WO2023113170A1 - 정밀 온도 추적이 가능한 고주파 에너지 전달장치 - Google Patents

정밀 온도 추적이 가능한 고주파 에너지 전달장치 Download PDF

Info

Publication number
WO2023113170A1
WO2023113170A1 PCT/KR2022/014950 KR2022014950W WO2023113170A1 WO 2023113170 A1 WO2023113170 A1 WO 2023113170A1 KR 2022014950 W KR2022014950 W KR 2022014950W WO 2023113170 A1 WO2023113170 A1 WO 2023113170A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
frequency energy
temperature sensor
temperature
tip
Prior art date
Application number
PCT/KR2022/014950
Other languages
English (en)
French (fr)
Inventor
김종원
서영석
김영식
김세종
Original Assignee
원텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 원텍 주식회사 filed Critical 원텍 주식회사
Publication of WO2023113170A1 publication Critical patent/WO2023113170A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/40Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
    • A61N1/403Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals for thermotherapy, e.g. hyperthermia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/06Electrodes for high-frequency therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/08Arrangements or circuits for monitoring, protecting, controlling or indicating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/40Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals

Definitions

  • the present invention relates to a radio frequency energy delivery device, and more particularly, by measuring the temperature of the skin in contact with an electrode before or after irradiation of radio frequency energy, and more accurately measuring the temperature at the center of the electrode, thereby improving the quality of the skin according to the transmission of radio frequency energy. It relates to a high-frequency energy delivery device for preventing skin burns by measuring a temperature rise.
  • the radio frequency energy delivery device is a device equipped with electrodes that deliver radio frequency energy (RF Energy) to the skin, and various types of RF such as monopolar, bipolar, and multi-polar are used.
  • RF Energy radio frequency energy
  • various types of RF such as monopolar, bipolar, and multi-polar are used.
  • Home use beauty devices deliver energy with lower frequency output to allow simple procedures, but high-frequency energy delivery devices used as medical devices output at a frequency of 6Mhz to 7Mhz for the purpose of more effective skin improvement procedures, unlike home use.
  • the procedure can only be performed by a qualified operator such as a doctor.
  • the high-frequency energy delivery device as a beauty device mainly aims to heat the deep collagen layer under the skin, but the heat generated by heating is applied to the skin surface. If left as it is, burns may occur, so cooling is essential to prevent such burns.
  • the high-frequency electrode of the high-frequency energy delivery device comes into contact with the skin in the form of a surface electrode rather than a point electrode, it is difficult to specify the temperature of the electrode itself.
  • a technical problem to be achieved by the present invention is to arrange at least two or more temperature sensors with a high-frequency electrode interposed therebetween to measure the temperature of a surface corresponding to a specific range at a location where each temperature sensor is disposed and separately store the measured temperature values. By doing so, it is to provide a high-frequency energy delivery device capable of measuring the temperature of the skin to which the electrode is in contact in real time through each temperature sensor.
  • one embodiment of the present invention is a high-frequency energy delivery device for non-invasively delivering high-frequency energy to the deep skin layer, the high-frequency energy delivery device comprising: a tip; and, mechanically and electrically with the tip.
  • the high-frequency energy delivery device further includes a controller electrically connected to the handpiece, and the tip includes a first electrode having a horizontal length longer than a vertical length; and a plurality of temperature sensors for the first electrode disposed above and below the first electrode, wherein the temperature sensors for the first electrode are formed in pairs above and below the first electrode and have the shortest distance from each other. It may be a high frequency energy delivery device that is disposed adjacent to the first electrode, detects a temperature value of a skin surface in contact with the temperature sensor for the first electrode, and transmits it to the control unit.
  • the high-frequency energy delivery device further includes a controller electrically connected to the handpiece, and the tip includes a second electrode having the same horizontal and vertical length; and , a plurality of temperature sensors for the second electrode disposed at corners of the second electrode; wherein the temperature sensor for the second electrode is disposed adjacent to the second electrode, and the temperature sensor for the second electrode It may be a high-frequency energy delivery device characterized in that it detects the temperature value of the skin surface in contact with and transmits it to the control unit.
  • the high-frequency energy delivery device further includes a memory electrically connected to the control unit, and the control unit allows the temperature sensor for the first electrode or the temperature sensor for the second electrode to be connected to the skin. Temperature values sensed by contact are received and an average value is calculated, the average value is designated as the temperature value at the center of the electrode, and when the average value is greater than a preset value, transmission of high-frequency energy is blocked or operation of the handpiece is stopped. and storing the temperature value or the average value in the memory.
  • At least two or more temperature sensors are disposed with a high-frequency electrode interposed therebetween to measure the temperature of a surface corresponding to a specific range at a location where each temperature sensor is disposed, and separately store the measured temperature values. By doing so, it is possible to measure the temperature of the skin to which the electrode is in contact in real time through each temperature sensor.
  • FIG. 1 is a schematic diagram of a radio frequency energy transmission device according to an embodiment of the present invention.
  • FIG. 2 is a diagram of a high frequency energy delivery device according to an embodiment of the present invention.
  • FIG. 3 is a diagram of a tip of a high frequency energy delivery device according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the transmission of radio frequency energy (RF Energy or RF energy) from the tip of the radio frequency energy delivery device according to an embodiment of the present invention to the deep skin layer.
  • RF Energy radio frequency energy
  • FIG. 5 is a diagram illustrating an electrode and a temperature sensor of a high frequency energy transmitting device according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating an electrode and a temperature sensor of a high frequency energy transmitting device according to another embodiment of the present invention.
  • FIG. 7 is a diagram showing electrodes and a temperature sensor of a high frequency energy delivery device according to another embodiment of the present invention.
  • the high frequency energy transmission device 1 may be connected to the power supply unit 50 by wire or wirelessly with the control unit 30 as the center, and power may be supplied through this connection.
  • the high frequency energy transmission device 1 may include a memory 40, and the memory 40 may be connected to the control unit 30 by wire or wirelessly.
  • the high frequency energy delivery device 1 may include a handpiece 20, and the handpiece 20 may be connected to the control unit 30 by wire or wirelessly.
  • the handpiece 20 may insert the tip 10 and may include a terminal inserted into the tip 10 for energy transmission.
  • the hand piece 20 and the tip 10 are connected so that the refrigerant can flow, and a passage for the flow of the refrigerant can be formed.
  • the controller 30 may transmit RF energy to the handpiece 20, and the transmitted radio frequency energy may be transmitted to the tip 10.
  • the control unit 30 may block radio frequency energy transmitted to the hand piece 20 and the tip 10 and stop the operation of the hand piece 20 .
  • the control unit 30 may transmit high frequency energy having preset power and frequency to the handpiece 20 .
  • the high frequency energy delivery device 1 may include a movable body 60 and a display 600 .
  • the high frequency energy delivery device 1 may include a mounting slot capable of holding the handpiece 20 thereon.
  • the high frequency energy delivery device 1 may include a display 600 for visual display.
  • the display 600 can visually display the type of tip 10 and visually display the contents of the procedure performed through the handpiece 20 .
  • the handpiece 20 can be formed in an ergonomically flexible shape so that it can be gripped by hand, and a part of the handpiece 20 is controlled to turn on/off the power of high-frequency energy or turn on/off the transmission of high-frequency energy.
  • a button may be provided.
  • the handpiece 20 may include control buttons for adjusting the output intensity of high frequency energy and the number of shots.
  • the display 600 of the high-frequency energy transmission device 1 may have a structure attached to the main body 60 or may have a structure that is separated from the main body 60 and can be adjusted in height.
  • the movable wheel of the high frequency energy transmission device 1 may be equipped with a stabilizing device to prevent the main body 60 from falling over.
  • the display 600 of the high frequency energy transmitting device 1 may visually display warning information for preventing the main body 60 from falling over through the display 600 .
  • the display 600 of the high-frequency energy delivery device 1 not only displays the contents being operated on through the handpiece 20, but also has an interface that can adjust the degree of operation of the handpiece 20 by having a touch function. can do.
  • the handpiece 20 is connected to the main body 60 by wire to receive high frequency energy and refrigerant, and is connected to the control unit 30 that controls the handpiece 20 by wire or wirelessly to be automatically controlled.
  • the tip 10 may have a square first electrode 100 on the front surface, and the first electrode 100 may be formed on a central part of the front surface of the tip 10 .
  • a peripheral portion of the first electrode 100 may be electrically insulated, and high-frequency energy may be emitted only through the rectangular first electrode 100 .
  • a circuit capable of receiving high frequency energy from the handpiece 20 may be configured inside the tip 10, and the circuit may be connected to the first electrode 100 to transmit high frequency energy.
  • a coupling part capable of being coupled to the hand piece 20 may be formed in the tip 10, and a passage through which a refrigerant may be transferred from the refrigerant passage of the hand piece 20 may be formed in the coupling part.
  • a channel through which the refrigerant supplied from the handpiece 20 can be transferred to the first electrode 100 may be formed inside the tip 10 .
  • the refrigerant may be sprayed in the form of a gas around the first electrode 100 and may be sprayed in the form of pulses that are periodically sprayed for a predetermined time.
  • the first electrode 100 may be formed in a rectangular shape and formed in a size of 4 cm 2 to deliver high-frequency energy to a wide skin surface.
  • the first electrode 100 is formed to have a size of 0.25 cm 2 and can transmit high-frequency energy to the eye area.
  • the first electrode 100 may be formed in a quadrangular shape, or may have a rectangular shape in which a horizontal length is longer than a vertical length.
  • the structure of the tip 10 may vary depending on the shape and size of the first electrode 100, and when the first electrode 100 is formed with a size of 4 cm2, the tip 10 is formed in a trapezoidal column close to a square column. It can be.
