WO2023115404A1 - Display panel - Google Patents

Display panel Download PDF

Info

Publication number
WO2023115404A1
WO2023115404A1 PCT/CN2021/140579 CN2021140579W WO2023115404A1 WO 2023115404 A1 WO2023115404 A1 WO 2023115404A1 CN 2021140579 W CN2021140579 W CN 2021140579W WO 2023115404 A1 WO2023115404 A1 WO 2023115404A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
film transistor
active layer
display panel
electrically connected
Prior art date
Application number
PCT/CN2021/140579
Other languages
French (fr)
Chinese (zh)
Inventor
罗传宝
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to JP2021577831A priority Critical patent/JP2024508055A/en
Priority to US17/624,019 priority patent/US20230200150A1/en
Publication of WO2023115404A1 publication Critical patent/WO2023115404A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body

Definitions

  • the invention relates to the field of display technology, in particular to a display panel with double thin-film transistors that can be applied to large-size display devices.
  • Low-temperature polycrystalline silicon (LTPS) thin film transistors are widely used in display panels of small-sized display devices such as smartphones and tablet computers due to their high electron mobility and short response time driving characteristics.
  • LTPS Low-temperature polycrystalline silicon
  • the leakage current of the low temperature polysilicon thin film transistor is large, in order to avoid image delay in the display panel and affect the switching of the display screen, it is set to a high refresh rate, resulting in the charging time of the low temperature polysilicon thin film transistor shorter.
  • indium gallium zinc oxide indium gallium Zinc oxide, IGZO
  • other metal oxide thin film transistors have low leakage current and high stability, so they can be used to reduce the refresh rate of the display panel.
  • the electron mobility of the InGaZnO thin film transistor is lower than that of the low temperature polysilicon thin film transistor, so the InGaZnO thin film transistor requires a higher driving voltage.
  • the prior art has designed a combination of the low temperature polysilicon thin film transistor and the indium Gallium zinc oxide thin film transistor display panels, that is, low-temperature polysilicon oxide (low-temperature polycrystalline oxide, LTPO) display panel.
  • low-temperature polysilicon oxide low-temperature polycrystalline oxide, LTPO
  • the low-temperature polysilicon thin film transistor needs a certain proportion of hydrogen (H) atoms to passivate the dangling bonds of the P-type silicon (P-Si) semiconductor and the interface with the N-type silicon (N-Si) semiconductor, so as to reduce the P type silicon semiconductor and the defects of the interface with the n-type silicon semiconductor.
  • H hydrogen
  • P-Si P-type silicon
  • N-Si N-type silicon
  • Vth threshold voltage offset
  • the manufacturing process of the low temperature polysilicon oxide display panel is complicated, and the manufacturing process of the low temperature polysilicon thin film transistor must be carried out separately from the manufacturing process of the indium gallium zinc oxide thin film transistor.
  • the existing technology can be debugged through the process process, so that the low-temperature polysilicon thin film transistor and the indium gallium zinc oxide thin film transistor can be smoothly combined, but the low-temperature polysilicon thin film transistor is in the process of large-scale display devices.
  • the crystal uniformity of the low temperature polysilicon thin film transistor is poor, which will affect the electron mobility and threshold voltage shift of the low temperature polysilicon thin film transistor.
  • the current low-temperature polysilicon oxide display panel can only be applied to small-sized display devices such as smart watches and smart bracelets.
  • the low-temperature polysilicon oxide display panel in the prior art has technical problems that cannot be applied to the large-size display device, a display panel that can be applied to a large-size display device and has double thin-film transistors is needed to solve the above-mentioned problem. technical problems.
  • the invention provides a display panel which can be applied to a large-size display device and has double thin film transistors.
  • the display panel includes a first thin film transistor and a second thin film transistor.
  • the first thin film transistor includes a first source, a first drain, a first active layer, and a first gate.
  • the second thin film transistor includes a second source, a second drain, a second active layer, and a second gate.
  • the first drain of the first TFT is electrically connected to the second gate of the second TFT.
  • the electron mobility of the first active layer of the first thin film transistor is greater than or equal to the electron mobility of the second active layer of the second thin film transistor.
  • the threshold voltage shift of the second active layer of the second thin film transistor is less than or equal to the threshold voltage shift of the first active layer of the first thin film transistor.
  • the electron mobility of the first active layer of the first thin film transistor is more than 1.5 times the electron mobility of the second active layer of the second thin film transistor.
  • the electron mobility of the first active layer of the first thin film transistor is greater than or equal to 20 cm2/(volt ⁇ sec).
  • the threshold voltage shift of the second active layer of the second thin film transistor is less than or equal to 1 volt.
  • the material of the first active layer of the first thin film transistor includes indium oxide, gallium oxide, zinc oxide, tin oxide, and combinations thereof.
  • the material of the second active layer of the second thin film transistor includes a metal oxide doped with a rare earth metal element or a fluorine compound.
  • the first thin film transistor further includes a third active layer.
  • the third active layer is stacked with the first active layer.
  • the non-channel regions at both ends of the third active layer are electrically connected to the non-channel regions at both ends of the first active layer.
  • the average electron mobility of the first active layer and the third active layer of the first thin film transistor is greater than or equal to that of the second active layer of the second thin film transistor The electron mobility of .
  • the average electron mobility of the first active layer and the third active layer of the first thin film transistor is equal to that of the second active layer of the second thin film transistor. More than 1.5 times the electron mobility mentioned above.
  • the average electron mobility of the first active layer and the third active layer of the first thin film transistor is greater than or equal to 20 cm2/(V ⁇ sec).
  • the material of the first active layer of the first thin film transistor is the same as that of the second active layer of the second thin film transistor.
  • the first active layer of the first thin film transistor and the second active layer of the second thin film transistor are formed through the same manufacturing process.
  • the material of the third active layer of the first thin film transistor includes indium oxide, gallium oxide, zinc oxide, tin oxide, and combinations thereof.
  • the material of the first active layer is different from the material of the third active layer.
  • the display panel further includes data lines, scan lines, and light emitting units.
  • the data line is electrically connected to the first source of the first TFT.
  • the scan line is electrically connected to the first gate of the first thin film transistor.
  • the light emitting unit includes a first electrode and a second electrode opposite to the first electrode. The first electrode is electrically connected to the second source of the second TFT.
  • the display panel further includes capacitors.
  • the capacitor includes a first plate and a second plate opposite the first plate.
  • the first plate is electrically connected to the first drain of the first TFT and the second gate of the second TFT.
  • the second plate is electrically connected to the second source of the second TFT and the light emitting unit.
  • the display panel further includes a light shielding layer.
  • the light shielding layer is disposed under the second thin film transistor.
  • a display panel applicable to a large-size display device includes a first thin film transistor and a second thin film transistor.
  • the first thin film transistor includes the first source, the first drain, the first active layer, and the first gate.
  • the second thin film transistor includes the second source, the second drain, the second active layer, and the second gate.
  • the first drain of the first TFT is electrically connected to the second gate of the second TFT.
  • the electron mobility of the first active layer of the first thin film transistor is greater than or equal to the electron mobility of the second active layer of the second thin film transistor.
  • the threshold voltage shift of the second active layer of the second thin film transistor is less than or equal to the threshold voltage shift of the first active layer of the first thin film transistor.
  • the first thin film transistor further includes a third active layer.
  • the third active layer is stacked with the first active layer, so that the average electron mobility of the first active layer and the third active layer of the first thin film transistor is greater than or equal to the electron mobility of the second active layer of the second thin film transistor.
  • FIG. 1 is a circuit structure diagram of a display panel of the present invention.
  • FIG. 2 is a schematic structural diagram of the first embodiment of the display panel of the present invention.
  • FIG. 3 is a schematic structural diagram of the second embodiment of the display panel of the present invention.
  • FIG. 1 is a circuit structure diagram of the display panel of the present invention.
  • the display panel of the present invention includes a first thin film transistor 100 and a second thin film transistor 200 .
  • the first TFT 100 includes a first source 110 , a first drain 120 , a first active layer (not shown), and a first gate 140 .
  • the second TFT 200 includes a second source 210 , a second drain 220 , a second active layer (not shown), and a second gate 240 .
  • the display panel further includes a data line D, a scan line S, and a light emitting unit 300 .
  • the data line D is electrically connected to the first source 110 of the first TFT 100 .
  • the scan line S is electrically connected to the first gate 140 of the first TFT 100 .
  • the first thin film transistor 100 is used to receive the display signal transmitted by the data line D and the scan line S of the display panel. By controlling the input voltage of the first gate 140, the first thin film transistor 100 can control the on-off of the current at both ends of the first source 110 and the first drain 120 .
  • the display panel further includes a common anode Vdd and a common cathode Vss.
  • the common anode Vdd is electrically connected to the second drain 220 of the second TFT 200 .
  • the first drain 120 of the first TFT 100 is electrically connected to the second gate 240 of the second TFT 200 .
  • Both ends of the light emitting unit 300 are electrically connected to the second source 210 of the second thin film transistor 200 and the common cathode Vss.
  • the second thin film transistor 200 is used to receive the switching signal of the first drain 120 of the first thin film transistor 100, and by controlling the input voltage of the second gate 240, the second thin film transistor 200 is The on-off of the current at both ends of the second source 210 and the second drain 220 can be controlled.
  • the current of the common anode Vdd is input to the light emitting unit 300 through the second thin film transistor 200, the light emitting unit 300 can emit light, so that the display panel can display images.
  • the first thin film transistor 100 is used as a switch thin film transistor for turning on or off the second thin film transistor
  • the The second thin film transistor 200 is used as a driving thin film transistor for driving the light emitting unit 300 .
  • the display panel further includes a capacitor 400 .
  • the capacitor 400 includes a first plate 410 and a second plate 420 opposite to the first plate 410 .
  • the first plate 410 is electrically connected to the first drain 120 of the first TFT 100 and the second gate 240 of the second TFT 200 .
  • the second plate 420 is electrically connected to the second source 210 of the second TFT 200 and the light emitting unit 300 .
  • the capacitor is used to store the switch signal input by the first thin film transistor 100 and convert the switch signal into a current signal required by the light emitting unit 300 to display different gray scale values.
  • the light emitting unit 300 includes an organic light emitting diode (organic light-emitting diode, OLED), mini-light-emitting diode (mini-light-emitting diode, mini-LED), micro-light-emitting diode (micro-light-emitting diode, micro-LED), or electroluminescent quantum dots (electroluminescent quantum dots, ELQDs), etc.
