WO2023113101A1 - Manufacturing method of antibacterial nonwoven fabric, and antibacterial nonwoven fabric manufactured using manufacturing method - Google Patents

Manufacturing method of antibacterial nonwoven fabric, and antibacterial nonwoven fabric manufactured using manufacturing method Download PDF

Info

Publication number
WO2023113101A1
WO2023113101A1 PCT/KR2022/002212 KR2022002212W WO2023113101A1 WO 2023113101 A1 WO2023113101 A1 WO 2023113101A1 KR 2022002212 W KR2022002212 W KR 2022002212W WO 2023113101 A1 WO2023113101 A1 WO 2023113101A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
copper
antibacterial
manufacturing
calcium carbonate
Prior art date
Application number
PCT/KR2022/002212
Other languages
French (fr)
Korean (ko)
Inventor
김성곤
심철훈
윤광중
Original Assignee
주식회사 티에스컴퍼니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 티에스컴퍼니 filed Critical 주식회사 티에스컴퍼니
Publication of WO2023113101A1 publication Critical patent/WO2023113101A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • D01F1/103Agents inhibiting growth of microorganisms
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C23/00Making patterns or designs on fabrics
    • D06C23/04Making patterns or designs on fabrics by shrinking, embossing, moiréing, or crêping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0442Antimicrobial, antibacterial, antifungal additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0622Melt-blown
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/13Physical properties anti-allergenic or anti-bacterial
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/04Filters