  • the tip 10 may be formed in a trapezoidal column close to a quadrangular pyramid.
  • the tip 10 may be formed in a structure corresponding to the shape of the first electrode 100 .
  • FIG. 4 is a schematic diagram showing the transmission of radio frequency energy (RF Energy or RF energy) from the tip of the radio frequency energy delivery device according to an embodiment of the present invention to the deep skin layer.
  • radio frequency energy (E) is emitted through the tip 10 and the first electrode 100 to heat the deep skin layer.
  • the high-frequency alternating current emitted from the first electrode 100 flows to the grounding pad and very quickly changes the polarity of the molecules constituting the tissue under the skin, causing vibration and friction at the molecular level to generate heat in the deep tissue.
  • the tissue to be heated may be a dermal layer between the epidermal layer and the subcutaneous tissue, and may increase elasticity by strengthening collagen fibers through thermal energy.
  • a refrigerant may be sprayed from a region of the tip 10 adjacent to the first electrode 100 .
  • the refrigerant is sprayed in a pulse form to prevent burns on the skin surface and reduce pain, and can cool heat generated by high frequency energy of the first electrode 100 .
  • the high frequency energy emitted from the first electrode 100 may be pulsed in a manner that is irradiated for a predetermined time at regular intervals.
  • the first electrode 100 can be controlled by the control unit 30, and can be irradiated differently from the cycle of the refrigerant pulse so as to effectively stimulate the collagen layer in the deep part of the skin texture.
  • the irradiation period of the high frequency energy emitted from the first electrode 100 and the refrigerant pulse period may have different emission times, and the high frequency energy irradiation period may be longer or shorter than the refrigerant discharge period.
  • the irradiation period of the high frequency energy emitted from the first electrode 100 and the refrigerant pulse period may alternate or overlap.
  • the high frequency energy may be irradiated from the first electrode 100 after the refrigerant pulse is first discharged, and conversely, the refrigerant pulse may be discharged later.
  • the grounding pad may be attached to an attachable body part in order to make the distance at which the high-frequency alternating current emitted from the first electrode 100 is transmitted to the grounding pad is as short as possible.
  • a measurement unit for measuring the impedance of the skin surface may be provided.
  • the impedance measured through the first electrode 100 and the measuring unit may be used as data for outputting high-frequency energy by the controller 30, and the measured value of impedance may be stored in the memory 40.
  • a dielectric material may be applied to the front surface of the first electrode 100 so as to transmit radio frequency energy in contact with the skin.
  • the dielectric may transmit high-frequency energy by capacitively coupling the skin and the first electrode 100 .
  • the first electrode 100 may have a horizontal length longer than a vertical length, and may be formed in a horizontally long rectangular shape on the front surface of the tip 10 .
  • a temperature sensor 110 for the first electrode may be formed around the first electrode 100, and a first temperature sensor 1101 may be formed on the upper part, and paired with this, the temperature sensor 110 for the first electrode 100 may be formed.
  • a second temperature sensor 1102 may be formed at the bottom. The first temperature sensor 1101 and the second temperature sensor 1102 may be formed to be adjacent to the first electrode 100 as much as possible.
  • the first temperature sensor 1101 and the second temperature sensor 1102 may be disposed as close as possible to the first electrode 100 .
  • the first temperature sensor 1101 and the second temperature sensor 1102 may measure the temperature of the contacted skin.
  • the temperature sensor 110 for the first electrode can measure the temperature and calculate the temperature value in real time whenever the first electrode 100 is in contact with the skin, and the plurality of temperature sensors 110 for the first electrode can mutually It may have a corresponding temperature sensor 110 for the first electrode, and each measured temperature value may be received from the control unit 30 and an average value may be calculated.
  • the first temperature sensor 1101 may correspond to the second temperature sensor 1102, and each measured temperature value may be transferred to the control unit 30 to calculate an average value, and the calculated average value may be converted to the first electrode ( 100) can be specified as the central temperature value.
  • control unit 30 may control the handpiece 20 or the first electrode 100 or block the high frequency energy so that the high frequency energy is not transmitted from the first electrode 100. there is.
  • the controller 30 may deliver high frequency energy to the first electrode 100 at a preset control value.
  • a plurality of temperature sensors 110 for the first electrode may be formed around the first electrode 100, and two or more may be arranged in pairs.
  • the second electrode 120 may be formed in a square shape having the same horizontal and vertical lengths.
  • the temperature sensor 130 for the second electrode may be formed around the second electrode 120 and may be disposed at each square corner of the second electrode 120 .
  • the third temperature sensor 1301 may be disposed at the upper left corner of the second electrode 120
  • the fifth temperature sensor 1303 may be paired with the fifth temperature sensor 1303 at the lower right corner. can be placed.
  • the fourth temperature sensor 1302 may be disposed at the upper right corner
  • the sixth temperature sensor 1304 may be disposed at the lower left corner paired with it.
  • the third temperature sensor 1301, the fourth temperature sensor 1302, the fifth temperature sensor 1303, and the sixth temperature sensor 1304 do not operate on the second electrode 120. ) and may be arranged to be located at a position as close as possible.
  • the third temperature sensor 1301, the fourth temperature sensor 1302, the fifth temperature sensor 1303, and the sixth temperature sensor 1304, when the second electrode 120 is in contact with the skin, the temperature can be measured.
  • the second electrode temperature sensor 130 can measure the temperature and calculate a temperature value in real time whenever the second electrode 120 is in contact with the skin, and the plurality of second electrode temperature sensors 130 can mutually It may have a corresponding temperature sensor 130 for the second electrode, and each measured temperature value may be received from the control unit 30 and an average value may be calculated.
  • the third temperature sensor 1301 may correspond to the fifth temperature sensor 1303, and the fourth temperature sensor 1302 may correspond to the sixth temperature sensor 1304, respectively. It is transmitted to the control unit 30 to calculate an average value, and the calculated average value can be designated as a temperature value at the center of the second electrode 120 .
  • An average value can be calculated with each temperature value measured through the third temperature sensor 1301 and the fifth temperature sensor 1303, and the measured temperature value through the fourth temperature sensor 1302 and the sixth temperature sensor 1304 An average value can be measured for each temperature value.
  • control unit 30 may control the handpiece 20 or the second electrode 120 or block the high frequency energy so that the high frequency energy is not transmitted from the second electrode 120. there is.
  • the controller 30 may deliver high frequency energy to the second electrode 120 at a preset control value.
  • the temperature sensors 130 for the second electrode may be arranged to have the shortest distance from each other, and may be arranged on the top, bottom, left, and right sides of the second electrode 120 .
  • a plurality of second electrode temperature sensors 130 may be formed around the second electrode 120, and three or more may be arranged in pairs.
  • the temperature sensor 110 for the first electrode or the temperature sensor 130 for the second electrode can detect the temperature of the skin while being in contact with the skin and continuously transmit the detected temperature value to the controller 30 .
  • the detected temperature value may be transmitted to the control unit 30 and stored in the memory 40 at the same time.
  • FIG. 7 is a diagram showing electrodes and a temperature sensor of a high frequency energy transmitting device according to another embodiment of the present invention.
  • a central temperature sensor 140 for the second electrode disposed above and below the second electrode 120 may be included. there is.
  • the central temperature sensor 140 for the second electrode may be disposed on a central line in a vertical direction with respect to the second electrode 120, and may be formed in a pair so as to correspond to each other with the second electrode 120, A seventh temperature sensor 1401 may be disposed above the electrode 120 , and an eighth temperature sensor 1402 may be disposed below the second electrode 120 .
  • An average value may be calculated using each of the temperature values measured by the seventh temperature sensor 1401 and the eighth temperature sensor 1402, and the calculated average value may be designated as the central temperature value of the second electrode 120.
  • the temperature sensors 130 for the second electrode disposed on the left and right sides of the central temperature sensor 140 for the second electrode, respectively, may detect the temperature value of the edge portion of the second electrode 120 .
  • the third temperature sensor 1301 may correspond to the sixth temperature sensor 1304, and the fourth temperature sensor 1302 may correspond to the fifth temperature sensor 1303. ), and an average value can be calculated from the temperature values detected from the corresponding temperature sensors.
  • the third temperature sensor 1301 and the sixth temperature sensor 1304 may calculate an average value from the detected temperature values, respectively, and the fourth temperature sensor 1302 and the fifth temperature sensor 1303 may calculate the detected temperature values, respectively.
  • An average value can be calculated from , and the average value of each detected temperature value can be designated as the average temperature value for the edge portion of the second electrode 120 .
  • the average value of the temperature values detected through the third temperature sensor 1301 and the sixth temperature sensor 1304 can be designated as the average temperature value for the left edge portion of the second electrode 120, and the fourth temperature sensor 1302 ) and the average value of the temperature values detected through the fifth temperature sensor 1303 may be designated as the average temperature value for the right edge portion of the second electrode 120 .
  • the central temperature value calculated through the central temperature sensor 140 for the second electrode and the average temperature values of the left and right edge portions calculated through the temperature sensor 130 for the second electrode may be compared with each other.
  • the controller 30 When the average temperature value of the edge portion is greater than the central temperature value and is higher than the preset critical temperature value, the controller 30 recognizes it as an anomaly in which high frequency transmission is biased to the edge portion, and prevents the transmission of high frequency energy from the second electrode 120.
  • the handpiece 20 or the second electrode 120 may be controlled or high frequency energy may be blocked.
  • the present invention can be applied to industrially usable high-frequency energy transmission devices.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Neurology (AREA)
  • Surgical Instruments (AREA)