  • OLED organic light emitting diode
  • mini-light-emitting diode mini-light-emitting diode
  • mini-LED mini-light-emitting diode
  • micro-light-emitting diode micro-light-emitting diode
  • electroluminescent quantum dots electroluminescent quantum dots
  • FIG. 2 is a schematic structural diagram of the first embodiment of the display panel of the present invention.
  • the display panel includes a lower substrate 510 and an upper substrate 520 to protect all components in the display panel.
  • the lower substrate 510 and the upper substrate 520 include but are not limited to glass substrates or A polyimide substrate, etc., which can be a rigid substrate or a flexible substrate.
  • the display panel in this embodiment includes the first thin film transistor 100 and the second thin film transistor 200 .
  • the first thin film transistor 100 includes the first active layer 131, the first gate insulating layer 150, and the first gate 140 stacked in sequence, and also includes an active layer electrically connected to the first active layer.
  • the first source electrode 110 and the first drain electrode 120 at both ends of the source layer 131 .
  • the second thin film transistor 200 includes the second active layer 230, the second gate insulating layer 250, and the second gate 240 stacked in sequence, and also includes a The second source 210 and the second drain 220 at two ends of the source layer 230 .
  • the first thin film transistor 100 and the second thin film transistor 200 include top gate thin film transistors.
  • the top gate thin film transistor can reduce the manufacturing process of the display panel, thereby reducing the manufacturing cost of the display panel.
  • the display panel in this embodiment further includes the light emitting unit 300 .
  • the light emitting unit 300 is an organic light emitting diode as an example.
  • the light emitting unit 300 includes a first electrode 310 , a second electrode 320 opposite to the first electrode 310 , and a light emitting layer 330 .
  • the first electrode 310 is electrically connected to the second source 210 of the second TFT 200 .
  • the second thin film transistor 200 controls the conduction of current to the light emitting unit 300 , the current flows between the first electrode 310 serving as an anode and the second electrode 320 serving as a cathode. Under the action of the current, the electrons and holes in the light emitting unit 300 will combine in the light emitting layer 330 to excite light, so as to realize the image display of the display panel.
  • the first thin film transistor 100 is used as the switching thin film transistor with a short response time
  • the second thin film transistor 200 is used as the driving transistor with high stability. Therefore, the first active layer 131 of the first thin film transistor 100 is made of a material with high electron mobility, and the material of the second active layer 230 of the second thin film transistor 200 is made of a material with low leakage current. Material.
  • the electron mobility of the first active layer 131 of the first thin film transistor 100 in this embodiment is greater than or equal to the electron mobility of the second active layer 230 of the second thin film transistor 200 rate, and the threshold voltage shift of the second active layer 230 of the second thin film transistor 200 is less than or equal to the threshold voltage shift of the first active layer 131 of the first thin film transistor 100 .
  • the material of the first active layer 131 of the first thin film transistor 100 includes but not limited to indium oxide, gallium oxide, zinc oxide, tin oxide, and combinations thereof.
  • the material of the first active layer 131 can be indium gallium tin oxide (indium gallium zinc oxide, IGZO), indium gallium zinc tin oxide (indium gallium zinc tin oxide, IGZTO), or indium zinc tin oxide (indium zinc tin oxide, IZTO) and other materials with high electron mobility.
  • the electron mobility of the first active layer 131 of the first thin film transistor 100 is at least greater than or equal to 20 cm2/(volt ⁇ s). In this embodiment, the electron mobility of the first active layer 131 of the first thin film transistor 100 can reach the electron mobility of the second active layer 230 of the second thin film transistor 200 1.5 times the mobility or even higher.
  • the response time of the first thin film transistor 100 is shorter, so that the first thin film transistor 100 as the switching thin film transistor has an excellent technical advantage.
  • the material of the second active layer 230 of the second thin film transistor 200 includes but not limited to metal oxide doped with rare earth metal elements or fluorine compounds.
  • the material of the second active layer 230 can be a metal oxide doped with lanthanide elements such as praseodymium (Pr), cerium (Ce), or lanthanum (La), or it can be a metal oxide doped with fluorine
  • the material with low leakage current such as nitrogen trifluoride (NF3), carbon tetrafluoride (CF4), or metal oxide of sulfur hexafluoride (SF6), and the metal oxide can be Metal oxides with low indium content.
  • the threshold voltage shift of the second active layer 230 of the second thin film transistor 200 is less than or equal to 1 volt.
  • the threshold voltage shift is smaller, the stability of the second thin film transistor 200 is higher, so that the second thin film transistor 200 as the driving thin film transistor has an excellent technical advantage.
  • the display panel further includes a light shielding layer 600 .
  • the light-shielding layer 600 is provided under the second thin film transistor 200 in this embodiment to shield the second film from being irradiated. light from the second active layer 230 of the transistor 200 and maintain the high stability that the second thin film transistor 200 should have.
  • the light-shielding layer 600 can also be used as a wiring for the second source 210 of the second thin film transistor 200 , so that the structure of the display panel is simplified.
  • FIG. 3 is a schematic structural diagram of a second embodiment of the display panel of the present invention.
  • the main structures in the display panel such as the lower substrate 510, the upper substrate 520, the first source 110 and the first drain of the first thin film transistor 100 120.
  • the material properties, relative positions, and connection relationships of the second source 210 and the second drain 220 of the second thin film transistor 200, the light shielding layer 600, and the light emitting unit 300 are all same.
  • the first thin film transistor 100 and the second thin film transistor 200 are also the top gate type thin film transistors to reduce the manufacturing process of the display panel, thereby reducing the manufacturing cost of the display panel.
  • the first thin film transistor 100 further includes a third active layer.
  • the third active layer is stacked with the first active layer 131 and disposed on the first active layer 131 .
  • the non-channel regions 132 a and 132 b at both ends of the third active layer are electrically connected to the non-channel regions 131 a and 131 b at both ends of the first active layer 131 .
  • the non-channel region 132a of the third active layer and the non-channel region 131a of the first active layer 131 are conductorized, and all the non-channel regions of the third active layer
  • the non-channel region 132b and the non-channel region 131b of the first active layer 131 are conductive.
  • the first source electrode 110 is passed through the non-channel region 132a of the conductorized third active layer and all parts of the first active layer 131
  • the non-channel region 131a is electrically connected to the third active layer and the first active layer 131 at the same time
  • the first drain 120 is passed through the conductorized third active layer.
  • the non-channel region 132b and the non-channel region 131b of the first active layer 131 are electrically connected to the third active layer and the first active layer 131 at the same time.
  • this embodiment uses the first thin film transistor 100 as the switching thin film transistor with a short response time, and uses the second thin film transistor 200 as the driving device with high stability. transistor. Therefore, the third active layer of the first thin film transistor 100 is made of a material with high electron mobility, and the material of the second active layer 230 of the second thin film transistor 200 is made of a material with low leakage current. .
  • the average electron mobility of the first active layer 131 and the third active layer of the first thin film transistor 100 in this embodiment is greater than or equal to that of the second thin film transistor 200
  • the electron mobility of the second active layer 230, and the threshold voltage shift of the second active layer 230 of the second thin film transistor 200 is less than or equal to that of the first thin film transistor 100
  • the average threshold voltage shift of the first active layer 131 and the third active layer is greater than or equal to that of the second thin film transistor 200.
  • the first thin film transistor 100 in order to further improve the average electron mobility of the first active layer 131 and the third active layer of the first thin film transistor 100, the first thin film transistor 100
  • the materials of the three active layers include, but are not limited to, indium oxide, gallium oxide, zinc oxide, tin oxide, and combinations thereof.
  • the material of the first active layer 131 and the material of the third active layer may be the indium gallium zinc oxide and the indium tin oxide respectively, or may be respectively
  • the InGaZnO and InGaSnO are materials with high electron mobility.
  • the average electron mobility of the first active layer 131 and the third active layer of the first thin film transistor 100 is at least greater than or equal to 20 cm2/(volt ⁇ sec) , and even can be further two to three times higher than the electron mobility of the first active layer 131 of the first thin film transistor 100 of the first embodiment.
  • the response time of the first thin film transistor 100 is shorter, so that the first thin film transistor 100 as the switching thin film transistor has an excellent technical advantage.
  • the material of the first active layer 131 described in the above embodiment is different from the material of the third active layer.
  • the base material of the first active layer 131 and the base material of the third active layer can be the same, and the two can be mixed with different proportions of metal elements
  • the material of the first active layer 131 and the material of the third active layer are different.
  • the material of the first active layer 131 of the first thin film transistor 100 can be configured to be the same as that of the second thin film transistor 200
  • the material of the active layer 230 is the same. Therefore, the first active layer 131 of the first thin film transistor 100 can be formed simultaneously with the second active layer 230 of the second thin film transistor 200 in the same process, thereby simplifying the display panel. manufacturing process and improve production efficiency.
  • a display panel that can be applied to a large-size display device provided by the present invention includes a first thin film transistor 100 and a second thin film transistor 200 .
  • the first TFT 100 includes the first source 110 , the first drain 120 , the first active layer 131 , and the first gate 140 .
  • the second TFT 200 includes the second source 210 , the second drain 220 , the second active layer 230 , and the second gate 240 .
  • the first drain 120 of the first TFT 100 is electrically connected to the second gate 240 of the second TFT 200 .
  • the electron mobility of the first active layer 131 of the first thin film transistor 100 is greater than or equal to the electron mobility of the second active layer 230 of the second thin film transistor 200 .
  • the threshold voltage shift of the second active layer 230 of the second thin film transistor 200 is less than or equal to the threshold voltage shift of the first active layer 131 of the first thin film transistor 100 quantity.
  • the first thin film transistor 100 further includes a third active layer.
  • the third active layer is stacked with the first active layer 131, so that the average electron density of the first active layer 131 and the third active layer of the first thin film transistor 100
  • the mobility is greater than or equal to the electron mobility of the second active layer 230 of the second thin film transistor 200 .
  • the present invention enables the use of the first thin film transistor 100 as the short response time switch thin film transistor, and use the second thin film transistor 200 as the driving transistor with high stability. Moreover, the first thin film transistor 100 with dual active layers can improve the manufacturing yield, thereby solving the problem that the low-temperature polysilicon oxide display panel in the prior art cannot be applied to large-scale display devices.

