WO2020080844A1 - Heat shielding film and method for manufacturing same - Google Patents

Heat shielding film and method for manufacturing same Download PDF

Info

Publication number
WO2020080844A1
WO2020080844A1 PCT/KR2019/013647 KR2019013647W WO2020080844A1 WO 2020080844 A1 WO2020080844 A1 WO 2020080844A1 KR 2019013647 W KR2019013647 W KR 2019013647W WO 2020080844 A1 WO2020080844 A1 WO 2020080844A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat shielding
coating
oxygen
transition metal
shielding film
Prior art date
Application number
PCT/KR2019/013647
Other languages
French (fr)
Korean (ko)
Inventor
황태경
Original Assignee
황태경
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 황태경 filed Critical 황태경
Publication of WO2020080844A1 publication Critical patent/WO2020080844A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/05Forming flame retardant coatings or fire resistant coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/40Adhesives in the form of films or foils characterised by release liners

Definitions

  • the present invention relates to a heat shielding film and a method for manufacturing the same, and more specifically, a heat shielding layer formed on one surface of a base layer is composed of an oxygen-deficient type transition metal oxide to block haze in a prominent manner, and in a completed film It prevents the problem of appearing cloudy due to the scattering phenomenon, improves the visible light transmittance and infrared ray blocking rate, and reacts by the influx of residual oxygen, the reaction by residual hydroxyl, and the residual radical when the heat shielding layer is composed of an oxygen-deficient transition metal oxide.
  • the problem of heat resistance and durability due to reaction by the present invention relates to a heat shielding film and a method of manufacturing the solution through a passivation film.
  • the heat shielding material can be roughly classified into an organic compound type heat shielding material and an inorganic compound type heat shielding material.
  • the organic compound type heat shielding material shows high visible light transmittance, but absorption occurs only near a single wavelength ( ⁇ 950nm) in the near-infrared region, so it is difficult to effectively block near the thermal energy region felt by the human body. The shielding effect is poor. Therefore, the organic compound type heat shielding material is used as an auxiliary material for heat shielding while being mixed with an inorganic compound type heat shielding material.
  • Organic compounds include LaB 6 , Phthalocyanine, Carbon Black, Titan Black, Metal Complex, Diimonium Salt, Phthalocyanine, and the like. Among them, organic compounds that are widely used are metal complex, carbon black, and diimonium salt.
  • the inorganic compound type heat shielding material has a low visible light transmittance, but has superior durability and high heat shielding properties than the organic compound type material.
  • inorganic oxides include antimony oxide (ATO), indium tin oxide (ITO), silica dioxide (SiO 2 ), alumina trioxide (Al 2 O 3 ), and molybdenum trioxide.
  • ATO antimony oxide
  • ITO indium tin oxide
  • SiO 2 silica dioxide
  • Al 2 O 3 alumina trioxide
  • MoO 3 molybdenum trioxide
  • niobium pentoxide Nb 2 O 5
  • vanadium pentoxide V 2 O 5
  • tungsten bronze tungsten oxide, etc.
  • the most widely used inorganic oxides having good infrared ray blocking properties are antimony oxide (ATO), indium tin oxide (ITO), and tungsten bronze.
  • Antimony oxide (ATO) is cheaper than indium tin oxide (ITO), and is widely applied to general heat shielding films. However, as a transmission graph with a gentle slope from 1500nm to 2200nm among the near-infrared transmission peaks, perfect infrared blocking is not achieved, and the input amount is limited to secure a high visible light transmittance. If the amount of antimony oxide (ATO) sol is increased to secure a high near-infrared ray blocking rate, the visible light transmittance will drop significantly to 40-50%, and excessive inorganic content will cause cracks in the heat-shielding coating layer, decrease in adhesion, cloudiness, change over time, etc.
  • the near-infrared ray blocking property has a limitation as compared to visible light, so its utilization range is narrow and it cannot be easily applied to manufacturing high-performance heat shielding films.
  • ITO Indium tin oxide
  • ATO antimony oxide
  • antimony oxide (ATO) and indium oxide (ITO) are manufactured through very difficult processes in the synthesis of nanoparticle inorganic oxides.
  • antimony hydroxide (ATO (OH)) and indium hydroxide (ITO (OH)) prepared by the Sol-Gel method and the Autoclave method must undergo a firing process. The firing takes place twice, and after primary firing in air at 300 to 400 ° C, secondary hydrogen reduction firing is performed. At this time, hydrogen gas (Gas) and an inert gas are mixed to perform reduction firing, and even if a little oxygen is added, the possibility of explosion is very high and requires attention, and the equipment is also a very expensive equipment for the gas flow kiln. In this way, there are disadvantages in stability and expensive equipment investment in manufacturing antimony oxide (ATO) and indium oxide (ITO).
  • Perovskite tungsten bronze is a wide band gap oxide, in which tungsten trioxide is doped with a positive element such as Na, and generally has a perovskite structure (ABO 3 ). .
  • ABO 3 perovskite structure
  • Tungsten bronze compounds are known to be about 50,000, and in particular, tungsten bronze compounds showing infrared ray blocking properties are in the form of A x W 1 O y , A x is an alkali metal and alkaline earth metal element, W 1 is tungsten, O y is oxygen It consists of.
  • Alkali metal element series have a large element radius compared to other elements, resulting in large particle size. In most cases, the size of the primary particle size is less than 100 nm, and when the primary particle size is 50 nm, the particle size becomes 50 nm or more when actually manufactured with a dispersion sol. Dispersed sols of 50 nm or more have high haze and show scattering. If produced as a film, a problem occurs that is bluish due to scattering. Therefore, a high quality heat shielding film having a low haze value and high transparency is required by applying an improved tungsten bronze or tungsten oxide.
  • Tungsten oxide is a wide band gap oxide
  • WO 3 tungsten trioxide
  • WO 2.81 to WO 2.95 named WO 3-x
  • WO 3-x has a blue color.
  • WO 3-x has a reduced amount of oxygen and has infrared shielding properties.
  • WO 3 having a complete oxygen content has no infrared shielding properties and can be obtained by calcining several precursors obtained through various manufacturing methods in air.
  • blue WO 3-x can be obtained by reducing calcination. Reduction firing is made after firing with an inert gas instead of oxygen.
  • WO 3-x is oxidized again under certain conditions due to the vacancies of oxygen, and is easily changed to tungsten trioxide, so that the color changes or the infrared shielding properties disappear. Due to this problem, the use of WO 3-x is limited or not used as a heat shielding material. If this problem is not solved and applied to the heat shielding film, deformation may occur in the coated infrared shielding layer according to environmental conditions.
  • FIG. 1 is a view of a conventional thermal barrier film, the prior art is disclosed in Korean Patent Registration No. 10-1681614 (2016.12.01).
  • the prior art of FIG. 1 applied tungsten oxide to a thermal barrier shrink film, but the particles used are considerably larger to 1 to 6 ⁇ m, thereby reducing visible light transmittance and increasing heat shielding effect.
  • the original physical properties such as dimensional stability and elasticity, elongation, etc., which are fragile or synthetic resin film characteristics, must be deteriorated.
  • Patent Document 1 Korean Registered Patent Publication No. 10-1681614 (2016.12.01)
  • the present invention was made to solve the above problems,
  • the object of the present invention is to block the haze by making the heat shielding layer formed on one surface of the base layer made of an oxygen-deficient transition metal oxide so that the average particle size is less than 100 nm, due to scattering in the finished film. It is to provide a heat shielding film that prevents the appearance of blurring and improves the visible light transmittance and infrared light blocking rate.
  • the oxygen-deficient transition metal oxide is configured to form a rutile (Rutile) -type structure of AO (3-X) , thereby having a relatively small primary particle size, thereby firing during compound production It is to provide a heat shielding film that prevents the problem that the particle size increases during the process.
  • Rutile rutile
  • Another object of the present invention is to prepare a uniform nano-sized particle by easily producing a particle and controlling particle size by preparing an oxygen-deficient transition metal oxide by a simple liquid deposition method with synthetic conditions.
  • Another object of the present invention is to calcinate the synthesized transition metal oxide in a range of 300 to 600 ° C. to remove hydroxyl groups and water molecules to form rutile crystals having a small particle size.
  • Another object of the present invention is to induce the oxygen deficiency of the transition metal oxide forming a rutile type crystal through reduction calcination to have infrared absorption characteristics due to crystal defects or vacancies of oxygen, and such reduced calcination instead of hydrogen gas By making it under the inert gas input, it is possible to reduce the operational risk and to easily use the existing firing equipment.
  • Another object of the present invention by forming the organic acid metal chelate compounds (Organic Acid Metallic Chelate Compounds) that do not have heterogeneous reactivity while having selective reactivity first, on the surface of the oxygen-deficient transition metal oxide or distributed in the dispersion sol, residual oxygen O 2 )
  • the organic acid metal chelate compound effectively blocks the reaction by inflow, the reaction by residual hydroxyl (-OH), and the reaction by residual radicals, such as heat resistance, durability, etc. of the oxygen-deficient transition metal oxide Is to complement the problem.
  • Another object of the present invention is to prepare an organic acid metal chelate compound serving as an immobilized film by a reflux method so that a compound suitable for a desired purpose can be easily produced in an existing facility.
  • Another object of the present invention when the hot air drying and UV irradiation for drying and curing the coated film is a problem that deformation may occur as the substrate layer is exposed to a temperature of 120 ° C. or higher, the heat deformation temperature is high and the dimensions are high. It is to solve the problem by constructing the base layer with polyethylene terephthalate, which has excellent stability.
  • Another object of the present invention is to configure the content of the oxygen-deficient transition metal oxide in the dispersion sol to be 20 to 30% by weight, so that sufficient optical properties are expressed, and dispersion time is reduced to prevent deformation of the dispersant.
  • the content of the dispersant in the dispersion sol is 1 to 10% by weight, to obtain a sufficient dispersion sol, when drying the coated surface, the dispersant that is not dried remains on the coating surface of the coating surface It does not cause defects.
  • Another object of the present invention is to configure the content of the organic acid metal chelate compound in the dispersion sol to 5 to 10% by weight, without significantly reducing optical properties such as visible light transmittance and infrared shielding rate, oxygen-deficient transition metal oxide It is to greatly improve the heat resistance and durability of.
  • Another object of the present invention is to form a dispersion sol by a ball mill method, thereby easily dispersing the agglomerated powder, simplifying the formation of a dispersion sol, and enabling mass production.
  • Another object of the present invention is to increase the optical properties of the film and the adhesion of the coating film, and improve the scratch resistance of the surface by making the content of the dispersion sol in the coating sol to be 40-50% by weight.
  • Another object of the present invention as an oligomer (Oligomer), which causes photopolymerization by ultraviolet irradiation as a photopolymer, a monomer (Monomer), including a photoinitiator in the coating sol, to enhance the bonding strength of the coating sol and the base layer, the thickness of the coating film It is to be able to finely adjust.
  • oligomer which causes photopolymerization by ultraviolet irradiation as a photopolymer
  • a monomer including a photoinitiator in the coating sol, to enhance the bonding strength of the coating sol and the base layer, the thickness of the coating film It is to be able to finely adjust.
  • Another object of the present invention by configuring the thickness of the coating film applied to the base layer to 3 ⁇ 4 ⁇ m, while maintaining the optical properties to improve the surface scratch resistance, prevent surface cracking, adhesion to the base layer Is to improve.
  • Another object of the present invention is to configure the adhesive layer on one surface of the heat shielding layer, so that the film can be easily adhered to buildings or vehicles.
  • Another object of the present invention is to attach a release paper to one surface of the adhesive layer so that one surface of the adhesive layer is protected by the release paper.
  • the present invention is implemented by an embodiment having the following configuration in order to achieve the above object.
  • the present invention includes a base layer and a heat shielding layer formed on one surface of the base layer, wherein the heat shielding layer includes an oxygen-deficient transition metal oxide, and has a haze phenomenon. It is characterized by improving the visible light transmittance and the infrared light blocking rate.
  • the present invention is characterized in that the oxygen-deficient transition metal oxide forms an AO (3-X) type rutile structure.
  • the present invention is characterized in that the A comprises at least one element of Cu, Ag, Zn, Ni, W and Co.
  • the present invention is characterized in that the oxygen-deficient transition metal oxide is calcined in a range of 300 to 600 ° C. to remove hydroxyl groups and water molecules and form crystals.
  • the present invention is characterized in that the oxygen-deficient transition metal oxide, for oxygen deficiency, is subjected to reducing calcination under the introduction of an inert gas.
  • the present invention is characterized in that the inert gas includes N 2 , Ar, Ne and CO 3 .
  • the present invention is characterized in that the heat shielding layer further includes a passivation film to improve the heat resistance and durability of the oxygen-deficient transition metal oxide.
  • the present invention is characterized in that the passivation film comprises an organic acid metal chelate compound.
  • the organic acid metal chelate compound has a R1-M-R2 structure, the M is Cu, Ag, Zn, Ni, W, and any one element of Co , And R1 and R2 are characterized by any one of low molecular weight glutamic acid and high molecular weight sodium poly aspartate.
  • the base layer is characterized in that the polyethylene terephthalate (Polyethylene Terephthalate).
  • the present invention includes a substrate layer providing step of providing a substrate layer, and a heat shield layer forming step of forming a heat shielding layer on one surface of the substrate layer after the substrate layer providing step.
  • the thermal barrier layer forming step, the oxygen-deficient transition metal oxide forming step of generating a transition metal oxide deficient in oxygen, and after the oxygen-deficient transition metal oxide forming step passivated film on the oxygen-deficient transition metal oxide It characterized in that it comprises a passivation film forming step of forming, and a coating step of forming a coating film on the base layer after the passivation film step.
  • the present invention the oxygen-deficient transition metal oxide forming step, in the synthesis step of synthesizing the transition metal oxide by a liquid precipitation method, and the transition metal oxide synthesized after the synthesis step
  • a primary calcination step of calcining in a range of 300 to 600 ° C., and reducing calcination under inert gas for oxygen deficiency of transition metal oxides after the first calcination step It characterized in that it comprises a secondary reduction firing step.
  • the present invention the passivation coating step, an organic acid metal chelate compound manufacturing step for producing an organic acid metal chelate compound, and the dispersion to form a dispersion sol after the organic acid metal chelate compound manufacturing step Characterized in that it comprises a sol-forming step.
  • the organic acid metal chelate compound production step the precursor containing the transition metal is dissolved in an organic acid solvent, stirred at 60 to 80 °C for 4 to 5 hours to reflux (Reflux) It is characterized by.
  • the present invention the dispersion sol forming step, oxygen-deficient transition metal oxide 20 to 30% by weight, dispersing agent 1 to 10% by weight, organic acid metal chelate compound 5 to 10% by weight It characterized in that to form a dispersion sol containing a percent.
  • the present invention the coating sol forming step, a coating sol comprising 40 to 50% by weight of a dispersion sol, 40 to 50% by weight of a binder, and 10 to 20% by weight of an organic solvent It is characterized by forming.
  • the present invention is characterized in that the binder comprises an oligomer (Oligomer), a monomer (Monomer), a photoinitiator that causes photopolymerization by irradiation with ultraviolet light as a photopolymer.
  • the binder comprises an oligomer (Oligomer), a monomer (Monomer), a photoinitiator that causes photopolymerization by irradiation with ultraviolet light as a photopolymer.
  • the present invention the organic solvent, methyl ethyl ketone (Methyl Ethyl Ketone), toluene (Toluene), ethyl acetate (Ethyl Acetate), isopropyl alcohol (Iso Propyl Alcohol), ethyl Ethyl Cellosolve, Iso butyl Alcohol, Dimethylformamide, Ethanol, Butyl Cellosolve, Xylene, 1-Octanol ), Diethylene glycol (Diethylene Glycol), nitrobenzene (Nitrobenzene) characterized in that it contains any one or more of.
  • the coating sol coating step using a micro gravure (Micro Gravure) coating, knife (Knife) coating and roll to roll (Roll to Roll) coating using any one of It is characterized by.
  • the present invention the coating sol coating step, characterized in that the thickness of the coating film is 3 ⁇ 4 ⁇ m.
  • the heat shielding film manufacturing method further comprises an adhesive layer forming step of forming an adhesive layer on one surface of the heat shield layer after the heat shield layer forming step It is characterized by.
  • the heat shielding film manufacturing method is characterized in that it further comprises a release paper attaching step of attaching a release paper to one side of the adhesive layer after the adhesive layer forming step do.
  • the heat shielding layer formed on one surface of the base layer is composed of an oxygen-deficient transition metal oxide so that the average particle size is less than 100 nm, haze is prevented, and the finished film appears cloudy due to scattering phenomenon. It has the effect of preventing a problem and providing a heat shielding film with improved visible light transmittance and infrared blocking rate.
  • the oxygen-deficient transition metal oxide is configured to form an AO (3-X) -type rutile (Rutile) -type structure, thereby having a relatively small primary particle size, particles during the firing process during compound preparation
  • AO AO
  • Rutile rutile
  • the present invention by preparing the oxygen-deficient transition metal oxide by a liquid phase sedimentation method with simple synthesis conditions, it is possible to easily generate particles and control particle sizes, thereby obtaining uniform nano-sized particles.
  • the present invention has the effect of calcining the synthesized transition metal oxide in a range of 300 to 600 ° C to remove hydroxyl groups and water molecules to form rutile crystals having small particle diameters.
  • the present invention by inducing oxygen deficiency of the transition metal oxide formed rutile-type crystals through reducing calcination to have infrared absorption characteristics due to crystal defects or vacancies of oxygen, such reducing calcination is performed by introducing an inert gas instead of hydrogen gas By making it work underneath, it reduces the risk of work and derives the effect of easily using existing firing equipment.
  • residual oxygen (O, O 2 ) is introduced by forming organic acid metal chelate compounds on the surface of an oxygen-deficient transition metal oxide or distributing it in a dispersion sol, with selective reactivity first and no heterogeneous reactivity.