Abstract

본 발명의 일실시예는 고주파 에너지를 비침습적으로 피부 심층으로 전달하는 고주파 에너지 전달 장치로서, 상기 고주파 에너지 전달 장치는, 팁;과, 상기 팁과 기계적 및 전기적으로 결합되는 핸드피스;를 포함하고, 상기 팁은, 피부 심층으로 고주파 에너지를 비침습적으로 방출하는 전극;을 포함하고, 상기 전극을 사이에 두고 배치되는 다수의 온도센서;를 포함하는 것을 특징으로 하는 고주파 에너지 전달 장치를 제공한다.

Description

정밀 온도 추적이 가능한 고주파 에너지 전달장치
본 발명은 고주파 에너지 전달장치에 관한 것으로, 더욱 상세하게는 고주파 에너지의 조사 전 또는 후의 전극과 접촉하는 피부의 온도를 측정하고, 보다 정확하게 전극 중앙의 온도를 측정하여 고주파 에너지의 전달에 따른 피부의 온도상승을 측정함으로써 피부의 화상을 방지하고자 하는 고주파 에너지 전달장치에 관한 것이다.
고주파 에너지 전달장치는 고주파 에너지(RF Energy, Radio Frequency Energy)를 피부에 전달하는 전극을 구비한 장치로서, 단극성(Monopolar), 양극성(Bipolar), 다극성(Multi-Polar) 등 다양한 방식의 RF전극을 통해 피부 아래의 조직층에 고주파 에너지를 전달하여 콜라겐을 자극시킴으로써, 피부의 수축이나 리프팅, 주름 개선, 그 밖의 미용 목적의 치료가 가능하다.
가정용 미용기기는 보다 낮은 주파수 출력의 에너지를 전달하여 간단한 시술이 가능하나, 의료기기로 사용되는 고주파 에너지 전달장치는 6Mhz~7Mhz의 주파수로 출력되어 보다 효과적인 피부 개선 시술을 목적으로 하고, 가정용과 달리 의사와 같은 자격을 갖춘 시술자에 의해서만 시술이 가능하다.
고주파 에너지를 전달하는 것은 인체 조직을 가열하는 효과가 있는데, 그 중 미용기기로서의 고주파 에너지 전달장치는 피부 아래의 심도의 콜라겐 층을 가열시키기 위한 목적이 주가 되지만, 가열로 발생된 열이 피부 표면에 그대로 머물게 되면 화상(Burn)이 발생할 수 있으므로, 이러한 화상을 방지하기 위해서는 냉각이 필수적이다.
또한, 고주파 에너지를 전달함에 있어서 가열로 인한 화상 뿐만이 아니라 통증이 유발될 수 있으므로 최근의 고주파 에너지 전달장치는 수직방향(전후) 또는 수평방향(상하 또는 좌우)의 진동을 추가하여 통증을 저감할 수 있다.
이와 같은 피부 표면의 화상이나 통증을 방지하여 시술의 편의성을 극대화하기 위해서는, 고주파 에너지 전달장치의 전극 및 전극과 접촉하는 피부의 온도를 정밀하게 측정할 필요가 있으나, 고주파 에너지는 비 집속형이므로 한 점의 온도를 측정하기 어려운 문제점이 있다.
또한, 고주파 에너지 전달장치의 고주파 전극은 점전극이 아닌 면전극의 형상으로 피부에 접촉하게 되므로, 전극 자체의 온도를 특정하기 어려운 문제점이 있다.
본 발명이 이루고자 하는 기술적 과제는 적어도 2개 이상의 온도 센서를 고주파 전극을 사이에 두고 배치하여 각각의 온도 센서가 배치되는 위치에서 특정 범위에 해당하는 표면의 온도를 측정하고 측정된 온도 값을 별도로 저장함으로써 각각의 온도센서를 통해 실시간으로 전극이 접촉되는 피부의 온도를 측정할 수 있는 고주파 에너지 전달장치를 제공하는 것이다.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기 기술적 과제를 달성하기 위하여, 본 발명의 일실시예는 고주파 에너지를 비침습적으로 피부 심층으로 전달하는 고주파 에너지 전달 장치로서, 상기 고주파 에너지 전달 장치는, 팁;과, 상기 팁과 기계적 및 전기적으로 결합되는 핸드피스;를 포함하고, 상기 팁은, 피부 심층으로 고주파 에너지를 비침습적으로 방출하는 전극;을 포함하고, 상기 전극을 사이에 두고 배치되는 다수의 온도센서;를 포함하는 것을 특징으로 하는 고주파 에너지 전달 장치를 제공한다.
본 발명의 실시예에 있어서, 상기 고주파 에너지 전달 장치는, 상기 핸드피스와 전기적으로 연결되는 제어부;를 더 포함하고, 상기 팁은, 가로 길이가 세로 길이보다 더 길게 형성되는 제1 전극;과, 상기 제1 전극의 상부 및 하부에 배치되는 복수의 제1 전극용 온도센서;를 더 포함하고, 상기 제1 전극용 온도센서는, 상기 제1 전극의 상부 및 하부에 쌍으로 형성되어 상호 최단 거리를 가지며, 상기 제1 전극에 인접하도록 배치되고, 상기 제1 전극용 온도센서와 접촉된 피부 표면의 온도값을 감지하여 상기 제어부로 전달하는 것을 특징으로 하는 고주파 에너지 전달 장치일 수 있다.
본 발명의 다른 실시예에 있어서, 상기 고주파 에너지 전달 장치는, 상기 핸드피스와 전기적으로 연결되는 제어부;를 더 포함하고, 상기 팁은, 가로 길이와 세로 길이가 동일하게 형성되는 제2 전극;과, 상기 제2 전극의 모서리에 배치되는 복수의 제2 전극용 온도센서;를 더 포함하고, 상기 제2 전극용 온도센서는, 상기 제2 전극에 인접하도록 배치되고, 상기 제2 전극용 온도센서와 접촉된 피부 표면의 온도값을 감지하여 상기 제어부로 전달하는 것을 특징으로 하는 고주파 에너지 전달 장치일 수 있다.
본 발명의 실시예에 있어서, 상기 고주파 에너지 전달 장치는, 상기 제어부와 전기적으로 연결되는 메모리;를 더 포함하고, 상기 제어부는, 상기 제1 전극용 온도센서 또는 제2 전극용 온도센서가 피부와 접촉하여 감지한 온도값들을 전달받아 평균값을 산출하고, 상기 평균값을 상기 전극의 중앙의 온도값으로 지정하고, 상기 평균값이 미리 설정된 값의 이상일 경우 고주파 에너지 전달을 차단하거나 상기 핸드피스의 동작을 정지시키고, 상기 온도값 또는 상기 평균값을 상기 메모리에 저장하는 것을 특징으로 하는 고주파 에너지 전달 장치일 수 있다.