Abstract

A display panel, comprising a first thin film transistor (100) and a second thin film transistor (200). The first thin film transistor (100) comprises a first source (110), a first drain (120), a first active layer (131), and a first gate (140). The second thin film transistor (200) comprises a second source (210), a second drain (220), a second active layer (230), and a second gate (240). The first drain (120) of the first thin film transistor (100) is electrically connected to the second gate (240) of the second thin film transistor (200). The electron mobility of the first active layer (131) of the first thin film transistor (100) is greater than or equal to the electron mobility of the second active layer (230) of the second thin film transistor (200). The threshold voltage offset of the second active layer (230) of the second thin film transistor (200) is less than or equal to the threshold voltage offset of the first active layer (131) of the first thin film transistor (100).

Description

显示面板display panel 技术领域technical field
本发明涉及显示技术领域,尤其涉及一种能应用于大尺寸显示装置并且具有双薄膜晶体管的显示面板。The invention relates to the field of display technology, in particular to a display panel with double thin-film transistors that can be applied to large-size display devices.
背景技术Background technique
低温多晶硅(low-temperature polycrystalline silicon,LTPS)薄膜晶体管因为其高电子迁移率以及短响应时间的驱动特性而被广泛应用于智慧型手机以及平板电脑等小尺寸显示装置的显示面板中。然而,因为所述低温多晶硅薄膜晶体管的漏电流较大,为避免所述显示面板出现图像延时而影响显示画面的切换,而被设定为高刷新率,造成所述低温多晶硅薄膜晶体管充电时间较短。Low-temperature polycrystalline silicon (LTPS) thin film transistors are widely used in display panels of small-sized display devices such as smartphones and tablet computers due to their high electron mobility and short response time driving characteristics. However, because the leakage current of the low temperature polysilicon thin film transistor is large, in order to avoid image delay in the display panel and affect the switching of the display screen, it is set to a high refresh rate, resulting in the charging time of the low temperature polysilicon thin film transistor shorter.
另外,采用诸如铟镓锌氧化物(indium gallium zinc oxide,IGZO)等金属氧化物的薄膜晶体管的漏电流较小以及稳定度较高,因此可以用于降低所述显示面板刷新率。然而,所述铟镓锌氧化物薄膜晶体管的电子迁移率相对于所述低温多晶硅薄膜晶体管的所述电子迁移率较低,因此所述铟镓锌氧化物薄膜晶体管需要较高的驱动电压。In addition, using such as indium gallium zinc oxide (indium gallium Zinc oxide, IGZO) and other metal oxide thin film transistors have low leakage current and high stability, so they can be used to reduce the refresh rate of the display panel. However, the electron mobility of the InGaZnO thin film transistor is lower than that of the low temperature polysilicon thin film transistor, so the InGaZnO thin film transistor requires a higher driving voltage.
为了充分利用所述低温多晶硅薄膜晶体管的高电子迁移率、以及所述铟镓锌氧化物薄膜晶体管的低漏电流的特点,现有技术设计出一种结合所述低温多晶硅薄膜晶体管以及所述铟镓锌氧化物薄膜晶体管的显示面板,即低温多晶硅氧化物(low-temperature polycrystalline oxide,LTPO)显示面板。In order to make full use of the high electron mobility of the low temperature polysilicon thin film transistor and the low leakage current characteristics of the indium gallium zinc oxide thin film transistor, the prior art has designed a combination of the low temperature polysilicon thin film transistor and the indium Gallium zinc oxide thin film transistor display panels, that is, low-temperature polysilicon oxide (low-temperature polycrystalline oxide, LTPO) display panel.
技术问题technical problem
所述低温多晶硅薄膜晶体管需要一定比例的氢(H)原子以钝化P型硅(P-Si)半导体以及其与N型硅(N-Si)半导体的界面的悬空键,以减少所述P型硅半导体以及其与所述N型硅半导体的所述界面的缺陷。而对于所述铟镓锌氧化物薄膜晶体管,高比例的氢原子会破坏所述铟镓锌氧化物中的氧(O)原子空位以及金属原子与氧原子的化学键(Metal-O)的平衡,进而导致所述铟镓锌氧化物薄膜晶体管阈值电压偏移量(Vth)负向漂移。因此,所述低温多晶硅薄膜晶体管以及所述铟镓锌氧化物薄膜晶体管彼此的兼容性较低、制造难度高。The low-temperature polysilicon thin film transistor needs a certain proportion of hydrogen (H) atoms to passivate the dangling bonds of the P-type silicon (P-Si) semiconductor and the interface with the N-type silicon (N-Si) semiconductor, so as to reduce the P type silicon semiconductor and the defects of the interface with the n-type silicon semiconductor. For the indium gallium zinc oxide thin film transistor, a high proportion of hydrogen atoms will destroy the balance of the oxygen (O) atom vacancies and the chemical bonds between metal atoms and oxygen atoms (Metal-O) in the indium gallium zinc oxide, Furthermore, the threshold voltage offset (Vth) of the InGaZnO thin film transistor is negatively shifted. Therefore, the low-temperature polysilicon thin film transistor and the InGaZnO thin film transistor have low compatibility with each other and are difficult to manufacture.
所述低温多晶硅氧化物显示面板的制程复杂,所述低温多晶硅薄膜晶体管的制程必须与所述铟镓锌氧化物薄膜晶体管的制程分别进行。虽然现有技术能够通过工艺制程调试,使得所述低温多晶硅薄膜晶体管以及所述铟镓锌氧化物薄膜晶体管顺利结合,但是所述低温多晶硅薄膜晶体管在大尺寸显示装置的制程中,所述低温多晶硅的结晶均一性较差,这将会影响所述低温多晶硅薄膜晶体管的所述电子迁移率以及阈值电压偏移量。并且,为了所述低温多晶硅薄膜晶体管以及所述铟镓锌氧化物薄膜晶体管彼此的兼容性,使得所述低温多晶硅氧化物显示面板很难应用于所述大尺寸显示装置。因此,目前所述低温多晶硅氧化物显示面板仅能应用于智慧型手表、智慧型手环等小尺寸显示装置。The manufacturing process of the low temperature polysilicon oxide display panel is complicated, and the manufacturing process of the low temperature polysilicon thin film transistor must be carried out separately from the manufacturing process of the indium gallium zinc oxide thin film transistor. Although the existing technology can be debugged through the process process, so that the low-temperature polysilicon thin film transistor and the indium gallium zinc oxide thin film transistor can be smoothly combined, but the low-temperature polysilicon thin film transistor is in the process of large-scale display devices. The crystal uniformity of the low temperature polysilicon thin film transistor is poor, which will affect the electron mobility and threshold voltage shift of the low temperature polysilicon thin film transistor. Moreover, due to the compatibility between the low temperature polysilicon thin film transistor and the indium gallium zinc oxide thin film transistor, it is difficult to apply the low temperature polysilicon oxide display panel to the large-size display device. Therefore, the current low-temperature polysilicon oxide display panel can only be applied to small-sized display devices such as smart watches and smart bracelets.
由于现有技术的所述低温多晶硅氧化物显示面板具有无法应用于所述大尺寸显示装置的技术问题,因此需要一种能应用于大尺寸显示装置并且具有双薄膜晶体管的显示面板,来解决上述的技术问题。Since the low-temperature polysilicon oxide display panel in the prior art has technical problems that cannot be applied to the large-size display device, a display panel that can be applied to a large-size display device and has double thin-film transistors is needed to solve the above-mentioned problem. technical problems.
技术解决方案technical solution
本发明提供一种能应用于大尺寸显示装置并且具有双薄膜晶体管的显示面板。所述显示面板包括第一薄膜晶体管以及第二薄膜晶体管。所述第一薄膜晶体管包括第一源极、第一漏极、第一有源层、以及第一栅极。所述第二薄膜晶体管包括第二源极、第二漏极、第二有源层、以及第二栅极。所述第一薄膜晶体管的所述第一漏极电性连接所述第二薄膜晶体管的所述第二栅极。所述第一薄膜晶体管的所述第一有源层的电子迁移率大于或等于所述第二薄膜晶体管的所述第二有源层的电子迁移率。所述第二薄膜晶体管的所述第二有源层的阈值电压偏移量小于或等于所述第一薄膜晶体管的所述第一有源层的阈值电压偏移量。The invention provides a display panel which can be applied to a large-size display device and has double thin film transistors. The display panel includes a first thin film transistor and a second thin film transistor. The first thin film transistor includes a first source, a first drain, a first active layer, and a first gate. The second thin film transistor includes a second source, a second drain, a second active layer, and a second gate. The first drain of the first TFT is electrically connected to the second gate of the second TFT. The electron mobility of the first active layer of the first thin film transistor is greater than or equal to the electron mobility of the second active layer of the second thin film transistor. The threshold voltage shift of the second active layer of the second thin film transistor is less than or equal to the threshold voltage shift of the first active layer of the first thin film transistor.
在本实施例中,所述第一薄膜晶体管的所述第一有源层的所述电子迁移率为所述第二薄膜晶体管的所述第二有源层的电子迁移率的1.5倍以上。In this embodiment, the electron mobility of the first active layer of the first thin film transistor is more than 1.5 times the electron mobility of the second active layer of the second thin film transistor.
在本实施例中,所述第一薄膜晶体管的所述第一有源层的所述电子迁移率大于或等于20平方厘米/(伏特∙秒)。In this embodiment, the electron mobility of the first active layer of the first thin film transistor is greater than or equal to 20 cm2/(volt·sec).
在本实施例中,所述第二薄膜晶体管的所述第二有源层的所述阈值电压偏移量小于或等于1伏特。In this embodiment, the threshold voltage shift of the second active layer of the second thin film transistor is less than or equal to 1 volt.
在本实施例中,所述第一薄膜晶体管的所述第一有源层的材料包括铟氧化物、镓氧化物、锌氧化物、锡氧化物、以及其组合。In this embodiment, the material of the first active layer of the first thin film transistor includes indium oxide, gallium oxide, zinc oxide, tin oxide, and combinations thereof.
在本实施例中,所述第二薄膜晶体管的所述第二有源层的材料包括参杂稀土金属元素或是氟系化合物的金属氧化物。In this embodiment, the material of the second active layer of the second thin film transistor includes a metal oxide doped with a rare earth metal element or a fluorine compound.
在另一实施例中,所述第一薄膜晶体管还包括第三有源层。所述第三有源层与所述第一有源层叠层设置。所述第三有源层两端的非沟道区分别电性连接所述第一有源层两端的非沟道区。In another embodiment, the first thin film transistor further includes a third active layer. The third active layer is stacked with the first active layer. The non-channel regions at both ends of the third active layer are electrically connected to the non-channel regions at both ends of the first active layer.
在本实施例中,所述第一薄膜晶体管的所述第一有源层以及所述第三有源层的平均电子迁移率大于或等于所述第二薄膜晶体管的所述第二有源层的所述电子迁移率。In this embodiment, the average electron mobility of the first active layer and the third active layer of the first thin film transistor is greater than or equal to that of the second active layer of the second thin film transistor The electron mobility of .
在本实施例中,所述第一薄膜晶体管的所述第一有源层以及所述第三有源层的平均电子迁移率为所述第二薄膜晶体管的所述第二有源层的所述电子迁移率的1.5倍以上。In this embodiment, the average electron mobility of the first active layer and the third active layer of the first thin film transistor is equal to that of the second active layer of the second thin film transistor. More than 1.5 times the electron mobility mentioned above.