  • the organic acid metal chelate compound effectively blocks the reaction by, residual hydroxyl (-OH) reaction, and residual radical reaction, thereby compensating for problems such as heat resistance and durability of the oxygen-deficient transition metal oxide. It has the effect.
  • the present invention has the effect of making the organic acid metal chelate compound serving as the passivation film by the reflux method so that the compound suitable for the desired purpose can be easily produced even in existing facilities.
  • the present invention a problem that deformation may occur as the substrate layer is exposed to a temperature of 120 ° C or higher when hot air drying and ultraviolet irradiation is performed for drying and curing of the applied coating film, polyethylene having high thermal deformation temperature and excellent dimensional stability
  • the effect of solving the problem by constructing the base layer with terephthalate is derived.
  • the present invention has an effect of preventing the deformation of the dispersant by making the content of the oxygen-deficient transition metal oxide in the dispersion sol to be 20 to 30% by weight, so that sufficient optical properties are exhibited and the dispersion time is reduced.
  • the content of the dispersant in the dispersion sol is 1 to 10% by weight, so that a sufficient dispersion sol is obtained, and when the coated surface is dried, the dispersant that is not dried remains on the coating surface and does not cause defects in the coating surface. It has the effect.
  • the content of the organic acid metal chelating compound in the dispersion sol is 5 to 10% by weight, heat resistance and durability of the oxygen-deficient transition metal oxide without significantly reducing optical properties such as visible light transmittance and infrared shielding rate Elicits an effect that greatly improves.
  • the present invention has an effect of easily dispersing agglomerated powder, simplifying dispersion sol formation, and enabling mass production by forming a dispersion sol by a ball mill method.
  • the present invention has an effect of increasing the optical properties of the film and adhesion of the coating film and improving the scratch resistance of the film by making the content of the dispersion sol in the coating sol to be 40 to 50% by weight.
  • the present invention includes an oligomer, a monomer, and a photoinitiator that causes photopolymerization by irradiation with ultraviolet rays as a photopolymer, to enhance the bonding strength between the coating sol and the base layer, and to finely control the coating film thickness. It produces an effect that can help.
  • the present invention has the effect of increasing the surface scratch resistance, preventing surface cracking, and improving adhesion to the substrate layer by configuring the thickness of the coated coating film applied to the substrate layer to 3 to 4 ⁇ m while maintaining optical properties. There is.
  • the present invention has an effect of forming an adhesive layer on one surface of the heat shielding layer, so that the film can be easily adhered to buildings or vehicles.
  • the present invention derives an effect of attaching a release paper to one surface of the adhesive layer so that one surface of the adhesive layer is protected by the release paper.
  • 1 is a view of a conventional thermal barrier film.
  • FIG. 2 is a view of a heat shielding film according to an embodiment of the present invention.
  • FIG. 3 is a view of a heat shielding film according to another embodiment of the present invention.
  • FIG. 4 is a view of a heat shielding film according to another embodiment of the present invention.
  • FIG. 5 is a view of a heat shielding film manufacturing method according to an embodiment of the present invention.
  • FIG. 6 is a view of the thermal barrier layer forming step of FIG. 5;
  • FIG. 7 is a view of a method of manufacturing a heat shielding film according to another embodiment of the present invention.
  • FIG. 8 is a view of a method for manufacturing a heat shielding film according to another embodiment of the present invention.
  • 11 is an XRD graph showing crystals of oxygen-deficient tungsten oxide synthesized by the liquid precipitation method of Test Example 1.
  • the heat shielding film 1 includes a base layer 10 and a heat shield layer 30. do.
  • the base layer 10 is configured to provide a surface on which the heat shield layer 30 is coated, and supports the heat shield layer 30 to be described later.
  • Polyethylene terephthalate, polycarbonate, nylon, polypropylene, and the like may be used as the base layer 10.
  • hot air drying and ultraviolet irradiation are performed to dry and cure the coated film.
  • the base layer 10 may be exposed to a temperature of 120 ° C. or higher, and a deformation may occur in the base layer 10 itself due to an intrinsic heat deformation temperature only with a typical plastic substrate. Therefore, the base layer 10 is preferably composed of a polyethylene terephthalate (PET) having a high thermal deformation temperature and excellent dimensional stability.
  • PET polyethylene terephthalate
  • the heat shield layer 30 is formed on one surface of the base layer 10 and refers to a configuration that prevents external heat radiation and internal radiation heat from entering or discharging.
  • the heat shield layer 30 includes an oxygen-deficient transition metal oxide.
  • the oxygen-deficient transition metal oxide forms an AO (3-X) type rutile structure, and in the AO (3-X) form a rutile type structure, A is a transition metal, Cu, Ag, Zn, Ni, W and Co may include any one or more elements.
  • AO (3-X) form of the rutile (Rutile) type structure X represents the number of oxygens depending on the reductive plasticity.
  • Inorganic heat shielding materials such as antimony oxide (ATO), indium tin oxide (ITO), and tungsten bronze, have an average particle size distribution of 100 nm or more when actually manufactured with a dispersion sol when the primary particle size is within 100 nm. This is often the case. Dispersion sols having an average particle size distribution of more than 100 nm have haze and appear hazy due to scattering when made into a film.
  • ATO antimony oxide
  • ITO indium tin oxide
  • tungsten bronze have an average particle size distribution of 100 nm or more when actually manufactured with a dispersion sol when the primary particle size is within 100 nm. This is often the case.
  • Dispersion sols having an average particle size distribution of more than 100 nm have haze and appear hazy due to scattering when made into a film.
  • the AO (3-X) -type rutile (Rutile) -type structure has a relatively small primary particle size, and thus there is no problem of an increase in particle size during the firing process during compound preparation. Therefore, the AO (3-X) type rutile (Rutile) type structure solves the problem of appearance that is bluish while maximizing the optical properties of the existing inorganic heat shielding material.
  • the particle size of the oxygen-deficient transition metal oxide is 20 to 30 nm, which fundamentally blocks haze generated at a particle size of 100 nm.
  • the oxygen-deficient transition metal oxide may be synthesized by a liquid phase precipitation method.
  • a liquid phase precipitation method precipitation and precipitation occur when a predetermined amount of an acid value (pH) opposite to a dissolved reactant is introduced by easily dissolving a precursor of a desired element in a solvent, and during this process, temperature, solvent, loading material, reaction time, etc.
  • the desired inorganic compound can be synthesized by regulation.
  • the reactor is not particularly limited, and the facility of the heat source is also not limited, so that the existing facility can be sufficiently utilized.
  • the oxygen-deficient transition metal oxide synthesized by the liquid precipitation method exists in the presence of a hydroxyl group (-0H), so that the hydroxyl group and water molecules are completely removed, and primary calcination is performed to form rutile crystals. Will go through.
  • Calcination refers to an operation of heating a substance to a high temperature to remove some or all of its volatile components, and the temperature of the primary calcination is preferably maintained in the range of 300 to 600 ° C. When the calcination temperature is less than 300 ° C, hydroxyl groups (-OH) and water molecules cannot be completely removed, whereby hydroxyl groups and water molecules may remain, and a rutile crystal phase cannot be formed.
  • the temperature of the primary calcination can be preferably maintained in the range of 300 to 600 ° C, and more preferably in the range of 400 to 500 ° C.
  • the crystal defect of the oxygen-deficient transition metal oxide can be induced by secondary reduction calcination.
  • Reduction firing refers to a firing method in which, when insufficient air is supplied during combustion, incomplete combustion occurs and hydrogen in the decomposition products of carbon dioxide or fuel causes a reduction effect on the heated object. It is preferable to give oxygen deficiency to the metal oxide by reducing the secondary reducing calcination by introducing an inert gas (N 2 , Ar, Ne, CO 3 ) that does not have an explosive risk, without using an explosive hydrogen gas. . If hydrogen gas is used, not only does it require expensive special equipment to inject gas, but if the hydrogen gas injection conditions are not met, a large explosion may occur with only a little oxygen. This is to reduce and to make it easy to use existing firing equipment.
  • the powder formed by the secondary reduction firing may have a dark blue color.
  • the oxygen-deficient transition metal oxide is a crystal having oxygen-deficient defects, which may have problems such as heat resistance and durability, and problems such as heat resistance and durability can be solved by an immobilization film.
  • the passivation film refers to a metal oxide film in a state where normal chemical reactivity is lost.
  • the organic acid metal chelate compounds organic acid chelate compounds
  • the organic acid metal chelate compound effectively blocks the reaction by, residual hydroxyl (-OH) reaction, residual radical (Radical) reaction, and can solve problems such as heat resistance and durability of the oxygen-deficient transition metal oxide. There will be.
  • the organic acid metal chelate compound serving as the passivation film may have an R 1 -MR 2 structure.
  • R 1 and R 2 may be any one of low molecular weight glutamic acid or high molecular weight sodium poly aspartate, which are the main body of the organic acid, and R 1 and R 2 may be the same or different from each other.
  • the M may be any one of Cu, Ag, Zn, Ni, W, and Co, which are transition metals.
  • the organic acid metal chelate compound may be prepared by a reflux method. Specifically, the precursor containing one element of Cu, Ag, Zn, Ni, W, and Co is dissolved in an organic acid solvent and stirred at a reaction temperature of 60 to 80 ° C. for agitation for 4 to 5 hours to ripple. It can be prepared by refluxing.
  • FIG. 3 is a view of a heat shielding film according to another embodiment of the present invention, it will be referred to below 3.
  • the adhesive layer 50 refers to a configuration formed on one surface of the heat shield layer 30.
  • the adhesive layer 50 is configured to easily adhere the heat shielding film 1 including the heat shield layer 30 to a building or a vehicle.
  • the tackiness of the adhesive layer 50 mainly depends on the molecular chain, molecular weight distribution or the amount of molecular structure present in the polymer chain, and is determined by molecular weight in particular, so the acrylic copolymer (Acrylic Copolymer) has a weight average molecular weight of 800,000-20 It is preferable that it is ten thousand.
  • the methacrylate monomer having an alkyl group having 1 to 12 carbon atoms is included in an acrylic copolymer at 90 to 99.9% by weight. This is because if the methacrylate monomer is less than 90% by weight of the acrylic copolymer, there is a problem that the initial adhesive strength is lowered, and when it exceeds 99.9% by weight, durability may be caused by a decrease in cohesion.
  • FIG. 4 is a view of a heat shielding film according to another embodiment of the present invention, will be described below with reference to FIG. 4.
  • the release paper 70 is configured to be formed on one surface of the adhesive layer 50 to protect the outer surface of the adhesive layer 50.
  • the release paper 70 is preferably a film coated with a silicone coating on a PET substrate. This is because the release paper 70 may not be separated from the adhesive layer 50 when the final manufactured heat shielding film is applied to the glass if the silicone coating is not performed.
  • FIG. 5 is a view of a method for manufacturing a heat shielding film according to an embodiment of the present invention, hereinafter, a heat shielding film manufacturing method (S1) will be described with reference to FIG. 5.
  • a heat shielding film manufacturing method (S1) will be described with reference to FIG. 5.
  • the aforementioned contents will be omitted or simplified.
  • the method for manufacturing a heat shield film (S1) according to the present invention includes a substrate layer providing step (S10), a heat shield layer forming step (S30), an adhesive layer forming step (S50), and a release paper attaching step (S70).
  • the base layer providing step (S10) refers to a step of providing the base layer 10 to which the heat shield layer 30 is to be combined.
  • the heat shield layer forming step (S30) refers to a step of forming the heat shielding layer 30 on one surface of the substrate layer 10 after the substrate layer providing step (S10).
  • 6 is a view of the thermal barrier layer forming step of FIG. 5, referring to FIG. 6, the thermal barrier layer forming step (S30) includes an oxygen-deficient transition metal oxide forming step (S31) and a passivation coating step (S33). And, coating step (S35).
  • the oxygen-deficient transition metal oxide forming step (S31) refers to a step of generating a transition metal oxide deficient in oxygen.
  • the oxygen-deficient transition metal oxide forming step (S31) includes a synthesis step (S311), a primary calcination step (S313), and a secondary reduction firing step (S315).
  • the synthesizing step (S311) is a step of synthesizing transition metal oxides, and may be preferably performed by a liquid phase precipitation method.
  • a liquid phase precipitation method By preparing the oxygen-deficient transition metal oxide by a liquid precipitation method with simple synthesis conditions, it is easy to generate particles and control particle sizes, thereby obtaining uniform nano-sized particles.
  • the first calcination step (S313) after the synthesis step (S311), to remove hydroxyl groups (-OH) and water molecules from the synthesized transition metal oxide and calcined in the range of 300 ⁇ 600 °C to form rutile crystals Refers to the steps.
  • the secondary reduction firing step (S315) refers to a step of reducing firing under an inert gas input for oxygen deficiency of the transition metal oxide after the primary firing step (S313).
  • the inert gas used in the secondary reduction firing step (S315) includes N 2 , Ar, Ne and CO 3 .
  • the passivation film step (S33) refers to a step of forming a passivation film on the oxygen-deficient transition metal oxide after the oxygen-deficient transition metal oxide forming step (S31).
  • the passivation coating step (S33) includes an organic acid metal chelate compound manufacturing step (S331) and a dispersion sol forming step (S333).
  • the organic acid metal chelate compound manufacturing step (S331) is a step of preparing an organic acid metal chelate compound, and the organic acid metal chelate compound may be prepared by a reflux method. Specifically, a precursor containing one element of the transition metal selection group may be dissolved in an organic acid solvent and stirred at a reaction temperature of 60 to 80 ° C. for 4 to 5 hours to be refluxed. According to the reflux method, the organic acid metal chelate compound serving as the passivation film can be easily produced even in existing facilities.
  • the dispersion sol forming step (S333) refers to a step of forming a dispersion sol after the organic acid metal chelate compound manufacturing step (S331).
  • the dispersion sol may include an oxygen-deficient transition metal oxide, a dispersant, an organic acid metal chelate compound, and a solvent (organic solvent).
  • the content of the oxygen-deficient transition metal oxide in the dispersion sol is preferably 20 to 30% by weight.
  • the content of the oxygen-deficient transition metal oxide is less than 20% by weight, when the final coating film is formed, sufficient optical properties cannot be expressed at a low thickness, and when the content of the oxygen-deficient transition metal oxide exceeds 30% by weight, a high solid content is obtained. This is because relatively large dispersion time is required to reach the desired particle size of the nano-dispersed sol. Prolonged dispersion time may cause deformation of the dispersant, which may cause problems in the next step, coating sol production.
  • a polymer binder is included. When the dispersion sol prepared through excessive dispersion time and the polymer binder are mixed, compatibility with each other decreases, resulting in separation of layers, fine shock, and change over time. A problem such as gelation occurs.
  • the content of the dispersant in the dispersion sol is preferably 1 to 10% by weight.
  • the dispersant is less than 1% by weight, a sufficient dissolving sol cannot be obtained, and when the dispersant exceeds 10% by weight, the dispersant that is not dried when drying the coated surface remains on the coating surface, causing defects in the coating surface. can do.
  • the content of the organic acid metal chelate compound in the dispersion sol is preferably 5 to 10% by weight.
  • the content of the organic acid metal chelate compound is less than 5% by weight, the passivation film phenomenon is not properly expressed, so that the heat resistance and durability of the oxygen-deficient transition metal oxide cannot be greatly improved, and the content of the organic acid metal chelate compound is 10% by weight.
  • the content of the organic acid metal chelate compound is 10% by weight.
  • visible light transmittance may be reduced, making it difficult to manufacture a high-transmittance and high-efficiency heat shielding film.
  • the film should be able to transmit visible light, and the powder of the oxygen-deficient transition metal oxide has an agglomerated form, so it is preferable to disperse the particles.
  • the dissolving sol forming step (S333) may form a dissolving sol while dispersing particles by a ball mill method that is simple and easy to mass-produce.
  • the oxygen-deficient transition metal oxide powder, a solvent (organic solvent), and a dispersing agent in an agglomerated state are introduced into a cylindrical disperser, and after the zirconium beads are added 60% or more of the volume of the cylindrical disperser, the This is achieved by rotating the cylindrical disperser at a constant speed. At this time, all the contents inside the cylindrical disperser are rotated.
  • the zirconium beads transmit physical shock and surface shear force directly to the powder to be dispersed and apply physical energy while inducing surface grinding. Bar, after a certain period of time, it is dispersed as nanoparticles of a size smaller than the primary particle size, and finally, it is possible to express optical properties.
  • the organic acid metal chelate compound that separates the aggregation of the compound and improves the heat resistance and durability of the oxygen-deficient transition metal oxide is distributed in the liquid state or formed on the surface.
  • the coating step (S35) refers to a step of forming a coating film on the base layer 10 after the passivation film step (S33).
  • the coating step (S35) includes a coating sol forming step (S351), a coating sol coating step (S353), and a dry curing step (S355).
  • the coating sol forming step (S351) is a step of forming a coating sol, and the coating sol may include a dispersion sol, a binder, and an organic solvent.
  • the content of the dispersion sol in the coating sol is preferably 40 to 50% by weight.
  • the content of the dispersion sol is less than 40% by weight, the optical properties of the film are deteriorated, and when the content of the dispersion sol exceeds 50% by weight, the proportion of the binder is lowered, so that adhesion to the coating film may be lowered or surface scratch resistance may be deteriorated. Because. More preferably, the dispersion sol is 40 to 50% by weight, the binder is 40 to 50% by weight, and the organic solvent may be composed of 10 to 20% by weight.
  • the binder facilitates bonding with a plastic film as a base material, and allows the thickness of a coating film to be adjusted.
  • the binder as a photopolymer, may be composed of an oligomer, a monomer, and a photoinitiator that cause photopolymerization by irradiation with ultraviolet rays.
  • the organic solvent is methyl ethyl ketone, toluene, ethyl acetate, isopropyl alcohol, ethyl cellosolve, isobutyl Alcohol (Iso butyl Alcohol), Dimethylformamide, Ethanol, Butyl Cellosolve, Xylene, 1-Octanol, Diethylene Glycol , Nitrobenzene (Nitrobenzene).