본 발명의 실시예에 따르면, 적어도 2개 이상의 온도 센서를 고주파 전극을 사이에 두고 배치하여 각각의 온도 센서가 배치되는 위치에서 특정 범위에 해당하는 표면의 온도를 측정하고 측정된 온도 값을 별도로 저장함으로써 각각의 온도센서를 통해 실시간으로 전극이 접촉되는 피부의 온도를 측정할 수 있다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 일 실시예에 따른 고주파 에너지 전달장치에 대한 개요도이다.
도 2는 본 발명의 일 실시예에 따른 고주파 에너지 전달장치의 도면이다.
도 3은 본 발명의 일 실시예에 따른 고주파 에너지 전달장치의 팁의 도면이다.
도 4는 본 발명의 일 실시예에 따른 고주파 에너지 전달장치의 팁으로부터 피부 심층으로 고주파 에너지(RF Energy 또는 RF 에너지)가 전달되는 내용을 도식화한 도면이다.
도 5는 본 발명의 일 실시예에 따른 고주파 에너지 전달장치의 전극과 온도센서를 도시한 도면이다.
도 6은 본 발명의 다른 실시예에 따른 고주파 에너지 전달장치의 전극과 온도센서를 도시한 도면이다.
도7은 본 발명의 또 다른 실시예에 따른 고주파 에너지 전달장치의 전극과 온도센서를 도시한 도면이다.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉, 결합)"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 고주파 에너지 전달장치에 대한 개요도이다. 도 1을 참조하면 고주파 에너지 전달장치(1)는 제어부(30)를 중심으로 전원공급부(50)와 유선 또는 무선으로 연결될 수 있고, 이 연결을 통해 전원을 공급받을 수 있다.
고주파 에너지 전달장치(1)는 메모리(40)를 포함할 수 있고, 메모리(40)는 제어부(30)와 유선 또는 무선으로 연결될 수 있다. 고주파 에너지 전달장치(1)는 핸드피스(20)를 포함할 수 있고, 핸드피스(20)는 제어부(30)와 유선 또는 무선으로 연결될 수 있다.
핸드피스(20)는 팁(10)을 끼울 수 있고, 팁(10)에 에너지 전달을 위해 삽입되는 단자를 포함할 수 있다. 핸드피스(20)와 팁(10)이 연결되어 냉매가 유동될 수 있고, 냉매의 유동을 위한 유로가 형성될 수 있다.
제어부(30)는 고주파 에너지(RF Energy)를 핸드피스(20)로 전달할 수 있고, 전달된 고주파 에너지는 팁(10)으로 전달될 수 있다. 제어부(30)는 핸드피스(20)와 팁(10)으로 전달되는 고주파 에너지를 차단할 수 있고, 핸드피스(20)의 작동을 정지시킬 수 있다.
제어부(30)는 미리 설정된 파워 및 주파수를 갖는 고주파 에너지를 핸드피스(20)로 전달할 수 있다.
도 2는 본 발명의 일 실시예에 따른 고주파 에너지 전달장치의 도면이다. 도 2를 참조하면 고주파 에너지 전달장치(1)는 이동형 본체(60)와 디스플레이(600)를 포함할 수 있다.
고주파 에너지 전달장치(1)는 핸드피스(20)를 거치할 수 있는 거치 슬롯을 포함할 수 있다. 고주파 에너지 전달장치(1)는 시각적인 표시를 위한 디스플레이(600)를 포함할 수 있다. 디스플레이(600)는 팁(10)의 종류를 시각적으로 표시할 수 있고, 핸드피스(20)를 통해 시술된 내용을 시각적으로 표시할 수 있다.
핸드피스(20)는 손으로 파지할 수 있도록 인체 공학적으로 유연한 형상으로 형성될 수 있고, 핸드피스(20)의 일부분에 고주파 에너지의 파워를 ON/OFF 하거나 고주파 에너지 전달을 ON/OFF하도록 제어하는 버튼을 구비할 수 있다. 핸드피스(20)는 고주파 에너지 출력 강도와 샷의 개수를 조절하는 조절 버튼을 구비할 수 있다.
고주파 에너지 전달장치(1)의 디스플레이(600)는 본체(60)에 부착된 구조일 수 있고, 본체(60)와 분리되어 높이 조절이 가능한 구조일 수 있다.
고주파 에너지 전달장치(1)의 이동형 바퀴는 본체(60)가 넘어지지 않도록 안정 장치를 구비할 수 있다. 고주파 에너지 전달장치(1)의 디스플레이(600)는 본체(60)가 넘어지는 것을 방지하기 위한 경고 정보를 디스플레이(600)를 통해 시각적으로 표시할 수 있다.
고주파 에너지 전달장치(1)의 디스플레이(600)는 핸드피스(20)를 통해 시술되고 있는 내용을 표시할 뿐만 아니라, 터치 기능을 구비하여 핸드피스(20)의 시술 정도를 조절할 수 있는 인터페이스를 구비할 수 있다.
핸드피스(20)는 본체(60)와 유선 연결되어 고주파 에너지와 냉매를 전달받을 수 있고, 핸드피스(20)를 제어하는 제어부(30)와 유선 또는 무선으로 연결되어 자동적으로 제어될 수 있다.
도 3은 본 발명의 일 실시예에 따른 고주파 에너지 전달장치의 팁의 도면이다. 도 3을 참조하면 팁(10)은 사각형 형태의 제1전극(100)을 전면에 구비할 수 있고, 제1전극(100)은 팁의 전면 중심부 일부분에 형성될 수 있다.
제1전극(100)의 주변부는 전기적으로 절연될 수 있고, 사각형 형태의 제1전극(100)을 통해서만 고주파 에너지가 방출될 수 있다.
팁(10)의 내부에는 핸드피스(20)로부터 고주파 에너지를 전달받을 수 있는 회로가 구성될 수 있고, 회로는 제1전극(100)과 연결되어 고주파 에너지를 전달할 수 있다.
팁(10)에는 핸드피스(20)와 결합할 수 있는 결합부가 형성될 수 있고, 결합부에는 핸드피스(20)의 냉매 유로로부터 냉매를 전달받을 수 있는 유로가 형성될 수 있다.
팁(10)의 내부에는 핸드피스(20)로부터 공급받은 냉매를 제1전극(100)으로 전달할 수 있는 유로가 형성될 수 있다. 냉매는 제1전극(100)의 주변에 가스 형태로 분사될 수 있고, 주기적으로 일정 시간 동안 분사되는 펄스(Pulse) 형태로 분사될 수 있다.
제1전극(100)은 사각형 형태로 형성될 수 있고, 4cm2의 크기로 형성되어 넓은 피부 표면을 대상으로 고주파 에너지를 전달할 수 있다. 제1전극(100)은 0.25cm2의 크기로 형성되어 눈 주위를 대상으로 고주파 에너지를 전달할 수 있다.
