the device type.
  • the system information may be, for example, a SIB (System Information Block, system information block), and may also be a MIB (Master Information Block, main system information block).
  • SIB System Information Block, system information block
  • MIB Master Information Block, main system information block
  • the system message can be used to instruct the terminal device how to report the device type.
  • the specific manner may include reporting through the preamble, may also include reporting through the PUSCH, and may also include reporting through the preamble and the PUSCH simultaneously.
  • the terminal device After receiving the system message, the terminal device can determine the method of reporting the device type according to the system message. For example, a bit used to indicate the reporting mode of the device type may be added to the system message, and the terminal device determines the reporting mode of the device type by obtaining information in the corresponding bit.
  • the terminal device does not need to report the device type during random access. If the bit used to indicate the reporting mode of the device type is 01, the device type is reported through the preamble. If the bit used to indicate the reporting mode of the device type is 10, the device type is reported through the PUSCH. If the bit used to indicate the reporting mode of the device type is 11, the device type is reported through the preamble and PUSCH.
  • Step 2002 during random access, report the device type according to the determined method of reporting the device type.
  • the terminal device If the system information indicates that the device type is reported through the preamble, during random access, the terminal device generates or determines a preamble including device type identification information, and sends the preamble to the network device, thereby reporting the device type.
  • the terminal device If the system information indicates that the device type is reported through the PUSCH, during random access, the terminal device generates or determines a PUSCH including device type identification information, and sends the PUSCH to the network device, thereby reporting the device type.
  • the terminal device If the system message indicates that the device type is reported through the preamble and PUSCH, then during random access, the terminal device generates or determines the preamble including the device type identification information and the PUSCH including the device type identification information, and sends the preamble and PUSCH to the network device, thereby Report the device type.
  • the processing method provided by the embodiment of this application enables the network device to know the type of the terminal device by sending the preamble and/or PUSCH including the device type information. Occupying additional random access opportunities can achieve the purpose of distinguishing terminal device types with a small communication cost.
  • Fig. 21 is a schematic flowchart of a processing method shown in a sixth exemplary embodiment of the present disclosure.
  • the processing method provided by the present disclosure includes:
  • Step 2101 obtain preset indication information in the system message, and determine the device type reported through the random access preamble and/or the device type reported through the physical uplink shared channel according to the preset indication information.
  • bits may be preset in the system message to carry preset indication information.
  • the network device can send the system message. After the terminal device receives the system message, it can obtain the preset indication information from the preset bit of the system message, and then determine the device type and/or PUSCH report device through the preamble according to the preset indication information. type.
  • 2 bits may be set in the system message to carry preset indication information.
  • the preset indication information may be, for example, 00, 01, 10, 11 and so on.
  • Step 2102 determine or generate a random access preamble and/or a physical uplink shared channel.
  • the terminal device may generate a preamble including device type identification information; if it is determined to report the device type through PUSCH according to the preset indication information, the terminal device may generate a preamble including device type PUSCH for type identification information. If it is determined according to the preset indication information that the device type is reported through the preamble and the PUSCH, the terminal device may generate the preamble and the PUSCH including the device type identification information.
  • a preamble and a PUSCH may be generated when sending Msg A, and the generated preamble and/or PUSCH may carry device type identification information.
  • a preamble can be generated when sending Msg 1
  • a PUSCH can be generated when sending Msg 3
  • the generated preamble and/or PUSCH can carry device type identification information.
  • Step 2103 if the random access preamble is determined or generated, send the random access preamble, and/or, if the physical uplink shared channel is determined or generated, send the physical uplink shared channel.
  • the terminal device may send the preamble to the network device, so as to report the device type. If the terminal device determines or generates the PUSCH including the device type identification information, it may send the PUSCH to the network device to report the device type.
  • the solution provided in the present disclosure can be applied in the application scenario of four-step random access, and can also be applied in the application scenario of two-step random access.
  • the random access preamble is sent through message A, and/or if the physical uplink link shared channel, then send the physical uplink shared channel through message A;
  • the random access preamble if the random access preamble is determined or generated, send the random access preamble through message 1 and/or if the physical uplink If the physical uplink shared channel is used, the physical uplink shared channel is sent through message 3.
  • the processing method provided in the present disclosure can be applied in a two-step random access scenario.
  • a terminal device can select a two-step random access method or a four-step random access method to access the network according to configuration information of the network device.
  • the processing method provided in the present disclosure can be applied in the scenario of two-step random access, and can specifically include:
  • Send Msg A, Msg A has a preamble containing device type identification information.
  • the terminal device can report the device type through the preamble.
  • a preamble including device type identification information may be generated during random access, and the preamble is sent to the network device through Msg A.
  • the network device can also send Msg B to the terminal device in response to Msg A, and establish a connection with the terminal device.
  • the processing method provided in this disclosure can be applied in the scenario of two-step random access, and can specifically include:
  • Send Msg A, Msg A has a PUSCH containing device type identification information.
  • the terminal device may report the device type through the PUSCH.
  • a PUSCH including device type identification information may be generated during random access, and the PUSCH is sent to the network device through Msg A.
  • the terminal device may report the device type through the PUSCH.
  • a PUSCH including device type identification information may be generated during random access, and the PUSCH is sent to the network device through Msg A.
  • the network device can also send Msg B to the terminal device in response to Msg A, and establish a connection with the terminal device.
  • the processing method provided in the present disclosure can be applied in the scenario of two-step random access, specifically including:
  • Send Msg A, Msg A includes preamble containing device type identification information and PUSCH containing device type identification information.
  • the terminal device may report the device type through preamble and PUSCH, which can improve the accuracy of the network device identifying the type of the terminal device.
  • a preamble and PUSCH including device type identification information may be generated, and the preamble and PUSCH are sent to the network device through Msg A.
  • both the preamble and the PUSCH include the device type of the terminal device.
  • the network device can also send Msg B to the terminal device in response to Msg A, and establish a connection with the terminal device.
  • the processing method provided in this disclosure can be applied in the scenario of four-step random access, specifically including:
  • Msg 1 has a preamble containing device type identification information.
  • Receive Msg 2 which contains the preamble ID parsed by the base station, the UL Grant of the uplink resource authorization of Msg 3, the terminal temporary identifier TC_RNTI, and the timing advance TA. .
  • the terminal device may report the device type to the network device through a preamble.
  • the terminal device may generate or determine a preamble according to the device type, and the preamble includes device type identification information. Then send the preamble through Msg 1 to report the device type. The terminal device sends a random access request to the network device by sending Msg 1 to the network device.
  • the network device may also send Msg 2 to the terminal device, where Msg2 includes preamble_id, TC_RNTI and TA, so as to respond to the random access request of the terminal device.
  • the terminal device may also send Msg 3 to the network device, and Msg 3 may include PUSCH.
  • the network device can also send Msg 4 to the terminal device to establish a connection with the terminal device.
  • the processing method provided in this disclosure can be applied in the scenario of four-step random access, specifically including:
  • Msg 1 includes preamble.
  • Receive Msg 2 which contains the preamble ID parsed by the base station, the UL Grant of the uplink resource authorization of Msg 3, the terminal temporary identifier TC_RNTI, and the timing advance TA.
  • the terminal device may report the device type to the network device through the PUSCH.
  • the terminal device may generate a preamble, and then send the preamble through Msg 1.
  • the method of generating the preamble is similar to the solution in the prior art.
  • the terminal device sends a random access request to the network device by sending Msg 1 to the network device.
  • the network device may also send Msg 2 to the terminal device, so as to respond to the random access request of the terminal device.
  • the terminal device may also generate or determine a PUSCH according to its own device type, and the generated PUSCH includes device type identification information.
  • the terminal device sends the PUSCH including device type identification information to the network device through Msg 3.
  • the network device can also send Msg 4 to the terminal device to establish a connection with the terminal device.
  • the processing method provided in this disclosure can be applied in the scenario of four-step random access, specifically including:
  • Msg 1 has a preamble containing device type identification information.
  • Receive Msg 2 which contains the preamble ID parsed by the base station, the UL Grant of the uplink resource authorization of Msg 3, the terminal temporary identifier TC_RNTI, and the timing advance TA.
  • Send Msg 3 make sure that the preamble ID received in Msg 2 is the same as the preamble ID sent by Msg 1, then adjust the sending time of PUSCH according to the TA value carried in Msg2, and then send PUSCH containing device type identification information in Msg 3 .
  • the terminal device may report the device type to the network device through preamble and PUSCH.
  • the terminal device may generate or determine a preamble according to the device type, and the preamble includes device type identification information. Then send the preamble through Msg 1 to report the device type. The terminal device sends a random access request to the network device by sending Msg 1 to the network device.
  • the network device may also send Msg 2 to the terminal device, so as to respond to the random access request of the terminal device.
  • the terminal device may also generate or determine a PUSCH according to its own device type, and the generated PUSCH includes device type identification information.
  • the terminal device sends the PUSCH including device type identification information to the network device through Msg 3.
  • the network device can also send Msg 4 to the terminal device to establish a connection with the terminal device.
  • the terminal device can report the device type to the network device through preamble and PUSCH, which can improve the accuracy of the network device in identifying the type of the terminal device.
  • the terminal device determines whether to select a two-step random access method or a four-step random access method to access the network based on the distance from the terminal to the cell site or the received signal strength (RSRP).
  • RSRP received signal strength
  • the preamble determined or generated by the terminal device may include device type identification information.
  • the network device can determine the type of the terminal device according to the device type identification information therein.
  • the device type identification information may be located in the GP in the preamble.
  • GP is a guard interval, and the GP in the prior art is not used to carry signaling data. Therefore, by adding device type identification information to the GP, the structure of the preamble can be made the same as that in the prior art.
  • the terminal equipment can report the equipment type identification information, and since the GP in the prior art is not used to carry signaling data, setting the equipment type identification information in the GP also It will not affect other data carried in the preamble.
  • Any preamble provided in this disclosure includes three parts: CP, SEQ, and GP.
  • the device type identification information can be set in the GP.
  • the device type identification information is located in a designated resource unit of the GP.
  • a resource unit may be specified in the GP in advance, so that the specified resource unit is used to place the device type identification information.
  • the network device and the terminal device may pre-agreed on a designated resource unit of the GP, so that the terminal device can set the device type identification information in the designated resource unit of the GP, so that the network device reads from the designated resource unit of the GP. Get device type identification information.
  • the device type identification information can be set in the first resource unit of the GP of the preamble.
  • the device type identification information can be set in the last resource unit of the GP of the preamble.
  • the device type identification information can be set in any resource unit between the first resource unit and the last resource unit of the preamble.
  • any setting method of device type identification information can be applied to any type of preamble.
  • the random access preamble generated by the terminal device includes at least one of the following:
  • the third part is random access preamble.
  • the first part of the preamble is used for contention-based random access.
  • the second part preamble is used for non-contention based random access.
  • the third part preamble is used for random access based on other purposes.
  • the number of preambles generated by the terminal device is 64.
  • the 64 preambles may include at least one of the above-mentioned first part preamble, second part preamble, and third part preamble.
  • the number of preambles generated by the terminal device may also be other preset fixed values.
  • the number of preambles may be determined according to the maximum number of terminals accommodated in the cell. For example, when the maximum number of terminals accommodated in the cell is 128, The number of preambles generated by the terminal is 128.
  • the 0-3, 7-10, 14-17...49-52 preambles function as contention-based random access
  • the 4-6, 11-13 The role of the 53-55 preambles is non-contention based random access, and the role of the 56th-63rd preamble is random access based on other purposes.
  • each preamble in the 64 preambles corresponds to a corresponding SSB (Synchronization Signal Block, synchronization signal block).
  • SSB Synchronization Signal Block, synchronization signal block
  • the terminal device may determine the SSB, and then send the preamble corresponding to the SSB.
  • a PRACH (Physical Random Access Channel, Physical Random Access Channel) time slot may have multiple RO opportunities, and one RO opportunity occupies several symbols in the time domain and several subcarriers in the frequency domain.
  • An RO opportunity represents a time-frequency resource for preamble transmission.
  • a PRACH configuration period includes two PRACH slots, and can include 4 RO opportunities in a PRACH slot, where RO#0 and RO#1 occupy the same symbols, but occupy different subcarriers, RO #2 and RO#3 occupy the same symbols, but occupy different subcarriers. RO#0 and RO#2 occupy different symbols. # Index used to characterize RO opportunities.
  • RO#0 is associated with SSB 0 and SSB 1
  • RO#1 is associated with SSB 2 and SSB 3
  • RO#2 is associated with SSB 4 and SSB 5
  • RO#3 is associated with SSB 6 and SSB 7.
  • which preamble to send can be determined according to the SSB indicated by the network device, for example, which preamble to send can be determined in combination with the correspondence between the SSB and the preamble.
  • the RO opportunity for sending the preamble may also be selected according to the correspondence between the SSB and the RO opportunity.
  • one PRACH configuration period includes one PRACH slot, and one PRACH slot may include 8 RO opportunities.
  • SSB 0 corresponds to RO#0 and RO#1
  • SSB 1 corresponds to RO#2 and RO#3
  • SSB 8 corresponds to RO#4 and RO#5
  • SSB 9 corresponds to RO#6 and RO#7
  • SSB 16 Corresponds to RO#8 and RO#9
  • SSB 17 corresponds to RO#10 and RO#11
  • SSB 24 corresponds to RO#12 and RO#13
  • SSB 25 corresponds to RO#14 and RO#15
  • SSB 32 corresponds to RO #16 corresponds to RO#17
  • SSB 33 corresponds to RO#18 and RO#19.
  • the RO opportunity for sending the preamble may be selected according to the SSB indicated by the network device and the correspondence between the SSB and the RO opportunity.
  • the determined or generated PUSCH includes device type identification information, then:
  • the device type identification information may be located in the reserved time-frequency resource of PUSCH;
  • the device type identification information may also be located in the identity of the terminal device
  • the device type identification information may also be included in a scrambling sequence for scrambling the physical uplink shared channel.
  • the device type is reported through the PUSCH, then during the four-step random access, determine or generate the PUSCH, including at least one of the following:
  • the PUSCH is scrambled using a scrambling sequence corresponding to the device type identification information.
  • At least one of the above-mentioned implementation methods may be used to report the device type through the PUSCH, or to report the device type through the PUSCH and preamble.
  • the device type is reported through the PUSCH, then during the two-step random access, determine or generate the PUSCH, including at least one of the following:
  • the PUSCH is scrambled using a scrambling sequence corresponding to the device type identification information.
  • At least one of the above implementation methods may be used to report the device type through the PUSCH, or to report the device type through the PUSCH and preamble.
  • the terminal device when the terminal device adds device type identification information to the reserved time-frequency resource position of the PUSCH, it may specifically determine the reserved time-frequency resource position of the PUSCH according to a preset mapping formula, and then add Device type identification information.
  • the preset mapping formula includes a frequency domain mapping formula and a time domain mapping formula.
  • the frequency domain mapping formula is used to determine the frequency domain position where the device type identification information is added in the PUSCH
  • the time domain mapping formula is used to determine the time domain position where the device type identification information is added to the PUSCH.
  • the terminal device can determine the frequency domain position of the device type identification information in the bandwidth part occupied by the PUSCH according to the frequency domain mapping formula, and determine the time domain position of the device type identification information in the time slot occupied by the PUSCH according to the time domain mapping formula .
  • the frequency domain position of the device type identification information may be determined in the bandwidth part occupied by the PUSCH based on the following formula:
  • k takes any value from 0-11; The number of RBs available in the bandwidth portion occupied by PUSCH.
  • k in the above formula can take any two values from 0 to 11.
  • the time domain position of the device type identification information may be determined in the time slot occupied by the PUSCH based on the following formula:
  • l l 0 +m; m is a random integer, I ⁇ 13, and l 0 is the index of the first symbol occupied by the PUSCH in the time slot.
  • mapping formula used to determine other time-domain positions needs to be redefined with rules.
  • the determined reserved time-frequency resource position cannot overlap with the position of the DMRS (Demodulation Reference Signal, demodulation reference signal) in the PUSCH, and the determined reserved time-frequency resource position cannot overlap with the SRS (SRS) in the PUSCH Sounding Reference Signal, channel sounding reference signal) where the positions overlap.
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • SRS SRS
  • the terminal is a normal device, do not perform any operation on the reserved resource position in PUSCH that meets the above mapping conditions; if the terminal is a Redcap device, place ZC sequence or PN or Walsh sequence for type identification.
  • This method can be applied in the application scenario of performing PUSCH transmission in the four-step random access process, and can also be applied in the application scenario of performing PUSCH transmission in the two-step random access process.
  • the present disclosure provides a processing method applied to four-step random access, specifically including:
  • Receive Msg2 which contains the preamble ID parsed by the base station, the UL Grant of the uplink resource authorization of Msg3, the terminal temporary identifier TC_RNT I, and the timing advance TA.
  • Send Msg 3 make sure that the preamble ID received in Msg 2 is the same as the preamble ID sent by Msg 1, and then adjust the sending time of PUSCH according to the TA value carried in Msg 2;
  • Msg 3 has a PUSCH containing device type identification information, and the device The type identification information is located at the reserved time-frequency resource position of the PUSCH.
  • the reserved time-frequency resource position of the PUSCH can be determined according to a preset time-frequency domain mapping formula; a ZC or PN or Walsh sequence used for device type identification is placed at the reserved time-frequency resource position.
  • the frequency domain position of the device type identification information may be determined in the bandwidth part occupied by the PUSCH according to the frequency domain mapping formula, and the time domain position of the device type identification information may be determined in the time slot occupied by the PUSCH according to the time domain mapping formula; Then determine the reserved time-frequency resource position in the PUSCH according to the frequency domain position and the time domain position; wherein, the reserved time-frequency resource position does not overlap with the position where the DMRS is located in the PUSCH, and the reserved time-frequency resource position is the same as the position where the SRS is located in the PUSCH The positions do not overlap.
  • the processing method applied to two-step random access includes:
  • Send Msg A, Msg A has a PUSCH containing device type identification information, and the device type identification information is located at the reserved time-frequency resource position of the PUSCH.
  • the reserved time-frequency resource position of the PUSCH may be determined according to a preset time-frequency domain mapping formula; a ZC or PN or Walsh sequence used for device type identification is placed at the reserved time-frequency resource position.
  • the frequency domain position of the device type identification information may be determined in the bandwidth part occupied by the PUSCH according to the frequency domain mapping formula, and the time domain position of the device type identification information may be determined in the time slot occupied by the PUSCH according to the time domain mapping formula; Then determine the reserved time-frequency resource position in the PUSCH according to the frequency domain position and the time domain position; wherein, the reserved time-frequency resource position does not overlap with the position where the DMRS is located in the PUSCH, and the reserved time-frequency resource position is the same as the position where the SRS is located in the PUSCH The positions do not overlap.
  • the terminal device adds device type identification information to the identity in the PUSCH
  • the value of the device type identification information in the PUSCH is Msg 2 issued the first identity
  • the terminal device is a light-capable device
  • the value of the device type identification information in the PUSCH is the second identity.
  • the first identity is the TC-RNTI issued by Msg 2
  • the second identity is the sum of the TC-RNTI issued by Msg 2 and delta
  • the value of delta can be a fixed value or an RRC parameter
  • the optional range of configuration values, and the value of delta must be greater than 65522 to ensure that it is distinguished from other normal users.
  • the network device can use the first identity to perform descrambling. If the descrambling is successful, it can determine that the terminal device is an ordinary device. Set the offset parameter to obtain the second identity of the terminal device, and use the second identity to descramble the PUSCH. If the descrambling is successful, it is determined that the terminal device is a Redcap device.
  • the terminal device can generate the scrambling sequence C init according to the following formula:
  • n RNTI is the first identity assigned in Msg 2 sent by the network device to the terminal device, and if the terminal device is a Redcap device, then n RNTI is the second identity.
  • this implementation manner can be applied in an application scenario of four-step random access.
  • the processing method applied to four-step random access includes:
  • Receive Msg 2 which includes the preamble ID parsed by the base station, the UL Grant of the uplink resource authorization of Msg 3, the terminal temporary identifier TC_RNTI, and the timing advance TA.
  • Send Msg 3 make sure that the preamble ID received in Msg 2 is the same as the preamble ID sent by Msg 1, then adjust the PUSCH sending time according to the TA value carried in Msg 2, and send PUSCH; PUSCH, wherein, if the terminal device is an ordinary device, the identity in PUSCH is TC_RNTI, and if the terminal device is a light-capable device, the identity in PUSCH is the second identity; the second identity is the addition of TC_RNTI and delta and.
  • the TC_RNTI can be used to generate a scrambling sequence, and then the PUSCH can be scrambled by using the scrambling sequence.
  • the identity in the PUSCH has the device type identification information corresponding to the ordinary device.
  • the second identity can be used to generate a scrambling sequence, and then the scrambling sequence is used to scramble the PUSCH.
  • the identity in the PUSCH has a device type identification corresponding to the Redcap device type information.
  • the second identity is the sum of TC_RNTI and delta.
  • the terminal device uses the scrambling sequence corresponding to the device type to scramble the PUSCH
  • the terminal device is an ordinary device
  • the terminal device is a Redcap device
  • Two scrambling sequences scramble the PUSCH, and the second scrambling sequence is the sum of the first scrambling sequence and a preset offset.
  • the network device uses the first scrambling sequence to descramble the PUSCH, and if the descrambling is successful, it determines that the terminal device is an ordinary device; if the descrambling fails, it uses the second scrambling sequence to descramble the PUSCH , if the descrambling is successful, it is determined that the terminal device is a Redcap device.
  • the terminal device can determine the scrambling sequence based on the following formula:
  • n RNTI in four-step random access TC-RNTI, issued by Msg2; delta is a preset offset, and the value of delta can be a fixed value, or an optional range value for RRC parameter configuration. The value must be greater than the hexadecimal number FFF2042B.
  • the terminal device can determine the scrambling sequence C init based on the following formula:
  • This method can be applied in the application scenario of four-step random access, and can also be applied in the application scenario of two-step random access.
  • the processing method applied to four-step random access includes:
  • Receive Msg 2 which contains the preamble ID parsed by the base station, the UL Grant of the uplink resource authorization of Msg 3, the terminal temporary identifier TC_RNTI, and the timing advance TA.
  • Send Msg 3 make sure that the preamble ID received in Msg 2 is the same as the preamble ID sent by Msg 1, then adjust the sending time of PUSCH according to the TA value carried by Msg 2, and send PUSCH; where, if the terminal device is a common device, the scrambling sequence is the first scrambling sequence, and if the terminal device is a Redcap device, the scrambling sequence is the second scrambling sequence.
  • Msg 2 may include the identity identifier TC_RNTI assigned by the network device to the terminal device.
  • the terminal device uses the first scrambling sequence to scramble the PUSCH.
  • the PUSCH sent by the terminal device has device type identification information corresponding to the common device.
  • the first scrambling sequence may be determined based on the following formula:
  • the terminal device can determine the second scrambling sequence based on the following formula, and then use the second scrambling sequence to scramble the PUSCH:
  • C init n RNTI ⁇ 2 16 +n ID +delta.
  • the processing method applied to two-step random access includes:
  • Send Msg A, Msg A has a PUSCH scrambled with a scrambling sequence; if the terminal device is a normal device, the scrambling sequence is the first scrambling sequence, and if the terminal device is a Redcap device, the scrambling sequence is the first Two scrambling sequences.
  • the terminal device may obtain an identity, and use the identity to generate a scrambling sequence.
  • the terminal device uses the first scrambling sequence to scramble the PUSCH.
  • the PUSCH sent by the terminal device has device type identification information corresponding to the common device.
  • the first scrambling sequence may be determined based on the following formula:
  • the terminal device can determine the second scrambling sequence based on the following formula, and then use the second scrambling sequence to scramble the PUSCH:
  • C init n RNTI ⁇ 2 16 + n RAPID ⁇ 2 10 + n ID + delta.
  • the system message received by the terminal device is also used to indicate whether the Redcap device is allowed to access.
  • the system information can be MIB, or SIB, or the DCI or RRC signaling that schedules the SIB contains information about whether to allow the Redcap device to access.
  • information about whether Redcap devices are allowed to access can also be carried in other high-level signaling, and the terminal device can obtain information about which capabilities of devices are allowed to access by analyzing the signaling. For example, if the indication bit used to indicate whether to allow Redcap device access is 1, it means that Redcap device access is allowed, and/or, if the indication bit used to indicate whether Redcap device access is allowed is 0, it means that Redcap device access is not allowed. Device access. For another example, if the indicated bit is 00, it means that any type of device cannot be connected; when the indicated bit is 01, it means that ordinary equipment can be connected; when the indicated bit is 10, it means that Redcap devices can be connected; All Redcap devices can be connected.