  • the coating sol coating step (S353) refers to a step of applying the coating sol to the base layer 10 after the coating sol forming step (S351).
  • the coating sol coating step (S353) may use any one of a micro gravure coating, a knife coating, and a roll to roll coating, and more preferably a large area coating. In view of this, it is possible to use a micro gravure coating that exhibits the flattest coating surface and has a relatively high productivity.
  • the thickness of the coated coating film is 3 to 4 ⁇ m.
  • the thickness of the coated coating film is less than 3 ⁇ m, optical properties are not expressed and surface scratch resistance is deteriorated.
  • the thickness of the coated coating film exceeds 4 ⁇ m, a hard UV coating layer is formed and cracks are generated on the surface. The adhesive strength with the base layer 10 may be reduced.
  • the dry curing step (S355) refers to a step of hot air drying and ultraviolet curing the base layer 10 coated with the coating sol after the coating sol coating step (S353).
  • the adhesive layer forming step (S50) refers to a step of forming the adhesive layer 50 on one surface of the heat shield layer 30 after the heat shield layer forming step (S30).
  • the heat shielding film 1 can be easily adhered to a building or a vehicle by the adhesive layer 50.
  • the release paper attaching step (S70) refers to a step of attaching the release paper 70 to one surface of the adhesive layer 50 after the adhesive layer forming step (S50). One surface of the adhesive layer 50 may be protected through the release paper 70 through the release paper attaching step S70.
  • a specific test example is that when the heat shielding film is composed of an oxygen-deficient transition metal oxide, visible light transmittance and infrared ray blocking rate are improved, and heat resistance and durability of the oxygen-deficient transition metal oxide are improved through an immobilized film. I'll explain by listening.
  • the obtained tungsten oxide is then filled with nitrogen (N 2 ) gas inside the electric furnace to form lattice defects and rutile crystals, maintained at a temperature of 700 ° C. for 2 hours, and then naturally cooled to terminate secondary reduction firing. Then, 33% by weight of blue oxygen-deficient tungsten oxide was obtained.
  • the precursor of the organic acid metal chelate compound is 30% by weight of ammonium zinc chloride and ethanol (ethanol) is added to the Reflux reactor and stirred to form a colorless and transparent liquid.
  • ethanol ethanol
  • 40% by weight of low-molecular glutamic acid is added and the reaction temperature is 60. Maintaining °C and reacting for 4 hours, gradually forms an off-white viscous liquid, and after the reaction is completed, the filter and by-products are washed and dried to obtain 34% by weight of off-white powder.
  • the finished coating sol is coated on a PET film, which is a base layer, so that the thickness of the coating film is 3-4 ⁇ m.
  • An adhesive layer with a thickness of 6 to 7 ⁇ m is formed on the back side coated with the heat shielding layer to be laminated with release paper to complete the final heat shielding film.
  • Test Example 1 was prepared by cutting the heat shielding film to a width of 145 mm * a length of 145 mm.
  • Test Example 1 30% by weight of copper chloride dihydrate (CuCl 2 ⁇ 2H 2 O) instead of sodium tungstate dihydrate (Na 2 WO 4 ⁇ 2H 2 O) as a starting material during the synthesis process of the oxygen-deficient transition metal oxide powder
  • Test Example 2 was prepared under the same conditions as in Test Example 1 except for inputting. That is, in the composition of the oxygen-deficient tungsten oxide, the transition metal was replaced with copper from the existing tungsten.
  • Test Example 1 30% by weight of cobalt hexahydrate (CoCl 2 ⁇ 2H 2 O) instead of sodium tungstate dihydrate (Na 2 WO 4 ⁇ 2H 2 O) as a starting material during the synthesis process of oxygen-deficient transition metal oxide powder
  • Test Example 3 30% by weight of cobalt hexahydrate (CoCl 2 ⁇ 2H 2 O) instead of sodium tungstate dihydrate (Na 2 WO 4 ⁇ 2H 2 O) as a starting material during the synthesis process of oxygen-deficient transition metal oxide powder
  • Test Example 3 was prepared under the same conditions as in Test Example 1 except for inputting. That is, in the oxygen-deficient metal oxide composition, the transition metal was replaced with tungsten to cobalt.
  • Test Example 1 50% by weight of sodium tungstate dihydrate (Na 2 WO 4 ⁇ 2H 2 O) and 60% by weight of fumaric acid were added as starting materials during the synthesis process of the oxygen-deficient transition metal oxide powder.
  • Test Example 4 was prepared under the same conditions as in Test Example 1, except that 30 wt% of cobalt chloride hexahydrate was used instead of 30 wt% of ammonium zinc chloride. That is, in the composition of the oxygen-deficient transition metal oxide, the ratio of the existing sodium tungstate dihydrate and fumaric acid among the transition metal elements is different, and the organic acid metal chelate is replaced with zinc to cobalt.
  • Test Example 1 argon gas was added instead of nitrogen in the reduction firing step during the synthesis process of the oxygen-deficient transition metal oxide powder, and 30% by weight of copper chloride dihydrate instead of 30% by weight of ammonium zinc chloride during the synthesis of the organic acid metal chelate powder.
  • Test Example 5 was prepared under the same conditions as in Test Example 1, except for doing so. That is, in the reduction and calcination step of the oxygen-deficient transition metal oxide, the existing nitrogen was replaced with argon gas, and the organic acid metal chelate was replaced with zinc from copper.
  • Test Example 1 during the process of preparing the oxygen-deficient tungsten oxide dispersion sol, 20% by weight of the reduced calcined powder, 10% by weight of organic acid chelate, 1.0% by weight of dispersant and 70% by weight of organic solvent, the final dispersion sol solid content is 30% by weight
  • Test Example 6 was prepared under the same conditions as in Test Example 1 except for being used. That is, the solid content of the organic acid zinc chelate was increased from 5% by weight to 10% by weight.
  • Test Example 1 in the process of preparing the oxygen-deficient tungsten oxide dispersion sol, a test example was performed except that the final dispersion sol solid content was 30% by weight with 30% by weight of the dispersant and 70% by weight of the organic solvent in 30% by weight of the reduced calcined powder.
  • Test Example 7 was prepared under the same conditions as 1. That is, the organic acid zinc chelate contained in the dispersion sol in Test Example 1 was excluded.
  • Particle observation pictures are HITACHI (JAPAN) S-2400 SEM (Scanning Electron Microscope) images, taken at a magnification of ⁇ 50k to ⁇ 100k at 15kw.
  • FIG. 9 is a SEM photograph of oxygen-deficient tungsten oxide particles synthesized by the liquid precipitation method of Test Example 1.
  • Test Example 1 appears to be a group of small particles, but the size per particle unit As a result of observation, it was confirmed that the particle size was 20 to 30 nm, and the particle shape exhibited a uniform spherical shape.
  • FIG. 10 is a SEM photograph of oxygen-deficient cobalt oxide particles synthesized by the liquid precipitation method of Test Example 3.
  • the particle size of Test Example 3 is about 100 to 200 nm, and the particle shape is not constant. . That is, it can be seen that the application of the tungsten metal element among the transition metals has better results in particle size and particle shape.
  • XRD observation was measured using PHILIPS (Netherlands), X'Pert-MPD System.
  • FIG. 11 is an XRD graph showing crystals of oxygen-deficient tungsten oxide synthesized by the liquid precipitation method of Test Example 1.
  • the XRD value is 2 ⁇ 23.6, 0.2 at 0.0.2 plane.
  • Visible light and infrared transmission observation is measured by setting the Baseline in the air with JASCO (JAPAN) 650 UV / VIS Spectrometer, and heat and durability observation is performed using a hot air dryer (SH-DO-149FG), temperature 120 °C After standing for 72 hours, the optical properties were measured again to show the rate of change.
  • JASCO JAPAN
  • SH-DO-149FG hot air dryer
  • Test Example 2 Test Example 3 Test Example 4 Test Example 5 Test Example 6 Test Example 7 Visible light transmittance% (400 ⁇ 780nm) 71 68 48 65 67 68 75 Infrared shielding rate% (780 ⁇ 2000nm) 82 28 25 61 64 73 86 Rate of change ( ⁇ T%) 3% 8% 5% 7% 9% 2% 21%
  • the transition metal was made of tungsten from the oxygen-deficient transition metal oxide, and in the case of Test Example 3, the transition metal was composed of cobalt.
  • Table 1 it was confirmed that the use of tungsten as a transition metal is advantageous in terms of improving optical properties compared to using cobalt. There was no significant difference in heat resistance and durability, but in this case, it was more advantageous to use tungsten as the transition metal.
  • test example 1 uses nitrogen gas in the reduction and calcination step of the oxygen-deficient transition metal oxide and uses zinc as an organic acid metal chelate
  • test example 5 is the reduction.
  • argon gas is used in the firing step and copper is used as the organic acid metal chelate.
  • the visible light transmittance and the infrared shielding rate were inferior to Test Example 1, and heat resistance and durability were also inferior.
  • test example 1 and the test example 7 are compared, in the case of test example 1, the organic acid metal chelate is included, and in the case of test example 7, the organic acid metal chelate is excluded, and the organic acid metal chelate is not added at all.
  • Example 7 the best visible light transmittance and infrared shielding rate were shown, but it was confirmed that a great problem occurred in heat resistance and durability.
  • reaction by inflow of residual oxygen (O, O 2 ) reaction by residual hydroxyl group (-OH), residual radical ( ⁇ ) It is necessary to add an organic acid metal chelate in order to block reaction and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)
  • Inorganic Chemistry (AREA)

Abstract

The present invention relates to a heat shielding film and a method for manufacturing same and, more specifically, to a heat shielding film and a method for manufacturing same, wherein the heat shielding film: prevents a problem in which a film, which is completed by fundamentally blocking haze by making a heat shielding layer, to be formed on one surface of a substrate layer, of an oxygen-deficient transition metal oxide, cannot be clearly seen due to a scattering phenomenon; improves visible light transmittance and infrared rejection; and resolves, by means of a passivation film, problems of thermal resistance and durability due to a reaction caused by the introduction of residual oxygen when making the heat shielding layer of the oxygen-deficient transition metal oxide, a reaction caused by residual hydroxyl, a reaction caused by residual radical, etc.

Description

열 차폐 필름 및 그 제조방법Heat shielding film and its manufacturing method
본 발명은 열 차폐 필름 및 그 제조방법에 관한 것으로, 더욱 상세하게는, 기재층의 일면에 형성되는 열 차폐층을 산소결핍형 천이금속산화물로 구성하여 헤이즈를 원척적으로 차단해 완성된 필름에서 산란현상으로 인해 뿌옇게 보이는 문제를 방지하고 가시광선투과율과 적외선차단율을 개선하며, 열 차폐층을 산소결핍형 천이금속산화물로 구성할 때 잔류 산소 유입에 의한 반응, 잔류 수산기에 의한 반응, 잔류 라디칼에 의한 반응 등에 의한 내열성 및 내구성의 문제는 부동화 피막을 통해 해결하는 열 차폐 필름 및 그 제조방법에 관한 것이다.The present invention relates to a heat shielding film and a method for manufacturing the same, and more specifically, a heat shielding layer formed on one surface of a base layer is composed of an oxygen-deficient type transition metal oxide to block haze in a prominent manner, and in a completed film It prevents the problem of appearing cloudy due to the scattering phenomenon, improves the visible light transmittance and infrared ray blocking rate, and reacts by the influx of residual oxygen, the reaction by residual hydroxyl, and the residual radical when the heat shielding layer is composed of an oxygen-deficient transition metal oxide. The problem of heat resistance and durability due to reaction by the present invention relates to a heat shielding film and a method of manufacturing the solution through a passivation film.
열 차폐 재료는 크게 유기화합물형 열 차폐 재료와, 무기화합물형 열 차폐 재료로 구분될 수 있다.The heat shielding material can be roughly classified into an organic compound type heat shielding material and an inorganic compound type heat shielding material.
유기화합물형 열 차폐 재료는 높은 가시광선 투과율을 보이지만, 근적외선 영역 중에 단일파장(≒950nm) 부근에서만 흡수가 일어나, 실제로 인체가 느끼는 열에너지 영역 부근에서의 효과적인 차단은 어려워, 무기화합물형 재료보다는 상대적으로 차폐효과가 많이 떨어진다. 이로 인해 상기 유기화합물형 열 차폐 재료는 무기화합물형 열 차폐재료와 혼용되면서 열 차폐의 보조적인 재료로 사용되고 있다. 유기화합물에는 LaB6, Phthalocyanine, 카본블랙(Carbon Black), 티탄블랙(Titan Black), 금속착염(Metal Complex), 디인모늄염 (Diimonium Salt), 프탈로시아닌(Phthalocyanine) 등이 있다. 이중 실제로 많이 사용되고 있는 유기화합물은 금속착염(Metal Complex), 카본블랙(Carbon Black), 디인모늄염 (Diimonium Salt)등 이다.The organic compound type heat shielding material shows high visible light transmittance, but absorption occurs only near a single wavelength (≒ 950nm) in the near-infrared region, so it is difficult to effectively block near the thermal energy region felt by the human body. The shielding effect is poor. Therefore, the organic compound type heat shielding material is used as an auxiliary material for heat shielding while being mixed with an inorganic compound type heat shielding material. Organic compounds include LaB 6 , Phthalocyanine, Carbon Black, Titan Black, Metal Complex, Diimonium Salt, Phthalocyanine, and the like. Among them, organic compounds that are widely used are metal complex, carbon black, and diimonium salt.
반면에 무기화합물형 열 차폐 재료는 낮은 가시광선 투과율을 가지지만, 유기물화합물형 재료보다는 뛰어난 내구성과 높은 열 차폐 특성을 가지고 있다. 열 차폐 재료로는 특히 무기산화물들이 많으며, 이러한 무기산화물에는 안티몬틴옥사이드(ATO), 인듐틴옥사이드 (ITO), 2산화실리카(SiO2), 3산화알루미나(Al2O3), 3산화몰리브덴(MoO3), 5산화니오브(Nb2O5), 5산화바나듐(V2O5), 텅스텐 브론즈(Tungsten Bronze), 텅스텐 옥사이드(Tungsten Oxide) 등을 사용한다. 이중 특히 가장 많이 사용되고, 실제로 적외선 차단 특성이 양호한 무기산화물로는 안티몬틴옥사이드(ATO)와 인듐틴옥사이드(ITO), 텅스텐 브론즈(Tungsten Bronze)이다. On the other hand, the inorganic compound type heat shielding material has a low visible light transmittance, but has superior durability and high heat shielding properties than the organic compound type material. In particular, there are many inorganic oxides as the heat shielding material, and these inorganic oxides include antimony oxide (ATO), indium tin oxide (ITO), silica dioxide (SiO 2 ), alumina trioxide (Al 2 O 3 ), and molybdenum trioxide. (MoO 3 ), niobium pentoxide (Nb 2 O 5 ), vanadium pentoxide (V 2 O 5 ), tungsten bronze, tungsten oxide, etc. are used. Among them, the most widely used inorganic oxides having good infrared ray blocking properties are antimony oxide (ATO), indium tin oxide (ITO), and tungsten bronze.
안티몬틴옥사이드(ATO)는 인듐틴옥사이드(ITO) 보다 가격이 저렴하고, 일반적인 열 차폐 필름에 많이 적용되고 있다. 하지만 근적외선 투과피크 중 1500nm에서 2200nm 까지 완만한 경사의 투과 그래프로, 완벽한 적외선 차단은 이루어지지 못하고 있으며, 높은 가시광선 투과율을 확보하기 위해서는 그 투입량이 제한적일 수밖에 없다. 만약 높은 근적외선 차단율 확보를 위해 안티몬틴옥사이드(ATO) 졸 투입량을 높게 한다면, 가시광선 투과율은 40~50%로 현저히 떨어지게 되고, 과도한 무기물 함유는 열 차폐 코팅층의 크랙, 부착력 저하, 백탁, 경시변화 등을 일으킨다. 이렇듯 입자크기 30nm의 안티몬틴옥사이드(ATO)라고 해도 가시광선 대비 근적외선 차단 특성은 그 한계를 가지고 있어 활용 범위가 좁고, 고성능 열 차폐 필름 제조에는 쉽게 적용되지 못한다.Antimony oxide (ATO) is cheaper than indium tin oxide (ITO), and is widely applied to general heat shielding films. However, as a transmission graph with a gentle slope from 1500nm to 2200nm among the near-infrared transmission peaks, perfect infrared blocking is not achieved, and the input amount is limited to secure a high visible light transmittance. If the amount of antimony oxide (ATO) sol is increased to secure a high near-infrared ray blocking rate, the visible light transmittance will drop significantly to 40-50%, and excessive inorganic content will cause cracks in the heat-shielding coating layer, decrease in adhesion, cloudiness, change over time, etc. Causes As described above, even with antimony oxide (ATO) having a particle size of 30 nm, the near-infrared ray blocking property has a limitation as compared to visible light, so its utilization range is narrow and it cannot be easily applied to manufacturing high-performance heat shielding films.
인듐틴옥사이드(ITO)는 안티몬틴옥사이드(ATO)보다 높은 가시광선 투과율과 적외선 차단 특성을 가진다. 하지만 인듐(Indium)가격이 세계적으로 높은 가격의 원료로 잘 알려져 있고, 대부분 전자산업에서는 인듐틴옥사이드(ITO)를 대체할 수 있는 물질을 개발 중에 있다. 또한 열 차폐 필름제조에서도 이러한 고가의 원료를 사용하는 것은 큰 부담이 되지 않을 수 없다. 따라서 인듐틴옥사이드(ITO) 보다 높은 가시광선 투과율과 높은 근적외선 차단 특성을 가지는 물질을 개발하는 것이 급선무이다.Indium tin oxide (ITO) has higher visible light transmittance and infrared ray blocking properties than antimony oxide (ATO). However, indium (Indium) price is well known as a high-priced raw material in the world, most of the electronics industry is developing a material that can replace indium tin oxide (ITO). In addition, it is inevitable to use such expensive raw materials in the production of heat shielding films. Therefore, it is urgent to develop a material having higher visible light transmittance and higher near-infrared ray blocking properties than indium tin oxide (ITO).