제1전극(100)은 사각형 형태로 형성될 수 있고, 가로 길이가 세로 길이보다 더 길게 형성된 직사각형 형태일 수 있다.
제1전극(100)의 형태 및 크기에 따라서 팁(10)의 구조가 달라질 수 있고, 4cm2의 크기로 제1전극(100)이 형성될 경우 팁(10)은 사각 기둥에 가까운 사다리꼴 기둥으로 형성될 수 있다.
제1전극(100)의 크기가 0.25cm2의 크기로 형성될 경우 팁(10)은 사각 뿔에 가까운 사다리꼴 기둥으로 형성될 수 있다.
제1전극(100)의 형태가 직사각형 형태로 형성될 경우 팁(10)은 제1전극(100)의 형상에 대응되는 구조로 형성될 수 있다.
도 4는 본 발명의 일 실시예에 따른 고주파 에너지 전달장치의 팁으로부터 피부 심층으로 고주파 에너지(RF Energy 또는 RF 에너지)가 전달되는 내용을 도식화한 도면이다. 도 4를 참조하면 팁(10)과 제1전극(100)을 통해 고주파 에너지(E)가 방출되어 피부 심층을 가열할 수 있다.
제1전극(100)으로부터 방출된 고주파 교류 전류가 그라운딩 패드(Grounding Pad)로 흐르면서 피부 아래 조직을 구성하는 분자의 극성을 매우 빠르게 전환시킴으로서 분자 수준이 진동 및 마찰이 발생하여 조직 심부에 열이 발생할 수 있다.
가열되는 조직은 표피층과 피하조직 사이의 진피층일 수 있고, 열 에너지를 통해 콜라겐 섬유를 강화시켜 탄력을 증대시킬 수 있다.
제1전극(100)으로부터 생성된 열이 피부 표면에 화상을 일으키는 것을 방지하기 위해 제1전극(100)에 인접한 팁(10) 영역에서 냉매가 분사될 수 있다. 냉매는 피부 표면의 화상을 방지하고, 통증을 저감하기 위해 펄스 형태로 분사되고 제1전극(100)의 고주파 에너지로 인해 발생된 열을 냉각할 수 있다.
제1전극(100)에서 방출되는 고주파 에너지는 일정 간격을 두고 일정 시간동안 조사되는 방식의 펄스 방식일 수 있다. 제1전극(100)은 제어부(30)를 통해 제어될 수 있으며, 피부 조식 심부의 콜라겐 층을 효과적으로 자극할 수 있도록 냉매 펄스의 주기와 다르게 조사될 수 있다.
제1전극(100)에서 방출되는 고주파 에너지의 조사 주기와 냉매 펄스 주기는 방출 시간이 상이할 수 있고, 고주파 에너지 조사 주기가 냉매 방출 주기보다 길거나 짧을 수 있다.
제1전극(100)에서 방출되는 고주파 에너지의 조사 주기와 냉매 펄스 주기는 번갈아 나타날 수 있고, 또는 겹쳐질 수 있다. 냉매 펄스가 먼저 방출된 후 제1전극(100)에서 고주파 에너지가 조사될 수 있고, 반대로 냉매 펄스가 나중에 방출될 수 있다.
제1전극(100)에서 방출된 고주파 교류 전류가 그라운딩 패드로 전달되는 거리를 최대한 가깝게 하기 위해 부착 가능한 인체 부위에 그라운딩 패드를 부착할 수 있다.
제1전극(100)에서 방출되는 고주파 교류 전류의 출력을 제어부(30)에서 미세하게 제어할 수 있도록 하기 위해, 피부 표면의 임피던스를 측정하는 측정부를 구비할 수 있다.
제1전극(100) 및 측정부를 통해 측정된 임피던스는 제어부(30)에 의해 고주파 에너지의 출력을 위한 데이터로 활용될 수 있고, 임피던스의 측정 수치는 메모리(40)에 저장될 수 있다.
제1전극(100)의 전면에는 피부와 접촉하여 고주파 에너지를 전달할 수 있도록 유전체가 도포될 수 있다. 유전체는 피부와 제1전극(100)을 전기용량적으로 결합하도록 하여 고주파 에너지를 전달할 수 있다.
도 5는 본 발명의 일 실시예에 따른 고주파 에너지 전달장치의 전극과 온도센서를 도시한 도면이다. 도 5를 참조하면 제1전극(100)은 가로 길이가 세로 길이보다 길게 형성될 수 있고, 팁(10)의 전면에 가로로 긴 모양의 직사각형 형태로 형성될 수 있다.
제1전극(100)의 주위에 제1전극용 온도센서(110)가 형성될 수 있는데, 상부에 제1온도센서(1101)가 형성될 수 있고, 이와 짝을 이루어 제1전극(100)의 하부에 제2온도센서(1102)가 형성될 수 있다. 제1온도센서(1101)와 제2온도센서(1102)는 제1전극(100)과 최대한 인접하도록 형성될 수 있다.
제1전극(100)의 전면에 유전체가 도포되더라도 제1온도센서(1101) 및 제2온도센서(1102)는 제1전극(100)과 최대한 가까운 위치에 위치되도록 배치될 수 있다. 제1온도센서(1101) 및 제2온도센서(1102)는 제1전극(100)이 피부와 접촉되는 경우, 그 접촉되는 피부의 온도를 측정할 수 있다.
제1전극용 온도센서(110)는 제1전극(100)이 피부와 접촉되는 경우마다 실시간으로 온도를 측정하고 온도값을 산출할 수 있고, 다수개의 제1전극용 온도센서(110)는 상호 대응되는 제1전극용 온도센서(110)를 가질 수 있고, 각각 측정된 온도값을 제어부(30)에서 전달받아 평균값을 산출할 수 있다.
제1온도센서(1101)는 제2온도센서(1102)와 상호 대응될 수 있고, 각각 측정된 온도값을 제어부(30)로 전달하여 평균값을 산출할 수 있고, 산출된 평균값을 제1전극(100)의 중앙의 온도값으로 지정할 수 있다.
산출된 평균값이 미리 설정된 임계 온도값 이상일 경우에는 제1전극(100)으로부터 고주파 에너지가 전달되지 않도록 제어부(30)가 핸드피스(20) 또는 제1전극(100)을 제어하거나 고주파 에너지를 차단할 수 있다.
산출된 평균값이 미리 설정된 임계 온도값 미만일 경우에는 제어부(30)에서 미리 설정된 제어값으로 고주파 에너지를 제1전극(100)으로 전달할 수 있다.
제1전극(100)의 주위에는 제1전극용 온도센서(110)가 다수개 형성될 수 있고, 2개 이상의 짝을 이루어 배치될 수 있다.
도 6은 본 발명의 다른 실시예에 따른 고주파 에너지 전달장치의 전극과 온도센서를 도시한 도면이다. 도 6을 참조하면 제2전극(120)은 가로 길이와 세로 길이가 동일한 정사각형 형태로 형성될 수 있다.