  • the terminal equipment can choose the access method according to the specific scenario of the current service, such as a smart meter, then use
  • the type of redcap device is connected, such as a voice call, it is connected as a normal device.
  • the network device and the terminal device may agree in advance which resource to use in the system message to indicate whether the Redcap device is allowed to access, so that after receiving the system message, the terminal device can obtain indication information from corresponding signaling to determine Whether the network device allows the Redcap device to access.
  • a random access preamble and/or a physical uplink shared channel when at least one of the following is satisfied, during random access, determine or generate a random access preamble and/or a physical uplink shared channel: if the terminal device is a lightweight capable device, and the system message characterization allows lightweight Capable device access; or if the terminal device has the capabilities of light-capable devices and ordinary devices, the terminal device accesses the network with ordinary device capabilities, and the system message indicates that light-capable devices are not allowed to access, and ordinary devices are allowed to access; if The terminal device is an ordinary device, and the system message indicates that ordinary devices are allowed to access.
  • the terminal device may specifically determine whether to access the network according to the system message when it needs to perform a random access procedure.
  • the terminal device may determine or generate a preamble, and/or determine or generate a PUSCH; if the terminal device determines that it cannot access the network according to the system message, the terminal device may not determine or generate a preamble, Also unsure or not generating PUSCH.
  • the terminal device determines or generates a preamble and/or a PUSCH.
  • the terminal device determines or generates a preamble and/or PUSCH.
  • the terminal device determines or generates a preamble and/or PUSCH.
  • the preamble and/or PUSCH of the terminal device includes device type identification information of the terminal device, which may specifically be device type identification information corresponding to common devices.
  • the terminal device will not generate or determine the preamble and/or PUSCH.
  • the terminal device may send a random access preamble and/or if sent a physical uplink shared channel.
  • the terminal device may determine or generate a preamble and/or PUSCH, and send the preamble and/or PUSCH to the network device; wherein, the preamble and/or PUSCH include The device type identification information of the terminal device, therefore, the device type can be reported in this way.
  • the processing method provided in the present disclosure can also be applied to a terminal device having the capabilities of a light-capable device and an ordinary device. During random access, the terminal device can choose which role to use to access the network based on service requirements.
  • the solution provided in this embodiment can be applied to any of the above embodiments.
  • the terminal device determines or generates a random access preamble and/or a physical uplink shared channel, where the random access preamble and/or the physical uplink shared channel include a device type determined according to service requirements.
  • the terminal device when it determines or generates the preamble and/or PUSCH, it may determine the device type according to service requirements. Specifically, it is possible to determine which type of network device to access according to service requirements to be processed, and determine or generate a preamble and/or PUSCH corresponding to the device type. For example, if the terminal device determines to access the network device as a common device type, the determined or generated preamble and/or PUSCH includes device type identification information corresponding to the common device. If the terminal device determines to access the network device as a Redcap device, the determined or generated preamble and/or PUSCH includes device type identification information corresponding to the Redcap device.
  • the device type of the terminal device does not change during one access to the network, but may change its device type during multiple accesses to the network based on business requirements.
  • the device type selected in the first network access process is different from the second network access process.
  • the terminal device may send a random access preamble and/or if sending a physical uplink shared channel, to report the device type.
  • Fig. 22 is a schematic flowchart of a processing method shown in a seventh exemplary embodiment of the present disclosure.
  • the processing method provided by the present disclosure includes:
  • Step 2201 Receive a random access preamble and/or a physical uplink shared channel sent by a terminal device; wherein, the random access preamble and/or the physical uplink shared channel include device type identification information.
  • the method provided by the present disclosure may be executed by a network device.
  • the network device may be, for example, a gNB (the next generation NodeB, base station).
  • the terminal device may report the device type through preamble and/or PUSCH during random access.
  • the preamble and/or PUSCH sent by the terminal device to the network device carry device type identification information.
  • the terminal device may determine or generate a preamble during random access, and the terminal device may add device type identification information in the preamble according to its own device type.
  • resource bits can be reserved in the preamble, and the terminal device can add device type identification information to it.
  • the type of the terminal device is a common device, add 1 to the reserved resource bits of the preamble.
  • the type of the terminal device is For Redcap devices, add 0 to the reserved resource bits of the preamble.
  • the network device may obtain device type identification information therefrom.
  • the device type identification information may be set in the GP part in the preamble, specifically in the designated resource bit of the GP.
  • the terminal device also sends a PUSCH (Physical Uplink Shared Channel, Physical Uplink Shared Channel) to the network device.
  • the PUSCH is used to carry uplink services and upper layer signaling data.
  • the terminal device will send PUSCH when sending Msg A.
  • the terminal device will send PUSCH when sending Msg 3.
  • the terminal device may determine or generate a PUSCH during random access, and the PUSCH includes device type identification information corresponding to the device type.
  • the terminal device may determine its own device type, and add the device type identification information corresponding to the device type in the PUSCH.
  • the network device may obtain device type identification information therefrom.
  • resource bits may be reserved in the PUSCH, and the terminal device may add device type identification information to the reserved resource bits of the PUSCH.
  • the terminal device can use the processed TC-RNTI value to add information for distinguishing the type of the terminal device in the PUSCH; specifically, the terminal device first processes the TC-RNTI according to the device type, and then uses the processed TC-RNTI value TC-RNTI scrambles PUSCH.
  • the terminal device first processes the TC-RNTI according to the device type, and then uses the processed TC-RNTI value TC-RNTI scrambles PUSCH.
  • the terminal device type of the terminal device is a common device
  • the TC-RNTI carried in Msg 2 can be directly used to scramble PUSCH;
  • the terminal device can scramble the TC-RNTI carried in Msg 2 -
  • After the RNTI is processed use the processed TC-RNTI value to scramble the PUSCH.
  • the network side can descramble the PUSCH according to the processed TC-RNTI value to distinguish the type of the terminal equipment.
  • the terminal device can distinguish the type of the terminal device according to the PUSCH scrambling sequence related to the terminal and the device type; specifically, if the device type of the terminal device is a common device, the terminal device uses the first scrambling formula to scramble the PUSCH ; If the device type of the terminal device is a Redcap device, the terminal device uses a second scrambling formula to scramble the PUSCH, and the second scrambling formula is such as (1) or (2).
  • the network side can quickly distinguish the type of terminal equipment.
  • the values of formulas (1) and (2) are as follows:
  • the nRNTI is equal to the RA-RNTI, and in the four-step random access, the nRNTI is equal to the TC-RNTI delivered by Msg2.
  • n ID is configured by the high-level parameter msgA-DataScramblingIndex, n ID ⁇ 0,1,...,1024 ⁇ , in four-step random access, That is, the cell ID.
  • n RAPID is the index of the random access preamble of msgA, and delta is the preset offset.
  • the device type information can be reported through PUSCH. This method does not need to reserve a random access preamble, nor does it need to occupy additional random access opportunities, and thus can distinguish terminals with a small communication cost. The purpose of the device type.
  • the preamble determined or generated by the terminal device may include device type identification information, and the PUSCH determined or generated by the terminal device may also include device type identification information.
  • the information corresponding to the device type may be device type identification information, based on which the network device can identify the type of the terminal device.
  • Step 2202 Identify the type of the terminal device according to the random access preamble and/or the physical uplink shared channel.
  • the network device may obtain the device type identification information therein, and then determine the type of the terminal device, and perform corresponding processing according to the type of the terminal device. If the PUSCH sent by the terminal device includes device type identification information, after receiving the PUSCH sent by the terminal device, the network device can obtain the device type identification information in it, and then determine the type of the terminal device, and perform corresponding actions according to the type of the terminal device. processing.
  • the terminal device and the network device can pre-agreed on the position of the device type in the preamble and/or PUSCH, or add the device type to the preamble and/or PUSCH, so that the network device receives the preamble and/or After the PUSCH, the device type identification information can be obtained from the preamble and/or PUSCH based on a pre-agreed position or manner, so that the type of the terminal device can be determined.
  • the processing method provided in this disclosure can be applied in the scenario of two-step random access.
  • the terminal device can select the two-step random access method or the four-step random access method according to the configuration information of the network device Connect to the network.
  • Fig. 23A is a schematic flowchart of a processing method applied to two-step random access shown in the sixth exemplary embodiment of the present disclosure.
  • the processing method provided by the present disclosure includes:
  • Step 2301A receive the preamble in Msg A, and the preamble includes device type identification information.
  • Step 2302A send Msg B.
  • the terminal device may report the device type through a preamble.
  • a preamble including device type identification information may be generated during random access, and the preamble is sent to the network device through Msg A.
  • the network device can receive the preamble in Msg A.
  • the network device can obtain device type identification information from the GP part of the preamble, and then can determine the type of the terminal device according to the type identification information.
  • the network device can also send Msg B to the terminal device in response to Msg A, and establish a connection with the terminal device.
  • Fig. 23B is a schematic flowchart of a processing method applied to two-step random access shown in the seventh exemplary embodiment of the present disclosure.
  • the processing method provided by the present disclosure includes:
  • Step 2301B receive the PUSCH in MsgA, and the PUSCH includes device type identification information.
  • Step 2302B send Msg B.
  • the terminal device may report the device type through the PUSCH.
  • a PUSCH including device type identification information may be generated during random access, and the PUSCH is sent to the network device through Msg A.
  • the terminal device may report the device type through the PUSCH.
  • a PUSCH including device type identification information may be generated during random access, and the PUSCH is sent to the network device through Msg A.
  • the network device can obtain the device type identification information from the reserved time-frequency resources of the PUSCH, or descramble the PUSCH, and determine the device type identification information of the terminal device according to the descrambling result.
  • the network device can also send Msg B to the terminal device in response to Msg A, and establish a connection with the terminal device.
  • Fig. 23C is a schematic flowchart of a processing method applied to two-step random access shown in the eighth exemplary embodiment of the present disclosure.
  • the processing method provided by the present disclosure includes:
  • Step 2301C receive the preamble and PUSCH in Msg A, both preamble and PUSCH include device type identification information.
  • Step 2302C send Msg B.
  • the terminal device may report the device type through preamble and PUSCH, which can improve the accuracy of the network device in identifying the type of the terminal device.
  • a preamble and PUSCH including device type identification information may be generated, and the preamble and PUSCH are sent to the network device through Msg A.
  • both the preamble and the PUSCH include device type identification information.
  • the network device after the network device receives the preamble and PUSCH in Msg A, it can obtain type identification information from the preamble and PUSCH, and by obtaining the type identification information from two locations, the accuracy of terminal device type identification can be improved.
  • the network device may also send message B to the terminal device in response to message A, and establish a connection with the terminal device.
  • Fig. 24A is a schematic flowchart of a processing method applied to four-step random access shown in the seventh exemplary embodiment of the present disclosure.
  • the processing method provided by the present disclosure includes:
  • Step 2401A receive the preamble in Msg 1, and the preamble includes device type identification information.
  • Step 2402A send Msg 2.
  • Step 2403A receive Msg 3.
  • Step 2404A send Msg 4.
  • the terminal device may report the device type to the network device through a preamble.
  • the terminal device may generate or determine a preamble according to the device type, and the preamble includes device type identification information. Then send the preamble through Msg 1 to report the device type. The terminal device sends a random access request to the network device by sending Msg 1 to the network device.
  • the network device can obtain the device type identification information from the GP of the preamble.
  • the network device may also send Msg 2 to the terminal device, where Msg2 includes preamble_id, TC_RNTI and TA, so as to respond to the random access request of the terminal device.
  • the terminal device may also send Msg 3 to the network device, and Msg 3 may include PUSCH.
  • the network device can also send Msg 4 to the terminal device to establish a connection with the terminal device.
  • Fig. 24B is a schematic flowchart of a processing method applied to four-step random access shown in the eighth exemplary embodiment of the present disclosure.
  • the processing method provided by the present disclosure includes:
  • Step 2401B receive the preamble in Msg 1.
  • Step 2402B send Msg 2.
  • Step 2403B receive the PUSCH in Msg 3, and the PUSCH includes device type identification information.
  • Step 2404B send Msg 4.
  • the terminal device may report the device type to the network device through the PUSCH.
  • the terminal device can generate or determine the PUSCH according to the device type, so that the PUSCH carries device type identification information, and sends the PUSCH to the network device through Msg 3, thereby reporting the device type to the network device.
  • the network device after the network device receives the PUSCH, it can obtain the device type identification information from the reserved time-frequency resource position of the PUSCH; or, obtain the device type identification information from the identity in the PUSCH; or, decode the physical PUSCH scrambling, and determine the device type identification information according to the descrambling result.
  • Fig. 24C is a schematic flowchart of a processing method applied to four-step random access shown in the ninth exemplary embodiment of the present disclosure.
  • the processing method provided by the present disclosure includes:
  • Step 2401C receive the preamble in Msg 1, and the preamble includes device type identification information.
  • Step 2402C send Msg 2.
  • Step 2403C receive PUSCH in Msg 3, PUSCH includes device type identification information.
  • Step 2404C send Msg 4.
  • the terminal device may report the device type to the network device through preamble and PUSCH.
  • the terminal device may generate or determine a preamble according to the device type, and the preamble includes device type identification information. Then send the preamble through Msg 1 to report the device type. The terminal device sends a random access request to the network device by sending Msg 1 to the network device.
  • the network device after the network device receives Msg 1, it can obtain the preamble from it, and then obtain the device type identification information from the GP of the preamble.
  • the terminal device may also generate or determine the PUSCH according to the device type, so that the PUSCH carries device type identification information, and send the PUSCH to the network device through message 3, thereby reporting the device type to the network device.
  • the network device can obtain the PUSCH therein, and can obtain the device type identification information from the reserved time-frequency resource position of the PUSCH; or, obtain the device type identification information from the identity in the PUSCH ; Or, perform descrambling on the physical PUSCH, and determine the device type identification information according to the descrambling result.
  • the accuracy of the device type identification can be further improved.
  • the terminal device determines whether to select a two-step random access method or a four-step random access method to access the network based on the distance from the terminal to the cell site or the received signal strength (RSRP).
  • RSRP received signal strength
  • the device type identification information when obtaining the device type identification information from the preamble, specifically, the device type identification information may be obtained from a specified resource unit of the GP of the preamble.
  • the network device and the terminal device may pre-agreed on a designated resource unit of the GP, so that the terminal device can set the device type identification information in the designated resource unit of the GP, so that the network device reads from the designated resource unit of the GP. Get device type identification information.
  • the device type identification information may be obtained from the first resource unit of the GP of the preamble.
  • the device type identification information may be obtained from the last resource unit of the GP of the preamble.
  • the device type identification information may be obtained from any resource unit between the first resource unit and the last resource unit of the preamble.
  • any setting method of device type identification information can be applied to any type of preamble.
  • the reserved time-frequency resource position of the physical uplink shared channel may be determined according to a preset mapping formula, Then obtain the device type identification information from the reserved time-frequency resource location.
  • the network device can determine the frequency domain position of the device type identification information in the bandwidth part occupied by the PUSCH according to the frequency domain mapping formula, and determine the time domain position of the device type identification information in the time slot occupied by the PUSCH according to the time domain mapping formula
  • the frequency domain position of the device type identification information may be determined in the bandwidth part occupied by the PUSCH based on the following formula:
  • k takes any value from 0-11; The number of RBs available in the bandwidth portion occupied by PUSCH.
  • k in the above formula can take any two values from 0 to 11.
  • the time domain position of the device type identification information may be determined in the time slot occupied by the PUSCH based on the following formula:
  • l l 0 +m; m is a random integer, I ⁇ 13, and l 0 is the index of the first symbol occupied by the PUSCH in the time slot.
  • mapping formula used to determine other time-domain positions needs to be redefined with rules.
  • the determined reserved time-frequency resource position cannot overlap with the position of the DMRS (Demodulation Reference Signal, demodulation reference signal) in the PUSCH, and the determined reserved time-frequency resource position cannot overlap with the SRS (SRS) in the PUSCH Sounding Reference Signal, channel sounding reference signal) where the positions overlap.
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • SRS SRS
  • the terminal is a normal device, do not perform any operation on the reserved resource position in PUSCH that meets the above mapping conditions; if the terminal is a Redcap device, place ZC sequence or PN or Walsh sequence for type identification.
  • This method can be applied in the application scenario of four-step random access, and can also be applied in the application scenario of two-step random access.
  • the first identity sent to the terminal device may be used to descramble the physical uplink shared channel, and if the descrambling is successful, determine that the terminal device It is an ordinary device; using the second identity to descramble the physical uplink shared channel, if the descrambling is successful, it is determined that the terminal device is a light-capable device; wherein, the second identity is equal to the first identity and the preset offset parameter sum of.
  • This implementation manner can be applied in an application scenario of four-step random access.
  • the network device uses Msg 2 to issue the first identity to the terminal device.
  • the value of the device type identification information in the PUSCH is the first identity issued by Msg 2; if the terminal device is For a light-capable device, the device type identification information in the PUSCH takes the value of the second identity.
  • the first identity is the TC-RNTI issued by Msg 2
  • the second identity is the TC-RNTI+delta issued by Msg 2.
  • the value of delta can be a fixed value or an optional range of RRC parameter configuration. value, and the value of delta must be greater than 65522 to ensure that it is distinguished from other normal users.
  • the network device can generate the scrambling code sequence C init according to the following formula:
  • n RNTI is the first identity assigned in Msg 2 sent by the network device to the terminal device, and if the terminal device is a Redcap device, then n RNTI is the second identity.
  • this implementation can be applied in the application scenario of four-step random access
  • the device type identification information is determined according to the descrambling result
  • the first scrambling sequence is used to successfully descramble the physical uplink shared channel, it is determined that the terminal device is a normal device
  • the second scrambling sequence is the addition of the first scrambling sequence and a preset offset and.
  • the network can determine the scrambling sequence based on the following formula:
  • n RNTI TC-RNTI in four-step random access, which is the identifier issued by Msg2 to the terminal device; delta is the preset offset, and the value of delta can be a fixed value, or it can be an RRC parameter configuration variable Select the range value, and the value of delta must be greater than the hexadecimal number FFF2042B.
  • the terminal device can determine the scrambling sequence C init based on the following formula:
  • This approach can be applied in an application scenario of four-step random access.
  • the network device After the network device receives the PUSCH, it uses the generated first scrambling sequence to descramble the PUSCH. If the descrambling is successful, it determines that the terminal device is a normal device; if the descrambling fails, it generates a second scrambling sequence, and then uses the second scrambling The sequence descrambles the PUSCH, and if the descrambling succeeds, it is determined that the terminal device is a Redcap device.
  • the network device may also send a system message to the terminal device, the system message is used to instruct the terminal device to report the device type through the random access preamble and/or the physical uplink shared channel ; and/or a system message is used to indicate whether light-capable devices are allowed to access.
  • system message is used to instruct the terminal device in which manner to report the device type.
  • system message is used to indicate whether to allow light-capable equipment to access.
  • system message is used to indicate how the terminal device reports the device type, and is also used to indicate whether to allow light-capable device access.
  • the network side may send a system message to the terminal device, and the system message may be, for example, a SIB (System Information Block, system information block), or a MIB (Master Information Block, master system information block). Instruct the terminal device how to report the device type through the system message.
  • SIB System Information Block, system information block
  • MIB Master Information Block, master system information block
  • the specific manner may include reporting through the preamble, may also include reporting through the PUSCH, and may also report through the preamble and the PUSCH at the same time.
  • the terminal device After receiving the system message, the terminal device can determine the method of reporting the device type according to the system message. For example, a bit used to indicate the reporting mode of the device type may be added to the system message, and the terminal device determines the reporting mode of the device type by obtaining information in the corresponding bit.
  • the terminal device does not need to report the device type during random access. If the bit used to indicate the reporting method of the device type is 01, the device type is reported through preamble. If the bit used to indicate the reporting mode of the device type is 10, the device type is reported through the PUSCH. If the bit used to indicate the reporting mode of the device type is 11, the device type is reported through the preamble and PUSCH.
  • the terminal device needs to generate or determine the preamble that includes the device type identification information; if the system message indicates that the terminal device reports the device type through the PUSCH, the terminal device needs to generate or determine PUSCH including device type identification information.
  • the terminal device reports the device type by sending the preamble that includes the device type information in Msg A; if the system message indicates that the terminal device reports the device type through the PUSCH To report the device type, the terminal device reports the device type by sending PUSCH including the device type identification information in Msg A.
  • the terminal device adds device type identification information to the preamble and PUSCH of Msg A to report the device type.
  • the terminal device may report the device type by sending the preamble including the device type identification information in Msg 1.
  • the terminal device can report the device type by sending the PUSCH including the device type identification information in Msg 3.
  • the terminal device can send the preamble containing the device type identification information in Msg 1, and send the device type identification information in Msg 3. PUSCH, to report the device type.
  • information about whether Redcap devices are allowed to access can also be carried in other high-level signaling, and the terminal device can obtain information about which capabilities of devices are allowed to access by analyzing the signaling. For example, if the indication bit used to indicate whether to allow Redcap device access is 1, it means that Redcap device access is allowed, and/or, if the indication bit used to indicate whether Redcap device access is allowed is 0, it means that Redcap device access is not allowed. For example, if the indication bit is 00, it indicates that no type of equipment can be accessed; if the indication bit is 01, it indicates that ordinary equipment can be accessed; if the indication bit is 10, it indicates that Redcap equipment can be accessed, and the indication bit is 11. Indicates that both ordinary devices and Redcap devices can be connected.
  • the terminal equipment can choose the access method according to the specific scenario of the current service, such as a smart meter, then use
  • the type of redcap device is connected, such as a voice call, it is connected as a normal device.
  • the network device and the terminal device may agree in advance which resource to use in the system message to indicate whether the Redcap device is allowed to access, so that after receiving the system message, the terminal device can obtain indication information from corresponding signaling to determine Whether the network device allows the Redcap device to access.
  • the network device may send the device type identification result to the UE.
  • the device sending type identification result can be sent to the UE through Msg B or Msg 2.
  • the UE determines whether to report the device type identification information again through the PUSCH.
  • a type identification field can be added to the DCI (Downlink Control Information, downlink control information) of Msg 2 or Msg B, and the UE parses the bit value of the newly added type identification field in the DCI to determine the device type identification of the network device result. For example, if the bit in the type identification field is 1, the representative network device determines that the UE is a Redcap device, and/or, if the bit in the type identification field is 0, the representative network device determines that the UE is a common type of device.
  • DCI Downlink Control Information, downlink control information
  • the UE can obtain the device type identification result from Msg 2, for example, the device type identification result can be obtained from the DCI of Msg 2.
  • the device type identification result can be obtained from the DCI of Msg B
  • the UE will no longer report the device type identification information through the PUSCH again, To save PUSCH transmission resources and reduce PUSCH resource collisions; if the device type identification result of the network device is inconsistent with the device type of the UE and the PUSCH type identification reporting mechanism is enabled in the system message or high-level signaling, the UE will report the device type identification again through the PUSCH information to increase the reliability of the network side for identifying the UE type.
  • the network device can add the device type identification result in Msg B.
  • the device type reported by the UE through the preamble of Msg A is a common type, and the information carried in the DCI of Msg B indicates that the device type identification result on the network side is Redcap type, then the UE reports the device type identification again by retransmitting Msg A information.
  • the device type reported by the UE through the preamble of Msg A is a common type, and the information carried in the DCI of Msg B indicates that the device type identification result on the network side is a common type, so the UE does not retransmit Msg A.
  • the device type reported by the UE through the preamble of Msg A is Redcap type, and the information carried in the DCI of Msg B indicates that the device type identification result on the network side is Redcap type, then the UE does not retransmit Msg A.
  • the device type reported by the UE through the preamble of Msg A is the Redcap type, and the information carried in the DCI of Msg B indicates that the device type identification result on the network side is a common type, then the UE reports the device type identification information again by retransmitting Msg A.
  • the network device when the network device performs random access configuration, it can configure two sets of RO opportunities with different times but effective at the same time for the UE, so as to meet the requirement of the UE to be able to retransmit Msg A.
  • the network device may add the device type identification result in Msg 2.