在本实施例中,所述第一薄膜晶体管的所述第一有源层以及所述第三有源层的所述平均电子迁移率大于或等于20平方厘米/(伏∙秒)。In this embodiment, the average electron mobility of the first active layer and the third active layer of the first thin film transistor is greater than or equal to 20 cm2/(V·sec).
在本实施例中,所述第一薄膜晶体管的所述第一有源层的材料与所述第二薄膜晶体管的所述第二有源层的材料相同。In this embodiment, the material of the first active layer of the first thin film transistor is the same as that of the second active layer of the second thin film transistor.
在本实施例中,所述第一薄膜晶体管的所述第一有源层与所述第二薄膜晶体管的所述第二有源层通过同一道制程设置。In this embodiment, the first active layer of the first thin film transistor and the second active layer of the second thin film transistor are formed through the same manufacturing process.
在本实施例中,所述第一薄膜晶体管的所述第三有源层的材料包括铟氧化物、镓氧化物、锌氧化物、锡氧化物、以及其组合。In this embodiment, the material of the third active layer of the first thin film transistor includes indium oxide, gallium oxide, zinc oxide, tin oxide, and combinations thereof.
在本实施例中,在所述第一薄膜晶体管中,所述第一有源层的材料与所述第三有源层的所述材料不同。In this embodiment, in the first thin film transistor, the material of the first active layer is different from the material of the third active layer.
在另一实施例中,所述显示面板还包括数据线、扫描线、以及发光单元。所述数据线电性连接所述第一薄膜晶体管的所述第一源极。所述扫描线电性连接所述第一薄膜晶体管的所述第一栅极。所述发光单元包括第一电极以及与第一电极相对的第二电极。所述第一电极电性连接所述第二薄膜晶体管的所述第二源极。In another embodiment, the display panel further includes data lines, scan lines, and light emitting units. The data line is electrically connected to the first source of the first TFT. The scan line is electrically connected to the first gate of the first thin film transistor. The light emitting unit includes a first electrode and a second electrode opposite to the first electrode. The first electrode is electrically connected to the second source of the second TFT.
在本实施例中,所述显示面板还包括电容。所述电容包括第一板以及相对所述第一板的第二板。所述第一板电性连接所述第一薄膜晶体管的所述第一漏极以及所述第二薄膜晶体管的所述第二栅极。所述第二板电性连接所述第二薄膜晶体管的所述第二源极以及所述发光单元。In this embodiment, the display panel further includes capacitors. The capacitor includes a first plate and a second plate opposite the first plate. The first plate is electrically connected to the first drain of the first TFT and the second gate of the second TFT. The second plate is electrically connected to the second source of the second TFT and the light emitting unit.
在另一实施例中,所述显示面板还包括遮光层。所述遮光层设置在所述第二薄膜晶体管之下。In another embodiment, the display panel further includes a light shielding layer. The light shielding layer is disposed under the second thin film transistor.
有益效果Beneficial effect
本发明提供的一种能应用于大尺寸显示装置的所述显示面板包括第一薄膜晶体管以及第二薄膜晶体管。所述第一薄膜晶体管包括所述第一源极、所述第一漏极、所述第一有源层、以及所述第一栅极。所述第二薄膜晶体管包括所述第二源极、所述第二漏极、所述第二有源层、以及所述第二栅极。所述第一薄膜晶体管的所述第一漏极电性连接所述第二薄膜晶体管的所述第二栅极。所述第一薄膜晶体管的所述第一有源层的所述电子迁移率大于或等于所述第二薄膜晶体管的所述第二有源层的所述电子迁移率。所述第二薄膜晶体管的所述第二有源层的所述阈值电压偏移量小于或等于所述第一薄膜晶体管的所述第一有源层的所述阈值电压偏移量。更进一步地,所述第一薄膜晶体管还包括第三有源层。所述第三有源层与所述第一有源层叠层设置,使得所述第一薄膜晶体管的所述第一有源层以及所述第三有源层的所述平均电子迁移率大于或等于所述第二薄膜晶体管的所述第二有源层的所述电子迁移率。通过所述显示面的双薄膜晶体管的结构设计、以及所述第一薄膜晶体管的双有源层的结构设计,本发明得以将所述第一薄膜晶体管得用作短响应时间的开关薄膜晶体管,并且将所述第二薄膜晶体管用作高稳定性的驱动晶体管。并且,双有源层的所述第一薄膜晶体管,能够提高制造良率,进而解决现有技术中的低温多晶硅氧化物显示面板无法应用在大尺寸显示装置的问题。A display panel applicable to a large-size display device provided by the present invention includes a first thin film transistor and a second thin film transistor. The first thin film transistor includes the first source, the first drain, the first active layer, and the first gate. The second thin film transistor includes the second source, the second drain, the second active layer, and the second gate. The first drain of the first TFT is electrically connected to the second gate of the second TFT. The electron mobility of the first active layer of the first thin film transistor is greater than or equal to the electron mobility of the second active layer of the second thin film transistor. The threshold voltage shift of the second active layer of the second thin film transistor is less than or equal to the threshold voltage shift of the first active layer of the first thin film transistor. Furthermore, the first thin film transistor further includes a third active layer. The third active layer is stacked with the first active layer, so that the average electron mobility of the first active layer and the third active layer of the first thin film transistor is greater than or equal to the electron mobility of the second active layer of the second thin film transistor. Through the structural design of the dual thin film transistors on the display surface and the structural design of the dual active layers of the first thin film transistor, the present invention can use the first thin film transistor as a switching thin film transistor with a short response time, And the second thin film transistor is used as a highly stable driving transistor. Moreover, the first thin film transistor with dual active layers can improve the manufacturing yield, thereby solving the problem that the low-temperature polysilicon oxide display panel in the prior art cannot be applied to a large-size display device.
附图说明Description of drawings
图1为本发明的显示面板的电路结构图。FIG. 1 is a circuit structure diagram of a display panel of the present invention.
图2为本发明的所述显示面板的第一实施例的结构示意图。FIG. 2 is a schematic structural diagram of the first embodiment of the display panel of the present invention.
图3为本发明的所述显示面板的第二实施例的结构示意图。FIG. 3 is a schematic structural diagram of the second embodiment of the display panel of the present invention.
本发明的实施方式Embodiments of the present invention
为了让本发明之上述及其他目的、特征、优点能更明显易懂,下文将特举本发明优选实施例,并配合附图,作详细说明如下。In order to make the above and other objects, features and advantages of the present invention more comprehensible, preferred embodiments of the present invention will be exemplified below in detail with accompanying drawings.
请参照图1,其为本发明的显示面板的电路结构图。本发明的所述显示面板包括第一薄膜晶体管100以及第二薄膜晶体管200。所述第一薄膜晶体管100包括第一源极110、第一漏极120、第一有源层(未示出)、以及第一栅极140。所述第二薄膜晶体管200包括第二源极210、第二漏极220、第二有源层(未示出)、以及第二栅极240。Please refer to FIG. 1 , which is a circuit structure diagram of the display panel of the present invention. The display panel of the present invention includes a first thin film transistor 100 and a second thin film transistor 200 . The first TFT 100 includes a first source 110 , a first drain 120 , a first active layer (not shown), and a first gate 140 . The second TFT 200 includes a second source 210 , a second drain 220 , a second active layer (not shown), and a second gate 240 .
如图1所示,所述显示面板还包括数据线D、扫描线S、以及发光单元300。所述数据线D电性连接所述第一薄膜晶体管100的所述第一源极110。所述扫描线S电性连接所述第一薄膜晶体管100的所述第一栅极140。所述第一薄膜晶体管100用以接收所述显示面板的所述数据线D以及所述扫描线S传输的显示信号,通过控制所述第一栅极140的输入电压,所述第一薄膜晶体管100便能够控制所述第一源极110以及所述第一漏极120两端电流的通断。As shown in FIG. 1 , the display panel further includes a data line D, a scan line S, and a light emitting unit 300 . The data line D is electrically connected to the first source 110 of the first TFT 100 . The scan line S is electrically connected to the first gate 140 of the first TFT 100 . The first thin film transistor 100 is used to receive the display signal transmitted by the data line D and the scan line S of the display panel. By controlling the input voltage of the first gate 140, the first thin film transistor 100 can control the on-off of the current at both ends of the first source 110 and the first drain 120 .
另外,如图1所示,所述显示面板还包括公共阳极Vdd以及公共阴极Vss。所述公共阳极Vdd电性连接所述第二薄膜晶体管200的所述第二漏极220。所述第一薄膜晶体管100的所述第一漏极120电性连接所述第二薄膜晶体管200的所述第二栅极240。所述发光单元300的两端电性连接所述第二薄膜晶体管200的所述第二源极210以及所述公共阴极Vss。所述第二薄膜晶体管200用以接收所述第一薄膜晶体管100的所述第一漏极120的开关信号,通过控制所述第二栅极240的输入电压,所述第二薄膜晶体管200便能够控制所述第二源极210以及所述第二漏极220两端电流的通断。当所述公共阳极Vdd的电流通过所述第二薄膜晶体管200输入至所述发光单元300,所述发光单元300则可以发光,使得所述显示面板得以显示图像。In addition, as shown in FIG. 1 , the display panel further includes a common anode Vdd and a common cathode Vss. The common anode Vdd is electrically connected to the second drain 220 of the second TFT 200 . The first drain 120 of the first TFT 100 is electrically connected to the second gate 240 of the second TFT 200 . Both ends of the light emitting unit 300 are electrically connected to the second source 210 of the second thin film transistor 200 and the common cathode Vss. The second thin film transistor 200 is used to receive the switching signal of the first drain 120 of the first thin film transistor 100, and by controlling the input voltage of the second gate 240, the second thin film transistor 200 is The on-off of the current at both ends of the second source 210 and the second drain 220 can be controlled. When the current of the common anode Vdd is input to the light emitting unit 300 through the second thin film transistor 200, the light emitting unit 300 can emit light, so that the display panel can display images.
由此可知,在所述第一薄膜晶体管100以及所述第二薄膜晶体管200之中,所述第一薄膜晶体管100被用作开启或关闭所述第二薄膜晶体管的开关薄膜晶体管,并且所述第二薄膜晶体管200被用作驱动所述发光单元300的驱动薄膜晶体管。It can be seen that, among the first thin film transistor 100 and the second thin film transistor 200, the first thin film transistor 100 is used as a switch thin film transistor for turning on or off the second thin film transistor, and the The second thin film transistor 200 is used as a driving thin film transistor for driving the light emitting unit 300 .
在一实施例中,如图1所示,所述显示面板还包括电容400。所述电容400包括第一板410以及相对所述第一板410的第二板420。所述第一板410电性连接所述第一薄膜晶体管100的所述第一漏极120以及所述第二薄膜晶体管200的所述第二栅极240。所述第二板420电性连接所述第二薄膜晶体管200的所述第二源极210以及所述发光单元300。所述電容用以储存所述第一薄膜晶体管100输入的开关信号,并且將所述开关信号转换成所述发光单元300发光所需要的电流信号,借以显示不同的灰阶值。In one embodiment, as shown in FIG. 1 , the display panel further includes a capacitor 400 . The capacitor 400 includes a first plate 410 and a second plate 420 opposite to the first plate 410 . The first plate 410 is electrically connected to the first drain 120 of the first TFT 100 and the second gate 240 of the second TFT 200 . The second plate 420 is electrically connected to the second source 210 of the second TFT 200 and the light emitting unit 300 . The capacitor is used to store the switch signal input by the first thin film transistor 100 and convert the switch signal into a current signal required by the light emitting unit 300 to display different gray scale values.