또한 안티몬틴옥사이드(ATO)와 인듐틴옥사이드(ITO)는 나노입자 무기산화물의 합성에 있어 매우 까다로운 공정을 거쳐 제조되고 있다. 특히 Sol-Gel 법, Autoclave 법으로 제조된 수산화안티몬틴옥사이드(ATO(OH)), 수산화인듐틴옥사이드(ITO(OH))는 반드시 소성 과정을 거치게 된다. 소성은 총 2번에 걸쳐 이루어지는데, 공기 중에서 300~400℃로 1차 소성을 한 후, 2차 수소 환원소성을 하게 된다. 이때 수소 가스(Gas)와 불활성 가스를 혼합하여 환원소성을 하게 되며, 만일 약간의 산소가 투입되더라도 폭발할 가능성이 매우 높아 주의를 요하는 작업이고, 장비 또한 Gas Flow 소성로는 상당히 고가의 장비이다. 이렇듯 안티몬틴옥사이드(ATO), 인듐틴옥사이드(ITO)를 제조하는데 있어 안정성의 문제와 고가의 설비 투자가 필요한 단점이 존재한다.In addition, antimony oxide (ATO) and indium oxide (ITO) are manufactured through very difficult processes in the synthesis of nanoparticle inorganic oxides. In particular, antimony hydroxide (ATO (OH)) and indium hydroxide (ITO (OH)) prepared by the Sol-Gel method and the Autoclave method must undergo a firing process. The firing takes place twice, and after primary firing in air at 300 to 400 ° C, secondary hydrogen reduction firing is performed. At this time, hydrogen gas (Gas) and an inert gas are mixed to perform reduction firing, and even if a little oxygen is added, the possibility of explosion is very high and requires attention, and the equipment is also a very expensive equipment for the gas flow kiln. In this way, there are disadvantages in stability and expensive equipment investment in manufacturing antimony oxide (ATO) and indium oxide (ITO).
페로브스카이트(Perovskite) 텅스텐 브론즈는 와이드 밴드 겝(Wide Band Gap)산화물로, 3산화텅스텐에 Na등의 양성원소를 Doping한 형태이며, 일반적으로 페로브스카이트 구조(ABO3)를 가지게 된다. 텅스텐 브론즈의 특징으로는 파장 800nm 이상부터 광 에너지 흡수가 강하고, 파장 380~780nm 에서의 광 에너지 흡수는 약하기 때문에 투명성을 필요로 하는 분야에서는 활발히 연구되고 있는 실정이다. 텅스텐 브론즈 화합물은 약 5만 가지 정도로 알려져 있고, 특히 적외선 차단 특성을 보이는 텅스텐 브론즈 화합물은 AxW1Oy 형태로, Ax는 알칼리금속 및 알칼리토금속 원소, W1는 텅스텐, Oy는 산소로 이루어져 있다. 알칼리금속 원소 계열들은 다른 원소들에 비해 상대적으로 원소 반경이 거대하여 결과적으로 큰 입자 입경을 보이게 된다. 대부분 1차 입경(Particle Size)의 크기는 100nm 미만이고, 1차 입경이 50nm 이면 실제로 분산 졸로 제조했을 때 입경은 50nm 이상이 된다. 50nm 이상의 분산 졸은 헤이즈가 높으며 산란현상을 보이는바, 만약 필름으로 제작되었을 때는 산란현상에 의해 뿌옇게 보여지는 문제가 발생한다. 따라서 개선된 텅스텐 브론즈 또는 텅스텐 산화물을 적용하여 헤이즈값이 낮고 고투명한 고품질의 열 차폐 필름이 필요로 하게 된다.Perovskite tungsten bronze is a wide band gap oxide, in which tungsten trioxide is doped with a positive element such as Na, and generally has a perovskite structure (ABO 3 ). . As a characteristic of tungsten bronze, since light energy absorption is strong from a wavelength of 800 nm or more, and light energy absorption at a wavelength of 380 to 780 nm is weak, it has been actively studied in a field requiring transparency. Tungsten bronze compounds are known to be about 50,000, and in particular, tungsten bronze compounds showing infrared ray blocking properties are in the form of A x W 1 O y , A x is an alkali metal and alkaline earth metal element, W 1 is tungsten, O y is oxygen It consists of. Alkali metal element series have a large element radius compared to other elements, resulting in large particle size. In most cases, the size of the primary particle size is less than 100 nm, and when the primary particle size is 50 nm, the particle size becomes 50 nm or more when actually manufactured with a dispersion sol. Dispersed sols of 50 nm or more have high haze and show scattering. If produced as a film, a problem occurs that is bluish due to scattering. Therefore, a high quality heat shielding film having a low haze value and high transparency is required by applying an improved tungsten bronze or tungsten oxide.
산화 텅스텐(Tungsten Oxide)은 와이드 밴드 갭(Wide Band Gap)산화물로, WO3(삼산화텅스텐)은 노란색을 띄고 있으며, WO2.81 ~ WO2.95 (WO3-x 라고명칭) 까지는 푸른색을 띄게 된다. 특히 WO3-x 는 소량의 산소가 감소된 형태이며 적외선 차폐 특성이 있다. 완전한 산소 함량을 가지는 WO3는 적외선 차폐 특성이 없으며 여러 제조방법을 통해 얻어지는 여러 전구체들을 공기 중에 소성처리 하면 얻을 수 있다. 그에 반면 푸른색의 WO3-x 는 환원소성으로 얻을 수 있다. 환원소성은 산소 대신 불활성 가스로 소성 후 만들어진다. WO3-x 는 산소의 빈자리 때문에 어느 조건하에서는 다시 산화되어 삼산화텅스텐으로 변화되기 쉬워, Color가 변하거나 적외선 차폐 특성이 사라지게 된다. 이러한 문제점으로 인해 WO3-x는 그 사용이 제한적이거나 열 차폐 재료로서는 사용되지 못하고 있다. 만약 이런 문제점을 해결하지 못하고 열 차폐 필름에 적용된다면, 환경 조건에 따라 코팅된 적외선 차폐층에 변형이 생길 수 있다. Tungsten oxide is a wide band gap oxide, WO 3 (tungsten trioxide) has a yellow color, and WO 2.81 to WO 2.95 (named WO 3-x ) have a blue color. In particular, WO 3-x has a reduced amount of oxygen and has infrared shielding properties. WO 3 having a complete oxygen content has no infrared shielding properties and can be obtained by calcining several precursors obtained through various manufacturing methods in air. On the other hand, blue WO 3-x can be obtained by reducing calcination. Reduction firing is made after firing with an inert gas instead of oxygen. WO 3-x is oxidized again under certain conditions due to the vacancies of oxygen, and is easily changed to tungsten trioxide, so that the color changes or the infrared shielding properties disappear. Due to this problem, the use of WO 3-x is limited or not used as a heat shielding material. If this problem is not solved and applied to the heat shielding film, deformation may occur in the coated infrared shielding layer according to environmental conditions.
도 1은 종래의 열차단 수축필름에 관한 도면으로, 상기 종래기술은 한국등록특허공보 제10-1681614호(2016.12.01)에 개시되어 있다. 도 1을 참고하면, 도 1의 종래기술은 산화텅스텐을 열차단 수축필름에 적용하였으나, 사용한 입자가 1~6㎛로 상당히 크므로, 이로 인해 가시광선 투과율이 떨어짐은 물론, 열 차단효과를 증가시키기 위해 산화텅스텐 투입량을 높이게 된다면 기재로서 사용된 합성수지 필름은 부스러지거나 합성수지 필름 특성인 치수 안정성 및 탄성, 신장률 등과 같은 본래의 물성은 저하될 수밖에 없다는 문제가 있다.1 is a view of a conventional thermal barrier film, the prior art is disclosed in Korean Patent Registration No. 10-1681614 (2016.12.01). Referring to FIG. 1, the prior art of FIG. 1 applied tungsten oxide to a thermal barrier shrink film, but the particles used are considerably larger to 1 to 6 μm, thereby reducing visible light transmittance and increasing heat shielding effect. In order to increase the input amount of tungsten oxide in order to make the synthetic resin film used as a substrate, there is a problem that the original physical properties such as dimensional stability and elasticity, elongation, etc., which are fragile or synthetic resin film characteristics, must be deteriorated.
따라서, 관련 업계에서는 태양광에 분포하는 적외선을 효과적으로 차단할 수 있으면서, 내열성 및 내구성을 가지고, 제조과정이 간단하며, 제조에 많은 비용을 필요치 않는 새로운 형식의 열 차폐 필름에 관한 개발을 요구하고 있는 실정에 있다.Therefore, in the related industry, it is required to develop a new type of heat shielding film that can effectively block infrared rays distributed in sunlight, has heat resistance and durability, has a simple manufacturing process, and does not require much cost for manufacturing. Is in
(특허문헌 1) 한국등록특허공보 제10-1681614호(2016.12.01)(Patent Document 1) Korean Registered Patent Publication No. 10-1681614 (2016.12.01)
본 발명은 상기와 같은 문제점을 해결하고자 안출된 것으로,The present invention was made to solve the above problems,
본 발명의 목적은, 기재층의 일면에 형성되는 열 차폐층을 산소결핍형 천이금속산화물로 구성하여 평균입도가 100nm미만이 되도록 함으로써 헤이즈를 원척적으로 차단해, 완성된 필름에서 산란현상으로 인해 뿌옇게 보이는 문제를 방지하고, 가시광선투과율과 적외선차단율을 개선한 열 차폐 필름을 제공하는 것이다.The object of the present invention is to block the haze by making the heat shielding layer formed on one surface of the base layer made of an oxygen-deficient transition metal oxide so that the average particle size is less than 100 nm, due to scattering in the finished film. It is to provide a heat shielding film that prevents the appearance of blurring and improves the visible light transmittance and infrared light blocking rate.
본 발명의 다른 목적은, 산소결핍형 천이금속산화물은 AO(3-X) 형태의 루틸(Rutile)형 구조를 형성하도록 구성함으로써, 상대적으로 작은 1차 입경을 가지도록 함에 따라, 화합물 제조시 소성과정 중 입자크기가 증대되는 문제를 방지하는 열 차폐 필름을 제공하는 것이다.Another object of the present invention, the oxygen-deficient transition metal oxide is configured to form a rutile (Rutile) -type structure of AO (3-X) , thereby having a relatively small primary particle size, thereby firing during compound production It is to provide a heat shielding film that prevents the problem that the particle size increases during the process.
본 발명의 또 다른 목적은, 산소결핍형 천이금속산화물을 합성조건이 간단한 액상침전법으로 제조함으로써, 입자생성 및 입자크기의 제어가 용이하여 균일한 나노크기의 입자를 얻을 수 있도록 하는 것이다.Another object of the present invention is to prepare a uniform nano-sized particle by easily producing a particle and controlling particle size by preparing an oxygen-deficient transition metal oxide by a simple liquid deposition method with synthetic conditions.
본 발명의 또 다른 목적은, 합성된 천이금속산화물을 300~600℃ 범위에서 하소시켜, 수산기 및 물분자를 제거해 작은 입경을 가지는 루틸형 결정을 형성하는 것이다.Another object of the present invention is to calcinate the synthesized transition metal oxide in a range of 300 to 600 ° C. to remove hydroxyl groups and water molecules to form rutile crystals having a small particle size.
본 발명의 또 다른 목적은, 환원소성을 통해 루틸형 결정을 형성한 천이금속산화물의 산소결핍을 유도하여 결정결함 또는 산소의 빈자리에 의한 적외선 흡수 특성을 가지도록 하고, 이러한 환원소성은 수소가스 대신 불활성 가스의 투입하에 이루어지도록 함으로써 작업상의 위험을 줄이고 간편하게 기존의 소성장비를 이용할 수 있도록 하는 것이다.Another object of the present invention is to induce the oxygen deficiency of the transition metal oxide forming a rutile type crystal through reduction calcination to have infrared absorption characteristics due to crystal defects or vacancies of oxygen, and such reduced calcination instead of hydrogen gas By making it under the inert gas input, it is possible to reduce the operational risk and to easily use the existing firing equipment.
본 발명의 또 다른 목적은, 선택적 반응성이 우선이면서 이종 반응성은 없는 유기산 금속 킬레이트 화합물(Organic Acid Metallic Chelate Compounds)을 산소결핍형 천이금속산화물 표면에 형성하거나 분산졸 내에 분포시킴으로써, 잔류 산소(O, O2) 유입에 의한 반응, 잔류 수산기(-OH)에 의한 반응, 잔류 라디칼(Radical)에 의한 반응 등을 상기 유기산 금속 킬레이트 화합물이 효과적으로 차단하도록 하여, 산소결핍형 천이금속산화물의 내열성, 내구성 등의 문제를 보완하는 것이다.Another object of the present invention, by forming the organic acid metal chelate compounds (Organic Acid Metallic Chelate Compounds) that do not have heterogeneous reactivity while having selective reactivity first, on the surface of the oxygen-deficient transition metal oxide or distributed in the dispersion sol, residual oxygen O 2 ) The organic acid metal chelate compound effectively blocks the reaction by inflow, the reaction by residual hydroxyl (-OH), and the reaction by residual radicals, such as heat resistance, durability, etc. of the oxygen-deficient transition metal oxide Is to complement the problem.
본 발명의 또 다른 목적은, 부동화 피막 역할을 하는 유기산 금속 킬레이트 화합물을 리플럭스(Reflux)법으로 제조하도록 하여 원하는 목적에 맞는 화합물을 기존 설비에서도 간단히 제조할 수 있도록 하는 것이다.Another object of the present invention is to prepare an organic acid metal chelate compound serving as an immobilized film by a reflux method so that a compound suitable for a desired purpose can be easily produced in an existing facility.
본 발명의 또 다른 목적은, 도포된 도막의 건조 및 경화를 위해 열풍건조 및 자외선조사가 이루어질 경우 120℃ 이상의 온도에 기재층이 노출됨에 따라 변형이 발생할 수 있는 문제를, 열 변형온도가 높고 치수 안정성이 우수한 폴리에틸렌 테레프탈레이트(Polyethylene Terephthalate)로 기재층을 구성해 해결하는 것이다.Another object of the present invention, when the hot air drying and UV irradiation for drying and curing the coated film is a problem that deformation may occur as the substrate layer is exposed to a temperature of 120 ° C. or higher, the heat deformation temperature is high and the dimensions are high. It is to solve the problem by constructing the base layer with polyethylene terephthalate, which has excellent stability.
본 발명의 또 다른 목적은, 분산졸 내의 산소결핍형 천이금속산화물의 함량을 20~30중량%가 되도록 구성하여, 충분한 광학적 특성이 발현되도록 하고, 분산시간을 줄여 분산제의 변형을 방지하는 것이다. Another object of the present invention is to configure the content of the oxygen-deficient transition metal oxide in the dispersion sol to be 20 to 30% by weight, so that sufficient optical properties are expressed, and dispersion time is reduced to prevent deformation of the dispersant.
본 발명의 또 다른 목적은, 분산졸 내 분산제의 함량은 1~10중량%가 되도록 하여, 충분한 분산졸을 얻고, 코팅된 표면을 건조시킬 때 건조되지 못한 분산제가 코팅 표면에 잔존해 코팅표면의 불량을 일으키지 않도록 하는 것이다.Another object of the present invention, the content of the dispersant in the dispersion sol is 1 to 10% by weight, to obtain a sufficient dispersion sol, when drying the coated surface, the dispersant that is not dried remains on the coating surface of the coating surface It does not cause defects.
본 발명의 또 다른 목적은, 분산졸 내 유기산 금속 킬레이트 화합물의 함량을 5~10중량%로 구성하여, 가시광선 투과율 및 적외선 차폐율 등의 광학적 특성을 크게 떨어뜨리지 않으면서 산소결핍형 천이금속산화물의 내열성 및 내구성을 크게 향상시키는 것이다.Another object of the present invention is to configure the content of the organic acid metal chelate compound in the dispersion sol to 5 to 10% by weight, without significantly reducing optical properties such as visible light transmittance and infrared shielding rate, oxygen-deficient transition metal oxide It is to greatly improve the heat resistance and durability of.
본 발명의 또 다른 목적은, 볼밀법에 의해 분산졸을 형성하도록 함으로써, 응집된 분말을 용이하게 분산시키고, 분산졸 형성을 간편하게 하며, 대량생산이 가능하도록 하는 것이다.Another object of the present invention is to form a dispersion sol by a ball mill method, thereby easily dispersing the agglomerated powder, simplifying the formation of a dispersion sol, and enabling mass production.
본 발명의 또 다른 목적은, 코팅졸 내 분산졸의 함량이 40~50중량%가 되도록 함으로써, 필름의 광학적 특성 및 도막 부착력을 높이고, 표면 내스크래치성을 향상시키는 것이다.Another object of the present invention is to increase the optical properties of the film and the adhesion of the coating film, and improve the scratch resistance of the surface by making the content of the dispersion sol in the coating sol to be 40-50% by weight.
본 발명의 또 다른 목적은, 광중합체로서 자외선조사에 의해 광중합을 일으키는 올리고머(Oligomer), 모너머(Monomer), 광개시제를 코팅졸에 포함하여, 코팅졸과 기재층의 결합력을 증진시키고, 도막 두께를 미세하게 조절할 수 있도록 하는 것이다.Another object of the present invention, as an oligomer (Oligomer), which causes photopolymerization by ultraviolet irradiation as a photopolymer, a monomer (Monomer), including a photoinitiator in the coating sol, to enhance the bonding strength of the coating sol and the base layer, the thickness of the coating film It is to be able to finely adjust.