  • the device type reported by the UE through the preamble is a common type, and the information carried in the DCI indicates that the device type identification result on the network side is the Redcap type, then the UE reports the device type identification information again through the PUSCH of Msg 3;
  • the device type reported by the UE through the preamble is a common type, and the information carried in the DCI indicates that the device type identification result on the network side is a common type, so the UE does not report the device type identification information again through the PUSCH of Msg 3;
  • the device type reported by the UE through the preamble is the Redcap type, and the information carried in the DCI indicates that the device type identification result on the network side is the Redcap type, so the UE does not report the device type identification information again through the PUSCH of Msg 3;
  • the device type reported by the UE through the preamble is the Redcap type, and the information carried in the DCI indicates that the device type identification result on the network side is a common type, so the UE reports the device type identification information again through the PUSCH of Msg 3.
  • Fig. 25 is a structural diagram of a communication device shown in an exemplary embodiment of the present application.
  • the communication equipment provided in this embodiment includes:
  • the computer program is stored in the memory 2501 and is configured to be executed by the processor 2502 to implement the processing method shown in any one of the foregoing embodiments.
  • This embodiment also provides a computer-readable storage medium on which a computer program is stored,
  • the computer program is executed by the processor to implement the processing method shown in any one of the foregoing embodiments.
  • This embodiment also provides a computer program product, including a computer program.
  • the computer program is executed by a processor, the processing method shown in any one of the foregoing embodiments is implemented.
  • An embodiment of the present application further provides a communication device, the communication device includes a memory and a processor, and a processing program is stored in the memory, and when the processing program is executed by the processor, the steps of the processing method in any of the foregoing embodiments are implemented.
  • An embodiment of the present application further provides a computer-readable storage medium, on which a processing program is stored, and when the processing program is executed by a processor, the steps of the processing method in any of the foregoing embodiments are implemented.
  • An embodiment of the present application further provides a computer program product, the computer program product includes computer program code, and when the computer program code is run on the computer, the computer is made to execute the methods in the above various possible implementation manners.
  • the embodiment of the present application also provides a chip, including a memory and a processor.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the device installed with the chip executes the above various possible implementation modes. Methods.
  • Units in the device in the embodiment of the present application may be combined, divided and deleted according to actual needs.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in other words, the part that contributes to the prior art, and the computer software product is stored in one of the above storage media (such as ROM/RAM, magnetic CD, CD), including several instructions to make a terminal device (which may be a mobile phone, computer, server, controlled terminal, or network device, etc.) execute the method of each embodiment of the present application.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • a computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, special purpose computer, a computer network, or other programmable apparatus.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, e.g. Coaxial cable, optical fiber, digital subscriber line) or wireless (such as infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server, a data center, etc. integrated with one or more available media.
  • Usable media may be magnetic media, (eg, floppy disk, memory disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), among others.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种处理方法、通信设备及存储介质,涉及通信技术,通过发送包括设备类型信息的preamble和/或PUSCH的方式,使网络设备获知终端设备的类型,这种方式既不需要预留随机接入前导码,也不会额外增加系统开销,进而能够以较小的通信成本实现区分终端设备类型的目的。

Description

处理方法、通信设备及存储介质
本申请要求于2021年08月23日提交中国专利局、申请号为2021109705582、申请名称为“处理方法、通信设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术,尤其涉及一种处理方法、通信设备及存储介质。
背景技术
随着5G技术的发展,低功耗和低负载的Redcap类型(Reduced Capability,轻型能力)设备的需求市场越来越广阔。
为了使网络设备能够区分普通设备和Redcap类型设备,一些实现中,可以在设备传输Msg1时,通过在Msg1中设置不同的前导码(preamble)区分正常类型的设备和Redcap类型的设备,还可以使不同类型的设备使用不同的RO(PRACH Occasion,随机接入时机)机会,进而区分设备类型。
在构思及实现本申请过程中,发明人发现至少存在如下问题:在一个RO机会中承载的preamble数量是有限的,若预留一部分preamble给Redcap类型的设备,则会造成普通设备可用的preamble变少,和/或,若不同类型的设备使用不同的RO机会的方案,会造成普通设备可用的随机接入机会变少,即上述方案均无法保证海量Redcap用户的接入。
前面的叙述在于提供一般的背景信息,并不一定构成现有技术。
发明内容
本申请提供一种处理方法、通信设备及存储介质,以解决上述增加系统的额外开销或造成普通设备可用的preamble变少的技术问题。
第一方面,本公开提供一种处理方法,应用于终端设备,所述方法包括以下步骤:
S1:确定或生成随机接入前导码和/或物理上行链路共享信道;其中,确定或生成的所述随机接入前导码中包括设备类型识别信息;确定或生成的所述物理上行链路共享信道中包括设备类型识别信息;
S2:发送所述随机接入前导码和/或若发送所述物理上行链路共享信道。
第二方面,本公开提供一种处理方法,应用于终端设备,所述方法包括以下步骤:
S1:接收系统消息,根据所述系统消息确定上报设备类型的方式;所述方式包括通过随机接入前导码上报所述设备类型和/或物理上行链路共享信道上报所述设备类型;
S2:在随机接入时根据确定的上报设备类型方式上报所述设备类型。
第三方面,本公开提供一种处理方法,应用于网络设备,所述方法包括:
S3:接收终端设备发送的随机接入前导码和/或物理上行链路共享信道;其中,所述随机接入前导码和/或物理上行链路共享信道中包括设备类型识别信息;
S4:根据所述随机接入前导码和/或物理上行链路共享信道,识别所述终端设备的类型。
第四方面,本公开提供一种通信设备,包括:
存储器;
处理器;
其中,所述存储器中存储有计算机程序,计算机程序被所述处理器执行时实现如第一方面到第三方面所述的任一项中任一项所述的方法。
本申请实施例提供的处理方法、通信设备及存储介质,通过发送包括设备类型信息的preamble和/或物理上行链路共享信道(Physica uplink shared channel,简称PUSCH)的方式,使网络设备获知终端设备的类型,这种方式既不需要预留随机接入前导码,也不会额外增加系统开销,进而能够以较小的通信成本实现区分终端设备类型的目的。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为实现本申请各个实施例的一种移动终端的硬件结构示意图;
图2为本申请实施例提供的一种通信网络系统架构图;
图3为一示例性实施例示出的四步随机接入过程的示意图;
图4为一示例性实施例示出的两步随机接入过程的示意图;
图5为本公开第一示例性实施例示出的处理方法的流程示意图;
图6A为本公开第一示例性实施例示出的应用于两步随机接入的处理方法的流程示意图;
图6B为本公开第二示例性实施例示出的应用于两步随机接入的处理方法的流程示意图;
图6C为本公开第三示例性实施例示出的应用于两步随机接入的处理方法的流程示意图;
图7A为本公开第一示例性实施例示出的应用于四步随机接入的处理方法的流程示意图;
图7B为本公开第二示例性实施例示出的应用于四步随机接入的处理方法的流程示意图;
图7C为本公开第三示例性实施例示出的应用于四步随机接入的处理方法的流程示意图;
图8A-8C为本公开示例性实施例示出的preamble的结构示意图;
图9A-9C为本公开示例性实施例示出的包括设备类型识别信息的preamble的结构示意图;
图10为本公开一示例性实施例示出的至少一个随机接入前导码的示意图;
图11为本公开第一示例性实施例示出的SSB与RO机会之间的关联关系;
图12为本公开第二示例性实施例示出的SSB与RO机会之间的关联关系;
图13为本公开一示例性实施例示出的时频资源图;
图14A为本公开第四示例性实施例示出的应用于四步随机接入的处理方法的流程示意图;
图14B为本公开第四示例性实施例示出的应用于两步随机接入的处理方法的流程示意图;
图15为本公开第五示例性实施例示出的应用于四步随机接入的处理方法的流程示意图;
图16A为本公开第六示例性实施例示出的应用于四步随机接入的处理方法的流程示意图;
图16B为本公开第五示例性实施例示出的应用于两步随机接入的处理方法的流程示意图;
图17为本公开第二示例性实施例示出的处理方法的流程示意图;
图18为本公开第三示例性实施例示出的处理方法的流程示意图;
图19为本公开第四示例性实施例示出的处理方法的流程示意图;
图20为本公开第五示例性实施例示出的处理方法的流程示意图;
图21为本公开第六示例性实施例示出的处理方法的流程示意图;
图22为本公开第七示例性实施例示出的处理方法的流程示意图;
图23A为本公开第六示例性实施例示出的应用于两步随机接入的处理方法的流程示意图;
图23B为本公开第七示例性实施例示出的应用于两步随机接入的处理方法的流程示意图;
图23C为本公开第八示例性实施例示出的应用于两步随机接入的处理方法的流程示意图;
图24A为本公开第七示例性实施例示出的应用于四步随机接入的处理方法的流程示意图;
图24B为本公开第八示例性实施例示出的应用于四步随机接入的处理方法的流程示意图;
图24C为本公开第九示例性实施例示出的应用于四步随机接入的处理方法的流程示意图;
图25为本申请一示例性实施例示出的通信设备的结构图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素,此外,本申请不同实施例中具有同样命名的部件、特征、要素可能具有相同含义,也可能具有不同含义,其具体含义需以其在该具体实施例中的解释或者进一步结合该具体实施例中上下文进行确定。
应当理解,尽管在本文可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本文范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语"如果"可以被解释成为"在……时"或"当……时"或"响应于确定"。再者,如同在本文中所使用的,单数形式“一”、“一个”和“该”旨在也包括复数形式,除非上下文中有相反的指示。应当进一步理解,术语“包含”、“包括”表明存在所述的特征、步骤、操作、元件、组件、项目、种类、和/或组,但不排除一个或多个其他特征、步骤、操作、元件、组件、项目、种类、和/或组的存在、出现或添加。本申请使用的术语“或”、“和/或”、“包括以下至少一个”等可被解释为包括性的,或意味着任一个或任何组合。例如,“包括以下至少一个:A、B、C”意味着“以下任一个:A;B;C;A和B;A和C;B和C;A和B和C”,再如,“A、B或C”或者“A、B和/或C”意味着“以下任一个:A;B;C;A和B;A和C;B和C;A和B和C”。仅当元件、功能、步骤或操作的组合在某些方式下内在地互相排斥时,才会出现该定义的例外。
应该理解的是,虽然本申请实施例中的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的 说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
取决于语境,如在此所使用的词语“如果”、“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
需要说明的是,在本文中,采用了诸如501、502等步骤代号,其目的是为了更清楚简要地表述相应内容,不构成顺序上的实质性限制,本领域技术人员在具体实施时,可能会先执行502后执行501等,但这些均应在本申请的保护范围之内。
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或者“单元”的后缀仅为了有利于本申请的说明,其本身没有特定的意义。因此,“模块”、“部件”或者“单元”可以混合地使用。
本申请中,通信设备可以为终端设备,也可以为网络设备(如基站),具体需要根据上下文来加以确定,另外,终端设备可以以各种形式来实施。例如,本申请中描述的终端设备可以包括诸如手机、平板电脑、笔记本电脑、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、便捷式媒体播放器(Portable Media Player,PMP)、导航装置、可穿戴设备、智能手环、计步器等移动终端,以及诸如数字TV、台式计算机等固定终端。
后续描述中将以移动终端作为终端设备示例进行说明,本领域技术人员将理解的是,除了特别用于移动目的的元件之外,根据本申请的实施方式的构造也能够应用于固定类型的终端。
请参阅图1,其为实现本申请各个实施例的一种移动终端的硬件结构示意图,该移动终端100可以包括:RF(Radio Frequency,射频)单元101、WiFi模块102、音频输出单元103、A/V(音频/时频)输入单元104、传感器105、显示单元106、用户输入单元107、接口单元108、存储器109、处理器110、以及电源111等部件。本领域技术人员可以理解,图1中示出的移动终端结构并不构成对移动终端的限定,移动终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图1对移动终端的各个部件进行具体的介绍:
射频单元101可用于收发信息或通话过程中,信号的接收和发送,具体的,将基站的下行信息接收后,给处理器110处理;另外,将上行的数据发送给基站。通常,射频单元101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元101还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于GSM(Global System of Mobile communication,全球移动通讯系统)、GPRS(General Packet Radio Service,通用分组无线服务)、CDMA2000(Code Division Multiple Access 2000,码分多址2000)、WCDMA(Wideband Code Division Multiple Access,宽带码分多址)、TD-SCDMA(Time Division-Synchronous Code Division Multiple Access,时分同步码分多址)、FDD-LTE(Frequency Division Duplexing-Long Term Evolution,频分双工长期演进)、TDD-LTE(Time Division Duplexing-Long Term Evolution,分时双工长期演进)和5G等。
WiFi属于短距离无线传输技术,移动终端通过WiFi模块102可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图1示出了WiFi模块102,但是可以理解的是,其并不属于移动终端的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
音频输出单元103可以在移动终端100处于呼叫信号接收模式、通话模式、记录模式、语音识别模式、广播接收模式等等模式下时,将射频单元101或WiFi模块102接收的或者在存储器109中存储的音频数据转换成音频信号并且输出为声音。而且, 音频输出单元103还可以提供与移动终端100执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元103可以包括扬声器、蜂鸣器等等。
A/V输入单元104用于接收音频或时频信号。A/V输入单元104可以包括图形处理器(Graphics Processing Unit,GPU)1041和麦克风1042,图形处理器1041对在时频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或时频的图像数据进行处理。处理后的图像帧可以显示在显示单元106上。经图形处理器1041处理后的图像帧可以存储在存储器109(或其它存储介质)中或者经由射频单元101或WiFi模块102进行发送。麦克风1042可以在电话通话模式、记录模式、语音识别模式等等运行模式中经由麦克风1042接收声音(音频数据),并且能够将这样的声音处理为音频数据。处理后的音频(语音)数据可以在电话通话模式的情况下转换为可经由射频单元101发送到移动通信基站的格式输出。麦克风1042可以实施各种类型的噪声消除(或抑制)算法以消除(或抑制)在接收和发送音频信号的过程中产生的噪声或者干扰。
移动终端100还包括至少一项传感器105,比如光传感器、运动传感器以及其他传感器。可选地,光传感器包括环境光传感器及接近传感器,可选地,环境光传感器可根据环境光线的明暗来调节显示面板1061的亮度,接近传感器可在移动终端100移动到耳边时,关闭显示面板1061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
显示单元106用于显示由用户输入的信息或提供给用户的信息。显示单元106可包括显示面板1061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1061。
用户输入单元107可用于接收输入的数字或字符信息,以及产生与移动终端的用户设置以及功能控制有关的键信号输入。可选地,用户输入单元107可包括触控面板1071以及其他输入设备1072。触控面板1071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1071上或在触控面板1071附近的操作),并根据预先设定的程式驱动相应的连接装置。触控面板1071可包括触摸检测装置和触摸控制器两个部分。可选地,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器110,并能接收处理器110发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1071。除了触控面板1071,用户输入单元107还可以包括其他输入设备1072。可选地,其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种,具体此处不做限定。
可选地,触控面板1071可覆盖显示面板1061,当触控面板1071检测到在其上或附近的触摸操作后,传送给处理器110以确定触摸事件的类型,随后处理器110根据触摸事件的类型在显示面板1061上提供相应的视觉输出。虽然在图1中,触控面板1071与显示面板1061是作为两个独立的部件来实现移动终端的输入和输出功能,但是在某些实施例中,可以将触控面板1071与显示面板1061集成而实现移动终端的输入和输出功能,具体此处不做限定。
接口单元108用作至少一个外部装置与移动终端100连接可以通过的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、时频I/O端口、耳机端口等等。接口单元108可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到移动终端100内的一个或多个元件或者可以用于在移动终端100和外部装置之间传输数据。
存储器109可用于存储软件程序以及各种数据。存储器109可主要包括存储程序区和存储数据区,可选地,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器109可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器110是移动终端的控制中心,利用各种接口和线路连接整个移动终端的各个部分,通过运行或执行存储在存储器109内的软件程序和/或模块,以及调用存储在存储器109内的数据,执行移动终端的各种功能和处理数据,从而对移动终端进行整体监控。处理器110可包括一个或多个处理单元;优选的,处理器110可集成应用处理器和调制解调处理器,可选地,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器110中。