在实际实施中,所述发光单元300包括有机发光二极管(organic light-emitting diode,OLED)、迷你发光二极管(mini-light-emitting diode,mini-LED)、微发光二极管(micro-light-emitting diode,micro-LED)、或是电致发光量子点(electroluminescent quantum dots,ELQDs)等。In actual implementation, the light emitting unit 300 includes an organic light emitting diode (organic light-emitting diode, OLED), mini-light-emitting diode (mini-light-emitting diode, mini-LED), micro-light-emitting diode (micro-light-emitting diode, micro-LED), or electroluminescent quantum dots (electroluminescent quantum dots, ELQDs), etc.
第一实施例first embodiment
请参照图2,其为本发明的所述显示面板的第一实施例的结构示意图。Please refer to FIG. 2 , which is a schematic structural diagram of the first embodiment of the display panel of the present invention.
在本实施例中,所述显示面板包括下基板510以及上基板520,用以保护所述显示面板内的所有元件,所述下基板510以及所述上基板520包括但不限于玻璃基板或是聚酰亚胺基板等,其可以为刚性基板或是柔性基板。In this embodiment, the display panel includes a lower substrate 510 and an upper substrate 520 to protect all components in the display panel. The lower substrate 510 and the upper substrate 520 include but are not limited to glass substrates or A polyimide substrate, etc., which can be a rigid substrate or a flexible substrate.
本实施的所述显示面板包括所述第一薄膜晶体管100以及所述第二薄膜晶体管200。所述第一薄膜晶体管100包括依序叠层的所述第一有源层131、第一栅极绝缘层150、以及所述第一栅极140,并且还包括电性连接所述第一有源层131两端的所述第一源极110以及所述第一漏极120。所述第二薄膜晶体管200包括依序叠层的所述第二有源层230、第二栅极绝缘层250、以及所述第二栅极240,并且还包括电性连接所述第二有源层230两端的所述第二源极210以及所述第二漏极220。The display panel in this embodiment includes the first thin film transistor 100 and the second thin film transistor 200 . The first thin film transistor 100 includes the first active layer 131, the first gate insulating layer 150, and the first gate 140 stacked in sequence, and also includes an active layer electrically connected to the first active layer. The first source electrode 110 and the first drain electrode 120 at both ends of the source layer 131 . The second thin film transistor 200 includes the second active layer 230, the second gate insulating layer 250, and the second gate 240 stacked in sequence, and also includes a The second source 210 and the second drain 220 at two ends of the source layer 230 .
在本实施例中,所述第一薄膜晶体管100以及所述第二薄膜晶体管200包括顶栅极型薄膜晶体管。在制造工艺的进步下,所述顶栅极型薄膜晶体管能够减少所述显示面板的制造工序,进而降低所述显示面板的制造成本。In this embodiment, the first thin film transistor 100 and the second thin film transistor 200 include top gate thin film transistors. With the progress of the manufacturing process, the top gate thin film transistor can reduce the manufacturing process of the display panel, thereby reducing the manufacturing cost of the display panel.
本实施例的所述显示面板还包括所述发光单元300。本实施例以所述发光单元300为有机发光二极管作为范例说明,所述发光单元300包括第一电极310、与第一电极310相对的第二电极320、以及发光层330。所述第一电极310电性连接所述第二薄膜晶体管200的所述第二源极210。当所述第二薄膜晶体管200控制电流导通至所述发光单元300时,所述电流流经作为阳极的所述第一电极310与作为阴极的所述第二电极320之间。在所述电流的作用下,所述发光单元300中的电子与空穴将会在所述发光层330中结合并且激发出光线,从而达成所述显示面板的图像显示。The display panel in this embodiment further includes the light emitting unit 300 . In this embodiment, the light emitting unit 300 is an organic light emitting diode as an example. The light emitting unit 300 includes a first electrode 310 , a second electrode 320 opposite to the first electrode 310 , and a light emitting layer 330 . The first electrode 310 is electrically connected to the second source 210 of the second TFT 200 . When the second thin film transistor 200 controls the conduction of current to the light emitting unit 300 , the current flows between the first electrode 310 serving as an anode and the second electrode 320 serving as a cathode. Under the action of the current, the electrons and holes in the light emitting unit 300 will combine in the light emitting layer 330 to excite light, so as to realize the image display of the display panel.
在本实施例中,所述第一薄膜晶体管100被用作短响应时间的所述开关薄膜晶体管,并且所述第二薄膜晶体管200被用作高稳定性的所述驱动晶体管。因此,所述第一薄膜晶体管100的所述第一有源层131选用高电子迁移率的材料,并且所述第二薄膜晶体管200的所述第二有源层230的材料选用低漏电流的材料。换句话说,本实施例的所述第一薄膜晶体管100的所述第一有源层131的电子迁移率大于或等于所述第二薄膜晶体管200的所述第二有源层230的电子迁移率,并且所述第二薄膜晶体管200的所述第二有源层230的阈值电压偏移量小于或等于所述第一薄膜晶体管100的所述第一有源层131的阈值电压偏移量。In this embodiment, the first thin film transistor 100 is used as the switching thin film transistor with a short response time, and the second thin film transistor 200 is used as the driving transistor with high stability. Therefore, the first active layer 131 of the first thin film transistor 100 is made of a material with high electron mobility, and the material of the second active layer 230 of the second thin film transistor 200 is made of a material with low leakage current. Material. In other words, the electron mobility of the first active layer 131 of the first thin film transistor 100 in this embodiment is greater than or equal to the electron mobility of the second active layer 230 of the second thin film transistor 200 rate, and the threshold voltage shift of the second active layer 230 of the second thin film transistor 200 is less than or equal to the threshold voltage shift of the first active layer 131 of the first thin film transistor 100 .
在本实施例中,所述第一薄膜晶体管100的所述第一有源层131的所述材料包括但不限于铟氧化物、镓氧化物、锌氧化物、锡氧化物、以及其组合。优选地,所述第一有源层131的所述材料可以为铟镓锡氧化物(indium gallium zinc oxide,IGZO)、铟镓锌锡氧化物(indium gallium zinc tin oxide,IGZTO)、或是铟锌锡氧化物(indium zinc tin oxide,IZTO)等具有高电子迁移率的所述材料。经过发明人的实验,所述第一薄膜晶体管100的所述第一有源层131的所述电子迁移率至少大于或等于20平方厘米/(伏特∙秒)。在本实施例中,所述第一薄膜晶体管100的所述第一有源层131的所述电子迁移率可以达到所述第二薄膜晶体管200的所述第二有源层230的所述电子迁移率的1.5倍甚至更高。In this embodiment, the material of the first active layer 131 of the first thin film transistor 100 includes but not limited to indium oxide, gallium oxide, zinc oxide, tin oxide, and combinations thereof. Preferably, the material of the first active layer 131 can be indium gallium tin oxide (indium gallium zinc oxide, IGZO), indium gallium zinc tin oxide (indium gallium zinc tin oxide, IGZTO), or indium zinc tin oxide (indium zinc tin oxide, IZTO) and other materials with high electron mobility. According to the inventor's experiments, the electron mobility of the first active layer 131 of the first thin film transistor 100 is at least greater than or equal to 20 cm2/(volt·s). In this embodiment, the electron mobility of the first active layer 131 of the first thin film transistor 100 can reach the electron mobility of the second active layer 230 of the second thin film transistor 200 1.5 times the mobility or even higher.
当所述电子迁移率越大,所述第一薄膜晶体管100的所述响应时间就越短,使得作为所述开关薄膜晶体管的所述第一薄膜晶体管100具有绝佳的技术优势。When the electron mobility is higher, the response time of the first thin film transistor 100 is shorter, so that the first thin film transistor 100 as the switching thin film transistor has an excellent technical advantage.
在本实施例中,所述第二薄膜晶体管200的所述第二有源层230的所述材料包括但不限于参杂稀土金属元素或是氟系化合物的金属氧化物。优选地,所述第二有源层230的所述材料可以为参杂镧系元素如镨(Pr)、铈(Ce)、或是镧(La)的金属氧化物,也可以为参杂氟系化合物如三氟化氮(NF3)、四氟化碳(CF4)、或是六氟化硫(SF6)的金属氧化物等具有低漏电流的所述材料,并且所述金属氧化物可以为低铟含量的金属氧化物。经过发明人的实验,所述第二薄膜晶体管200的所述第二有源层230的所述阈值电压偏移量小于或等于1伏特。当所述阈值电压偏移量越小,所述第二薄膜晶体管200的稳定性就越高,使得作为所述驱动薄膜晶体管的所述第二薄膜晶体管200具有绝佳的技术优势。In this embodiment, the material of the second active layer 230 of the second thin film transistor 200 includes but not limited to metal oxide doped with rare earth metal elements or fluorine compounds. Preferably, the material of the second active layer 230 can be a metal oxide doped with lanthanide elements such as praseodymium (Pr), cerium (Ce), or lanthanum (La), or it can be a metal oxide doped with fluorine The material with low leakage current such as nitrogen trifluoride (NF3), carbon tetrafluoride (CF4), or metal oxide of sulfur hexafluoride (SF6), and the metal oxide can be Metal oxides with low indium content. According to the inventor's experiments, the threshold voltage shift of the second active layer 230 of the second thin film transistor 200 is less than or equal to 1 volt. When the threshold voltage shift is smaller, the stability of the second thin film transistor 200 is higher, so that the second thin film transistor 200 as the driving thin film transistor has an excellent technical advantage.
并且,本实施例为了进一步增加所述第二薄膜晶体管200的稳定性,所述显示面板还包括遮光层600。由于所述第二有源层230的材料特性容易受到所述光线的影响,因此本实施例在所述第二薄膜晶体管200下设置所述遮光层600,用以遮挡可能照射所述第二薄膜晶体管200的所述第二有源层230的光线,并且维持所述第二薄膜晶体管200应有的高稳定性。同时,所述遮光层600还能用作所述第二薄膜晶体管200的所述第二源极210的走线,使得所述显示面板的结构简化。Moreover, in this embodiment, in order to further increase the stability of the second thin film transistor 200 , the display panel further includes a light shielding layer 600 . Since the material properties of the second active layer 230 are easily affected by the light, the light-shielding layer 600 is provided under the second thin film transistor 200 in this embodiment to shield the second film from being irradiated. light from the second active layer 230 of the transistor 200 and maintain the high stability that the second thin film transistor 200 should have. At the same time, the light-shielding layer 600 can also be used as a wiring for the second source 210 of the second thin film transistor 200 , so that the structure of the display panel is simplified.
第二实施例second embodiment
请参照图3,其为本发明的所述显示面板的第二实施例的结构示意图。Please refer to FIG. 3 , which is a schematic structural diagram of a second embodiment of the display panel of the present invention.
在本实施例中,所述显示面板中的主要结构,例如所述下基板510、所述上基板520、所述第一薄膜晶体管100的所述第一源极110以及所述第一漏极120、所述第二薄膜晶体管200的所述第二源极210以及所述第二漏极220、所述遮光层600、以及所述发光单元300等的材料性质、相对位置、以及连接关系都相同。另外,优选地,所述第一薄膜晶体管100以及所述第二薄膜晶体管200同样为所述顶栅极型薄膜晶体管以减少所述显示面板的制造工序,进而降低所述显示面板的制造成本。In this embodiment, the main structures in the display panel, such as the lower substrate 510, the upper substrate 520, the first source 110 and the first drain of the first thin film transistor 100 120. The material properties, relative positions, and connection relationships of the second source 210 and the second drain 220 of the second thin film transistor 200, the light shielding layer 600, and the light emitting unit 300 are all same. In addition, preferably, the first thin film transistor 100 and the second thin film transistor 200 are also the top gate type thin film transistors to reduce the manufacturing process of the display panel, thereby reducing the manufacturing cost of the display panel.