Definitions

  • the present invention relates to a method for producing an antibacterial nonwoven fabric and an antibacterial nonwoven fabric manufactured by the method (A MANUFACTURING METHOD OF ANTIBACTERIAL NON WOVEN FABRIC, AND A ANTIBACTERIAL NON WOVEN FABRIC MANUFACTURED USING THE MANUFACTURING METHOD), and more specifically polypropylene It relates to a method for manufacturing an antibacterial nonwoven fabric containing copper deposition powder having antibacterial properties in fibers and an antibacterial nonwoven fabric manufactured by the manufacturing method.
  • air filters and masks are manufactured using meltblown nonwoven fabric as a filter material.
  • Various microorganisms can propagate on the surface of the nonwoven fabric from which various contaminants are filtered out.
  • An antibacterial nonwoven fabric with this is being developed.
  • silver, titanium dioxide, zinc oxide, copper, and the like are known as antibacterial agents harmless to the human body.
  • the silver is melted with nitric acid to make a metal salt with silver nitrate, and a dispersant is added, and the dispersant is added to the zeolite while being reduced again to prepare a fine silver nano-zeolite of 2 to 100 nm, which is used as an antibacterial agent.
  • the titanium dioxide is used as an antibacterial agent by making a fine powder by a mechanical milling method, but has the disadvantage of having to be irradiated with ultraviolet rays to exhibit antibacterial activity.
  • the zinc oxide is used as an antibacterial agent by a mechanical milling method or a method of reducing metal zinc as a metal salt by dissolving it in strong acid like the silver.
  • the copper has excellent antibacterial activity and is inexpensive compared to the silver, a technique for manufacturing an antibacterial nonwoven fabric using it as a raw material for the nonwoven fabric is being developed.
  • Korean Patent Registration No. 10-2239866 (2021.04.14.) (hereinafter referred to as 'prior art') discloses 'a copper-coated nonwoven fabric with excellent antibacterial and durable properties' A manufacturing method' is disclosed.
  • the copper has a stronger oxidizing power than the silver, so when copper is oxidized, there is a disadvantage of discoloration and a decrease in antibacterial activity.
  • the copper-coated PE raw material obtained in step (S1) is Due to discoloration, there is a problem that not only has an adverse effect on the color setting of the nonwoven fabric, but also lowers the antimicrobial activity of the nonwoven fabric.
  • step (S4) in manufacturing the copper-coated PE sheath-PP core composite spun fibers into a thermal bond nonwoven fabric in step (S4), a plurality of the copper-coated PE sheath-PP core composite spun fibers are laminated and then thermally bonded. Since the copper-coated PE sheath-PP core composite spun fiber is laminated on the base material PET fiber and then thermally bonded to produce the non-woven fabric, the copper-coated PE sheath-PP core composite spun fiber is not produced by manufacturing a nonwoven fabric. Compared to the case of manufacturing a nonwoven fabric by laminating and thermal bonding, there is also a problem in that antibacterial activity is relatively lowered.
  • the technical problem of the present invention is to deposit copper on calcium carbonate powder to prepare a copper antimicrobial agent that is relatively resistant to oxidation and use it as a raw material for nonwoven fabric, so that it is not only advantageous in setting the color of the nonwoven fabric but also has excellent antibacterial activity.
  • a copper antimicrobial agent that is relatively resistant to oxidation and use it as a raw material for nonwoven fabric, so that it is not only advantageous in setting the color of the nonwoven fabric but also has excellent antibacterial activity.
  • Another technical problem of the present invention is to manufacture a nonwoven fabric by laminating only the spun fibers prepared using the copper antimicrobial agent as a raw material without laminating the spun fibers prepared using the copper antimicrobial agent as a raw material on the base fiber, thereby providing excellent antibacterial activity.
  • the method for manufacturing an antimicrobial nonwoven fabric according to the present invention includes (S1) depositing copper on calcium carbonate powder to prepare a copper antimicrobial agent, (S2) mixing the copper antimicrobial agent with polypropylene to master the master Preparing a batch chip, (S3) preparing a single-layer nonwoven fabric by melt-spinning the master batch chip, and (S4) melt-spinning the master batch chip on at least one surface of the single-layer non-woven fabric to produce a multi-layer nonwoven fabric and (S5) embossing the multilayer nonwoven fabric with a pressure roller.
  • the weight ratio of the calcium carbonate powder and the copper may be 99.7:0.3 to 98.0:2.0.
  • the particle size of the calcium carbonate powder may be 1 to 3 ⁇ m.
  • the weight ratio of the copper antimicrobial agent and the polypropylene may be 10.0:90.0 to 30.0:70.0.
  • the diameter of the fiber filament melt-spun from the master batch chip may be 10 to 30 ⁇ m.
  • the masterbatch chip may have a density of 0.90 to 0.93g/cm 3 and a melt index of 20 to 60g/10min.
  • the multilayer nonwoven fabric may have an embossing rate of 10 to 30% and a unit weight of 10 to 100 g/m 2 .
  • the antibacterial nonwoven fabric according to the present invention is prepared by the method for manufacturing the antibacterial nonwoven fabric according to the present invention.
  • the antibacterial nonwoven fabric manufacturing method according to the present invention and the antibacterial nonwoven fabric produced by the manufacturing method are prepared by depositing copper on calcium carbonate powder to prepare a copper antimicrobial agent that is relatively resistant to oxidation and used as a raw material for the nonwoven fabric, thereby setting the color of the nonwoven fabric. Not only is it advantageous, but it also has the effect of improving antibacterial activity.
  • the method for manufacturing an antimicrobial nonwoven fabric according to the present invention and the antibacterial nonwoven fabric produced by the method are prepared by using the copper antimicrobial agent as a raw material without laminating the spun fibers produced using the copper antimicrobial agent as a raw material on the base fiber. Since the nonwoven fabric is manufactured by laminating only the spun fibers, the antimicrobial activity of the nonwoven fabric is excellent.
  • FIG. 1 is a view showing an apparatus for manufacturing a copper antimicrobial agent used as an antimicrobial raw material for an antibacterial nonwoven fabric according to embodiments of the present invention
  • PE polyethylene
  • FIG. 5 is a block diagram showing a process according to a method for manufacturing an antibacterial nonwoven fabric according to embodiments of the present invention.
  • FIG. 6 is a longitudinal cross-sectional view showing an antibacterial nonwoven fabric manufactured by the method for manufacturing an antibacterial nonwoven fabric according to a first embodiment of the present invention
  • FIG. 7 is a view showing an apparatus for manufacturing an antibacterial nonwoven fabric produced by a method for manufacturing an antibacterial nonwoven fabric according to a first embodiment of the present invention
  • FIG. 8 is a longitudinal cross-sectional view showing an antibacterial nonwoven fabric manufactured by a method for manufacturing an antibacterial nonwoven fabric according to a second embodiment of the present invention.
  • FIG. 9 is a view showing an apparatus for manufacturing an antibacterial nonwoven fabric produced by a method for manufacturing an antibacterial nonwoven fabric according to a second embodiment of the present invention.
  • polypropylene resin 2a first hopper
  • FIG. 1 is a view showing an apparatus for manufacturing a copper antimicrobial agent used as an antimicrobial raw material for an antimicrobial nonwoven fabric according to embodiments of the present invention.
  • the copper antimicrobial agent used as an antibacterial raw material of the antibacterial nonwoven fabric is prepared by depositing nano-sized copper on the surface of calcium carbonate powder.
  • a mechanical milling method, a physical vapor deposition (PVD) method, a chemical method, etc. may be considered, but in this embodiment, metal copper is nanonized using the physical vapor deposition method and deposited on a carrier. method was used.
  • the copper antimicrobial agent is not easily oxidized and can be used as a raw material for nonwoven fabrics.
  • the color setting of the nonwoven fabric should not be adversely affected by discoloration due to oxidation, and when the copper was deposited on the calcium carbonate powder, it was concluded that the copper was not easily oxidized. It will be examined in detail later through examples.
  • An apparatus for manufacturing a copper antimicrobial agent according to embodiments of the present invention may include a vacuum deposition bath 30, a stirring bath 31, and stirring blades 32.
  • the vacuum deposition bath 30 may form a vacuum chamber therein.
  • a vacuum generating means for forming a vacuum chamber may be provided in the vacuum deposition bath 30 , and the vacuum generating means may set the vacuum pressure in the vacuum deposition bath 30 to 10 ⁇ 3 to 10 ⁇ 5 torr.
  • the stirring tank 31 may be formed in a cylindrical shape with an open top.
  • the calcium carbonate powder 40 as a carrier may be supported in the stirring tank 31 .
  • the stirring blades 32 may be rotatably provided on the bottom surface of the stirring tank 31 .
  • the stirring blades 32 may be shaped like an axial flow fan having a plurality of blades.
  • the rotating shaft of the stirring blades 32 may be arranged vertically. When the stirring blades 32 are rotated, the calcium carbonate powder supported in the stirring tank 31 may be stirred.
  • Copper 50 may be provided above the stirring bath 31 in the vacuum deposition bath 30 .
  • the inert gas is a gas for generating the copper plasma, and it is preferable to put a small amount of the inert gas into the vacuum deposition tank 30 without filling it up.
  • the copper plasma generating method methods such as DC sputtering, RF sputtering, laser sputtering, electron beam evaporation, and thermal evaporation using a heating method may be used.
  • the inert gas introduced into the vacuum deposition bath 30 may be argon (Ar), neon (Ne), N2, O2, CH4, etc., preferably argon (Ar), but is not limited thereto.
  • the copper antimicrobial agent according to an embodiment of the present invention may be composed of calcium carbonate powder and copper.
  • the copper may be deposited on the surface of the calcium carbonate powder by physical vapor deposition.
  • the weight ratio of the calcium carbonate powder and the copper may be 99.7:0.3 to 98.0:2.0.
  • the weight ratio of copper is lower than 0.3, the amount of copper deposited on the surface of the calcium carbonate powder is small, so antibacterial activity and deodorizing power may not be good.
  • the weight ratio of copper is greater than 2
  • the copper is deposited overlapping the surface of the calcium carbonate powder, and the specific surface area per weight of the copper is lowered, so antibacterial efficiency and deodorization efficiency may not be good.
  • the method of manufacturing a copper antimicrobial agent includes (a) supporting calcium carbonate powder 40 in a stirring tank 31, (b) putting an inert gas into a vacuum deposition tank 30 and vacuum Copper plasma is generated by targeting the copper 50 provided in the deposition bath 30, and the stirring blades 32 are rotated to deposit the copper 50 on the surface of the calcium carbonate powder 40 to obtain a copper antimicrobial agent It may include the step of preparing.
  • the weight ratio of the calcium carbonate powder 40 and the copper 50 may be 99.7:0.3 to 98.0:2.0.
  • the particle size of the calcium carbonate powder 40 supported in the stirring tank 31 may be 1 to 3 ⁇ m.
  • the copper 50 is deposited to overlap on the surface of the calcium carbonate powder 40, so that the specific surface area per weight of the copper 50 is lowered, resulting in antibacterial efficiency and deodorization efficiency. This may not be good, and the particles of the calcium carbonate powder 40 are too small, and the calcium carbonate powder 40 may scatter in the vacuum chamber when the stirring blades 32 rotate.
  • the particle size of the calcium carbonate powder 40 is larger than 3 ⁇ m, the copper 50 may not be evenly deposited on the surface of the calcium carbonate powder 40 .
  • the vacuum pressure in the vacuum deposition bath 30 is 10 -3 to 10 -5 torr.
  • the vacuum pressure in the vacuum deposition tank 30 is higher than 10 -3 torr, the copper plasma generation rate is not good, so the amount of copper deposited on the surface of the calcium carbonate powder 40 may be small, and the vacuum deposition tank 30 )
  • the vacuum pressure in the inside is lower than 10 -5 torr, the generation rate of the copper plasma is too high, and the amount of copper deposited on the surface of the calcium carbonate powder 40 may be too large.
  • Glucose is a monosaccharide with a molecular formula of C 6 H 12 O 6 , and anhydrous glucose crystals were used in the test.
  • the nano-copper deposition used the DC sputtering method, and the operation of the copper antimicrobial agent manufacturing device was carried out for 23 hours with 16KW of power to obtain a deposition amount of 3000ppm (0.3% by weight) of copper concentration.
  • 2 is a view showing observations over time after depositing copper on glucose, which is a white powder.
  • FIG. 2 the anhydrous glucose crystals, which were initially white powder, changed color to black red after copper deposition, as shown in (a) of FIG. 2 .
  • the black-red color gradually changed to blue due to oxidation of copper over time when left under the condition of 80% RH relative humidity. That is, FIG. 2 (b) shows two months after depositing copper on anhydrous glucose crystals, and FIG. 2 (c) shows five months after depositing copper on anhydrous glucose crystals.
  • the copper antimicrobial agent prepared by depositing 0.3% by weight of copper relative to the weight of glucose powder is mixed with 1%, 3%, 5%, 10% and 20% of the weight of polypropylene, respectively, and injected. After making a plastic substrate having a width of 50 mm, a length of 50 mm, and a thickness of 1 mm, an antibacterial test was performed on the surface of the substrate.
  • test method was JIS Z 2801: 2010 (film adhesion method), and the number of bacteria after 24 hours was compared with the control group for Staphylococcus aureus and Escherichia coli, and the test results are shown in Table 1 below.
  • the test was conducted before the oxidation of the copper antimicrobial agent prepared by depositing 0.3% by weight of copper relative to the weight of the glucose powder, and after the oxidation progressed, even when 20% of the copper antimicrobial agent was mixed with respect to the weight of polypropylene (PP), E. coli
  • PP polypropylene
  • PE polyethylene chip
  • Nano copper deposition used the DC sputtering method, and the operation of the inorganic antimicrobial agent manufacturing device was carried out for 13 hours with a power of 16KW to obtain a deposition amount of 3000ppm (0.3% by weight) of copper concentration.
  • PE polyethylene
  • the initially transparent polyethylene (PE) chip had a color change to black after copper deposition, as shown in (a) of FIG. 3 .
  • the black color gradually turned blue as time passed when left under the condition of 80% RH as the copper was oxidized.
  • Figure 3 (b) shows four months after depositing copper on a polyethylene (PE) chip.
  • the copper antimicrobial agent prepared by depositing 0.3% by weight of copper relative to the weight of the polypropylene (PE) chip is mixed with 10%, 15%, and 20% of the weight of polypropylene, respectively, and injected to a width of 50 mm.
  • an antibacterial test was performed on the surface of the substrate.
  • test method was JIS Z 2801: 2010 (film adhesion method), and the number of bacteria after 24 hours was compared with the control group for Staphylococcus aureus and Escherichia coli, and the test results are shown in Table 2 below.
  • the test was conducted before the oxidation of the copper antimicrobial agent prepared by depositing 0.3% by weight of copper relative to the weight of the polyethylene (PE) chip. Even when tested, the results were less than 99.9% of the antibacterial activity against E. coli. This can be seen as a result that antibacterial activity is exhibited even when oxidation proceeds, but the effect does not reach the non-oxidized state.
  • the calcium carbonate powder had a particle size of 1 to 3 ⁇ m, and calcium bicarbonate powder having a purity of 99.9% or more was used.
  • Calcium carbonate powder has a larger particle size distribution than industrially manufactured glucose powder or polypropylene chips, so if you do not use powder that has been filtered to a uniform size, fine powders of 1 ⁇ m or less will scatter in the vacuum chamber, greatly impairing workability. showed
  • the nano-copper deposition used the DC sputtering method, and the operation of the inorganic antimicrobial agent manufacturing device was carried out for 8 hours with a power of 30KW to obtain a deposition amount of 9000ppm (0.8% by weight) of copper concentration.
  • Calcium carbonate powder does not melt even when the internal temperature rises to 300 ° C, so it is possible to work, and at high temperatures, the amount of deposition per hour is large, resulting in greatly improved productivity.
  • calcium carbonate powder does not melt even at high temperatures, so it has higher productivity of inorganic antimicrobial agents when used as a carrier than other materials, and it is easy to store because it is difficult to oxidize even after time elapses after copper is deposited on calcium carbonate powder. and showed high antibacterial activity when used as an antibacterial agent.
  • calcium carbonate powder prevents oxidation of copper over time is that calcium carbonate has a calcite structure, so the calcium (Ca) cation (+2 valency) and carbonate (CO 3 ) anion (-2 valency) This is because in the ionic bond, three oxygens (O) and copper, which are coordinated around carbon (C), are stabilized by exchanging electrons.
  • the calcium carbonate powder which was initially a white powder, had a color change to grayish red after copper deposition, as shown in FIG. 4 (a). After depositing copper, it was observed that the grayish-red calcium carbonate powder did not oxidize and maintained its color over time when left under the condition of a relative humidity of 80% RH.
  • Figure 4 (b) shows two months after depositing copper on calcium carbonate powder
  • Figure 4 (c) shows five months after depositing copper on calcium carbonate powder.
  • the copper antimicrobial agent prepared by depositing 0.8% by weight of copper relative to the weight of calcium carbonate powder is mixed with 0.5%, 1%, 3%, and 5% of the weight of polypropylene in polypropylene, respectively, and injected to a width of 50 mm.
  • an antibacterial test was performed on the surface of the substrate.
  • test method was JIS Z 2801: 2010 (film adhesion method), and the number of bacteria after 24 hours was compared with the control group for Staphylococcus aureus and Escherichia coli, and the test results are shown in Table 3 below.
  • the copper antimicrobial agent prepared by depositing copper on the surface of the calcium carbonate powder has little discoloration and excellent antibacterial activity over time. Therefore, when the copper antimicrobial agent prepared by depositing copper on the surface of calcium carbonate powder is used as a raw material for nonwoven fabric, not only can the freedom of color setting of the nonwoven fabric be increased, but also antibacterial activity can be maintained for a long time.
  • FIG. 5 is a block diagram showing a process according to a method for manufacturing an antibacterial nonwoven fabric according to embodiments of the present invention.
  • the method of manufacturing an antibacterial nonwoven fabric according to embodiments of the present invention, (S1) depositing copper on calcium carbonate powder to prepare a copper antimicrobial agent, (S2) the copper antimicrobial agent with polypropylene Mixing to prepare a masterbatch chip, (S3) melt-spinning the masterbatch chip to prepare a single-layer nonwoven fabric, (S4) melt-spinning the masterbatch chip on at least one surface of the single-layer nonwoven fabric to produce a multi-layer nonwoven fabric and (S5) embossing the multilayer nonwoven fabric with a compression roller.
  • the weight ratio of the calcium carbonate powder and the copper may be 99.7:0.3 to 98.0:2.0.
  • the weight ratio of copper is lower than 0.3, the amount of copper deposited on the surface of the calcium carbonate powder is small, so antibacterial activity and deodorizing power may not be good.
  • the weight ratio of copper is greater than 2, the copper is deposited overlapping the surface of the calcium carbonate powder, and the specific surface area per weight of the copper is lowered, so antibacterial efficiency and deodorization efficiency may not be good.
  • the particle size of the calcium carbonate powder may be 1 to 3 ⁇ m.
  • the copper 50 is deposited to overlap on the surface of the calcium carbonate powder 40, so that the specific surface area per weight of the copper 50 is lowered, resulting in antibacterial efficiency and deodorization efficiency. This may not be good, and the particles of the calcium carbonate powder 40 are too small, and the calcium carbonate powder 40 may scatter in the vacuum chamber when the stirring blades 32 rotate.
  • the particle size of the calcium carbonate powder 40 is larger than 3 ⁇ m, the copper 50 may not be evenly deposited on the surface of the calcium carbonate powder 40 .
  • the weight ratio of the copper antimicrobial agent and the polypropylene may be 10.0:90.0 to 30.0:70.0.
  • the copper antimicrobial agent is mixed with the polypropylene at a ratio of 10 to 30% by weight. If mixed at a ratio lower than 10% by weight, the effect of eradicating bacteria and viruses is insufficient, which is undesirable. It is undesirable because spinnability is lowered and productivity is deteriorated.
  • the single-layer nonwoven fabric may be a one-ply nonwoven fabric constituting the multi-layer nonwoven fabric, and in the step (S4), the single-layer nonwoven fabric is at least two plies Alternatively, it may be a structure composed of at least two layers.
  • the single-layer nonwoven fabric constituting one multi-layer non-woven fabric may have the same physical properties and size, but, if necessary, single-layer non-woven fabrics having different requirements such as thickness may be laminated and combined to form one multi-layer non-woven fabric.
  • the thickness of the single-layer nonwoven fabric is not particularly limited, and a nonwoven fabric having a thickness commonly used in the art may be used in consideration of the purpose of the final product and the number of layers.
  • 'two layers' may be used as the same meaning as 'two layers'
  • 'three layers' may be used as the same meaning as 'three layers'.
  • the diameter of the fiber filament melt-spun from the master batch chip may be 10 to 30 ⁇ m. If the diameter of the fiber filament is less than 10 ⁇ m, the filament is too thin and sufficient breaking strength is not exhibited. If the diameter of the fiber filament exceeds 30 ⁇ m, the filament is too thick and orientation is not sufficiently achieved, so the breaking strength is reduced. It becomes inflexible and difficult to use as a product.
  • the masterbatch chip may have a density of 0.90 to 0.93g/cm 3 and a melt index of 20 to 60g/10min.
  • the density of the masterbatch chip is less than 0.90 g / cm 3, the strength of the nonwoven fabric may be lowered, and when the density of the masterbatch chip exceeds 0.93 g / cm 3, the melting temperature increases and the adhesion temperature of the nonwoven fabric increases. A problem may occur. .
  • melt index of the masterbatch chip When the melt index of the masterbatch chip is less than 20g/10min, the flowability of the melt is too low, making it difficult to form fibers, making it difficult to manufacture a nonwoven fabric, and when the melt index of the masterbatch chip exceeds 60g/10min, the strength of the nonwoven fabric A problem of lowering may occur.
  • the multilayer nonwoven fabric may have an embossing rate of 10 to 30% and a unit weight of 10 to 100 g/m 2 .
  • the embossing rate is less than 5%, the adhesive strength between single-layer nonwoven fabrics is lowered and the unit nonwoven fabrics may be separated from each other, and when the embossing rate exceeds 30%, product flexibility is lowered.
  • the unit weight of the multi-layer nonwoven fabric is less than 10 g / m 2, the breaking strength is weak and cannot be used as a product.
  • the cooling which may be performed between the steps (S4) and (S5), may be performed at a temperature of 25° C. or less, and may be performed using a conventional cooling device.
  • the cooling temperature exceeds 25 ° C., the surface of the single-layer nonwoven fabric becomes smooth, and even if a compression roller is used, physical bonding between the single-layer nonwoven fabrics may not occur well.
  • the compression roller compresses the multilayer nonwoven fabric under certain conditions so that embossing is expressed.
  • the temperature of the compression roller may be in the range of 130 to 170 ° C. in order to appropriately suppress the increase in elongation.
  • the temperature of the compression roller is less than 130° C., the multi-layered nonwoven fabric does not receive enough heat, and thus the adhesive strength between the single-layer nonwoven fabrics is lowered.
  • the temperature of the compression roller exceeds 170 ° C., the surface of the multilayer nonwoven fabric is melted and adhered to the compression roller so that the operation does not proceed or the multilayer nonwoven fabric is damaged by heat and the strength is lowered.
  • FIG. 6 is a longitudinal cross-sectional view showing an antibacterial nonwoven fabric manufactured by the method for manufacturing an antibacterial nonwoven fabric according to a first embodiment of the present invention. Here, the embossing treatment of the antibacterial nonwoven fabric 100 is not expressed.
  • the antibacterial nonwoven fabric 100 has two layers of single layer nonwoven fabrics 101 and 102 in which a second single layer nonwoven fabric 102 is overlapped on the first single layer nonwoven fabric 101. ) can be formed.
  • both the first single-layer nonwoven fabric 101 and the second single-layer nonwoven fabric 102 may be formed of a nonwoven fabric containing the copper antimicrobial agent.
  • FIG. 7 is a view showing an apparatus for manufacturing an antibacterial nonwoven fabric produced by a method for manufacturing an antibacterial nonwoven fabric according to a first embodiment of the present invention.
  • the manufacturing apparatus of the antibacterial nonwoven fabric 100 manufactured by the manufacturing method of the antibacterial nonwoven fabric 100 according to the first embodiment of the present invention a forming belt (forming belt, 8), A first melt spinning machine 21 and a second melt spinning machine 22 disposed apart from each other in the conveying direction of the forming belt 8 on the upper side of the forming belt 8, a cooling device 10, and a coupling device 11 ) and a winder 14.
  • the first melt spinning machine 21 and the second melt spinning machine 22 may be devices for forming web-type fiber filaments by melt spinning the master batch chip 1.
  • the first melt spinning machine 21 may be for forming the first single layer nonwoven fabric 101 of the antibacterial nonwoven fabric 100
  • the second melt spinning machine 22 is the second single layer nonwoven fabric 102 of the antibacterial nonwoven fabric 100 It may be for forming.
  • the first melt spinning machine 21 and the second melt spinning machine 22 may be formed in the same structure.
  • the first melt spinning machine 21 includes a first hopper 2a, a first extruder 3a, a first filter 4a, a first metering pump 5a, a first spin pack 6a, a first 1 cooling and stretching device 7a and a first suction device 9a.
  • the second melt spinning machine 22, the second hopper (2b), the second extruder (3b), the second filter (4b), the second metering pump (5b), the second spin pack (6b), the second A cooling and stretching device 7b and a second suction device 9b may be included.
  • the manufacturing of the first single-layer nonwoven fabric 101 is described with reference to FIGS. 6 and 7 as follows.
  • the masterbatch chips 1 are supplied to the first extruder 3a through the first hopper 2a and melted.
  • the molten masterbatch chips are supplied to the first spin pack 6a in a constant amount through the first metering pump 5a after impurities are removed through the first filter 4a.
  • fiber filaments are formed through a spinneret having a diameter of 0.3 to 1.0 mm. At this time, the fiber filaments may have a diameter of 10 to 30 ⁇ m.
  • the formed fiber filaments are cooled and stretched by air in the first cooling and stretching device 7a, and then seated on the forming belt 8 by the first suction device 9a to form a web, thereby forming a first single-layer nonwoven fabric ( 101) is formed and transferred to the side of the second melt spinning machine 22.
  • the second single layer nonwoven fabric 102 may be formed by the second melt spinning machine 22 on the first single layer nonwoven fabric 101 transferred to the side of the second melt spinning machine 22 through the forming belt 8. That is, the masterbatch chips 1 are supplied to the second extruder 4b through the second hopper 2b and melted. The molten masterbatch chips 1 are supplied to the second spin pack 6b in a constant amount through the second metering pump 5b after impurities are removed through the second filter 4b. In the second spin pack 6b, fiber filaments are formed through a spinneret having a diameter of 0.3 to 1.0 mm.
  • the formed fiber filaments are cooled and stretched through the second cooling and stretching device 7b, and then seated on the first single-layer nonwoven fabric 101 by the second suction device 9b to form a web, thereby forming a two-layer multilayer nonwoven fabric. (101, 102) are formed.
  • the two layers of multilayer nonwoven fabrics 101 and 102 formed on the forming belt 8 may be cooled to 25° C. or less by the cooling device 10.
  • the cooled two-ply multilayer nonwoven fabrics 101 and 102 may be coupled while being embossed by the compression rollers 12 and 13 of the coupling device 11.
  • the compression roller 12 is embossed with a pattern such as a diamond shape or a circular or oval shape, so that the multilayer nonwoven fabrics 101 and 102 stacked in two layers are embossed at the same time, and as a result, the finally obtained multilayer nonwoven fabric 101 , 102) on which embossing is formed.
  • the embossing rate which is the area occupied by the embossed pattern among the total surface areas of the multilayer nonwoven fabrics 101 and 102, may be in the range of 5 to 30%.
  • the first single-layer nonwoven fabric 101 and the second single-layer nonwoven fabric 102 may be separated from each other because of weak adhesive or bonding strength, and when the embossing rate exceeds 30%, the product Flexibility may be reduced.
  • the antibacterial nonwoven fabric 100 formed of the two layers of embossed multilayer nonwoven fabrics 101 and 102 may be wound around the winder shaft 15 of the winder 14 .
  • FIG. 8 is a longitudinal cross-sectional view showing an antibacterial nonwoven fabric manufactured by a method for manufacturing an antibacterial nonwoven fabric according to a second embodiment of the present invention. Here, the embossing treatment of the antibacterial nonwoven fabric 200 is not expressed.
  • the antibacterial nonwoven fabric 200 is a three-layered single-layer nonwoven fabric in which the second single-layer nonwoven fabric 102 is overlapped on the upper and lower surfaces of the first single-layer nonwoven fabric 101, respectively ( 101, 102).
  • both the first single-layer nonwoven fabric 101 and the second single-layer nonwoven fabric 102 may be formed of a nonwoven fabric containing the copper antimicrobial agent.
  • FIG. 9 is a view showing an apparatus for manufacturing an antibacterial nonwoven fabric produced by a method for manufacturing an antibacterial nonwoven fabric according to a second embodiment of the present invention.
  • the manufacturing apparatus of the antibacterial nonwoven fabric 200 manufactured by the manufacturing method of the antibacterial nonwoven fabric 200 according to the second embodiment of the present invention in the first embodiment of the present invention described above Compared to the manufacturing apparatus of the antibacterial nonwoven fabric 100 manufactured by the manufacturing method of the antibacterial nonwoven fabric 100 by the method, the unwinder 16 and the preheating device 18 may be further included.
  • the unwinder 16 may include an unwinder shaft 17 .
  • Unwinder 16 may be disposed opposite to winder 14 .
  • the unwinder shaft 17 may have substantially the same configuration as the winder shaft 15 . That is, the winder shaft 15 on which the two layers of multilayer nonwoven fabrics 101 and 102 manufactured in the first embodiment are wound may be mounted on the unwinder 16 to become the unwinder shaft 17.
  • the antibacterial nonwoven fabric 200 according to the second embodiment of the present invention is preheated while the antibacterial nonwoven fabric 100 manufactured in the first embodiment is unwound from the unwinder shaft 17 of the unwinder 16. After being preheated while passing through the heating plates 19 and 20 of the device 18, the antibacterial nonwoven fabric 100 is supplied to the forming belt 8 so that the lower surface faces upward, and then the process of the first embodiment described above By repeating the same, an antibacterial nonwoven fabric 200 formed of three layers of multilayer nonwoven fabrics 101 and 102 can be manufactured.
  • the masterbatch chip (1) prepared by mixing 15% by weight of copper antimicrobial agent with 85% by weight of polypropylene is introduced into the first extruder (3a) having a temperature of 230 ° C through the first hopper (2a) and melted. After removing impurities by passing them through the filter 4a, they were supplied to the first spin pack 6a using the first metering pump 5a, and then spun through a spinneret having a temperature of 220°C in the first spin pack 6a. . The spun fiber filaments are cooled and drawn by the first cooling and stretching device 7a, and then seated on the forming belt 8 by the first suction device 9a to form a web, thereby forming a first single layer nonwoven fabric 101. ) was formed.
  • the masterbatch chip 1 prepared by mixing 15% by weight of a copper antimicrobial agent with 85% by weight of polypropylene is mixed with the second hopper 2b through the second extruder (3b) at a temperature of 230 ° C., melted, passed through the second filter (4b) to remove impurities, and then supplied to the second spin pack (6b) using the second metering pump (5b)
  • the second spin pack 6b was spun through a spinneret having a temperature of 220°C.
  • the spun fiber filaments are cooled and drawn by the second cooling and stretching device 7b, and then seated on the first single-layer nonwoven fabric 101 by the second suction device 9b to form a web, thereby forming two layers of multilayer Nonwoven fabrics 101 and 102 were formed.
  • the two layers of multilayer nonwoven fabrics 101 and 102 on the forming belt 8 passed through the cooling device 10 maintained at 20°C. Subsequently, the compression rollers 12 and 13 having an embossing rate of 14% are pressed and embossed on the two layers of multilayer nonwoven fabrics 101 and 102 at a pressure of 5 kgf / cm 2 and a temperature of 165 ° C. 102) to prepare an antibacterial nonwoven fabric (100).
  • the prepared antibacterial nonwoven fabric 100 was wound around the winder shaft 15 of the winder 14 to a certain length.
  • a multilayer nonwoven fabric was prepared in the same manner as in Example 1, except that 12% by weight of the copper antimicrobial agent was changed to a masterbatch chip prepared by mixing 88% by weight of polypropylene.
  • a multilayer nonwoven fabric was prepared in the same manner as in Example 1, except that 27% by weight of the copper antimicrobial agent was changed to a masterbatch chip prepared by mixing 73% by weight of polypropylene.
  • a multilayer nonwoven fabric was prepared in the same manner as in Example 1, except that the fiber filament diameter was changed to 12 ⁇ m.
  • a multilayer nonwoven fabric was prepared in the same manner as in Example 1, except that the fiber filament diameter was changed to 27 ⁇ m.
  • a multilayer nonwoven fabric was prepared in the same manner as in Example 1, except that 8% by weight of the copper antimicrobial agent was mixed with 92% by weight of polypropylene to change to a masterbatch chip.
  • a multilayer nonwoven fabric was prepared in the same manner as in Example 1, except that 35% by weight of the copper antimicrobial agent was mixed with 65% by weight of polypropylene to change to a masterbatch chip.
  • a multilayer nonwoven fabric was prepared in the same manner as in Example 1, except that the fiber filament diameter was changed to 7 ⁇ m.
  • a multilayer nonwoven fabric was prepared in the same manner as in Example 1, except that the fiber filament diameter was changed to 40 ⁇ m.
  • the breaking strength and elongation values were measured from the load-elongation curve recorded after constant rate elongation so that force was applied in the longitudinal direction for the test piece of the specified length and width.
  • the nonwoven fabric cut to a width of 50 mm was gripped by a strength measuring machine to a length of 75 mm, and then measured at a speed of 300 mm/min.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 polypropylene non-woven fabric Composition ratio (% by weight) polypropylene 85 88 73 85 85 copper antimicrobial 15 12 27 15 15 Fiber filament diameter ( ⁇ m) 20 20 20 12 27 radiation fairness Good Good Good Good Good Combination condition Preheating temperature (°C) 130 130 130 130 130 130 130 Cooling temperature (°C) 20 20 20 20 20 Compression roller pressure (kgf/cm2) 5 5 5 5 5 5 5 5 5 Pressure roller temperature (°C) 165 165 165 165 165 Embossing rate (%) 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
  • the manufacturing method of the antibacterial nonwoven fabric (100, 200) according to the embodiments of the present invention and the antibacterial nonwoven fabric (100, 200) manufactured by the manufacturing method are relatively oxidized by depositing copper on calcium carbonate powder.
  • a copper antimicrobial agent resistant to and using it as a raw material for nonwoven fabric it is not only advantageous to set the color of the nonwoven fabric, but also has excellent antibacterial power.
  • the manufacturing method of the antibacterial nonwoven fabric (100, 200) according to the embodiments of the present invention and the antibacterial nonwoven fabric (100, 200) manufactured by the manufacturing method are based on spun fibers manufactured using copper antimicrobial agent as a raw material Since the nonwoven fabric is manufactured by laminating only the spun fibers produced using the copper antimicrobial agent as a raw material without laminating the fiber, the antimicrobial activity of the nonwoven fabric can be improved.
  • the present invention is to deposit copper on calcium carbonate powder to prepare a copper antimicrobial agent that is relatively resistant to oxidation and use it as a raw material for nonwoven fabric, thereby providing a method for manufacturing an antibacterial nonwoven fabric that is not only advantageous in setting the color of the nonwoven fabric but also has excellent antimicrobial activity, and a manufacturing method thereof.
  • an antibacterial nonwoven fabric manufactured is provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Provided are a manufacturing method of an antibacterial nonwoven fabric, and an antibacterial nonwoven fabric manufactured using the manufacturing method, the method allowing copper to be deposited on a calcium carbonate powder so that a copper antibacterial agent, which is relatively resistant to oxidation, is prepared and used as a material for a nonwoven fabric, and thus the present invention is advantageous for color setting of a nonwoven fabric and has excellent antibacterial properties. To this end, the manufacturing method of an antibacterial nonwoven fabric, according to the present invention, comprises the steps of: (S1) depositing copper on a calcium carbonate powder so as to prepare a copper antibacterial agent; (S2) mixing the copper antibacterial agent with a polypropylene so as to prepare master batch chips; (S3) melt spinning the master batch chips so as to manufacture a single-layer nonwoven fabric; (S4) melt spinning the master batch chips on at least one surface of the single-layer nonwoven fabric so as to manufacture a multilayer nonwoven fabric; and (S5) embossing the multilayer nonwoven fabric by means of compression rollers.