移动终端100还可以包括给各个部件供电的电源111(比如电池),优选的,电源111可以通过电源管理系统与处理器110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
尽管图1未示出,移动终端100还可以包括蓝牙模块等,在此不再赘述。
为了便于理解本申请实施例,下面对本申请的移动终端所基于的通信网络系统进行描述。
请参阅图2,图2为本申请实施例提供的一种通信网络系统架构图,该通信网络系统为通用移动通信技术的LTE系统,该LTE系统包括依次通讯连接的UE(User Equipment,用户设备)201,E-UTRAN(Evolved UMTS Terrestrial Radio Access Network,演进式UMTS陆地无线接入网)202,EPC(Evolved Packet Core,演进式分组核心网)203和运营商的IP业务204。
可选地,UE201可以是上述终端100,此处不再赘述。
E-UTRAN202包括eNodeB2021和其它eNodeB2022等。可选地,eNodeB2021可以通过回程(backhaul)(例如X2接口)与其它eNodeB2022连接,eNodeB2021连接到EPC203,eNodeB2021可以提供UE201到EPC203的接入。
EPC203可以包括MME(Mobility Management Entity,移动性管理实体)2031,HSS(Home Subscriber Server,归属用户服务器)2032,其它MME2033,SGW(Serving Gate Way,服务网关)2034,PGW(PDN Gate Way,分组数据网络网关)2035和PCRF(Policy and Charging Rules Function,政策和资费功能实体)2036等。可选地,MME2031是处理UE201和EPC203之间信令的控制节点,提供承载和连接管理。HSS2032用于提供一些寄存器来管理诸如归属位置寄存器(图中未示)之类的功能,并且保存有一些有关服务特征、数据速率等用户专用的信息。所有用户数据都可以通过SGW2034进行发送,PGW2035可以提供UE 201的IP地址分配以及其它功能,PCRF2036是业务数据流和IP承载资源的策略与计费控制策略决策点,它为策略与计费执行功能单元(图中未示)选择及提供可用的策略和计费控制决策。
IP业务204可以包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)或其它IP业务等。
虽然上述以LTE系统为例进行了介绍,但本领域技术人员应当知晓,本申请不仅仅适用于LTE系统,也可以适用于其他无线通信系统,例如GSM、CDMA2000、WCDMA、TD-SCDMA以及未来新的网络系统(如5G)等,此处不做限定。
基于上述移动终端硬件结构以及通信网络系统,提出本申请各个实施例。
目前,能够接入网络的终端设备类型越来越多,比如一些家用电器、可穿戴设备等都可以接入网络,具体如冰箱、电视、空调、智能手表、运动手环等设备。
终端设备的类型中可以包括普通设备,还可以包括轻型能力(Redcap)设备,而网络设备对不同的终端设备的处理方式可能不同,因此,网络设备需要确定终端设备的类型。
可选地,在随机接入时,终端设备可以在Msg1或MsgA中发送与其设备类型对应 的随机接入前导码(preamble),网络设备根据接收的preamble区分当前终端是普通UE还是RedcapUE。
图3为一示例性实施例示出的四步随机接入过程的示意图。
如图3所示,在四步随机接入过程中,终端设备在发送消息1(Message1,Msg1)时,向网络设备发送preamble。
图4为一示例性实施例示出的两步随机接入过程的示意图。
如图4所示,在两步随机接入过程中,终端设备在发送消息A(MessageA,MsgA)时,向网络设备发送preamble。
可选地,不同类型的设备可以通过不同的preamble进行区分,又由于协议规定,终端设备一次随机接入过程中可选的前导数量最多是64个,因此,若通过现有的preamble进行设备类型区分,则势必需要预留一部分preamble给Redcap设备,那么会导致普通设备可用的preamble变少。
可选地,不同类型的设备还可以使用不同的RO机会进行随机接入,进而使网络设备根据不同RO机会接收的消息区分终端设备的类型。但是,这种方式会导致普通设备接入的机会变少。
为了解决上述技术问题,本申请实施例提供的方案中,终端设备在随机接入时,通过改进的随机接入前导码(preamble)和/或改进的物理上行链路共享信道(PUSCH)上报设备类型,这种实施方式既无需占用普通UE的preamble,也不需要占用普通UE的随机接入机会,但仍可实现设备类型的上报。
图5为本公开第一示例性实施例示出的处理方法的流程示意图。
本申请实施例提供的处理方法应用于终端设备,该终端设备能够接入网络,可以是普通设备,也可以是轻型能力设备。
如图5所示,本申请实施例提供的处理方法包括:
步骤501,确定或生成随机接入前导码和/或物理上行链路共享信道。
可选地,确定或生成的所述随机接入前导码中包括设备类型识别信息。
可选地,确定或生成的所述物理上行链路共享信道中包括设备类型识别信息。
可选地,本方案可以应用于随机接入过程,随机接入过程是指从终端设备发送preamble开始尝试接入网络,到与网络间建立起基本的信令连接之前的过程。
可选地,在随机接入时,终端设备可以确定或生成preamble,并可以根据自身的设备类型在preamble中添加设备类型识别信息。比如,在preamble中可以预留资源位,终端设备可以在预留资源位上添加设备类型识别信息,比如若终端设备的类型是普通设备,则在preamble的预留资源位中添加1,若终端设备的类型是Redcap设备,则在preamble的预留资源位中添加0。
可选地,确定或生成的preamble可以由CP(Cyclic Prefix,循环前缀),SEQ(SEQuence,序列),GP(Guard Period,保护间隔)这三部分构成。
可选地,确定或生成的preamble也可以仅包括CP,SEQ这两部分。若本申请实施例的方案需要在preamble的GP部分添加设备类型识别信息,则该实施例的方案不适用于针对仅包括CP、SEQ这两部分的preamble;若本申请实施例的方案需要在preamble的CP部分添加设备类型识别信息,则该实施例的方案适用于上述两种构造类型的preamble。设备类型识别信息用于表明设备的类型,比如,若设备为普通类型设备,则该设备的preamble中包括普通设备类型对应的信息,若设备为轻型能力设备,则该设备的preamble中包括轻型能力设备类型对应的信息。
可选地,在任一项preamble中都可以设置有设备类型识别信息。
可选地,终端设备发送的preamble中GP部分有设备类型识别信息,网络设备(如基站)可以接收到该设置有设备类型识别信息的preamble。具体实施的步骤为:终端设备根据高层参数确定或生成preamble的根序列,并根据协议给定的preamble的生成公式生成preamble的SEQ部分,进而为SEQ部分添加CP和GP,并在GP中的指定资源添加设备类型识别信息。
设备类型识别信息的添加可以仅针对终端最终使用的一个preamble进行添加,也 可以针对终端所有可能使用的至少一个preamble进行添加。
可选地,终端设备确定或生成的preamble中包括设备类型识别信息。该设备类型识别信息可以位于preamble的任一组成部分中。
可选地,可以在preamble的GP中添加设备类型识别信息。可以在GP部分选取至少一个资源,利用其指示设备类型。比如,未加入设备类型识别信息时,preamble的GP部分各资源的值均为0,若终端设备为Redcap设备,则该终端设备的preamble的GP部分中,用于指示设备类型的资源的值或指示bit为1,和/或,若终端设备为普通设备,则该终端设备的preamble的GP部分各资源的值仍然为0。可选地,具体指示的bit位置和数量,可以根据需求设置。
可选地,可以在preamble的CP中添加设备类型识别信息。比如,利用CP部分中的至少一个资源指示设备类型识别信息。
可选地,可以在preamble的SEQ中添加设备类型识别信息。比如,利用SEQ部分中的至少一个资源指示设备类型识别信息。
这种实现方式中,可以通过preamble上报设备类型信息,这种方式既不需要预留随机接入前导码,也不需要占据额外的随机接入机会,进而能够以较小的通信成本实现区分终端设备类型的目的。
可选地,在随机接入时,终端设备还会向网络设备发送PUSCH(Physical Uplink Shared Channel,物理上行链路共享信道)。PUSCH用于承载上行业务以及上层信令数据。比如,在两步随机接入时,终端设备发送Msg A时会发送PUSCH。再比如,在四步随机接入时,终端设备发送Msg 3时会发送PUSCH。
可选地,终端设备可以在随机接入时确定或生成PUSCH,PUSCH中包括设备类型识别信息。比如,终端设备可以确定自身的设备类型,并在PUSCH中添加与该设备类型对应的信息。
可选地,终端设备可以在PUSCH中的预留资源位添加设备类型识别信息用于区分终端设备的类型。
可选地,终端设备可以利用处理后的TC-RNTI值在PUSCH中添加用于区分终端设备的类型的信息;具体地,终端设备先根据设备类型对TC-RNTI进行处理,再用处理后的TC-RNTI对PUSCH加扰。比如,若终端设备的设备类型是普通设备,则可以直接使用Msg 2中携带的TC-RNTI对PUSCH加扰,若终端设备的设备类型是Redcap设备,则终端设备可以对Msg 2中携带的TC-RNTI处理后,使用处理后的TC-RNTI值对PUSCH加扰。网络侧可以根据处理后的TC-RNTI值解扰PUSCH以区分终端设备的类型。
可选地,终端设备可以根据终端与设备类型相关的PUSCH加扰序列区分终端设备的类型;具体地,若终端设备的设备类型是普通设备,则终端设备使用第一加扰公式对PUSCH加扰;若终端设备的设备类型是Redcap设备,则终端设备使用第二加扰公式对PUSCH加扰,第二加扰公式如(1)或(2)。通过不同的加扰序列,网络侧可以快速区分终端设备的类型。其中公式(1)、(2)取值如下:
C init=n RNTI·2 16+n ID+delta  (1)
C init=n RNTI·2 16+n RAPID·2 10+n ID+delta    (2)
其中在两步随机接入中,nRNTI等于RA-RNTI,在四步随机接入中,nRNTI等于Msg2下发的TC-RNTI。
两步随机接入中由高层参数msgA-DataScramblingIndex配置n ID,n ID∈{0,1,…,1024},四步随机接入中,
Figure PCTCN2022094751-appb-000001
即小区ID。
n RAPID是Msg A的随机接入前导码的索引,delta是预设的偏移量。
这种实现方式中,可以通过PUSCH上报设备类型信息,这种方式既不需要预留随机接入前导码,也不需要占据额外的随机接入机会,进而能够以较小的通信成本实现区分终端设备类型的目的。
可选地,终端设备确定或生成的preamble中可以包括设备类型识别信息,终端设备确定或生成的PUSCH中也可以包括设备类型识别信息,网络设备可以基于该信息识别终端设备的类型。
步骤502,发送随机接入前导码和/或物理上行链路共享信道。
可选地,终端设备可以向网络设备发送包括设备类型识别信息的preamble和/或发送包括设备类型识别信息的PUSCH,从而上报设备类型。终端设备可以选择通过preamble上报设备类型,也可以选择通过PUSCH上报设备类型,还可以同时选择通过preamble和PUSCH上报设备类型。
若终端设备生成了包括设备类型识别信息的preamble,则终端设备可以向网络设备发送该preamble,以上报设备类型。若终端设备生成了包括设备类型识别信息的PUSCH,则终端设备可以向网络设备发送该PUSCH,以上报设备类型。
可选地,在两步随机接入时,终端设备可以在发送Msg A时发送包括设备类型识别信息的preamble,还可以在发送Msg A时发送包括设备类型识别信息的PUSCH。
可选地,在四步随机接入时,终端设备可以在发送Msg 1时发送包括设备类型识别信息的preamble,还可以在发送Msg 3时发送包括设备类型识别信息的PUSCH。
可选地,若终端设备发送的preamble中包括设备类型识别信息,则网络设备接收到终端设备发送的preamble后,可以获取其中的设备类型识别信息,进而确定该终端设备的类型,并根据终端设备的类型进行相应的处理。若终端设备发送的PUSCH中包括设备类型识别信息,则网络设备接收到终端设备发送的PUSCH后,可以获取其中的设备类型识别信息,进而确定该终端设备的类型,并根据终端设备的类型进行相应的处理。
可选地,终端设备和网络设备可以预先约定设备类型在preamble和/或PUSCH中的位置,或者将设备类型添加到preamble和/或PUSCH中的方式,进而使得网络设备在接收到preamble和/或PUSCH后,能够基于预先约定的位置或方式从preamble和/或PUSCH中获取设备类型识别信息,从而能够确定终端设备的类型。
本申请实施例提供的处理方法,通过发送包括设备类型信息的preamble和/或PUSCH的方式,使网络设备获知终端设备的类型,这种方式既不需要预留随机接入前导码,也不需要占据额外的随机接入机会,进而能够以较小的通信成本实现区分终端设备类型的目的。
图6A为本公开第一示例性实施例示出的应用于两步随机接入的处理方法的流程示意图。
本公开提供的处理方法可以应用在两步随机接入的场景中。
如图6A所示,本公开提供的处理方法中,在两步随机接入时,可以包括:
步骤601A,发送Msg A,Msg A中具有包含设备类型识别信息的preamble。
步骤602A,接收Msg B。
可选地,终端设备可以通过preamble上报设备类型。具体在随机接入时可以生成包括设备类型识别信息的preamble,并通过Msg A将该preamble发送给网络设备。
可选地,网络设备接收到Msg A之后,还可以向终端设备发送Msg B,以响应Msg A,并建立与终端设备之间的连接。
图6B为本公开第二示例性实施例示出的应用于两步随机接入的处理方法的流程示意图。
本公开提供的处理方法可以应用在两步随机接入的场景中。
如图6B所示,本公开提供的处理方法中,在两步随机接入时,可以包括:
步骤601B,发送Msg A,Msg A中具有包含设备类型识别信息的PUSCH。
步骤602B,接收Msg B。
可选地,终端设备可以通过PUSCH上报设备类型。具体在随机接入时可以生成包括设备类型识别信息的PUSCH,并通过Msg A将该PUSCH发送给网络设备。
可选地,网络设备接收到Msg A之后,还可以向终端设备发送Msg B,以响应Msg  A,并建立与终端设备之间的连接。
图6C为本公开第三示例性实施例示出的应用于两步随机接入的处理方法的流程示意图。
本公开提供的处理方法可以应用在两步随机接入的场景中。
如图6C所示,本公开提供的处理方法中,在两步随机接入时,可以包括:
步骤601C,发送Msg A,Msg A包括具有包含设备类型识别信息的preamble和包含设备类型识别信息的PUSCH。
步骤602C,接收Msg B。
可选地,终端设备可以通过preamble和PUSCH上报设备类型,这种方式能够提高网络设备识别终端设备的类型的准确性。具体在随机接入时可以生成包括设备类型识别信息的preamble以及PUSCH,并通过Msg A将该preamble以及PUSCH发送给网络设备。这种实现方式中,preamble和PUSCH均包括终端设备的设备类型。
可选地,网络设备接收到Msg A之后,还可以向终端设备发送Msg B,以响应Msg A,并建立与终端设备之间的连接。
图7A为本公开第一示例性实施例示出的应用于四步随机接入的处理方法的流程示意图。
本公开提供的处理方法可以应用在四步随机接入的场景中。
如图7A所示,本公开提供的处理方法中,在四步随机接入时,可以包括:
步骤701A,发送Msg 1,Msg 1中具有包含设备类型识别信息的preamble。
步骤702A,接收Msg 2,Msg 2中包含基站解析到的前导码ID,Msg 3的上行资源授权的UL Grant,终端临时标识TC_RNTI,以及时间提前量TA。
步骤703A,发送Msg 3,先确定Msg 2中收到的前导码ID和Msg 1发送的前导码ID一样,再根据Msg 2携带的TA值调整PUSCH的发送时间,进行PUSCH发送。
步骤704A,接收Msg 4。
可选地,在四步随机接入时,终端设备可以通过preamble向网络设备上报设备类型。
可选地,终端设备可以根据设备类型生成或确定preamble,该preamble中包括设备类型识别信息。再通过Msg 1发送preamble,从而上报设备类型。终端设备通过向网络设备发送Msg 1的方式,向网络设备发送随机接入请求。
可选地,网络设备还可以向终端设备发送Msg 2,Msg2中包含preamble_id、TC_RNTI和TA,从而响应终端设备的随机接入请求。
可选地,终端设备还可以向网络设备发送Msg 3,Msg 3中可以包括PUSCH。
可选地,网络设备还可以向终端设备发送Msg 4,建立与终端设备之间的连接。
图7B为本公开第二示例性实施例示出的应用于四步随机接入的处理方法的流程示意图。
本公开提供的处理方法可以应用在四步随机接入的场景中。
如图7B所示,本公开提供的处理方法中,在四步随机接入时,可以包括:
步骤701B,发送Msg 1,Msg 1中包括preamble。
步骤702B,接收Msg 2,Msg2中包含基站解析到的前导码ID,Msg 3的上行资源授权的UL Grant,终端临时标识TC_RNTI,以及时间提前量TA。
步骤703B,发送Msg 3,先确定Msg 2中收到的前导码ID和Msg1发送的前导码ID一样,再根据Msg2携带的TA值调整PUSCH的发送时间,进而在Msg 3中发送包含设备类型识别信息的PUSCH。
步骤704B,接收Msg 4。
可选地,在四步随机接入时,终端设备可以通过PUSCH向网络设备上报设备类型。
可选地,终端设备可以生成preamble,再通过Msg 1发送preamble,该preamble的生成方式与现有技术中的方案相同。终端设备通过向网络设备发送Msg 1的方式,向网络设备发送随机接入请求。
可选地,网络设备还可以向终端设备发送Msg 2,从而响应终端设备的随机接入请求。
可选地,终端设备还可以根据自身的设备类型,生成或确定PUSCH,生成或确定的PUSCH中包括设备类型识别信息。终端设备通过Msg 3向网络设备发送该包括设备类型识别信息的PUSCH,以上报设备类型。
可选地,网络设备还可以向终端设备发送Msg 4,建立与终端设备之间的连接。
图7C为本公开第三示例性实施例示出的应用于四步随机接入的处理方法的流程示意图。
本公开提供的处理方法可以应用在四步随机接入的场景中。
如图7C所示,本公开提供的处理方法中,在四步随机接入时,可以包括:
步骤701C,发送Msg 1,Msg 1中具有包含设备类型识别信息的preamble。
步骤702C,接收Msg 2,Msg 2中包含基站解析到的前导码ID,Msg 3的上行资源授权的UL Grant,终端临时标识TC_RNTI,以及时间提前量TA。
步骤703C,发送Msg 3,确定Msg 2中收到的前导码ID和Msg 1发送的前导码ID一样,再根据Msg 2携带的TA值调整PUSCH的发送时间,进而在Msg 3中发送包含设备类型识别信息的PUSCH。
步骤704C,接收Msg 4。
可选地,在四步随机接入时,终端设备可以通过preamble和PUSCH向网络设备上报设备类型。
可选地,终端设备可以根据设备类型生成或确定preamble,该preamble中包括设备类型识别信息。再通过Msg 1发送preamble,从而上报设备类型。终端设备通过向网络设备发送Msg 1的方式,向网络设备发送随机接入请求。
可选地,网络设备还可以向终端设备发送Msg 2,从而响应终端设备的随机接入请求。
可选地,终端设备还可以根据自身的设备类型,生成或确定PUSCH,生成的PUSCH中包括设备类型识别信息。终端设备通过Msg 3向网络设备发送该包括设备类型识别信息的PUSCH,以上报设备类型。
可选地,网络设备还可以向终端设备发送Msg 4,建立与终端设备之间的连接。
这种实现方式中,终端设备可以通过preamble和PUSCH向网络设备上报设备类型,这种方式能够提高网络设备识别终端设备的类型的准确性。
上述任一种实现方式中,终端设备基于终端到小区站点的距离或者接收信号的强度(RSRP)确定是选择两步随机接入方式还是四步随机接入方式接入网络。
可选地,终端设备确定或生成的preamble中可以包括设备类型识别信息,网络设备接收到该preamble之后,能够根据其中的设备类型识别信息确定终端设备的类型。
可选地,若preamble中包括设备类型识别信息,则该设备类型识别信息可以位于preamble中的GP中。其中,GP为保护间隔,现有技术中的GP不用于携带信令数据,因此,通过在GP中添加设备类型识别信息,能够使得preamble的结构与现有技术中的preamble结构相同,进而在无需对终端设备和网络侧设备进行大幅度更改的情况下,终端设备就能够上报设备类型识别信息,且由于现有技术中的GP不用于携带信令数据,将设备类型识别信息设置在GP中还不会影响preamble中携带的其他数据。
图8A-8C为本公开示例性实施例示出的preamble的结构示意图。
如图8A、8B、8C所示,本公开提供的任一项preamble,包括CP 81,SEQ 82、GP 83这三部分。可以在其中的GP 83中设置设备类型识别信息。
图8A-8C所示出的preamble仅为示意性的表达,还可以根据需求设置其他形式的preamble。
可选地,设备类型识别信息位于GP的指定资源单元中。可以预先在GP中指定资源单元,从而利用该指定资源单元放置设备类型识别信息。
可选地,网络设备和终端设备可以预先约定好GP的指定资源单元,从而使终端设 备可以在GP的该指定资源单元中设置设备类型识别信息,使网络设备从GP的该指定资源单元中读取设备类型识别信息。
图9A-9C为本公开示例性实施例示出的包括设备类型识别信息的preamble的结构示意图。
如图9A所示,可以在preamble的GP的第一个资源单元831中设置设备类型识别信息。
如图9B所示,可以在preamble的GP的最后一个资源单元832中设置设备类型识别信息。
如图9C所示,可以在preamble第一资源单元与最后一个资源单元之间的任一个资源单元833中设置设备类型识别信息。
需要说明的是,任一项设备类型识别信息的设置方式都可以应用在任一项类型的preamble中。
比如,可以在如图8B或图8C所示出的preamble的GP的第一个资源单元中设置设备类型识别信息。
比如,可以在如图8A或图8C所示出的preamble的GP的最后一个资源单元中设置设备类型识别信息。
比如,可以在如图8A或图8B所示出的preamble第一资源单元与最后一个资源单元之间的任一个资源单元中设置设备类型识别信息。
可选地,终端设备生成的随机接入前导码包括以下至少一项:
第一部分随机接入前导码;
第二部分随机接入前导码;
第三部分随机接入前导码。
可选地,第一部分preamble用于基于竞争的随机接入。
可选地,第二部分preamble用于基于非竞争的随机接入。
可选地,第三部分preamble用于基于其他目的的随机接入。
可选地,终端设备生成的preamble的数量为64。
这64个preamble中可以包括上述第一部分preamble、第二部分preamble、第三部分preamble中的至少一项。
可选地,终端设备生成的preamble的数量也可以为其他预设固定值,具体地,可以根据小区容纳的最大终端数量确定前导码的数量,比如,当小区容纳的最大终端数量为128时,终端生成前导码的数量为128。
图10为本公开一示例性实施例示出的至少一个随机接入前导码的示意图。
如图10所示,在这64个preamble中,第0-3、7-10、14-17...49-52个preamble的作用为基于竞争的随机接入,第4-6、11-13、53-55个preamble的作用为基于非竞争的随机接入,第56-63个preamble的作用为基于其他目的的随机接入。
可选地,64个preamble中的任一preamble与相应的SSB(Synchronization Signal Block,同步信号块)对应。
在发送preamble时,终端设备可以确定SSB,再发送与该SSB对应的preamble。
可选地,一个PRACH(Physical Random Access Channel,物理随机接入信道)时隙可以有多个RO机会,一个RO机会在时域上占据若干个符号,在频域上占据若干个子载波。一个RO机会代表一个preamble传输的时频资源。
可选地,每个RO机会可以关联多个SSB,例如,若参数ssb-perRACH-OccasionAndCB-PreamblesPerSSB=N且N>1,则1个RO机会与N个SSB相关联。
图11为本公开第一示例性实施例示出的SSB与RO机会之间的关联关系。
如图11所示,#用于表征RO机会的索引,一个PRACH配置周期(PRACH configuration period)包括两个PRACH时隙,在一个PRACH时隙中可以包括4个RO机会,其中RO#0与RO#1占据的符号相同,但占据的子载波不同,RO#2与RO#3占据的符号相同,但占据的子载波不同。RO#0与RO#2占据不同的符号。
可选地,RO#0与SSB 0和SSB1关联,RO#1与SSB 2和SSB 3关联,RO#2与SSB 4和SSB 5关联,RO#3与SSB 6和SSB 7关联。
这种应用场景中,可以根据网络设备指示的SSB确定发送哪个preamble,比如可以结合图10所示的SSB与preamble之间的对应关系确定发送哪个preamble。还可以根据SSB与RO机会之间的对应关系选择用于发送该preamble的RO机会。
可选地,一个SSB也可以关联多个RO机会,例如,参数ssb-perRACH-OccasionAndCB-PreamblesPerSSB=N且N<=1,则1个SSB与1/N个RO机会关联。
图12为本公开第二示例性实施例示出的SSB与RO机会之间的关联关系。
如图12所示,#用于表征RO机会的索引,一个PRACH配置周期(PRACH configuration period)包括一个PRACH时隙,在一个PRACH时隙中可以包括8个RO机会。图中位于同一行的RO机会占用的频域资源相同,位于同一列的RO机会占据的时域资源相同。
SSB 0与RO#0和RO#1对应,SSB 1与RO#2和RO#3对应,SSB 8与RO#4和RO#5对应,SSB 9与RO#6和RO#7对应,SSB 16与RO#8和RO#9对应,SSB 17与RO#10和RO#11对应,SSB 24与RO#12和RO#13对应,SSB 25与RO#14和RO#15对应,SSB 32与RO#16和RO#17对应,SSB 33与RO#18和RO#19对应。
这种实现方式中,可以根据网络设备指示的SSB,以及SSB与RO机会之间的对应关系选择用于发送preamble的RO机会。
可选地,若确定或生成的PUSCH中包括设备类型识别信息,则:
该设备类型识别信息可以位于PUSCH的预留时频资源中;
该设备类型识别信息还可以位于终端设备的身份标识中;
该设备类型识别信息还可以包含在对物理上行链路共享信道加扰的加扰序列中。
可选地,在上述任一种实现方式中,若通过PUSCH上报设备类型,则在四步随机接入时,确定或生成PUSCH,包括以下至少一项:
在PUSCH的预留时频资源位置中添加设备类型识别信息;
在PUSCH中的身份标识中添加设备类型识别信息;
利用与设备类型识别信息对应的加扰序列对PUSCH加扰。