然而,本实施例相对于第一实施例不同之处在于,所述第一薄膜晶体管100还包括第三有源层。所述第三有源层与所述第一有源层131叠层设置,并且设置在所述第一有源层131上。所述第三有源层两端的非沟道区132a以及132b分别电性连接所述第一有源层131两端的非沟道区131a以及131b。本实施例将所述第三有源层的所述非沟道区132a以及所述第一有源层131的所述非沟道区131a导体化,并且将所述第三有源层的所述非沟道区132b以及所述第一有源层131的所述非沟道区131b导体化。因此,在所述第一薄膜晶体管100中,所述第一源极110得以通过导体化的所述第三有源层的所述非沟道区132a以及所述第一有源层131的所述非沟道区131a同时电性连接所述第三有源层以及所述第一有源层131,并且所述第一漏极120得以通过导体化的所述第三有源层的所述非沟道区132b以及所述第一有源层131的所述非沟道区131b同时电性连接所述第三有源层以及所述第一有源层131。However, the difference between this embodiment and the first embodiment is that the first thin film transistor 100 further includes a third active layer. The third active layer is stacked with the first active layer 131 and disposed on the first active layer 131 . The non-channel regions 132 a and 132 b at both ends of the third active layer are electrically connected to the non-channel regions 131 a and 131 b at both ends of the first active layer 131 . In this embodiment, the non-channel region 132a of the third active layer and the non-channel region 131a of the first active layer 131 are conductorized, and all the non-channel regions of the third active layer The non-channel region 132b and the non-channel region 131b of the first active layer 131 are conductive. Therefore, in the first thin film transistor 100, the first source electrode 110 is passed through the non-channel region 132a of the conductorized third active layer and all parts of the first active layer 131 The non-channel region 131a is electrically connected to the third active layer and the first active layer 131 at the same time, and the first drain 120 is passed through the conductorized third active layer. The non-channel region 132b and the non-channel region 131b of the first active layer 131 are electrically connected to the third active layer and the first active layer 131 at the same time.
如同本发明的第一实施例,本实施例将所述第一薄膜晶体管100用作短响应时间的所述开关薄膜晶体管,并且将所述第二薄膜晶体管200用作高稳定性的所述驱动晶体管。因此,所述第一薄膜晶体管100的所述第三有源层选用高电子迁移率的材料,并且所述第二薄膜晶体管200的所述第二有源层230的材料选用低漏电流的材料。换句话说,本实施例的所述第一薄膜晶体管100的所述第一有源层131以及所述第三有源层的平均电子迁移率大于或等于所述第二薄膜晶体管200的所述第二有源层230的所述电子迁移率,并且所述第二薄膜晶体管200的所述第二有源层230的所述阈值电压偏移量小于或等于所述第一薄膜晶体管100的所述第一有源层131以及所述第三有源层的平均阈值电压偏移量。Like the first embodiment of the present invention, this embodiment uses the first thin film transistor 100 as the switching thin film transistor with a short response time, and uses the second thin film transistor 200 as the driving device with high stability. transistor. Therefore, the third active layer of the first thin film transistor 100 is made of a material with high electron mobility, and the material of the second active layer 230 of the second thin film transistor 200 is made of a material with low leakage current. . In other words, the average electron mobility of the first active layer 131 and the third active layer of the first thin film transistor 100 in this embodiment is greater than or equal to that of the second thin film transistor 200 The electron mobility of the second active layer 230, and the threshold voltage shift of the second active layer 230 of the second thin film transistor 200 is less than or equal to that of the first thin film transistor 100 The average threshold voltage shift of the first active layer 131 and the third active layer.
本实施例为了更进一步提高所述第一薄膜晶体管100的所述第一有源层131以及所述第三有源层的所述平均电子迁移率,所述第一薄膜晶体管100的所述第三有源层的所述材料包括但不限于铟氧化物、镓氧化物、锌氧化物、锡氧化物、以及其组合。优选地,所述第一有源层131的所述材料以及所述第三有源层的所述材料可以分别为所述铟镓锌氧化物以及所述铟锡氧化物,或是可以分别为所述铟镓锌氧化物以及铟镓锡氧化物等皆为具有高电子迁移率的所述材料。经过发明人的实验,所述第一薄膜晶体管100的所述第一有源层131以及所述第三有源层的所述平均电子迁移率至少大于或等于20平方厘米/(伏特∙秒),甚至是能够进一步地高出所述第一实施例的所述第一薄膜晶体管100的所述第一有源层131的所述电子迁移率的二到三倍。当所述电子迁移率越大,所述第一薄膜晶体管100的所述响应时间就越短,使得作为所述开关薄膜晶体管的所述第一薄膜晶体管100具有绝佳的技术优势。In this embodiment, in order to further improve the average electron mobility of the first active layer 131 and the third active layer of the first thin film transistor 100, the first thin film transistor 100 The materials of the three active layers include, but are not limited to, indium oxide, gallium oxide, zinc oxide, tin oxide, and combinations thereof. Preferably, the material of the first active layer 131 and the material of the third active layer may be the indium gallium zinc oxide and the indium tin oxide respectively, or may be respectively The InGaZnO and InGaSnO are materials with high electron mobility. According to the inventor’s experiments, the average electron mobility of the first active layer 131 and the third active layer of the first thin film transistor 100 is at least greater than or equal to 20 cm2/(volt·sec) , and even can be further two to three times higher than the electron mobility of the first active layer 131 of the first thin film transistor 100 of the first embodiment. When the electron mobility is higher, the response time of the first thin film transistor 100 is shorter, so that the first thin film transistor 100 as the switching thin film transistor has an excellent technical advantage.
需要说明的是,在所述第一薄膜晶体管100中,上述实施方式所描述所述第一有源层131的所述材料与所述第三有源层的所述材料不同。然而,本实施例所称的不同意旨不同材料组成,所述第一有源层131的基础材料与所述第三有源层的基础材料可以相同,两者可以通过参杂不同比例的金属元素而形成不同的所述第一有源层131的所述材料以及所述第三有源层的所述材料。It should be noted that, in the first thin film transistor 100 , the material of the first active layer 131 described in the above embodiment is different from the material of the third active layer. However, different meanings and different material compositions referred to in this embodiment, the base material of the first active layer 131 and the base material of the third active layer can be the same, and the two can be mixed with different proportions of metal elements The material of the first active layer 131 and the material of the third active layer are different.
在本实施例中,为了所述显示面板制造流程的简化,所述第一薄膜晶体管100的所述第一有源层131的材料可以配置为与所述第二薄膜晶体管200的所述第二有源层230的材料相同。因此,所述第一薄膜晶体管100的所述第一有源层131可以在同一道制程中与所述第二薄膜晶体管200的所述第二有源层230同时形成,借以简化所述显示面板的制造流程并且提升生产效率。In this embodiment, in order to simplify the manufacturing process of the display panel, the material of the first active layer 131 of the first thin film transistor 100 can be configured to be the same as that of the second thin film transistor 200 The material of the active layer 230 is the same. Therefore, the first active layer 131 of the first thin film transistor 100 can be formed simultaneously with the second active layer 230 of the second thin film transistor 200 in the same process, thereby simplifying the display panel. manufacturing process and improve production efficiency.
在本实施例中,由于的所述第二薄膜晶体管200的所述第二有源层230的所述材料以及其特性如同第一实施例所描述,因此不再赘述。In this embodiment, since the material and characteristics of the second active layer 230 of the second thin film transistor 200 are the same as those described in the first embodiment, the details are not repeated here.
本发明提供的一种能应用于大尺寸显示装置的所述显示面板包括第一薄膜晶体管100以及第二薄膜晶体管200。所述第一薄膜晶体管100包括所述第一源极110、所述第一漏极120、所述第一有源层131、以及所述第一栅极140。所述第二薄膜晶体管200包括所述第二源极210、所述第二漏极220、所述第二有源层230、以及所述第二栅极240。所述第一薄膜晶体管100的所述第一漏极120电性连接所述第二薄膜晶体管200的所述第二栅极240。所述第一薄膜晶体管100的所述第一有源层131的所述电子迁移率大于或等于所述第二薄膜晶体管200的所述第二有源层230的所述电子迁移率。所述第二薄膜晶体管200的所述第二有源层230的所述阈值电压偏移量小于或等于所述第一薄膜晶体管100的所述第一有源层131的所述阈值电压偏移量。更进一步地,所述第一薄膜晶体管100还包括第三有源层。所述第三有源层与所述第一有源层131叠层设置,使得所述第一薄膜晶体管100的所述第一有源层131以及所述第三有源层的所述平均电子迁移率大于或等于所述第二薄膜晶体管200的所述第二有源层230的所述电子迁移率。通过所述显示面的双薄膜晶体管的结构设计、以及所述第一薄膜晶体管100的双有源层的结构设计,本发明得以将所述第一薄膜晶体管100得用作短响应时间的所述开关薄膜晶体管,并且将所述第二薄膜晶体管200用作高稳定性的所述驱动晶体管。并且,双有源层的所述第一薄膜晶体管100,能够提高制造良率,进而解决现有技术中的低温多晶硅氧化物显示面板无法应用在大尺寸显示装置的问题。A display panel that can be applied to a large-size display device provided by the present invention includes a first thin film transistor 100 and a second thin film transistor 200 . The first TFT 100 includes the first source 110 , the first drain 120 , the first active layer 131 , and the first gate 140 . The second TFT 200 includes the second source 210 , the second drain 220 , the second active layer 230 , and the second gate 240 . The first drain 120 of the first TFT 100 is electrically connected to the second gate 240 of the second TFT 200 . The electron mobility of the first active layer 131 of the first thin film transistor 100 is greater than or equal to the electron mobility of the second active layer 230 of the second thin film transistor 200 . The threshold voltage shift of the second active layer 230 of the second thin film transistor 200 is less than or equal to the threshold voltage shift of the first active layer 131 of the first thin film transistor 100 quantity. Furthermore, the first thin film transistor 100 further includes a third active layer. The third active layer is stacked with the first active layer 131, so that the average electron density of the first active layer 131 and the third active layer of the first thin film transistor 100 The mobility is greater than or equal to the electron mobility of the second active layer 230 of the second thin film transistor 200 . Through the structural design of the dual thin film transistors on the display surface and the structural design of the dual active layers of the first thin film transistor 100, the present invention enables the use of the first thin film transistor 100 as the short response time switch thin film transistor, and use the second thin film transistor 200 as the driving transistor with high stability. Moreover, the first thin film transistor 100 with dual active layers can improve the manufacturing yield, thereby solving the problem that the low-temperature polysilicon oxide display panel in the prior art cannot be applied to large-scale display devices.
以上仅是本发明的优选实施方式,应当指出,对于所属领域技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are only preferred embodiments of the present invention. It should be pointed out that for those skilled in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications should also be regarded as protection of the present invention. scope.