Description

항균 부직포의 제조방법 및 그 제조방법에 의해 제조된 항균 부직포Manufacturing method of antibacterial nonwoven fabric and antibacterial nonwoven fabric manufactured by the manufacturing method
본 발명은 항균 부직포의 제조방법 및 그 제조방법에 의해 제조된 항균 부직포(A MANUFACTURING METHOD OF ANTIBACTERIAL NON WOVEN FABRIC, AND A ANTIBACTERIAL NON WOVEN FABRIC MANUFACTURED USING THE MANUFACTURING METHOD)에 관한 것으로서, 보다 상세하게는 폴리프로필렌 섬유에 항균성을 가지는 구리 증착 파우더가 포함된 항균 부직포의 제조방법 및 그 제조방법에 의해 제조된 항균 부직포에 관한 것이다.The present invention relates to a method for producing an antibacterial nonwoven fabric and an antibacterial nonwoven fabric manufactured by the method (A MANUFACTURING METHOD OF ANTIBACTERIAL NON WOVEN FABRIC, AND A ANTIBACTERIAL NON WOVEN FABRIC MANUFACTURED USING THE MANUFACTURING METHOD), and more specifically polypropylene It relates to a method for manufacturing an antibacterial nonwoven fabric containing copper deposition powder having antibacterial properties in fibers and an antibacterial nonwoven fabric manufactured by the manufacturing method.
일반적으로 공기필터 및 마스크는 필터재로서 멜트블로운 부직포를 사용하여 제조되는데, 여러 오염물질들을 걸러낸 부직포의 표면에는 각종 미생물들이 번식할 수 있으며, 이러한 미생물을 항균,살균하기 위해 부직포 자체에 항균성이 있는 항균 부직포가 개발되고 있다.In general, air filters and masks are manufactured using meltblown nonwoven fabric as a filter material. Various microorganisms can propagate on the surface of the nonwoven fabric from which various contaminants are filtered out. An antibacterial nonwoven fabric with this is being developed.
한편, 인체에 무해한 항균제로는, 은, 이산화티타늄, 산화아연 및 구리 등이 알려져 있다.Meanwhile, silver, titanium dioxide, zinc oxide, copper, and the like are known as antibacterial agents harmless to the human body.
상기 은은 질산으로 녹여 질산은으로 금속염을 만들고 분산제를 넣고 이를 다시 환원하면서 제올라이트(zeolite)에 첨착시키는 방법으로 분산제를 넣어 2 ~ 100nm의 미세한 은나노 제올라이트를 제조하여 항균제로써 사용되고 있다.The silver is melted with nitric acid to make a metal salt with silver nitrate, and a dispersant is added, and the dispersant is added to the zeolite while being reduced again to prepare a fine silver nano-zeolite of 2 to 100 nm, which is used as an antibacterial agent.
상기 이산화티타늄은 기계적 밀링 방법에 의하여 미세한 분말을 만들어 항균제로 이용하는데, 항균력을 나타내기 위해서는 자외선을 조사하여야 하는 단점을 가지고 있다.The titanium dioxide is used as an antibacterial agent by making a fine powder by a mechanical milling method, but has the disadvantage of having to be irradiated with ultraviolet rays to exhibit antibacterial activity.
또한, 상기 산화아연은 기계적인 밀링법이나 상기 은과 같이 금속 아연을 금속염으로 강산에 녹여 환원시켜 만드는 방법으로 항균제로 이용되고 있다.In addition, the zinc oxide is used as an antibacterial agent by a mechanical milling method or a method of reducing metal zinc as a metal salt by dissolving it in strong acid like the silver.
한편, 상기 구리는 상기 은보다 항균력이 우수하고 가격도 저렴하기 때문에, 부직포의 원료로 사용하여 항균 부직포를 제조하는 기술이 개발되고 있다.On the other hand, since the copper has excellent antibacterial activity and is inexpensive compared to the silver, a technique for manufacturing an antibacterial nonwoven fabric using it as a raw material for the nonwoven fabric is being developed.
구리를 원료로 하여 제조되는 항균 부직포 기술의 일례로, 대한민국 등록특허공보 제10-2239866호(2021.04.14.)(이하, '종래 기술'이라 함)에는 '항균성 및 내구성이 우수한 구리코팅 부직포의 제조방법'이 개시되어 있다.As an example of an antibacterial nonwoven fabric technology manufactured using copper as a raw material, Korean Patent Registration No. 10-2239866 (2021.04.14.) (hereinafter referred to as 'prior art') discloses 'a copper-coated nonwoven fabric with excellent antibacterial and durable properties' A manufacturing method' is disclosed.
상기 종래 기술은, (S1) 구리를 물리기상증착법으로 PE원료에 증착시켜 구리증착PE원료를 제조하는 단계와, (S2) 상기 구리증착PE원료를 컴파운딩하여 마스터배치로 제조한 후 펠렛화(pelletizing)하는 단계와, (S3) 펠렛화된 상기 구리증착PE원료를 시스(Sheath)부로 하고, PP원료를 코아(Core)부로 시스코아 복합방사하여 구리증착PE시스-PP코아 복합방사섬유로 제조하는 단계와, (S4) 상기 제조된 구리증착PE시스-PP코아 복합방사섬유를 써멀본드(Thermal bond) 부직포로 제조하는 단계를 포함한다.The prior art, (S1) depositing copper on PE raw material by physical vapor deposition to prepare a copper-deposited PE raw material, (S2) compounding the copper-deposited PE raw material to prepare a master batch, and then pelletizing ( pelletizing) and (S3) the pelletized copper-coated PE raw material as a sheath part, and the PP raw material as a core part by sheath core composite spinning to produce copper-coated PE sheath-PP core composite spun fibers and (S4) manufacturing the copper-coated PE sheath-PP core composite spun fiber into a thermal bond nonwoven fabric.
그런데, 상기 구리는 상기 은에 비해 강한 산화력을 가지고 있어서, 구리가 산화하게 되면 변색되는 단점과 더불어 항균력이 저하된다는 단점이 있는데, 상기 종래 기술은 상기 (S1) 단계에서 수득되는 구리증착PE원료는 변색으로 인해 부직포의 색상설정에 불리하게 작용하는 영향을 미칠 뿐만 아니라 부직포의 항균력도 저하시키는 문제점이 있다.However, the copper has a stronger oxidizing power than the silver, so when copper is oxidized, there is a disadvantage of discoloration and a decrease in antibacterial activity. In the prior art, the copper-coated PE raw material obtained in step (S1) is Due to discoloration, there is a problem that not only has an adverse effect on the color setting of the nonwoven fabric, but also lowers the antimicrobial activity of the nonwoven fabric.
또한, 상기 종래 기술은 상기 (S4) 단계에서 상기 구리증착PE시스-PP코아 복합방사섬유를 써멀본드 부직포로 제조함에 있어, 상기 구리증착PE시스-PP코아 복합방사섬유를 복수개 적층한 후 열접착하여 부직포를 제조하는 것이 아니라, 상기 구리증착PE시스-PP코아 복합방사섬유를 기재인 PET 섬유에 적층한 후 열접착하여 부직포를 제조하기 때문에, 상기 구리증착PE시스-PP코아 복합방사섬유를 복수개 적층하여 열접착하여 부직포를 제조하는 경우에 비해, 상대적으로 항균력이 저하되는 문제점도 있다.In addition, in the prior art, in manufacturing the copper-coated PE sheath-PP core composite spun fibers into a thermal bond nonwoven fabric in step (S4), a plurality of the copper-coated PE sheath-PP core composite spun fibers are laminated and then thermally bonded. Since the copper-coated PE sheath-PP core composite spun fiber is laminated on the base material PET fiber and then thermally bonded to produce the non-woven fabric, the copper-coated PE sheath-PP core composite spun fiber is not produced by manufacturing a nonwoven fabric. Compared to the case of manufacturing a nonwoven fabric by laminating and thermal bonding, there is also a problem in that antibacterial activity is relatively lowered.
본 발명의 기술적 과제는, 탄산칼슘 분말에 구리를 증착시켜 상대적으로 산화에 강한 구리항균제를 제조하여 부직포의 원료로 사용함으로서, 부직포의 색상설정에 유리할 뿐만 아니라 항균력이 우수한 항균 부직포의 제조방법 및 그 제조방법에 의해 제조된 항균 부직포를 제공하는 것이다.The technical problem of the present invention is to deposit copper on calcium carbonate powder to prepare a copper antimicrobial agent that is relatively resistant to oxidation and use it as a raw material for nonwoven fabric, so that it is not only advantageous in setting the color of the nonwoven fabric but also has excellent antibacterial activity. To provide an antibacterial nonwoven fabric produced by the manufacturing method.
본 발명의 다른 기술적 과제는, 구리항균제를 원료로 사용하여 제조된 방사섬유를 기재섬유에 적층하지 않고, 구리항균제를 원료로 사용하여 제조된 방사섬유들만을 적층하여 부직포를 제조함으로서, 항균력이 우수한 항균 부직포의 제조방법 및 그 제조방법에 의해 제조된 항균 부직포를 제공하는 것이다.Another technical problem of the present invention is to manufacture a nonwoven fabric by laminating only the spun fibers prepared using the copper antimicrobial agent as a raw material without laminating the spun fibers prepared using the copper antimicrobial agent as a raw material on the base fiber, thereby providing excellent antibacterial activity. To provide an antibacterial nonwoven fabric manufacturing method and an antibacterial nonwoven fabric manufactured by the manufacturing method.
본 발명의 기술적 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The technical problem of the present invention is not limited to the above-mentioned problems, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
상기 과제를 달성하기 위하여, 본 발명에 따른 항균 부직포의 제조방법은, (S1) 구리를 탄산칼슘 분말에 증착시켜 구리항균제를 제조하는 단계와, (S2) 상기 구리항균제를 폴리프로필렌과 혼합하여 마스터배치 칩을 제조하는 단계와, (S3) 상기 마스터배치 칩을 용융방사시켜 단층 부직포를 제조하는 단계와, (S4) 상기 단층 부직포의 적어도 일면에 상기 마스터배치 칩을 용융방사시켜 복층 부직포를 제조하는 단계와, (S5) 상기 복층 부직포를 압착롤러로 엠보싱 처리하는 단계를 포함한다.In order to achieve the above object, the method for manufacturing an antimicrobial nonwoven fabric according to the present invention includes (S1) depositing copper on calcium carbonate powder to prepare a copper antimicrobial agent, (S2) mixing the copper antimicrobial agent with polypropylene to master the master Preparing a batch chip, (S3) preparing a single-layer nonwoven fabric by melt-spinning the master batch chip, and (S4) melt-spinning the master batch chip on at least one surface of the single-layer non-woven fabric to produce a multi-layer nonwoven fabric and (S5) embossing the multilayer nonwoven fabric with a pressure roller.
상기 (S1) 단계에서, 상기 탄산칼슘 분말 및 상기 구리의 중량비는 99.7 : 0.3 내지 98.0 : 2.0일 수 있다.In the step (S1), the weight ratio of the calcium carbonate powder and the copper may be 99.7:0.3 to 98.0:2.0.
상기 (S1) 단계에서, 상기 탄산칼슘 분말의 입도는 1 내지 3㎛일 수 있다.In the step (S1), the particle size of the calcium carbonate powder may be 1 to 3 μm.
상기 (S2) 단계에서, 상기 구리항균제 및 상기 폴리프로필렌의 중량비는 10.0 : 90.0 내지 30.0 : 70.0일 수 있다.In the step (S2), the weight ratio of the copper antimicrobial agent and the polypropylene may be 10.0:90.0 to 30.0:70.0.
상기 (S3) 단계 및 상기 (S4) 단계에서, 상기 마스터배치 칩을 용융방사시킨 섬유 필라멘트의 직경은 10 내지 30㎛일 수 있다.In the step (S3) and the step (S4), the diameter of the fiber filament melt-spun from the master batch chip may be 10 to 30 μm.
상기 (S3) 단계 및 상기 (S4) 단계에서, 상기 마스터배치 칩은, 밀도가 0.90 내지 0.93g/㎤이고, 용융지수가 20 내지 60g/10min일 수 있다.In the (S3) step and the (S4) step, the masterbatch chip may have a density of 0.90 to 0.93g/cm 3 and a melt index of 20 to 60g/10min.
상기 (S5) 단계에서, 상기 복층 부직포는, 엠보싱율이 10 내지 30%이고, 단위중량이 10 내지 100g/㎡일 수 있다.In the step (S5), the multilayer nonwoven fabric may have an embossing rate of 10 to 30% and a unit weight of 10 to 100 g/m 2 .
본 발명에 따른 항균 부직포는 본 발명에 따른 항균 부직포의 제조방법에 의해 제조된다.The antibacterial nonwoven fabric according to the present invention is prepared by the method for manufacturing the antibacterial nonwoven fabric according to the present invention.
기타 실시예의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.Other embodiment specifics are included in the detailed description and drawings.
본 발명에 따른 항균 부직포의 제조방법 및 그 제조방법에 의해 제조된 항균 부직포는, 탄산칼슘 분말에 구리를 증착시켜 상대적으로 산화에 강한 구리항균제를 제조하여 부직포의 원료로 사용함으로서, 부직포의 색상설정에 유리할 뿐만 아니라 항균력이 우수해지는 효과가 있다.The antibacterial nonwoven fabric manufacturing method according to the present invention and the antibacterial nonwoven fabric produced by the manufacturing method are prepared by depositing copper on calcium carbonate powder to prepare a copper antimicrobial agent that is relatively resistant to oxidation and used as a raw material for the nonwoven fabric, thereby setting the color of the nonwoven fabric. Not only is it advantageous, but it also has the effect of improving antibacterial activity.
또한, 본 발명에 따른 항균 부직포의 제조방법 및 그 제조방법에 의해 제조된 항균 부직포는, 구리항균제를 원료로 사용하여 제조된 방사섬유를 기재섬유에 적층하지 않고, 구리항균제를 원료로 사용하여 제조된 방사섬유들만을 적층하여 부직포를 제조하기 때문에, 부직포의 항균력이 우수해지는 효과도 있다.In addition, the method for manufacturing an antimicrobial nonwoven fabric according to the present invention and the antibacterial nonwoven fabric produced by the method are prepared by using the copper antimicrobial agent as a raw material without laminating the spun fibers produced using the copper antimicrobial agent as a raw material on the base fiber. Since the nonwoven fabric is manufactured by laminating only the spun fibers, the antimicrobial activity of the nonwoven fabric is excellent.
본 발명의 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The effects of the present invention are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the description of the claims.
도 1은 본 발명의 실시예들에 의한 항균 부직포의 항균원료로 사용되는 구리항균제를 제조하는 장치를 나타내는 도면,1 is a view showing an apparatus for manufacturing a copper antimicrobial agent used as an antimicrobial raw material for an antibacterial nonwoven fabric according to embodiments of the present invention;
도 2는 구리를 백색분말인 포도당에 증착한 후 시간이 지남에 따라 관찰한 것을 나타내는 도면,2 is a view showing observations over time after depositing copper on glucose, which is a white powder;
도 3은 구리를 폴리에틸렌(PE) 칩에 증착한 후 시간이 지남에 따라 관찰한 것을 나타내는 도면,3 is a view showing observations over time after depositing copper on a polyethylene (PE) chip;
도 4는 구리를 탄산칼슘 분말에 증착한 후 시간이 지남에 따라 관찰한 것을 나타내는 도면,4 is a view showing observations over time after depositing copper on calcium carbonate powder;
도 5는 본 발명의 실시예들에 의한 항균 부직포의 제조방법에 따른 공정을 나타내는 블록도,5 is a block diagram showing a process according to a method for manufacturing an antibacterial nonwoven fabric according to embodiments of the present invention;
도 6은 본 발명의 제1 실시예에 의한 항균 부직포의 제조방법에 의해 제조된 항균 부직포를 나타내는 종단면도,6 is a longitudinal cross-sectional view showing an antibacterial nonwoven fabric manufactured by the method for manufacturing an antibacterial nonwoven fabric according to a first embodiment of the present invention;
도 7은 본 발명의 제1 실시예에 의한 항균 부직포의 제조방법에 의해 제조되는 항균 부직포의 제조장치를 나타내는 도면,7 is a view showing an apparatus for manufacturing an antibacterial nonwoven fabric produced by a method for manufacturing an antibacterial nonwoven fabric according to a first embodiment of the present invention;
도 8은 본 발명의 제2 실시예에 의한 항균 부직포의 제조방법에 의해 제조된 항균 부직포를 나타내는 종단면도,8 is a longitudinal cross-sectional view showing an antibacterial nonwoven fabric manufactured by a method for manufacturing an antibacterial nonwoven fabric according to a second embodiment of the present invention;
도 9는 본 발명의 제2 실시예에 의한 항균 부직포의 제조방법에 의해 제조되는 항균 부직포의 제조장치를 나타내는 도면이다.9 is a view showing an apparatus for manufacturing an antibacterial nonwoven fabric produced by a method for manufacturing an antibacterial nonwoven fabric according to a second embodiment of the present invention.
<부호의 설명><Description of codes>
1 : 폴리프로필렌 수지 2a : 제1 호퍼1: polypropylene resin 2a: first hopper
2b : 제2 호퍼 3a : 제1 압출기2b: second hopper 3a: first extruder
3b : 제2 압출기 4a : 제1 필터3b: second extruder 4a: first filter
4b : 제2 필터 5a : 제1 정량펌프4b: second filter 5a: first metering pump
5b : 제2 정량펌프 6a : 제1 스핀팩5b: second metering pump 6a: first spin pack
6b : 제2 스핀팩 7a : 제1 냉각 및 연신 장치6b: second spin pack 7a: first cooling and stretching device
7b : 제2 냉각 및 연신 장치 8 : 포밍 벨트7b: second cooling and stretching device 8: forming belt
9a : 제1 석션 장치 9b : 제2 석션 장치9a: first suction device 9b: second suction device
10 : 냉각장치 11 : 결합장치10: cooling device 11: coupling device
12, 13 : 압착 롤러 14 : 와인더12, 13: compression roller 14: winder
15 : 와인더 샤프트 16 : 언와인더15: winder shaft 16: unwinder
17 : 언와인더 샤프트 18 : 예열장치17: unwinder shaft 18: preheating device
19, 20 : 히팅 플레이트 100, 200 : 항균 부직포19, 20: heating plate 100, 200: antibacterial non-woven fabric
이하, 본 발명의 실시예들에 의한 항균 부직포의 제조방법 및 그 제조방법에 의해 제조된 항균 부직포를 도면들을 참고하여 설명하도록 한다.Hereinafter, a method for manufacturing an antibacterial nonwoven fabric according to embodiments of the present invention and an antibacterial nonwoven fabric manufactured by the manufacturing method will be described with reference to the drawings.
도 1은 본 발명의 실시예들에 의한 항균 부직포의 항균원료로 사용되는 구리항균제를 제조하는 장치를 나타내는 도면이다.1 is a view showing an apparatus for manufacturing a copper antimicrobial agent used as an antimicrobial raw material for an antimicrobial nonwoven fabric according to embodiments of the present invention.
도 1을 참조하면, 본 발명의 실시예들에 의한 항균 부직포의 항균원료로 사용되는 구리항균제는, 구리를 나노화하여 탄산칼슘 분말의 표면에 증착시켜서 제조된다. 구리를 나노화하기 위해서는 기계적 밀링법, 물리기상증착(PVD; Physical Vapor Deposition)법, 화학적인 방법 등이 고려될 수 있지만, 본 실시예에서는 상기 물리기상증착법을 이용하여 금속 구리를 나노화하여 담체에 증착시키는 방법을 사용하였다.Referring to Figure 1, the copper antimicrobial agent used as an antibacterial raw material of the antibacterial nonwoven fabric according to embodiments of the present invention is prepared by depositing nano-sized copper on the surface of calcium carbonate powder. In order to nanonize copper, a mechanical milling method, a physical vapor deposition (PVD) method, a chemical method, etc. may be considered, but in this embodiment, metal copper is nanonized using the physical vapor deposition method and deposited on a carrier. method was used.
또한, 구리가 증착될 담체를 선정하기 위해 여러 가지 물질들로 실험을 실시하여, 구리가 증착된 후에 가장 구리의 산화가 일어나지 않는 것을 담체로 사용함으로써, 구리항균제가 쉽게 산화되지 않고 부직포의 원료로 사용되었을 때 산화로 인한 변색에 의해 부직포의 색상설정에 악영향을 끼치는 일이 없어야 하는 바, 상기 구리를 상기 탄산칼슘 분말에 증착하였을 때 상기 구리가 쉽게 산화되지 않는다는 결론을 도출할 수 있었으며, 이에 대해서는 실시예들을 통해 추후에 자세히 살펴보기로 한다.In addition, by conducting experiments with various materials to select a carrier on which copper will be deposited, and using a carrier that does not oxidize copper the most after copper is deposited, the copper antimicrobial agent is not easily oxidized and can be used as a raw material for nonwoven fabrics. When used, the color setting of the nonwoven fabric should not be adversely affected by discoloration due to oxidation, and when the copper was deposited on the calcium carbonate powder, it was concluded that the copper was not easily oxidized. It will be examined in detail later through examples.
본 발명의 실시예들에 의한 구리항균제를 제조하는 장치는, 진공 증착조(30)와, 교반조(31)와, 교반날개(32)를 포함할 수 있다.An apparatus for manufacturing a copper antimicrobial agent according to embodiments of the present invention may include a vacuum deposition bath 30, a stirring bath 31, and stirring blades 32.
진공 증착조(30)는 내부에 진공 챔버를 형성할 수 있다. 진공 증착조(30)에는 진공 챔버를 형성하는 진공생성수단이 구비될 수 있으며, 상기 진공생성수단은 진공 증착조(30) 내의 진공압력을 10-3 내지 10-5 torr로 할 수 있다.The vacuum deposition bath 30 may form a vacuum chamber therein. A vacuum generating means for forming a vacuum chamber may be provided in the vacuum deposition bath 30 , and the vacuum generating means may set the vacuum pressure in the vacuum deposition bath 30 to 10 −3 to 10 −5 torr.
교반조(31)는 상측이 개구된 통 형상으로 형성될 수 있다. 교반조(31) 내에는 담체인 상기 탄산칼슘 분말(40)이 담지될 수 있다.The stirring tank 31 may be formed in a cylindrical shape with an open top. The calcium carbonate powder 40 as a carrier may be supported in the stirring tank 31 .
교반날개(32)는 교반조(31) 내의 바닥면에 회전 가능하게 구비될 수 있다. 교반날개(32)는 복수개의 블레이드를 가지는 축류팬 형상일 수 있다. 교반날개(32)의 회전축은 수직으로 배치될 수 있다. 교반날개(32)는 회전되는 경우 교반조(31) 내에 담지된 상기 탄산칼슘 분말을 교반할 수 있다.The stirring blades 32 may be rotatably provided on the bottom surface of the stirring tank 31 . The stirring blades 32 may be shaped like an axial flow fan having a plurality of blades. The rotating shaft of the stirring blades 32 may be arranged vertically. When the stirring blades 32 are rotated, the calcium carbonate powder supported in the stirring tank 31 may be stirred.