比如,在四步随机接入时,通过PUSCH上报设备类型,或者通过PUSCH和preamble上报设备类型,均可以采用上述至少一项实现方式。
可选地,在上述任一种实现方式中,若通过PUSCH上报设备类型,则在两步随机接入时,确定或生成PUSCH,包括以下至少一项:
在PUSCH的预留时频资源位置中添加设备类型识别信息;
利用与设备类型识别信息对应的加扰序列对PUSCH加扰。
比如,在两步随机接入时,通过PUSCH上报设备类型,或者通过PUSCH和preamble上报设备类型,均可以采用上述至少一项实现方式。
可选地,终端设备在PUSCH的预留时频资源位置中添加设备类型识别信息时,具体可以根据预设映射公式确定PUSCH的预留时频资源位置,再在预留时频资源位置处添加设备类型识别信息。
可选地,预设映射公式包括频域映射公式和时域映射公式。频域映射公式用于确定在PUSCH中添加设备类型识别信息的频域位置,时域映射公式用于确定在PUSCH中添加设备类型识别信息的时域位置。
可选地,终端设备可以根据频域映射公式在PUSCH占用的带宽部分中确定设备类型识别信息的频域位置,根据时域映射公式在PUSCH占用的时隙中确定设备类型识别信息的时域位置。
可选地,可以基于下式在PUSCH占用的带宽部分中确定设备类型识别信息的频域位置:
Figure PCTCN2022094751-appb-000002
其中,k取值为0-11中的任一值,
Figure PCTCN2022094751-appb-000003
为PUSCH占用的带宽部分中可用的RB数量。
若PUSCH占用的每个资源块中为设备类型识别信息预留两个资源元素,则上式中的k取0-11中任两值。
可选地,可以基于下式在PUSCH占用的时隙中确定设备类型识别信息的时域位置:
l=l 0+m;m为随机整数,I≤13,l 0为PUSCH在时隙内所占的第一个符号索引。
若上报设备类型识别信息占据2个不同的时域符号,则用于确定时域位置的映射公式还可以包括l’=l 0+j;j为与m不同的随机整数;或j与m之间的符号偏差不超过一个预设的符号数,比如两个符号偏差不超过3个符号;如若l0=0,m=4,则预留的第二个符号索引为j=4+3=7。
以此类推,若上报设备类型识别信息占据多个不同的时域符号,则用于确定其他时域位置的映射公式需重新以规则定义。
图13为本公开一示例性实施例示出的时频资源图。
如图13所示,纵向表征频域资源,横向表征时频资源。图中以频域一个RB,时域一个符号为例示意PUSCH所占用的每个RB中为设备类型识别信息预留的资源位置。
设PUSCH所占用的时域符号索引为符号2,3,4,...,11;PUSCH频域占用的RB数为6个。则当k=6,m=6时,能够确定出频域索引为6,18,30,…,66,时域位置为PUSCH所在时隙的符号索引为l=l 0+m=2+6=8,根据上述时频域映射公式确定用于放置类型识别信息的预留时频资源位置131。
可选地,确定出的预留时频资源位置不能与PUSCH中的DMRS(Demodulation Reference Signal,解调参考信号)所在的位置重叠,确定出的预留时频资源位置不能与PUSCH中的SRS(Sounding Reference Signal,信道探测参考信号)所在的位置重叠。
若该终端是普通设备,则在PUSCH中的符合上述映射条件的预留资源位置上不进行任何操作;若该终端是Redcap设备,则在PUSCH中的符合上述映射条件的预留资源位置上放置用于类型识别的ZC序列或PN或Walsh序列。
这种方式可以应用在四步随机接入过程中进行PUSCH发送的应用场景中,具体参考图14A,也可以应用在两步随机接入中进行PUSCH发送的应用场景中,具体参考图14B。
图14A为本公开第四示例性实施例示出的应用于四步随机接入的处理方法的流程示意图。
如图14A所示,本公开提供的处理方法,包括:
步骤1401A,发送Msg 1。
步骤1402A,接收Msg2,Msg2中包含基站解析到的前导码ID,Msg3的上行资源授权的UL Grant,终端临时标识TC_RNTI,以及时间提前量TA。
步骤1403A,发送Msg 3,确定Msg 2中收到的前导码ID和Msg 1发送的前导码ID一样,再根据Msg 2携带的TA值调整PUSCH的发送时间;Msg 3具有包含设备类型识别信息的PUSCH,设备类型识别信息位于PUSCH的预留时频资源位置处。
步骤1404A,接收Msg4。
可选地,可以根据预设时频域映射公式确定PUSCH的预留时频资源位置;在预留时频资源位置处放置用于设备类型识别的ZC或PN或Walsh序列。
可选地,具体可以根据频域映射公式在PUSCH占用的带宽部分中确定设备类型识别信息的频域位置,根据时域映射公式在PUSCH占用的时隙中确定设备类型识别信息的时域位置;再根据频域位置和时域位置在PUSCH中确定预留时频资源位置;其中,预留时频资源位置与PUSCH中DMRS所在的位置不重叠,预留时频资源位置与PUSCH中SRS所在的位置不重叠。
图14B为本公开第四示例性实施例示出的应用于两步随机接入的处理方法的流程示意图。
如图14B所示,本公开提供的处理方法,包括:
步骤1401B,发送Msg A,Msg A具有包含设备类型识别信息的PUSCH,设备类型识别信息位于PUSCH的预留时频资源位置处。
步骤1402B,接收Msg B。
可选地,可以根据预设时频域映射公式确定PUSCH的预留时频资源位置;在预留时频资源位置处放置用于设备类型识别的ZC或PN或Walsh序列。
可选地,具体可以根据频域映射公式在PUSCH占用的带宽部分中确定设备类型识别信息的频域位置,根据时域映射公式在PUSCH占用的时隙中确定设备类型识别信息的时域位置;再根据频域位置和时域位置在PUSCH中确定预留时频资源位置;其中,预留时频资源位置与PUSCH中DMRS所在的位置不重叠,预留时频资源位置与PUSCH中SRS所在的位置不重叠。
可选地,终端设备在PUSCH中的身份标识中添加设备类型识别信息时,4-Step随机接入过程中,若终端设备是普通设备,则PUSCH中设备类型识别信息取值为Msg 2下发的第一身份标识;若终端设备是轻型能力设备,则PUSCH中设备类型识别信息取值为第二身份标识。其中第一身份标识为Msg 2下发的TC-RNTI,第二身份标识为Msg 2下发的TC-RNTI与delta之间的加和,delta的取值可以是固定值,也可以是RRC参数的配置可选范围值,且要求delta的值需要大于65522,保证其与其他normal设备区分开。
可选地,网络设备接收到PUSCH后可以利用第一身份标识进行解扰,若解扰成功,则可以确定终端设备是普通设备,若解扰失败,则可以在第一身份标识基础上添加预设偏移参数delta得到终端设备的第二身份标识,并利用第二身份标识对PUSCH解扰,若解扰成功则确定终端设备是Redcap设备。
可选地,终端设备可以根据下式生成加扰序列C init
C init=n RNTI·2 16+n ID
可选地,若终端设备为普通设备,则n RNTI为网络设备发送给终端设备的Msg 2中分配的第一身份标识,若终端设备为Redcap设备,则n RNTI为第二身份标识。
可选地,这种实现方式可以应用在四步随机接入的应用场景中,具体参考图15。
图15为本公开第五示例性实施例示出的应用于四步随机接入的处理方法的流程示意图。
如图15所示,本公开提供的处理方法,包括:
步骤1501,发送Msg 1。
步骤1502,接收Msg 2,Msg 2中包括基站解析到的前导码ID,Msg 3的上行资源授权的UL Grant,终端临时标识TC_RNTI,以及时间提前量TA。
步骤1503,发送Msg 3,确定Msg 2中收到的前导码ID和Msg 1发送的前导码ID一样,再根据Msg 2携带的TA值调整PUSCH的发送时间,进行PUSCH发送;Msg 3中具有包含身份标识的PUSCH,其中,若终端设备是普通设备,则PUSCH中的身份标识为TC_RNTI,若终端设备是轻型能力设备,则PUSCH中的身份标识为第二身份标识;第二身份标识是TC_RNTI与delta的加和。
步骤1504,接收Msg 4。
若终端设备是普通设备,则可以利用TC_RNTI生成加扰序列,再利用加扰序列对PUSCH加扰,这种实现方式中,PUSCH中的身份标识具有与普通设备对应的设备类型识别信息。
若终端设备是轻型设备,则可以利用第二身份标识生成加扰序列,再利用加扰序列对PUSCH加扰,这种实现方式中,PUSCH中的身份标识具有与Redcap设备类型对应的设备类型识别信息。第二身份标识是TC_RNTI与delta的加和。
可选地,终端设备利用与设备类型对应的加扰序列对PUSCH加扰时,若终端设备 是普通设备,则利用第一加扰序列对PUSCH加扰;若终端设备是Redcap设备,则利用第二加扰序列对PUSCH加扰,第二加扰序列是第一加扰序列与预设偏移量的加和。
可选地,网络设备接收到PUSCH后,利用该第一加扰序列对PUSCH解扰,若解扰成功则确定终端设备是普通设备;若解扰失败,则利用第二加扰序列对PUSCH解扰,若解扰成功,则确定终端设备是Redcap设备。
在四步随机接入时,终端设备可以基于下式确定加扰序列:
终端设备为普通设备时:第一加扰序列为C init=n RNTI·2 16+n ID
终端设备为Redcap设备时:第二加扰序列为C init=n RNTI·2 16+n ID+delta。
四步随机接入时的n RNTI=TC-RNTI,由Msg 2下发;delta为预设偏移量,delta的取值可以是固定值,也可以是RRC参数的配置可选范围值,delta的值需大于16进制数FFF2042B。
在两步随机接入时,终端设备可以基于下式确定加扰序列C init
终端设备为普通设备时:第一加扰序列为C init=n RNTI·2 16+n RAPID·2 10+n ID
终端设备为Redcap设备时:第二加扰序列为C init=n RNTI·2 16+n RAPID·2 10+n ID+delta。
其中,两步随机接入时的n RNTI=RA-RNTI(random access radio network temporary identity,随机接入无线网络临时标识),RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id,其中s_id是PRACH时机的第一个OFDM符号的索引,索引取值范围为0≤s_id<14,t_id是PRACH时机在一个系统帧内的第一个时隙索引,取值范围为0≤t_id<80,f_id是频域上PRACH时机索引,取值范围为0≤f_id<8,ul_carrier_id由用于随机接入前导发送的上行载波决定,若preamble在SUL载波发送,则取值为1,若为NUL载波,则取值为0。
这种方式可以应用在四步随机接入的应用场景中,具体参考图16A,也可以应用在两步随机接入的应用场景中,具体参考图16B。
图16A为本公开第六示例性实施例示出的应用于四步随机接入的处理方法的流程示意图。
如图16A所示,本公开提供的处理方法,包括:
步骤1601A,发送Msg 1。
步骤1602A,接收Msg 2,Msg 2中包含基站解析到的前导码ID,Msg 3的上行资源授权的UL Grant,终端临时标识TC_RNTI,以及时间提前量TA。
步骤1603A,发送Msg 3,确定Msg 2中收到的前导码ID和Msg 1发送的前导码ID一样,再根据Msg 2携带的TA值调整PUSCH的发送时间,进行PUSCH发送;该PUSCH是利用加扰序列加扰的;其中,若终端设备是普通设备,则加扰序列为第一加扰序列,若终端设备是Redcap设备,则加扰序列为第二加扰序列。
步骤1604A,接收Msg 4。
可选地,在Msg 2中可以包括网络设备为终端设备分配的身份标识TC_RNTI。
若终端设备是普通设备,则终端设备利用第一加扰序列对PUSCH加扰。这种实现方式中,终端设备发出的PUSCH具有与普通设备对应的设备类型识别信息。具体可以基于下式确定第一加扰序列:
C init=n RNTI·2 16+n ID
若终端设备是Redcap设备,则终端设备可以基于下式确定第二加扰序列,再利用第二加扰序列对PUSCH加扰:
C init=n RNTI·2 16+n ID+delta。
图16B为本公开第五示例性实施例示出的应用于两步随机接入的处理方法的流程示意图。
如图16B所示,本公开提供的处理方法,包括:
步骤1601B,发送Msg A,Msg A中具有利用加扰序列加扰的PUSCH;其中,若终端设备是普通设备,则加扰序列为第一加扰序列,若终端设备是Redcap设备,则加扰序列为第二加扰序列。
步骤1602B,接收Msg B。
可选地,终端设备可以获取身份标识,并利用身份标识生成加扰序列。
若终端设备是普通设备,则终端设备利用第一加扰序列对PUSCH加扰。这种实现方式中,终端设备发出的PUSCH具有与普通设备对应的设备类型识别信息。具体可以基于下式确定第一加扰序列:
C init=n RNTI·2 16+n RAPID·2 10+n ID
若终端设备是Redcap设备,则终端设备可以基于下式确定第二加扰序列,再利用第二加扰序列对PUSCH加扰:
C init=n RNTI·2 16+n RAPID·2 10+n ID+delta。
图17为本公开第二示例性实施例示出的处理方法的流程示意图。
如图17所示,在一种可选的实现方式中,终端设备在随机接入前,还可以接收网络侧的系统消息,系统消息用于指示通过preamble,和/或PUSCH上报设备类型。
步骤1701,接收系统消息,根据系统消息确定是通过随机接入前导码,和/或物理上行链路共享信道上报设备类型。
可选地,网络侧可以向终端设备发送系统消息,该系统消息例如可以是SIB(System Information Block,系统信息块),还可以是MIB(Master Information Block,主系统信息块)。通过系统消息指示终端设备以何种方式上报设备类型。具体的方式可以包括通过preamble上报,还可以包括通过PUSCH上报,还可以同时通过preamble和PUSCH上报。
终端设备接收到系统消息后,可以根据系统消息确定上报设备类型的方式。比如,可以在系统消息中增加用于指示设备类型上报方式的比特位,终端设备通过获取相应比特位中的信息确定设备类型的上报方式。
比如,若用于指示设备类型上报方式的比特位为00,则终端设备在随机接入时不需要上报设备类型。若用于指示设备类型上报方式的比特位为01,则通过preamble上报设备类型。若用于指示设备类型上报方式的比特位为10,则通过PUSCH上报设备类型。若用于指示设备类型上报方式的比特位为11,则同时通过preamble和PUSCH上报设备类型。
步骤1702,若系统消息指示通过随机接入前导码上报设备类型,则在随机接入时,确定或生成随机接入前导码;若系统消息指示通过物理上行链路共享信道上报设备类型,则在随机接入时,确定或生成物理上行链路共享信道。
可选地,若系统消息指示终端设备通过preamble上报设备类型,则终端设备生成或确定包括设备类型识别信息的preamble,若系统消息指示终端设备通过PUSCH上报设备类型,则终端设备生成或确定包括设备类型识别信息的PUSCH。
可选地,在两步随机接入时,若系统消息指示终端设备通过preamble上报设备类型,则终端设备通过发送Msg A中包括设备类型识别信息的preamble上报设备类型;若系统消息指示终端设备通过PUSCH上报设备类型,则终端设备通过发送Msg A中包括设备类型识别信息的PUSCH上报设备类型;若系统消息指示同时通过preamble和PUSCH上报设备类型,则终端设备通过发送Msg A中包括设备类型识别信息的preamble和包括设备类型识别信息的PUSCH上报设备类型。
可选地,在四步随机接入时,若系统消息指示通过preamble上报设备类型,则终端设备通过发送Msg 1中包括设备类型识别信息的preamble上报设备类型;若系统消息指示通过PUSCH上报设备类型,则终端设备通过发送Msg 3中包括设备类型识别信息的PUSCH上报设备类型;若系统消息指示通过preamble和PUSCH上报设备类型,则终端设备通过发送Msg 1中包括设备类型识别信息的preamble,通过发送Msg 3中包括设备类型识别信息的PUSCH,上报设备类型。
可选地,若UE通过preamble上报设备类型识别信息,则网络设备可以向UE发送设别类型识别结果。例如,可以通过Msg B或者Msg 2向UE发设备送类型识别结果。
UE基于网络设备的类型识别结果确定是否通过PUSCH再次上报设备类型识别信息。
可选地,可以在Msg 2或Msg B的DCI(Downlink Control Information,下行控制信息)中增加类型识别域,UE解析DCI中新增类型识别域的bit取值,以确定网 络设备的设备类型识别结果。例如,若类型识别域中的bit为1,则表征网络设备确定UE是Redcap设备,若类型识别域中的bit为0,则表征网络设备确定UE是普通类型的设备。
可选地,UE能够从Msg 2获取设备类型识别结果,比如,可以从Msg 2的DCI中获取设别类型识别结果。再比如,可以从Msg B的DCI中获取设别类型识别结果。
可选地,若网络设备的设备类型识别结果与UE的设备类型一致,则不论系统消息或高层信令中是否使能PUSCH类型识别上报机制,UE将不再通过PUSCH再次上报设备类型识别信息,以节省PUSCH传输资源和减少PUSCH资源碰撞;和/或,若网络设备的设备类型识别结果与UE的设备类型不一致且系统消息或高层信令中使能PUSCH类型识别上报机制,则UE通过PUSCH再次上报设备类型识别信息,增加网络侧对于UE类型识别的可靠性。
可选地,在两步随机接入时,若UE通过Msg A中的preamble上报设备类型,则网络设备可以在Msg B中添加设备类型识别结果。
例如,UE通过Msg A的preamble上报的设备类型为普通类型,Msg B的DCI中携带的信息表征网络侧的设备类型识别结果为Redcap类型,则UE通过重传Msg A的方式再次上报设备类型识别信息。
UE通过Msg A的preamble上报的设备类型为普通类型,Msg B的DCI中携带的信息表征网络侧的设备类型识别结果为普通类型,则UE不重传Msg A。
UE通过Msg A的preamble上报的设备类型为Redcap类型,Msg B的DCI中携带的信息表征网络侧的设备类型识别结果为Redcap类型,则UE不重传Msg A。
UE通过Msg A的preamble上报的设备类型为Redcap类型,Msg B的DCI中携带的信息表征网络侧的设备类型识别结果为普通类型,则UE通过重传Msg A的方式再次上报设备类型识别信息。
这种实现方式中,网络设备进行随机接入配置时,可以为UE配置两套时间不同、但同时生效的RO机会,以满足UE能够重传Msg A的需求。
可选地,在四步随机接入时,若UE使用了preamble上报设备类型,则网络设备可以在Msg 2中添加设备类型识别结果。
例如,UE通过preamble上报的设备类型为普通类型,DCI中携带的信息表征网络侧的设备类型识别结果为Redcap类型,则UE通过Msg 3的PUSCH再次上报设备类型识别信息;
UE通过preamble上报的设备类型为普通类型,DCI中携带的信息表征网络侧的设备类型识别结果为普通类型,则UE不通过Msg 3的PUSCH再次上报设备类型识别信息;
UE通过preamble上报的设备类型为Redcap类型,DCI中携带的信息表征网络侧的设备类型识别结果为Redcap类型,则UE不通过Msg 3的PUSCH再次上报设备类型识别信息;
UE通过preamble上报的设备类型为Redcap类型,DCI中携带的信息表征网络侧的设备类型识别结果为普通类型,则UE通过Msg 3的PUSCH再次上报设备类型识别信息。
步骤1703,发送随机接入前导码,和/或物理上行链路共享信道。
可选的,终端设备可以向网络设备发送preamble和/或PUSCH,preamble和/或PUSCH中包括设备类型识别信息,因此,终端设备能够上报设备类型。
图18为本公开第三示例性实施例示出的处理方法的流程示意图。
如图18所示,在一种可选的实现方式中,终端设备在随机接入前,还可以接收网络侧的系统消息,该系统消息用于指示是否允许Redcap设备接入。
可选的,还可以结合图17和图18的实施方式,这种实施方式中系统消息既用于指示是否允许Redcap设备接入,也用于指示通过随机接入前导码,和/或物理上行链路共享信道上报设备类型。
步骤1801,接收系统消息,系统消息中包括是否允许轻型能力设备接入的信息。
可选地,网络设备可以广播系统消息,终端设备可以接收该系统消息。
可选地,在MIB(Master Information Block,主系统信息块),或者SIB(System Information Block,系统信息块),或调度SIB的DCI或RRC信令中包含是否允许Redcap设备接入的信息。
可选地,还可以在其他高层信令中携带是否允许Redcap设备接入的信息,终端设备解析信令便可以获得允许何种能力的设备接入的信息。例如,若用于指示是否允许Redcap设备接入指示bit为1,则表征允许Redcap设备接入,和/或,若用于指示是否允许Redcap设备接入的指示bit为0,则表征不允许Redcap设备接入。再例如,指示bit为00,表征任何类型设备都不能接入,指示bit为01,表征普通设备可以接入,指示bit为10,表征Redcap设备可以接入,指示bit为11,表征普通设备、Redcap设备均可以接入。
若终端设备具有普通设备的能力以及Redcap设备的能力,且指示bit表征普通设备、Redcap设备均可以接入,则终端设备可以根据当前业务的具体场景选择接入方式,比如是智能电表,则以redcap设备的类型接入,比如是语音通话,则以普通设备的类型接入。
可选地,网络设备和终端设备可以预先约定利用系统消息中的哪个资源指示是否允许Redcap设备接入,从而使终端设备接收到接收系统消息后,可以从相应的信令获取指示信息,以确定网络设备是否允许Redcap设备接入。
步骤1802,在满足以下至少一项时,在随机接入时,确定或生成随机接入前导码和/或物理上行链路共享信道:若终端设备为轻型能力设备,且系统消息表征允许轻型能力设备接入;或者若终端设备具备轻型能力设备的能力和普通设备的能力,终端设备以普通设备能力接入网络,且系统消息表征不允许轻型能力设备接入、允许普通设备接入;或者若终端设备为普通设备,且系统消息表征允许普通设备接入。
可选地,终端设备接收到系统消息后,在需要进行随机接入流程时,具体可以根据系统消息确定是否接入网络。
若终端设备确定其能够接入网络,则终端设备可以确定或生成preamble,和/或确定或生成PUSCH,若终端设备根据系统消息确定不能够接入网络,则终端设备不确定或不生成preamble,也不确定或不生成PUSCH。
第一种情况中,若终端设备为Redcap设备,且系统消息表征允许Redcap设备接入,则在随机接入时,终端设备确定或生成preamble和/或PUSCH。
第二种情况中,若终端设备具备Redcap设备的能力和普通设备的能力,终端设备以普通设备能力接入网络,且系统消息表征不允许Redcap设备接入、允许普通设备接入。这种情况下,终端设备是以普通设备的角色接入网络,且系统消息允许普通设备接入,因此,在随机接入时,终端设备确定或生成preamble和/或PUSCH。
第三种情况中,若终端设备为普通设备,且系统消息表征允许普通设备接入,则在随机接入时,终端设备确定或生成preamble和/或PUSCH。
上述任一种实现方式中,终端设备的preamble和/或PUSCH中,包括终端设备的设备类型识别信息,具体可以是与普通设备对应的设备类型识别信息。
本公开提供的方案中,若系统消息表征不允许Redcap设备接入,且终端设备是Redcap设备,此时,终端设备不会生成或确定preamble和/或PUSCH。
步骤1803,发送随机接入前导码和/或若发送物理上行链路共享信道。
可选地,若系统消息表征终端设备能够接入网络,则该终端设备可以确定或生成preamble和/或PUSCH,并将preamble和/或PUSCH发送给网络设备;其中,preamble和/或PUSCH中包括终端设备的设备类型识别信息,因此,能够通过这种方式上报设备类型。
图19为本公开第四示例性实施例示出的处理方法的流程示意图。
本公开提供的处理方法可以应用在具备轻型能力设备的能力和普通设备的能力的终端设备中,该终端设备在随机接入时,可以基于业务需求选择以何种角色接入网络。本实施例提供的方案可以应用在以上任一种实施例中。
如图19所示,本公开提供的处理方法,包括:
步骤1901,确定或生成随机接入前导码和/或物理上行链路共享信道,随机接入前导码和/或物理上行链路共享信道包括根据业务需求确定的设备类型。
可选地,终端设备在确定或生成preamble和/或PUSCH时,可以根据业务需求确定的设备类型。具体可以根据需要处理的业务需求确定以哪种类型接入网络设备,并确定或生成与该设备类型对应的preamble和/或PUSCH。比如,终端设备若确定以普通设备类型接入网络设备,则其确定或生成的preamble和/或PUSCH中的包括与普通设备对应的设备类型识别信息。终端设备若确定以Redcap设备的类型接入网络设备,则其确定或生成的preamble和/或PUSCH中包括与Redcap设备对应的设备类型识别信息。
可选地,终端设备在一次接入网络的过程中,设备类型不变,但是可以基于业务需求在多次接入网络的过程中,变更其设备类型。比如,第一次接入网络流程与第二次接网络流程中选择的设备类型不同。
步骤1902,发送随机接入前导码和/或若发送物理上行链路共享信道。
图20为本公开第五示例性实施例示出的处理方法的流程示意图。
如图20所示,本公开提供的处理方法,包括:
步骤2001,接收系统消息,根据系统消息确定上报设备类型的方式;方式包括通过随机接入前导码上报设备类型和/或物理上行链路共享信道上报设备类型。
可选地,网络设备可以广播系统消息,该系统消息用于指示终端设备以何种方式上报设备类型。该系统消息例如可以是SIB(System Information Block,系统信息块),还可以是MIB(Master Information Block,主系统信息块)。可以通过系统消息指示终端设备以何种方式上报设备类型。
具体的方式可以包括通过preamble上报,还可以包括通过PUSCH上报,还可以包括同时通过preamble和PUSCH上报。
终端设备接收到系统消息后,可以根据系统消息确定上报设备类型的方式。比如,可以在系统消息中增加用于指示设备类型上报方式的比特位,终端设备通过获取相应比特位中的信息确定设备类型的上报方式。
比如,若用于指示设备类型上报方式的比特位为00,则终端设备在随机接入时不需要上报设备类型。若用于指示设备类型上报方式的比特位为01,则通过preamble上报设备类型。若用于指示设备类型上报方式的比特位为10,则通过PUSCH上报设备类型。若用于指示设备类型上报方式的比特位为11,则通过preamble和PUSCH上报设备类型。
步骤2002,在随机接入时,根据确定的上报设备类型方式上报设备类型。
若系统消息指示通过preamble上报设备类型,则在随机接入时,终端设备生成或确定包括设备类型识别信息的preamble,并向网络设备发送该preamble,从而上报设备类型。
若系统消息指示通过PUSCH上报设备类型,则在随机接入时,终端设备生成或确定包括设备类型识别信息的PUSCH,并向网络设备发送该PUSCH,从而上报设备类型。
若系统消息指示通过preamble和PUSCH上报设备类型,则在随机接入时,终端设备生成或确定包括设备类型识别信息的preamble和包括设备类型识别信息的PUSCH,并向网络设备发送preamble和PUSCH,从而上报设备类型。