본 발명의 또 다른 목적은, 기재층에 도포된 코팅도막의 두께를 3~4㎛로 구성하여, 광학적 특성을 유지하면서 표면 내스크래치성을 높이고, 표면 크랙 발생을 막으며, 기재층과의 부착력을 향상시키는 것이다.Another object of the present invention, by configuring the thickness of the coating film applied to the base layer to 3 ~ 4㎛, while maintaining the optical properties to improve the surface scratch resistance, prevent surface cracking, adhesion to the base layer Is to improve.
본 발명의 또 다른 목적은, 열 차폐층의 일면에 점착층을 구성하여, 필름이 건물 또는 차량 등에 용이하게 접착될 수 있도록 하는 것이다.Another object of the present invention is to configure the adhesive layer on one surface of the heat shielding layer, so that the film can be easily adhered to buildings or vehicles.
본 발명의 또 다른 목적은, 점착층의 일면에 이형지를 부착하여 점착층의 일면이 이형지에 의해 보호되도록 하는 것이다.Another object of the present invention is to attach a release paper to one surface of the adhesive layer so that one surface of the adhesive layer is protected by the release paper.
본 발명은 앞서 본 목적을 달성하기 위해서 다음과 같은 구성을 가진 실시예에 의해서 구현된다.The present invention is implemented by an embodiment having the following configuration in order to achieve the above object.
본 발명의 일 실시예에 따르면, 본 발명은, 기재층과, 상기 기재층의 일면에 형성된 열 차폐층을 포함하고, 상기 열 차폐층은, 산소결핍형 천이금속산화물을 포함하여, 헤이즈현상이 없으면서 가시광선투과율과 적외선차단율을 개선하는 것을 특징으로 한다.According to an embodiment of the present invention, the present invention includes a base layer and a heat shielding layer formed on one surface of the base layer, wherein the heat shielding layer includes an oxygen-deficient transition metal oxide, and has a haze phenomenon. It is characterized by improving the visible light transmittance and the infrared light blocking rate.
본 발명의 다른 실시예에 따르면, 본 발명은, 상기 산소결핍형 천이금속산화물은, AO(3-X) 형태의 루틸(Rutile)형 구조를 형성하는 것을 특징으로 한다.According to another embodiment of the present invention, the present invention is characterized in that the oxygen-deficient transition metal oxide forms an AO (3-X) type rutile structure.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 A는, Cu, Ag, Zn, Ni, W 및 Co 중 어느 하나 이상의 원소를 포함하는 것을 특징으로 한다.According to another embodiment of the present invention, the present invention is characterized in that the A comprises at least one element of Cu, Ag, Zn, Ni, W and Co.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 산소결핍형 천이금속산화물은, 수산기 및 물분자를 제거하고 결정을 형성하기 위해, 300∼600℃ 범위에서 하소가 이루어지는 것을 특징으로 한다.According to another embodiment of the present invention, the present invention is characterized in that the oxygen-deficient transition metal oxide is calcined in a range of 300 to 600 ° C. to remove hydroxyl groups and water molecules and form crystals.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 산소결핍형 천이금속산화물은, 산소결핍을 위해, 불활성 가스의 투입하에 환원소성이 이루어지는 것을 특징으로 한다.According to another embodiment of the present invention, the present invention is characterized in that the oxygen-deficient transition metal oxide, for oxygen deficiency, is subjected to reducing calcination under the introduction of an inert gas.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 불활성 가스는, N2, Ar, Ne 및 CO3를 포함하는 것을 특징으로 한다.According to another embodiment of the present invention, the present invention is characterized in that the inert gas includes N 2 , Ar, Ne and CO 3 .
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 열 차폐층은, 부동화 피막을 추가로 포함하여, 상기 산소결핍형 천이금속산화물의 내열성 및 내구성을 향상시키는 것을 특징으로 한다.According to another embodiment of the present invention, the present invention is characterized in that the heat shielding layer further includes a passivation film to improve the heat resistance and durability of the oxygen-deficient transition metal oxide.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 부동화 피막은, 유기산 금속 킬레이트 화합물을 포함하는 것을 특징으로 한다.According to another embodiment of the present invention, the present invention is characterized in that the passivation film comprises an organic acid metal chelate compound.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 유기산 금속 킬레이트 화합물은, R1-M-R2 구조를 가지며, 상기 M은, Cu, Ag, Zn, Ni, W 및 Co 중 어느 하나의 원소이고, 상기 R1 및 R2는, 저분자형 글루탐산(Glutamic Acid) 및 고분자형 나트륨 폴리 아스파테이트(Sodium Poly Aspartate) 중 어느 하나인 것을 특징으로 한다.According to another embodiment of the present invention, the present invention, the organic acid metal chelate compound, has a R1-M-R2 structure, the M is Cu, Ag, Zn, Ni, W, and any one element of Co , And R1 and R2 are characterized by any one of low molecular weight glutamic acid and high molecular weight sodium poly aspartate.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 기재층은, 폴리에틸렌 테레프탈레이트(Polyethylene Terephthalate)인 것을 특징으로 한다.According to another embodiment of the present invention, the present invention, the base layer is characterized in that the polyethylene terephthalate (Polyethylene Terephthalate).
본 발명의 또 다른 실시예에 따르면, 본 발명은, 기재층을 제공하는 기재층제공단계와, 상기 기재층제공단계 이후에 상기 기재층의 일면에 열 차폐층을 형성하는 열차폐층형성단계를 포함하고, 상기 열차폐층형성단계는, 산소가 결핍된 천이금속산화물을 생성하는 산소결핍형천이금속산화물형성단계와, 상기 산소결핍형천이금속산화물형성단계 이후에 상기 산소결핍형 천이금속산화물에 부동화 피막을 형성하는 부동화피막단계와, 상기 부동화피막단계 이후에 상기 기재층에 코팅막을 형성하는 코팅단계를 포함하는 것을 특징으로 한다.According to another embodiment of the present invention, the present invention includes a substrate layer providing step of providing a substrate layer, and a heat shield layer forming step of forming a heat shielding layer on one surface of the substrate layer after the substrate layer providing step. And, the thermal barrier layer forming step, the oxygen-deficient transition metal oxide forming step of generating a transition metal oxide deficient in oxygen, and after the oxygen-deficient transition metal oxide forming step passivated film on the oxygen-deficient transition metal oxide It characterized in that it comprises a passivation film forming step of forming, and a coating step of forming a coating film on the base layer after the passivation film step.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 산소결핍형천이금속산화물형성단계는, 액상침전법으로 천이금속산화물을 합성하는 합성단계와, 상기 합성단계 이후에 합성된 천이금속산화물에서 수산기 및 물분자를 제거하고 결정을 형성하기 위해 300∼600℃ 범위에서 하소를 하는 1차하소단계와, 상기 1차하소단계 이후에 천이금속산화물의 산소결핍을 위해 불활성 가스의 투입하에 환원소성을 하는 2차환원소성단계를 포함하는 것을 특징으로 한다.According to another embodiment of the present invention, the present invention, the oxygen-deficient transition metal oxide forming step, in the synthesis step of synthesizing the transition metal oxide by a liquid precipitation method, and the transition metal oxide synthesized after the synthesis step In order to remove hydroxyl groups and water molecules and to form crystals, a primary calcination step of calcining in a range of 300 to 600 ° C., and reducing calcination under inert gas for oxygen deficiency of transition metal oxides after the first calcination step It characterized in that it comprises a secondary reduction firing step.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 부동화피막단계는, 유기산 금속 킬레이트 화합물을 제조하는 유기산금속킬레이트화합물제조단계와, 상기 유기산금속킬레이트화합물제조단계 이후에 분산졸을 형성하는 분산졸형성단계를 포함하는 것을 특징으로 한다.According to another embodiment of the present invention, the present invention, the passivation coating step, an organic acid metal chelate compound manufacturing step for producing an organic acid metal chelate compound, and the dispersion to form a dispersion sol after the organic acid metal chelate compound manufacturing step Characterized in that it comprises a sol-forming step.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 유기산금속킬레이트화합물제조단계는, 천이금속을 포함하는 전구체를 유기산 용매에 용해시켜, 60∼80℃에서 4∼5시간 동안 교반하여 리플럭스(Reflux) 시키는 것을 특징으로 한다.According to another embodiment of the present invention, the present invention, the organic acid metal chelate compound production step, the precursor containing the transition metal is dissolved in an organic acid solvent, stirred at 60 to 80 ℃ for 4 to 5 hours to reflux (Reflux) It is characterized by.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 분산졸형성단계는, 산소결핍형 천이금속산화물 20~30중량%와, 분산제 1~10중량%와, 유기산 금속 킬레이트 화합물 5~10중량%를 포함하는 분산졸을 형성하는 것을 특징으로 한다.According to another embodiment of the present invention, the present invention, the dispersion sol forming step, oxygen-deficient transition metal oxide 20 to 30% by weight, dispersing agent 1 to 10% by weight, organic acid metal chelate compound 5 to 10% by weight It characterized in that to form a dispersion sol containing a percent.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 코팅단계는, 코팅졸을 형성하는 코팅졸형성단계와, 상기 코팅졸형성단계 이후에 상기 코팅졸을 상기 기재층에 도포하는 코팅졸도포단계와, 상기 코팅졸도포단계 이후에 코팅졸이 도포된 기재층을 열풍 건조 및 자외선 경화시키는 건조경화단계를 포함하는 것을 특징으로 한다.According to another embodiment of the present invention, the present invention, the coating step, coating sol forming step of forming a coating sol, and coating sol coating to apply the coating sol to the base layer after the coating sol forming step And a drying curing step of drying the base layer on which the coating sol is applied, followed by hot air drying and ultraviolet curing after the coating sol application step.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 코팅졸형성단계는, 분산졸 40~50중량%와, 바인더 40~50중량%와, 유기용제 10~20중량%를 포함하는 코팅졸을 형성하는 것을 특징으로 한다.According to another embodiment of the present invention, the present invention, the coating sol forming step, a coating sol comprising 40 to 50% by weight of a dispersion sol, 40 to 50% by weight of a binder, and 10 to 20% by weight of an organic solvent It is characterized by forming.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 바인더는, 광중합체로서 자외선조사에 의해 광중합을 일으키는 올리고머(Oligomer), 모너머(Monomer), 광개시제를 포함하는 것을 특징으로 한다.According to another embodiment of the present invention, the present invention is characterized in that the binder comprises an oligomer (Oligomer), a monomer (Monomer), a photoinitiator that causes photopolymerization by irradiation with ultraviolet light as a photopolymer.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 유기용제는, 메틸 에틸 케톤(Methyl Ethyl Ketone), 톨루엔(Toluene), 에틸 아세테이트(Ethyl Acetate), 이소 프로필 알콜(Iso Propyl Alcohol), 에틸 셀로솔브(Ethyl Cellosolve), 이소 부틸 알콜(Iso butyl Alcohol), 디메틸포름아미드(Dimethylformamide), 에탄올(Ethanol), 부틸셀로솔브(Butyl Cellosolve), 크실렌(Xylene), 1-옥탄올(1-Octanol), 디에틸렌 글리콜(Diethylene Glycol), 니트로벤젠(Nitrobenzene) 중 어느 하나 이상을 포함하는 것을 특징으로 한다.According to another embodiment of the present invention, the present invention, the organic solvent, methyl ethyl ketone (Methyl Ethyl Ketone), toluene (Toluene), ethyl acetate (Ethyl Acetate), isopropyl alcohol (Iso Propyl Alcohol), ethyl Ethyl Cellosolve, Iso butyl Alcohol, Dimethylformamide, Ethanol, Butyl Cellosolve, Xylene, 1-Octanol ), Diethylene glycol (Diethylene Glycol), nitrobenzene (Nitrobenzene) characterized in that it contains any one or more of.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 코팅졸도포단계는, 마이크로 그라비아(Micro Gravure) 코팅, 나이프(Knife) 코팅 및 롤투롤(Roll to Roll) 코팅 중 어느 하나를 사용하는 것을 특징으로 한다.According to another embodiment of the present invention, the present invention, the coating sol coating step, using a micro gravure (Micro Gravure) coating, knife (Knife) coating and roll to roll (Roll to Roll) coating using any one of It is characterized by.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 코팅졸도포단계는, 코팅도막의 두께를 3~4㎛로 하는 것을 특징으로 한다.According to another embodiment of the present invention, the present invention, the coating sol coating step, characterized in that the thickness of the coating film is 3 ~ 4㎛.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 열 차폐 필름 제조방법은, 상기 열차폐층형성단계 이후에 상기 열 차폐층의 일면에 점착층을 형성하는 점착층형성단계를 추가로 포함하는 것을 특징으로 한다.According to another embodiment of the present invention, the present invention, the heat shielding film manufacturing method further comprises an adhesive layer forming step of forming an adhesive layer on one surface of the heat shield layer after the heat shield layer forming step It is characterized by.
본 발명의 또 다른 실시예에 따르면, 본 발명은, 상기 열 차폐 필름 제조방법은, 상기 점착층형성단계 이후에 상기 점착층의 일면에 이형지를 부착하는 이형지부착단계를 추가로 포함하는 것을 특징으로 한다.According to another embodiment of the present invention, the present invention, the heat shielding film manufacturing method is characterized in that it further comprises a release paper attaching step of attaching a release paper to one side of the adhesive layer after the adhesive layer forming step do.
본 발명은 앞서 본 실시예와 하기에 설명할 구성과 결합, 사용관계에 의해 다음과 같은 효과를 얻을 수 있다.According to the present invention, the following effects can be obtained according to the configuration, combination, and use relationship described above with respect to the present embodiment.
본 발명은, 기재층의 일면에 형성되는 열 차폐층을 산소결핍형 천이금속산화물로 구성하여 평균입도가 100nm미만이 되도록 함으로써 헤이즈를 원척적으로 차단해, 완성된 필름에서 산란현상으로 인해 뿌옇게 보이는 문제를 방지하고, 가시광선투과율과 적외선차단율을 개선한 열 차폐 필름을 제공하는 효과를 가진다.In the present invention, the heat shielding layer formed on one surface of the base layer is composed of an oxygen-deficient transition metal oxide so that the average particle size is less than 100 nm, haze is prevented, and the finished film appears cloudy due to scattering phenomenon. It has the effect of preventing a problem and providing a heat shielding film with improved visible light transmittance and infrared blocking rate.
본 발명은, 산소결핍형 천이금속산화물은 AO(3-X) 형태의 루틸(Rutile)형 구조를 형성하도록 구성함으로써, 상대적으로 작은 1차 입경을 가지도록 함에 따라, 화합물 제조시 소성과정 중 입자크기가 증대되는 문제를 방지하는 열 차폐 필름을 제공하는 효과를 도출한다.In the present invention, the oxygen-deficient transition metal oxide is configured to form an AO (3-X) -type rutile (Rutile) -type structure, thereby having a relatively small primary particle size, particles during the firing process during compound preparation The effect of providing a heat shielding film that prevents the problem of increasing size is derived.
본 발명은, 산소결핍형 천이금속산화물을 합성조건이 간단한 액상침전법으로 제조함으로써, 입자생성 및 입자크기의 제어가 용이하여 균일한 나노크기의 입자를 얻을 수 있도록 하는 효과가 있다.According to the present invention, by preparing the oxygen-deficient transition metal oxide by a liquid phase sedimentation method with simple synthesis conditions, it is possible to easily generate particles and control particle sizes, thereby obtaining uniform nano-sized particles.
본 발명은, 합성된 천이금속산화물을 300~600℃ 범위에서 하소시켜, 수산기 및 물분자를 제거해 작은 입경을 가지는 루틸형 결정을 형성하는 효과를 가진다.The present invention has the effect of calcining the synthesized transition metal oxide in a range of 300 to 600 ° C to remove hydroxyl groups and water molecules to form rutile crystals having small particle diameters.
본 발명은, 환원소성을 통해 루틸형 결정을 형성한 천이금속산화물의 산소결핍을 유도하여 결정결함 또는 산소의 빈자리에 의한 적외선 흡수 특성을 가지도록 하고, 이러한 환원소성은 수소가스 대신 불활성 가스의 투입하에 이루어지도록 함으로써 작업상의 위험을 줄이고 간편하게 기존의 소성장비를 이용할 수 있도록 하는 효과를 도출한다.The present invention, by inducing oxygen deficiency of the transition metal oxide formed rutile-type crystals through reducing calcination to have infrared absorption characteristics due to crystal defects or vacancies of oxygen, such reducing calcination is performed by introducing an inert gas instead of hydrogen gas By making it work underneath, it reduces the risk of work and derives the effect of easily using existing firing equipment.
본 발명은, 선택적 반응성이 우선이면서 이종 반응성은 없는 유기산 금속 킬레이트 화합물(Organic Acid Metallic Chelate Compounds)을 산소결핍형 천이금속산화물 표면에 형성하거나 분산졸 내에 분포시킴으로써, 잔류 산소(O, O2) 유입에 의한 반응, 잔류 수산기(-OH)에 의한 반응, 잔류 라디칼(Radical)에 의한 반응 등을 상기 유기산 금속 킬레이트 화합물이 효과적으로 차단하도록 하여, 산소결핍형 천이금속산화물의 내열성, 내구성 등의 문제를 보완하는 효과가 있다.According to the present invention, residual oxygen (O, O 2 ) is introduced by forming organic acid metal chelate compounds on the surface of an oxygen-deficient transition metal oxide or distributing it in a dispersion sol, with selective reactivity first and no heterogeneous reactivity. The organic acid metal chelate compound effectively blocks the reaction by, residual hydroxyl (-OH) reaction, and residual radical reaction, thereby compensating for problems such as heat resistance and durability of the oxygen-deficient transition metal oxide. It has the effect.
본 발명은, 부동화 피막 역할을 하는 유기산 금속 킬레이트 화합물을 리플럭스(Reflux)법으로 제조하도록 하여 원하는 목적에 맞는 화합물을 기존 설비에서도 간단히 제조할 수 있도록 하는 효과를 가진다.The present invention has the effect of making the organic acid metal chelate compound serving as the passivation film by the reflux method so that the compound suitable for the desired purpose can be easily produced even in existing facilities.
본 발명은, 도포된 도막의 건조 및 경화를 위해 열풍건조 및 자외선조사가 이루어질 경우 120℃ 이상의 온도에 기재층이 노출됨에 따라 변형이 발생할 수 있는 문제를, 열 변형온도가 높고 치수 안정성이 우수한 폴리에틸렌 테레프탈레이트(Polyethylene Terephthalate)로 기재층을 구성해 해결하는 효과를 도출한다.The present invention, a problem that deformation may occur as the substrate layer is exposed to a temperature of 120 ° C or higher when hot air drying and ultraviolet irradiation is performed for drying and curing of the applied coating film, polyethylene having high thermal deformation temperature and excellent dimensional stability The effect of solving the problem by constructing the base layer with terephthalate is derived.
본 발명은, 분산졸 내의 산소결핍형 천이금속산화물의 함량을 20~30중량%가 되도록 구성하여, 충분한 광학적 특성이 발현되도록 하고, 분산시간을 줄여 분산제의 변형을 방지하는 효과가 있다. The present invention has an effect of preventing the deformation of the dispersant by making the content of the oxygen-deficient transition metal oxide in the dispersion sol to be 20 to 30% by weight, so that sufficient optical properties are exhibited and the dispersion time is reduced.
본 발명은, 분산졸 내 분산제의 함량은 1~10중량%가 되도록 하여, 충분한 분산졸을 얻고, 코팅된 표면을 건조시킬 때 건조되지 못한 분산제가 코팅 표면에 잔존해 코팅표면의 불량을 일으키지 않도록 하는 효과를 가진다.In the present invention, the content of the dispersant in the dispersion sol is 1 to 10% by weight, so that a sufficient dispersion sol is obtained, and when the coated surface is dried, the dispersant that is not dried remains on the coating surface and does not cause defects in the coating surface. It has the effect.
본 발명은, 분산졸 내 유기산 금속 킬레이트 화합물의 함량을 5~10중량%로 구성하여, 가시광선 투과율 및 적외선 차폐율 등의 광학적 특성을 크게 떨어뜨리지 않으면서 산소결핍형 천이금속산화물의 내열성 및 내구성을 크게 향상시키는 효과를 도출한다.The present invention, the content of the organic acid metal chelating compound in the dispersion sol is 5 to 10% by weight, heat resistance and durability of the oxygen-deficient transition metal oxide without significantly reducing optical properties such as visible light transmittance and infrared shielding rate Elicits an effect that greatly improves.
본 발명은, 볼밀법에 의해 분산졸을 형성하도록 함으로써, 응집된 분말을 용이하게 분산시키고, 분산졸 형성을 간편하게 하며, 대량생산이 가능하도록 하는 효과가 있다.The present invention has an effect of easily dispersing agglomerated powder, simplifying dispersion sol formation, and enabling mass production by forming a dispersion sol by a ball mill method.
본 발명은, 코팅졸 내 분산졸의 함량이 40~50중량%가 되도록 함으로써, 필름의 광학적 특성 및 도막 부착력을 높이고, 표면 내스크래치성을 향상시키는 효과를 가진다.The present invention has an effect of increasing the optical properties of the film and adhesion of the coating film and improving the scratch resistance of the film by making the content of the dispersion sol in the coating sol to be 40 to 50% by weight.
본 발명은, 광중합체로서 자외선조사에 의해 광중합을 일으키는 올리고머(Oligomer), 모너머(Monomer), 광개시제를 코팅졸에 포함하여, 코팅졸과 기재층의 결합력을 증진시키고, 도막 두께를 미세하게 조절할 수 있도록 하는 효과를 도출한다.The present invention includes an oligomer, a monomer, and a photoinitiator that causes photopolymerization by irradiation with ultraviolet rays as a photopolymer, to enhance the bonding strength between the coating sol and the base layer, and to finely control the coating film thickness. It produces an effect that can help.
본 발명은, 기재층에 도포된 코팅도막의 두께를 3~4㎛로 구성하여, 광학적 특성을 유지하면서 표면 내스크래치성을 높이고, 표면 크랙 발생을 막으며, 기재층과의 부착력을 향상시키는 효과가 있다.The present invention has the effect of increasing the surface scratch resistance, preventing surface cracking, and improving adhesion to the substrate layer by configuring the thickness of the coated coating film applied to the substrate layer to 3 to 4 μm while maintaining optical properties. There is.
본 발명은, 열 차폐층의 일면에 점착층을 구성하여, 필름이 건물 또는 차량 등에 용이하게 접착될 수 있도록 하는 효과를 가진다.The present invention has an effect of forming an adhesive layer on one surface of the heat shielding layer, so that the film can be easily adhered to buildings or vehicles.
본 발명은, 점착층의 일면에 이형지를 부착하여 점착층의 일면이 이형지에 의해 보호되도록 하는 효과를 도출한다.The present invention derives an effect of attaching a release paper to one surface of the adhesive layer so that one surface of the adhesive layer is protected by the release paper.
도 1은 종래의 열차단 수축필름에 관한 도면.1 is a view of a conventional thermal barrier film.
도 2는 본 발명의 일 실시예에 따른 열 차폐 필름에 관한 도면.2 is a view of a heat shielding film according to an embodiment of the present invention.
도 3은 본 발명의 다른 실시예에 따른 열 차폐 필름에 관한 도면.3 is a view of a heat shielding film according to another embodiment of the present invention.
도 4는 본 발명의 또 다른 실시예에 따른 열 차폐 필름에 관한 도면.4 is a view of a heat shielding film according to another embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 열 차폐 필름 제조방법에 관한 도면.5 is a view of a heat shielding film manufacturing method according to an embodiment of the present invention.
도 6은 도 5의 열차폐층형성단계에 관한 도면.6 is a view of the thermal barrier layer forming step of FIG. 5;
도 7은 본 발명의 다른 실시예에 따른 열 차폐 필름 제조방법에 관한 도면.7 is a view of a method of manufacturing a heat shielding film according to another embodiment of the present invention.
도 8은 본 발명의 또 다른 실시예에 따른 열 차폐 필름 제조방법에 관한 도면.8 is a view of a method for manufacturing a heat shielding film according to another embodiment of the present invention.
도 9는 시험예 1의 액상침전법으로 합성된 산소결핍형 텅스텐산화물 입자의 SEM 사진.9 is an SEM photograph of oxygen-deficient tungsten oxide particles synthesized by the liquid precipitation method of Test Example 1.
도 10은 시험예 3의 액상침전법으로 합성된 산소결핍형 코발트산화물 입자의 SEM 사진.10 is a SEM photograph of oxygen-deficient cobalt oxide particles synthesized by the liquid precipitation method of Test Example 3.
도 11은 시험예 1의 액상침전법으로 합성된 산소결핍형 텅스텐산화물의 결정을 나타내는 XRD 그래프.11 is an XRD graph showing crystals of oxygen-deficient tungsten oxide synthesized by the liquid precipitation method of Test Example 1.
이하에서는 본 발명에 따른 열 차폐 필름 및 그 제조방법의 바람직한 실시 예들을 첨부된 도면을 참고하여 상세히 설명한다. 하기에서 본 발명을 설명함에 있어 공지의 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하도록 한다. 특별한 정의가 없는 한 본 명세서의 모든 용어는 본 발명이 속하는 기술분야의 통상의 지식을 가진 기술자가 이해하는 당해 용어의 일반적 의미와 동일하고 만약 본 명세서에서 사용된 용어의 의미와 충돌하는 경우에는 본 명세서에서 사용된 정의에 따른다.Hereinafter, preferred embodiments of the heat shielding film and its manufacturing method according to the present invention will be described in detail with reference to the accompanying drawings. In the following description of the present invention, when it is determined that a detailed description of known functions or configurations may unnecessarily obscure the subject matter of the present invention, the detailed description will be omitted. Unless otherwise specified, all terms in this specification are the same as the general meaning of the term understood by a person skilled in the art to which the present invention belongs, and if there is a conflict with the meaning of the term used herein It follows the definition used in the specification.
도 2는 본 발명의 일 실시예에 따른 열 차폐 필름에 관한 도면으로, 도 2를 참고하여 설명하면, 본 발명인 열 차폐 필름(1)은, 기재층(10) 및 열차폐층(30)을 포함한다.2 is a view of a heat shielding film according to an embodiment of the present invention. Referring to FIG. 2, the present invention, the heat shielding film 1, includes a base layer 10 and a heat shield layer 30. do.
상기 기재층(10)은, 열차폐층(30)이 코팅되는 일면을 제공하는 구성으로, 후술할 열차폐층(30)을 지지한다. 상기 기재층(10)으로는 폴리에틸렌 테레프탈레이트(Polyethylene Terephthalate), 폴리카보네이트(Polycarbonate), 나일론(Nylon), 폴리프로필렌(Polypropylene) 등이 사용될 수 있다. 일반적으로 상기 기재층(10) 상에 후술할 열차단층(30)이 도포된 이후에는 도포된 도막의 건조 및 경화를 위해 열풍건조 및 자외선조사를 하게 된다. 이때 상기 기재층(10)은 120℃ 이상의 온도에 노출될 수 있는데, 일반적인 플라스틱 기재만으로는 고유의 열 변형온도에 의해 기재층(10) 자체에서 변형이 발생할 수 있다. 따라서, 상기 기재층(10)은 열 변형온도가 높고 치수 안정성이 우수한 폴리에틸렌 테레프탈레이트(Polyethylene Terephthalate, PET)로 구성함이 바람직하다.The base layer 10 is configured to provide a surface on which the heat shield layer 30 is coated, and supports the heat shield layer 30 to be described later. Polyethylene terephthalate, polycarbonate, nylon, polypropylene, and the like may be used as the base layer 10. In general, after the thermal barrier layer 30 to be described later is applied to the base layer 10, hot air drying and ultraviolet irradiation are performed to dry and cure the coated film. At this time, the base layer 10 may be exposed to a temperature of 120 ° C. or higher, and a deformation may occur in the base layer 10 itself due to an intrinsic heat deformation temperature only with a typical plastic substrate. Therefore, the base layer 10 is preferably composed of a polyethylene terephthalate (PET) having a high thermal deformation temperature and excellent dimensional stability.
상기 열차폐층(30)은, 상기 기재층(10)의 일면에 형성되어 외부의 일사열 및 내부의 복사열이 유입 또는 방출되는 것을 방지하는 구성을 말한다. 상기 열차폐층(30)은 산소결핍형 천이금속산화물을 포함한다. 상기 산소결핍형 천이금속산화물은 AO(3-X) 형태의 루틸(Rutile)형 구조를 형성하고, AO(3-X) 형태의 루틸(Rutile)형 구조에서 상기 A는 천이금속으로, Cu, Ag, Zn, Ni, W 및 Co 중 어느 하나 이상의 원소를 포함할 수 있다. AO(3-X) 형태의 루틸(Rutile)형 구조에서 상기 X는 환원소성에 따른 산소의 수를 나타낸다.The heat shield layer 30 is formed on one surface of the base layer 10 and refers to a configuration that prevents external heat radiation and internal radiation heat from entering or discharging. The heat shield layer 30 includes an oxygen-deficient transition metal oxide. The oxygen-deficient transition metal oxide forms an AO (3-X) type rutile structure, and in the AO (3-X) form a rutile type structure, A is a transition metal, Cu, Ag, Zn, Ni, W and Co may include any one or more elements. In the AO (3-X) form of the rutile (Rutile) type structure, X represents the number of oxygens depending on the reductive plasticity.
안티몬틴옥사이드(ATO), 인듐틴옥사이드(ITO), 텅스텐브론즈(Tungsten Bronze)와 같은 무기물 열 차폐 재료들은 1차 입경(Particle Size)이 100nm 이내이면 실제로 분산졸로 제조하였을 때 평균 입도분포가 100nm 이상이 되는 경우가 많다. 100nm이상의 평균 입도분포를 가지는 분산졸은 헤이즈(Haze)를 가지며 필름으로 제작되었을 때 산란현상으로 인해 뿌옇게 보이게 된다.Inorganic heat shielding materials, such as antimony oxide (ATO), indium tin oxide (ITO), and tungsten bronze, have an average particle size distribution of 100 nm or more when actually manufactured with a dispersion sol when the primary particle size is within 100 nm. This is often the case. Dispersion sols having an average particle size distribution of more than 100 nm have haze and appear hazy due to scattering when made into a film.
하지만, 상기 AO(3-X) 형태의 루틸(Rutile)형 구조는 상대적으로 작은 1차 입경을 가지는바, 화합물 제조시 소성과정 중 입자크기의 증대 문제가 없다. 따라서 상기 AO(3-X) 형태의 루틸(Rutile)형 구조는 기존의 무기물 열 차폐재료의 광학적 특성을 극대화하면서 뿌옇게 보이는 외관상의 문제를 해결한다. 실제 상기 산소결핍형 천이금속산화물의 입자크기는 20~30nm로, 입자크기 100nm 급에서 발생하는 헤이즈를 원천적으로 차단하게 된다.However, the AO (3-X) -type rutile (Rutile) -type structure has a relatively small primary particle size, and thus there is no problem of an increase in particle size during the firing process during compound preparation. Therefore, the AO (3-X) type rutile (Rutile) type structure solves the problem of appearance that is bluish while maximizing the optical properties of the existing inorganic heat shielding material. Actually, the particle size of the oxygen-deficient transition metal oxide is 20 to 30 nm, which fundamentally blocks haze generated at a particle size of 100 nm.
상기 산소결핍형 천이금속산화물은 액상침전법에 의해 합성될 수 있다. 액상침전법에 의하면, 원하는 원소의 전구체를 쉽게 용매에 용해시켜 용해된 반응물의 반대되는 산가(pH)를 일정량 투입하면 침전 및 석출이 일어나고, 이 과정 중에 온도, 용매, 적하물질, 반응시간 등의 조절에 의해 원하는 무기화합물을 합성할 수 있게 된다. 이때 반응기는 특별히 제한되지 않으며, 열원의 설비도 제한이 없어서 기존 설비를 충분히 활용할 수 있게 된다.The oxygen-deficient transition metal oxide may be synthesized by a liquid phase precipitation method. According to the liquid precipitation method, precipitation and precipitation occur when a predetermined amount of an acid value (pH) opposite to a dissolved reactant is introduced by easily dissolving a precursor of a desired element in a solvent, and during this process, temperature, solvent, loading material, reaction time, etc. The desired inorganic compound can be synthesized by regulation. At this time, the reactor is not particularly limited, and the facility of the heat source is also not limited, so that the existing facility can be sufficiently utilized.
액상침전법에 의해 합성된 산소결핍형 천이금속산화물은 수산기(-0H)가 있는 상태로 존재하고 있어, 수산기 및 물 분자를 완전히 제거하고, 루틸형 결정을 형성하기 위해 1차 하소(Calcine)를 거치게 된다. 하소란, 어떤 물질을 고온으로 가열하여 그 휘발성분의 일부 또는 전부를 제거하는 조작을 말하며, 상기 1차 하소의 온도는 300~600℃ 범위에서 유지되는 것이 바람직하다. 하소 온도가 300℃ 미만일 경우에는 수산기(-OH) 및 물 분자를 완전히 제거할 수가 없어 수산기 및 물 분자가 잔존할 수 있으며, 루틸형 결정상이 이루어질 수 없게 된다. 또한 하소 온도가 600℃를 초과할 경우에는 입자의 성장이 진행되어 나노 사이즈 입자를 얻을 수 없게 되고, 최종 제품에서 헤이즈가 발생할 수 있다. 따라서, 상기 1차 하소의 온도는 바람직하게는 300~600℃ 범위에서 유지될 수 있으며, 보다 바람직하게는 400~500℃ 범위에서 유지될 수 있다.The oxygen-deficient transition metal oxide synthesized by the liquid precipitation method exists in the presence of a hydroxyl group (-0H), so that the hydroxyl group and water molecules are completely removed, and primary calcination is performed to form rutile crystals. Will go through. Calcination refers to an operation of heating a substance to a high temperature to remove some or all of its volatile components, and the temperature of the primary calcination is preferably maintained in the range of 300 to 600 ° C. When the calcination temperature is less than 300 ° C, hydroxyl groups (-OH) and water molecules cannot be completely removed, whereby hydroxyl groups and water molecules may remain, and a rutile crystal phase cannot be formed. In addition, when the calcination temperature exceeds 600 ° C, the growth of particles proceeds, so that nano-sized particles cannot be obtained, and haze may occur in the final product. Therefore, the temperature of the primary calcination can be preferably maintained in the range of 300 to 600 ° C, and more preferably in the range of 400 to 500 ° C.
상기 산소결핍형 천이금속산화물의 결정결함은 2차 환원소성에 의해 유도될 수 있다. 환원소성(Reduction Firing)이란, 연소에서 공기가 불충분하게 공급되면 불완전 연소가 일어나 이산화탄소나 연료의 분해 생성물 속에 있는 수소가 피가열물에 환원 작용을 일으키는 소성방법을 말한다. 상기 2차 환원소성은 폭발 위험성이 있는 수소가스를 사용하지 않고, 폭발 위험성이 없는 불활성 가스(N2, Ar, Ne, CO3)를 투입하여 환원시킴으로써 금속산화물에 산소 결핍현상을 주는 것이 바람직하다. 만일 수소가스를 사용하게 되면 가스를 주입해야 하는 고가의 특수 장비가 필요하게 될 뿐만 아니라, 수소가스의 주입 조건이 맞지 않을 경우에는 약간의 산소만으로도 큰 폭발이 발생할 수 있는바, 이는 작업상의 위험을 줄이고 간편하게 기존의 소성장비를 이용할 수 있도록 하기 위해서이다. 이러한 2차 환원소성에 의해 형성된 분말은 짙은 청색을 띌 수 있다.The crystal defect of the oxygen-deficient transition metal oxide can be induced by secondary reduction calcination. Reduction firing refers to a firing method in which, when insufficient air is supplied during combustion, incomplete combustion occurs and hydrogen in the decomposition products of carbon dioxide or fuel causes a reduction effect on the heated object. It is preferable to give oxygen deficiency to the metal oxide by reducing the secondary reducing calcination by introducing an inert gas (N 2 , Ar, Ne, CO 3 ) that does not have an explosive risk, without using an explosive hydrogen gas. . If hydrogen gas is used, not only does it require expensive special equipment to inject gas, but if the hydrogen gas injection conditions are not met, a large explosion may occur with only a little oxygen. This is to reduce and to make it easy to use existing firing equipment. The powder formed by the secondary reduction firing may have a dark blue color.