진공 증착조(30)내에서 교반조(31)보다 상측에는 구리(50)가 구비될 수 있다. 상기 진공 챔버 내에 불활성가스를 넣고 구리(50)에 소정의 전압을 가해서 구리 플라즈마를 생성시킬 수 있고, 상기 생성된 구리 플라즈마가 상기 탄산칼슘 분말(40)의 표면에 증착됨으로서, 본 발명의 실시예들에 의한 구리항균제가 제조될 수 있다. 여기서, 상기 불활성가스는 상기 구리 플라즈마를 생성하기 위한 가스로서, 진공 증착조(30) 내에 가득 채우지 않고 미량 넣는 것이 바람직하다. Copper 50 may be provided above the stirring bath 31 in the vacuum deposition bath 30 . By putting an inert gas into the vacuum chamber and applying a predetermined voltage to the copper 50 to generate copper plasma, the generated copper plasma is deposited on the surface of the calcium carbonate powder 40. Copper antimicrobial agents can be prepared by Here, the inert gas is a gas for generating the copper plasma, and it is preferable to put a small amount of the inert gas into the vacuum deposition tank 30 without filling it up.
상기 구리 플라즈마 생성방법으로는, DC 스퍼터링(DC sputtering), RF 스퍼터링, 레이저 스퍼터링, 전자빔 증착 및 가열법에 의한 열증착 등의 방법이 사용될 수 있다.As the copper plasma generating method, methods such as DC sputtering, RF sputtering, laser sputtering, electron beam evaporation, and thermal evaporation using a heating method may be used.
진공 증착조(30) 내에 투입되는 상기 불활성 기체는 아르곤(Ar), 네온(Ne), N₂,O₂, CH₄등이 사용될 수 있고, 바람직하게는 아르곤(Ar)일 수 있으나 이에 한정되는 것은 아니다.The inert gas introduced into the vacuum deposition bath 30 may be argon (Ar), neon (Ne), N2, O2, CH4, etc., preferably argon (Ar), but is not limited thereto.
본 발명의 실시예에 의한 구리항균제는, 탄산칼슘 분말 및 구리로 구성될 수 있다. 여기서, 상기 구리는 물리기상증착법에 의해 상기 탄산칼슘 분말의 표면에 증착될 수 있다. 상기 탄산칼슘 분말 및 상기 구리의 중량비는 99.7 : 0.3 내지 98.0 : 2.0일 수 있다. 상기 구리의 중량비가 0.3보다 낮을 경우, 상기 탄산칼슘 분말의 표면에 증착되는 상기 구리의 양이 적어 항균력 및 소취력이 좋지 않을 수 있다. 그리고, 상기 구리의 중량비가 2보다 클 경우, 상기 구리가 상기 탄산칼슘 분말의 표면에 중첩되게 증착되어 상기 구리의 중량당 비표면적이 낮아져 항균효율 및 소취효율이 좋지 않을 수 있다.The copper antimicrobial agent according to an embodiment of the present invention may be composed of calcium carbonate powder and copper. Here, the copper may be deposited on the surface of the calcium carbonate powder by physical vapor deposition. The weight ratio of the calcium carbonate powder and the copper may be 99.7:0.3 to 98.0:2.0. When the weight ratio of copper is lower than 0.3, the amount of copper deposited on the surface of the calcium carbonate powder is small, so antibacterial activity and deodorizing power may not be good. And, when the weight ratio of copper is greater than 2, the copper is deposited overlapping the surface of the calcium carbonate powder, and the specific surface area per weight of the copper is lowered, so antibacterial efficiency and deodorization efficiency may not be good.
본 발명의 실시예에 의한 구리항균제의 제조방법은, (a) 교반조(31)에 탄산칼슘 분말(40)을 담지시키는 단계와, (b) 진공 증착조(30) 내에 불활성 기체를 넣고 진공 증착조(30) 내에 구비된 구리(50)를 타겟으로 하여 구리 플라즈마를 생성시킴과 아울러 교반날개(32)를 회전시켜서 탄산칼슘 분말(40)의 표면에 상기 구리(50)를 증착시켜 구리항균제를 제조하는 단계를 포함할 수 있다. 상기 (b) 단계에서 제조된 상기 구리항균제에서, 상기 탄산칼슘 분말(40) 및 상기 구리(50)의 중량비는 99.7 : 0.3 내지 98.0 : 2.0일 수 있다.The method of manufacturing a copper antimicrobial agent according to an embodiment of the present invention includes (a) supporting calcium carbonate powder 40 in a stirring tank 31, (b) putting an inert gas into a vacuum deposition tank 30 and vacuum Copper plasma is generated by targeting the copper 50 provided in the deposition bath 30, and the stirring blades 32 are rotated to deposit the copper 50 on the surface of the calcium carbonate powder 40 to obtain a copper antimicrobial agent It may include the step of preparing. In the copper antimicrobial agent prepared in step (b), the weight ratio of the calcium carbonate powder 40 and the copper 50 may be 99.7:0.3 to 98.0:2.0.
본 발명의 실시예의 상기 (a) 단계에서 교반조(31)에 담지되는 상기 탄산칼슘 분말(40)의 입도는 1 내지 3㎛일 수 있다. 상기 탄산칼슘 분말(40)의 입도가 1㎛보다 작을 경우, 탄산칼슘 분말(40)의 표면에 구리(50)가 중첩되게 증착되어 구리(50)의 중량당 비표면적이 낮아져 항균효율 및 소취효율이 좋지 않을 수 있고, 탄산칼슘 분말(40)의 입자가 너무 작아 교반날개(32)의 회전 시 탄산칼슘 분말(40)이 상기 진공 챔버에서 비산될 수 있다. 그리고, 탄산칼슘 분말(40)의 입도가 3㎛보다 클 경우, 탄산칼슘 분말(40)의 표면에 구리(50)가 고르게 증착되지 못할 수 있다.In the step (a) of the embodiment of the present invention, the particle size of the calcium carbonate powder 40 supported in the stirring tank 31 may be 1 to 3 μm. When the particle size of the calcium carbonate powder 40 is smaller than 1 μm, the copper 50 is deposited to overlap on the surface of the calcium carbonate powder 40, so that the specific surface area per weight of the copper 50 is lowered, resulting in antibacterial efficiency and deodorization efficiency. This may not be good, and the particles of the calcium carbonate powder 40 are too small, and the calcium carbonate powder 40 may scatter in the vacuum chamber when the stirring blades 32 rotate. Also, when the particle size of the calcium carbonate powder 40 is larger than 3 μm, the copper 50 may not be evenly deposited on the surface of the calcium carbonate powder 40 .
본 발명의 실시예의 상기 (b) 단계에서 진공 증착조(30) 내의 진공압력은 10-3 내지 10-5 torr이다. 진공 증착조(30) 내의 진공압력이 10-3 torr보다 높을 경우 상기 구리 플라즈마의 생성율이 좋지 않아서 상기 탄산칼슘 분말(40)의 표면에 증착되는 구리의 양이 적을 수 있고, 진공 증착조(30) 내의 진공압력이 10-5 torr보다 낮을 경우 상기 구리 플라즈마의 생성율이 지나치게 많아서 상기 탄산칼슘 분말(40)의 표면에 증착되는 구리의 양이 지나치게 많을 수 있다.In the step (b) of the embodiment of the present invention, the vacuum pressure in the vacuum deposition bath 30 is 10 -3 to 10 -5 torr. When the vacuum pressure in the vacuum deposition tank 30 is higher than 10 -3 torr, the copper plasma generation rate is not good, so the amount of copper deposited on the surface of the calcium carbonate powder 40 may be small, and the vacuum deposition tank 30 ) When the vacuum pressure in the inside is lower than 10 -5 torr, the generation rate of the copper plasma is too high, and the amount of copper deposited on the surface of the calcium carbonate powder 40 may be too large.
이하, 상기 구리(50)를 담체에 증착함에 있어서, 상기 담체를 상기 탄산칼슘 분말(40)로 선정하였을 때, 상기 구리(50)가 쉽게 산화되지 않는다는 결론을 도출하게 된 실험에 대해 설명하기로 한다.Hereinafter, in depositing the copper 50 on the carrier, an experiment that led to the conclusion that the copper 50 is not easily oxidized when the calcium carbonate powder 40 is selected as the carrier will be described. do.
[실험 1] - 담체로 포도당 분말 사용[Experiment 1] - Using glucose powder as a carrier
백색 분말인 포도당 분말을 담체로 하여 물리기상증착법으로 99.9% 순도의 구리를 포도당 분말 중량대비 0.3% 증착하였다.Using white powdered glucose powder as a carrier, 99.9% pure copper was deposited at 0.3% of the weight of the glucose powder by physical vapor deposition.
포도당은 분자식 C6H12O6으로 이루어진 단당류이며 시험에서는 무수포도당 결정을 사용하였다.Glucose is a monosaccharide with a molecular formula of C 6 H 12 O 6 , and anhydrous glucose crystals were used in the test.
나노 구리 증착은 DC Spurttering방법을 사용하였고, 구리항균제 제조장치의 작동은 전력을 16KW로 하여 23시간 동안 진행하여 구리 농도 3000ppm(0.3 중량%)의 증착량을 얻을 수 있었다.The nano-copper deposition used the DC sputtering method, and the operation of the copper antimicrobial agent manufacturing device was carried out for 23 hours with 16KW of power to obtain a deposition amount of 3000ppm (0.3% by weight) of copper concentration.
시간 단축을 위하여 여러 조건을 시행하였는데, 구리향균제 제조장치의 전력 16KW이상에서는 무수포도당 결정이 고온에 녹아서 서로 엉겨 붙는 현상이 발생하여, 구리항균제 제조장치의 전력은 무수포도당 결정이 서로 엉겨 붙지 않는 한계치인 16KW로 작업하였다.Several conditions were implemented to reduce the time, but when the power of the copper antibacterial agent manufacturing device is over 16KW, the anhydrous glucose crystals melt at high temperature and stick to each other. It worked with 16KW of phosphorus.
도 2는 구리를 백색분말인 포도당에 증착한 후 시간이 지남에 따라 관찰한 것을 나타내는 도면이다.2 is a view showing observations over time after depositing copper on glucose, which is a white powder.
도 2를 참조하면, 최초에 백색분말이었던 무수포도당 결정은 구리 증착 후에 도 2의 (a)도에 참조된 바와 같이 흑적색으로 색상변화가 있었다. 구리를 증착한 후에는 흑적색이었던 것이 상대습도 80%RH의 조건하에서 방치 시 시간이 흐름에 따라 구리가 산화되어 점점 푸르게 변해가는 것이 관찰되었다. 즉, 도 2의 (b)도는 무수포도당 결정에 구리를 증착한 후 2개월 후를 나타내고, 도 2의 (c)도는 무수포도당 결정에 구리를 증착한 후 5개월 후를 나타낸다.Referring to FIG. 2 , the anhydrous glucose crystals, which were initially white powder, changed color to black red after copper deposition, as shown in (a) of FIG. 2 . After depositing copper, it was observed that the black-red color gradually changed to blue due to oxidation of copper over time when left under the condition of 80% RH relative humidity. That is, FIG. 2 (b) shows two months after depositing copper on anhydrous glucose crystals, and FIG. 2 (c) shows five months after depositing copper on anhydrous glucose crystals.
이와 같이 포도당 분말 중량대비 구리가 0.3 중량% 증착되어 제조된 구리항균제를, 폴리프로필렌(Polypropylene)에 각각 폴리프로필렌의 중량대비 1%, 3%, 5%, 10% 및 20%를 혼합하여 사출하여 가로 50mm, 세로 50mm, 두께 1mm의 플라스틱 기판을 만든 후, 상기 기판의 표면에 대하여 항균도 시험을 시행하였다.In this way, the copper antimicrobial agent prepared by depositing 0.3% by weight of copper relative to the weight of glucose powder is mixed with 1%, 3%, 5%, 10% and 20% of the weight of polypropylene, respectively, and injected. After making a plastic substrate having a width of 50 mm, a length of 50 mm, and a thickness of 1 mm, an antibacterial test was performed on the surface of the substrate.
시험방법은 JIS Z 2801:2010(필름밀착법)으로 황색포도상구균 및 대장균에 대하여 24시간 후 균수를 대조군과 비교하였으며, 시험 결과는 아래의 표 1과 같았다.The test method was JIS Z 2801: 2010 (film adhesion method), and the number of bacteria after 24 hours was compared with the control group for Staphylococcus aureus and Escherichia coli, and the test results are shown in Table 1 below.
구분division 황색포도상구균Staphylococcus aureus 대장균Escherichia coli
최초 균수(CFL/mL)Initial bacterial count (CFL/mL) 2.7 x 105 2.7 x 10 5 2.2 x 105 2.2 x 10 5
대조군control group 6.5 x 106 6.5 x 10 6 4.9 x 107 4.9 x 10 7
PP+CU/포도당 1%PP+CU/glucose 1% 00 00
PP+CU/포도당 3%PP+CU/glucose 3% 00 00
PP+CU/포도당 5%PP+CU/Glucose 5% 82.0%82.0% 00
PP+CU/포도당 10%PP+CU/glucose 10% 99.9%99.9% 00
PP+CU/포도당 20%PP+CU/glucose 20% 99.9%99.9% 99.9%99.9%
상기 시험은 포도당 분말 중량대비 구리가 0.3 중량% 증착되어 제조된 구리항균제의 산화가 진행되기 전에 시험한 것으로, 산화 진행 후에는 폴리프로필렌(PP) 중량대비 구리항균제를 20%를 혼합하였을 때에도 대장균에 대해 99.9%의 항균력에 못 미치는 결과가 나왔다. 이는 산화가 진행되더라도 항균력은 나타내지만 그 효과는 산화되지 않은 상태에 미치지 못한다는 결과로 볼 수 있다.The test was conducted before the oxidation of the copper antimicrobial agent prepared by depositing 0.3% by weight of copper relative to the weight of the glucose powder, and after the oxidation progressed, even when 20% of the copper antimicrobial agent was mixed with respect to the weight of polypropylene (PP), E. coli The result was less than 99.9% of antibacterial activity. This can be seen as a result that antibacterial activity is exhibited even when oxidation proceeds, but the effect does not reach the non-oxidized state.
[실험 2] - 담체로 폴리에틸렌(PE) 칩 사용[Experiment 2] - Using a polyethylene (PE) chip as a carrier
폴리에틸렌 칩(PE)을 담체로 하여 물리기상증착법으로 99.9% 순도의 구리를 폴리에틸렌(PE) 칩 중량대비 0.3% 증착하였다.Using a polyethylene chip (PE) as a carrier, copper of 99.9% purity was deposited by 0.3% of the weight of the polyethylene (PE) chip by physical vapor deposition.
나노 구리 증착은 DC Spurttering방법을 사용하였고, 무기항균제 제조장치의 작동은 전력을 16KW로 하여 13시간 동안 진행하여 구리 농도 3000ppm(0.3 중량%)의 증착량을 얻을 수 있었다.Nano copper deposition used the DC sputtering method, and the operation of the inorganic antimicrobial agent manufacturing device was carried out for 13 hours with a power of 16KW to obtain a deposition amount of 3000ppm (0.3% by weight) of copper concentration.
시간 단축을 위하여 여러 조건을 시행하였는데, 무기항균제 제조장치의 전력 16KW이상에서는 폴리에틸렌(PE) 칩이 고온에 녹아서 서로 엉겨 붙는 현상이 발생하여, 구리항균제 제조장치의 전력은 폴리에틸렌(PE) 칩이 서로 엉겨 붙지 않는 한계치인 16KW로 작업하였다.In order to shorten the time, various conditions were implemented. In the power of 16KW or more of the inorganic antimicrobial agent manufacturing device, polyethylene (PE) chips melted at high temperature and entangled with each other, and the power of the copper antimicrobial agent manufacturing device I worked with 16KW, the limit of not sticking.
도 3은 구리를 폴리에틸렌(PE) 칩에 증착한 후 시간이 지남에 따라 관찰한 것을 나타내는 도면이다.3 is a view showing observations over time after depositing copper on a polyethylene (PE) chip.
도 3을 참조하면, 최초에 투명이었던 폴리에틸렌(PE) 칩은 구리 증착 후에 도 3의 (a)도에 참조된 바와 같이 흑색으로 색상변화가 있었다. 구리를 증착한 후에는 흑색이었던 것이 상대습도 80%RH의 조건하에서 방치 시 시간이 흐름에 따라 구리가 산화되어 서서히 푸르게 변해가는 것이 관찰되었다. 도 3의 (b)도는 폴리에틸렌(PE) 칩에 구리를 증착한 후 4개월 후를 나타낸다.Referring to FIG. 3 , the initially transparent polyethylene (PE) chip had a color change to black after copper deposition, as shown in (a) of FIG. 3 . After depositing copper, it was observed that the black color gradually turned blue as time passed when left under the condition of 80% RH as the copper was oxidized. Figure 3 (b) shows four months after depositing copper on a polyethylene (PE) chip.
이와 같이 폴리프로필렌(PE) 칩 중량대비 구리가 0.3 중량% 증착되어 제조된 구리항균제를, 폴리프로필렌(Polypropylene)에 각각 폴리프로필렌의 중량대비 10%, 15% 및 20%를 혼합하여 사출하여 가로 50mm, 세로 50mm, 두께 1mm의 플라스틱 기판을 만든 후, 상기 기판의 표면에 대하여 항균도 시험을 시행하였다.In this way, the copper antimicrobial agent prepared by depositing 0.3% by weight of copper relative to the weight of the polypropylene (PE) chip is mixed with 10%, 15%, and 20% of the weight of polypropylene, respectively, and injected to a width of 50 mm. , After making a plastic substrate having a length of 50 mm and a thickness of 1 mm, an antibacterial test was performed on the surface of the substrate.
시험방법은 JIS Z 2801:2010(필름밀착법)으로 황색포도상구균 및 대장균에 대하여 24시간 후 균수를 대조군과 비교하였으며, 시험 결과는 아래의 표 2와 같았다.The test method was JIS Z 2801: 2010 (film adhesion method), and the number of bacteria after 24 hours was compared with the control group for Staphylococcus aureus and Escherichia coli, and the test results are shown in Table 2 below.
구분division 황색포도상구균Staphylococcus aureus 대장균Escherichia coli
최초 균수(CFL/mL)Initial bacterial count (CFL/mL) 1.4 x 104 1.4 x 10 4 1.4 x 104 1.4 x 10 4
대조군control group 2.6 x 104 2.6 x 10 4 1.1 x 106 1.1 x 10 6
PP+Cu/PE 10%PP+Cu/PE 10% 00 71.8%71.8%
PP+Cu/PE 15%PP+Cu/PE 15% 00 82.4%82.4%
PP+Cu/PE 20%PP+Cu/PE 20% 99.9%99.9% 99.9%99.9%
상기 시험은 폴리에틸렌(PE) 칩 중량대비 구리가 0.3 중량% 증착되어 제조된 구리항균제의 산화가 진행되기 전에 시험한 것으로, 산화 진행 후에는 폴리프로필렌(PP) 중량대비 구리항균제를 20%를 혼합하였을 때에도 대장균에 대해 99.9%의 항균력에 못 미치는 결과가 나왔다. 이는 산화가 진행되더라도 항균력은 나타내지만 그 효과는 산화되지 않은 상태에 미치지 못한다는 결과로 볼 수 있다.The test was conducted before the oxidation of the copper antimicrobial agent prepared by depositing 0.3% by weight of copper relative to the weight of the polyethylene (PE) chip. Even when tested, the results were less than 99.9% of the antibacterial activity against E. coli. This can be seen as a result that antibacterial activity is exhibited even when oxidation proceeds, but the effect does not reach the non-oxidized state.
[실험 3] - 담체로 탄산칼슘 분말 사용[Experiment 3] - Using calcium carbonate powder as a carrier
백색 분말인 탄산칼슘 분말을 담체로 하여 물리기상증착법으로 99.9% 순도의 구리를 탄산칼슘 분말 중량대비 0.8% 증착하였다.Using the white powdery calcium carbonate powder as a carrier, 99.9% pure copper was deposited by physical vapor deposition in an amount of 0.8% based on the weight of the calcium carbonate powder.
탄산칼슘 분말은 1 내지 3㎛의 입도를 가진 것으로 99.9%이상의 순도가 높은 중탄산칼슘 분말을 사용하였다. 탄산칼슘 분말은 공업적으로 제조된 포도당 분말이나 폴리프로필렌 칩에 비하여 입도분포가 커서 균일한 크기로 걸러진 분말을 사용하지 않을 경우 1㎛이하의 미세한 분말이 진공 챔버에서 비산하여 작업성을 크게 해치는 결과를 보였다.The calcium carbonate powder had a particle size of 1 to 3 μm, and calcium bicarbonate powder having a purity of 99.9% or more was used. Calcium carbonate powder has a larger particle size distribution than industrially manufactured glucose powder or polypropylene chips, so if you do not use powder that has been filtered to a uniform size, fine powders of 1 μm or less will scatter in the vacuum chamber, greatly impairing workability. showed
나노 구리 증착은 DC Spurttering방법을 사용하였고, 무기항균제 제조장치의 작동은 전력을 30KW로 하여 8시간 동안 진행하여 구리 농도 9000ppm(0.8 중량%)의 증착량을 얻을 수 있었다.The nano-copper deposition used the DC sputtering method, and the operation of the inorganic antimicrobial agent manufacturing device was carried out for 8 hours with a power of 30KW to obtain a deposition amount of 9000ppm (0.8% by weight) of copper concentration.
탄산칼슘 분말은 내부온도가 300℃까지 오르더라도 녹지 않아서 작업이 가능하고 고온에서는 시간당 증착량도 커서 생산성이 크게 향상되는 결과를 얻었다.Calcium carbonate powder does not melt even when the internal temperature rises to 300 ° C, so it is possible to work, and at high temperatures, the amount of deposition per hour is large, resulting in greatly improved productivity.
즉, 탄산칼슘 분말은 고온에서도 녹지 않아서 다른 소재에 비하여 담체로 사용 시에 무기항균제의 높은 생산성을 가지며, 탄산칼슘 분말에 구리를 증착한 후에 시간이 경과되어도 산화가 일어나기 어렵기 때문에, 보관이 용이하고, 항균제로 사용이 되었을 때 높은 항균력을 나타내었다.That is, calcium carbonate powder does not melt even at high temperatures, so it has higher productivity of inorganic antimicrobial agents when used as a carrier than other materials, and it is easy to store because it is difficult to oxidize even after time elapses after copper is deposited on calcium carbonate powder. and showed high antibacterial activity when used as an antibacterial agent.
탄산칼슘 분말이 시간이 경과되더라도 구리의 산화를 막는 이유는, 탄산칼슘은 칼사이트 구조를 하고 있기 때문에, 칼슘(Ca) 양이온(+2가)과 탄산(CO3)음이온(-2가)의 이온결합에 있어서, 탄소(C) 주위에 배위결합을 하고 있는 3개의 산소(O)와 구리가 전자를 주고받으면서 안정화되기 때문이다.The reason why calcium carbonate powder prevents oxidation of copper over time is that calcium carbonate has a calcite structure, so the calcium (Ca) cation (+2 valency) and carbonate (CO 3 ) anion (-2 valency) This is because in the ionic bond, three oxygens (O) and copper, which are coordinated around carbon (C), are stabilized by exchanging electrons.
도 4는 구리를 탄산칼슘 분말에 증착한 후 시간이 지남에 따라 관찰한 것을 나타내는 도면이다.4 is a view showing observations over time after depositing copper on calcium carbonate powder.
도 4를 참조하면, 최초에 백색분말이었던 탄산칼슘 분말은 구리 증착 후에 도 4의 (a)도에 참조된 바와 같이 회적색으로 색상변화가 있었다. 구리를 증착한 후에 회적색인 탄산칼슘 분말은 상대습도 80%RH의 조건하에서 방치 시 시간이 흘러도 구리가 산화되지 않고 색상을 유지하는 것이 관찰되었다. 도 4의 (b)도는 탄산칼슘 분말에 구리를 증착한 후 2개월 후를 나타내고, 도 4의 (c)도는 탄산칼슘 분말에 구리를 증착한 후 5개월 후를 나타낸다.Referring to FIG. 4 , the calcium carbonate powder, which was initially a white powder, had a color change to grayish red after copper deposition, as shown in FIG. 4 (a). After depositing copper, it was observed that the grayish-red calcium carbonate powder did not oxidize and maintained its color over time when left under the condition of a relative humidity of 80% RH. Figure 4 (b) shows two months after depositing copper on calcium carbonate powder, and Figure 4 (c) shows five months after depositing copper on calcium carbonate powder.
이와 같이 탄산칼슘 분말 중량대비 구리가 0.8 중량% 증착되어 제조된 구리항균제를, 폴리프로필렌(Polypropylene)에 각각 폴리프로필렌의 중량대비 0.5%, 1%, 3% 및 5%를 혼합하여 사출하여 가로 50mm, 세로 50mm, 두께 1mm의 플라스틱 기판을 만든 후, 상기 기판의 표면에 대하여 항균도 시험을 시행하였다.In this way, the copper antimicrobial agent prepared by depositing 0.8% by weight of copper relative to the weight of calcium carbonate powder is mixed with 0.5%, 1%, 3%, and 5% of the weight of polypropylene in polypropylene, respectively, and injected to a width of 50 mm. , After making a plastic substrate having a length of 50 mm and a thickness of 1 mm, an antibacterial test was performed on the surface of the substrate.