제2전극(120)의 주위에 제2전극용 온도센서(130)가 형성될 수 있는데, 제2전극(120)의 정사각형 모서리에 각각 배치될 수 있다. 제2전극용 온도센서(130)는 제2전극(120)의 좌측 상단 모서리에 제3온도센서(1301)가 배치될 수 있고, 이와 짝을 이루어 우측 하단 모서리에 제5온도센서(1303)가 배치될 수 있다. 또한, 우측 상단 모서리에 제4온도센서(1302)가 배치될 수 있고, 이와 짝을 이루어 좌측 하단 모서리에 제6온도센서(1304)가 배치될 수 있다.
제2전극(120)의 전면에 유전체가 도포되더라도 제3온도센서(1301), 제4온도센서(1302), 제5온도센서(1303), 제6온도센서(1304)는 제2전극(120)과 최대한 가까운 위치에 위치되도록 배치될 수 있다. 제3온도센서(1301), 제4온도센서(1302), 제5온도센서(1303), 제6온도센서(1304)는 제2전극(120)이 피부와 접촉되는 경우, 그 접촉되는 피부의 온도를 측정할 수 있다.
제2전극용 온도센서(130)는 제2전극(120)이 피부와 접촉되는 경우마다 실시간으로 온도를 측정하고 온도값을 산출할 수 있고, 다수개의 제2전극용 온도센서(130)는 상호 대응되는 제2전극용 온도센서(130)를 가질 수 있고, 각각 측정된 온도값을 제어부(30)에서 전달받아 평균값을 산출할 수 있다.
제3온도센서(1301)는 제5온도센서(1303)와 상호 대응될 수 있고, 제4온도센서(1302)는 제6온도센서(1304)와 상호 대응될 수 있으며, 각각 측정된 온도값을 제어부(30)로 전달하여 평균값을 산출할 수 있고, 산출된 평균값을 제2전극(120)의 중앙의 온도값으로 지정할 수 있다.
제3온도센서(1301)와 제5온도센서(1303)를 통해 측정된 각각의 온도값으로 평균값을 산출할 수 있고, 제4온도센서(1302)와 제6온도센서(1304)를 통해 측정된 각각의 온도값으로 평균값을 측정할 수 있다.
산출된 평균값이 미리 설정된 임계 온도값 이상일 경우에는 제2전극(120)으로부터 고주파 에너지가 전달되지 않도록 제어부(30)가 핸드피스(20) 또는 제2전극(120)을 제어하거나 고주파 에너지를 차단할 수 있다.
산출된 평균값이 미리 설정된 임계 온도값 미만일 경우에는 제어부(30)에서 미리 설정된 제어값으로 고주파 에너지를 제2전극(120)으로 전달할 수 있다.
제2전극용 온도센서(130)는 상호 최단 거리를 갖도록 배치될 수 있고, 제2전극(120)의 상하좌우에 배치될 수 있다.
제2전극(120)의 주위에는 제2전극용 온도센서(130)가 다수개 형성될 수 있고, 3개 이상의 짝을 이루어 배치될 수 있다.
제1전극용 온도센서(110) 또는 제2전극용 온도센서(130)는 피부와 접촉되는 동안 접촉된 피부의 온도를 감지하고, 감지한 온도값을 지속적으로 제어부(30)에 전달할 수 있다. 감지한 온도값은 제어부(30)에 전달됨과 동시에 메모리(40)에 저장될 수 있다.
도 7은 본 발명의 또 다른 실시예에 따른 고주파 에너지 전달장치의 전극과 온도센서를 도시한 도면이다. 도 7을 참조하면 제2전극(120)과 제 2전극용 온도센서(130)에 추가적으로 제2전극(120)의 상부 및 하부에 배치되는 제2전극용 중앙 온도센서(140)를 포함할 수 있다.
제2전극용 중앙 온도센서(140)는 제2전극(120)을 기준으로 세로 방향의 중앙선에 배치될 수 있고, 제2전극(120)을 두고 상호 대응되도록 한 쌍으로 이루어질 수 있고, 제2전극(120)의 상부에 제7온도센서(1401)가 배치될 수 있고, 제2전극(120)의 하부에 제8온도센서(1402)가 배치될 수 있다.
제7온도센서(1401)와 제8온도센서(1402)를 통해 측정된 각각의 온도값을 이용하여 평균값을 산출할 수 있고, 그 산출된 평균값을 제2전극(120)의 중앙 온도값으로 지정할 수 있다.
제2전극용 중앙 온도센서(140)를 기준으로 좌측 및 우측에 각각 배치되는 제2전극용 온도센서(130)는 제2전극(120)의 엣지 부분에 대한 온도값을 검출할 수 있다.
제2전극(120)의 엣지 온도값을 측정하기 위하여, 제3온도센서(1301)는 제6온도센서(1304)와 대응될 수 있고, 제4온도센서(1302)는 제5온도센서(1303)와 대응될 수 있으며, 각각 대응되는 온도센서로부터 검출된 온도값으로부터 평균값을 산출할 수 있다.
제3온도센서(1301)와 제6온도센서(1304)는 각각 검출된 온도값으로부터 평균값을 산출할 수 있고, 제4온도센서(1302)와 제5온도센서(1303)는 각각 검출된 온도값으로부터 평균값을 산출할 수 있으며, 각각 검출된 온도값의 평균값은 제2전극(120)의 엣지 부분에 대한 평균 온도값으로 지정할 수 있다.
제3온도센서(1301)와 제6온도센서(1304)를 통해 검출된 온도값의 평균값은 제2전극(120)의 좌측 엣지 부분에 대한 평균 온도값으로 지정할 수 있고, 제4온도센서(1302)와 제5온도센서(1303)를 통해 검출된 온도값의 평균값은 제2전극(120)의 우측 엣지 부분에 대한 평균 온도값으로 지정할 수 있다.
제2전극용 중앙 온도센서(140)를 통해 산출된 중앙 온도값과 제2전극용 온도센서(130)를 통해 산출된 좌측 및 우측 엣지 부분의 평균 온도값을 상호 비교할 수 있다.
엣지 부분의 평균 온도값이 중앙 온도값보다 크고 미리 설정된 임계 온도값 이상일 경우 엣지 부분에 고주파 전달이 편중되는 이상현상으로 인식하여 제2전극(120)으로부터 고주파 에너지가 전달되지 않도록 제어부(30)가 핸드피스(20) 또는 제2전극(120)을 제어하거나 고주파 에너지를 차단할 수 있다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 후술하는 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
본 발명은 산업상 이용가능한 고주파 에너지 전달 장치에 적용할 수 있다.