Claims (20)

  1. 一种显示面板,包括:A display panel, comprising:
    第一薄膜晶体管,包括第一源极、第一漏极、第一有源层、以及第一栅极;以及The first thin film transistor includes a first source, a first drain, a first active layer, and a first gate; and
    第二薄膜晶体管,包括第二源极、第二漏极、第二有源层、以及第二栅极;The second thin film transistor includes a second source, a second drain, a second active layer, and a second gate;
    其中,所述第一薄膜晶体管的所述第一漏极电性连接所述第二薄膜晶体管的所述第二栅极,所述第一薄膜晶体管的所述第一有源层的电子迁移率大于或等于所述第二薄膜晶体管的所述第二有源层的电子迁移率,所述第二薄膜晶体管的所述第二有源层的阈值电压偏移量小于或等于所述第一薄膜晶体管的所述第一有源层的阈值电压偏移量。Wherein, the first drain of the first thin film transistor is electrically connected to the second gate of the second thin film transistor, and the electron mobility of the first active layer of the first thin film transistor is Greater than or equal to the electron mobility of the second active layer of the second thin film transistor, the threshold voltage shift of the second active layer of the second thin film transistor is less than or equal to the first thin film transistor Threshold voltage offset of the first active layer of a transistor.
  2. 如权利要求1所述的显示面板,其中,所述第一薄膜晶体管的所述第一有源层的所述电子迁移率为所述第二薄膜晶体管的所述第二有源层的电子迁移率的1.5倍以上。The display panel according to claim 1, wherein the electron mobility of the first active layer of the first thin film transistor is the electron mobility of the second active layer of the second thin film transistor More than 1.5 times the rate.
  3. 如权利要求1所述的显示面板,其中,所述第一薄膜晶体管的所述第一有源层的所述电子迁移率大于或等于20平方厘米/(伏特∙秒)。The display panel according to claim 1, wherein the electron mobility of the first active layer of the first thin film transistor is greater than or equal to 20 cm2/(volt·sec).
  4. 如权利要求1所述的显示面板,其中,所述第二薄膜晶体管的所述第二有源层的所述阈值电压偏移量小于或等于1伏特。The display panel according to claim 1, wherein the threshold voltage shift of the second active layer of the second thin film transistor is less than or equal to 1 volt.
  5. 如权利要求1所述的显示面板,其中,所述第一薄膜晶体管的所述第一有源层的材料包括铟氧化物、镓氧化物、锌氧化物、锡氧化物、以及其组合。The display panel according to claim 1, wherein the material of the first active layer of the first thin film transistor comprises indium oxide, gallium oxide, zinc oxide, tin oxide, and combinations thereof.
  6. 如权利要求1所述的显示面板,其中,所述第二薄膜晶体管的所述第二有源层的材料包括参杂稀土金属元素或是氟系化合物的金属氧化物。The display panel as claimed in claim 1, wherein the material of the second active layer of the second thin film transistor comprises a metal oxide doped with a rare earth metal element or a fluorine compound.
  7. 如权利要求1所述的显示面板,还包括:The display panel according to claim 1, further comprising:
    数据线,电性连接所述第一薄膜晶体管的所述第一源极;a data line electrically connected to the first source of the first thin film transistor;
    扫描线,电性连接所述第一薄膜晶体管的所述第一栅极;以及a scan line electrically connected to the first gate of the first thin film transistor; and
    发光单元,包括第一电极以及与第一电极相对的第二电极,所述第一电极电性连接所述第二薄膜晶体管的所述第二源极。The light emitting unit includes a first electrode and a second electrode opposite to the first electrode, the first electrode is electrically connected to the second source of the second thin film transistor.
  8. 如权利要求7所述的显示面板,还包括:The display panel according to claim 7, further comprising:
    电容,包括第一板以及相对所述第一板的第二板,所述第一板电性连接所述第一薄膜晶体管的所述第一漏极以及所述第二薄膜晶体管的所述第二栅极,所述第二板电性连接所述第二薄膜晶体管的所述第二源极以及所述发光单元。capacitor, including a first plate and a second plate opposite to the first plate, the first plate is electrically connected to the first drain of the first thin film transistor and the first drain of the second thin film transistor Two gates, the second plate is electrically connected to the second source of the second thin film transistor and the light emitting unit.
  9. 如权利要求1所述的显示面板,还包括:The display panel according to claim 1, further comprising:
    遮光层,设置在所述第二薄膜晶体管之下。The light shielding layer is arranged under the second thin film transistor.
  10. 如权利要求1所述的显示面板,其中,所述第一薄膜晶体管还包括第三有源层,所述第三有源层与所述第一有源层叠层设置,所述第三有源层两端的非沟道区分别电性连接所述第一有源层两端的非沟道区。The display panel according to claim 1, wherein the first thin film transistor further comprises a third active layer, the third active layer is stacked with the first active layer, and the third active layer The non-channel regions at both ends of the layer are respectively electrically connected to the non-channel regions at both ends of the first active layer.
  11. 如权利要求10所述的显示面板,其中,所述第一薄膜晶体管的所述第一有源层以及所述第三有源层的平均电子迁移率大于或等于所述第二薄膜晶体管的所述第二有源层的所述电子迁移率。The display panel according to claim 10, wherein the average electron mobility of the first active layer and the third active layer of the first thin film transistor is greater than or equal to that of the second thin film transistor. The electron mobility of the second active layer.
  12. 如权利要求11所述的显示面板,其中,所述第一薄膜晶体管的所述第一有源层以及所述第三有源层的平均电子迁移率为所述第二薄膜晶体管的所述第二有源层的所述电子迁移率的1.5倍以上。The display panel according to claim 11, wherein the average electron mobility of the first active layer and the third active layer of the first thin film transistor is the same as that of the first active layer of the second thin film transistor. The electron mobility of the second active layer is more than 1.5 times.
  13. 如权利要求11所述的显示面板,其中,所述第一薄膜晶体管的所述第一有源层以及所述第三有源层的所述平均电子迁移率大于或等于20平方厘米/(伏∙秒)。The display panel according to claim 11, wherein the average electron mobility of the first active layer and the third active layer of the first thin film transistor is greater than or equal to 20 cm2/(V ∙ seconds).
  14. 如权利要求10所述的显示面板,其中,所述第一薄膜晶体管的所述第一有源层的材料与所述第二薄膜晶体管的所述第二有源层的材料相同。The display panel according to claim 10, wherein the material of the first active layer of the first thin film transistor is the same as that of the second active layer of the second thin film transistor.
  15. 如权利要求10所述的显示面板,其中,所述第一薄膜晶体管的所述第一有源层与所述第二薄膜晶体管的所述第二有源层通过同一道制程设置。The display panel according to claim 10, wherein the first active layer of the first thin film transistor and the second active layer of the second thin film transistor are formed through the same process.
  16. 如权利要求10所述的显示面板,其中,所述第一薄膜晶体管的所述第三有源层的材料包括铟氧化物、镓氧化物、锌氧化物、锡氧化物、以及其组合。The display panel of claim 10, wherein the material of the third active layer of the first thin film transistor comprises indium oxide, gallium oxide, zinc oxide, tin oxide, and combinations thereof.
  17. 如权利要求16所述的显示面板,其中,在所述第一薄膜晶体管中,所述第一有源层的材料与所述第三有源层的所述材料不同。The display panel of claim 16, wherein, in the first thin film transistor, the material of the first active layer is different from the material of the third active layer.
  18. 如权利要求10所述的显示面板,还包括:The display panel of claim 10, further comprising:
    数据线,电性连接所述第一薄膜晶体管的所述第一源极;a data line electrically connected to the first source of the first thin film transistor;
    扫描线,电性连接所述第一薄膜晶体管的所述第一栅极;以及a scan line electrically connected to the first gate of the first thin film transistor; and
    发光单元,包括第一电极以及与第一电极相对的第二电极,所述第一电极电性连接所述第二薄膜晶体管的所述第二源极。The light emitting unit includes a first electrode and a second electrode opposite to the first electrode, the first electrode is electrically connected to the second source of the second thin film transistor.
  19. 如权利要求18所述的显示面板,还包括:The display panel of claim 18, further comprising:
    电容,包括第一板以及相对所述第一板的第二板,所述第一板电性连接所述第一薄膜晶体管的所述第一漏极以及所述第二薄膜晶体管的所述第二栅极,所述第二板电性连接所述第二薄膜晶体管的所述第二源极以及所述发光单元。capacitor, including a first plate and a second plate opposite to the first plate, the first plate is electrically connected to the first drain of the first thin film transistor and the first drain of the second thin film transistor Two gates, the second plate is electrically connected to the second source of the second thin film transistor and the light emitting unit.
  20. 如权利要求10所述的显示面板,还包括:The display panel of claim 10, further comprising:
    遮光层,设置在所述第二薄膜晶体管之下。The light shielding layer is arranged under the second thin film transistor.
PCT/CN2021/140579 2021-12-20 2021-12-22 Display panel WO2023115404A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021577831A JP2024508055A (en) 2021-12-20 2021-12-22 display panel
US17/624,019 US20230200150A1 (en) 2021-12-22 2021-12-22 Display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111566801.0A CN114284300A (en) 2021-12-20 2021-12-20 Display panel
CN202111566801.0 2021-12-20