本申请实施例提供的处理方法,通过发送包括设备类型信息的preamble和/或PUSCH的方式,使网络设备获知终端设备的类型,这种方式既不需要预留随机接入前导码,也不需要占据额外的随机接入机会,进而能够以较小的通信成本实现区分终端设备类型的目的。
图21为本公开第六示例性实施例示出的处理方法的流程示意图。
如图21所示,本公开提供的处理方法,包括:
步骤2101,获取系统消息中的预设指示信息,根据预设指示信息确定通过随机接入前导码上报设备类型和/或物理上行链路共享信道上报设备类型。
可选地,在系统消息中可以预设比特位,用于承载预设指示信息。网络设备可以下发系统消息,终端设备接收到系统消息之后,可以从系统消息的预设比特位中获取预设指示信息,进而根据预设指示信息确定通过preamble上报设备类型和/或PUSCH上报设备类型。
可选地,可以在系统消息中设置2个比特位,用于承载预设指示信息。该预设指示信息例如可以是00、01、10、11等。
步骤2102,确定或生成随机接入前导码和/或物理上行链路共享信道。
可选地,若根据预设指示信息确定通过preamble上报设备类型,则终端设备可以生成包括设备类型识别信息的preamble,若根据预设指示信息确定通过PUSCH上报设备类型,则终端设备可以生成包括设备类型识别信息的PUSCH。若根据预设指示信息确定通过preamble和PUSCH上报设备类型,则终端设备可以生成包括设备类型识别信息的preamble和PUSCH。
比如,在两步随机接入时,可以在发送Msg A时生成preamble和PUSCH,生成的preamble和/或PUSCH中可以携带有设备类型识别信息。在四步随机接入时,可以在发送Msg 1时生成preamble,在发送Msg 3时生成PUSCH,生成的preamble和/或PUSCH中可以携带有设备类型识别信息。
步骤2103,若确定或生成了随机接入前导码,则发送随机接入前导码,和/或,若确定或生成了物理上行链路共享信道,则发送物理上行链路共享信道。
可选地,若终端设备确定或生成了包括设备类型识别信息的preamble,则可以向网络设备发送该preamble,从而上报设备类型。若终端设备确定或生成了包括设备类型识别信息的PUSCH,则可以向网络设备发送该PUSCH,以上报设备类型。
本公开提供的方案中既可以应用在四步随机接入的应用场景中,也可以应用在两步随机接入的应用场景中。
可选地,在两步随机接入时,若确定或生成了所述随机接入前导码,则通过消息A发送所述随机接入前导码,和/或若确定或生成了所述物理上行链路共享信道,则通过消息A发送所述物理上行链路共享信道;
可选地,在四步随机接入时,若确定或生成了所述随机接入前导码,则通过消息1发送所述随机接入前导码和/或若确定或生成了所述物理上行链路共享信道,则通过消息3发送所述物理上行链路共享信道。
本公开提供的处理方法可以应用在两步随机接入的场景中,可选地,终端设备可以根据网络设备的配置信息,选择两步随机接入方式或四步随机接入方式接入网络。
本公开提供的处理方法可以应用在两步随机接入的场景中,具体可以包括:
发送Msg A,Msg A中具有包含设备类型识别信息的preamble。
接收Msg B。可选地,终端设备可以通过preamble上报设备类型。具体在随机接入时可以生成包括设备类型识别信息的preamble,并通过Msg A将该preamble发送给网络设备。
可选地,网络设备接收到Msg A之后,还可以向终端设备发送Msg B,以响应Msg A,并建立与终端设备之间的连接。
本公开提供的处理方法可以应用在两步随机接入的场景中,具体可以包括::
确定或生成物理上行链路共享信道,物理上行链路共享信道中包括设备类型识别信息。
发送Msg A,Msg A中具有包含设备类型识别信息的PUSCH。
接收Msg B。
可选地,终端设备可以通过PUSCH上报设备类型。具体在随机接入时可以生成包括设备类型识别信息的PUSCH,并通过Msg A将该PUSCH发送给网络设备。
可选地,终端设备可以通过PUSCH上报设备类型。具体在随机接入时可以生成包括设备类型识别信息的PUSCH,并通过Msg A将该PUSCH发送给网络设备。
可选地,网络设备接收到Msg A之后,还可以向终端设备发送Msg B,以响应Msg  A,并建立与终端设备之间的连接。
本公开提供的处理方法可以应用在两步随机接入的场景中,具体包括:
发送Msg A,Msg A包括具有包含设备类型识别信息preamble和包含设备类型识别信息PUSCH。
接收Msg B。
可选地,终端设备可以通过preamble和PUSCH上报设备类型,这种方式能够提高网络设备识别终端设备的类型的准确性。具体在随机接入时可以生成包括设备类型识别信息的preamble以及PUSCH,并通过Msg A将该preamble以及PUSCH发送给网络设备。这种实现方式中,preamble和PUSCH均包括终端设备的设备类型。
可选地,网络设备接收到Msg A之后,还可以向终端设备发送Msg B,以响应Msg A,并建立与终端设备之间的连接。
本公开提供的处理方法可以应用在四步随机接入的场景中,具体包括:
发送Msg 1,Msg 1中具有包含设备类型识别信息的preamble。
接收Msg 2,Msg 2中包含基站解析到的前导码ID,Msg 3的上行资源授权的UL Grant,终端临时标识TC_RNTI,以及时间提前量TA。。
发送Msg 3,先确定Msg 2中收到的前导码ID和Msg 1发送的前导码ID一样,再根据Msg 2携带的TA值调整PUSCH的发送时间,进行PUSCH发送。
接收Msg 4。
可选地,在四步随机接入时,终端设备可以通过preamble向网络设备上报设备类型。
可选地,终端设备可以根据设备类型生成或确定preamble,该preamble中包括设备类型识别信息。再通过Msg 1发送preamble,从而上报设备类型。终端设备通过向网络设备发送Msg 1的方式,向网络设备发送随机接入请求。
可选地,网络设备还可以向终端设备发送Msg 2,Msg2中包含preamble_id、TC_RNTI和TA,从而响应终端设备的随机接入请求。
可选地,终端设备还可以向网络设备发送Msg 3,Msg 3中可以包括PUSCH。
可选地,网络设备还可以向终端设备发送Msg 4,建立与终端设备之间的连接。
本公开提供的处理方法可以应用在四步随机接入的场景中,具体包括:
发送Msg 1,Msg 1中包括preamble。
接收Msg 2,Msg2中包含基站解析到的前导码ID,Msg 3的上行资源授权的UL Grant,终端临时标识TC_RNTI,以及时间提前量TA。
发送Msg 3,先确定Msg 2中收到的前导码ID和Msg1发送的前导码ID一样,再根据Msg2携带的TA值调整PUSCH的发送时间,进而在Msg 3中发送包含设备类型识别信息的PUSCH。
接收Msg 4。
可选地,在四步随机接入时,终端设备可以通过PUSCH向网络设备上报设备类型。
可选地,终端设备可以生成preamble,再通过Msg 1发送preamble,该preamble的生成方式与现有技术中的方案类似。终端设备通过向网络设备发送Msg 1的方式,向网络设备发送随机接入请求。
可选地,网络设备还可以向终端设备发送Msg 2,从而响应终端设备的随机接入请求。
可选地,终端设备还可以根据自身的设备类型,生成或确定PUSCH,生成的PUSCH中包括设备类型识别信息。终端设备通过Msg 3向网络设备发送该包括设备类型识别信息的PUSCH。
可选地,网络设备还可以向终端设备发送Msg 4,建立与终端设备之间的连接。
本公开提供的处理方法可以应用在四步随机接入的场景中,具体包括:
发送Msg 1,Msg 1中具有包含设备类型识别信息的preamble。
接收Msg 2,Msg 2中包含基站解析到的前导码ID,Msg 3的上行资源授权的UL Grant,终端临时标识TC_RNTI,以及时间提前量TA。
发送Msg 3,确定Msg 2中收到的前导码ID和Msg 1发送的前导码ID一样,再根据Msg2携带的TA值调整PUSCH的发送时间,进而在Msg 3中发送包含设备类型识别信息的PUSCH。
接收Msg 4。
可选地,在四步随机接入时,终端设备可以通过preamble和PUSCH向网络设备上报设备类型。
可选地,终端设备可以根据设备类型生成或确定preamble,该preamble中包括设备类型识别信息。再通过Msg 1发送preamble,从而上报设备类型。终端设备通过向网络设备发送Msg 1的方式,向网络设备发送随机接入请求。
可选地,网络设备还可以向终端设备发送Msg 2,从而响应终端设备的随机接入请求。
可选地,终端设备还可以根据自身的设备类型,生成或确定PUSCH,生成的PUSCH中包括设备类型识别信息。终端设备通过Msg 3向网络设备发送该包括设备类型识别信息的PUSCH。
可选地,网络设备还可以向终端设备发送Msg 4,建立与终端设备之间的连接。
这种实现方式中,终端设备可以通过preamble和PUSCH向网络设备上报设备类型,这种方式能够提高网络设备识别终端设备的类型的准确性。
上述任一种实现方式中,终端设备基于终端到小区站点的距离或者接收信号的强度(RSRP)确定是选择两步随机接入方式还是四步随机接入方式接入网络。
可选地,终端设备确定或生成的preamble中可以包括设备类型识别信息,网络设备接收到该preamble之后,能够根据其中的设备类型识别信息确定终端设备的类型。
可选地,若preamble中包括设备类型识别信息,则该设备类型识别信息可以位于preamble中的GP中。其中,GP为保护间隔,现有技术中的GP不用于携带信令数据,因此,通过在GP中添加设备类型识别信息,能够使得preamble的结构与现有技术中的preamble结构相同,进而在无需对终端设备和网络侧设备进行大幅度更改的情况下,终端设备就能够上报设备类型识别信息,且由于现有技术中的GP不用于携带信令数据,将设备类型识别信息设置在GP中还不会影响preamble中携带的其他数据。
本公开提供的任一项preamble,包括CP,SEQ、GP这三部分。可以在其中的GP中设置设备类型识别信息。
可选地,设备类型识别信息位于GP的指定资源单元中。可以预先在GP中指定资源单元,从而利用该指定资源单元放置设备类型识别信息。
可选地,网络设备和终端设备可以预先约定好GP的指定资源单元,从而使终端设备可以在GP的该指定资源单元中设置设备类型识别信息,使网络设备从GP的该指定资源单元中读取设备类型识别信息。
可以在preamble的GP的第一个资源单元中设置设备类型识别信息。
可以在preamble的GP的最后一个资源单元中设置设备类型识别信息。
可以在preamble第一资源单元与最后一个资源单元之间的任一个资源单元中设置设备类型识别信息。
需要说明的是,任一项设备类型识别信息的设置方式都可以应用在任一项类型的preamble中。
可选地,终端设备生成的随机接入前导码包括以下至少一项:
第一部分随机接入前导码;
第二部分随机接入前导码;
第三部分随机接入前导码。
第一部分preamble用于基于竞争的随机接入。
第二部分preamble用于基于非竞争的随机接入。
第三部分preamble用于基于其他目的的随机接入。
可选地,终端设备生成的preamble的数量为64。
这64个preamble中可以包括上述第一部分preamble、第二部分preamble、第三部分preamble中的至少一项。
可选地,终端设备生成的preamble的数量也可以为其他预设固定值,具体地,可以根据小区容纳的最大终端数量确定前导码的数量,比如,当小区容纳的最大终端数量为128时,终端生成前导码的数量为128。
可选地,在这64个preamble中,第0-3、7-10、14-17...49-52个preamble的作用为基于竞争的随机接入,第4-6、11-13、53-55个preamble的作用为基于非竞争的随机接入,第56-63个preamble的作用为基于其他目的的随机接入。
可选地,64个preamble中的各preamble与相应的SSB(Synchronization Signal Block,同步信号块)对应。
在发送preamble时,终端设备可以确定SSB,再发送与该SSB对应的preamble。
可选地,一个PRACH(Physical Random Access Channel,物理随机接入信道)时隙可以有多个RO机会,一个RO机会在时域上占据若干个符号,在频域上占据若干个子载波。一个RO机会代表一个preamble传输的时频资源。
可选地,每个RO机会可以关联多个SSB,若参数ssb-perRACH-OccasionAndCB-PreamblesPerSSB=N(N>1),则1个RO机会与N个SSB相关联。
一个PRACH配置周期(PRACH configuration period)包括两个PRACH时隙,在一个PRACH时隙中可以包括4个RO机会,其中RO#0与RO#1占据的符号相同,但占据的子载波不同,RO#2与RO#3占据的符号相同,但占据的子载波不同。RO#0与RO#2占据不同的符号。#用于表征RO机会的索引。
可选地,RO#0与SSB 0和SSB 1关联,RO#1与SSB 2和SSB 3关联,RO#2与SSB 4和SSB 5关联,RO#3与SSB 6和SSB 7关联。
这种应用场景中,可以根据网络设备指示的SSB确定发送哪个preamble,比如可以结合SSB与preamble之间的对应关系确定发送哪个preamble。还可以根据SSB与RO机会之间的对应关系选择用于发送该preamble的RO机会。
可选地,一个SSB也可以关联多个RO机会,例如,参数ssb-perRACH-OccasionAndCB-PreamblesPerSSB=N且N<=1,则1个SSB与1/N个RO机会关联。
可选地,一个PRACH配置周期(PRACH configuration period)包括一个PRACH时隙,在一个PRACH时隙中可以包括8个RO机会。
SSB 0与RO#0和RO#1对应,SSB 1与RO#2和RO#3对应,SSB 8与RO#4和RO#5对应,SSB 9与RO#6和RO#7对应,SSB 16与RO#8和RO#9对应,SSB 17与RO#10和RO#11对应,SSB 24与RO#12和RO#13对应,SSB 25与RO#14和RO#15对应,SSB 32与RO#16和RO#17对应,SSB 33与RO#18和RO#19对应。
这种实现方式中,可以根据网络设备指示的SSB,以及SSB与RO机会之间的对应关系选择用于发送preamble的RO机会。
可选地,若确定或生成的PUSCH中包括设备类型识别信息,则:
该设备类型识别信息可以位于PUSCH的预留时频资源中;
该设备类型识别信息还可以位于终端设备的身份标识中;
该设备类型识别信息还可以包含在对物理上行链路共享信道加扰的加扰序列中。
可选地,在上述任一种实现方式中,若通过PUSCH上报设备类型,则在四步随机接入时,确定或生成PUSCH,包括以下至少一项:
在PUSCH的预留时频资源位置中添加设备类型识别信息;
在PUSCH中的身份标识中添加设备类型识别信息;
利用与设备类型识别信息对应的加扰序列对PUSCH加扰。
比如,在四步随机接入时,通过PUSCH上报设备类型,或者通过PUSCH和preamble上报设备类型,均可以采用上述至少一项实现方式。
可选地,在上述任一种实现方式中,若通过PUSCH上报设备类型,则在两步随机接入时,确定或生成PUSCH,包括以下至少一项:
在PUSCH的预留时频资源位置中添加设备类型识别信息;
利用与设备类型识别信息对应的加扰序列对PUSCH加扰。
比如,在两步随机接入时,通过PUSCH上报设备类型,或者通过PUSCH和preamble上报设备类型,均可以采用上述至少一项实现方式。
可选地,终端设备在PUSCH的预留时频资源位置中添加设备类型识别信息时,具体可以根据预设映射公式确定PUSCH的预留时频资源位置,再在预留时频资源位置处添加设备类型识别信息。
可选地,预设映射公式包括频域映射公式和时域映射公式。频域映射公式用于确定在PUSCH中添加设备类型识别信息的频域位置,时域映射公式用于确定在PUSCH中添加设备类型识别信息的时域位置。
可选地,终端设备可以根据频域映射公式在PUSCH占用的带宽部分中确定设备类型识别信息的频域位置,根据时域映射公式在PUSCH占用的时隙中确定设备类型识别信息的时域位置。
可选地,可以基于下式在PUSCH占用的带宽部分中确定设备类型识别信息的频域位置:
Figure PCTCN2022094751-appb-000004
其中,k取值为0-11中的任一值;
Figure PCTCN2022094751-appb-000005
为PUSCH占用的带宽部分中可用的RB数量。
若PUSCH占用的每个资源块中为设备类型识别信息预留两个资源元素,则上式中的k取0-11中任两值。
可选地,可以基于下式在PUSCH占用的时隙中确定设备类型识别信息的时域位置:
l=l 0+m;m为随机整数,I≤13,l 0为PUSCH在时隙内所占的第一个符号索引。
若上报设备类型识别信息占据2个不同的时域符号,则用于确定时域位置的映射公式还可以包括l’=l 0+j;j为与m不同的随机整数。或j与m之间的符号偏差不超过一个预设的符号数,比如两个符号偏差不超过3个符号;如若l0=0,m=4,则预留的第二个符号索引为j=4+3=7。
以此类推,若上报设备类型识别信息占据多个不同的时域符号,则用于确定其他时域位置的映射公式需重新以规则定义。
可选地,确定出的预留时频资源位置不能与PUSCH中的DMRS(Demodulation Reference Signal,解调参考信号)所在的位置重叠,确定出的预留时频资源位置不能与PUSCH中的SRS(Sounding Reference Signal,信道探测参考信号)所在的位置重叠。
若该终端是普通设备,则在PUSCH中的符合上述映射条件的预留资源位置上不进行任何操作;若该终端是Redcap设备,则在PUSCH中的符合上述映射条件的预留资源位置上放置用于类型识别的ZC序列或PN或Walsh序列。
这种方式可以应用在四步随机接入过程中进行PUSCH发送的应用场景中,也可以应用在两步随机接入过程中进行PUSCH发送的应用场景中。
本公开提供应用于四步随机接入的处理方法,具体包括:
发送Msg 1。
接收Msg2,Msg2中包含基站解析到的前导码ID,Msg3的上行资源授权的UL Grant,终端临时标识TC_RNT I,以及时间提前量TA。
发送Msg 3,确定Msg 2中收到的前导码ID和Msg 1发送的前导码ID一样,再根据Msg 2携带的TA值调整PUSCH的发送时间;Msg 3具有包含设备类型识别信息的PUSCH,设备类型识别信息位于PUSCH的预留时频资源位置处。
接收Msg4。
可选地,可以根据预设时频域映射公式确定PUSCH的预留时频资源位置;在预留时频资源位置处放置用于设备类型识别的ZC或PN或Walsh序列。
可选地,具体可以根据频域映射公式在PUSCH占用的带宽部分中确定设备类型识别信息的频域位置,根据时域映射公式在PUSCH占用的时隙中确定设备类型识别信息的时域位置;再根据频域位置和时域位置在PUSCH中确定预留时频资源位置;其中,预留时频资源位置与PUSCH中DMRS所在的位置不重叠,预留时频资源位置与PUSCH中SRS所在的位置不重叠。
本公开提供的应用于两步随机接入的处理方法,包括:
发送Msg A,Msg A具有包含设备类型识别信息的PUSCH,设备类型识别信息位于PUSCH的预留时频资源位置处。
接收Msg B。
可选地,可以根据预设时频域映射公式确定PUSCH的预留时频资源位置;在预留时频资源位置处放置用于设备类型识别的ZC或PN或Walsh序列。
可选地,具体可以根据频域映射公式在PUSCH占用的带宽部分中确定设备类型识别信息的频域位置,根据时域映射公式在PUSCH占用的时隙中确定设备类型识别信息的时域位置;再根据频域位置和时域位置在PUSCH中确定预留时频资源位置;其中,预留时频资源位置与PUSCH中DMRS所在的位置不重叠,预留时频资源位置与PUSCH中SRS所在的位置不重叠。
可选地,终端设备在PUSCH中的身份标识中添加设备类型识别信息时,4-Step随机接入过程中,若终端设备是普通设备,则PUSCH中设备类型识别信息取值为Msg 2下发的第一身份标识;若终端设备是轻型能力设备,则PUSCH中设备类型识别信息取值为第二身份标识。其中第一身份标识为Msg 2下发的TC-RNTI,第二身份标识为Msg 2下发的TC-RNTI与delta之间的加和,delta的取值可以是固定值,也可以是RRC参数的配置可选范围值,且要求delta的值需要大于65522,保证其与其他normal用户区分开。
可选地,网络设备接收到PUSCH后可以利用第一身份标识进行解扰,若解扰成功,则可以确定终端设备是普通设备,若解扰失败,则可以在第一身份标识基础上添加预设偏移参数得到终端设备的第二身份标识,并利用第二身份标识对PUSCH解扰,若解扰成功则确定终端设备是Redcap设备。
可选地,终端设备可以根据下式生成加扰序列C init
C init=n RNTI·2 16+n ID
可选地,若终端设备为普通设备,则n RNTI为网络设备发送给终端设备的Msg 2中分配的第一身份标识,若终端设备为Redcap设备,则n RNTI为第二身份标识。
可选地,这种实现方式可以应用在四步随机接入的应用场景中。
本公开提供的应用于四步随机接入的处理方法,包括:
发送Msg 1。
接收Msg 2,Msg 2中包括基站解析到的前导码ID,Msg 3的上行资源授权的UL Grant,终端临时标识TC_RNTI,以及时间提前量TA。
发送Msg 3,确定Msg 2中收到的前导码ID和Msg 1发送的前导码ID一样,再根据Msg 2携带的TA值调整PUSCH的发送时间,进行PUSCH发送;Msg 3中具有包含身份标识的PUSCH,其中,若终端设备是普通设备,则PUSCH中的身份标识为TC_RNTI,若终端设备是轻型能力设备,则PUSCH中的身份标识为第二身份标识;第二身份标识是TC_RNTI与delta的加和。
接收Msg 4。
若终端设备是普通设备,则可以利用TC_RNTI生成加扰序列,再利用加扰序列对PUSCH加扰,这种实现方式中,PUSCH中的身份标识具有与普通设备对应的设备类型识别信息。
若终端设备是轻型设备,则可以利用第二身份标识生成加扰序列,再利用加扰序列对PUSCH加扰,这种实现方式中,PUSCH中的身份标识具有与Redcap设备类型对应的设备类型识别信息。第二身份标识是TC_RNTI与delta的加和。
可选地,终端设备利用与设备类型对应的加扰序列对PUSCH加扰时,若终端设备是普通设备,则利用第一加扰序列对PUSCH加扰;若终端设备是Redcap设备,则利用第二加扰序列对PUSCH加扰,第二加扰序列是第一加扰序列与预设偏移量的加和。
可选地,网络设备接收到PUSCH后,利用第一加扰序列对PUSCH解扰,若解扰成功则确定终端设备是普通设备;若解扰失败,则利用第二加扰序列对PUSCH解扰,若解扰成功,则确定终端设备是Redcap设备。
在四步随机接入时,终端设备可以基于下式确定加扰序列:
终端设备为普通设备时:第一加扰序列为C init=n RNTI·2 16+n ID
终端设备为Redcap设备时:第二加扰序列为C init=n RNTI·2 16+n ID+delta。
四步随机接入时的n RNTI=TC-RNTI,由Msg2下发;delta为预设偏移量,delta的取值可以是固定值,也可以是RRC参数的配置可选范围值,delta的值需大于16进制数FFF2042B。
在两步随机接入时,终端设备可以基于下式确定加扰序列C init
终端设备为普通设备时:第一加扰序列为C init=n RNTI·2 16+n RAPID·2 10+n ID
终端设备为Redcap设备时:第二加扰序列为C init=n RNTI·2 16+n RAPID·2 10+n ID+delta。
其中,两步随机接入时的n RNTI=RA-RNTI(random access radio network temporary identity,随机接入无线网络临时标识),RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id,其中s_id是PRACH时机的第一个OFDM符号的索引,索引取值范围为0≤s_id<14,t_id是PRACH时机在一个系统帧内的第一个时隙索引,取值范围为0≤t_id<80,f_id是频域上PRACH时机索引,取值范围为0≤f_id<8,ul_carrier_id由用于随机接入前导发送的上行载波决定,若preamble在SUL载波发送,则取值为1,若为NUL载波,则取值为0。
这种方式可以应用在四步随机接入的应用场景中,也可以应用在两步随机接入的应用场景中。
本公开提供的应用于四步随机接入的处理方法,包括:
发送Msg 1。
接收Msg 2,Msg 2中包含基站解析到的前导码ID,Msg 3的上行资源授权的UL Grant,终端临时标识TC_RNTI,以及时间提前量TA。
发送Msg 3,确定Msg 2中收到的前导码ID和Msg 1发送的前导码ID一样,再根据Msg 2携带的TA值调整PUSCH的发送时间,进行PUSCH发送;该PUSCH是利用加扰序列加扰的;其中,若终端设备是普通设备,则加扰序列为第一加扰序列,若终端设备是Redcap设备,则加扰序列为第二加扰序列。
接收Msg 4。
可选地,在Msg 2中可以包括网络设备为终端设备分配的身份标识TC_RNTI。
若终端设备是普通设备,则终端设备利用第一加扰序列对PUSCH加扰。这种实现方式中,终端设备发出的PUSCH具有与普通设备对应的设备类型识别信息。具体可以基于下式确定第一加扰序列:
C init=n RNTI·2 16+n ID
若终端设备是Redcap设备,则终端设备可以基于下式确定第二加扰序列,再利用第二加扰序列对PUSCH加扰:
C init=n RNTI·2 16+n ID+delta。
本公开提供的应用于两步随机接入的处理方法,包括:
发送Msg A,Msg A中具有利用加扰序列加扰的PUSCH;其中,若终端设备是普通设备,则加扰序列为第一加扰序列,若终端设备是Redcap设备,则加扰序列为第二加扰序列。
接收Msg B。
可选地,终端设备可以获取身份标识,并利用身份标识生成加扰序列。
若终端设备是普通设备,则终端设备利用第一加扰序列对PUSCH加扰。这种实现方式中,终端设备发出的PUSCH具有与普通设备对应的设备类型识别信息。具体可以基于下式确定第一加扰序列:
C init=n RNTI·2 16+n RAPID·2 10+n ID
若终端设备是Redcap设备,则终端设备可以基于下式确定第二加扰序列,再利用第二加扰序列对PUSCH加扰:
C init=n RNTI·2 16+n RAPID·2 10+n ID+delta。
在一种可选的实现方式中,终端设备接收的系统消息还用于指示是否允许Redcap设备接入。系统消息可以是MIB,或者SIB,或调度SIB的DCI或RRC信令中包含是否允许Redcap设备接入的信息。
可选地,还可以在其他高层信令中携带是否允许Redcap设备接入的信息,终端设备解析信令便可以获得允许何种能力的设备接入的信息。例如,若用于指示是否允许Redcap设备接入指示bit为1,则表征允许Redcap设备接入,和/或,若用于指示是否允许Redcap设备接入的指示bit为0,则表征不允许Redcap设备接入。再例如,指示bit为00,表征任何类型设备都不能接入,指示bit为01,表征普通设备可以接入,指示bit为10,表征Redcap设备可以接入,指示bit为11,表征普通设备、Redcap设备均可以接入。
若终端设备具有普通设备的能力以及Redcap设备的能力,且指示bit表征普通设备、Redcap设备均可以接入,则终端设备可以根据当前业务的具体场景选择接入方式,比如是智能电表,则以redcap设备的类型接入,比如是语音通话,则以普通设备的类型接入。