상기 산소결핍형 천이금속산화물은 산소가 결핍된 결함이 있는 결정으로 내열성, 내구성 등에 문제가 있을 수 있는데, 이러한 내열성, 내구성 등의 문제는 부동화 피막에 의해 해결될 수 있다. 부동화 피막(Passivation Film)이란, 보통의 화학 반응성을 상실한 상태의 금속 산화 피막을 말한다. 구체적으로는 선택적 반응성이 우선이면서 이종 반응성은 없는 유기산 금속 킬레이트 화합물(Organic Acid Metallic Chelate Compounds)을 산소결핍형 천이금속산화물 표면에 형성하거나 분산졸 내에 분포시킴으로써, 잔류 산소(O, O2) 유입에 의한 반응, 잔류 수산기(-OH)에 의한 반응, 잔류 라디칼(Radical)에 의한 반응 등을 상기 유기산 금속 킬레이트 화합물이 효과적으로 차단하게 되어, 산소결핍형 천이금속산화물의 내열성, 내구성 등의 문제를 해결할 수 있게 된다.The oxygen-deficient transition metal oxide is a crystal having oxygen-deficient defects, which may have problems such as heat resistance and durability, and problems such as heat resistance and durability can be solved by an immobilization film. The passivation film refers to a metal oxide film in a state where normal chemical reactivity is lost. Specifically, by forming the organic acid metal chelate compounds (organic acid chelate compounds) having no selective reactivity and preferential reactivity on the surface of the oxygen-deficient transition metal oxide or distributing it in the dispersion sol, the residual oxygen (O, O 2 ) is introduced into the surface. The organic acid metal chelate compound effectively blocks the reaction by, residual hydroxyl (-OH) reaction, residual radical (Radical) reaction, and can solve problems such as heat resistance and durability of the oxygen-deficient transition metal oxide. There will be.
부동화 피막 역할을 하는 상기 유기산 금속 킬레이트 화합물은 R1-M-R2 구조를 가질 수 있다. 상기 R1, R2는 각각 유기산의 본체인 저분자형 글루탐산(Glutamic Acid) 또는 고분자형 나트륨 폴리 아스파테이트(Sodium Poly Aspartate) 중 어느 하나일 수 있으며, 상기 R1, R2는 서로 같거나 다를 수 있다. 바람직하게는 상기 M은 천이금속인 Cu, Ag, Zn, Ni, W 및 Co 중 어느 하나의 원소일 수 있다.The organic acid metal chelate compound serving as the passivation film may have an R 1 -MR 2 structure. Each of R 1 and R 2 may be any one of low molecular weight glutamic acid or high molecular weight sodium poly aspartate, which are the main body of the organic acid, and R 1 and R 2 may be the same or different from each other. have. Preferably, the M may be any one of Cu, Ag, Zn, Ni, W, and Co, which are transition metals.
상기 유기산 금속 킬레이트 화합물은 리플럭스법(Reflux Method)에 의해 제조될 수 있다. 구체적으로는 상기 Cu, Ag, Zn, Ni, W 및 Co 중 1종의 원소를 함유하는 전구체를 유기산 용매에 용해시켜 반응온도 60∼80℃에서 반응시간 4∼5시간 동안 교반(Agitation)하여 리플럭스(Reflux) 시켜 제조될 수 있다.The organic acid metal chelate compound may be prepared by a reflux method. Specifically, the precursor containing one element of Cu, Ag, Zn, Ni, W, and Co is dissolved in an organic acid solvent and stirred at a reaction temperature of 60 to 80 ° C. for agitation for 4 to 5 hours to ripple. It can be prepared by refluxing.
도 3은 본 발명의 다른 실시예에 따른 열 차폐 필름에 관한 도면으로, 이하에서는 도 3을 참고하도록 한다.3 is a view of a heat shielding film according to another embodiment of the present invention, it will be referred to below 3.
상기 점착층(50)은, 상기 열차폐층(30)의 일면에 형성되는 구성을 말한다. 상기 점착층(50)은 상기 열차폐층(30)을 포함하는 열 차폐 필름(1)을 건물 또는 차량 등에 용이하게 접착할 수 있도록 하는 구성이다. 상기 점착층(50)의 점착성은 주로 고분자 사슬의 분자량, 분자량 분포 또는 분자구조의 존재량에 의존하고, 특히 분자량에 의해 결정되므로, 아크릴계 공중합체(Acrylic Copolymer)는 중량 평균분자량이 80만~20만인 것이 바람직하다. 한편, 탄소수 1~12의 알킬기를 가지는 메타아크릴레이트 모노머는 아크릴계 공중합체에 90~99.9중량%로 포함되는 것이 바람직하다. 이는 상기 메타아크릴레이트 모노머가 아크릴계공중합체에 90중량%미만일 경우에는 초기 점착력이 저하된다는 문제가 있으며, 99.9중량%를 초과할 경우에는 응집력 저하로 인해 내구성에 문제가 발생할 수 있기 때문이다.The adhesive layer 50 refers to a configuration formed on one surface of the heat shield layer 30. The adhesive layer 50 is configured to easily adhere the heat shielding film 1 including the heat shield layer 30 to a building or a vehicle. The tackiness of the adhesive layer 50 mainly depends on the molecular chain, molecular weight distribution or the amount of molecular structure present in the polymer chain, and is determined by molecular weight in particular, so the acrylic copolymer (Acrylic Copolymer) has a weight average molecular weight of 800,000-20 It is preferable that it is ten thousand. On the other hand, it is preferable that the methacrylate monomer having an alkyl group having 1 to 12 carbon atoms is included in an acrylic copolymer at 90 to 99.9% by weight. This is because if the methacrylate monomer is less than 90% by weight of the acrylic copolymer, there is a problem that the initial adhesive strength is lowered, and when it exceeds 99.9% by weight, durability may be caused by a decrease in cohesion.
도 4는 본 발명의 또 다른 실시예에 따른 열 차폐 필름에 관한 도면으로, 이하에서는 도 4를 참고하여 설명하도록 하겠다.4 is a view of a heat shielding film according to another embodiment of the present invention, will be described below with reference to FIG. 4.
상기 이형지(70)는, 상기 점착층(50)의 일면에 형성되는 구성으로, 상기 점착층(50)의 외부 표면을 보호한다. 상기 이형지(70)는 바람직하게는 PET 기재에 실리콘 코팅 처리된 필름을 사용하게 된다. 만일 실리콘 코팅 처리가 되어 있지 않으면, 최종 제조된 열 차폐필름을 유리에 시공할 때 상기 점착층(50)으로부터 상기 이형지(70)가 분리되지 않을 수 있기 때문이다.The release paper 70 is configured to be formed on one surface of the adhesive layer 50 to protect the outer surface of the adhesive layer 50. The release paper 70 is preferably a film coated with a silicone coating on a PET substrate. This is because the release paper 70 may not be separated from the adhesive layer 50 when the final manufactured heat shielding film is applied to the glass if the silicone coating is not performed.
도 5는 본 발명의 일 실시예에 따른 열 차폐 필름 제조방법에 관한 도면으로, 이하에서는 도 5를 참고하여, 열 차폐 필름 제조방법(S1)에 대해 설명하도록 하겠다. 중복된 서술을 피하고자, 열 차폐 필름 제조방법(S1)을 설명하는 과정에서 앞서 언급한 내용은 해당 기재를 생략하거나 간략히 하겠다.5 is a view of a method for manufacturing a heat shielding film according to an embodiment of the present invention, hereinafter, a heat shielding film manufacturing method (S1) will be described with reference to FIG. 5. In order to avoid overlapping descriptions, in the process of describing the heat shielding film manufacturing method (S1), the aforementioned contents will be omitted or simplified.
본 발명인 열 차폐 필름 제조방법(S1)은, 기재층제공단계(S10)와, 열차폐층형성단계(S30)와, 점착층형성단계(S50)와, 이형지부착단계(S70)를 포함한다.The method for manufacturing a heat shield film (S1) according to the present invention includes a substrate layer providing step (S10), a heat shield layer forming step (S30), an adhesive layer forming step (S50), and a release paper attaching step (S70).
상기 기재층제공단계(S10)는, 상기 열차폐층(30)이 결합될 상기 기재층(10)을 제공하는 단계를 말한다.The base layer providing step (S10) refers to a step of providing the base layer 10 to which the heat shield layer 30 is to be combined.
상기 열차폐층형성단계(S30)는, 상기 기재층제공단계(S10) 이후에, 상기 기재층(10)의 일면에 상기 열 차폐층(30)을 형성하는 단계를 말한다. 도 6은 도 5의 열차폐층형성단계에 관한 도면으로, 도 6을 참고하면, 상기 열차폐층형성단계(S30)는, 산소결핍형천이금속산화물형성단계(S31)와, 부동화피막단계(S33)와, 코팅단계(S35)를 포함한다.The heat shield layer forming step (S30) refers to a step of forming the heat shielding layer 30 on one surface of the substrate layer 10 after the substrate layer providing step (S10). 6 is a view of the thermal barrier layer forming step of FIG. 5, referring to FIG. 6, the thermal barrier layer forming step (S30) includes an oxygen-deficient transition metal oxide forming step (S31) and a passivation coating step (S33). And, coating step (S35).
상기 산소결핍형천이금속산화물형성단계(S31)는, 산소가 결핍된 천이금속산화물을 생성하는 단계를 말한다. 이러한 상기 산소결핍형천이금속산화물형성단계(S31)는, 합성단계(S311)와, 1차하소단계(S313)와, 2차환원소성단계(S315)를 포함한다.The oxygen-deficient transition metal oxide forming step (S31) refers to a step of generating a transition metal oxide deficient in oxygen. The oxygen-deficient transition metal oxide forming step (S31) includes a synthesis step (S311), a primary calcination step (S313), and a secondary reduction firing step (S315).
상기 합성단계(S311)는, 천이금속산화물을 합성하는 단계로, 바람직하게는 액상침전법에 의해 이루어질 수 있다. 산소결핍형 천이금속산화물을 합성조건이 간단한 액상침전법으로 제조함으로써, 입자생성 및 입자크기의 제어가 용이하여 균일한 나노크기의 입자를 얻을 수 있게 된다.The synthesizing step (S311) is a step of synthesizing transition metal oxides, and may be preferably performed by a liquid phase precipitation method. By preparing the oxygen-deficient transition metal oxide by a liquid precipitation method with simple synthesis conditions, it is easy to generate particles and control particle sizes, thereby obtaining uniform nano-sized particles.
상기 1차하소단계(S313)는, 상기 합성단계(S311) 이후에, 합성된 천이금속산화물에서 수산기(-OH) 및 물 분자를 제거하고 루틸형 결정을 형성하기 위해 300~600℃ 범위에서 하소를 하는 단계를 말한다.The first calcination step (S313), after the synthesis step (S311), to remove hydroxyl groups (-OH) and water molecules from the synthesized transition metal oxide and calcined in the range of 300 ~ 600 ℃ to form rutile crystals Refers to the steps.
상기 2차환원소성단계(S315)는, 상기 1차하소단계(S313) 이후에, 천이금속산화물의 산소결핍을 위해 불활성 가스의 투입하에 환원소성을 하는 단계를 말한다. 상기 2차환원소성단계(S315)에서 사용되는 불활성 가스는 N2, Ar, Ne 및 CO3를 포함한다.The secondary reduction firing step (S315) refers to a step of reducing firing under an inert gas input for oxygen deficiency of the transition metal oxide after the primary firing step (S313). The inert gas used in the secondary reduction firing step (S315) includes N 2 , Ar, Ne and CO 3 .
상기 부동화피막단계(S33)는, 상기 산소결핍형천이금속산화물형성단계(S31) 이후에, 상기 산소결핍형 천이금속산화물에 부동화 피막을 형성하는 단계를 말한다. 이러한 상기 부동화피막단계(S33)는, 유기산금속킬레이트화합물제조단계(S331), 분산졸형성단계(S333)를 포함한다.The passivation film step (S33) refers to a step of forming a passivation film on the oxygen-deficient transition metal oxide after the oxygen-deficient transition metal oxide forming step (S31). The passivation coating step (S33) includes an organic acid metal chelate compound manufacturing step (S331) and a dispersion sol forming step (S333).
상기 유기산금속킬레이트화합물제조단계(S331)는, 유기산 금속 킬레이트 화합물을 제조하는 단계로, 상기 유기산 금속 킬레이트 화합물은 리플럭스(Reflux)법에 의해 제조될 수 있다. 구체적으로는, 천이금속 선택군중 1종의 원소를 함유하는 전구체를 유기산 용매에 용해시켜 반응온도 60∼80℃에서 반응시간 4∼5시간 동안 교반하여 리플럭스(Reflux) 시켜 제조될 수 있다. 상기 리플럭스법에 의하면 부동화 피막 역할을 하는 유기산 금속 킬레이트 화합물을 기존 설비에서도 간단히 제조할 수 있게 된다.The organic acid metal chelate compound manufacturing step (S331) is a step of preparing an organic acid metal chelate compound, and the organic acid metal chelate compound may be prepared by a reflux method. Specifically, a precursor containing one element of the transition metal selection group may be dissolved in an organic acid solvent and stirred at a reaction temperature of 60 to 80 ° C. for 4 to 5 hours to be refluxed. According to the reflux method, the organic acid metal chelate compound serving as the passivation film can be easily produced even in existing facilities.
상기 분산졸형성단계(S333)는, 상기 유기산금속킬레이트화합물제조단계(S331) 이후에 분산졸을 형성하는 단계를 말한다. 상기 분산졸은, 산소결핍형 천이금속산화물과, 분산제와, 유기산 금속 킬레이트 화합물과, 용매(유기용제)를 포함할 수 있다.The dispersion sol forming step (S333) refers to a step of forming a dispersion sol after the organic acid metal chelate compound manufacturing step (S331). The dispersion sol may include an oxygen-deficient transition metal oxide, a dispersant, an organic acid metal chelate compound, and a solvent (organic solvent).
상기 분산졸 내의 상기 산소결핍형 천이금속산화물의 함량은 20~30중량%가 됨이 바람직하다. 상기 산소결핍형 천이금속산화물의 함량이 20중량% 미만일 때에는 최종 도막 형성시 낮은 두께에서 충분한 광학적 특성을 발현하지 못하고, 상기 산소결핍형 천이금속산화물의 함량이 30중량%를 초과할 때에는 높은 고형분으로 인해 원하는 나노분산졸의 입도 크기에 도달하기 위해 상대적으로 많은 분산시간이 필요하기 때문이다. 분산 시간이 길어짐은 분산제의 변형을 일으켜 다음 공정인 코팅졸 제조에서 문제를 일으킬 수 있다. 후술할 코팅졸을 제조하기 위해서는 고분자 바인더가 포함되는데, 과도한 분산시간을 통해 제조된 분산졸과 상기 고분자 바인더가 혼합될 경우, 서로 간의 상용성이 저하되어, 층의 분리, 미세 쇼킹, 경시변화에 따른 겔화 등의 문제가 발생한다.The content of the oxygen-deficient transition metal oxide in the dispersion sol is preferably 20 to 30% by weight. When the content of the oxygen-deficient transition metal oxide is less than 20% by weight, when the final coating film is formed, sufficient optical properties cannot be expressed at a low thickness, and when the content of the oxygen-deficient transition metal oxide exceeds 30% by weight, a high solid content is obtained. This is because relatively large dispersion time is required to reach the desired particle size of the nano-dispersed sol. Prolonged dispersion time may cause deformation of the dispersant, which may cause problems in the next step, coating sol production. In order to prepare a coating sol to be described later, a polymer binder is included. When the dispersion sol prepared through excessive dispersion time and the polymer binder are mixed, compatibility with each other decreases, resulting in separation of layers, fine shock, and change over time. A problem such as gelation occurs.
상기 분산졸 내의 상기 분산제의 함량은 1~10중량%가 됨이 바람직하다. 상기 분산제가 1중량% 미만일 때에는 충분한 분산졸을 얻을 수 없으며, 상기 분산제가 10중량%를 초과할 때에는 코팅된 표면을 건조시킬 때 건조되지 못한 분산제가 코팅 표면에 잔존하게 되어 코팅표면의 불량을 야기할 수 있다.The content of the dispersant in the dispersion sol is preferably 1 to 10% by weight. When the dispersant is less than 1% by weight, a sufficient dissolving sol cannot be obtained, and when the dispersant exceeds 10% by weight, the dispersant that is not dried when drying the coated surface remains on the coating surface, causing defects in the coating surface. can do.
상기 분산졸 내의 상기 유기산 금속 킬레이트 화합물의 함량은 5~10중량%가 됨이 바람직하다. 상기 유기산 금속 킬레이트 화합물의 함량이 5중량% 미만일 때에는 부동화 피막 현상이 제대로 발현되지 못하여 산소결핍형 천이금속산화물의 내열성 및 내구성을 크게 향상시킬 수 없으며, 상기 유기산 금속 킬레이트 화합물의 함량이 10중량%를 초과할 때에는 산소결핍형 천이금속산화물의 광학 특성 중 가시광선 투과율을 떨어뜨릴 수 있어 고투과 고효율 열 차폐 필름 제조를 어렵게 한다.The content of the organic acid metal chelate compound in the dispersion sol is preferably 5 to 10% by weight. When the content of the organic acid metal chelate compound is less than 5% by weight, the passivation film phenomenon is not properly expressed, so that the heat resistance and durability of the oxygen-deficient transition metal oxide cannot be greatly improved, and the content of the organic acid metal chelate compound is 10% by weight. When exceeded, among the optical properties of the oxygen-deficient transition metal oxide, visible light transmittance may be reduced, making it difficult to manufacture a high-transmittance and high-efficiency heat shielding film.