Publications (1)

Publication Number Publication Date
WO2023115404A1 true WO2023115404A1 (en) 2023-06-29

Family

ID=80873328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140579 WO2023115404A1 (en) 2021-12-20 2021-12-22 Display panel

Country Status (2)

Country Link
CN (1) CN114284300A (en)
WO (1) WO2023115404A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013432A (en) * 2009-09-03 2011-04-13 三星移动显示器株式会社 Organic light emitting diode display and method of manufacturing the same
US20150108454A1 (en) * 2013-10-17 2015-04-23 Samsung Display Co., Ltd. Thin film transistor array substrate, organic light-emitting display apparatus, and method of manufacturing the thin film transistor array substrate
CN105408813A (en) * 2013-08-26 2016-03-16 苹果公司 Displays with silicon and semiconducting oxide thin-film transistors
CN108231795A (en) * 2018-01-02 2018-06-29 京东方科技集团股份有限公司 Array substrate, production method, display panel and display device
CN110752219A (en) * 2019-10-29 2020-02-04 昆山国显光电有限公司 Thin film transistor and display panel
CN111244124A (en) * 2018-11-12 2020-06-05 惠科股份有限公司 Display panel and display device
CN111384070A (en) * 2020-03-25 2020-07-07 京东方科技集团股份有限公司 Pixel structure, array substrate, display device and manufacturing method
CN111403419A (en) * 2018-12-26 2020-07-10 乐金显示有限公司 Display device including different types of thin film transistors and method of manufacturing the same
JP2021108366A (en) * 2019-12-27 2021-07-29 Tianma Japan株式会社 Thin film device
CN113471250A (en) * 2020-03-31 2021-10-01 华为技术有限公司 Organic light-emitting display panel and display device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013432A (en) * 2009-09-03 2011-04-13 三星移动显示器株式会社 Organic light emitting diode display and method of manufacturing the same
CN105408813A (en) * 2013-08-26 2016-03-16 苹果公司 Displays with silicon and semiconducting oxide thin-film transistors
US20150108454A1 (en) * 2013-10-17 2015-04-23 Samsung Display Co., Ltd. Thin film transistor array substrate, organic light-emitting display apparatus, and method of manufacturing the thin film transistor array substrate
CN108231795A (en) * 2018-01-02 2018-06-29 京东方科技集团股份有限公司 Array substrate, production method, display panel and display device
CN111244124A (en) * 2018-11-12 2020-06-05 惠科股份有限公司 Display panel and display device
CN111403419A (en) * 2018-12-26 2020-07-10 乐金显示有限公司 Display device including different types of thin film transistors and method of manufacturing the same
CN110752219A (en) * 2019-10-29 2020-02-04 昆山国显光电有限公司 Thin film transistor and display panel
JP2021108366A (en) * 2019-12-27 2021-07-29 Tianma Japan株式会社 Thin film device
CN111384070A (en) * 2020-03-25 2020-07-07 京东方科技集团股份有限公司 Pixel structure, array substrate, display device and manufacturing method
CN113471250A (en) * 2020-03-31 2021-10-01 华为技术有限公司 Organic light-emitting display panel and display device

Also Published As

Publication number Publication date
CN114284300A (en) 2022-04-05

Similar Documents

Publication Publication Date Title
US10971067B1 (en) AMOLED pixel driving circuit, driving method and terminal
US10403757B2 (en) Top-gate self-aligned metal oxide semiconductor TFT and method of making the same
JP5684423B2 (en) Semiconductor device and display device
JP2020021097A (en) Display device
US20240087514A1 (en) Pixel Circuit and Driving Method Therefor, Array Substrate, and Display Device
US11798473B2 (en) Pixel driving circuit and display panel
US11749692B2 (en) Display panel and display device
JP2013047852A (en) Liquid crystal display device
US11800749B2 (en) Display panel and a display device including a pixel circuit and a driver circuit
CN102013433B (en) Organic light emitting diode display
CN112365849A (en) Pixel driving circuit and display panel
US11798474B2 (en) Display panel, driving method thereof and display device
US8878706B2 (en) Serial-parallel conversion circuit, method for driving the same, display device, and semiconductor device
US9111483B2 (en) Display device
WO2023115404A1 (en) Display panel
US11978396B2 (en) Array substrate, display panel and display device thereof
WO2022170661A9 (en) Array substrate, and display panel and display apparatus thereof
US20230200150A1 (en) Display panel
JP2024508055A (en) display panel
US20240030241A1 (en) Array substrate and manufacturing method thereof and display panel
US20240135885A1 (en) Pixel driving circuit and display panel
KR20220112333A (en) Transistor and display device including the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2021577831

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968553

Country of ref document: EP

Kind code of ref document: A1