可选地,网络设备和终端设备可以预先约定利用系统消息中的哪个资源指示是否允许Redcap设备接入,从而使终端设备接收到接收系统消息后,可以从相应的信令获取指示信息,以确定网络设备是否允许Redcap设备接入。
可选地,在满足以下至少一项时,在随机接入时,确定或生成随机接入前导码和/或物理上行链路共享信道:若终端设备为轻型能力设备,且系统消息表征允许轻型能力设备接入;或者若终端设备具备轻型能力设备的能力和普通设备的能力,终端设备以普通设备能力接入网络,且系统消息表征不允许轻型能力设备接入、允许普通设备接入;若终端设备为普通设备,且系统消息表征允许普通设备接入。
可选地,终端设备接收到系统消息后,在需要进行随机接入流程时,具体可以根据系统消息确定是否接入网络。
若终端设备确定其能够接入网络,则终端设备可以确定或生成preamble,和/或确定或生成PUSCH,若终端设备根据系统消息确定不能够接入网络,则终端设备不确定或不生成preamble,也不确定或不生成PUSCH。
第一种情况中,若终端设备为Redcap设备,且系统消息表征允许Redcap设备接入,则在随机接入时,终端设备确定或生成preamble和/或PUSCH。
第二种情况中,若终端设备具备Redcap设备的能力和普通设备的能力,终端设备以普通设备能力接入网络,且系统消息表征不允许Redcap设备接入、允许普通设备接入。这种情况下,终端设备是以普通设备的角色接入网络,且系统消息允许普通设备接入,因此,在随机接入时,终端设备确定或生成preamble和/或PUSCH。
第三种情况中,若终端设备为普通设备,且系统消息表征允许普通设备接入,则在随机接入时,终端设备确定或生成preamble和/或PUSCH。
上述任一种实现方式中,终端设备的preamble和/或PUSCH中,包括终端设备的设备类型识别信息,具体可以是与普通设备对应的设备类型识别信息。
本公开提供的方案中,若系统消息表征不允许Redcap设备接入,且终端设备是Redcap设备,此时,终端设备不会生成或确定preamble和/或PUSCH。
终端设备可以发送随机接入前导码和/或若发送物理上行链路共享信道。
可选地,若系统消息表征终端设备能够接入网络,则该终端设备可以确定或生成 preamble和/或PUSCH,并将preamble和/或PUSCH发送给网络设备;其中,preamble和/或PUSCH中包括终端设备的设备类型识别信息,因此,能够通过这种方式上报设备类型。
本公开提供的处理方法还可以应用在具备轻型能力设备的能力和普通设备的能力的终端设备中,该终端设备在随机接入时,可以基于业务需求选择以何种角色接入网络。本实施例提供的方案可以应用在以上任一种实施例中。
终端设备在随机接入时,确定或生成随机接入前导码和/或物理上行链路共享信道,随机接入前导码和/或物理上行链路共享信道包括根据业务需求确定的设备类型。
可选地,终端设备在确定或生成preamble和/或PUSCH时,可以根据业务需求确定的设备类型。具体可以根据需要处理的业务需求确定以哪种类型接入网络设备,并确定或生成与该设备类型对应的preamble和/或PUSCH。比如,终端设备若确定以普通设备类型接入网络设备,则其确定或生成的preamble和/或PUSCH中的包括与普通设备对应的设备类型识别信息。终端设备若确定以Redcap设备的类型接入网络设备,则其确定或生成的preamble和/或PUSCH中包括与Redcap设备对应的设备类型识别信息。
可选地,终端设备在一次接入网络的过程中,设备类型不变,但是可以基于业务需求在多次接入网络的过程中,变更其设备类型。比如,第一次接入网络流程与第二次接网络流程中选择的设备类型不同。
终端设备可以发送随机接入前导码和/或若发送物理上行链路共享信道,以上报设备类型。
图22为本公开第七示例性实施例示出的处理方法的流程示意图。
如图22所示,本公开提供的处理方法,包括:
步骤2201,接收终端设备发送的随机接入前导码和/或物理上行链路共享信道;其中,随机接入前导码和/或物理上行链路共享信道中包括设备类型识别信息。
可选地,本公开提供的方法可以由网络设备执行。该网络设备例如可以是gNB(the next generation NodeB,基站)。
可选地,终端设备在随机接入时,可以通过preamble和/或PUSCH上报设备类型。具体的,终端设备向网络设备发送的preamble和/或PUSCH中携带有设备类型识别信息。
可选地,终端设备在随机接入时,可以确定或生成preamble,终端设备可以根据自身的设备类型在preamble中添加设备类型识别信息。比如,在preamble中可以预留资源位,终端设备可以在其中添加设备类型识别信息,比如若终端设备的类型是普通设备,则在preamble的预留资源位中添加1,若终端设备的类型是Redcap设备,则在preamble的预留资源位中添加0。相应的,网络设备接收到该preamble之后,可以从中获取设备类型识别信息。
可选地,设备类型识别信息可以设置在preamble中的GP部分,具体设置在GP的指定资源位中。
可选地,在随机接入时,终端设备还会向网络设备发送PUSCH(Physical Uplink Shared Channel,物理上行链路共享信道)。PUSCH用于承载上行业务以及上层信令数据。比如,在两步随机接入时,终端设备发送Msg A时会发送PUSCH。再比如,在四步随机接入时,终端设备发送Msg 3时会发送PUSCH。
可选地,终端设备可以在随机接入时确定或生成PUSCH,PUSCH中包括与设备类型对应的设备类型识别信息。比如,终端设备可以确定自身的设备类型,并在PUSCH中添加与该设备类型对应的设备类型识别信息。相应的,网络设备接收到PUSCH后,可以从中获取设备类型识别信息。
可选地,可以在PUSCH中预留资源位,终端设备可以将设备类型识别信息添加到PUSCH的预留资源位中。
可选地,终端设备可以利用处理后的TC-RNTI值在PUSCH中添加用于区分终端设备的类型的信息;具体地,终端设备先根据设备类型对TC-RNTI进行处理,再用处理 后的TC-RNTI对PUSCH加扰。比如,若终端设备的设备类型是普通设备,则可以直接使用Msg 2中携带的TC-RNTI对PUSCH加扰,若终端设备的设备类型是Redcap设备,则终端设备可以对Msg 2中携带的TC-RNTI处理后,使用处理后的TC-RNTI值对PUSCH加扰。网络侧可以根据处理后的TC-RNTI值解扰PUSCH以区分终端设备的类型。
可选地,终端设备可以根据终端与设备类型相关的PUSCH加扰序列区分终端设备的类型;具体地,若终端设备的设备类型是普通设备,则终端设备使用第一加扰公式对PUSCH加扰;若终端设备的设备类型是Redcap设备,则终端设备使用第二加扰公式对PUSCH加扰,第二加扰公式如(1)或(2)。通过不同的加扰序列,网络侧可以快速区分终端设备的类型。其中公式(1)、(2)取值如下:
C init=n RNTI·2 16+n ID+delta   (1)
C init=n RNTI·2 16+n RAPID·2 10+n ID+delta    (2)
其中在两步随机接入中,nRNTI等于RA-RNTI,在四步随机接入中,nRNTI等于Msg2下发的TC-RNTI。
两步随机接入中由高层参数msgA-DataScramblingIndex配置n ID,n ID∈{0,1,…,1024},四步随机接入中,
Figure PCTCN2022094751-appb-000006
即小区ID。
n RAPID是msgA的随机接入前导码的索引,delta是预设的偏移量。
这种实现方式中,可以通过PUSCH上报设备类型信息,这种方式既不需要预留随机接入前导码,也不需要占据额外的随机接入机会,进而能够以较小的通信成本实现区分终端设备类型的目的。
可选地,终端设备确定或生成的preamble中可以包括设备类型识别信息,终端设备确定或生成的PUSCH中也可以包括设备类型识别信息。
可选地,设备类型对应的信息可以是设备类型识别信息,网络设备可以基于该信息识别终端设备的类型。
步骤2202,根据随机接入前导码和/或物理上行链路共享信道,识别终端设备的类型。
可选地,网络设备接收到终端设备发送的preamble后,可以获取其中的设备类型识别信息,进而确定该终端设备的类型,并根据终端设备的类型进行相应的处理。若终端设备发送的PUSCH中包括设备类型识别信息,则网络设备接收到终端设备发送的PUSCH后,可以获取其中的设备类型识别信息,进而确定该终端设备的类型,并根据终端设备的类型进行相应的处理。
可选地,终端设备和网络设备可以预先约定设备类型在preamble和/或PUSCH中的位置,或者将设备类型添加到preamble和/或PUSCH中的方式,进而使得网络设备在接收到preamble和/或PUSCH后,能够基于预先约定的位置或方式从preamble和/或PUSCH中获取设备类型识别信息,从而能够确定终端设备的类型。
可选地,本公开提供的处理方法可以应用在两步随机接入的场景中,可选地,终端设备可以根据网络设备的配置信息,选择两步随机接入方式或四步随机接入方式接入网络。
图23A为本公开第六示例性实施例示出的应用于两步随机接入的处理方法的流程示意图。
如图23A所示,本公开提供的处理方法,包括:
步骤2301A,接收Msg A中的preamble,preamble中包括设备类型识别信息。
步骤2302A,发送Msg B。
可选地,在两步随机接入时,终端设备可以通过preamble上报设备类型。具体在随机接入时可以生成包括设备类型识别信息的preamble,并通过Msg A将该preamble发送给网络设备。这种应用场景中,网络设备可以接收到Msg A中的preamble。
可选地,网络设备接收到Msg A之后,可以从preamble的GP部分获取设备类型识别信息,进而可以根据类型识别信息确定出终端设备的类型。
可选地,网络设备接收到Msg A之后,还可以向终端设备发送Msg B,以响应Msg A,并建立与终端设备之间的连接。
图23B为本公开第七示例性实施例示出的应用于两步随机接入的处理方法的流程示意图。
如图23B所示,本公开提供的处理方法,包括:
步骤2301B,接收MsgA中的PUSCH,PUSCH中包括设备类型识别信息。
步骤2302B,发送Msg B。
可选地,在两步随机接入时,终端设备可以通过PUSCH上报设备类型。具体在随机接入时可以生成包括设备类型识别信息的PUSCH,并通过Msg A将该PUSCH发送给网络设备。
可选地,终端设备可以通过PUSCH上报设备类型。具体在随机接入时可以生成包括设备类型识别信息的PUSCH,并通过Msg A将该PUSCH发送给网络设备。
可选地,网络设备接收到Msg A之后,可以从PUSCH的预留时频资源中获取设备类型识别信息,或者对PUSCH解扰,并根据解扰结果确定终端设备的设备类型识别信息。
可选地,网络设备接收到Msg A之后,还可以向终端设备发送Msg B,以响应Msg A,并建立与终端设备之间的连接。
图23C为本公开第八示例性实施例示出的应用于两步随机接入的处理方法的流程示意图。
如图23C所示,本公开提供的处理方法,包括:
步骤2301C,接收Msg A中的preamble和PUSCH,preamble和PUSCH中均包括设备类型识别信息。
步骤2302C,发送Msg B。
可选地,在两步随机接入时,终端设备可以通过preamble和PUSCH上报设备类型,这种方式能够提高网络设备识别终端设备的类型的准确性。具体在随机接入时可以生成包括设备类型识别信息的preamble以及PUSCH,并通过Msg A将该preamble以及PUSCH发送给网络设备。这种实现方式中,preamble和PUSCH均包括设备类型识别信息。
可选地,网络设备接收到Msg A中的preamble和PUSCH之后,可以从preamble和PUSCH中获取类型识别信息,通过从两个位置获取类型识别信息,能够提高终端设备类型识别的准确性。
可选地,网络设备接收到消息A之后,还可以向终端设备发送消息B,以响应消息A,并建立与终端设备之间的连接。
图24A为本公开第七示例性实施例示出的应用于四步随机接入的处理方法的流程示意图。
如图24A所示,本公开提供的处理方法,包括:
步骤2401A,接收Msg 1中的preamble,preamble中包括设备类型识别信息。
步骤2402A,发送Msg 2。
步骤2403A,接收Msg 3。
步骤2404A,发送Msg 4。
可选地,在四步随机接入时,终端设备可以通过preamble向网络设备上报设备类型。
可选地,终端设备可以根据设备类型生成或确定preamble,该preamble中包括设备类型识别信息。再通过Msg 1发送preamble,从而上报设备类型。终端设备通过向网络设备发送Msg 1的方式,向网络设备发送随机接入请求。
可选地,网络设备接收到preamble之后,可以从preamble的GP中获取设备类型 识别信息。
可选地,网络设备还可以向终端设备发送Msg 2,Msg2中包含preamble_id、TC_RNTI和TA,从而响应终端设备的随机接入请求。
可选地,终端设备还可以向网络设备发送Msg 3,Msg 3中可以包括PUSCH。
可选地,网络设备还可以向终端设备发送Msg 4,建立与终端设备之间的连接。
图24B为本公开第八示例性实施例示出的应用于四步随机接入的处理方法的流程示意图。
如图24B所示,本公开提供的处理方法,包括:
步骤2401B,接收Msg 1中的preamble。
步骤2402B,发送Msg 2。
步骤2403B,接收Msg 3中的PUSCH,PUSCH中包括设备类型识别信息。
步骤2404B,发送Msg 4。
可选地,在四步随机接入时,终端设备可以通过PUSCH向网络设备上报设备类型。
可选地,终端设备可以根据设备类型生成或确定PUSCH,使得PUSCH中携带有设备类型识别信息,并通过Msg 3向网络设备发送该PUSCH,从而向网络设备上报设备类型。
可选地,网络设备接收到PUSCH之后,可以从PUSCH的预留时频资源位置中获取设备类型识别信息;或者,从PUSCH中的身份标识中获取设备类型识别信息;或者,对物PUSCH进行解扰,根据解扰结果确定设备类型识别信息。
图24C为本公开第九示例性实施例示出的应用于四步随机接入的处理方法的流程示意图。
如图24C所示,本公开提供的处理方法,包括:
步骤2401C,接收Msg 1中的preamble,preamble中包括设备类型识别信息。
步骤2402C,发送Msg 2。
步骤2403C,接收Msg 3中的PUSCH,PUSCH中包括设备类型识别信息。
步骤2404C,发送Msg 4。
可选地,在四步随机接入时,终端设备可以通过preamble和PUSCH向网络设备上报设备类型。
可选地,终端设备可以根据设备类型生成或确定preamble,该preamble中包括设备类型识别信息。再通过Msg 1发送preamble,从而上报设备类型。终端设备通过向网络设备发送Msg 1的方式,向网络设备发送随机接入请求。
可选地,网络设备接收到Msg 1后,可以从中获取preamble,再从preamble的GP中获取设备类型识别信息。
可选地,终端设备还可以根据设备类型生成或确定PUSCH,使得PUSCH中携带有设备类型识别信息,并通过消息3向网络设备发送该PUSCH,从而向网络设备上报设备类型。
可选地,网络设备接收到Msg 3后,可以获取其中的PUSCH,并可以从PUSCH的预留时频资源位置中获取设备类型识别信息;或者,从PUSCH中的身份标识中获取设备类型识别信息;或者,对物PUSCH进行解扰,根据解扰结果确定设备类型识别信息。
通过从preamble和PUSCH中获取设备类型识别信息,能够进一步的提高设备类型识别的准确性。
上述任一种实现方式中,终端设备基于终端到小区站点的距离或者接收信号的强度(RSRP)确定是选择两步随机接入方式还是四步随机接入方式接入网络。
在以上任一种实现方式中,从preamble中获取设备类型识别信息时,具体可以从preamble的GP的指定资源单元中获取设备类型识别信息。
可选地,网络设备和终端设备可以预先约定好GP的指定资源单元,从而使终端设备可以在GP的该指定资源单元中设置设备类型识别信息,使网络设备从GP的该指定 资源单元中读取设备类型识别信息。
可选地,可以从preamble的GP的第一个资源单元中获取设备类型识别信息。
可选地,可以从preamble的GP的最后一个资源单元中获取设备类型识别信息。
可选地,可以从preamble第一资源单元与最后一个资源单元之间的任一个资源单元中获取设备类型识别信息。
需要说明的是,任一项设备类型识别信息的设置方式都可以应用在任一项类型的preamble中。
可选地,上述任一种实施例中,从PUSCH的预留时频资源位置中获取设备类型识别信息时,可以根据预设映射公式确定物理上行链路共享信道的预留时频资源位置,再从预留时频资源位置处获取设备类型识别信息。
可选地,网络设备可以根据频域映射公式在PUSCH占用的带宽部分中确定设备类型识别信息的频域位置,根据时域映射公式在PUSCH占用的时隙中确定设备类型识别信息的时域位置可选地,可以基于下式在PUSCH占用的带宽部分中确定设备类型识别信息的频域位置:
Figure PCTCN2022094751-appb-000007
其中,k取值为0-11中任一值;
Figure PCTCN2022094751-appb-000008
为PUSCH占用的带宽部分中可用的RB数。
若PUSCH占用的每个资源块中为设备类型识别信息预留两个资源元素,则上式中的k取0-11中任两值。
可选地,可以基于下式在PUSCH占用的时隙中确定设备类型识别信息的时域位置:
l=l 0+m;m为随机整数,I≤13,l 0为PUSCH在时隙内所占的第一个符号索引。
若上报设备类型识别信息占据2个不同的时域符号,则用于确定时域位置的映射公式还可以包括l’=l 0+j;j为与m不同的随机整数。或j与m之间的符号偏差不超过一个预设的符号数,比如两个符号偏差不超过3个符号;如若l0=0,m=4,则预留的第二个符号索引为j=4+3=7。
以此类推,若上报设备类型识别信息占据多个不同的时域符号,则用于确定其他时域位置的映射公式需重新以规则定义。
可选地,确定出的预留时频资源位置不能与PUSCH中的DMRS(Demodulation Reference Signal,解调参考信号)所在的位置重叠,确定出的预留时频资源位置不能与PUSCH中的SRS(Sounding Reference Signal,信道探测参考信号)所在的位置重叠。
若该终端是普通设备,则在PUSCH中的符合上述映射条件的预留资源位置上不进行任何操作;若该终端是Redcap设备,则在PUSCH中的符合上述映射条件的预留资源位置上放置用于类型识别的ZC序列或PN或Walsh序列。
这种方式可以应用在四步随机接入的应用场景中,也可以应用在两步随机接入的应用场景中。
可选地,根据终端设备的身份标识确定PUSCH中的设备类型识别信息时,可以利用发送给终端设备的第一身份标识对物理上行链路共享信道解扰,若解扰成功,则确定终端设备是普通设备;利用第二身份标识对物理上行链路共享信道解扰,若解扰成功,则确定终端设备是轻型能力设备;其中,第二身份标识等于第一身份标识与预设偏移参数的加和。
这种实现方式可以应用在四步随机接入的应用场景中。
可选地,网络设备利用Msg 2向终端设备下发第一身份标识,若终端设备是普通设备,则PUSCH中设备类型识别信息取值为Msg 2下发的第一身份标识;若终端设备是轻型能力设备,则PUSCH中设备类型识别信息取值为第二身份标识。其中第一身份 标识为Msg 2下发的TC-RNTI,第二身份标识为Msg 2下发的TC-RNTI+delta,delta的取值可以是固定值,也可以是RRC参数的配置可选范围值,且要求delta的值需要大于65522,保证其与其他normal用户区分开。
可选地,网络设备可以根据下式生成扰码序列C init
C init=n RNTI·2 16+n ID
可选地,若终端设备为普通设备,则n RNTI为网络设备发送给终端设备的Msg 2中分配的第一身份标识,若终端设备为Redcap设备,则n RNTI为第二身份标识。
可选地,这种实现方式可以应用在四步随机接入的应用场景中
可选地,对物理上行链路共享信道进行解扰,根据解扰结果确定设备类型识别信息时,若利用第一加扰序列对物理上行链路共享信道解扰成功,则确定终端设备是普通设备;若利用第二加扰序列对物理上行链路共享信道解扰成功,则确定终端设备是轻型能力设备;其中,第二加扰序列是第一加扰序列与预设偏移量的加和。
在四步随机接入时,网络可以基于下式确定加扰序列:
第一加扰序列为C init=n RNTI·2 16+n ID
第二加扰序列为C init=n RNTI·2 16+n ID+delta。
四步随机接入时的n RNTI=TC-RNTI,是由Msg2下发给终端设备的标识;delta为预设偏移量,delta的取值可以是固定值,也可以是RRC参数的配置可选范围值,delta的值需大于16进制数FFF2042B。
在两步随机接入时,终端设备可以基于下式确定加扰序列C init
终端设备为普通设备时:第一加扰序列为C init=n RNTI·2 16+n RAPID·2 10+n ID
终端设备为Redcap设备时:第二加扰序列为C init=n RNTI·2 16+n RAPID·2 10+n ID+delta。
其中,两步随机接入时的n RNTI=RA-RNTI(random access radio network temporary identity,随机接入无线网络临时标识),RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id,其中s_id是PRACH时机的第一个OFDM符号的索引,索引取值范围为0≤s_id<14,t_id是PRACH时机在一个系统帧内的第一个时隙索引,取值范围为0≤t_id<80,f_id是频域上PRACH时机索引,取值范围为0≤f_id<8,ul_carrier_id由用于随机接入前导发送的上行载波决定,若preamble在SUL载波发送,则取值为1,若为NUL载波,则取值为0。
这种方式可以应用在四步随机接入的应用场景中。
网络设备接收到PUSCH后,利用生成第一加扰序列对PUSCH解扰,若解扰成功则确定终端设备是普通设备;若解扰失败,则生成第二加扰序列,再利用第二加扰序列对PUSCH解扰,若解扰成功,则确定终端设备是Redcap设备。
可选地,在终端设备随机接入之前,网络设备还可以向终端设备下发系统消息,系统消息用于指示终端设备通过随机接入前导码,和/或物理上行链路共享信道上报设备类型;和/或系统消息用于指示是否允许轻型能力设备接入。
一种实现方式中,系统消息用于指示终端设备以何种方式上报设备类型。
一种实现方式中,系统消息用于指示是否允许轻型能力设备接入。
一种实现方式中,系统消息用于指示终端设备以何种方式上报设备类型,还用于指示是否允许轻型能力设备接入。
可选地,网络侧可以向终端设备发送系统消息,该系统消息例如可以是SIB(System Information Block,系统信息块),还可以是MIB(Master Information Block,主系统信息块)。通过系统消息指示终端设备以何种方式上报设备类型。
具体的方式可以包括通过preamble上报,还可以包括通过PUSCH上报,还可以同时通过preamble和PUSCH上报。
终端设备接收到系统消息后,可以根据系统消息确定上报设备类型的方式。比如,可以在系统消息中增加用于指示设备类型上报方式的比特位,终端设备通过获取相应比特位中的信息确定设备类型的上报方式。
比如,若用于指示设备类型上报方式的比特位为00,则终端设备在随机接入时不需要上报设备类型。若用于指示设备类型上报方式的比特位为01,则通过preamble 上报设备类型。若用于指示设备类型上报方式的比特位为10,则通过PUSCH上报设备类型。若用于指示设备类型上报方式的比特位为11,则通过preamble和PUSCH上报设备类型。
可选地,若系统消息指示终端设备通过preamble上报设备类型,则终端设备需要生成或确定包括设备类型识别信息的preamble,若系统消息指示终端设备通过PUSCH上报设备类型,则终端设备需要生成或确定包括设备类型识别信息的PUSCH。
可选地,在两步随机接入时,若系统消息指示终端设备通过preamble上报设备类型,则终端设备通过发送Msg A中包括设备类型信息的preamble上报设备类型;若系统消息指示终端设备通过PUSCH上报设备类型,则终端设备通过发送Msg A中包括设备类型识别信息的PUSCH上报设备类型。在两步随机接入时,若系统消息指示终端设备同时通过preamble和PUSCH上报设备类型,则终端设备在Msg A的preamble和PUSCH中添加设备类型识别信息进行设备类型上报。
可选地,在四步随机接入时,若系统消息指示终端设备通过preamble上报设备类型,则终端设备可以通过发送Msg 1中包括设备类型识别信息的preamble上报设备类型。在四步随机接入时,若系统消息指示终端设备通过PUSCH上报设备类型,则终端设备可以通过发送Msg 3中包括设备类型识别信息的PUSCH上报设备类型。在四步随机接入时,若系统消息指示终端设备通过preamble和PUSCH上报设备类型,则终端设备可以通过发送Msg 1中包括设备类型识别信息的preamble,通过发送Msg 3中包括设备类型识别信息的PUSCH,上报设备类型。
可选地,还可以在其他高层信令中携带是否允许Redcap设备接入的信息,终端设备解析信令便可以获得允许何种能力的设备接入的信息。例如,若用于指示是否允许Redcap设备接入指示bit为1,则表征允许Redcap设备接入,和/或,若用于指示是否允许Redcap设备接入的指示bit为0,则表征不允许Redcap设备接入,再例如,指示bit为00,表征任何类型设备都不能接入,指示bit为01,表征普通设备可以接入,指示bit为10,表征Redcap设备可以接入,指示bit为11,表征普通设备、Redcap设备均可以接入。
若终端设备具有普通设备的能力以及Redcap设备的能力,且指示bit表征普通设备、Redcap设备均可以接入,则终端设备可以根据当前业务的具体场景选择接入方式,比如是智能电表,则以redcap设备的类型接入,比如是语音通话,则以普通设备的类型接入。
可选地,网络设备和终端设备可以预先约定利用系统消息中的哪个资源指示是否允许Redcap设备接入,从而使终端设备接收到接收系统消息后,可以从相应的信令获取指示信息,以确定网络设备是否允许Redcap设备接入。
可选地,若UE通过preamble上报设备类型识别信息,则网络设备可以向UE发送设别类型识别结果。例如,可以通过Msg B或者Msg 2向UE发设备送类型识别结果。
UE基于网络设备的类型识别结果确定是否通过PUSCH再次上报设备类型识别信息。
可选地,可以在Msg 2或Msg B的DCI(Downlink Control Information,下行控制信息)中增加类型识别域,UE解析DCI中新增类型识别域的bit取值,以确定网络设备的设备类型识别结果。例如,若类型识别域中的bit为1,则表征网络设备确定UE是Redcap设备,和/或,若类型识别域中的bit为0,则表征网络设备确定UE是普通类型的设备。
可选地,UE能够从Msg 2获取设备类型识别结果,比如,可以从Msg 2的DCI中获取设别类型识别结果。再比如,可以从Msg B的DCI中获取设别类型识别结果
可选地,若网络设备的设备类型识别结果与UE的设备类型一致,则不论系统消息或高层信令中是否使能PUSCH类型识别上报机制,UE将不再通过PUSCH再次上报设备类型识别信息,以节省PUSCH传输资源和减少PUSCH资源碰撞;若网络设备的设备类型识别结果与UE的设备类型不一致且系统消息或高层信令中使能PUSCH类型识别上报机制,则UE通过PUSCH再次上报设备类型识别信息,增加网络侧对于UE类型识别的可靠性。