시험방법은 JIS Z 2801:2010(필름밀착법)으로 황색포도상구균 및 대장균에 대하여 24시간 후 균수를 대조군과 비교하였으며, 시험 결과는 아래의 표 3과 같았다.The test method was JIS Z 2801: 2010 (film adhesion method), and the number of bacteria after 24 hours was compared with the control group for Staphylococcus aureus and Escherichia coli, and the test results are shown in Table 3 below.
구분division 황색포도상구균Staphylococcus aureus 대장균Escherichia coli
최초 균수(CFL/mL)Initial bacterial count (CFL/mL) 1.5 x 104 1.5 x 10 4 1.4 x 104 1.4 x 10 4
대조군control group 3.0 x 104 3.0 x 10 4 3.3 x 105 3.3 x 10 5
PP+Cu/탄산칼슘 0.5%PP+Cu/calcium carbonate 0.5% 99.9%99.9% 00
PP+Cu/탄산칼슘 1%PP+Cu/calcium carbonate 1% 99.9%99.9% 92.7%92.7%
PP+Cu/탄산칼슘 3%PP+Cu/calcium carbonate 3% 99.9%99.9% 99.9%99.9%
PP+Cu/탄산칼슘 5%PP+Cu/calcium carbonate 5% 99.9%99.9% 99.9%99.9%
상기 시험은 탄산칼슘 분말 중량대비 구리가 0.8 중량% 증착하여 구리항균제를 제조 후 2개월 경과된 것을 가지고 시험한 것으로, 6개월 이상 경과된 구리항균제로 재시험하였을 때에도 표 3과 동일한 시험 결과를 얻었다.In the test, 0.8% by weight of copper was deposited relative to the weight of the calcium carbonate powder, and the copper antimicrobial agent was tested with two months after the preparation.
이와 같이, 탄산칼슘 분말의 표면에 구리를 증착시켜서 제조된 구리항균제가 시간이 지나도 변색이 적고 항균력도 우수한 것을 알 수 있다. 따라서, 탄산칼슘 분말의 표면에 구리를 증착시켜서 제조된 구리항균제를 부직포의 원료로 사용하게 되면, 부직포의 색상설정의 자유도를 높일 수 있을 뿐만 아니라 항균력도 장시간 유지할 수 있다.As such, it can be seen that the copper antimicrobial agent prepared by depositing copper on the surface of the calcium carbonate powder has little discoloration and excellent antibacterial activity over time. Therefore, when the copper antimicrobial agent prepared by depositing copper on the surface of calcium carbonate powder is used as a raw material for nonwoven fabric, not only can the freedom of color setting of the nonwoven fabric be increased, but also antibacterial activity can be maintained for a long time.
도 5는 본 발명의 실시예들에 의한 항균 부직포의 제조방법에 따른 공정을 나타내는 블록도이다.5 is a block diagram showing a process according to a method for manufacturing an antibacterial nonwoven fabric according to embodiments of the present invention.
도 5를 참조하면, 본 발명의 실시예들에 의한 항균 부직포의 제조방법은, (S1) 구리를 탄산칼슘 분말에 증착시켜 구리항균제를 제조하는 단계와, (S2) 상기 구리항균제를 폴리프로필렌과 혼합하여 마스터배치 칩을 제조하는 단계와, (S3) 상기 마스터배치 칩을 용융방사시켜 단층 부직포를 제조하는 단계와, (S4) 상기 단층 부직포의 적어도 일면에 상기 마스터배치 칩을 용융방사시켜 복층 부직포를 제조하는 단계와, (S5) 상기 복층 부직포를 압착롤러로 엠보싱 처리하는 단계를 포함할 수 있다.Referring to Figure 5, the method of manufacturing an antibacterial nonwoven fabric according to embodiments of the present invention, (S1) depositing copper on calcium carbonate powder to prepare a copper antimicrobial agent, (S2) the copper antimicrobial agent with polypropylene Mixing to prepare a masterbatch chip, (S3) melt-spinning the masterbatch chip to prepare a single-layer nonwoven fabric, (S4) melt-spinning the masterbatch chip on at least one surface of the single-layer nonwoven fabric to produce a multi-layer nonwoven fabric and (S5) embossing the multilayer nonwoven fabric with a compression roller.
상기 (S1) 단계에서, 상기 탄산칼슘 분말 및 상기 구리의 중량비는 99.7 : 0.3 내지 98.0 : 2.0일 수 있다. 상기 구리의 중량비가 0.3보다 낮을 경우, 상기 탄산칼슘 분말의 표면에 증착되는 상기 구리의 양이 적어 항균력 및 소취력이 좋지 않을 수 있다. 그리고, 상기 구리의 중량비가 2보다 클 경우, 상기 구리가 상기 탄산칼슘 분말의 표면에 중첩되게 증착되어 상기 구리의 중량당 비표면적이 낮아져 항균효율 및 소취효율이 좋지 않을 수 있다.In the step (S1), the weight ratio of the calcium carbonate powder and the copper may be 99.7:0.3 to 98.0:2.0. When the weight ratio of copper is lower than 0.3, the amount of copper deposited on the surface of the calcium carbonate powder is small, so antibacterial activity and deodorizing power may not be good. And, when the weight ratio of copper is greater than 2, the copper is deposited overlapping the surface of the calcium carbonate powder, and the specific surface area per weight of the copper is lowered, so antibacterial efficiency and deodorization efficiency may not be good.
또한, 상기 (S1) 단계에서, 상기 탄산칼슘 분말의 입도는 1 내지 3㎛일 수 있다. 상기 탄산칼슘 분말(40)의 입도가 1㎛보다 작을 경우, 탄산칼슘 분말(40)의 표면에 구리(50)가 중첩되게 증착되어 구리(50)의 중량당 비표면적이 낮아져 항균효율 및 소취효율이 좋지 않을 수 있고, 탄산칼슘 분말(40)의 입자가 너무 작아 교반날개(32)의 회전 시 탄산칼슘 분말(40)이 상기 진공 챔버에서 비산될 수 있다. 그리고, 탄산칼슘 분말(40)의 입도가 3㎛보다 클 경우, 탄산칼슘 분말(40)의 표면에 구리(50)가 고르게 증착되지 못할 수 있다.In addition, in the step (S1), the particle size of the calcium carbonate powder may be 1 to 3 μm. When the particle size of the calcium carbonate powder 40 is smaller than 1 μm, the copper 50 is deposited to overlap on the surface of the calcium carbonate powder 40, so that the specific surface area per weight of the copper 50 is lowered, resulting in antibacterial efficiency and deodorization efficiency. This may not be good, and the particles of the calcium carbonate powder 40 are too small, and the calcium carbonate powder 40 may scatter in the vacuum chamber when the stirring blades 32 rotate. Also, when the particle size of the calcium carbonate powder 40 is larger than 3 μm, the copper 50 may not be evenly deposited on the surface of the calcium carbonate powder 40 .
상기 (S2) 단계에서, 상기 구리항균제 및 상기 폴리프로필렌의 중량비는 10.0 : 90.0 내지 30.0 : 70.0일 수 있다. 상기 구리항균제는 상기 폴리프로필렌에 10 내지 30중량%의 비율로 혼합되도록 하는데, 만일 10중량%보다 낮은 비율로 혼합하면 세균 및 바이러스 박멸 효과가 미비하여 바람직하지 않고, 반대로 30중량%보다 많이 혼합하면 방사성이 저하되어 생산성이 나빠져 바람직하지 않다.In the step (S2), the weight ratio of the copper antimicrobial agent and the polypropylene may be 10.0:90.0 to 30.0:70.0. The copper antimicrobial agent is mixed with the polypropylene at a ratio of 10 to 30% by weight. If mixed at a ratio lower than 10% by weight, the effect of eradicating bacteria and viruses is insufficient, which is undesirable. It is undesirable because spinnability is lowered and productivity is deteriorated.
상기 (S3) 단계에서 상기 단층 부직포는 상기 복층 부직포를 구성하는 홑겹(one ply)의 부직포일 수 있고, 상기 (S4) 단계에서 상기 복층 부직포는 상기 단층 부직포가 적어도 두 겹(at least two plies) 혹은 적어도 두 층(at least two layers)으로 이루어진 구조일 수 있다. 하나의 복층 부직포를 구성하는 단층 부직포는 동일한 물성 및 크기를 갖는 것일 수 있으나, 필요에 따라, 두께와 같은 요건을 달리하는 단층 부직포들이 적층 결합되어 하나의 복층 부직포를 구성할 수 있다. 단층 부직포의 두께는 특별히 제한되지 않으며, 최종 제품의 용도 및 적층 개수 등을 고려하여 당업계에서 통상적으로 사용되는 두께의 부직포를 사용할 수 있다. 이하, 설명에서 '두 겹'은 '두 층'과 동일한 의미로 사용될 수 있고, '세 겹'은 '세 층'과 동일한 의미로 사용될 수 있다.In the step (S3), the single-layer nonwoven fabric may be a one-ply nonwoven fabric constituting the multi-layer nonwoven fabric, and in the step (S4), the single-layer nonwoven fabric is at least two plies Alternatively, it may be a structure composed of at least two layers. The single-layer nonwoven fabric constituting one multi-layer non-woven fabric may have the same physical properties and size, but, if necessary, single-layer non-woven fabrics having different requirements such as thickness may be laminated and combined to form one multi-layer non-woven fabric. The thickness of the single-layer nonwoven fabric is not particularly limited, and a nonwoven fabric having a thickness commonly used in the art may be used in consideration of the purpose of the final product and the number of layers. Hereinafter, in the description, 'two layers' may be used as the same meaning as 'two layers', and 'three layers' may be used as the same meaning as 'three layers'.
상기 (S3) 단계 및 상기 (S4) 단계에서, 상기 마스터배치 칩을 용융방사시킨 섬유 필라멘트의 직경은 10 내지 30㎛일 수 있다. 섬유 필라멘트의 직경이 10㎛ 미만인 경우에는 필라멘트가 너무 가늘어서 충분한 파단강력이 발휘되지 못하며, 섬유 필라멘트의 직경이 30㎛을 초과하는 경우에는 필라멘트가 너무 굵어서 배향이 충분히 이루어지지 않아 오히려 파단강력이 감소되고 유연하지 않게 되어 제품으로 사용하기 곤란하다.In the step (S3) and the step (S4), the diameter of the fiber filament melt-spun from the master batch chip may be 10 to 30 μm. If the diameter of the fiber filament is less than 10㎛, the filament is too thin and sufficient breaking strength is not exhibited. If the diameter of the fiber filament exceeds 30㎛, the filament is too thick and orientation is not sufficiently achieved, so the breaking strength is reduced. It becomes inflexible and difficult to use as a product.
상기 (S3) 단계 및 상기 (S4) 단계에서, 상기 마스터배치 칩은, 밀도가 0.90 내지 0.93g/㎤이고, 용융지수가 20 내지 60g/10min일 수 있다. 상기 마스터배치 칩의 밀도가 0.90g/㎤ 미만인 경우 부직포 강도가 낮아질 수 있고, 상기 마스터배치 칩의 밀도가 0.93g/㎤를 초과하는 경우 용융온도가 높아져 부직포의 접착온도가 높아지는 문제가 발생할 수 있다. 상기 마스터배치 칩의 용융지수가 20g/10min 미만인 경우 용융물의 흐름성이 너무 낮아 섬유의 형성이 어려워 부직포 제조가 용이하지 않고, 상기 마스터배치 칩의 용융지수가 60g/10min을 초과하는 경우 부직포의 강도가 낮아지는 문제가 발생할 수 있다.In the (S3) step and the (S4) step, the masterbatch chip may have a density of 0.90 to 0.93g/cm 3 and a melt index of 20 to 60g/10min. When the density of the masterbatch chip is less than 0.90 g / cm 3, the strength of the nonwoven fabric may be lowered, and when the density of the masterbatch chip exceeds 0.93 g / cm 3, the melting temperature increases and the adhesion temperature of the nonwoven fabric increases. A problem may occur. . When the melt index of the masterbatch chip is less than 20g/10min, the flowability of the melt is too low, making it difficult to form fibers, making it difficult to manufacture a nonwoven fabric, and when the melt index of the masterbatch chip exceeds 60g/10min, the strength of the nonwoven fabric A problem of lowering may occur.
상기 (S5) 단계에서, 상기 복층 부직포는, 엠보싱율이 10 내지 30%이고, 단위중량이 10 내지 100g/㎡일 수 있다. 상기 엠보싱율이 5% 미만인 경우에는 단층 부직포간의 접착력이 저하되어 상기 단위 부직포들이 서로 분리될 수 있으며, 엠보싱율이 30%를 초과하는 경우에는 제품 유연성이 저하되는 문제가 발생된다. 복층 부직포의 단위중량이 10g/㎡ 미만이면 파단강력이 약하여 제품으로 사용할 수 없게 되고, 복층 부직포의 단위중량이 100g/㎡보다 크면 단층 부직포간의 접착력이 약해서 서로 분리되어 제품으로 사용할 수 없게 된다.In the step (S5), the multilayer nonwoven fabric may have an embossing rate of 10 to 30% and a unit weight of 10 to 100 g/m 2 . When the embossing rate is less than 5%, the adhesive strength between single-layer nonwoven fabrics is lowered and the unit nonwoven fabrics may be separated from each other, and when the embossing rate exceeds 30%, product flexibility is lowered. If the unit weight of the multi-layer nonwoven fabric is less than 10 g / m 2, the breaking strength is weak and cannot be used as a product.
상기 (S4) 단계와 (S5) 단계 사이에 실시될 수 있는 냉각은 25℃ 이하의 온도에서 실시될 수 있으며, 통상적인 냉각 장치를 이용하여 수행될 수 있다. 냉각 온도가 25℃를 초과하는 경우에는 단층 부직포의 표면이 매끄럽게 되어 압착롤러를 사용하더라도 단층 부직포 간의 물리적 결합이 잘 일어나지 않는 문제가 발생할 수 있다. 본 발명에서 압착롤러는 일정한 조건하에 복층 부직포를 압착시켜 엠보싱이 발현되도록 한다.The cooling, which may be performed between the steps (S4) and (S5), may be performed at a temperature of 25° C. or less, and may be performed using a conventional cooling device. When the cooling temperature exceeds 25 ° C., the surface of the single-layer nonwoven fabric becomes smooth, and even if a compression roller is used, physical bonding between the single-layer nonwoven fabrics may not occur well. In the present invention, the compression roller compresses the multilayer nonwoven fabric under certain conditions so that embossing is expressed.
상기 (S5) 단계에서는 압착롤러와 함께, 열 및 접착제(바인더) 중 적어도 하나가 이용될 수 있다. 열을 이용하는 경우에는 신도의 증가를 적절히 억제하기 위하여 압착롤러의 온도를 130 내지170℃ 범위로 할 수 있다. 압착롤러의 온도가 130℃ 미만인 경우에는, 복층 부직포가 충분히 열을 받지 못하여 단층 부직포간의 접착력이 낮아진다. 압착롤러의 온도가 170℃를 초과하는 경우에는, 복층 부직포의 표면이 용융되어 압착롤러에 접착되어 작업이 진행되지 않거나 복층 부직포가 열에 의해 손상되어 강도가 저하되는 단점이 있다.In the step (S5), at least one of heat and adhesive (binder) may be used together with the compression roller. In the case of using heat, the temperature of the compression roller may be in the range of 130 to 170 ° C. in order to appropriately suppress the increase in elongation. When the temperature of the compression roller is less than 130° C., the multi-layered nonwoven fabric does not receive enough heat, and thus the adhesive strength between the single-layer nonwoven fabrics is lowered. When the temperature of the compression roller exceeds 170 ° C., the surface of the multilayer nonwoven fabric is melted and adhered to the compression roller so that the operation does not proceed or the multilayer nonwoven fabric is damaged by heat and the strength is lowered.
도 6은 본 발명의 제1 실시예에 의한 항균 부직포의 제조방법에 의해 제조된 항균 부직포를 나타내는 종단면도이다. 여기서는, 항균 부직포(100)의 엠보싱 처리는 표현되어 있지 않다.6 is a longitudinal cross-sectional view showing an antibacterial nonwoven fabric manufactured by the method for manufacturing an antibacterial nonwoven fabric according to a first embodiment of the present invention. Here, the embossing treatment of the antibacterial nonwoven fabric 100 is not expressed.
도 6을 참조하면, 본 발명의 제1 실시예에 의한 항균 부직포(100)는, 제1 단층 부직포(101) 위에 제2 단층 부직포(102)가 겹쳐져 있는, 두 겹의 단층 부직포(101, 102)로 형성될 수 있다. 여기서, 제1 단층 부직포(101) 및 제2 단층 부직포(102)는 모두 상기 구리항균제가 포함된 부직포로 형성될 수 있다.Referring to FIG. 6, the antibacterial nonwoven fabric 100 according to the first embodiment of the present invention has two layers of single layer nonwoven fabrics 101 and 102 in which a second single layer nonwoven fabric 102 is overlapped on the first single layer nonwoven fabric 101. ) can be formed. Here, both the first single-layer nonwoven fabric 101 and the second single-layer nonwoven fabric 102 may be formed of a nonwoven fabric containing the copper antimicrobial agent.
도 7은 본 발명의 제1 실시예에 의한 항균 부직포의 제조방법에 의해 제조되는 항균 부직포의 제조장치를 나타내는 도면이다.7 is a view showing an apparatus for manufacturing an antibacterial nonwoven fabric produced by a method for manufacturing an antibacterial nonwoven fabric according to a first embodiment of the present invention.
도 6 및 도 7을 참조하면, 본 발명의 제1 실시예에 의한 항균 부직포(100)의 제조방법에 의해 제조되는 항균 부직포(100)의 제조장치는, 포밍 벨트(forming belt, 8)와, 포밍 벨트(8)의 상측에 포밍 벨트(8)의 이송방향으로 서로 이격되어 배치되는 제1 융융방사기(21) 및 제2 용융방사기(22)와, 냉각장치(10)와, 결합장치(11)와, 와인더(14)를 포함할 수 있다.6 and 7, the manufacturing apparatus of the antibacterial nonwoven fabric 100 manufactured by the manufacturing method of the antibacterial nonwoven fabric 100 according to the first embodiment of the present invention, a forming belt (forming belt, 8), A first melt spinning machine 21 and a second melt spinning machine 22 disposed apart from each other in the conveying direction of the forming belt 8 on the upper side of the forming belt 8, a cooling device 10, and a coupling device 11 ) and a winder 14.
여기서, 제1 용융방사기(21) 및 제2 용융방사기(22)는 상기 마스터배치 칩(1)을 용융방사하여 웹 형태의 섬유 필라멘트를 형성하기 위한 장치일 수 있다. 제1 융융방사기(21)는 항균 부직포(100)의 제1 단층 부직포(101)를 형성하기 위한 것일 수 있고, 제2 용융방사기(22)는 항균 부직포(100)의 제2 단층 부직포(102)를 형성하기 위한 것일 수 있다.Here, the first melt spinning machine 21 and the second melt spinning machine 22 may be devices for forming web-type fiber filaments by melt spinning the master batch chip 1. The first melt spinning machine 21 may be for forming the first single layer nonwoven fabric 101 of the antibacterial nonwoven fabric 100, and the second melt spinning machine 22 is the second single layer nonwoven fabric 102 of the antibacterial nonwoven fabric 100 It may be for forming.
제1 용융방사기(21) 및 제2 용융방사기(22)는 동일한 구조로 형성될 수 있다. 구체적으로, 제1 용융방사기(21)는, 제1 호퍼(2a), 제1 압출기(3a), 제1 필터(4a), 제1 정량펌프(5a), 제1 스핀팩(6a), 제1 냉각 및 연신 장치(7a)와, 제1 석션 장치(9a)를 포함할 수 있다. 그리고, 제2 용융방사기(22)는, 제2 호퍼(2b), 제2 압출기(3b), 제2 필터(4b), 제2 정량펌프(5b), 제2 스핀팩(6b), 제2 냉각 및 연신 장치(7b)와, 제2 석션 장치(9b)를 포함할 수 있다.The first melt spinning machine 21 and the second melt spinning machine 22 may be formed in the same structure. Specifically, the first melt spinning machine 21 includes a first hopper 2a, a first extruder 3a, a first filter 4a, a first metering pump 5a, a first spin pack 6a, a first 1 cooling and stretching device 7a and a first suction device 9a. And, the second melt spinning machine 22, the second hopper (2b), the second extruder (3b), the second filter (4b), the second metering pump (5b), the second spin pack (6b), the second A cooling and stretching device 7b and a second suction device 9b may be included.
제1 단층 부직포(101)를 제조하는 것을 도 6 및 도 7을 참조하여 설명하면 아래와 같다.The manufacturing of the first single-layer nonwoven fabric 101 is described with reference to FIGS. 6 and 7 as follows.
상기 마스터배치 칩(1)을 제1 호퍼(2a)를 통해 제1 압출기(3a)에 공급시켜 용융시킨다. 용융된 마스터배치 칩은 제1 필터(4a)를 거쳐 불순물이 제거된 후에 제1 정량펌프(5a)를 통해 일정한 양으로 제1 스핀팩(6a)에 공급된다. 제1 스핀팩(6a)에서 직경이 0.3 내지 1.0mm인 방사구금을 통하여 섬유 필라멘트가 형성된다. 이때, 상기 섬유 필라멘트는 10 내지 30㎛의 직경을 가질 수 있다. 형성된 섬유 필라멘트는 제1 냉각 및 연신장치(7a)에서 공기에 의해 냉각 및 연신된 후, 제1 석션 장치(9a)에 의해 포밍 벨트(8) 위에 안착되어 웹을 형성함으로서, 제1 단층 부직포(101)가 형성되어 제2 용융방사기(22)를 측으로 이송된다.The masterbatch chips 1 are supplied to the first extruder 3a through the first hopper 2a and melted. The molten masterbatch chips are supplied to the first spin pack 6a in a constant amount through the first metering pump 5a after impurities are removed through the first filter 4a. In the first spin pack 6a, fiber filaments are formed through a spinneret having a diameter of 0.3 to 1.0 mm. At this time, the fiber filaments may have a diameter of 10 to 30 μm. The formed fiber filaments are cooled and stretched by air in the first cooling and stretching device 7a, and then seated on the forming belt 8 by the first suction device 9a to form a web, thereby forming a first single-layer nonwoven fabric ( 101) is formed and transferred to the side of the second melt spinning machine 22.
제1 단층 부직포(101) 위에 제2 단층 부직포(102) 적층하여 두 겹의 복층 부직포(101, 102)를 제조하는 것을 도 6 및 도 7을 참조하여 설명하면 아래와 같다.The manufacturing of the two-ply multilayer nonwoven fabric 101 and 102 by laminating the second single layer nonwoven fabric 102 on the first single layer nonwoven fabric 101 will be described with reference to FIGS. 6 and 7 as follows.
포밍 벨트(8)를 통해 제2 용융방사기(22) 측으로 이송된 제1 단층 부직포(101) 위에 제2 단층 부직포(102)가 제2 용융방사기(22)에 의해 형성될 수 있다. 즉, 상기 마스터배치 칩(1)을 제2 호퍼(2b)를 통하여 제2 압출기(4b)에 공급시켜 용융시킨다. 용융된 마스터배치 칩(1)은 제2 필터(4b)를 거쳐 불순물이 제거된 후에 제2 정량펌프(5b)를 통해 일정한 양으로 제2 스핀팩(6b)에 공급된다. 제2 스핀팩(6b)에서 직경이 0.3 내지l.0mm인 방사구금을 통하여 섬유 필라멘트가 형성된다. 형성된 섬유 필라멘트는 제2 냉각 및 연신장치(7b)를 거쳐 냉각 및 연신된 후, 제2 석션 장치(9b)에 의해 제1 단층 부직포(101) 위에 안착되어 웹을 형성함으로서, 두 겹의 복층 부직포(101, 102)가 형성된다.The second single layer nonwoven fabric 102 may be formed by the second melt spinning machine 22 on the first single layer nonwoven fabric 101 transferred to the side of the second melt spinning machine 22 through the forming belt 8. That is, the masterbatch chips 1 are supplied to the second extruder 4b through the second hopper 2b and melted. The molten masterbatch chips 1 are supplied to the second spin pack 6b in a constant amount through the second metering pump 5b after impurities are removed through the second filter 4b. In the second spin pack 6b, fiber filaments are formed through a spinneret having a diameter of 0.3 to 1.0 mm. The formed fiber filaments are cooled and stretched through the second cooling and stretching device 7b, and then seated on the first single-layer nonwoven fabric 101 by the second suction device 9b to form a web, thereby forming a two-layer multilayer nonwoven fabric. (101, 102) are formed.
포밍 벨트(8) 위에 형성된 두 겹의 복층 부직포(101, 102)는 냉각장치(10)에 의해 25℃ 이하로 냉각될 수 있다.The two layers of multilayer nonwoven fabrics 101 and 102 formed on the forming belt 8 may be cooled to 25° C. or less by the cooling device 10.
냉각된 두 겹의 복층 부직포(101, 102)는 결합장치(11)의 압착롤러(12, 13)에 의해 엠보싱 처리되면서 결합될 수 있다. 압착롤러(12)에는 마름모 형태 또는 원형이나 타원형 등의 무늬가 양각되어 있어, 두 겹으로 적층되어 있는 복층 부직포(101, 102)를 동시에 엠보싱 처리하게 되고, 그 결과, 최종 수득되는 복층 부직포(101, 102) 상에 엠보싱이 형성된다. 복층 부직포(101, 102)의 총 표면적 중 엠보싱 무늬가 차지하는 면적인 엠보싱율은, 5 내지 30% 범위일 수 있다. 상기 엠보싱율이 5% 미만인 경우에는 제1 단층 부직포(101)와, 제2 단층 부직포(102) 간의 접착력 혹은 결합력이 약하기 때문에 서로 분리될 수 있으며, 상기 엠보싱율이 30%를 초과하는 경우에는 제품 유연성이 저하될 수 있다.The cooled two-ply multilayer nonwoven fabrics 101 and 102 may be coupled while being embossed by the compression rollers 12 and 13 of the coupling device 11. The compression roller 12 is embossed with a pattern such as a diamond shape or a circular or oval shape, so that the multilayer nonwoven fabrics 101 and 102 stacked in two layers are embossed at the same time, and as a result, the finally obtained multilayer nonwoven fabric 101 , 102) on which embossing is formed. The embossing rate, which is the area occupied by the embossed pattern among the total surface areas of the multilayer nonwoven fabrics 101 and 102, may be in the range of 5 to 30%. When the embossing rate is less than 5%, the first single-layer nonwoven fabric 101 and the second single-layer nonwoven fabric 102 may be separated from each other because of weak adhesive or bonding strength, and when the embossing rate exceeds 30%, the product Flexibility may be reduced.
엠보싱 처리된 두 겹의 복층 부직포(101, 102)로 형성된 항균 부직포(100)는, 와인더(14)의 와인더 샤프트(15)에 감길 수 있다.The antibacterial nonwoven fabric 100 formed of the two layers of embossed multilayer nonwoven fabrics 101 and 102 may be wound around the winder shaft 15 of the winder 14 .
도 8은 본 발명의 제2 실시예에 의한 항균 부직포의 제조방법에 의해 제조된 항균 부직포를 나타내는 종단면도이다. 여기서는, 항균 부직포(200)의 엠보싱 처리는 표현되어 있지 않다.8 is a longitudinal cross-sectional view showing an antibacterial nonwoven fabric manufactured by a method for manufacturing an antibacterial nonwoven fabric according to a second embodiment of the present invention. Here, the embossing treatment of the antibacterial nonwoven fabric 200 is not expressed.
도 8을 참조하면, 본 발명의 제2 실시예에 의한 항균 부직포(200)는, 제1 단층 부직포(101)의 상하면에 각각 제2 단층 부직포(102)가 겹쳐져 있는, 세 겹의 단층 부직포(101, 102)로 형성될 수 있다. 여기서, 제1 단층 부직포(101) 및 제2 단층 부직포(102)는 모두 상기 구리항균제가 포함된 부직포로 형성될 수 있다.Referring to FIG. 8, the antibacterial nonwoven fabric 200 according to the second embodiment of the present invention is a three-layered single-layer nonwoven fabric in which the second single-layer nonwoven fabric 102 is overlapped on the upper and lower surfaces of the first single-layer nonwoven fabric 101, respectively ( 101, 102). Here, both the first single-layer nonwoven fabric 101 and the second single-layer nonwoven fabric 102 may be formed of a nonwoven fabric containing the copper antimicrobial agent.
도 9는 본 발명의 제2 실시예에 의한 항균 부직포의 제조방법에 의해 제조되는 항균 부직포의 제조장치를 나타내는 도면이다.9 is a view showing an apparatus for manufacturing an antibacterial nonwoven fabric produced by a method for manufacturing an antibacterial nonwoven fabric according to a second embodiment of the present invention.
도 8 및 도 9를 참조하면, 본 발명의 제2 실시예에 의한 항균 부직포(200)의 제조방법에 의해 제조되는 항균 부직포(200)의 제조장치는, 전술한 본 발명의 제1 실시예에 의한 항균 부직포(100)의 제조방법에 의해 제조되는 항균 부직포(100)의 제조장치에 비해, 언와인더(16) 및 예열장치(18)를 더 포함할 수 있다.8 and 9, the manufacturing apparatus of the antibacterial nonwoven fabric 200 manufactured by the manufacturing method of the antibacterial nonwoven fabric 200 according to the second embodiment of the present invention, in the first embodiment of the present invention described above Compared to the manufacturing apparatus of the antibacterial nonwoven fabric 100 manufactured by the manufacturing method of the antibacterial nonwoven fabric 100 by the method, the unwinder 16 and the preheating device 18 may be further included.
여기서, 언와인더(16)는 언와인더 샤프트(17)를 포함할 수 있다. 언와인더(16)는 와인더(14)의 반대편에 배치될 수 있다. 여기서, 언와인더 샤프트(17)는 와인더 샤프트(15)와 실질적으로 동일한 구성일 수 있다. 즉, 제1 실시예에서 제조된 두 겹의 복층 부직포(101, 102)가 감긴 와인더 샤프트(15)가 언와인더(16)에 장착되어 언와인더 샤프트(17)가 될 수 있다.Here, the unwinder 16 may include an unwinder shaft 17 . Unwinder 16 may be disposed opposite to winder 14 . Here, the unwinder shaft 17 may have substantially the same configuration as the winder shaft 15 . That is, the winder shaft 15 on which the two layers of multilayer nonwoven fabrics 101 and 102 manufactured in the first embodiment are wound may be mounted on the unwinder 16 to become the unwinder shaft 17.
즉, 본 발명의 제2 실시예에 의한 항균 부직포(200)는 전술한 제1 실시예에서 제조된 항균 부직포(100)가 언와인더(16)의 언와인더 샤프트(17)에서 풀리면서 예열장치(18)의 히팅플레이트(19, 20)를 통과하면서 예열된 후, 항균 부직포(100)의 하면이 상측을 향하도록 포밍 벨트(8)로 공급되고, 이 후에 전술한 제1 실시예의 공정을 동일하게 반복함으로서, 세 겹의 복층 부직포(101, 102)로 형성된 항균 부직포(200)가 제조될 수 있다.That is, the antibacterial nonwoven fabric 200 according to the second embodiment of the present invention is preheated while the antibacterial nonwoven fabric 100 manufactured in the first embodiment is unwound from the unwinder shaft 17 of the unwinder 16. After being preheated while passing through the heating plates 19 and 20 of the device 18, the antibacterial nonwoven fabric 100 is supplied to the forming belt 8 so that the lower surface faces upward, and then the process of the first embodiment described above By repeating the same, an antibacterial nonwoven fabric 200 formed of three layers of multilayer nonwoven fabrics 101 and 102 can be manufactured.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다.Hereinafter, examples will be described in detail to explain the present invention in detail.
<실시예 1 : 부직포의 제조><Example 1: Preparation of nonwoven fabric>
구리항균제 15중량%를 폴리프로필렌 85중량%와 혼합하여 제조된 마스터배치 칩(1)을, 제1 호퍼(2a)를 통해 온도가 230℃인 제1 압출기(3a)에 투입하여 용융시키고 제1 필터(4a)를 통과시켜 불순물을 제거한 후 제1 정량펌프(5a)를 이용하여 제1 스핀팩(6a)으로 공급하여서 제1 스핀팩(6a)의 온도가 220℃인 방사구금을 통하여 방사하였다. 방사된 섬유 필라멘트는 제1 냉각 및 연신 장치(7a)에 의해 냉각 및 연신된 후, 제1 석션 장치(9a)에 의해 포밍 벨트(8) 위에 안착되어 웹을 형성함으로서, 제1 단층 부직포(101)를 형성하였다.The masterbatch chip (1) prepared by mixing 15% by weight of copper antimicrobial agent with 85% by weight of polypropylene is introduced into the first extruder (3a) having a temperature of 230 ° C through the first hopper (2a) and melted. After removing impurities by passing them through the filter 4a, they were supplied to the first spin pack 6a using the first metering pump 5a, and then spun through a spinneret having a temperature of 220°C in the first spin pack 6a. . The spun fiber filaments are cooled and drawn by the first cooling and stretching device 7a, and then seated on the forming belt 8 by the first suction device 9a to form a web, thereby forming a first single layer nonwoven fabric 101. ) was formed.
제1 단층 부직포(101)에 제2 단층 부직포(102)를 적층시키기 위해, 구리항균제 15중량%를 폴리프로필렌 85중량%와 혼합하여 제조된 마스터배치 칩(1)을, 제2 호퍼(2b)를 통해 온도가 230℃인 제2 압출기(3b)에 투입하여 용융시키고 제2 필터(4b)를 통과시켜 불순물을 제거한 후 제2 정량펌프(5b)를 이용하여 제2 스핀팩(6b)으로 공급하여서 제2 스핀팩(6b)의 온도가 220℃인 방사구금을 통하여 방사하였다. 방사된 섬유 필라멘트는 제2 냉각 및 연신 장치(7b)에 의해 냉각 및 연신된 후, 제2 석션 장치(9b)에 의해 제1 단층 부직포(101) 위에 안착되어 웹을 형성함으로서, 두 겹의 복층 부직포(101, 102)를 형성하였다.In order to laminate the second single-layer nonwoven fabric 102 on the first single-layer nonwoven fabric 101, the masterbatch chip 1 prepared by mixing 15% by weight of a copper antimicrobial agent with 85% by weight of polypropylene is mixed with the second hopper 2b through the second extruder (3b) at a temperature of 230 ° C., melted, passed through the second filter (4b) to remove impurities, and then supplied to the second spin pack (6b) using the second metering pump (5b) Thus, the second spin pack 6b was spun through a spinneret having a temperature of 220°C. The spun fiber filaments are cooled and drawn by the second cooling and stretching device 7b, and then seated on the first single-layer nonwoven fabric 101 by the second suction device 9b to form a web, thereby forming two layers of multilayer Nonwoven fabrics 101 and 102 were formed.
포밍 벨트(8) 위에 있는, 두 겹의 복층 부직포(101, 102)는 온도가 20℃로 유지된 냉각장치(10)를 통과하였다. 이어서, 엠보싱율이 14%인 압착롤러(12, 13)를 압력 5kgf/㎠ 및 온도 165℃에서 상기 두 겹의 복층 부직포(101, 102)를 압착시켜 엠보싱 처리하여서 두 겹의 복층 부직포(101, 102)가 결합된 항균 부직포(100)를 제조하였다. 제조된 항균 부직포(100)를 일정한 길이로 와인더(14)의 와인더 샤프트(15)에 권취하였다.The two layers of multilayer nonwoven fabrics 101 and 102 on the forming belt 8 passed through the cooling device 10 maintained at 20°C. Subsequently, the compression rollers 12 and 13 having an embossing rate of 14% are pressed and embossed on the two layers of multilayer nonwoven fabrics 101 and 102 at a pressure of 5 kgf / cm 2 and a temperature of 165 ° C. 102) to prepare an antibacterial nonwoven fabric (100). The prepared antibacterial nonwoven fabric 100 was wound around the winder shaft 15 of the winder 14 to a certain length.
<실시예 2 : 부직포의 제조><Example 2: Preparation of nonwoven fabric>
구리항균제 12중량%를 폴리프로필렌 88중량%와 혼합하여 제조된 마스터배치 칩으로 변경한 것을 제외하고는 실시예 l과 동일하게 복층 부직포를 제조하였다.A multilayer nonwoven fabric was prepared in the same manner as in Example 1, except that 12% by weight of the copper antimicrobial agent was changed to a masterbatch chip prepared by mixing 88% by weight of polypropylene.
<실시예 3 : 부직포의 제조><Example 3: Preparation of nonwoven fabric>
구리항균제 27중량%를 폴리프로필렌 73중량%와 혼합하여 제조된 마스터배치 칩으로 변경한 것을 제외하고는 실시예 1과 동일하게 복층 부직포를 제조하였다.A multilayer nonwoven fabric was prepared in the same manner as in Example 1, except that 27% by weight of the copper antimicrobial agent was changed to a masterbatch chip prepared by mixing 73% by weight of polypropylene.
<실시예 4 : 부직포의 제조><Example 4: Preparation of nonwoven fabric>
섬유 필라멘트 직경을 12㎛로 변경시킨 것을 제외하고는 실시예 1과 동일하게 복층 부직포를 제조하였다.A multilayer nonwoven fabric was prepared in the same manner as in Example 1, except that the fiber filament diameter was changed to 12 μm.
<실시예 5 : 부직포의 제조><Example 5: Preparation of nonwoven fabric>
섬유 필라멘트 직경을 27㎛로 변경시킨 것을 제외하고는 실시예 1과 동일하게 복층 부직포를 제조하였다.A multilayer nonwoven fabric was prepared in the same manner as in Example 1, except that the fiber filament diameter was changed to 27 μm.
<비교예 1 : 부직포의 제조><Comparative Example 1: Manufacture of nonwoven fabric>
구리항균제 8중량%를 폴리프로필렌 92중량%와 혼합하여 제조된 마스터배치 칩으로 변경한 것을 제외하고는 실시예 1과 동일하게 복층 부직포를 제조하였다.A multilayer nonwoven fabric was prepared in the same manner as in Example 1, except that 8% by weight of the copper antimicrobial agent was mixed with 92% by weight of polypropylene to change to a masterbatch chip.
<비교예 2 : 부직포의 제조><Comparative Example 2: Manufacture of nonwoven fabric>
구리항균제 35중량%를 폴리프로필렌 65중량%와 혼합하여 제조된 마스터배치 칩으로 변경한 것을 제외하고는 실시예 1과 동일하게 복층 부직포를 제조하였다.A multilayer nonwoven fabric was prepared in the same manner as in Example 1, except that 35% by weight of the copper antimicrobial agent was mixed with 65% by weight of polypropylene to change to a masterbatch chip.
<비교예 3 : 부직포의 제조><Comparative Example 3: Manufacture of nonwoven fabric>
섬유 필라멘트 직경을 7㎛로 변경시킨 것을 제외하고는 실시예 1과 동일하게 복층 부직포를 제조하였다.A multilayer nonwoven fabric was prepared in the same manner as in Example 1, except that the fiber filament diameter was changed to 7 μm.
<비교예 4 : 부직포의 제조><Comparative Example 4: Manufacture of nonwoven fabric>
섬유 필라멘트 직경을 40㎛로 변경시킨 것을 제외하고는 실시예 1과 동일하게 복층 부직포를 제조하였다.A multilayer nonwoven fabric was prepared in the same manner as in Example 1, except that the fiber filament diameter was changed to 40 μm.
평가예 1 : 강력 및 신도 KS K ISO 9073-3의 측정Evaluation Example 1: Measurement of strength and elongation KS K ISO 9073-3
본 평가를 위해, 규정된 길이와 폭의 시험편에 대하여 길이 방향으로 힘이 가해지도록 정속 신장한 후 기록된 하중-신장 곡선으로부터 절단 강력 및 신도 값을 측정하였다. 50mm의 폭으로 절단된 부직포를 길이 75mm가 되도록 강신도 측정기에 파지시킨 후 300mm/min의 속도로 측정하였다.For this evaluation, the breaking strength and elongation values were measured from the load-elongation curve recorded after constant rate elongation so that force was applied in the longitudinal direction for the test piece of the specified length and width. The nonwoven fabric cut to a width of 50 mm was gripped by a strength measuring machine to a length of 75 mm, and then measured at a speed of 300 mm/min.
항목item 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 실시예 5Example 5
폴리프로필렌 부직포polypropylene non-woven fabric 조성비(중량%)Composition ratio (% by weight) 폴리프로필렌polypropylene 8585 8888 7373 8585 8585
구리항균제 copper antimicrobial 1515 1212 2727 1515 1515
섬유 필라멘트 직경(㎛)Fiber filament diameter (μm) 2020 2020 2020 1212 2727
방사 공정성radiation fairness 양호Good 양호Good 양호Good 양호Good 양호Good
결합조건Combination condition 예열온도(℃)Preheating temperature (℃) 130130 130130 130130 130130 130130
냉각온도(℃)Cooling temperature (℃) 2020 2020 2020 2020 2020
압착롤러 압력(kgf/㎠)Compression roller pressure (kgf/㎠) 55 55 55 55 55
압착롤러 온도(℃)Pressure roller temperature (℃) 165165 165165 165165 165165 165165
엠보싱율(%)Embossing rate (%) 1414 1414 1414 1414 1414
복층 폴리프로필렌 부직포Multi-layer polypropylene non-woven fabric 단위중량(g/㎡)Unit weight (g/㎡) 7070 7070 7070 7070 7070
강도(kg/5cm)Strength (kg/5cm) 길이방향longitudinal direction 21.221.2 21.321.3 20.920.9 21.221.2 21.121.1
폭방향width direction 13.613.6 13.613.6 12.812.8 12.612.6 12.812.8
신도(%/5cm)Elongation (%/5cm) 길이방향longitudinal direction 7474 7676 7070 7070 7272
폭방향width direction 9494 9494 8888 9696 9090
항균성능antibacterial performance 양호Good 양호Good 양호Good 양호Good 양호Good
항목item 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 비교예 4Comparative Example 4
폴리프로필렌 부직포polypropylene non-woven fabric 조성비(중량%)Composition ratio (% by weight) 폴리프로필렌polypropylene 9292 6565 8585 8585
구리항균제 copper antimicrobial 88 3535 1515 1515
섬유 필라멘트 직경(㎛)Fiber filament diameter (μm) 2020 2020 77 4040
방사 공정성radiation fairness 양호Good 불량error 불량error 양호Good
결합조건Combination condition 예열온도(℃)Preheating temperature (℃) 130130 130130 130130 130130
냉각온도(℃)Cooling temperature (℃) 2020 2020 2020 2020
압착롤러 압력(kgf/㎠)Compression roller pressure (kgf/㎠) 55 55 55 55
압착롤러 온도(℃)Pressure roller temperature (℃) 165165 165165 165165 165165
엠보싱율(%)Embossing rate (%) 1414 1414 1414 1414
복층 폴리프로필렌 부직포Multi-layer polypropylene non-woven fabric 단위중량(g/㎡)Unit weight (g/㎡) 7070 7070 7070 7070
강도(kg/5cm)Strength (kg/5cm) 길이방향longitudinal direction 21.721.7 19.119.1 18.418.4 17.617.6
폭방향width direction 14.414.4 11.411.4 9.09.0 8.28.2
신도(%/5cm)Elongation (%/5cm) 길이방향longitudinal direction 7878 6262 4848 5050
폭방향 width direction 100100 8686 7171 7474
항균성능antibacterial performance 미달fall short 양호Good 양호Good 미달fall short
표 4 및 표 5를 참조하면, 구리항균제 첨가 비율에 따른 실시예 1 내지 실시예 3과, 비교예 1 및 비교예 2를 보면, 구리항균제의 첨가 비율이 8중량%인 비교예 1의 경우에는 항균 성능이 부족하고, 구리항균제의 첨가 비율이 35중량%인 비교예 2의 경우에는 방사 공정성이 불량하여 제품을 양산할 수 없다.Referring to Tables 4 and 5, in Examples 1 to 3 and Comparative Examples 1 and 2 according to the addition ratio of the copper antimicrobial agent, in the case of Comparative Example 1 in which the addition ratio of the copper antimicrobial agent was 8% by weight In the case of Comparative Example 2 in which the antimicrobial performance is insufficient and the addition ratio of the copper antimicrobial agent is 35% by weight, the product cannot be mass-produced due to poor spinning processability.
섬유 필라멘트 직경에 따른 효과 비교를 위해 실시예 4 및 실시예 5와, 비교예 3 및 비교예 4를 살펴보면, 섬유 필라멘트 직경이 7㎛인 비교예 3의 경우에는 방사 공정성이 불량하고 섬유가 너무 가늘기 때문에 강력이 낮으며, 섬유 필라멘트 직경이 40㎛인 비교예 4의 경우에는 섬유가 너무 굵기 때문에 결합 시 온도가 충분히 전달되지 않아 본딩이 제대로 되지 않아 층분리가 일어나 강력이 낮고 항균 성능이 부족하기 때문에 제품으로 사용하기 어렵다.Looking at Examples 4 and 5 and Comparative Examples 3 and 4 for comparison of effects according to the fiber filament diameter, in the case of Comparative Example 3 having a fiber filament diameter of 7 μm, the spinning fairness was poor and the fiber was too thin In the case of Comparative Example 4 in which the fiber filament diameter is 40 μm, the fiber is too thick, so the temperature is not sufficiently transmitted during bonding, so that the bonding is not properly performed, resulting in layer separation, resulting in low strength and poor antibacterial performance. Because of this, it is difficult to use as a product.
상기와 같이, 본 발명의 실시예들에 의한 항균 부직포(100, 200)의 제조방법 및 그 제조방법에 의해 제조된 항균 부직포(100, 200)는, 탄산칼슘 분말에 구리를 증착시켜 상대적으로 산화에 강한 구리항균제를 제조하여 부직포의 원료로 사용함으로서, 부직포의 색상설정에 유리할 뿐만 아니라 항균력이 우수해질 수 있다.As described above, the manufacturing method of the antibacterial nonwoven fabric (100, 200) according to the embodiments of the present invention and the antibacterial nonwoven fabric (100, 200) manufactured by the manufacturing method are relatively oxidized by depositing copper on calcium carbonate powder. By manufacturing a copper antimicrobial agent resistant to and using it as a raw material for nonwoven fabric, it is not only advantageous to set the color of the nonwoven fabric, but also has excellent antibacterial power.
또한, 본 발명의 실시예들에 의한 항균 부직포(100, 200)의 제조방법 및 그 제조방법에 의해 제조된 항균 부직포(100, 200)는, 구리항균제를 원료로 사용하여 제조된 방사섬유를 기재섬유에 적층하지 않고, 구리항균제를 원료로 사용하여 제조된 방사섬유들만을 적층하여 부직포를 제조하기 때문에, 부직포의 항균력이 우수해질 수 있다.In addition, the manufacturing method of the antibacterial nonwoven fabric (100, 200) according to the embodiments of the present invention and the antibacterial nonwoven fabric (100, 200) manufactured by the manufacturing method are based on spun fibers manufactured using copper antimicrobial agent as a raw material Since the nonwoven fabric is manufactured by laminating only the spun fibers produced using the copper antimicrobial agent as a raw material without laminating the fiber, the antimicrobial activity of the nonwoven fabric can be improved.
본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Those skilled in the art to which the present invention pertains will understand that the present invention can be embodied in other specific forms without changing its technical spirit or essential features. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive. The scope of the present invention is indicated by the following claims rather than the above detailed description, and all changes or modifications derived from the meaning and scope of the claims and equivalent concepts thereof should be construed as being included in the scope of the present invention.
본 발명은 탄산칼슘 분말에 구리를 증착시켜 상대적으로 산화에 강한 구리항균제를 제조하여 부직포의 원료로 사용함으로서, 부직포의 색상설정에 유리할 뿐만 아니라 항균력이 우수한 항균 부직포의 제조방법 및 그 제조방법에 의해 제조된 항균 부직포를 제공한다.The present invention is to deposit copper on calcium carbonate powder to prepare a copper antimicrobial agent that is relatively resistant to oxidation and use it as a raw material for nonwoven fabric, thereby providing a method for manufacturing an antibacterial nonwoven fabric that is not only advantageous in setting the color of the nonwoven fabric but also has excellent antimicrobial activity, and a manufacturing method thereof. Provided is an antibacterial nonwoven fabric manufactured.

Claims (8)

  1. (S1) 구리를 탄산칼슘 분말에 증착시켜 구리항균제를 제조하는 단계;(S1) preparing a copper antimicrobial agent by depositing copper on calcium carbonate powder;
    (S2) 상기 구리항균제를 폴리프로필렌과 혼합하여 마스터배치 칩을 제조하는 단계;(S2) preparing a masterbatch chip by mixing the copper antimicrobial agent with polypropylene;
    (S3) 상기 마스터배치 칩을 용융방사시켜 단층 부직포를 제조하는 단계;(S3) preparing a single-layer nonwoven fabric by melt-spinning the master batch chips;
    (S4) 상기 단층 부직포의 적어도 일면에 상기 마스터배치 칩을 용융방사시켜 복층 부직포를 제조하는 단계; 및(S4) preparing a multi-layer non-woven fabric by melt-spinning the master batch chips on at least one surface of the single-layer non-woven fabric; and
    (S5) 상기 복층 부직포를 압착롤러로 엠보싱 처리하는 단계;를 포함하는 항균 부직포의 제조방법.(S5) step of embossing the multi-layer non-woven fabric with a compression roller; manufacturing method of the antibacterial non-woven fabric containing.
  2. 청구항 1에 있어서,The method of claim 1,
    상기 (S1) 단계에서,In the step (S1),
    상기 탄산칼슘 분말 및 상기 구리의 중량비는 99.7 : 0.3 내지 98.0 : 2.0인 항균 부직포의 제조방법.The weight ratio of the calcium carbonate powder and the copper is 99.7: 0.3 to 98.0: 2.0 method of producing an antibacterial nonwoven fabric.
  3. 청구항 2에 있어서,The method of claim 2,
    상기 (S1) 단계에서,In the step (S1),
    상기 탄산칼슘 분말의 입도는 1 내지 3㎛인 항균 부직포의 제조방법.The particle size of the calcium carbonate powder is a method for producing an antibacterial nonwoven fabric of 1 to 3㎛.
  4. 청구항 3에 있어서,The method of claim 3,
    상기 (S2) 단계에서,In the step (S2),
    상기 구리항균제 및 상기 폴리프로필렌의 중량비는 10.0 : 90.0 내지 30.0 : 70.0인 항균 부직포의 제조방법.The weight ratio of the copper antimicrobial agent and the polypropylene is 10.0: 90.0 to 30.0: 70.0 method of producing an antibacterial nonwoven fabric.
  5. 청구항 4에 있어서,The method of claim 4,
    상기 (S3) 단계 및 상기 (S4) 단계에서,In the step (S3) and the step (S4),
    상기 마스터배치 칩을 용융방사시킨 섬유 필라멘트의 직경은 10 내지 30㎛인 항균 부직포의 제조방법.Method for producing an antibacterial nonwoven fabric having a diameter of 10 to 30 μm of the fiber filament obtained by melt-spinning the masterbatch chip.
  6. 청구항 5에 있어서,The method of claim 5,
    상기 (S3) 단계 및 상기 (S4) 단계에서,In the step (S3) and the step (S4),
    상기 마스터배치 칩은, 밀도가 0.90 내지 0.93g/㎤이고, 용융지수가 20 내지 60g/10min인 항균 부직포의 제조방법.The masterbatch chip has a density of 0.90 to 0.93 g / cm 3 and a melt index of 20 to 60 g / 10 min. Method for producing an antibacterial nonwoven fabric.
  7. 청구항 6에 있어서,The method of claim 6,
    상기 (S5) 단계에서,In the step (S5),
    상기 복층 부직포는, 엠보싱율이 10 내지 30%이고, 단위중량이 10 내지 100g/㎡인 항균 부직포의 제조방법.The multi-layer nonwoven fabric has an embossing rate of 10 to 30% and a unit weight of 10 to 100 g / m 2 Method for producing an antibacterial nonwoven fabric.
  8. 청구항 1 내지 청구항 7 중 어느 한 청구항에 기재된 항균 부직포의 제조방법에 의해 제조된 항균 부직포.An antibacterial nonwoven fabric manufactured by the method for manufacturing an antibacterial nonwoven fabric according to any one of claims 1 to 7.
PCT/KR2022/002212 2021-12-13 2022-02-15 Manufacturing method of antibacterial nonwoven fabric, and antibacterial nonwoven fabric manufactured using manufacturing method WO2023113101A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0177451 2021-12-13
KR1020210177451A KR20230089083A (en) 2021-12-13 2021-12-13 A manufacturing method of antibacterial non woven fabric, and a antibacterial non woven fabric manufactured using the manufacturing method

Publications (1)

Publication Number Publication Date
WO2023113101A1 true WO2023113101A1 (en) 2023-06-22

Family

ID=86774603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/002212 WO2023113101A1 (en) 2021-12-13 2022-02-15 Manufacturing method of antibacterial nonwoven fabric, and antibacterial nonwoven fabric manufactured using manufacturing method

Country Status (2)

Country Link
KR (1) KR20230089083A (en)
WO (1) WO2023113101A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0698138B1 (en) * 1993-04-06 1999-07-07 Kimberly-Clark Worldwide, Inc. Patterned embossed nonwoven fabric, cloth-like liquid barrier material and method for making same
KR20040078921A (en) * 2003-03-03 2004-09-14 김학용 A process of preparing for patterened nonwoven fabric composed of nanofiber
KR20070018408A (en) * 2005-08-10 2007-02-14 주식회사 엘지화학 Non-slip flooring by non-woven nanofabric and method for producing the same
KR20150115999A (en) * 2014-04-03 2015-10-15 도레이첨단소재 주식회사 Nonwoven fabric having an excellent deodorant property and manufacturing method thereof
KR20210141417A (en) * 2020-05-15 2021-11-23 권진철 Manufacturing method of antibiotic styrofoam

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102239866B1 (en) 2021-01-04 2021-04-14 (주)웰크론 Manufacturing method of copper-coated nonwoven fabric with excellent antibacterial properties and durability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0698138B1 (en) * 1993-04-06 1999-07-07 Kimberly-Clark Worldwide, Inc. Patterned embossed nonwoven fabric, cloth-like liquid barrier material and method for making same
KR20040078921A (en) * 2003-03-03 2004-09-14 김학용 A process of preparing for patterened nonwoven fabric composed of nanofiber
KR20070018408A (en) * 2005-08-10 2007-02-14 주식회사 엘지화학 Non-slip flooring by non-woven nanofabric and method for producing the same
KR20150115999A (en) * 2014-04-03 2015-10-15 도레이첨단소재 주식회사 Nonwoven fabric having an excellent deodorant property and manufacturing method thereof
KR20210141417A (en) * 2020-05-15 2021-11-23 권진철 Manufacturing method of antibiotic styrofoam

Also Published As

Publication number Publication date
KR20230089083A (en) 2023-06-20

Similar Documents

Publication Publication Date Title
WO2018190674A1 (en) Ceramic coating film and formation method therefor
WO2012157960A2 (en) Multi-layer plastic substrate and method for manufacturing same
WO2012128472A2 (en) Apparatus for manufacturing separator
WO2015016450A1 (en) Multi-layered nanofiber filter medium using electro-blowing, melt-blowing or electrospinning, and method for manufacturing same
WO2020242050A1 (en) Antibacterial functional fiber yarn containing copper nanopowder, and method for manufacturing same
WO2020096353A1 (en) Mof nanoparticles surface-treated with fatty acid and mof-polymer composite containing same
WO2021125798A1 (en) Mxene fibers and preparation method thereof
WO2023113101A1 (en) Manufacturing method of antibacterial nonwoven fabric, and antibacterial nonwoven fabric manufactured using manufacturing method
WO2019225848A1 (en) Method for preparing aramid nanofiber dispersion
WO2018012684A1 (en) Composite filter and manufacturing method therefor
WO2020080844A1 (en) Heat shielding film and method for manufacturing same
WO2021256660A1 (en) Protective clothing material having excellent virus-blocking performance and production method thereof
WO2019117360A1 (en) Nanofiber metal coating method using metal salt reduction effect, and transparent electrode manufacturing method
WO2019117559A1 (en) Transition metal-dichalcogenide thin film and manufacturing method therefor
WO2022080606A1 (en) Inorganic antimicrobial and manufacturing method therefor
WO2023003359A1 (en) Metal nanowire having core-shell structure
WO2024019472A1 (en) Optical film and display device comprising same
WO2016043481A1 (en) Method for manufacturing metal or metal oxide porous thin film having three-dimensional open network structure through pore size adjustment in dry process and metal or metal oxide porous thin film having three-dimensional open network structure manufactured by same
WO2023195746A1 (en) Non-woven fabric laminate and article
WO2022145874A1 (en) Spunbond non-woven fabrics having sheath-core structure and manufacturing method thereof
WO2024101562A1 (en) Polymer composite for ureteral insertion, method for preparing same, and ureteral stent using same
WO2013066022A1 (en) Laminated nanofiber web and method for producing same, and nanofiber composites using same
WO2023063774A1 (en) Molybdenum oxide-based sintered body, and sputtering target and oxide thin film comprising same
WO2023106471A1 (en) Antibacterial or antiviral filter having improved coating durability and ultraviolet resistance
WO2017039339A1 (en) Method for manufacturing fluorocarbon thin film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907574

Country of ref document: EP

Kind code of ref document: A1