Claims (4)

  1. 고주파 에너지를 비침습적으로 피부 심층으로 전달하는 고주파 에너지 전달 장치로서, 상기 고주파 에너지 전달 장치는,
    팁;과,
    상기 팁과 기계적 및 전기적으로 결합되는 핸드피스;를 포함하고,
    상기 팁은,
    피부 심층으로 고주파 에너지를 비침습적으로 방출하는 전극;을 포함하고,
    상기 전극을 사이에 두고 배치되는 다수의 온도센서;를 포함하는 것을 특징으로 하는 고주파 에너지 전달 장치.
  2. 제 1항에 있어서,
    상기 고주파 에너지 전달 장치는,
    상기 핸드피스와 전기적으로 연결되는 제어부;를 더 포함하고,
    상기 팁은,
    가로 길이가 세로 길이보다 더 길게 형성되는 제1 전극;과,
    상기 제1 전극의 상부 및 하부에 배치되는 복수의 제1 전극용 온도센서;를 더 포함하고,
    상기 제1 전극용 온도센서는,
    상기 제1 전극의 상부 및 하부에 쌍으로 형성되어 상호 최단 거리를 가지며, 상기 제1 전극에 인접하도록 배치되고, 상기 제1 전극용 온도센서와 접촉된 피부 표면의 온도값을 감지하여 상기 제어부로 전달하는 것을 특징으로 하는 고주파 에너지 전달 장치.
  3. 제 1항에 있어서,
    상기 고주파 에너지 전달 장치는,
    상기 핸드피스와 전기적으로 연결되는 제어부;를 더 포함하고,
    상기 팁은,
    가로 길이와 세로 길이가 동일하게 형성되는 제2 전극;과,
    상기 제2 전극의 모서리에 배치되는 복수의 제2 전극용 온도센서;를 더 포함하고,
    상기 제2 전극용 온도센서는,
    상기 제2 전극에 인접하도록 배치되고, 상기 제2 전극용 온도센서와 접촉된 피부 표면의 온도값을 감지하여 상기 제어부로 전달하는 것을 특징으로 하는 고주파 에너지 전달 장치.
  4. 제 2항 또는 제3항에 있어서,
    상기 고주파 에너지 전달 장치는,
    상기 제어부와 전기적으로 연결되는 메모리;를 더 포함하고,
    상기 제어부는,
    상기 제1 전극용 온도센서 또는 상기 제2 전극용 온도센서가 피부와 접촉하여 감지한 온도값들을 전달받아 평균값을 산출하고,
    상기 평균값을 상기 전극의 중앙의 온도값으로 지정하고,
    상기 평균값이 미리 설정된 값의 이상일 경우 고주파 에너지 전달을 차단하거나 상기 핸드피스의 동작을 정지시키고,
    상기 온도값 또는 상기 평균값을 상기 메모리에 저장하는 것을 특징으로 하는 고주파 에너지 전달 장치.
PCT/KR2022/014950 2021-12-16 2022-10-05 정밀 온도 추적이 가능한 고주파 에너지 전달장치 WO2023113170A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210180328A KR20230091323A (ko) 2021-12-16 2021-12-16 정밀 온도 추적이 가능한 고주파 에너지 전달장치
KR10-2021-0180328 2021-12-16