可选地,在两步随机接入时,若UE通过Msg A中的preamble上报设备类型,则 网络设备可以在Msg B中添加设备类型识别结果。
例如,UE通过Msg A的preamble上报的设备类型为普通类型,Msg B的DCI中携带的信息表征网络侧的设备类型识别结果为Redcap类型,则UE通过重传Msg A的方式再次上报设备类型识别信息。
UE通过Msg A的preamble上报的设备类型为普通类型,Msg B的DCI中携带的信息表征网络侧的设备类型识别结果为普通类型,则UE不重传Msg A。
UE通过Msg A的preamble上报的设备类型为Redcap类型,Msg B的DCI中携带的信息表征网络侧的设备类型识别结果为Redcap类型,则UE不重传Msg A。
UE通过Msg A的preamble上报的设备类型为Redcap类型,Msg B的DCI中携带的信息表征网络侧的设备类型识别结果为普通类型,则UE通过重传Msg A的方式再次上报设备类型识别信息。
这种实现方式中,网络设备进行随机接入配置时,可以为UE配置两套时间不同、但同时生效的RO机会,以满足UE能够重传Msg A的需求。
可选地,在四步随机接入时,若UE使用了preamble上报设备类型,则网络设备可以在Msg 2中添加设备类型识别结果。
例如,UE通过preamble上报的设备类型为普通类型,DCI中携带的信息表征网络侧的设备类型识别结果为Redcap类型,则UE通过Msg 3的PUSCH再次上报设备类型识别信息;
UE通过preamble上报的设备类型为普通类型,DCI中携带的信息表征网络侧的设备类型识别结果为普通类型,则UE不通过Msg 3的PUSCH再次上报设备类型识别信息;
UE通过preamble上报的设备类型为Redcap类型,DCI中携带的信息表征网络侧的设备类型识别结果为Redcap类型,则UE不通过Msg 3的PUSCH再次上报设备类型识别信息;
UE通过preamble上报的设备类型为Redcap类型,DCI中携带的信息表征网络侧的设备类型识别结果为普通类型,则UE通过Msg 3的PUSCH再次上报设备类型识别信息。
图25为本申请一示例性实施例示出的通信设备的结构图。
如图25所示,本实施例提供的通信设备包括:
存储器2501;
处理器2502;以及,
计算机程序。
可选地,所述计算机程序存储在所述存储器2501中,并配置为由所述处理器2502执行以实现如上述任一项所示实施例示出的处理方法。
本实施例还提供一种计算机可读存储介质,其上存储有计算机程序,
所述计算机程序被处理器执行以实现如上述任一项所示实施例示出的处理方法。
本实施例还提供一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现如上述任一项所示实施例示出的处理方法。
本申请实施例还提供一种通信设备,通信设备包括存储器、处理器,存储器上存储有处理程序,处理程序被处理器执行时实现上述任一实施例中的处理方法的步骤。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有处理程序,处理程序被处理器执行时实现上述任一实施例中的处理方法的步骤。
在本申请实施例提供的通信设备和计算机可读存储介质的实施例中,可以包含任一上述处理方法实施例的全部技术特征,说明书拓展和解释内容与上述方法的各实施例基本相同,在此不再做赘述。
本申请实施例还提供一种计算机程序产品,计算机程序产品包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行如上各种可能的实施方式中的方法。
本申请实施例还提供一种芯片,包括存储器和处理器,存储器用于存储计算机程序,处理器用于从存储器中调用并运行计算机程序,使得安装有芯片的设备执行如上 各种可能的实施方式中的方法。
可以理解,上述场景仅是作为示例,并不构成对于本申请实施例提供的技术方案的应用场景的限定,本申请的技术方案还可应用于其他场景。例如,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请实施例设备中的单元可以根据实际需要进行合并、划分和删减。
在本申请中,对于相同或相似的术语概念、技术方案和/或应用场景描述,一般只在第一次出现时进行详细描述,后面再重复出现时,为了简洁,一般未再重复阐述,在理解本申请技术方案等内容时,对于在后未详细描述的相同或相似的术语概念、技术方案和/或应用场景描述等,可以参考其之前的相关详细描述。
在本申请中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本申请技术方案的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本申请记载的范围。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,被控终端,或者网络设备等)执行本申请每个实施例的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络,或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、存储盘、磁带)、光介质(例如,DVD),或者半导体介质(例如固态存储盘Solid State Disk(SSD))等。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (23)

  1. 一种处理方法,其特征在于,应用于终端设备,所述方法包括以下步骤:
    S1:确定或生成随机接入前导码和/或物理上行链路共享信道;其中,确定或生成的所述随机接入前导码中包括设备类型识别信息;确定或生成的所述物理上行链路共享信道中包括设备类型识别信息;
    S2:发送所述随机接入前导码和/或若发送所述物理上行链路共享信道。
  2. 根据权利要求1所述的方法,其特征在于,所述方法包括以下至少一项:
    在两步随机接入时,所述S2步骤包括:若确定或生成了所述随机接入前导码,则通过消息A发送所述随机接入前导码,和/或,若确定或生成了所述物理上行链路共享信道,则通过消息A发送所述物理上行链路共享信道;
    在四步随机接入时,所述S2步骤包括:若确定或生成了所述随机接入前导码,则通过消息1发送所述随机接入前导码,和/或,若确定或生成了所述物理上行链路共享信道,则通过消息3发送所述物理上行链路共享信道。
  3. 根据权利要求1所述的方法,其特征在于,所述方法包括:
    所述设备类型识别信息用于指示所述终端设备是轻型能力设备或普通设备。
  4. 根据权利要求3所述的方法,其特征在于,所述方法包括以下至少一项:
    若确定或生成的所述随机接入前导码中包括设备类型识别信息,则所述设备类型识别信息位于所述随机接入前导码中的保护间隔中;
    若确定或生成的所述物理上行链路共享信道中包括设备类型识别信息,则:所述设备类型识别信息位于所述物理上行链路共享信道的预留时频资源中,和/或所述设备类型识别信息位于所述终端设备的身份标识中,和/或所述设备类型识别信息包含在对所述物理上行链路共享信道加扰的加扰序列中;
    在四步随机接入时,所述确定或生成物理上行链路共享信道,包括以下至少一项:在所述物理上行链路共享信道的预留时频资源位置中添加所述设备类型识别信息、在所述物理上行链路共享信道中的身份标识中添加所述设备类型识别信息、利用与所述设备类型识别信息对应的加扰序列对所述物理上行链路共享信道加扰;
    在两步随机接入时,所述确定或生成物理上行链路共享信道,包括以下至少一项:在所述物理上行链路共享信道的预留时频资源位置中添加所述设备类型识别信息、利用与所述设备类型识别信息对应的加扰序列对所述物理上行链路共享信道加扰。
  5. 根据权利要求4所述的方法,其特征在于,所述方法包括以下至少一项:
    所述设备类型识别信息位于所述保护间隔的指定资源单元中;
    所述在所述物理上行链路共享信道的预留时频资源位置中添加所述设备类型识别信息,包括:根据预设映射公式确定所述物理上行链路共享信道的所述预留时频资源位置;在所述预留时频资源位置处添加所述设备类型识别信息;
    所述在所述物理上行链路共享信道中的身份标识中添加所述设备类型识别信息,包括;若所述终端设备是普通设备,则将接收的第一身份标识添加在物理上行链路共享信道中,或若所述终端设备是轻型能力设备,则在接收的第一身份标识基础上添加预设偏移参数得到第二身份标识,并在所述物理上行链路共享信道中添加所述第二身份标识;
    所述利用与所述设备类型对应的加扰序列对所述物理上行链路共享信道加扰,包括:若所述终端设备是普通设备,则利用预设的加扰序列对所述物理上行链路共享信道加扰,或若所述终端设备是轻型能力设备,则根据所述预设的加扰序列和预设偏移量对所述物理上行链路共享信道加扰。
  6. 根据权利要求5所述的方法,其特征在于,所述预设映射公式包括频域映射公 式和时域映射公式;所述根据预设映射公式确定所述物理上行链路共享信道的所述预留时频资源位置,包括:
    根据所述频域映射公式在所述物理上行链路共享信道占用的带宽部分中确定所述设备类型识别信息的频域位置,根据所述时域映射公式在所述物理上行链路共享信道占用的时隙中确定所述设备类型识别信息的时域位置;
    根据所述频域位置和所述时域位置在所述物理上行链路共享信道中确定所述预留时频资源位置。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,还包括以下至少一项:
    接收系统消息,根据所述系统消息确定是通过随机接入前导码,和/或物理上行链路共享信道上报所述设备类型,所述S1步骤包括:若所述系统消息指示通过随机接入前导码上报所述设备类型,则在随机接入时,确定或生成所述随机接入前导码,或若所述系统消息指示通过物理上行链路共享信道上报所述设备类型,则在随机接入时,确定或生成所述物理上行链路共享信道;
    接收系统消息,所述系统消息中包括是否允许轻型能力设备接入的信息,在满足以下至少一项时,执行所述步骤S1:若所述终端设备为轻型能力设备,且所述系统消息表征允许轻型能力设备接入,或若所述终端设备具备轻型能力设备的能力和普通设备的能力,所述终端设备以普通设备能力接入网络,且所述系统消息表征不允许轻型能力设备接入、允许普通设备接入,后若所述终端设备为普通设备,且所述系统消息表征允许普通设备接入;
    若所述终端设备具备轻型能力设备的能力和普通设备的能力,则所述方法还包括:根据业务需求确定以轻型能力设备的类型或普通设备的类型接入网络。
  8. 一种处理方法,其特征在于,应用于终端设备,所述方法包括以下步骤:
    S1:接收系统消息,根据所述系统消息确定上报设备类型的方式;所述方式包括通过随机接入前导码上报所述设备类型和/或物理上行链路共享信道上报所述设备类型;
    S2:在随机接入时根据确定的上报设备类型的方式上报所述设备类型。
  9. 根据权利要求8所述的方法,其特征在于,所述方法包括以下至少一项:
    所述S1步骤包括:获取所述系统消息中的预设指示信息,根据所述预设指示信息确定通过随机接入前导码上报所述设备类型和/或物理上行链路共享信道上报所述设备类型;
    所述S2步骤包括:S21:确定或生成随机接入前导码和/或物理上行链路共享信道;S22:若确定或生成了所述随机接入前导码,则发送所述随机接入前导码,和/或,若确定或生成了所述物理上行链路共享信道,则发送所述物理上行链路共享信道。
  10. 根据权利要求9所述的方法,其特征在于,所述方法包括以下至少一项:
    在两步随机接入时,所述S22步骤,包括:若确定或生成了所述随机接入前导码,则通过消息A发送所述随机接入前导码,和/或若确定或生成了所述物理上行链路共享信道,则通过消息A发送所述物理上行链路共享信道;
    在四步随机接入时,所述S22步骤,包括:若确定或生成了所述随机接入前导码,则通过消息1发送所述随机接入前导码和/或若确定或生成了所述物理上行链路共享信道,则通过消息3发送所述物理上行链路共享信道。
  11. 根据权利要求9所述的方法,其特征在于,所述方法包括以下至少一项:
    确定或生成的所述随机接入前导码中包括设备类型识别信息;
    确定或生成的所述物理上行链路共享信道中包括设备类型识别信息;
    所述设备类型用于指示所述终端设备是轻型能力设备或普通设备
  12. 根据权利要求11所述的方法,其特征在于,所述方法包括以下至少一项:
    若确定或生成的所述随机接入前导码中包括设备类型识别信息,则所述设备类型识别信息位于所述随机接入前导码中的保护间隔中;
    若确定或生成的所述物理上行链路共享信道中包括设备类型识别信息,则:所述设备类型识别信息位于所述物理上行链路共享信道的预留时频资源中;和/或所述设备类型识别信息位于所述终端设备的身份标识中;和/或所述设备类型识别信息包含在对所述物理上行链路共享信道加扰的扰码序列中;
    在四步随机接入时,所述确定或生成物理上行链路共享信道,包括以下至少一项:在所述物理上行链路共享信道的预留时频资源位置中添加所述设备类型识别信息;在所述物理上行链路共享信道中的身份标识中添加所述设备类型识别信息;利用与所述设备类型对应的扰码序列对所述物理上行链路共享信道加扰;
    在两步随机接入时,所述确定或生成物理上行链路共享信道,包括以下至少一项:在所述物理上行链路共享信道的预留时频资源位置中添加所述设备类型识别信息;利用与所述设备类型对应的扰码序列对所述物理上行链路共享信道加扰。
  13. 根据权利要求11所述的方法,其特征在于,所述方法包括以下至少一项:
    所述在所述物理上行链路共享信道的预留时频资源位置中添加所述设备类型识别信息,包括:根据预设映射公式确定所述物理上行链路共享信道的所述预留时频资源位置;在所述预留时频资源位置处添加所述设备类型识别信息;
    所述在所述物理上行链路共享信道中的身份标识中添加所述设备类型识别信息,包括;若所述终端设备是普通设备,则将接收的第一身份标识添加在物理上行链路共享信道中;若所述终端设备是轻型能力设备,则在接收的第一身份标识基础上添加预设偏移参数得到第二身份标识,并在所述物理上行链路共享信道中添加所述第二身份标识;
    所述利用与所述设备类型对应的扰码序列对所述物理上行链路共享信道加扰,包括:若所述终端设备是普通设备,则利用预设的扰码序列对所述物理上行链路共享信道加扰;若所述终端设备是普通设备,则根据所述预设的扰码序列和预设偏移量对所述物理上行链路共享信道加扰。
  14. 根据权利要求12所述的方法,其特征在于,所述预设映射公式包括频域映射公式和时域映射公式;所述根据预设映射公式确定所述物理上行链路共享信道的所述预留时频资源位置,包括:
    根据所述频域映射公式在所述物理上行链路共享信道占用的带宽部分中确定设备类型识别信息的频域位置,根据所述时域映射公式在所述物理上行链路共享信道占用的时隙中确定设备类型识别信息的时域位置;
    根据所述频域位置和所述时域位置在所述物理上行链路共享信道中确定所述预留时频资源位置。
  15. 根据权利要求8-14任一项所述的方法,其特征在于,所述方法包括以下至少一项:
    所述系统消息中还包括是否允许轻型能力设备接入的信息;
    在满足以下至少一项时,执行所述步骤S1:
    若所述终端设备为轻型能力设备,且所述系统消息表征允许轻型能力设备接入;
    若所述终端设备具备轻型能力设备的能力和普通设备的能力,所述终端设备以普通设备能力接入网络,且所述系统消息表征不允许轻型能力设备接入、允许普通设备接入;
    若所述终端设备为普通设备,且所述系统消息表征允许普通设备接入;
    若所述终端设备具备轻型能力设备的能力和普通设备的能力,则所述方法还包括:
    根据业务需求确定以轻型能力设备的类型或普通设备的类型接入网络;
    所述S2步骤,包括:
    确定或生成随机接入前导码和/或物理上行链路共享信道;所述随机接入前导码和/或物理上行链路共享信道包括根据业务需求确定的设备类型
    若确定或生成了所述随机接入前导码,则发送所述随机接入前导码和/或若确定或生成了所述物理上行链路共享信道,则发送所述物理上行链路共享信道。
  16. 一种处理方法,其特征在于,应用于网络设备,所述方法包括:
    S3:接收终端设备发送的随机接入前导码和/或物理上行链路共享信道;其中,所述随机接入前导码和/或物理上行链路共享信道中包括设备类型识别信息;
    S4:根据所述随机接入前导码和/或物理上行链路共享信道,识别所述终端设备的类型。
  17. 根据权利要求16所述的方法,其特征在于,所述方法包括以下至少一项:
    在两步随机接入时,所述S3步骤包括:接收消息A中的所述随机接入前导码,和/或物理上行链路共享信道;
    在四步随机接入时,所述S3步骤包括:接收消息1中的所述随机接入前导码,和/或接收消息3中的所述物理上行链路共享信道;
    所述设备类型识别信息用于指示所述终端设备是轻型能力设备或普通设备。
  18. 根据权利要求16所述的方法,其特征在于,所述方法包括以下至少一项:
    若所述随机接入前导码中包括设备类型识别信息,则S4包括:从所述随机接入前导码的保护间隔中获取所述设备类型识别信息;
    若所述物理上行链路共享信道中包括设备类型识别信息,则:
    在四步随机接入时,所述S4步骤包括以下至少一项:
    从所述物理上行链路共享信道的预留时频资源位置中获取所述设备类型识别信息;
    根据终端设备的身份标识确定所述物理上行链路共享信道中的设备类型识别信息;
    对所述物理上行链路共享信道进行解扰,根据解扰结果确定所述设备类型识别信息;
    在两步随机接入时,所述S4步骤包括以下至少一项:
    从所述物理上行链路共享信道的预留时频资源位置中获取所述设备类型识别信息;
    对所述物理上行链路共享信道进行解扰,根据解扰结果确定所述设备类型识别信息。
  19. 根据权利要求16所述的方法,其特征在于,所述方法包括以下至少一项:
    所述从所述随机接入前导码的保护间隔中获取所述设备类型识别信息,包括:从所述随机接入前导码的保护间隔的指定资源单元中获取所述设备类型识别信息;
    所述从所述物理上行链路共享信道的预留时频资源位置中获取所述设备类型识别信息,包括:根据预设映射公式确定所述物理上行链路共享信道的所述预留时频资源位置;从所述预留时频资源位置处获取所述设备类型识别信息;
    所述根据终端设备的身份标识确定所述物理上行链路共享信道中的设备类型识别信息,包括:利用发送给所述终端设备的第一身份标识对所述物理上行链路共享信道解扰,若解扰成功,则确定所述终端设备是普通设备;利用第二身份标识对所述物理上行链路共享信道解扰,若解扰成功,则确定所述终端设备是轻型能力设备;其中,所述第二身份标识等于所述第一身份标识与预设偏移参数的加和;
    所述对所述物理上行链路共享信道进行解扰,根据解扰结果确定所述设备类型识别信息,包括:若利用第一加扰序列对所述物理上行链路共享信道解扰成功,则确定所述终端设备是普通设备;若利用第二加扰序列对所述物理上行链路共享信道解扰成功,则确定所述终端设备是轻型能力设备;其中,所述第二加扰序列是所述第一加扰序列与预设偏移量的加和。
  20. 根据权利要求18所述的方法,其特征在于,所述预设映射公式包括频域映射 公式和时域映射公式;
    所述根据预设映射公式确定所述物理上行链路共享信道的所述预留时频资源位置,包括:
    根据所述频域映射公式在所述物理上行链路共享信道占用的带宽部分中确定频域位置,根据所述时域映射公式在所述物理上行链路共享信道占用的时隙中确定时域位置;
    根据所述频域位置和所述时域位置在所述物理上行链路共享信道中确定所述预留时频资源位置。
  21. 根据权利要求16-20任一项所述的方法,其特征在于,还包括:
    向所述终端设备下发系统消息,所述系统消息用于指示所述终端设备通过随机接入前导码,和/或物理上行链路共享信道上报所述设备类型;和/或所述系统消息用于指示是否允许轻型能力设备接入。
  22. 一种通信设备,其特征在于,包括:
    存储器;
    处理器;
    其中,所述存储器中存储有计算机程序,计算机程序被所述处理器执行时实现如权利要求1至20中任一项所述的方法。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至20中任一项所述的方法。
PCT/CN2022/094751 2021-08-23 2022-05-24 处理方法、通信设备及存储介质 WO2023024613A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280057889.XA CN117941451A (zh) 2021-08-23 2022-05-24 处理方法、通信设备及存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110970558.2A CN113423145A (zh) 2021-08-23 2021-08-23 处理方法、通信设备及存储介质
CN202110970558.2 2021-08-23

Publications (1)

Publication Number Publication Date
WO2023024613A1 true WO2023024613A1 (zh) 2023-03-02

Family

ID=77719306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094751 WO2023024613A1 (zh) 2021-08-23 2022-05-24 处理方法、通信设备及存储介质

Country Status (2)

Country Link
CN (2) CN113423145A (zh)
WO (1) WO2023024613A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113423145A (zh) * 2021-08-23 2021-09-21 深圳传音控股股份有限公司 处理方法、通信设备及存储介质
WO2023070679A1 (zh) * 2021-11-01 2023-05-04 北京小米移动软件有限公司 随机接入方法、装置、通信装置和计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106792998A (zh) * 2017-01-06 2017-05-31 展讯通信(上海)有限公司 一种系统信息的按需获取方法及装置
US20210227451A1 (en) * 2020-01-20 2021-07-22 Alireza Babaei Wireless Device and Wireless Network Processes for Access Control
CN113423145A (zh) * 2021-08-23 2021-09-21 深圳传音控股股份有限公司 处理方法、通信设备及存储介质
WO2022061507A1 (zh) * 2020-09-22 2022-03-31 Oppo广东移动通信有限公司 信息传输方法、设备及存储介质
CN114503648A (zh) * 2022-01-10 2022-05-13 北京小米移动软件有限公司 提早识别的方法、装置、通信设备及存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102579104B1 (ko) * 2014-08-15 2023-09-14 인터디지탈 패튼 홀딩스, 인크 Lte 시스템에서의 감소된 능력의 wtru들을 위한 랜덤 액세스 및 페이징 절차들의 지원

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106792998A (zh) * 2017-01-06 2017-05-31 展讯通信(上海)有限公司 一种系统信息的按需获取方法及装置
US20210227451A1 (en) * 2020-01-20 2021-07-22 Alireza Babaei Wireless Device and Wireless Network Processes for Access Control
WO2022061507A1 (zh) * 2020-09-22 2022-03-31 Oppo广东移动通信有限公司 信息传输方法、设备及存储介质
CN113423145A (zh) * 2021-08-23 2021-09-21 深圳传音控股股份有限公司 处理方法、通信设备及存储介质
CN114503648A (zh) * 2022-01-10 2022-05-13 北京小米移动软件有限公司 提早识别的方法、装置、通信设备及存储介质

Also Published As

Publication number Publication date
CN113423145A (zh) 2021-09-21
CN117941451A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
WO2023024613A1 (zh) 处理方法、通信设备及存储介质
WO2021008430A1 (zh) 传输方法和通信设备
WO2019192472A1 (zh) 信道传输方法、终端及网络设备
WO2020063241A1 (zh) 信息传输方法及终端
WO2020147816A1 (zh) 随机接入传输方法及终端
WO2020192674A1 (zh) 搜索空间的配置方法及装置、通信设备
WO2020156428A1 (zh) 信息发送方法、信息检测方法、终端设备及网络设备
WO2019095903A1 (zh) 终端能力的指示方法及终端
WO2023213257A1 (zh) 数据传输方法、通信设备及存储介质
US20220217776A1 (en) Information indicating method, device and system
WO2021068876A1 (zh) 信息传输、接收方法、终端及网络侧设备
CN110035506B (zh) 一种通信方法及相关设备
WO2019214420A1 (zh) 业务调度方法、终端及网络设备
WO2023130954A1 (zh) 处理方法、通信设备及存储介质
WO2020057409A1 (zh) 传输控制方法及终端设备
WO2020042909A1 (zh) 传输方法及终端设备
WO2019242466A1 (zh) 一种随机接入方法、终端及网络设备
WO2019242568A1 (zh) 功率分配方法及终端
WO2021155799A1 (zh) 系统运行模式确定方法和终端
WO2020151708A1 (zh) 信息传输方法及终端
WO2020164515A1 (zh) 信号传输方法、设备及系统
WO2019137423A1 (zh) 通信方法及相关设备
WO2024092513A1 (zh) 控制方法、通信设备及存储介质
WO2023216036A1 (zh) 处理方法、通信设备及存储介质
WO2023019524A1 (zh) 指示方法、通信设备、通信系统及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22859961

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280057889.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE