WO2020096353A1 - Mof nanoparticles surface-treated with fatty acid and mof-polymer composite containing same - Google Patents

Mof nanoparticles surface-treated with fatty acid and mof-polymer composite containing same Download PDF

Info

Publication number
WO2020096353A1
WO2020096353A1 PCT/KR2019/014997 KR2019014997W WO2020096353A1 WO 2020096353 A1 WO2020096353 A1 WO 2020096353A1 KR 2019014997 W KR2019014997 W KR 2019014997W WO 2020096353 A1 WO2020096353 A1 WO 2020096353A1
Authority
WO
WIPO (PCT)
Prior art keywords
mof
polymer
particles
polymer composite
modified
Prior art date
Application number
PCT/KR2019/014997
Other languages
French (fr)
Korean (ko)
Inventor
이우황
장종산
황영규
조경호
배은진
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2020096353A1 publication Critical patent/WO2020096353A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/02Iron compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances

Definitions

  • the present invention is a metal-organic framework (MOF) particle surface-treated with liquid fatty acids, wherein the carboxyl group of the unsaturated fatty acid forms a chemical bond with a hydrophilic group, metal, or both exposed on the MOF surface.
  • MOF metal-organic framework
  • Metal-organic frameworks are commonly referred to as "porous coordination polymers", or “porous organic-inorganic hybrids”.
  • the metal-organic skeletal body has recently begun to develop newly by the combination of molecular coordination and material science, and the metal-organic skeletal body has a high surface area and pores of a molecular size or a nano-scale, and thus an adsorbent and gas storage material , Sensors, membranes, functional thin films, drug delivery materials, catalysts, and catalyst carriers, as well as being applicable to collecting guest molecules smaller than the pore size or using pores to separate molecules according to the size of the molecules Therefore, it has been actively studied recently.
  • the metal-organic framework has nano-sized pores, and thus has the advantage of providing a high surface area. Therefore, it is mainly used for adsorption of substances or supporting the composition in pores for delivery.
  • MOF is a porous material, and it is possible to simultaneously implement the function of an adsorbent and a function of a catalyst.
  • the conventional MOF is applied to the fiber, there is a problem in mass production or manufacturing in the form sprayed on the fiber.
  • a method such as electrospinning is used, there is a problem in manufacturing that is not uniformly mixed or the nozzle is clogged.
  • the present invention is intended to provide a method for modifying MOF nanoparticles having excellent miscibility with organic solvents and / or polymers, in order to provide various MOF-polymer composite molded products including composite fiber products containing MOF nanoparticles.
  • the first aspect of the present invention is a metal-organic framework (MOF) particle surface-treated with a liquid fatty acid, wherein the carboxyl group of the fatty acid has a chemical bond with a hydrophilic group, metal or both exposed on the MOF surface. It provides surface-modified MOF particles characterized by being formed.
  • MOF metal-organic framework
  • the second aspect of the present invention includes a polymer; And it provides a MOF-polymer complex comprising the surface-modified MOF particles of the first aspect uniformly distributed in the polymer.
  • the third aspect of the present invention provides a MOF-polymer composite molded body obtained by molding the MOF-polymer composite of the second aspect.
  • the liquid fatty acid is used as the surface modifier of the MOF particles according to the present invention, not only can the dispersibility with the polymer be enhanced, but also the molecular size or nano-sized pores of the MOF that exhibit adsorption and catalytic activity are not blocked
  • the pores can be coated in an orientation that does not interfere with the access of the desired molecules (eg, gas permeation) as much as possible.
  • MOF particles surface-modified with liquid fatty acids according to the present invention MOF-polymer composite molded body made of MOF-polymer complex containing polymer uniformly, the adsorption and / or catalytic properties of the MOF natural combine with the functionality of the polymer, removing harmful gases, removing harmful substances, desalination, desalination It can be used in various separation, purification, adsorption, catalyst, and functional materials fields.
  • FIG. 1 is a MOF-polymer composite of a typical MOF nanoparticle and a matrix polymer (top view) and a MOF of a MOF nanoparticle and a matrix polymer surface-modified with unsaturated or saturated fatty acids according to the present invention (bottom view) It is a conceptual diagram showing structural differences including aggregation and uniform dispersion of nanoparticles.
  • FIG. 2 is a TEM photograph of general MOF nanoparticles (left view) and MOF nanoparticles (right view) surface-modified with unsaturated fatty acids. In the right view, there is no aggregation between particles.
  • FIG. 3 is a photograph of surface-modified Zn-MOF and Co-MOF nanoparticles dispersed in a solvent and a TEM photograph of MOF nanoparticles.
  • FIG. 5 is a TEM photograph of Zr-MOF nanoparticles before and after surface treatment with unsaturated or saturated fatty acids.
  • FIG. 6 is a photograph showing XRD crystallinity analysis before and after surface modification treatment for Zr-MOF nanoparticles.
  • FIG. 7 is a photograph of a MOF-polymer composite fiber mat (20x30 cm) containing at least 55, 65, and 75 wt% of MOF, respectively, and a fiber SEM photograph thereof.
  • FIG. 9 is an SEM photograph of fibers prepared using a polymer solution containing Zr-MOF surface-modified with OA as an unsaturated or saturated fatty acid.
  • FIG. 10 is a photograph of a fabric woven of fibers prepared using a polymer solution containing MOF surface-modified with unsaturated or saturated fatty acids.
  • FIG. 11 is a photograph of a film produced by a heat-extrusion process and a MOF-Polypropylene composite chip injection molded with Al-MOF nanoparticles containing 3 wt% and 10 wt% respectively.
  • FIG. 12 is an SEM photograph of the MOF-Polypropylene composite film of FIG. 11. Here, it can be confirmed that the MOF nanoparticles are uniformly distributed and there are no defects at the interface.
  • FIG. 14 is a photograph of a composite membrane of MOF-Polyimide containing 40 wt% or more of Zr-MOF nanoparticles.
  • FIG. 15 is an SEM photograph of the MOF-Polyimide composite separation membrane of FIG. 14. At this time, it can be confirmed that the MOF nanoparticles are uniformly distributed and there are no defects at the interface.
  • MOF metal-organic framework
  • adsorption is a concept that includes both adsorption and sorption, as well as narrow adsorption.
  • a metal-organic framework is a porous organic-inorganic polymer compound formed by binding of a central metal ion with an organic ligand through molecular coordination bonding, and includes both organic and inorganic substances in the framework structure, and has a molecular size or nano It is a crystalline compound having a pore structure of size.
  • the framework of the MOF is formed by covalent bonding between metal-organic clusters (SBUs), which are secondary buiding units (SBUs), and organic ligands, and the metal-organic clusters have nodes in the MOF framework. Can be.
  • MOF are the geometry of the various coordination bond (coordination geometries), poly linker of topics (polytopic linkers), and the auxiliary ligand is composed of a (ancillary ligands (F -, H 2 O among others) -, OH).
  • the MOF design starts with selecting the right metal ion and the right organic ligand.
  • reacting metal ions eg, Zn 2+
  • various acetates produces Zn 4 O (CH 3 COO) 6 clusters
  • combining these clusters with organic ligands produces MOF structures.
  • the organic ligand portion of the benzene structure may be a spacer
  • a Zn 4 O (CH 3 COO) 6 cluster portion may be a node.
  • the central metal ion of the MOF is Li + , Na + , K + , Rb + , Be 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Sc 3+ , Y 3+ , Ti 4+ , Zr 4+ , Hf + , V 4+ , V 3+ , V 2+ , Nb 3+ , Ta 3+ , Cr 3+ , Mo 3+ , W 3+ , Mn 3+ , Mn 2+ , Re 3 + , Re 2+ , Fe 3+ , Fe 2+ , Ru 3+ , Ru 2+ , Os 3+ , Os 2+ , Co 3+ , Co 2+ , Rh 2+ , Rh + , Ir 2+ , Ir + , Ni 2+ , Ni + , Pd 2+ , Pd + , Pt 2+ , Pt + , Cu 2+ , Cu + , Ag + , Au +
  • the organic ligand is also referred to as a linker (linker), can be any organic compound having a functional group capable of coordination bond, and, for example, the organic ligand is a carboxyl group (-COOH), a carboxylic acid anion group (-COO -), amine Group (-NH 2 ) and imino group (-NH), nitro group (-NO 2 ), hydroxy group (-OH), halogen group (-X) and sulfonic acid group (-SO 3 H), sulfonic acid anion group (-SO 3 -), methane dithiol Osan group (-CS 2 H), methane dithiol Osan anion group (-CS 2 - may be used), a pyridine group and a compound or a mixture thereof having at least one functional group selected from the group consisting of a pyrazine .
  • linker can be any organic compound having a functional group capable of coordination bond, and, for example, the organic ligand is a carb
  • MOF may be a dicyclic anion of a heterocyclic ring as a ligand.
  • the ligand is from the group consisting of terephthalate anion, furandicarboxylic acid anion, pyridinedicarboxylic acid anion, benzenetricarboxylic acid, thiophenedicarboxylic acid anion and pyrazoledicarboxylic acid anion. It may be one or more selected, but is not limited thereto.
  • the MOF in which the crystalline skeleton contains polar metal ions and carboxylic acid oxygen anions and co-existing non-polar aromatic compound groups can have both hydrophilicity and hydrophobicity.
  • the MOF is a porous material, and can function as an adsorbent and / or as a catalyst by pores.
  • the adsorption and / or catalytic effect increases, while the defects or gaps between the matrix polymer and the MOF are large (FIG. 1), and the MOF particles have good dispersibility when preparing a composite with the polymer.
  • FOG. 1 defects or gaps between the matrix polymer and the MOF are large
  • MOF particles have good dispersibility when preparing a composite with the polymer.
  • MOF content is limited.
  • the mixing properties are not good and the dispersibility is not good, a heterogeneous mixture or precipitation occurs. Therefore, when molding the final product (fiber products, membranes, injection molded products, etc.), there are difficulties due to clogging of nozzles and cracks.
  • MOFs often include M (Metal) -O or M-OH structures in the central metal or polar functional groups in ligands, such as the ZIF series, and are highly hydrophilic and organic solvents or organic materials. Dispersion is difficult due to poor miscibility. Therefore, when the MOF nanoparticles are dispersed in a solvent and used as a solution, there is a disadvantage that the size of the MOF particles increases due to agglomeration. In addition, when the particle size of the MOF is increased, miscibility with each other is reduced when manufactured in a masterbatch with a polymer, and as a result, product quality such as cracks in the molding process may be deteriorated.
  • the present invention liquidifies the MOF particles to provide surface-modified MOF particles to prevent agglomeration between MOF particles and increase miscibility with organic solvents and / or polymers, while maintaining various functions exerted by pores in the final product. It is characterized by surface treatment with unsaturated or saturated fatty acids.
  • MOF particles with liquid unsaturated or saturated fatty acids according to the present invention can also be applied to nanoscale (e.g., 5 nm to 1000 nm) MOF particles with much greater cohesion problems. 2 (FIGS. 2, 3, 5, and 7-9).
  • the MOF particles to be subjected to the surface treatment may be surface treated with liquid unsaturated or saturated fatty acids after grinding.
  • fatty acid of the present invention is a material containing a hydrocarbon chain and a carboxyl group (-COOH) at its end, and the hydrocarbon chain has hydrophobicity but can interact with a hydrophilic material through a terminal carboxyl group.
  • the 'fatty acid' of the present invention may be an unsaturated or saturated fatty acid.
  • the unsaturated fatty acid is preferably C5 to C50 in terms of miscibility with the organic solvent and / or polymer of MOF.
  • Unsaturated fatty acid is COOH or COO in the end with a fatty acid having at least one double bond is a hydrophilic group, for example, MO / M-OH structures which are exposed to the MOF surface of the particles (M is a central metal ion); Ancillary ligand (ancillary ligands (F -, OH -, H 2 O among others)); And / or an organic ligand of the carboxyl group (-COOH), a carboxylic acid anion group (-COO -), an amine group (-NH 2), and an imino group (-NH), a nitro group (-NO 2), a hydroxy group (-OH ), a halogen group (-X), and a sulfonic acid group (-SO 3 H), a sulfonic acid anion group (-SO 3 -), methane dithiol Osan group (-CS 2 H), methane dithiol Osan anion group (-CS 2
  • the saturated fatty acid preferably has C4 to C40 in terms of miscibility with MOF's organic solvent and / or polymer.
  • Butyric acid, caprylic acid, caprylic acid, capric acid, lauric acid, myristic acid and palmitic acid acid), stearic acid, arachidic acid, behenic acid, lignoceric acid, cerotic acid, montanic acid, melic acid (Melissic acid) and corinomycolic acid (Corynomycolic acid) may be one or more selected from the group consisting of, but is not limited now.
  • MOF particles when the surface of MOF particles is modified using liquid fatty acids according to the present invention, MOF particles have hydrophobicity due to the carbon chain of fatty acids, and thus not only suppress aggregation between MOF particles surface-modified with liquid fatty acids ( 2), it is possible to impart mixing / dispersibility with an organic solvent and / or a polymer (FIGS. 3, 5, 7 and 9). For this reason, the mixing properties with various polymers are very excellent, and at this time, the MOF particles can be contained in a uniformly dispersed state and 90 wt% or more by mass ratio is also possible. Since excellent dispersibility provides a uniform structure and improves the mixing property with a polymer, for example, in the case of fiber production, spinning for a long time is possible, so that large-area fiber production is possible.
  • fatty acids having COOH or COO - functional groups can chemically bond with hydrophilic groups and / or metals exposed on the surface of MOF particles (e.g., hydrogen bonds, ionic bonds, covalent bonds), and thus It is also within the scope of the present invention to use saturated fatty acids (eg, stearic acid) as surface modifiers as long as they are compatible.
  • saturated fatty acids eg, stearic acid
  • the present invention is a polymer; And MOF particles uniformly distributed in the polymer, and MOF particles surface-modified with liquid fatty acids.
  • the MOF particle content may be 0.5 to 95 parts by weight based on 100 parts by weight of the total MOF-polymer composite.
  • the polymer may be a binder or a moldable resin.
  • MOF is a material containing a large number of pores, its density is very low at a level of approximately 0.5 g / cm 3 or less, whereas for polyimide mainly used as a matrix polymer, for example, since the density is 1 g / cm 3 or more, MOF 30 In the case of wt%, the volume occupied by the MOF itself in the matrix occupies at least 60% (FIGS. 7 and 8).
  • MOF-polymer complex containing 30 parts by weight to 95 parts by weight of MOF nanoparticles surface-modified with unsaturated or saturated fatty acids, preferably 40 parts by weight to 75 parts by weight, is It is possible to provide a MOF-based molded body that acts as a binder for the surface-modified MOF particles rather than the polymer matrix resin (FIG. 8).
  • Non-limiting examples of the MOF-polymer composite may be a MOF particle-containing polymer solution (eg, ink, paint, paste) or a MOF particle-containing polymer master batch.
  • MOF particles surface-modified with fatty acids are uniformly intercalated between the entangled chains of the polymer dissolved in the organic solvent in a state of being uniformly dispersed in the organic solvent, so that the polymer solution containing the homogeneous MOF particles can be easily provided.
  • the solvent capable of dispersing the surface-modified MOF particles with liquid fatty acids is not limited in its kind as long as it can break the bonds between the carbon chains of unsaturated or saturated fatty acids, but the solvent is N-methyl-2-pyrrolidone , Dioxane, dimethylacetamide, dimethylformamide, dimethylsulfoxide, acetone, methylethylketone, r-butyrolactone, C1-6 alcohol, ethyl acetate, and glycol ether.
  • MOF particle-containing polymer solution In order to prepare a homogeneous MOF particle-containing polymer solution, it may be performed through ultrasonic treatment, stirring, or both, but is not limited thereto.
  • the present invention can provide a homogeneous MOF particle-containing polymer masterbatch through compounding with a moldable polymer in a state uniformly dispersed in an organic solvent or without an organic solvent.
  • the master batch may mean a pellet-shaped raw material in which various additives are previously dispersed in order to improve kneading properties of various additives during extrusion / injection molding of a plastic resin or the like.
  • the master batch of the present invention may be for manufacturing molded bodies of various shapes.
  • the polymer master batch containing MOF particles may be compounded in the form of powders of MOF particles surface-modified with unsaturated fatty acids.
  • MOF nanoparticles surface-modified with an unsaturated fatty acid according to the present invention can be dispersed in a matrix polymer resin without aggregation.
  • the moldable matrix resin and the MOF particles surface-modified with the unsaturated fatty acid are well mixed, and then compounded by introducing them into the twin-screw extruder through a hopper.
  • the melt-blending resin inside the extruder can be processed into filaments or pellets after air cooling.
  • a masterbatch can be prepared by drying in a vacuum oven.
  • another aspect of the present invention provides a MOF-polymer composite molded body obtained by molding the MOF-polymer composite of the present invention.
  • the MOF-polymer composite molded article of the present invention may provide a molded article (eg, film) molded from a polymer solution containing MOF particles or a polymer masterbatch containing MOF particles to provide a molded article (eg, injection molding, melt spinning). .
  • the MOF-polymer composite molded body may be in the form of a membrane, a coating film, a wrapping paper, a container, a sheet, a part, or some layer of a laminate.
  • the MOF-polymer composite can be prepared by coating, 3D printing, spinning, blow molding, injection molding or extrusion molding the MOF-polymer composite material.
  • MOF-polymer composite molded article according to the present invention exhibits adsorption and / or catalytic activity of the MOF nanoparticles itself
  • non-limiting examples of various MOF-polymer composite molded articles are functional fibers, membranes, filters, thin film coatings, and injection molding. Functional products (wearable devices, etc.), display bags, packaging materials, and the like.
  • the MOF-based molded article according to the present invention may be protective clothing, safety clothing, work clothing, military clothing, exhaust filters, vehicle hoses, separators, special clothing, industrial materials, insulation materials, electrical insulation materials, automobile high heat resistant non-woven fabrics, industrial filters, and the like.
  • the second step may further include a third step of heat treatment or vacuum treatment of the MOF-polymer composite.
  • These pre-treatment and / or post-treatment steps include heat treatment or vacuum treatment, in which MOF particles are activated or may affect defects or densities between the MOF particles and the polymer.
  • liquid fatty acid according to the present invention is used as a surface modifier for MOF particles and contains 70 wt% or more of MOF, this corresponds to MOF molding technology.
  • Polymers capable of producing MOF-polymer composites may serve as a matrix and / or binder.
  • the polymer is a molecule capable of producing fibers, for example, after dissolving in a solvent, electrospinning, wet spinning, conjugate spinning, melt blown. It may be a molecule capable of producing fibers when spun by conventional spinning methods including melt blown spinning or flash spinning.
  • typical polymers used as fibers include polyethylene, polypropylene, nylon, polyester, Kevlar and Nomee, cellulose, and poly There is a polyurethane (polyurethane).
  • the MOF-polymer composite molded article according to the present invention may be, for example, a film layer having a film thickness of 1 ⁇ m to 300 ⁇ m, preferably 2 ⁇ m to 30 ⁇ m.
  • the film layer may serve as a gas barrier and / or a protective film, as well as various sensors, membranes, functional thin films, drug delivery materials, catalysts, and catalyst carriers.
  • Non-limiting examples of film-forming polymers include polyimide, polyacetylene, cellulose acetate, polysulfone, polyethylene oxide, poly (4-methylpentene-1), poly (2,6-dimethyl phenylene oxide), polydimethylsiloxane, Polyethylene, polyvinylidene chloride, polytetrafluoroethylene oxide, polyacrylonitrile, poly (vinyl alcohol), polystyrene, nylon 6, and the like.
  • Non-limiting examples of transparent film-forming polymers include ester polymers such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN); Cellulose-based polymers such as diacetyl cellulose and triacetyl cellulose; Carbonate-based polymers such as polycarbonate (PC); Acrylic polymers such as poly (methyl) methacrylate; Acrylic resins such as acrylic resins having an aromatic ring or lactone-modified acrylic resins; Styrene-based polymers such as polystyrene or acrylonitrile-styrene copolymer; Olefin polymers such as polyethylene, polypropylene, cyclo-olefin polymers (COP), and ethylene / propylene copolymers; Vinyl chloride polymers; Amide polymers such as nylon or aromatic polyamides; Imide-based polymers; Sulfone-based polymers; Polyether sulfone polymers; Polyether ether ketone-based polymers; Polyphenylene s
  • the polymer can be a conductive polymer such as polyacetylene, polypyrrole, polythiophene, polyethylenedioxythiophene, polyphenylenevinylene, polyphenylene, polysilane, polyfluorene, polyaniline and polysulfur nitride.
  • a conductive polymer such as polyacetylene, polypyrrole, polythiophene, polyethylenedioxythiophene, polyphenylenevinylene, polyphenylene, polysilane, polyfluorene, polyaniline and polysulfur nitride.
  • the second step may be a step of obtaining the MOF-polymer composite molded body by molding the polymer solution.
  • the second step of molding is knife casting, tape casting, spinning, slip coating, spray coating, ultrasonic coating, roll coating, slot die coating, and bar ( Bar) may be performed by coating, dip coating, or spin coating, but is not limited thereto.
  • Knife casting and tape casting may be performed by forming a polymer solution into a flat plate such as a film using a knife or tape, respectively, and then removing the solvent by heat treatment or the like.
  • Film layer formation can be carried out by applying a coating solution in which MOF particles surface-modified with unsaturated or saturated fatty acids are uniformly dispersed in a monomer, oligomer, or polymer of an organic solvent or a binder resin.
  • the monomer or oligomer of the binder resin may be UV-curable, and may be filmed through a curing process through UV irradiation after coating.
  • the molding method in the second step may be a spinning method for drawing a thread.
  • the wet method is to solidify the contents dissolved in a suitable solvent by pushing them into a coagulation bath through a fine hole .
  • the dry method is a solvent that is easy to vaporize, and the melted matter is pushed into the air through a fine hole. When the solvent evaporates, it becomes a thread and remains;
  • the melting method heats the polymer to make it melt, and pushes it out of a thin hole. When cooled and hardened, a thread is produced.
  • the fibers may be short fibers cut into a short form of cotton and long fibers in the form of a thread after undergoing a process of spinning to extract threads from the MOF particle-containing polymer solution and stretching to give various properties.
  • the fabric may be woven into a fabric-like fabric.
  • the fibers may be in the form of a nonwoven fabric.
  • Non-woven fabric refers to a planar structure made by tangling various fibers such as natural, synthetic, glass, and metal according to mutual characteristics and forming a sheet-like web and combining them with mechanical or physical methods.
  • the non-woven fabric may be a fiber aggregate or a film, which is not bound to spinning or weaving, by physical or chemical means, or may be bonded to each other by suitable moisture or heat.
  • Various nonwoven fabric manufacturing methods are illustrated in Table 1 below.
  • Process Recipe Characteristic Main purpose Wet nonwoven fabric The same process as the papermaking process, which is a papermaking process, but only raw materials are not used as pulp and manufactured using various fibers Very freely changeable properties Wiper, towel, wheel, towel, diaper cover Dry Dry Nonwoven Chemical bond When bonding the web, the adhesive penetrates the fiber and is manufactured through a drying process. Very flexible and breathable Wick, coating bubble Thermal Bond Manufactured by mixing low melting point plastic synthetic fibers and igniting or melting them with heat, pressure, solvent, etc. Hygienic because no adhesive is used Diapers, hygiene, naphkin, etc.
  • Air Ray Manufactured using compressed air and adhesives at the same time There is no tension difference between horizontal and vertical directions Battery filter, wick, carpet foam material, wiper sponge, insulation material Spanless Manufactured by combining fibers using high pressure water flow Excellent flexibility and breathability For medical, wick, household goods, coating bubble, roofing material, Wiper Spunbond Self-adhesive bonding by spinning molten fiber Easy fabric design according to use Packaging materials, physiological naphkin, civil construction materials, filters, wicks, carpet foam materials, coating materials, etc. Melt blown Synthetic polymers are spun into ultrafine fibers by high-pressure hot air to produce uniform melted fiber webs.
  • the reactant is transferred to a glass reactor capable of reflux reaction, and raised to a temperature of 5 ° C. per minute from room temperature to 90 ° C. to form an organic gel.
  • the mixture was decelerated and maintained for 3 hours while stirring.
  • the reactant was raised to 120 ° C again and maintained for 12 hours to perform a crystallization reaction, followed by cooling to room temperature at a cooling rate of 1 ° C or less per minute.
  • the slurry solution containing the porous organic-inorganic hybrid material was filtered through a pressure filter at room temperature once, and repeated and dried as necessary to obtain nanoparticles.
  • Example 1 Surface treatment of MOF nanoparticles using fatty acids (core-shell structure formation or hydrophobic coating)
  • the MOF nanoparticles prepared in Preparation Examples 1 to 13, and the nanoparticles prepared as described above were added with stirring to each other by adding stearic acid (SA) as saturated fatty acid and oleic acid (OA) as unsaturated fatty acid, respectively.
  • SA stearic acid
  • OA oleic acid
  • the reaction mixture was centrifuged and washed to obtain nanoparticles whose surface has been modified with SA and OA.
  • Co-MOF nanoparticles obtained by modifying the surface of Co-MOF nanoparticles (ZIF-67 (Co)) prepared in Preparation Example 11 with oleic acid are aggregated between particles in a dispersed solvent. There was no phenomenon.
  • the co-MOF nanoparticles that were not surface-modified had a large number of intergranular particles (left view in FIG. 2). The same was true for MOF nanoparticles prepared in other preparations by modifying oleic acid.
  • XRD crystallinity analysis was performed on Co-MOF nanoparticles before and after surface treatment with oleic acid, and the results are shown in FIG. 4, respectively. As shown in Fig. 4, there was no difference in the XRD pattern before and after surface modification, indicating that the same crystal structure as the untreated sample was maintained even after the surface treatment with OA.
  • the surface of Zr-MOF prepared in Preparation Example 8 is modified with saturated fatty acid stearic acid (SA) and unsaturated fatty acid oleic acid (OA). 5 is shown.
  • SA saturated fatty acid stearic acid
  • OA unsaturated fatty acid oleic acid
  • MOF nanoparticles are separated and maintained in each nanoparticle state compared to Zr-MOF before surface treatment, such as UiO-66 (Zr) _NH 2 , from the TEM image of Zr-MOF nanoparticles after surface treatment. It was confirmed that it was.
  • XRD crystallinity analysis was performed on the surface of Zr-MOF before and after modification with SA and OA such as UiO-66 (Zr) _NH 2 nanoparticles, and the results are shown in FIG. 6, respectively. As shown in FIG. 6, there was no difference in the XRD pattern before and after surface modification, indicating that the same crystal structure as the untreated sample was maintained even after surface treatment with SA and OA.
  • FIG. 8 is a high-resolution SEM and TEM photograph of a composite fiber containing 55 wt% or more of MOF nanoparticles surface-treated with oleic acid, an unsaturated fatty acid.
  • Fabrics are fabricated by weaving fibers prepared using a polymer solution containing Zr-MOF surface-modified with SA and OA, such as UiO-66 (Zr) _NH 2 , and photographed It is shown in FIG. 10.
  • Figure 11 is a polypropylene (PE) injection molded body containing 3 wt% and 10 wt% of the surface-modified Al-MOF nanoparticles, respectively, and the results of the production of a film produced by a heat extrusion process.
  • PE polypropylene
  • FIG. 12 shows Al-MOF nanoparticles uniformly dispersed in the film containing 10 wt%
  • FIG. 13 shows the XRD results according to the Al-MOF nanoparticle content in the MOF-Polypropylene composite film of FIG. 11.
  • FIG. 14 is a mixed substrate film (MMM) photograph prepared by mixing Matrimid 5218 and Zr-MOF nanoparticles, confirming that it is possible to manufacture nanoparticles in an amount of 40 wt% or more.
  • 15 is a SEM photograph of the MOF-Polyimide composite separation membrane of FIG. 14, from which it can be confirmed that the nanoparticles are uniformly dispersed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The present invention provides: surface-modified metal-organic framework (MOF) particles which are surface-treated with a liquid fatty acid, wherein the carboxyl group of the fatty acid forms chemical bonds with hydrophilic groups exposed to MOF surfaces, a metal, or both, and the fatty acid is an unsaturated or saturated fatty acid; an MOF-polymer composite comprising a polymer and the surface-modified MOF particles which are uniformly distributed in the polymer; and an MOF-polymer composite molded product obtained by molding the MOF-polymer composite.

Description

지방산으로 표면처리된 MOF 나노입자 및 이를 함유하는 MOF-고분자 복합체 MOF nanoparticles surface-treated with fatty acids and MOF-polymer complex containing the same
본 발명은 액상 지방산으로 표면처리된 금속-유기 골격체(metal-organic framework, MOF) 입자로서, 상기 불포화 지방산의 카르복시기가 MOF 표면에 노출되어 있는 친수성기, 금속 또는 둘 다와 화학결합을 형성하고 있는 것이 특징인 표면개질된 MOF 입자; 고분자 및 상기 고분자에 균일하게 분포된 상기 표면개질된 MOF 입자를 포함하는 MOF-고분자 복합체; 및 상기 MOF-고분자 복합체를 성형하여 얻어진 MOF-고분자 복합성형체(예, 섬유, 필름, 멤브레인 등)에 관한 것이다.The present invention is a metal-organic framework (MOF) particle surface-treated with liquid fatty acids, wherein the carboxyl group of the unsaturated fatty acid forms a chemical bond with a hydrophilic group, metal, or both exposed on the MOF surface. Characterized by surface-modified MOF particles; A MOF-polymer composite comprising a polymer and the surface-modified MOF particles uniformly distributed in the polymer; And a MOF-polymer composite molded body obtained by molding the MOF-polymer composite (eg, fiber, film, membrane, etc.).
유무기 하이브리드 나노세공체, 소위 금속-유기 골격체(metal-organic framework, MOF)는 일반적으로 "다공성 배위고분자 (porous coordination polymers)" 라고도 하며, 또는 "다공성 유무기 혼성체"라고도 한다. 상기 금속-유기 골격체는 분자 배위 결합과 재료과학의 접목에 의해 최근에 새롭게 발전하기 시작하였으며, 상기 금속-유기 골격체는 고표면적과 분자크기 또는 나노크기의 세공을 갖고 있어 흡착제, 기체 저장 물질, 센서, 멤브레인, 기능성 박막, 약물전달 물질, 촉매 및 촉매 담체 등에 응용성을 갖고 있을 뿐만 아니라, 세공크기보다 작은 게스트 분자를 포집하거나 세공을 이용하여 분자들의 크기에 따라 분자들을 분리하는데 사용될 수 있기 때문에 최근에 활발히 연구되어 왔다. 또한, 상기 금속-유기 골격체는 나노크기의 세공을 가지며 이로 인해 높은 표면적을 제공한다는 장점을 가지므로 물질의 흡착 또는 세공 내에 조성물을 담지하여 전달하는 용도로 주로 사용되고 있다.Organic-inorganic hybrid nanopores, so-called metal-organic frameworks (MOFs), are commonly referred to as "porous coordination polymers", or "porous organic-inorganic hybrids". The metal-organic skeletal body has recently begun to develop newly by the combination of molecular coordination and material science, and the metal-organic skeletal body has a high surface area and pores of a molecular size or a nano-scale, and thus an adsorbent and gas storage material , Sensors, membranes, functional thin films, drug delivery materials, catalysts, and catalyst carriers, as well as being applicable to collecting guest molecules smaller than the pore size or using pores to separate molecules according to the size of the molecules Therefore, it has been actively studied recently. In addition, the metal-organic framework has nano-sized pores, and thus has the advantage of providing a high surface area. Therefore, it is mainly used for adsorption of substances or supporting the composition in pores for delivery.
MOF는 다공성 소재로 흡착제의 기능과 촉매로서의 기능을 동시에 구현하는 것이 가능하다. 종래 MOF를 섬유에 적용한 경우 섬유에 뿌려진 형태로 대량 생산이나 제조에는 문제가 있다. 또한, 전기방사 등의 방법을 사용하더라도 균일하게 섞이지 않거나 노즐이 막히게 되는 제조상 문제점이 발생된다. MOF is a porous material, and it is possible to simultaneously implement the function of an adsorbent and a function of a catalyst. When the conventional MOF is applied to the fiber, there is a problem in mass production or manufacturing in the form sprayed on the fiber. In addition, even if a method such as electrospinning is used, there is a problem in manufacturing that is not uniformly mixed or the nozzle is clogged.
본 발명은 MOF 나노입자를 함유하는 복합 섬유 제품을 포함하여 다양한 MOF-고분자 복합성형체를 제공하기 위해, 유기 용매 및/또는 고분자와 혼화성이 우수한 MOF 나노입자의 개질방법을 제공하고자 한다.The present invention is intended to provide a method for modifying MOF nanoparticles having excellent miscibility with organic solvents and / or polymers, in order to provide various MOF-polymer composite molded products including composite fiber products containing MOF nanoparticles.
본 발명의 제1양태는 액상 지방산으로 표면처리된 금속-유기 골격체(metal-organic framework, MOF) 입자로서, 상기 지방산의 카르복시기가 MOF 표면에 노출되어 있는 친수성기, 금속 또는 둘 다와 화학결합을 형성하고 있는 것이 특징인 표면개질된 MOF 입자를 제공한다.The first aspect of the present invention is a metal-organic framework (MOF) particle surface-treated with a liquid fatty acid, wherein the carboxyl group of the fatty acid has a chemical bond with a hydrophilic group, metal or both exposed on the MOF surface. It provides surface-modified MOF particles characterized by being formed.
본 발명의 제2양태는 고분자; 및 상기 고분자에 균일하게 분포된 제1양태의 표면개질된 MOF 입자를 포함하는 MOF-고분자 복합체를 제공한다.The second aspect of the present invention includes a polymer; And it provides a MOF-polymer complex comprising the surface-modified MOF particles of the first aspect uniformly distributed in the polymer.
본 발명의 제3양태는 제2양태의 MOF-고분자 복합체를 성형하여 얻어진 MOF-고분자 복합성형체를 제공한다.The third aspect of the present invention provides a MOF-polymer composite molded body obtained by molding the MOF-polymer composite of the second aspect.
본 발명에 따라 MOF 입자의 표면개질제로 액상 지방산을 사용하면, 고분자와의 분산성을 높일 수 있을 뿐만 아니라, 흡착, 촉매 활성을 발휘하는 MOF의 분자크기 또는 나노크기의 세공을 폐색시키지 아니하면서, 상기 세공 안으로 원하는 분자들의 접근(예, 기체 투과)을 최대한 방해하지 아니하는 배향으로 코팅가능하다. When the liquid fatty acid is used as the surface modifier of the MOF particles according to the present invention, not only can the dispersibility with the polymer be enhanced, but also the molecular size or nano-sized pores of the MOF that exhibit adsorption and catalytic activity are not blocked The pores can be coated in an orientation that does not interfere with the access of the desired molecules (eg, gas permeation) as much as possible.
따라서, 본 발명에 따라 액상 지방산으로 표면개질된 MOF 입자; 및 고분자를 균일하게 함유하는 MOF-고분자 복합체로 제조된 MOF-고분자 복합성형체는 MOF 본연의 흡착 및/또는 촉매특성이 고분자 본연의 기능성과 결합하여, 유해가스제거, 유해물질 제거, 해수담수화, 제습 등 다양한 분리, 정제, 흡착, 촉매 및 기능성 소재 분야에 활용할 수 있다.Therefore, MOF particles surface-modified with liquid fatty acids according to the present invention; And MOF-polymer composite molded body made of MOF-polymer complex containing polymer uniformly, the adsorption and / or catalytic properties of the MOF natural combine with the functionality of the polymer, removing harmful gases, removing harmful substances, desalination, desalination It can be used in various separation, purification, adsorption, catalyst, and functional materials fields.
도 1은 일반적인 MOF 나노입자와 매트릭스 고분자의 MOF-고분자 복합체(상부도)와 본 발명에 따라 불포화 또는 포화 지방산으로 표면개질된 MOF 나노입자와 매트릭스 고분자의 MOF-고분자 복합체(하부도)의 경우 MOF 나노입자의 응집 및 균일 분산을 포함한 구조적 차이를 보여주는 개념도이다.1 is a MOF-polymer composite of a typical MOF nanoparticle and a matrix polymer (top view) and a MOF of a MOF nanoparticle and a matrix polymer surface-modified with unsaturated or saturated fatty acids according to the present invention (bottom view) It is a conceptual diagram showing structural differences including aggregation and uniform dispersion of nanoparticles.
도 2는 일반적인 MOF 나노입자(좌측도)와 불포화 지방산으로 표면개질된 MOF 나노입자(우측도)의 TEM 사진이다. 우측도에서는 입자간 뭉침현상 없다. FIG. 2 is a TEM photograph of general MOF nanoparticles (left view) and MOF nanoparticles (right view) surface-modified with unsaturated fatty acids. In the right view, there is no aggregation between particles.
도 3은 표면개질된 Zn-MOF와 Co-MOF 나노입자가 용매에 분산되어 있는 사진과 MOF 나노입자에 대한 TEM 사진이다.FIG. 3 is a photograph of surface-modified Zn-MOF and Co-MOF nanoparticles dispersed in a solvent and a TEM photograph of MOF nanoparticles.
도 4는 Co-MOF 나노입자에 대하여 불포화 지방산으로 표면개질 처리 전, 후의 XRD 결정성 분석을 나타낸 사진이다.4 is a photograph showing XRD crystallinity analysis before and after surface modification treatment with unsaturated fatty acids for Co-MOF nanoparticles.
도 5는 불포화 또는 포화 지방산으로 표면처리 전, 후의 Zr-MOF 나노입자의 TEM 사진이다.5 is a TEM photograph of Zr-MOF nanoparticles before and after surface treatment with unsaturated or saturated fatty acids.
도 6는 Zr-MOF 나노입자에 대하여 표면개질 처리 전, 후의 XRD 결정성 분석을 나타낸 사진이다.FIG. 6 is a photograph showing XRD crystallinity analysis before and after surface modification treatment for Zr-MOF nanoparticles.
도 7은 각각 MOF 55, 65, 75 wt% 이상 함유된 MOF-고분자 복합섬유 매트(20x30cm)의 사진 및 이의 섬유 SEM 사진이다. 7 is a photograph of a MOF-polymer composite fiber mat (20x30 cm) containing at least 55, 65, and 75 wt% of MOF, respectively, and a fiber SEM photograph thereof.
도 8은 MOF 나노입자가 55 wt% 이상 함유된 복합섬유의 고분해능 SEM 및 TEM 사진이다.8 is a high-resolution SEM and TEM photograph of a composite fiber containing 55 wt% or more of MOF nanoparticles.
도 9는 불포화 또는 포화 지방산으로 OA로 표면개질된 Zr-MOF를 함유하는 고분자 용액을 이용하여 제조한 섬유의 SEM 사진이다.9 is an SEM photograph of fibers prepared using a polymer solution containing Zr-MOF surface-modified with OA as an unsaturated or saturated fatty acid.
도 10은 불포화 또는 포화 지방산으로 표면 개질된 MOF를 함유하는 고분자 용액을 이용하여 제조한 섬유를 직조한 직물의 사진이다. FIG. 10 is a photograph of a fabric woven of fibers prepared using a polymer solution containing MOF surface-modified with unsaturated or saturated fatty acids.
도 11은 Al-MOF 나노입자를 각각 3 wt%, 10 wt% 함유한 상태로 사출 성형한 MOF-Polypropylene 복합체 칩과 열압출공정으로 제조한 필름의 사진이다.FIG. 11 is a photograph of a film produced by a heat-extrusion process and a MOF-Polypropylene composite chip injection molded with Al-MOF nanoparticles containing 3 wt% and 10 wt% respectively.
도 12은 도 11의 MOF-Polypropylene 복합체 필름의 SEM 사진이다. 여기서, MOF 나노입자가 균일하게 분포되고 계면에 결함이 없음을 확인 가능하다.12 is an SEM photograph of the MOF-Polypropylene composite film of FIG. 11. Here, it can be confirmed that the MOF nanoparticles are uniformly distributed and there are no defects at the interface.
도 13는 도 11의 MOF-Polypropylene 복합체 필름에 대한 XRD 분석 결과이다.13 is an XRD analysis result for the MOF-Polypropylene composite film of FIG. 11.
도 14은 Zr-MOF 나노입자가 40 wt% 이상 함유된 MOF-Polyimide 복합 분리막의 사진이다.14 is a photograph of a composite membrane of MOF-Polyimide containing 40 wt% or more of Zr-MOF nanoparticles.
도 15은 도 14의 MOF-Polyimide 복합 분리막의 SEM 사진이다. 이때, MOF 나노입자가 균일하게 분포되고 계면에 결함이 없음을 확인 가능하다.15 is an SEM photograph of the MOF-Polyimide composite separation membrane of FIG. 14. At this time, it can be confirmed that the MOF nanoparticles are uniformly distributed and there are no defects at the interface.
상기 목적을 달성하기 위한 하나의 양태는 액상 지방산으로 표면처리된 금속-유기 골격체(metal-organic framework, MOF) 입자로서, 상기 지방산의 카르복시기가 MOF 표면에 노출되어 있는 친수성기, 금속 또는 둘 다와 화학결합을 형성하고 있는 것이 특징인 표면개질된 MOF 입자를 제공한다.One aspect to achieve the above object is a metal-organic framework (MOF) particles surface-treated with liquid fatty acids, the carboxyl group of the fatty acid being exposed to the surface of the MOF hydrophilic group, metal or both It provides surface-modified MOF particles characterized by forming chemical bonds.
본 명세서에서 “흡착(adsorption)”는 협의의 흡착 뿐만 아니라, 흡수(absorption), 수착(sorption) 을 모두 포함하는 개념이다. In this specification, “adsorption” is a concept that includes both adsorption and sorption, as well as narrow adsorption.
금속-유기 골격체(metal organic framework, MOF)는 분자배위결합을 통해 중심금속 이온이 유기 리간드와 결합하여 형성된 다공성의 유무기 고분자 화합물이며, 골격 구조 내에 유기물과 무기물을 모두 포함하고 분자크기 또는 나노크기의 세공구조를 갖는 결정성 화합물이다. MOF의 골격(framework)는 SBU(secondary buiding unit)인 금속-유기 클러스터(metal-organic cluster)와 유기리간드들 간 공유결합에 의해 형성되며, 금속-유기 클러스터는 MOF의 골격에서 노드(node)가 될 수 있다. MOF들은 다양한 배위결합에 의한 기하학적 구조(coordination geometries), 폴리토픽 링커들(polytopic linkers), 및 보조적인 리간드(ancillary ligands (F-, OH-, H2O among others))에 의해 구성된다.A metal-organic framework (MOF) is a porous organic-inorganic polymer compound formed by binding of a central metal ion with an organic ligand through molecular coordination bonding, and includes both organic and inorganic substances in the framework structure, and has a molecular size or nano It is a crystalline compound having a pore structure of size. The framework of the MOF is formed by covalent bonding between metal-organic clusters (SBUs), which are secondary buiding units (SBUs), and organic ligands, and the metal-organic clusters have nodes in the MOF framework. Can be. MOF are the geometry of the various coordination bond (coordination geometries), poly linker of topics (polytopic linkers), and the auxiliary ligand is composed of a (ancillary ligands (F -, H 2 O among others) -, OH).
따라서, MOF 설계는 적절한 금속이온과 적절한 유기물 리간드를 선정하는 데서 출발한다. 예컨대, 금속이온(예, Zn2+)과 다양한 초산염들을 반응시키면 Zn4O(CH3COO)6 클러스터가 생성되고 이 클러스터들을 유기 리간드와 결합시키면 MOF 구조가 생성된다. 이때, 벤젠 구조의 유기물 리간드 부분이 스페이서(spacer), Zn4O(CH3COO)6 클러스터 부분이 노드(node)가 될 수 있다.Therefore, the MOF design starts with selecting the right metal ion and the right organic ligand. For example, reacting metal ions (eg, Zn 2+ ) with various acetates produces Zn 4 O (CH 3 COO) 6 clusters, and combining these clusters with organic ligands produces MOF structures. At this time, the organic ligand portion of the benzene structure may be a spacer, and a Zn 4 O (CH 3 COO) 6 cluster portion may be a node.
상기 MOF의 중심 금속 이온은 Li+, Na+, K+, Rb+, Be2+, Mg2+, Ca2+, Sr2+, Ba2+, Sc3+, Y3+, Ti4+, Zr4+, Hf+, V4+, V3+, V2+, Nb3+, Ta3+, Cr3+, Mo3+, W3+, Mn3+, Mn2+, Re3+, Re2+, Fe3+, Fe2+, Ru3+, Ru2+, Os3+, Os2+, Co3+, Co2+, Rh2+, Rh+, Ir2+, Ir+, Ni2+, Ni+, Pd2+, Pd+, Pt2+, Pt+, Cu2+, Cu+, Ag+, Au+, Zn2+, Cd2+, Hg2+, Al3+, Ga3+, In3+, Tl3+, Si4+, Si2+, Ge4+, Ge2+, Sn4+, Sn2+, Pb4+, Pb2+, As5+, As3+, As+, Sb5+, Sb3+, Sb+, Bi5+, Bi3+ 및 Bi+로 이루어진 군으로부터 선택되는 것일 수 있으며, 이에 제한되는 것은 아니다.The central metal ion of the MOF is Li + , Na + , K + , Rb + , Be 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Sc 3+ , Y 3+ , Ti 4+ , Zr 4+ , Hf + , V 4+ , V 3+ , V 2+ , Nb 3+ , Ta 3+ , Cr 3+ , Mo 3+ , W 3+ , Mn 3+ , Mn 2+ , Re 3 + , Re 2+ , Fe 3+ , Fe 2+ , Ru 3+ , Ru 2+ , Os 3+ , Os 2+ , Co 3+ , Co 2+ , Rh 2+ , Rh + , Ir 2+ , Ir + , Ni 2+ , Ni + , Pd 2+ , Pd + , Pt 2+ , Pt + , Cu 2+ , Cu + , Ag + , Au + , Zn 2+ , Cd 2+ , Hg 2+ , Al 3 + , Ga 3+ , In 3+ , Tl 3+ , Si 4+ , Si 2+ , Ge 4+ , Ge 2+ , Sn 4+ , Sn 2+ , Pb 4+ , Pb 2+ , As 5+ , As 3+ , As + , Sb 5+ , Sb 3+ , Sb + , Bi 5+ , Bi 3+ and Bi + may be selected from the group consisting of, but are not limited thereto.
유기 리간드는 링커(linker)라고도 하며, 배위결합할 수 있는 작용기를 가진 어떠한 유기 화합물도 가능하며, 예를 들어 상기 유기 리간드는 카르복실기(-COOH), 카르복실산 음이온기(-COO-), 아민기(-NH2) 및 이미노기(-NH), 니트로기(-NO2), 히드록시기(-OH), 할로겐기(-X) 및 술폰산기(-SO3H), 술폰산 음이온기(-SO3 -), 메탄디티오산기(-CS2H), 메탄디티오산 음이온기(-CS2 -), 피리딘기 및 피라진기로 이루어진 군에서 선택되는 하나 이상의 작용기를 갖는 화합물 또는 이의 혼합물을 사용할 수 있다. MOF는 리간드로서 헤테로사이클릭 고리의 디카르복실산 음이온을 갖는 것일 수 있다. 바람직하기로, 상기 리간드는 테레프탈레이트산 음이온, 퓨란디카르복실산 음이온, 피리딘디카르복실산 음이온, 벤젠트리카르복실산, 티오펜디카르복실산 음이온 및 피라졸디카르복실산 음이온으로 구성된 군으로부터 선택되는 하나 이상일 수 있으나, 여기에 한정되지는 않는다. The organic ligand is also referred to as a linker (linker), can be any organic compound having a functional group capable of coordination bond, and, for example, the organic ligand is a carboxyl group (-COOH), a carboxylic acid anion group (-COO -), amine Group (-NH 2 ) and imino group (-NH), nitro group (-NO 2 ), hydroxy group (-OH), halogen group (-X) and sulfonic acid group (-SO 3 H), sulfonic acid anion group (-SO 3 -), methane dithiol Osan group (-CS 2 H), methane dithiol Osan anion group (-CS 2 - may be used), a pyridine group and a compound or a mixture thereof having at least one functional group selected from the group consisting of a pyrazine . MOF may be a dicyclic anion of a heterocyclic ring as a ligand. Preferably, the ligand is from the group consisting of terephthalate anion, furandicarboxylic acid anion, pyridinedicarboxylic acid anion, benzenetricarboxylic acid, thiophenedicarboxylic acid anion and pyrazoledicarboxylic acid anion. It may be one or more selected, but is not limited thereto.
결정성 골격에 극성의 금속이온 및 카르복실산 산소 음이온을 함유하는 동시에 비극성의 방향족 화합물 그룹이 공존하는 MOF는 친수성과 소수성을 동시에 지닐 수 있다.The MOF in which the crystalline skeleton contains polar metal ions and carboxylic acid oxygen anions and co-existing non-polar aromatic compound groups can have both hydrophilicity and hydrophobicity.
유무기 하이브리드 나노세공체의 비제한적인 예로는 NU-1000, MIL-100, MIL-101, 확장된 MOF-74, PCN-222, DUT-32, Al-BDC (benzene dicarboxylate), Fe-BDC, Cr-BDC, V-BDC, Al-BTC, Cr-BTC, Fe-BTC, Al-BDC, Cr-BDC, Zr-BPDC, Cu-BTC(L1) (L1=5-nitro-1,3-dicarboxylate, 또는 5-cyanide-1,3-dicarboxylate 또는 5-hydroxyl-1,3-dicarboxylate 또는 pyridine-3,5-dicarboxylate), UiO-67, UiO-68, MOF-808, DUT-37, HKUST-1 (Cu3(btc)2, btc : benzene-1,3,5-tricarboxylate)(tbo), MOF-14 (Cu3(btb)2, btb : benzene-1,3,5-tribenzoate) (pto), DUT-34 (Cu3(btb)2), DUT-23 ([Cu2(bipy)]3(btb)4), MOF-14, DUT-34, DUT-33 , MOF-74(CPO-27), UMCM-1, UMCM-2, DUT-6(MOF-205), UMCM-3, UMCM-4, UMCM-5, MOF-210, DUT-32 (Zn4O(bpdc)(btctb)4/3, btctb: 4,4‘,4“-[benzene-1,3,5-triyltris(carbonylimino)]trisbenzoate, bpdc: 4,4’-biphenylendicarboxylate), DUT-6, PCN-21, DUT-68, MOP-1, DUT-49, UMCM-1, DUT-7, DUT-28 (Co22(BTB)12(NO3)8(DEF)x(H2O)y), NU-109, NU-110, DUT-13 (Zn4O-(BenzTB)3/2, BenzTB: N,N,N‘,N’-benzidinetetrabenzoate), PCN-69, HKUST-1, MIL-101(Cr), UMCM-1; 이의 리간드 기능화된 물질들(문헌 Weina Zhang , Yayuan Liu , Guang Lu , Yong Wang , Shaozhou Li , Chenlong Cui , Jin Wu , Zhiling Xu , Danbi Tian , Wei Huang , Joseph S. DuCheneu , W. David Wei , Hongyu Chen, Yanhui Yang , and Fengwei Huo, Adv. Mater. 2015, 27, 2923-2929); 이의 혼합물일 수 있다. Non-limiting examples of organic-inorganic hybrid nanoporous materials include NU-1000, MIL-100, MIL-101, extended MOF-74, PCN-222, DUT-32, Al-BDC (benzene dicarboxylate), Fe-BDC, Cr-BDC, V-BDC, Al-BTC, Cr-BTC, Fe-BTC, Al-BDC, Cr-BDC, Zr-BPDC, Cu-BTC (L1) (L1 = 5-nitro-1,3-dicarboxylate , Or 5-cyanide-1,3-dicarboxylate or 5-hydroxyl-1,3-dicarboxylate or pyridine-3,5-dicarboxylate), UiO-67, UiO-68, MOF-808, DUT-37, HKUST-1 (Cu 3 (btc) 2 , btc: benzene-1,3,5-tricarboxylate) (tbo), MOF-14 (Cu 3 (btb) 2 , btb: benzene-1,3,5-tribenzoate) (pto) , DUT-34 (Cu 3 (btb) 2 ), DUT-23 ([Cu 2 (bipy)] 3 (btb) 4 ), MOF-14, DUT-34, DUT-33, MOF-74 (CPO-27 ), UMCM-1, UMCM-2, DUT-6 (MOF-205), UMCM-3, UMCM-4, UMCM-5, MOF-210, DUT-32 (Zn 4 O (bpdc) (btctb) 4 / 3 , btctb: 4,4 ', 4 “-[benzene-1,3,5-triyltris (carbonylimino)] trisbenzoate, bpdc: 4,4'-biphenylendicarboxylate), DUT-6, PCN-21, DUT-68, MOP-1, DUT-49, UMCM-1, DUT-7, DUT-28 (Co 22 (BTB) 12 (NO 3 ) 8 (DEF) x (H 2 O) y ), NU-109, NU-110 , DUT-13 (Zn 4 O- (BenzTB ) 3/2 , BenzTB: N, N, N ', N'-benzidinetetrabenzoate), PCN-69, HKUST-1, MIL-101 (Cr), UMCM-1; Ligand functionalized materials (Wina Zhang, Yayuan Liu, Guang Lu, Yong Wang, Shaozhou Li, Chenlong Cui, Jin Wu, Zhiling Xu, Danbi Tian, Wei Huang, Joseph S. DuCheneu, W. David Wei, Hongyu Chen) , Yanhui Yang, and Fengwei Huo, Adv. Mater. 2015, 27, 2923-2929); Mixtures thereof.
MOF는 다공성 소재로서 세공에 의해 흡착제의 기능 및/또는 촉매로서의 기능을 구현할 수 있다. 그러나, MOF의 함량이 증가할수록 흡착 및/또는 촉매 효과가 커지는 반면, 그만큼 매트릭스 고분자와 MOF 간의 결함 또는 간극이 크게 나타날 뿐만 아니라(도 1), MOF 입자는 고분자와의 복합체 제조시 분산성이 좋지 않아 균일한 특성을 볼 수 없으며 MOF 함량에 제한이 있다. 또한, 혼합특성이 좋지 않아 분산성이 좋지 않기 때문에 불균일한 혼합물이거나 침전이 발생한다. 따라서, 최종 제품 (섬유 제품, 멤브레인, 사출성형 제품 등)의 성형시 노즐 막힘, 균열 등으로 어려움이 있다.The MOF is a porous material, and can function as an adsorbent and / or as a catalyst by pores. However, as the content of MOF increases, the adsorption and / or catalytic effect increases, while the defects or gaps between the matrix polymer and the MOF are large (FIG. 1), and the MOF particles have good dispersibility when preparing a composite with the polymer. There is no uniform characteristic, and MOF content is limited. In addition, since the mixing properties are not good and the dispersibility is not good, a heterogeneous mixture or precipitation occurs. Therefore, when molding the final product (fiber products, membranes, injection molded products, etc.), there are difficulties due to clogging of nozzles and cracks.
예컨대, MOF들은 중심금속에 M(Metal)-O 또는 M-OH 구조를 포함하거나 ZIF 시리즈와 같이 리간드에 극성 작용기를 포함하고 있는 경우가 대부분으로, 친수성이 높고 유기용매 또는 유기 물질인 고분자와의 혼화성이 열악하여 분산이 어렵다. 따라서, MOF 나노입자들이 용매 중에 분산되어 용액 상태로 사용될 때 서로 응집하여 MOF 입자의 크기가 커지게 되는 단점이 있다. 또한, MOF 입자 크기가 커지게 되면 고분자와 함께 마스터배치로 제조할 때 서로 간의 혼화성이 떨어지게 되고 결과적으로 성형 과정에서 균열이 발생하는 등의 제품 품질을 저하시키는 원인이 될 수 있다. 따라서, 전기방사 등으로 방사를 하더라도 MOF 나노입자들만 뭉쳐지는 현상으로 고분자와 균일하게 혼합이 되지 않으며 결과적으로 응집, 침전되어 노즐이 막히는 등의 문제로 충분한 크기의 섬유(매트 mat)로 제조하기 어렵고, 상기 MOF가 균일하게 분산된 섬유 제품(부직포, 직물 등)을 제조하는 것은 사실상 불가능하다. 또한, 가능하더라도 소량의 MOF를 포함하는 것만이 가능하였다. 따라서 일단 제조된 섬유 표면에 MOF를 부착하는 방식으로 제조하였으며, 그 결과 대량 생산이 어렵고 생성물로부터 MOF가 쉽게 탈착되는 문제가 있다. For example, MOFs often include M (Metal) -O or M-OH structures in the central metal or polar functional groups in ligands, such as the ZIF series, and are highly hydrophilic and organic solvents or organic materials. Dispersion is difficult due to poor miscibility. Therefore, when the MOF nanoparticles are dispersed in a solvent and used as a solution, there is a disadvantage that the size of the MOF particles increases due to agglomeration. In addition, when the particle size of the MOF is increased, miscibility with each other is reduced when manufactured in a masterbatch with a polymer, and as a result, product quality such as cracks in the molding process may be deteriorated. Therefore, even if spinning by electrospinning, etc., only MOF nanoparticles are agglomerated, and it is not uniformly mixed with the polymer. As a result, it is difficult to manufacture fibers (mat mat) of sufficient size due to problems such as clogging and precipitation and clogging of the nozzle. , It is virtually impossible to manufacture a textile product (nonwoven fabric, fabric, etc.) in which the MOF is uniformly dispersed. Also, it was only possible to include a small amount of MOF, if possible. Therefore, it was manufactured by attaching MOF to the fiber surface once produced, and as a result, there is a problem in that mass production is difficult and MOF is easily detached from the product.
본 발명은 최종 제품에서 세공에 의해 발휘되는 다양한 기능을 유지하면서, MOF 입자간 응집을 방지하고 유기 용매 및/또는 고분자와의 혼화성을 높이도록 표면개질된 MOF 입자를 제공하기 위해 MOF 입자를 액상 불포화 또는 포화 지방산으로 표면처리하는 것이 특징이다.The present invention liquidifies the MOF particles to provide surface-modified MOF particles to prevent agglomeration between MOF particles and increase miscibility with organic solvents and / or polymers, while maintaining various functions exerted by pores in the final product. It is characterized by surface treatment with unsaturated or saturated fatty acids.
유기 용매 및/또는 고분자와의 혼화성을 높이기 위해 본 발명에 따라 MOF 입자를 액상 불포화 또는 포화 지방산으로 표면처리하는 것은 응집 문제가 훨씬 심각한 나노 스케일(예, 5nm ~ 1000nm)의 MOF 입자에도 적용할 수 있다(도 2, 도 3, 도 5, 및 도 7 ~ 9).Surface treatment of MOF particles with liquid unsaturated or saturated fatty acids according to the present invention to increase miscibility with organic solvents and / or polymers can also be applied to nanoscale (e.g., 5 nm to 1000 nm) MOF particles with much greater cohesion problems. 2 (FIGS. 2, 3, 5, and 7-9).
본 발명에서, 표면처리 대상인 MOF 입자는, 바람직하게는 균일한 크기로, 분쇄 후 액상 불포화 또는 포화 지방산으로 표면처리할 수 있다. In the present invention, the MOF particles to be subjected to the surface treatment, preferably in a uniform size, may be surface treated with liquid unsaturated or saturated fatty acids after grinding.
본 발명의 용어 “지방산”은 탄화수소 사슬 및 이의 말단에는 카르복실기(-COOH)를 포함하는 물질로 탄화수소 사슬은 소수성을 보유하나 말단의 카르복실기를 통해 친수성인 물질과 상호작용할 수 있다.The term “fatty acid” of the present invention is a material containing a hydrocarbon chain and a carboxyl group (-COOH) at its end, and the hydrocarbon chain has hydrophobicity but can interact with a hydrophilic material through a terminal carboxyl group.
본 발명의 상기 '지방산'은 불포화 또는 포화 지방산인 것일 수 있다. The 'fatty acid' of the present invention may be an unsaturated or saturated fatty acid.
상기 불포화 지방산은 MOF의 유기용매 및/또는 고분자와의 혼화성 측면에서 탄소수가 C5 ~ C50인 것이 바람직하다.The unsaturated fatty acid is preferably C5 to C50 in terms of miscibility with the organic solvent and / or polymer of MOF.
불포화 지방산은 이중결합을 1개 이상 가지고 있는 지방산으로 말단에 있는 COOH 또는 COO-는 MOF 입자 표면에 노출되어 있는 친수성기 예컨대, M-O/ M-OH 구조(M는 중심금속이온); 보조적인 리간드(ancillary ligands (F-, OH-, H2O among others)); 및/또는 유기 리간드 중 카르복실기(-COOH), 카르복실산 음이온기(-COO-), 아민기(-NH2) 및 이미노기(-NH), 니트로기(-NO2), 히드록시기(-OH), 할로겐기(-X) 및 술폰산기(-SO3H), 술폰산 음이온기(-SO3 -), 메탄디티오산기(-CS2H), 메탄디티오산 음이온기(-CS2 -), 피리딘기 및 피라진기; 및/또는 MOF의 불포화배위자리 등과 수소결합, 이온결합, 공유결합 등을 하면서, 이중결합으로 인해 불포화 지방산의 구부러진 탄소체인이 MOF 입자의 바깥쪽으로 배향되면서 세공 안으로 원하는 분자들의 접근(예, 기체 투과)을 최대한 방해하지 아니하는 배향으로 소수성 채널을 형성할 수 있다. 따라서, 본 발명에 따라 불포화 지방산을 사용하여 MOF 입자의 표면을 개질하더라도, MOF의 세공을 폐색시키지 아니하면서, 상기 세공 안으로 원하는 분자들의 접근 및/또는 방출(release) (예, 기체 투과)이 가능하여, MOF의 흡착 및/또는 촉매 활성을 발휘할 수 있다.Unsaturated fatty acid is COOH or COO in the end with a fatty acid having at least one double bond is a hydrophilic group, for example, MO / M-OH structures which are exposed to the MOF surface of the particles (M is a central metal ion); Ancillary ligand (ancillary ligands (F -, OH -, H 2 O among others)); And / or an organic ligand of the carboxyl group (-COOH), a carboxylic acid anion group (-COO -), an amine group (-NH 2), and an imino group (-NH), a nitro group (-NO 2), a hydroxy group (-OH ), a halogen group (-X), and a sulfonic acid group (-SO 3 H), a sulfonic acid anion group (-SO 3 -), methane dithiol Osan group (-CS 2 H), methane dithiol Osan anion group (-CS 2 -) , Pyridine group and pyrazine group; And / or hydrogen bonds, ionic bonds, covalent bonds, etc. with the unsaturated coordination sites of the MOF, while the curved carbon chain of the unsaturated fatty acid is oriented toward the outside of the MOF particles due to the double bond, thereby accessing desired molecules into the pores (e.g., gas permeation) ) Can form a hydrophobic channel in an orientation that does not interfere as much as possible. Therefore, even if the surface of MOF particles is modified using unsaturated fatty acids according to the present invention, it is possible to access and / or release desired molecules into the pores (eg, gas permeation) without blocking the pores of the MOF. Thus, adsorption and / or catalytic activity of MOF can be exhibited.
상기 포화지방산은 MOF의 유기용매 및/또는 고분자와의 혼화성 측면에서 탄소수가 C4 ~ C40인 것이 바람직하다. 구체적으로 부티르산 (Butyric acid), 카프로산 (Caprylic acid), 카프릴산 (Caprylic acid), 카프르산 (Capric acid), 라우르산(Lauric acid), 미리스트산(Myristic acid), 팔미트산(Palmitic acid), 스테아르산(Stearic acid), 아라키드산(Arachidic acid), 베헤닉산(Behenic acid), 리그노세르산(Lignoceric acid), 세로트산(Cerotic acid), 몬타닌산(Montanic acid), 멜리스산(Melissic acid) 및 코리노미콜산(Corynomycolic acid)로 이루어진 군으로부터 선택되는 1종이상의 것일 수 있으나, 이제 제한되지 않는다. The saturated fatty acid preferably has C4 to C40 in terms of miscibility with MOF's organic solvent and / or polymer. Specifically Butyric acid, caprylic acid, caprylic acid, capric acid, lauric acid, myristic acid and palmitic acid acid), stearic acid, arachidic acid, behenic acid, lignoceric acid, cerotic acid, montanic acid, melic acid (Melissic acid) and corinomycolic acid (Corynomycolic acid) may be one or more selected from the group consisting of, but is not limited now.
나아가, 본 발명에 따라 액상 지방산을 사용하여 MOF 입자의 표면을 개질하면, MOF 입자는 지방산의 탄소 체인에 의해 소수성을 띠므로, 액상 지방산으로 표면개질된 MOF 입자들간의 응집을 억제할 뿐만 아니라(도 2), 유기용매 및/또는 고분자와의 혼합성/분산성을 부여할 수 있다(도 3, 5, 7 및 9). 이로 인해, 다양한 고분자와의 혼합특성이 매우 우수하며, 이때, MOF 입자는 균일하게 분산된 상태로 함유가 가능하고 질량비로 90 wt% 이상도 가능하다. 우수한 분산성은 균일한 구조를 제공하고 고분자와의 혼합성을 향상시키므로, 예를 들어, 섬유 제조의 경우 장시간 방사가 가능하기 때문에 대면적의 섬유 제조가 가능하다.Furthermore, when the surface of MOF particles is modified using liquid fatty acids according to the present invention, MOF particles have hydrophobicity due to the carbon chain of fatty acids, and thus not only suppress aggregation between MOF particles surface-modified with liquid fatty acids ( 2), it is possible to impart mixing / dispersibility with an organic solvent and / or a polymer (FIGS. 3, 5, 7 and 9). For this reason, the mixing properties with various polymers are very excellent, and at this time, the MOF particles can be contained in a uniformly dispersed state and 90 wt% or more by mass ratio is also possible. Since excellent dispersibility provides a uniform structure and improves the mixing property with a polymer, for example, in the case of fiber production, spinning for a long time is possible, so that large-area fiber production is possible.
한편, COOH 또는 COO- 작용기를 갖는 지방산은 MOF 입자 표면에 노출되어 있는 친수성기 및/또는 금속과 화학결합(예, 수소결합, 이온결합, 공유결합)할 수 있으므로, 유기 용매 및/또는 고분자와의 혼화성을 높일 수 있는 한 포화 지방산(예, 스테아르 산)을 표면개질제로 사용한 것도 본 발명의 범주에 속한다.On the other hand, fatty acids having COOH or COO - functional groups can chemically bond with hydrophilic groups and / or metals exposed on the surface of MOF particles (e.g., hydrogen bonds, ionic bonds, covalent bonds), and thus It is also within the scope of the present invention to use saturated fatty acids (eg, stearic acid) as surface modifiers as long as they are compatible.
본 발명의 다른 하나의 양태는 본 발명은 고분자; 및 상기 고분자에 균일하게 분포된, 액상 지방산으로 표면개질된 MOF 입자를 포함하는 MOF-고분자 복합체를 제공한다.Another aspect of the present invention, the present invention is a polymer; And MOF particles uniformly distributed in the polymer, and MOF particles surface-modified with liquid fatty acids.
이때, MOF 입자 함량은, 총 MOF-고분자 복합체 100 중량부를 기준으로 0.5 중량부 내지 95 중량부일 수 있다. 또한, 본 발명의 MOF-고분자 복합체에서 고분자는 바인더 또는 성형가능성 수지일 수 있다.In this case, the MOF particle content may be 0.5 to 95 parts by weight based on 100 parts by weight of the total MOF-polymer composite. In addition, in the MOF-polymer composite of the present invention, the polymer may be a binder or a moldable resin.
MOF는 수많은 기공을 포함하는 물질이므로 그 밀도가 대략 0.5 g/cm3 이하의 수준으로 매우 낮은 반면, 예컨대 매트릭스 고분자로 주로 이용되는 폴리이미드의 경우 밀도가 1 g/cm3 이상이기 때문에, MOF 30 wt% 경우 매트릭스 내에서 MOF 자체가 차지하는 부피는 최소 60% 이상을 차지하게 된다(도 7 및 도 8).Since MOF is a material containing a large number of pores, its density is very low at a level of approximately 0.5 g / cm 3 or less, whereas for polyimide mainly used as a matrix polymer, for example, since the density is 1 g / cm 3 or more, MOF 30 In the case of wt%, the volume occupied by the MOF itself in the matrix occupies at least 60% (FIGS. 7 and 8).
따라서, 총 MOF-고분자 복합체 100 중량부를 기준으로, 불포화 또는 포화 지방산으로 표면개질된 MOF 나노입자 30 중량부 내지 95 중량부, 바람직하게는 40 중량부 내지 75중량부를 함유하는 MOF-고분자 복합체는 상기 고분자가 매트릭스 수지라기 보다는 표면개질된 MOF 입자의 바인더로 작용하는 MOF계 성형체를 제공할 수 있다(도 8). Therefore, based on 100 parts by weight of the total MOF-polymer complex, MOF-polymer complex containing 30 parts by weight to 95 parts by weight of MOF nanoparticles surface-modified with unsaturated or saturated fatty acids, preferably 40 parts by weight to 75 parts by weight, is It is possible to provide a MOF-based molded body that acts as a binder for the surface-modified MOF particles rather than the polymer matrix resin (FIG. 8).
MOF-고분자 복합체의 비제한적인 예로는 MOF 입자 함유 고분자 용액(예, 잉크, 페인트, 페이스트) 또는 MOF 입자 함유 고분자 마스터 배치일 수 있다.Non-limiting examples of the MOF-polymer composite may be a MOF particle-containing polymer solution (eg, ink, paint, paste) or a MOF particle-containing polymer master batch.
지방산으로 표면개질된 MOF 입자는 유기 용매에 균일하게 분산된 상태에서 유기 용매에 용해되어 있는 고분자의 엉클어진 사슬 사이에 균일하게 삽입되어, 균질한 MOF 입자 함유 고분자 용액을 용이하게 제공할 수 있다.MOF particles surface-modified with fatty acids are uniformly intercalated between the entangled chains of the polymer dissolved in the organic solvent in a state of being uniformly dispersed in the organic solvent, so that the polymer solution containing the homogeneous MOF particles can be easily provided.
액상 지방산으로 표면개질된 MOF 입자를 분산시킬 수 있는 용매는 불포화 또는 포화 지방산의 탄소 체인들 사이의 결합을 끊을 수 있는 한 그 종류에 제한이 없으나, 상기 용매는 N-메틸-2-피롤리돈, 디옥산, 디메틸아세트아마이드, 디메틸포름아미드, 디메틸슬폭사이드, 아세톤, 메틸에틸케톤, r-부티로락톤, C1-6 알코올, 에틸 아세테이트 및 글리콜에테르로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.The solvent capable of dispersing the surface-modified MOF particles with liquid fatty acids is not limited in its kind as long as it can break the bonds between the carbon chains of unsaturated or saturated fatty acids, but the solvent is N-methyl-2-pyrrolidone , Dioxane, dimethylacetamide, dimethylformamide, dimethylsulfoxide, acetone, methylethylketone, r-butyrolactone, C1-6 alcohol, ethyl acetate, and glycol ether.
균질한 MOF 입자 함유 고분자 용액을 준비하기 위해 초음파 처리, 교반 또는 이들 모두를 통해 수행될 수 있으며, 이에 제한되는 것은 아니다.In order to prepare a homogeneous MOF particle-containing polymer solution, it may be performed through ultrasonic treatment, stirring, or both, but is not limited thereto.
또한, 본 발명은 유기 용매에 균일하게 분산된 상태에서 또는 유기 용매 없이 성형가능한 고분자와 컴파운딩을 통해 균질한 MOF 입자 함유 고분자 마스터 배치를 제공할 수 있다.In addition, the present invention can provide a homogeneous MOF particle-containing polymer masterbatch through compounding with a moldable polymer in a state uniformly dispersed in an organic solvent or without an organic solvent.
마스터 배치(master batch)는, 플라스틱 수지 등의 압출·사출 성형 시 각종 첨가제의 혼련성을 개선하기 위하여, 미리 각종 첨가제를 분산시켜 놓은 펠렛 모양의 원료를 의미할 수 있다. 특히, 본 발명의 마스터 배치는 다양한 형상의 성형체를 제조하기 위한 것일 수 있다.The master batch may mean a pellet-shaped raw material in which various additives are previously dispersed in order to improve kneading properties of various additives during extrusion / injection molding of a plastic resin or the like. In particular, the master batch of the present invention may be for manufacturing molded bodies of various shapes.
MOF 입자 함유 고분자 마스터 배치는 불포화 지방산으로 표면개질된 MOF 입자를 분말상태에서 컴파운딩되는 것일 수 있다. 이 경우 매트릭스 고분자 수지에 본 발명에 따라 불포화 지방산으로 표면개질된 MOF 나노입자들을 응집없이 분산시킬 수 있다. 일례로, 성형가능한 매트릭스 수지와 상기 불포화 지방산으로 표면개질된 MOF 입자를 잘 혼합한 후 호퍼를 통해 이축압출기 내부로 투입하여 컴파운딩할 수 있다. 압출기 내부에서 melt-blending된 수지는 공냉각시킨 후 필라멘트 또는 펠렛 형태로 가공할 수 있다. 냉각과정에서 흡수된 물을 제거하기 위해 진공오븐에서 건조하여 마스터 배치를 제조할 수 있다.The polymer master batch containing MOF particles may be compounded in the form of powders of MOF particles surface-modified with unsaturated fatty acids. In this case, MOF nanoparticles surface-modified with an unsaturated fatty acid according to the present invention can be dispersed in a matrix polymer resin without aggregation. As an example, the moldable matrix resin and the MOF particles surface-modified with the unsaturated fatty acid are well mixed, and then compounded by introducing them into the twin-screw extruder through a hopper. The melt-blending resin inside the extruder can be processed into filaments or pellets after air cooling. In order to remove water absorbed during the cooling process, a masterbatch can be prepared by drying in a vacuum oven.
나아가, 본 발명의 또 다른 하나의 양태는 본 발명의 MOF-고분자 복합체를 성형하여 얻어진 MOF-고분자 복합성형체를 제공한다.Furthermore, another aspect of the present invention provides a MOF-polymer composite molded body obtained by molding the MOF-polymer composite of the present invention.
본 발명의 MOF-고분자 복합성형체는 MOF 입자 함유 고분자 용액으로부터 성형된 성형체(예, 필름) 또는 MOF 입자 함유 고분자 마스터 배치를 용융하여 성형된 성형체(예, 사출성형, 용융 방사)를 제공할 수 있다.The MOF-polymer composite molded article of the present invention may provide a molded article (eg, film) molded from a polymer solution containing MOF particles or a polymer masterbatch containing MOF particles to provide a molded article (eg, injection molding, melt spinning). .
따라서, 상기 MOF-고분자 복합성형체는 멤브레인, 코팅막, 포장지, 용기, 시트, 부품, 또는 적층체 중 일부 층 형태일 수 있다. 예컨대, 상기 MOF-고분자 복합성형체는 상기 MOF-고분자 복합재료를 코팅, 3D 인쇄, 방사, 중공성형, 사출성형 또는 압출성형하여 제조될 수 있다.Accordingly, the MOF-polymer composite molded body may be in the form of a membrane, a coating film, a wrapping paper, a container, a sheet, a part, or some layer of a laminate. For example, the MOF-polymer composite can be prepared by coating, 3D printing, spinning, blow molding, injection molding or extrusion molding the MOF-polymer composite material.
구체적으로, 본 발명의 일 실시예에서는 불포화 또는 포화 지방산으로 표면개질된 MOF 나노입자 간의 응집이 일어나지 않고 MOF 나노입자 본래 크기 범위의 작은 입자 크기를 갖는 성형체를 제조할 수 있음을 확인하였다(도 11, 도 12, 도 14 및 도 15).Specifically, in one embodiment of the present invention, it was confirmed that agglomeration between MOF nanoparticles surface-modified with unsaturated or saturated fatty acids does not occur and that a molded body having a small particle size in the original size range of the MOF nanoparticles can be produced (FIG. 11) , FIGS. 12, 14 and 15).
본 발명에 따른 MOF-고분자 복합성형체는 MOF 나노입자 자체의 흡착 및/또는 촉매활성을 발휘하므로, 다양한 MOF-고분자 복합성형체의 비제한적인 예로는, 기능성 섬유, 멤브레인, 필터, 박막코팅, 사출성형으로 제조되는 기능성 제품 (웨어러블 기기 등), 디스플레이 봉지, 포장재 등이 있다. 또한, 본 발명에 따른 MOF계 성형체는 보호복, 안전복, 작업복, 군복, 배기 필터, 차량호스, 분리막, 특수복, 산업용 소재, 단열재, 전기절연재, 자동차 고내열 부직포, 산업용 필터 등일 수 있다.Since the MOF-polymer composite molded article according to the present invention exhibits adsorption and / or catalytic activity of the MOF nanoparticles itself, non-limiting examples of various MOF-polymer composite molded articles are functional fibers, membranes, filters, thin film coatings, and injection molding. Functional products (wearable devices, etc.), display bags, packaging materials, and the like. In addition, the MOF-based molded article according to the present invention may be protective clothing, safety clothing, work clothing, military clothing, exhaust filters, vehicle hoses, separators, special clothing, industrial materials, insulation materials, electrical insulation materials, automobile high heat resistant non-woven fabrics, industrial filters, and the like.
본 발명에 따른 MOF-고분자 복합성형체의 제조방법은 Method of manufacturing a MOF-polymer composite molding according to the present invention
본 발명에 따라 액상 지방산으로 표면개질된 MOF 입자를 고분자에 균일하게 분산시켜 MOF-고분자 복합체를 형성하는 제1단계; 및 A first step of uniformly dispersing MOF particles surface-modified with liquid fatty acids according to the present invention in a polymer to form a MOF-polymer complex; And
상기 MOF-고분자 복합체를 성형하여 MOF-고분자 복합성형체를 얻는 제2단계를 포함한다.And a second step of shaping the MOF-polymer complex to obtain a MOF-polymer complex.
바람직하기로, 상기 제2단계 이후에 상기 MOF-고분자 복합성형체를 열처리 또는 진공처리하는 제3단계를 추가로 포함할 수 있다. 이러한 전처리 및/또는 후처리 단계는 열처리 또는 진공처리를 포함하며 이 과정에서 MOF 입자가 활성화되거나 MOF 입자와 고분자 사이의 결함이나 치밀도에 영향을 줄 수 있다.Preferably, after the second step may further include a third step of heat treatment or vacuum treatment of the MOF-polymer composite. These pre-treatment and / or post-treatment steps include heat treatment or vacuum treatment, in which MOF particles are activated or may affect defects or densities between the MOF particles and the polymer.
본 발명에 따라 액상 지방산을 MOF 입자의 표면개질제로 사용하여 MOF 70 wt% 이상 함유하면 이는 MOF 성형기술에 해당한다.If the liquid fatty acid according to the present invention is used as a surface modifier for MOF particles and contains 70 wt% or more of MOF, this corresponds to MOF molding technology.
MOF-고분자 복합성형체를 제조할 수 있는 고분자는 매트릭스 및/또는 바인더로서 그 역할을 수행할 수 있다.Polymers capable of producing MOF-polymer composites may serve as a matrix and / or binder.
MOF-고분자 복합성형체가 섬유인 경우, 상기 고분자는 섬유 제조가 가능한 분자로서, 예를 들면 용매에 용해시킨 후 전기 방사 (electrospinning), 습식 방사(wet spinning), 복합 방사(conjugate spinning), 멜트 블로운 방사(melt blown spinning) 또는 플래쉬 방사(flash spinning) 등을 포함하는 통상의 방사 방법으로 방사하였을 때 섬유를 제조할 수 있는 분자일 수 있다. 섬유로 사용되는 대표적인 고분자의 예로는 폴리에틸렌(polyethylene), 폴리프로필렌(polypropylene), 나일론(nylon), 폴리에스테르(polyester), 케블라(Kevlar)와 노멕스(Nomee), 셀룰로우즈(cellulose), 폴리우레탄(polyurethane)이 있다.When the MOF-polymer composite is a fiber, the polymer is a molecule capable of producing fibers, for example, after dissolving in a solvent, electrospinning, wet spinning, conjugate spinning, melt blown. It may be a molecule capable of producing fibers when spun by conventional spinning methods including melt blown spinning or flash spinning. Examples of typical polymers used as fibers include polyethylene, polypropylene, nylon, polyester, Kevlar and Nomee, cellulose, and poly There is a polyurethane (polyurethane).
본 발명에 따른 MOF-고분자 복합성형체는 예컨대 막두께가 1 ㎛ 내지 300 ㎛, 바람직하기로 2 ㎛ ~ 30 ㎛인, 필름층일 수 있다. 상기 필름층은 가스 배리어 역할 및/또는 보호막 역할 뿐만 아니라 다양한 센서, 멤브레인, 기능성 박막, 약물전달 물질, 촉매 및 촉매 담체 등을 수행할 수 있다. 성막 가능한 고분자의 비제한적인 예로는 폴리이미드, 폴리아세틸렌, 셀룰로스 아세테이트, 폴리술폰, 폴리에틸렌옥사이드, 폴리(4-메틸펜텐-1), 폴리(2,6-디메틸 페닐렌 옥사이드), 폴리디메틸실록산, 폴리에틸렌, 폴리비닐리덴 클로라이드, 폴리테트라플루오로에틸렌 옥사이드, 폴리아크릴로니트릴, 폴리(비닐 알코올), 폴리스티렌, 나일론 6 등일 수 있다.The MOF-polymer composite molded article according to the present invention may be, for example, a film layer having a film thickness of 1 μm to 300 μm, preferably 2 μm to 30 μm. The film layer may serve as a gas barrier and / or a protective film, as well as various sensors, membranes, functional thin films, drug delivery materials, catalysts, and catalyst carriers. Non-limiting examples of film-forming polymers include polyimide, polyacetylene, cellulose acetate, polysulfone, polyethylene oxide, poly (4-methylpentene-1), poly (2,6-dimethyl phenylene oxide), polydimethylsiloxane, Polyethylene, polyvinylidene chloride, polytetrafluoroethylene oxide, polyacrylonitrile, poly (vinyl alcohol), polystyrene, nylon 6, and the like.
투명한 성막 가능한 고분자의 비제한적인 예로는 폴리에틸렌테레프탈레이트(PET) 또는 폴리에틸렌나프탈레이트(PEN) 등의 에스테르계 고분자; 디아세틸셀룰로오스 또는 트리아세틸셀룰로오스 등의 셀룰로오스계 고분자; 폴리카보네이트(PC) 등의 카보네이트계 고분자; 폴리(메틸)메타크릴레이트 등의 아크릴계 고분자; 방향족 고리를 가지는 아크릴 수지 또는 락톤 변성 아크릴 수지 등의 아크릴계 수지; 폴리스티렌 또는 아크릴로니트릴·스티렌 공중합체 등의 스티렌계 고분자; 폴리에틸렌, 폴리프로필렌, 사이클로 올레핀계 고분자(cyclo-olefin polymer, COP) 또는 에틸렌·프로필렌 공중합체 등의 올레핀계 고분자; 염화 비닐계 고분자; 나일론 또는 방향족 폴리아미드 등의 아미드계 고분자; 이미드계 고분자; 설폰계 고분자; 폴리에테르술폰계 고분자; 폴리에테르에테르케톤계 고분자; 폴리페닐렌설파이드계 고분자; 비닐 알코올계 고분자; 염화비닐리덴계 고분자; 비닐부틸알데히드계 고분자; 아릴레이트계 고분자; 폴리옥시메틸렌계 고분자; 에폭시계 고분자; 또는 이들을 혼합한 블렌드 고분자 등이 있다. 바람직하게는, 투명 필름으로서 가격적으로 유리한 폴리에틸렌테레프탈레이트, 또는 내광성이나 내후성에 유리한 폴리(메틸)메타크릴레이트나 트리아세틸셀룰로오스 등을 원료로서 이용될 수 있다.Non-limiting examples of transparent film-forming polymers include ester polymers such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN); Cellulose-based polymers such as diacetyl cellulose and triacetyl cellulose; Carbonate-based polymers such as polycarbonate (PC); Acrylic polymers such as poly (methyl) methacrylate; Acrylic resins such as acrylic resins having an aromatic ring or lactone-modified acrylic resins; Styrene-based polymers such as polystyrene or acrylonitrile-styrene copolymer; Olefin polymers such as polyethylene, polypropylene, cyclo-olefin polymers (COP), and ethylene / propylene copolymers; Vinyl chloride polymers; Amide polymers such as nylon or aromatic polyamides; Imide-based polymers; Sulfone-based polymers; Polyether sulfone polymers; Polyether ether ketone-based polymers; Polyphenylene sulfide polymers; Vinyl alcohol-based polymers; Vinylidene chloride-based polymers; Vinyl butyl aldehyde polymers; Arylate-based polymers; Polyoxymethylene polymers; Epoxy polymers; Or blend polymers in which these are mixed. Preferably, polyethylene terephthalate, which is advantageous in price as a transparent film, or poly (methyl) methacrylate or triacetyl cellulose, which is advantageous in light resistance and weather resistance, can be used as a raw material.
또한, 고분자는 폴리아세틸렌, 폴리피롤, 폴리티오펜, 폴 리에틸렌디옥시티오펜, 폴리페닐렌비닐렌, 폴리페닐렌, 폴리실란, 폴리플루오렌, 폴리아닐린 및 폴리 설퍼 니트 리드와 같은 전도성 고분자일 수 있다.In addition, the polymer can be a conductive polymer such as polyacetylene, polypyrrole, polythiophene, polyethylenedioxythiophene, polyphenylenevinylene, polyphenylene, polysilane, polyfluorene, polyaniline and polysulfur nitride. .
제2단계는 상기 고분자 용액을 성형하여 MOF-고분자 복합성형체를 얻는 단계일 수 있다.The second step may be a step of obtaining the MOF-polymer composite molded body by molding the polymer solution.
투명한 필름층 또는 섬유 형성을 위해 제조공정 중 액상 지방산으로 표면개질된 MOF 입자가 나노 입자 크기로 분산되어 있는 상태를 유지시키는 것이 바람직하다.In order to form a transparent film layer or fiber, it is preferable to maintain a state in which MOF particles surface-modified with liquid fatty acids are dispersed in a nanoparticle size during the manufacturing process.
MOF-고분자 복합성형체가 막 형태인 경우 제2단계의 성형방법은 나이프 캐스팅, 테이프 캐스팅, 방사, 슬립 코팅, 스프레이 코팅, 초음파 코팅, 롤(Roll) 코팅, 슬롯다이(Slot die) 코팅, 바(Bar) 코팅, 딥(Dip) 코팅, 또는 스핀(Spin) 코팅으로 수행될 수 있으며, 이에 제한되는 것은 아니다. 나이프 캐스팅 및 테이프 캐스팅은 고분자 용액을 각각 나이프 또는 테이프를 사용하여 필름과 같은 평판 형태로 성형한 후 가열 처리 등으로 용매를 제거함으로써 수행할 수 있다.When the MOF-polymer composite is in the form of a membrane, the second step of molding is knife casting, tape casting, spinning, slip coating, spray coating, ultrasonic coating, roll coating, slot die coating, and bar ( Bar) may be performed by coating, dip coating, or spin coating, but is not limited thereto. Knife casting and tape casting may be performed by forming a polymer solution into a flat plate such as a film using a knife or tape, respectively, and then removing the solvent by heat treatment or the like.
필름층 형성은 불포화 또는 포화 지방산으로 표면개질된 MOF 입자가 유기용매 또는 바인더 수지의 모노머, 올리고머, 또는 폴리머에 균일하게 분산된 코팅액을 도포하여 수행할 수 있다. 이때, 바인더 수지의 모노머 또는 올리고머는 UV 경화형일 수 있으며, 코팅 후 UV 조사를 통한 경화 공정을 거처 필름화될 수 있다.Film layer formation can be carried out by applying a coating solution in which MOF particles surface-modified with unsaturated or saturated fatty acids are uniformly dispersed in a monomer, oligomer, or polymer of an organic solvent or a binder resin. At this time, the monomer or oligomer of the binder resin may be UV-curable, and may be filmed through a curing process through UV irradiation after coating.
MOF-고분자 복합성형체가 섬유 형태인 경우 제2단계의 성형방법은 실을 뽑아내는 방사방법일 수 있다.When the MOF-polymer composite molded body is in the form of a fiber, the molding method in the second step may be a spinning method for drawing a thread.
방사방법으로는 다음의 3종류가 있다. : (1) 습식법(濕式法)은 적당한 용제(溶劑)로 녹인 내용물을 가는 구멍을 통해서 응고욕(凝固浴) 속으로 밀어내어 고화(固化)시킨다.; (2) 건식법(乾式法)은 기화(氣化)하기 쉬운 용제로 녹인 것을 가는 구멍을 통하여 공기 가운데로 밀어낸다. 용제가 증발해 버리면 실로 만들어져서 남는다.; (3) 용융법(溶融法)은 고분자를 가열하여 용융상태로 만들고, 가는 구멍으로부터 밀어낸다. 식어서 굳으면 실이 만들어진다. There are three types of spinning methods: : (1) The wet method is to solidify the contents dissolved in a suitable solvent by pushing them into a coagulation bath through a fine hole .; (2) The dry method is a solvent that is easy to vaporize, and the melted matter is pushed into the air through a fine hole. When the solvent evaporates, it becomes a thread and remains; (3) The melting method heats the polymer to make it melt, and pushes it out of a thin hole. When cooled and hardened, a thread is produced.
합성섬유를 방사할 때 가는 구멍의 형(型)을 여러 모양으로 바꿈으로써 많은 형태의 특이한 섬유도 만들 수 있다.When spinning synthetic fibers, many types of unique fibers can be made by changing the shape of the fine holes into different shapes.
섬유는 상기 MOF 입자 함유 고분자 용액으로부터 실을 뽑아내는 방사라는 과정과 다양한 물성을 부여하는 연신이라는 과정을 거친 후 짧게 잘라 솜 형태로 만든 단섬유, 실의 형태로 만드는 것을 장섬유일 수 있으며, 상기 섬유를 짜서 직물 형태의 천일 수 있다. The fibers may be short fibers cut into a short form of cotton and long fibers in the form of a thread after undergoing a process of spinning to extract threads from the MOF particle-containing polymer solution and stretching to give various properties. The fabric may be woven into a fabric-like fabric.
또한, 섬유는 부직포 형태일 수 있다. 부직포는 천연, 합성, 유리, 금속 등 각종 섬유를 상호간의 특성에 따라 엉키게 하며 시트모양의 웨브(Web)를 형성, 이를 기계적 또는 물리적인 방법으로 결합시켜 만든 평면 구조를 일컫는다. 부직포는 방적(紡績), 제직(製織)에 의하지 않고 섬유집합체 또는 필름을 물리적, 화학적 수단에 의하거나 적당한 수분이나 열로 섬유 상호간을 결합시킨 것일 수 있다. 다양한 부직포 제조법이 하기 표 1에 예시되어 있다.In addition, the fibers may be in the form of a nonwoven fabric. Non-woven fabric refers to a planar structure made by tangling various fibers such as natural, synthetic, glass, and metal according to mutual characteristics and forming a sheet-like web and combining them with mechanical or physical methods. The non-woven fabric may be a fiber aggregate or a film, which is not bound to spinning or weaving, by physical or chemical means, or may be bonded to each other by suitable moisture or heat. Various nonwoven fabric manufacturing methods are illustrated in Table 1 below.
ProcessProcess 제조법Recipe 특징Characteristic 주용도Main purpose
습식부직포Wet nonwoven fabric 제지공정인 초지법과 동일한 공정이나 단지 원료가 펄프로 사용되지 않고 각종 섬유를 사용하여 제조The same process as the papermaking process, which is a papermaking process, but only raw materials are not used as pulp and manufactured using various fibers 물성을 매우 자유롭게 변화시킬 수 있음Very freely changeable properties Wiper, 타월, 휠, 타백, 기저귀 커버Wiper, towel, wheel, towel, diaper cover
건건식부직포Dry Dry Nonwoven 케미칼본드Chemical bond 웨브(web) 결합 시 접착제를 섬유상에 침투시켜 건조공정을 거쳐 제조When bonding the web, the adhesive penetrates the fiber and is manufactured through a drying process. 유연성과 통기성이 매우 뛰어남Very flexible and breathable 심지, 코팅기포Wick, coating bubble
서멀본드Thermal Bond 저융점의 가소성 합성섬유를 혼합시켜 열, 압력, 용제 등으로 착화하거나 녹여서 결합하여 제조Manufactured by mixing low melting point plastic synthetic fibers and igniting or melting them with heat, pressure, solvent, etc. 접착제를 사용하지 않아 위생적임Hygienic because no adhesive is used 기저귀, 위생용, 내프킨 등Diapers, hygiene, naphkin, etc.
에어레이Air Ray 압축공기와 접착제를 동시에 이용하여 제조Manufactured using compressed air and adhesives at the same time 가로와 세로 방향의 인장 차이가 없음There is no tension difference between horizontal and vertical directions 전지휠타, 심지, 카페트기포재, Wiper 스폰지, 절연재Battery filter, wick, carpet foam material, wiper sponge, insulation material
스판레스Spanless 고압수류를 이용하여 섬유를 결합하여 제조Manufactured by combining fibers using high pressure water flow 유연성과 통기성이 뛰어남Excellent flexibility and breathability 메디칼용, 심지, 생활용품, 코팅기포, Roofing재, WiperFor medical, wick, household goods, coating bubble, roofing material, Wiper
스펀본드Spunbond 용융섬유를 방사하여 자체 접착하여 결합Self-adhesive bonding by spinning molten fiber 용도에 따른 원단설계가 용이함Easy fabric design according to use 포장재, 생리용 내프킨, 토목건축재, 휠터, 심지, 카페트 기포재, 코팅재 등Packaging materials, physiological naphkin, civil construction materials, filters, wicks, carpet foam materials, coating materials, etc.
멜트블로운Melt blown 합성고분자를 방사하여 고압열풍에 의해 극세섬유로 되어 균일한 용융섬유 Web 결합하여 제조Synthetic polymers are spun into ultrafine fibers by high-pressure hot air to produce uniform melted fiber webs. 유연성, 비투과성, 절연성이 뛰어남Excellent flexibility, impermeability and insulation Filter, 절연재, 흡수시트, Wiper, 흡유시트, 생리용 내프킨 Filter, insulating material, absorbent sheet, wiper, absorbent sheet, physiological naphkin
니들펀치Needle punch 기계적으로(특수바늘) 웨브(Web)를 결합시켜 제조Manufactured by mechanically (special needle) bonding of web 두께조정이 용이함Easy thickness adjustment 카페트, 모포, 휠터, 코팅기포재, 심지Carpet, blanket, filter, coating foam material, wick
스테치본드Stitch Bond 형성된 Web를 편침을 사용하여 접착제를 사용하지 않고 실로 누벼서 제조Manufactured by knitting the formed web into threads without using adhesives using knitting needles 두께는 얇으나 인장강도는 높음Thin but high tensile strength 심지, 자동차 내장재 등Wick, automobile interior material, etc.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. These examples are only intended to illustrate the present invention in more detail, and the scope of the present invention is not limited by these examples.
제조예 1: MIL-100(Fe) 나노 입자의 제조Preparation Example 1: Preparation of MIL-100 (Fe) nanoparticles
MIL-100 (Fe) 나노 입자의 마이크로 웨이브 합성을 위해, 마이크로웨이브 반응기에 H2O 30 mL, 염화철(III)6수화물 (2.43 g, 9.00 mmol)과 트리메스산 (0.84 g, 4.00 mmol)을 넣었다. 상기 혼합물을 30초 이내에 solvothermal 조건 (p = 2.5 bar) 하에서 130℃로 가열하고, 4℃에서 130℃로 유지한 후 실온으로 냉각시켰다. 정제하기 위해, 반응 혼합물을 약 20,000 rpm 에서 원심 분리 및 용매를 제거하고 필요에 따라 여과와 정제의 반복 및 건조 하여 나노입자를 수득하였다.For microwave synthesis of MIL-100 (Fe) nanoparticles, 30 mL of H 2 O, iron (III) chloride hexahydrate (2.43 g, 9.00 mmol) and trimesic acid (0.84 g, 4.00 mmol) were placed in a microwave reactor. I put it. The mixture was heated to 130 ° C. under solvothermal conditions (p = 2.5 bar) within 30 seconds, maintained at 4 ° C. to 130 ° C., and then cooled to room temperature. To purify, the reaction mixture was centrifuged at about 20,000 rpm and the solvent was removed, and if necessary, filtration and purification were repeated and dried to obtain nanoparticles.
제조예 2: MIL-101(Cr) 나노 입자의 제조Preparation Example 2: Preparation of MIL-101 (Cr) nanoparticles
MIL-101 (Cr) 나노 입자의 마이크로 웨이브 합성을 위해, 마이크로 웨이브 반응기에 H2O 20 mL (1.11 mol), 테레프탈산 615 mg (3.70 mmol)과 Cr(NO3)3·9H2O (3.70 mmol) 1.48 g을 넣었다. 180℃에서 4분의 램프와 180℃에서 2분의 유지 시간을 적용하였다. 실온으로 냉각 후, 이를 여과하고 잔류물, 예컨대 테레프탈산을 제거하기 위해 EtOH 50 ml로 세척하였다. 필요에 따라 여과와 정제의 반복 및 건조 하여 나노입자를 수득하였다.For microwave synthesis of MIL-101 (Cr) nanoparticles, H 2 O 20 mL (1.11 mol), terephthalic acid 615 mg (3.70 mmol) and Cr (NO 3 ) 3 · 9H 2 O (3.70 mmol) in a microwave reactor ) 1.48 g was added. A lamp of 4 minutes at 180 ° C and a holding time of 2 minutes at 180 ° C were applied. After cooling to room temperature, it was filtered and washed with 50 ml EtOH to remove residues such as terephthalic acid. The filtration and purification were repeated and dried as necessary to obtain nanoparticles.
제조예 3: MIL-88(Fe) 나노입자의 제조Preparation Example 3: Preparation of MIL-88 (Fe) nanoparticles
1 mmol의 페릭 클로라이드 (FeCl3)과 5 mL의 디메틸 포름아미드 (DMF, 98%), 무수 에탄올 (1 mL)와 푸마르산 1 mmol을 30분 동안 150℃의 온도의 오토 클레이브에서 반응시켰다. 얻어진 침전물을 5000 rpm에서 10분간 원심 분리하여 회수하였다. 필요에 따라 여과와 정제의 반복 및 건조 하여 나노입자를 수득하였다.1 mmol of ferric chloride (FeCl 3 ), 5 mL of dimethyl formamide (DMF, 98%), anhydrous ethanol (1 mL) and 1 mmol of fumaric acid were reacted in an autoclave at a temperature of 150 ° C. for 30 minutes. The obtained precipitate was collected by centrifugation at 5000 rpm for 10 minutes. The filtration and purification were repeated and dried as necessary to obtain nanoparticles.
제조예 4: MIL-53(Fe)_NH2 나노입자의 제조Preparation Example 4: Preparation of MIL-53 (Fe) _NH 2 nanoparticles
저온 합성 경로로, 0.1 mmol FeCl3 · 6H2O 및 0.1 mmol 2-아미노 테레프탈산 (NH2-H2BDC) 함유 에탄올 용액 9 mL을 둥근 바닥 플라스크 (25 mL)에 혼합하고, 40℃ 에서 2시간 동안 교반하였다. 수득된 반응 생성물을 필요에 따라 여과와 정제의 반복 및 건조 하여 나노입자를 수득하였다.As a low-temperature synthetic route, 9 mL of an ethanol solution containing 0.1 mmol FeCl 3 · 6H 2 O and 0.1 mmol 2-amino terephthalic acid (NH 2 -H 2 BDC) was mixed in a round bottom flask (25 mL) and 2 hours at 40 ° C. While stirring. The obtained reaction product was filtered and purified as necessary and dried to obtain nanoparticles.
제조예 5: MIL-68(Al) 나노입자의 제조Preparation Example 5: Preparation of MIL-68 (Al) nanoparticles
1.4g의 Al(NO3)3·9H2O와 0.6 g의 H2BDC (벤젠-1,4-디카르복실산)를 용매로서 테트라 하이드로 푸란 (THF) 16 mL에 첨가하고 혼합물을 교반하면서 3일 동안 70 ℃까지 가열하였다. 생성물을 원심 분리에 의해 수득하고, 새로운 THF로 3회 세척하고, 필요에 따라 여과와 정제의 반복 및 건조 하여 나노입자를 수득하였다.1.4 g Al (NO 3 ) 3 · 9H 2 O and 0.6 g H 2 BDC (benzene-1,4-dicarboxylic acid) are added as solvent to 16 mL of tetrahydrofuran (THF) and the mixture is stirred Heated to 70 ° C. for 3 days. The product was obtained by centrifugation, washed three times with fresh THF, and repeated and dried by filtration and purification as needed to obtain nanoparticles.
제조예 6: MOF-808(Zr) 나노 입자의 제조Preparation Example 6: Preparation of MOF-808 (Zr) nanoparticles
DMF/포름산 (270 mL/360 mL)의 용매 혼합물에 H3BTC (3.3 g, 15.7 mmol) 및 ZrOCl2·8H2O (5.06 g, 15.7 mmol)를 첨가하였다. 반응 혼합물을 오토 클레이브로 135 ℃에서 48시간 동안 가열하였다. 원심 분리에 의해 백색 침전물을 수집하고, 필요에 따라 여과와 정제의 반복 및 건조 하여 나노입자를 수득하였다.To a solvent mixture of DMF / formic acid (270 mL / 360 mL) was added H 3 BTC (3.3 g, 15.7 mmol) and ZrOCl 2 · 8H 2 O (5.06 g, 15.7 mmol). The reaction mixture was heated with an autoclave at 135 ° C. for 48 hours. The white precipitate was collected by centrifugation, and, if necessary, filtration and purification were repeated and dried to obtain nanoparticles.
제조예 7: UiO-66(Zr) 나노입자 제조Preparation Example 7: Preparation of UiO-66 (Zr) nanoparticles
14 mmol의 ZrOCl2·8H2O와 14 mmol의 테레프탈산 (terephthalic acid, H2BDC) 에 N,N'-디메틸포름아미드(DMF) 용매 1 L 를 첨가하였다. 상기 혼합물에 37% HCl 수용액 0.78 g을 추가로 넣고 상기의 반응물을 상온에서 50 rpm으로 20분간 교반하면서 혼합하였다.1 L of N, N'-dimethylformamide (DMF) solvent was added to 14 mmol of ZrOCl 2 · 8H 2 O and 14 mmol of terephthalic acid (H 2 BDC). 0.78 g of a 37% HCl aqueous solution was further added to the mixture, and the reaction mixture was mixed with stirring at 50 rpm for 20 minutes at room temperature.
상기 반응물을 환류 반응이 가능한 유리 반응기에 옮겨 넣고 유기겔을 형성시키기 위해 상온에서 90℃까지 분당 5℃의 승온 속도로 올린 후, 여기서, 겔용액의 점도가 300 cps 가 되면, 상기 온도에서 교반속도를 감속하여 교반하면서 3시간 유지하였다. 그런 다음 상기의 반응물을 다시 120℃까지 올린 후 12시간 유지하여 결정화 반응을 수행한 후 분당 1℃ 이하의 냉각속도로 실온까지 냉각하였다.The reactant is transferred to a glass reactor capable of reflux reaction, and raised to a temperature of 5 ° C. per minute from room temperature to 90 ° C. to form an organic gel. The mixture was decelerated and maintained for 3 hours while stirring. Then, the reactant was raised to 120 ° C again and maintained for 12 hours to perform a crystallization reaction, followed by cooling to room temperature at a cooling rate of 1 ° C or less per minute.
합성 후 다공성 유무기 혼성체가 함유된 슬러리 용액은 일단 상온에서 가압 필터로 여과하고 필요에 따라 여과와 정제의 반복 및 건조 하여 나노입자를 수득하였다.After synthesis, the slurry solution containing the porous organic-inorganic hybrid material was filtered through a pressure filter at room temperature once, and repeated and dried as necessary to obtain nanoparticles.
제조예 8: UiO-66(Zr)_NH2 나노입자 제조Preparation Example 8: Preparation of UiO-66 (Zr) _NH 2 nanoparticles
155℃에서 28시간 동안 제조예 7에서 준비한 UiO-66 나노입자와 10 mmol의 2-아미노테레프탈산을 교반하면서 반응시켰다. 생성된 고체 분말을 여과하고 필요에 따라 여과와 정제의 반복 및 건조 하여 나노입자를 수득하였다.UiO-66 nanoparticles prepared in Preparation Example 7 were reacted at 155 ° C. for 28 hours while stirring with 10 mmol of 2-aminoterephthalic acid. The resulting solid powder was filtered and, if necessary, repeated and dried by filtration and purification to obtain nanoparticles.
제조예 9: ZIF-8(Zn) 나노 입자의 제조Preparation Example 9: Preparation of ZIF-8 (Zn) nanoparticles
0.893 g (3.0 mmol)의 Zn(NO3)2·6H2O 및 0.985 g (12.0 mmol)의 2-메틸이미다졸을 각각 10 mL의 DMSO에 용해시킨 후, 후자의 맑은 용액을 자성 오일 배쓰로 313K에서 교반하였다. 30분 동안 교반한 후, 유백색 콜로이드 분산액으로부터 원심 분리에 의해 백색 고체를 회수하고, 새로운 MeOH로 세척하고, 원심 분리를 3 회 반복 한 후 필요에 따라 여과와 정제의 반복 및 건조 하여 나노입자를 수득하였다.After dissolving 0.893 g (3.0 mmol) of Zn (NO 3 ) 2 · 6H 2 O and 0.985 g (12.0 mmol) of 2-methylimidazole in 10 mL of DMSO, respectively, the latter clear solution was added to a magnetic oil bath. Stir at 313K. After stirring for 30 minutes, the white solid was recovered by centrifugation from the milky white colloidal dispersion, washed with fresh MeOH, and the centrifugation was repeated 3 times, followed by filtration and purification as necessary and drying to obtain nanoparticles. Did.
제조예 10: ZIF-7(Zn) 나노입자의 제조Preparation Example 10: Preparation of ZIF-7 (Zn) nanoparticles
Zn (NO3)2·6H2O (1.25 g, 4.2 mmol) 및 벤즈이미다졸 (1.54 g, 13 mmol)을 각각 100 ㎖의 DMF에 용해시켰다. 일단 용해되면, 두 용액을 둥근 바닥 플라스크에서 혼합하고, 이를 35℃에서 72시간 동안 연속적으로 교반하였다. 경과 시간 후, 결정질 ZIF-7을 70% 수율로 수득하고 이어서 6,000 rpm에서 20분 동안 원심 분리하여 분리하였다. 모액을 버리고, 필요에 따라 여과와 정제의 반복 및 건조 하여 나노입자를 수득하였다.Zn (NO 3 ) 2 · 6H 2 O (1.25 g, 4.2 mmol) and benzimidazole (1.54 g, 13 mmol) were dissolved in 100 mL of DMF, respectively. Once dissolved, the two solutions were mixed in a round bottom flask and stirred continuously at 35 ° C. for 72 hours. After the elapsed time, crystalline ZIF-7 was obtained in 70% yield and then separated by centrifugation at 6,000 rpm for 20 minutes. The mother liquor was discarded, and if necessary, filtration and purification were repeated and dried to obtain nanoparticles.
제조예 11: ZIF-67(Co) 나노입자의 제조Preparation Example 11: Preparation of ZIF-67 (Co) nanoparticles
Co (NO3)2·6H2O (5.88 g)을 500mL의 메탄올에 용해시키고 2-메틸이미다졸 (6.626 g) 및 트리에틸아민 (0.4 mL)을 또 다른 500 mL의 메탄올 용액에 녹인 후, 혼합하고 실온에서 24시간 동안 교반 및 반응시켰다. 생성물을 원심 분리에 의해 수집하고 필요에 따라 여과와 정제의 반복 및 건조 하여 나노입자를 수득하였다.After dissolving Co (NO 3 ) 2 · 6H 2 O (5.88 g) in 500 mL of methanol and dissolving 2-methylimidazole (6.626 g) and triethylamine (0.4 mL) in another 500 mL of methanol solution , Mixed and stirred and reacted at room temperature for 24 hours. The product was collected by centrifugation and, if necessary, repeated and dried by filtration and purification to obtain nanoparticles.
제조예 12: ZIF-11(Zn) 나노입자의 제조Preparation Example 12: Preparation of ZIF-11 (Zn) nanoparticles
0.21 g의 bIm (2 mmol)을 9.2 g의 톨루엔 (100 mmol) 및 2.4 g의 수산화 암모늄 (40 mmol)과 함께 6.4 g의 메탄올 (400 mmol)에 용해시켰다. 0.22 g의 아세트산 아연 탈수화물 (1 mmol)을 3.2 g의 메탄올 (200 mmol)에 용해시켰다. 두 용액을 혼합하여 반응시켰다. 18℃로 냉각한 다음 동일한 온도에서 10000 rpm으로 50 mL 원심 분리하였다. 수집 된 분말을 메탄올로 3회 세척하여 톨루엔을 완전히 제거하고 100℃에서 12시간 가량 건조시켰다. 필요에 따라 여과와 정제의 반복 및 건조 하여 나노입자를 수득하였다.0.21 g bIm (2 mmol) was dissolved in 6.4 g methanol (400 mmol) with 9.2 g toluene (100 mmol) and 2.4 g ammonium hydroxide (40 mmol). 0.22 g of zinc acetate dehydrate (1 mmol) was dissolved in 3.2 g of methanol (200 mmol). The two solutions were mixed and reacted. After cooling to 18 ° C., 50 mL centrifugation was performed at 10000 rpm at the same temperature. The collected powder was washed 3 times with methanol to completely remove toluene and dried at 100 ° C. for 12 hours. The filtration and purification were repeated and dried as necessary to obtain nanoparticles.
제조예 13: ZIF-90(Zn) 나노입자의 제조Preparation Example 13: Preparation of ZIF-90 (Zn) nanoparticles
DMF (12.5 mL)에 Zn(NO3)2·6H2O (1.25 mmol) 및 이미다졸-2-카르복스 알데히드 (5 mmol)를 첨가하고 혼합물을 80℃에서 4시간 동안 교반하였다. 용액을 실온으로 냉각시킨 후, 교반하면서 메탄올 (12.5 mL)을 용액에 추가한 후 실온에서 30 분간 더 교반하였다. 생성된 입자를 원심 분리 (14000 rpm)하고, 초음파 처리 - 원심 분리 사이클을 여러 번 반복하여 메탄올로 세척하였다. 필요에 따라 여과와 정제의 반복 및 건조 하여 나노입자를 수득하였다.Zn (NO 3 ) 2 · 6H 2 O (1.25 mmol) and imidazole-2-carboxaldehyde (5 mmol) were added to DMF (12.5 mL) and the mixture was stirred at 80 ° C. for 4 hours. After the solution was cooled to room temperature, methanol (12.5 mL) was added to the solution while stirring, followed by further stirring at room temperature for 30 minutes. The resulting particles were centrifuged (14000 rpm) and sonicated-the centrifugation cycle was repeated several times to wash with methanol. The filtration and purification were repeated and dried as necessary to obtain nanoparticles.
실시예 1. 지방산을 이용한 MOF 나노입자의 표면처리 (코어-쉘 구조 형성 또는 소수성 코팅)Example 1. Surface treatment of MOF nanoparticles using fatty acids (core-shell structure formation or hydrophobic coating)
제조예 1 내지 13에서 각각 준비한 MOF 나노입자를, 상기와 같이 제조한 나노입자를, 포화지방산인 스테아릭산(Stearic acid; SA)과 불포화지방산인 올레산(Oleic acid; OA)을 각각 가하여 교반하면서 12시간동안 반응시켰다 반응이 끝난 혼합물을 원심분리하고 세척하여, 표면이 SA와 OA로 개질된 나노입자를 얻었다.The MOF nanoparticles prepared in Preparation Examples 1 to 13, and the nanoparticles prepared as described above were added with stirring to each other by adding stearic acid (SA) as saturated fatty acid and oleic acid (OA) as unsaturated fatty acid, respectively. The reaction mixture was centrifuged and washed to obtain nanoparticles whose surface has been modified with SA and OA.
도 2(우측도)에 도시된 바와 같이, 제조예 11에서 준비한 Co-MOF 나노입자(ZIF-67(Co))의 표면을 올레산으로 개질시킨 Co-MOF 나노입자들은 분산된 용매에서 입자간 뭉침현상이 없었다. 반면, 표면개질되지 아니한 Co-MOF 나노입자들은 입자간 뭉침현상이 다수 발생하였다(도 2의 좌측도). 다른 제조예들에서 제조된 MOF 나노입자들을 올레산 개질한 경우도 마찬가지였다.As shown in Figure 2 (right view), Co-MOF nanoparticles obtained by modifying the surface of Co-MOF nanoparticles (ZIF-67 (Co)) prepared in Preparation Example 11 with oleic acid are aggregated between particles in a dispersed solvent. There was no phenomenon. On the other hand, the co-MOF nanoparticles that were not surface-modified had a large number of intergranular particles (left view in FIG. 2). The same was true for MOF nanoparticles prepared in other preparations by modifying oleic acid.
올레산으로 표면 처리 전후의 Co-MOF 나노입자에 대하여, XRD 결정성 분석을 수행하였고, 각각 그 결과를 도 4에 나타내었다. 도 4에 나타난 바와 같이, 표면 개질 전후의 XRD 패턴에는 차이가 없었으며, 이는 OA로의 표면처리 후에도 미처리 샘플과 동일한 결정구조를 유지함을 나타내는 것이다. XRD crystallinity analysis was performed on Co-MOF nanoparticles before and after surface treatment with oleic acid, and the results are shown in FIG. 4, respectively. As shown in Fig. 4, there was no difference in the XRD pattern before and after surface modification, indicating that the same crystal structure as the untreated sample was maintained even after the surface treatment with OA.
나아가, 도 3에 나타난 바와 같이, 표면 개질된 Zn-MOF 나노입자와 표면 개질된 Co-MOF 나노입자의 분산 상태 사진 및 TEM 이미지로부터 MOF 나노입자가 각각의 나노입자 상태로 분리되어 유지되고 있음을 확인할 수가 있었다. Furthermore, as shown in FIG. 3, it was confirmed that the MOF nanoparticles are maintained in a separate nanoparticle state from the dispersion state photograph and TEM image of the surface-modified Zn-MOF nanoparticles and the surface-modified Co-MOF nanoparticles. I could confirm.
한편, 제조예 8에서 준비한 Zr-MOF 예컨대 UiO-66(Zr)_NH2 나노입자의 표면을 포화지방산인 스테아릭산(Stearic acid; SA)과 불포화지방산인 올레산(Oleic acid; OA)으로 개질한 결과를 도 5에 나타내었다. 도 5에 나타난 바와 같이, 표면처리 후의 Zr-MOF 나노입자의 TEM 이미지로부터 MOF 나노입자가 표면처리 전의 Zr-MOF 예컨대 UiO-66(Zr)_NH2 와 비교하여 각각의 나노입자 상태로 분리되어 유지되고 있음을 확인할 수가 있었다. On the other hand, the surface of Zr-MOF prepared in Preparation Example 8, such as UiO-66 (Zr) _NH 2 nanoparticles, is modified with saturated fatty acid stearic acid (SA) and unsaturated fatty acid oleic acid (OA). 5 is shown. As shown in FIG. 5, MOF nanoparticles are separated and maintained in each nanoparticle state compared to Zr-MOF before surface treatment, such as UiO-66 (Zr) _NH 2 , from the TEM image of Zr-MOF nanoparticles after surface treatment. It was confirmed that it was.
나아가, SA 및 OA로 개질 전후의 Zr-MOF 예컨대 UiO-66(Zr)_NH2 나노입자 표면에 대해 XRD 결정성 분석을 수행하였고, 각각 그 결과를 도 6에 나타내었다. 도 6에 나타난 바와 같이, 표면 개질 전후의 XRD 패턴에는 차이가 없었으며, 이는 SA 및 OA로의 표면처리 후에도 미처리 샘플과 동일한 결정구조를 유지함을 나타내는 것이다. Furthermore, XRD crystallinity analysis was performed on the surface of Zr-MOF before and after modification with SA and OA such as UiO-66 (Zr) _NH 2 nanoparticles, and the results are shown in FIG. 6, respectively. As shown in FIG. 6, there was no difference in the XRD pattern before and after surface modification, indicating that the same crystal structure as the untreated sample was maintained even after surface treatment with SA and OA.
실시예 2. 전기방사에 의한 표면처리한 MOF 나노입자 함유 고분자복합체의 제조Example 2. Preparation of polymer composite containing MOF nanoparticles surface-treated by electrospinning
NMP 용매 1 g에 폴리아크릴로니트릴(Polyacrylonitrile; PAN) 0.7 g과 상기 실시예 1에서 제조된 표면처리한 MOF 시료 0.38 g를 혼합하고 일정한 속도로 방사장치 (주사기 모양의 노즐을 포함한 장비)에 투입하여, 전기 방사법을 이용해 고분자 중에 MOF 나노입자가 고르게 분산된 섬유 매트(각각 MOF 55 wt%, 65 w% 및 75 wt% 함유된 MOF-고분자 복합섬유의 웹)를 얻었다(도 7). 1 g of NMP solvent was mixed with 0.7 g of polyacrylonitrile (PAN) and 0.38 g of the surface-treated MOF sample prepared in Example 1 and added to a spinning device (equipment including a syringe-shaped nozzle) at a constant rate. Then, a fiber mat (web of MOF-polymer composite fibers containing MOF 55 wt%, 65 w% and 75 wt%, respectively) was obtained by uniformly dispersing MOF nanoparticles in the polymer using an electrospinning method (FIG. 7).
도 8는 불포화 지방산인 올레산으로 표면처리된 MOF 나노입자가 55 wt% 이상 함유된 복합섬유의 고분해능 SEM 및 TEM 사진이다.8 is a high-resolution SEM and TEM photograph of a composite fiber containing 55 wt% or more of MOF nanoparticles surface-treated with oleic acid, an unsaturated fatty acid.
나아가, 표면이 개질되지 않은 MOF를 함유하는 고분자 용액과 본 발명의 실시예 1에 따라 포화 지방산인 스테아릭산(stearic acid, SA)과 불포화 지방산인 올레산(Oleic acid, OA)으로 표면개질된 Zr-MOF 예컨대 UiO-66(Zr)_NH2를 함유하는 고분자 용액을 이용하여 제조한 섬유의 형태를 SEM으로 관찰하고, 그 결과를 도 9에 나타내었다. 도9에 나타난 바와 같이, 표면 개질되지 않은 MOF를 함유하는 고분자 용액으로부터 제조된 섬유는 섬유 전체에서 MOF 입자가 고르게 분포하지 못하고 서로 응집되어 있는 반면, SA와 OA로 표면개질된 MOF를 함유하는 고분자 용액을 이용하여 제조한 섬유는 섬유 전체에 MOF입자가 고르게분포 및 흡착되어 있었다.Furthermore, Zr- surface-modified with a polymer solution containing unmodified MOF and saturated fatty acid stearic acid (SA) and unsaturated fatty acid oleic acid (OA) according to Example 1 of the present invention. The shape of the fibers prepared using a polymer solution containing MOF such as UiO-66 (Zr) _NH 2 was observed by SEM, and the results are shown in FIG. 9. As shown in Fig. 9, fibers prepared from a polymer solution containing MOF that is not surface-modified do not evenly distribute MOF particles throughout the fiber and aggregate with each other, whereas polymers containing MOF surface-modified with SA and OA The fibers produced using the solution had evenly distributed and adsorbed MOF particles throughout the fibers.
상기 SA 와 OA로 표면개질된 Zr-MOF 예컨대 UiO-66(Zr)_NH2를 함유하는 고분자 용액을 이용하여 제조한 섬유를 직조하여 직물을 제조하고, 사진으로 찍어 도 10 에 나타내었다.Fabrics are fabricated by weaving fibers prepared using a polymer solution containing Zr-MOF surface-modified with SA and OA, such as UiO-66 (Zr) _NH 2 , and photographed It is shown in FIG. 10.
한편, 도 11은 표면 개질된 Al-MOF 나노입자를 각각 3 wt% 와 10 wt% 함유하는 Polypropylene(PE) 사출 성형체와 열압출공정으로 제조한 필름의 제조 결과이다. 표면 개질되지 않은 Al-MOF의 경우에는 5 wt% 이상을 함유할 경우 사출이 되지 않거나 도 11과 정상적인 상태의 사출 성형체를 제조할 수 없었으나 표면 개질된 경우에는 10 wt%이상 함유해도 균일한 품질의 사출 성형체를 제조하는 것이 가능하였으며, 사출 성형체를 사용하여 열압출 방식에 의해 필름 상태로 제조하는 것도 가능하였다. 도 12은 10 wt% 함유한 필름에 균일하게 분산된 Al-MOF 나노입자를 확인할 수 있으며 도 13는 도 11의 MOF-Polypropylene 복합체 필름에서 Al-MOF 나노입자 함유량에 따른 XRD 결과를 보여준다. On the other hand, Figure 11 is a polypropylene (PE) injection molded body containing 3 wt% and 10 wt% of the surface-modified Al-MOF nanoparticles, respectively, and the results of the production of a film produced by a heat extrusion process. In the case of Al-MOF that is not surface-modified, injection is not possible when 5 wt% or more is contained, or an injection molded body in a normal state as shown in FIG. 11 cannot be manufactured, but in the case of surface modification, even if it is contained at 10 wt% or more, uniform quality It was possible to manufacture an injection molded body of, it was also possible to manufacture in a film state by a heat extrusion method using the injection molded body. FIG. 12 shows Al-MOF nanoparticles uniformly dispersed in the film containing 10 wt%, and FIG. 13 shows the XRD results according to the Al-MOF nanoparticle content in the MOF-Polypropylene composite film of FIG. 11.
도 14은 Matrimid 5218과 Zr-MOF 나노입자를 혼합하여 제조한 혼합기질막(MMM) 사진으로 나노입자의 함유량을 40 wt% 이상으로 제조하는 것이 가능함을 확인하였다. 도 15은 도 14의 MOF-Polyimide 복합체 분리막의 SEM 사진으로, 이로부터 나노입자가 균일하게 분산되어 있음을 확인할 수 있다.FIG. 14 is a mixed substrate film (MMM) photograph prepared by mixing Matrimid 5218 and Zr-MOF nanoparticles, confirming that it is possible to manufacture nanoparticles in an amount of 40 wt% or more. 15 is a SEM photograph of the MOF-Polyimide composite separation membrane of FIG. 14, from which it can be confirmed that the nanoparticles are uniformly dispersed.

Claims (12)

  1. 액상 지방산으로 표면처리된 금속-유기 골격체(metal-organic framework, MOF) 입자로서, 상기 지방산의 카르복시기가 MOF 표면에 노출되어 있는 친수성기, 금속 또는 둘 다와 화학결합을 형성하고 있는 것이 특징인 표면개질된 MOF 입자.Metal-organic framework (MOF) particles surface-treated with liquid fatty acids, characterized in that the carboxyl groups of the fatty acids form chemical bonds with hydrophilic groups, metals, or both exposed on the MOF surface. Modified MOF particles.
  2. 제1항에 있어서, According to claim 1,
    상기 화학결합은 수소결합, 이온결합, 공유결합 또는 이의 조합인 것이 특징인 표면개질된 MOF 입자.The chemical bond is hydrogen-bonded, ion-bonded, covalent-bonded or a combination thereof, characterized in that the surface modified MOF particles.
  3. 제1항에 있어서, According to claim 1,
    상기 지방산은 불포화 또는 포화 지방산인 것인 표면개질된 MOF 입자. The fatty acid is an unsaturated or saturated fatty acid surface modified MOF particles.
  4. 제3항에 있어서, According to claim 3,
    상기 불포화 지방산은 탄소수가 C5 내지 C50인 것이 특징인 표면개질된 MOF 입자.The unsaturated fatty acid is C5 to C50 surface-modified MOF particles, characterized in that.
  5. 제3항에 있어서, According to claim 3,
    상기 포화 지방산은 탄소수가 C4 내지 C40인 것이 특징인 표면개질된 MOF 입자. The saturated fatty acid is a surface modified MOF particles, characterized in that the carbon number is C4 to C40.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, 표면처리대상인 MOF 입자는 평균입경이 5 내지 1000 nm로 나노입자인 것이 특징인 표면개질된 MOF 입자.The surface-modified MOF particle according to any one of claims 1 to 5, wherein the surface-treated MOF particles are nanoparticles having an average particle diameter of 5 to 1000 nm.
  7. 고분자; 및 상기 고분자에 균일하게 분포된 제1항 내지 제5항 중 어느 한 항의 표면개질된 MOF 입자를 포함하는 MOF-고분자 복합체.Polymers; And MOF-polymer composite comprising the surface-modified MOF particles of any one of claims 1 to 5 uniformly distributed in the polymer.
  8. 제7항에 있어서, The method of claim 7,
    상기 MOF 입자 함량은, 총 MOF-고분자 복합체 100 중량부를 기준으로 0.5 내지 95 중량부인 것이 특징인 MOF-고분자 복합체.The MOF particle content, MOF-polymer composite, characterized in that 0.5 to 95 parts by weight based on 100 parts by weight of the total MOF-polymer composite.
  9. 제7항에 있어서, The method of claim 7,
    상기 MOF-고분자 복합체는 MOF 입자 함유 고분자 용액 또는 MOF 입자 함유 고분자 마스터 배치인 것이 특징인 MOF-고분자 복합체.The MOF-polymer composite is a MOF-polymer composite characterized in that the polymer solution containing MOF particles or a polymer master batch containing MOF particles.
  10. 제7항의 MOF-고분자 복합체를 성형하여 얻어진 MOF-고분자 복합성형체.A MOF-polymer composite molded article obtained by molding the MOF-polymer composite of claim 7.
  11. 제10항에 있어서, The method of claim 10,
    상기 MOF-고분자 복합성형체는 MOF 나노입자 함유 고분자 용액으로부터 성형된 성형체 또는 MOF 나노입자 함유 고분자 마스터 배치를 용융하여 성형된 성형체인 것이 특징인 MOF-고분자 복합성형체.The MOF-polymer composite molded body is a MOF-polymer composite molded body characterized by being a molded body molded from a polymer masterbatch containing a MOF nanoparticle or a molded body molded from a polymer solution containing MOF nanoparticles.
  12. 제10항에 있어서, The method of claim 10,
    상기 고분자는 표면개질된 MOF 입자의 바인더로서 총 MOF-고분자 복합성형체 100 중량부를 기준으로 MOF 입자를 30 내지 95 중량부를 함유하는 MOF계 성형체인 것이 특징인 MOF-고분자 복합성형체.The polymer is a MOF-polymer composite molded body which is a MOF-based molded body containing 30 to 95 parts by weight of MOF particles based on 100 parts by weight of the total MOF-polymer composite molded body as a binder of surface-modified MOF particles.
PCT/KR2019/014997 2018-11-06 2019-11-06 Mof nanoparticles surface-treated with fatty acid and mof-polymer composite containing same WO2020096353A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0135352 2018-11-06
KR20180135352 2018-11-06

Publications (1)

Publication Number Publication Date
WO2020096353A1 true WO2020096353A1 (en) 2020-05-14

Family

ID=70612306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014997 WO2020096353A1 (en) 2018-11-06 2019-11-06 Mof nanoparticles surface-treated with fatty acid and mof-polymer composite containing same

Country Status (2)

Country Link
KR (1) KR102315894B1 (en)
WO (1) WO2020096353A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111733602A (en) * 2020-06-29 2020-10-02 天津工业大学 Preparation method of PPS/MOFs micro-nanofiber alkaline water electrolyzer diaphragm
CN113813930A (en) * 2021-10-22 2021-12-21 福州大学 Modified biomass-based composite adsorption material for treating radioactive pollutants
CN115710120A (en) * 2022-08-30 2023-02-24 台州俪盛塑料有限公司 Nylon composite material and preparation method thereof
CN117003293A (en) * 2023-07-31 2023-11-07 武汉理工大学 Modified Co 3 O 4 MOFs composite gas-sensitive material and preparation method and application thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102373240B1 (en) * 2021-01-07 2022-03-11 주식회사 에이올코리아 Masterbatch with metal-organic framework and manufacturing method therefor
KR102319335B1 (en) * 2021-01-12 2021-10-29 주식회사 에이올코리아 Filter Coated with MOF and Method for Manufacturing the same and Air Circulation
KR102357847B1 (en) * 2021-03-02 2022-02-08 주식회사 에이올코리아 Air Cleaning Filter
KR102665689B1 (en) * 2022-01-14 2024-05-13 주식회사 에이올코리아 Ventilation apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030020515A (en) * 2001-08-29 2003-03-10 주식회사 태평양 UV-scattering inorganic/polymer composite particles and process for preparing the same
KR20140017316A (en) * 2012-07-31 2014-02-11 경희대학교 산학협력단 Method of manufacturing ultrafiltration using metal organic frameworks
KR20170010898A (en) * 2015-07-01 2017-02-01 사빅 글로벌 테크놀러지스 비.브이. Modificaton of zeolitic imidazolate frameworks and azide cross-linked mixed-matrix membranes made therefrom
KR20170033974A (en) * 2015-09-17 2017-03-28 한국세라믹기술원 Surface-modified crystalline metal oxide and method for preparing the same
KR20180028756A (en) * 2016-09-09 2018-03-19 한국화학연구원 Bifunctional silver ion-containing metal-organic framework composites with functions of antibiosis and dehumidification, a preparation method thereof, and a biodegradable polymer film comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030020515A (en) * 2001-08-29 2003-03-10 주식회사 태평양 UV-scattering inorganic/polymer composite particles and process for preparing the same
KR20140017316A (en) * 2012-07-31 2014-02-11 경희대학교 산학협력단 Method of manufacturing ultrafiltration using metal organic frameworks
KR20170010898A (en) * 2015-07-01 2017-02-01 사빅 글로벌 테크놀러지스 비.브이. Modificaton of zeolitic imidazolate frameworks and azide cross-linked mixed-matrix membranes made therefrom
KR20170033974A (en) * 2015-09-17 2017-03-28 한국세라믹기술원 Surface-modified crystalline metal oxide and method for preparing the same
KR20180028756A (en) * 2016-09-09 2018-03-19 한국화학연구원 Bifunctional silver ion-containing metal-organic framework composites with functions of antibiosis and dehumidification, a preparation method thereof, and a biodegradable polymer film comprising the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111733602A (en) * 2020-06-29 2020-10-02 天津工业大学 Preparation method of PPS/MOFs micro-nanofiber alkaline water electrolyzer diaphragm
CN111733602B (en) * 2020-06-29 2022-04-19 天津工业大学 Preparation method of PPS/MOFs micro-nanofiber alkaline water electrolyzer diaphragm
CN113813930A (en) * 2021-10-22 2021-12-21 福州大学 Modified biomass-based composite adsorption material for treating radioactive pollutants
CN113813930B (en) * 2021-10-22 2023-10-27 福州大学 Modified biomass-based composite adsorption material for treating radioactive pollutants
CN115710120A (en) * 2022-08-30 2023-02-24 台州俪盛塑料有限公司 Nylon composite material and preparation method thereof
CN117003293A (en) * 2023-07-31 2023-11-07 武汉理工大学 Modified Co 3 O 4 MOFs composite gas-sensitive material and preparation method and application thereof
CN117003293B (en) * 2023-07-31 2024-04-05 武汉理工大学 Modified Co 3 O 4 MOFs composite gas-sensitive material and preparation method and application thereof

Also Published As

Publication number Publication date
KR20200052242A (en) 2020-05-14
KR102315894B1 (en) 2021-10-22

Similar Documents

Publication Publication Date Title
WO2020096353A1 (en) Mof nanoparticles surface-treated with fatty acid and mof-polymer composite containing same
Peterson et al. Fibre-based composites from the integration of metal–organic frameworks and polymers
EP2294257B1 (en) Electret webs with charge-enhancing additives
CN113106635B (en) Electrostatic spinning nanofiber non-woven fabric and preparation method and application thereof
JP3845715B2 (en) Fluorochemical and hydrocarbon surfactants as hydrophilic additives to thermoplastic polymers
Haider et al. Preparation of the chitosan containing nanofibers by electrospinning chitosan–gelatin complexes
WO2012002754A2 (en) Filter media for a liquid filter using an electrospun nanofiber web, method for manufacturing same, and liquid filter using same
WO2011062412A2 (en) Crystalline porous organic-inorganic hybrid material and a production method therefor
CN108499220B (en) Preparation method and application of graphene/polypropylene non-woven fabric filter screen
WO2017209520A1 (en) Filter assembly, method for manufacturing same, and filter module comprising same
CN106229446A (en) The one-body molded preparation method of lithium battery multiple elements design barrier film and diaphragm material
WO2014003460A1 (en) Cytokine adsorption sheet, method for manufacturing same, and blood filter using same
WO2012093775A2 (en) Fiber web, preparation method thereof, and filter including fiber web
CN105709502A (en) Anti-static sandwich type purification material
WO2017052057A1 (en) High strength polymer comprising carbon nanotube
KR20170001340A (en) Electrically Conductive Polyetherimide Nanofibers and Method for Manufacturing the same
CN111020885A (en) Preparation method of breathable and waterproof polyurethane nanofiber non-woven fabric
CN112175286B (en) Graphene-polypropylene composite master batch and preparation method and application thereof
KR102222425B1 (en) Method for producing polymer fiber with functional properties derived from carbon material therein using benzoxazine-modified carbon material
KR20180077546A (en) Manufacturing method for polymer nanofiber composites fabric having improved electrical conductivity
CN111495037B (en) Polyether sulfone fiber non-woven fabric composite filter material and preparation method thereof
CN107780052A (en) A kind of polyimide nanofiber membrane and preparation method thereof
Malakhov et al. Multifunctional nonwoven materials, produced by electrospinning of a heated solution and melt of ethylene-octene copolymer
KR102186540B1 (en) Meltblown nonwoven fabric material for removing harmful chemicals and method for manufacturing the same
CN114032621A (en) Reinforced fiber membrane and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19882356

Country of ref document: EP

Kind code of ref document: A1