Publications (1)

Publication Number Publication Date
WO2023113170A1 true WO2023113170A1 (ko) 2023-06-22

Family

ID=86772865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/014950 WO2023113170A1 (ko) 2021-12-16 2022-10-05 정밀 온도 추적이 가능한 고주파 에너지 전달장치

Country Status (2)

Country Link
KR (1) KR20230091323A (ko)
WO (1) WO2023113170A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080200969A1 (en) * 2007-02-16 2008-08-21 Thermage, Inc. Temperature sensing apparatus and methods for treatment devices used to deliver high frequency energy to tissue
KR20100136243A (ko) * 2009-06-18 2010-12-28 송미희 다주파수 다전극 심부투열 패드 및 이를 구비한 다주파수 다전극 심부투열 장치
KR101574474B1 (ko) * 2015-08-11 2015-12-03 김유인 복합 콤팩트형 지방 분해 장치
US20200069955A1 (en) * 2018-08-31 2020-03-05 Bausch Health Ireland Limited Redundant traces for flexible circuits used in an energy delivery device
JP2021506517A (ja) * 2017-12-22 2021-02-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 家庭用個別化皮膚治療装置及びシステム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080200969A1 (en) * 2007-02-16 2008-08-21 Thermage, Inc. Temperature sensing apparatus and methods for treatment devices used to deliver high frequency energy to tissue
KR20100136243A (ko) * 2009-06-18 2010-12-28 송미희 다주파수 다전극 심부투열 패드 및 이를 구비한 다주파수 다전극 심부투열 장치
KR101574474B1 (ko) * 2015-08-11 2015-12-03 김유인 복합 콤팩트형 지방 분해 장치
JP2021506517A (ja) * 2017-12-22 2021-02-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 家庭用個別化皮膚治療装置及びシステム
US20200069955A1 (en) * 2018-08-31 2020-03-05 Bausch Health Ireland Limited Redundant traces for flexible circuits used in an energy delivery device

Also Published As

Publication number Publication date
KR20230091323A (ko) 2023-06-23

Similar Documents

Publication Publication Date Title
US11395916B2 (en) Arrays for delivering tumor treating fields (TTFields) with selectively addressable sub-elements
US11896823B2 (en) Method and device for pelvic floor tissue treatment
CN109661210B (zh) 不可逆电穿孔设备
WO2013015582A2 (ko) 고주파를 이용한 치료장치 및 이의 제어방법
WO2020080730A1 (ko) 미용 의료 장치
US6551312B2 (en) Wireless electrosurgical device and methods thereof
KR101728727B1 (ko) 신경 모니터링 및 전기수술에 사용하기 위한 인터페이스 모듈
US6569163B2 (en) Wireless electrosurgical adapter unit and methods thereof
WO2018221858A1 (ko) 피부용 전기장치 및 그 장치의 구동방법
EP2825119A1 (en) Vaginal remodeling device and method
WO2021100996A1 (ko) 휴대용 쑥뜸기
WO2022025592A1 (ko) 고주파 에너지 전달장치
KR101076083B1 (ko) 고주파 치료기
WO2014106970A1 (ko) 고주파 치료기용 압력 감지 타입 전극 유닛
WO2022007799A1 (zh) 射频治疗装置及控制方法
WO2019017572A1 (ko) 구강용 고주파 치료기
WO2012144712A1 (ko) 고주파를 이용한 치료장치 및 이를 이용한 치료방법
KR101117825B1 (ko) 양쪽 절연이 가능한 고주파 치료장치
KR20110066327A (ko) 고주파 치료기의 치료강도 및 온도 조절시스템
WO2021235862A1 (ko) 전기 수술용 장치
WO2023113170A1 (ko) 정밀 온도 추적이 가능한 고주파 에너지 전달장치
WO2018030561A1 (ko) 치료 장치 및 이를 이용한 치료 방법
WO2022169003A1 (ko) 고주파 핸드피스를 이용한 치료 장치 및 그 제어 방법
WO2023163316A1 (ko) 고주파 에너지의 자동 출력이 가능한 피부치료장치 및 그 제어방법
WO2024058313A1 (ko) 센서가 구비된 ems 운동기기 시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17921874

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907641

Country of ref document: EP

Kind code of ref document: A1