필름은 가시광을 투과할 수 있어야 하는데, 상기 산소결핍형 천이금속산화물의 분말은 응집되어 있는 형태를 가지는바, 그 입자를 분산시키는 것이 바람직하다. 이를 위해, 상기 분산졸형성단계(S333)는 간편하고 대량생산에 용이한 볼밀(Ball Mill)법에 의해 입자를 분산시키면서 분산졸을 형성할 수 있다.The film should be able to transmit visible light, and the powder of the oxygen-deficient transition metal oxide has an agglomerated form, so it is preferable to disperse the particles. To this end, the dissolving sol forming step (S333) may form a dissolving sol while dispersing particles by a ball mill method that is simple and easy to mass-produce.
구체적으로는 응집된 상태의 산소결핍형 천이금속산화물 분말, 용매(유기용제), 분산제 등을 원통형 분산기에 투입하고, 지르코늄 비드(Zirconium Bid)는 원통형 분산기 체적의 60% 이상을 투입한 후, 상기 원통형 분산기를 일정 속도로 회전시킴으로써 이루어진다. 이때 원통형 분산기 내부의 모든 내용물은 회전을 하게 되고, 특히 상기 지르코늄 비드는 응집되어 있던 분산하고자 하는 분말에 직접 표면 충격 및 표면 전단력을 전달하여 물리적 에너지를 가함과 동시에, 표면 그라인딩(Grinding)을 유도하는바, 일정 시간이 경과하면 1차 입경보다 작은 사이즈의 나노입자로 분산되고, 최종적으로는 광학적 특성을 발현할 수 있게 된다.Specifically, the oxygen-deficient transition metal oxide powder, a solvent (organic solvent), and a dispersing agent in an agglomerated state are introduced into a cylindrical disperser, and after the zirconium beads are added 60% or more of the volume of the cylindrical disperser, the This is achieved by rotating the cylindrical disperser at a constant speed. At this time, all the contents inside the cylindrical disperser are rotated. In particular, the zirconium beads transmit physical shock and surface shear force directly to the powder to be dispersed and apply physical energy while inducing surface grinding. Bar, after a certain period of time, it is dispersed as nanoparticles of a size smaller than the primary particle size, and finally, it is possible to express optical properties.
결국, 상기 분산졸형성단계(S333)에서는, 화합물의 응집을 분리시키며, 산소결핍형 천이금속산화물의 내열성 및 내구성을 향상시키는 유기산 금속 킬레이트 화합물을 액상상태에서 같이 분포시키거나 표면에 형성시키게 된다.As a result, in the dispersion sol forming step (S333), the organic acid metal chelate compound that separates the aggregation of the compound and improves the heat resistance and durability of the oxygen-deficient transition metal oxide is distributed in the liquid state or formed on the surface.
상기 코팅단계(S35)는, 상기 부동화피막단계(S33) 이후에 상기 기재층(10)에 코팅막을 형성하는 단계를 말한다. 이러한 상기 코팅단계(S35)는, 코팅졸형성단계(S351), 코팅졸도포단계(S353), 건조경화단계(S355)를 포함한다.The coating step (S35) refers to a step of forming a coating film on the base layer 10 after the passivation film step (S33). The coating step (S35) includes a coating sol forming step (S351), a coating sol coating step (S353), and a dry curing step (S355).
상기 코팅졸형성단계(S351)는, 코팅졸을 형성하는 단계로, 상기 코팅졸은 분산졸, 바인더, 유기용제를 포함할 수 있다.The coating sol forming step (S351) is a step of forming a coating sol, and the coating sol may include a dispersion sol, a binder, and an organic solvent.
상기 코팅졸에서 상기 분산졸의 함량은 40~50중량%가 됨이 바람직하다. 상기 분산졸의 함량이 40중량% 미만일 경우 필름의 광학적 특성이 떨어지게 되고, 상기 분산졸의 함량이 50중량%를 초과할 경우 바인더의 비율이 낮아져 도막 부착력이 떨어지거나 표면 내스크래치성이 떨어질 수 있기 때문이다. 보다 바람직하게는 상기 분산졸은 40~50중량%, 상기 바인더는 40~50중량%, 상기 유기용제는 10~20중량%로 구성될 수 있다.The content of the dispersion sol in the coating sol is preferably 40 to 50% by weight. When the content of the dispersion sol is less than 40% by weight, the optical properties of the film are deteriorated, and when the content of the dispersion sol exceeds 50% by weight, the proportion of the binder is lowered, so that adhesion to the coating film may be lowered or surface scratch resistance may be deteriorated. Because. More preferably, the dispersion sol is 40 to 50% by weight, the binder is 40 to 50% by weight, and the organic solvent may be composed of 10 to 20% by weight.
상기 코팅졸에 있어서 상기 바인더는 기재인 플라스틱 필름과 결합을 용이하게 하고, 도막 두께를 조절할 수 있도록 한다. 상기 바인더는, 광중합체로서 자외선조사에 의해 광중합을 일으키는 올리고머(Oligomer), 모너머(Monomer), 광개시제로 구성될 수 있다.In the coating sol, the binder facilitates bonding with a plastic film as a base material, and allows the thickness of a coating film to be adjusted. The binder, as a photopolymer, may be composed of an oligomer, a monomer, and a photoinitiator that cause photopolymerization by irradiation with ultraviolet rays.
상기 코팅졸에 있어서 상기 유기용제는, 메틸 에틸 케톤(Methyl Ethyl Ketone), 톨루엔(Toluene), 에틸 아세테이트(Ethyl Acetate), 이소 프로필 알콜(Iso Propyl Alcohol), 에틸 셀로솔브(Ethyl Cellosolve), 이소 부틸 알콜(Iso butyl Alcohol), 디메틸포름아미드(Dimethylformamide), 에탄올(Ethanol), 부틸셀로솔브(Butyl Cellosolve), 크실렌(Xylene), 1-옥탄올(1-Octanol), 디에틸렌 글리콜(Diethylene Glycol), 니트로벤젠(Nitrobenzene) 중 어느 하나 이상을 포함할 수 있다.In the coating sol, the organic solvent is methyl ethyl ketone, toluene, ethyl acetate, isopropyl alcohol, ethyl cellosolve, isobutyl Alcohol (Iso butyl Alcohol), Dimethylformamide, Ethanol, Butyl Cellosolve, Xylene, 1-Octanol, Diethylene Glycol , Nitrobenzene (Nitrobenzene).
상기 코팅졸도포단계(S353)는, 상기 코팅졸형성단계(S351) 이후에 상기 코팅졸을 상기 기재층(10)에 도포하는 단계를 말한다. 바람직하게는 상기 코팅졸도포단계(S353)는, 마이크로 그라비아(Micro Gravure) 코팅, 나이프(Knife) 코팅 및 롤투롤(Roll to Roll) 코팅 중 어느 하나를 사용할 수 있으며, 보다 바람직하게는 대면적 코팅에 있어서 가장 평탄한 도막 표면을 나타내고 상대적으로 생산성이 높은 마이크로 그라비아 코팅을 사용할 수 있다. The coating sol coating step (S353) refers to a step of applying the coating sol to the base layer 10 after the coating sol forming step (S351). Preferably, the coating sol coating step (S353) may use any one of a micro gravure coating, a knife coating, and a roll to roll coating, and more preferably a large area coating. In view of this, it is possible to use a micro gravure coating that exhibits the flattest coating surface and has a relatively high productivity.
도포된 코팅도막의 두께는 3~4㎛로 하는 것이 바람직하다. 코팅 도막의 두께가 3㎛미만일 때에는 광학적 특성이 발현되지 못하며 표면 내스크래치성이 떨어지는 단점이 발생하고, 코팅 도막의 두께가 4㎛초과일 때에는 하드한 자외선 코팅층이 형성되어 표면에 크랙이 발생하거나 상기 기재층(10)과의 부착력이 떨어질 수 있다.It is preferable that the thickness of the coated coating film is 3 to 4 μm. When the thickness of the coated coating film is less than 3 µm, optical properties are not expressed and surface scratch resistance is deteriorated. When the thickness of the coated coating film exceeds 4 µm, a hard UV coating layer is formed and cracks are generated on the surface. The adhesive strength with the base layer 10 may be reduced.
상기 건조경화단계(S355)는, 상기 코팅졸도포단계(S353) 이후에 코팅졸이 도포된 기재층(10)을 열풍 건조 및 자외선 경화시키는 단계를 말한다.The dry curing step (S355) refers to a step of hot air drying and ultraviolet curing the base layer 10 coated with the coating sol after the coating sol coating step (S353).
상기 점착층형성단계(S50)는, 상기 열차폐층형성단계(S30) 이후에 상기 열 차폐층(30)의 일면에 점착층(50)을 형성하는 단계를 말한다. 상기 점착층(50)에 의해 열 차폐 필름(1)은 건물 또는 차량 등에 용이하게 접착될 수 있다.The adhesive layer forming step (S50) refers to a step of forming the adhesive layer 50 on one surface of the heat shield layer 30 after the heat shield layer forming step (S30). The heat shielding film 1 can be easily adhered to a building or a vehicle by the adhesive layer 50.
상기 이형지부착단계(S70)는, 상기 점착층형성단계(S50) 이후에 상기 점착층(50)의 일면에 이형지(70)를 부착하는 단계를 말한다. 상기 이형지부착단계(S70)를 통해 상기 점착층(50)의 일면은 상기 이형지(70)를 통해 보호될 수 있다.The release paper attaching step (S70) refers to a step of attaching the release paper 70 to one surface of the adhesive layer 50 after the adhesive layer forming step (S50). One surface of the adhesive layer 50 may be protected through the release paper 70 through the release paper attaching step S70.
이하에서는 열 차폐 필름을 산소결핍형 천이금속산화물로 구성할 경우 가시광선투과율과 적외선차단율이 개선된다는 점과, 산소결핍형 천이금속산화물의 내열성 및 내구성은 부동화 피막을 통해 향상된다는 점을 구체적인 시험예를 들어 설명하도록 하겠다.Hereinafter, a specific test example is that when the heat shielding film is composed of an oxygen-deficient transition metal oxide, visible light transmittance and infrared ray blocking rate are improved, and heat resistance and durability of the oxygen-deficient transition metal oxide are improved through an immobilized film. I'll explain by listening.
(1) 시편의 준비(1) Preparation of the specimen
1) 시험예 1 1) Test Example 1
- 산소결핍형 천이금속산화물의 생성-Oxygen deficiency type transition metal oxide
산소결핍형 천이금속산화물의 전구체로는 텅스텐산나트륨2수화물(Na2WO4·2H2O), 염화구리2수화물(CuCl2·2H2O), 질산은(AgNO3), 염화암모늄아연(Zn(NH4)2Cl4), 염화코발트6수화물(CoCl2·2H2O) 중에서, 흰색분말의 텅스텐산나트륨2수화물(Na2WO4·2H2O) 30중량% 와 증류수를 4구 플라스크 반응기에 투입 후, 히팅맨틀(Heating Mantle)을 이용해 80℃를 유지하며 3시간 동안 천천히 교반하여 무색투명한 액체로 완전히 해리시키고, 적하재료로서 유기산인 푸마릭산(Fumaric Acid) 50중량%를 증류수에 해리시켜, 앞서 전구체가 용해되어 있는 플라스크 반응기에 드롭핑 펀넬(Dropping Funnel)을 사용해 일정한 속도로 20분 동안 적하를 진행시키면 무색투명했던 용액은 점차적으로 노란색 점조액으로 형성된다. 일정시간 숙성 후 반응을 종료시켜 필터 및 부산물들을 세척하여 노란색 반응물 35중량%을 수득한다. Sodium tungstate dihydrate (Na 2 WO 4 · 2H 2 O), copper chloride dihydrate (CuCl 2 · 2H 2 O), silver nitrate (AgNO 3 ), ammonium zinc chloride (Zn) (NH 4 ) 2Cl 4 ), 30 wt% of sodium tungstate dihydrate (Na 2 WO 4 · 2H 2 O) as a white powder in cobalt chloride hexahydrate (CoCl 2 · 2H 2 O) and distilled water in a 4-neck flask reactor After putting in, it is completely dissociated into a colorless and transparent liquid by slowly stirring for 3 hours while maintaining 80 ° C using a heating mantle, and dissociating 50% by weight of organic acid fumaric acid as a loading material in distilled water , When the dropping was performed for 20 minutes at a constant rate using a dropping funnel in the flask reactor in which the precursor was dissolved, the colorless and transparent solution gradually formed into a yellow viscous solution. After aging for a certain period of time, the reaction was terminated to wash the filter and by-products to obtain 35% by weight of the yellow reactant.
상기와 같이 얻어진 수화물 상태의 텅스텐산화물을 얻은 후, 1차 하소를 위해 400℃의 온도로 약 1시간 동안 소성을 하였다. After obtaining the hydrate-state tungsten oxide obtained as described above, it was fired at a temperature of 400 ° C. for about 1 hour for primary calcination.
이후 얻어진 텅스텐산화물은 격자결함 및 루타일(Rutile) 결정을 형성하기 위해 전기로 내부는 질소(N2)가스로 채우고, 온도 700℃에서 2시간 동안 유지한 후 자연냉각시켜 2차 환원소성을 종료하면, 푸른색의 산소결핍형 텅스텐산화물 33중량%를 수득한다.The obtained tungsten oxide is then filled with nitrogen (N 2 ) gas inside the electric furnace to form lattice defects and rutile crystals, maintained at a temperature of 700 ° C. for 2 hours, and then naturally cooled to terminate secondary reduction firing. Then, 33% by weight of blue oxygen-deficient tungsten oxide was obtained.
- 유기산 금속 킬레이트 화합물의 생성-Generation of organic acid metal chelate compounds
유기산 금속 킬레이트 화합물의 전구체는 염화암모늄아연으로 30중량%와 에탄올(ethanol)을 Reflux 반응기에 투입하고 교반시켜 무색투명 한 액상으로 형성하고 이때 저분자 글루탐산(Glutamic Acid) 40중량%를 투입시키고 반응온도 60℃를 유지하며 4시간 동안 반응시키면 서서히 회백색의 점조액을 형성하고, 반응종료 후 필터 및 부산물 등을 세척하여 건조시켜 회백색의 분말34 중량%를 수득한다.The precursor of the organic acid metal chelate compound is 30% by weight of ammonium zinc chloride and ethanol (ethanol) is added to the Reflux reactor and stirred to form a colorless and transparent liquid. At this time, 40% by weight of low-molecular glutamic acid is added and the reaction temperature is 60. Maintaining ℃ and reacting for 4 hours, gradually forms an off-white viscous liquid, and after the reaction is completed, the filter and by-products are washed and dried to obtain 34% by weight of off-white powder.
- 분산졸 제조-Dispersion sol production
이렇게 얻어진 분말들을 분산졸 형태로 제조하기 위해 환원소성 된 텅스텐 산화물 분말 20중량%. 유기산 아연 킬레이트 5중량%, 분산제 0.5중량%와 유기용매 74.5중량%를 넣고, 0.5mm 지르코늄비드를 전체 체적에 60%를 넣어 볼밀을 행한다. 이때 분산시간은 72시간 동안 행하였으며, 얻어진 분산졸은 고형분이 25중량%이다.20% by weight of tungsten oxide powder that has been calcined to prepare the powders thus obtained in the form of a dispersion sol. 5% by weight of an organic acid zinc chelate, 0.5% by weight of a dispersant and 74.5% by weight of an organic solvent were added, and 0.5mm zirconium beads were added to 60% of the total volume to perform ball milling. At this time, the dispersion time was performed for 72 hours, and the obtained dispersion sol had a solid content of 25% by weight.
- 코팅졸 제조-Coating sol production
광중합체 바인더 50중량%에 분산졸 40중량%를 넣은 후 유기용제로 MEK 10중량%를 투입시켜 코팅졸을 완성한다. After adding 40% by weight of the dispersion sol to 50% by weight of the photopolymer binder, 10% by weight of MEK is added as an organic solvent to complete the coating sol.
- 코팅막 형성-Formation of coating film
완성된 코팅졸은 기재층인 PET 필름 위에 코팅시켜 도막 두께가 3~4㎛ 되도록 한다. The finished coating sol is coated on a PET film, which is a base layer, so that the thickness of the coating film is 3-4 µm.
- 점착층 형성 및 이형지 부착-Formation of adhesive layer and adhesion of release paper
열 차폐층이 코팅된 배면에 6~7㎛ 두께로 점착층을 형성하여 이형지와 합지하여 최종 열 차폐필름을 완성하게 된다. An adhesive layer with a thickness of 6 to 7 µm is formed on the back side coated with the heat shielding layer to be laminated with release paper to complete the final heat shielding film.
- 열 차폐 필름의 준비-Preparation of heat shielding film
상기 열 차폐 필름을 가로 145mm * 세로 145mm로 절단하여 시험예 1을 준비하였다.Test Example 1 was prepared by cutting the heat shielding film to a width of 145 mm * a length of 145 mm.
2) 시험예 2 2) Test Example 2
시험예 1에 있어서, 산소결핍형 천이금속산화물 분말 합성과정 중에서 출발원료인 텅스텐산나트륨2수화물(Na2WO4·2H2O) 대신 염화구리2수화물(CuCl2·2H2O) 30중량%를 투입하는 것 이외에는 시험예 1과 같은 조건에서 시험예 2를 준비하였다. 즉, 산소결핍형 텅스텐산화물의 조성에서 천이금속이 기존의 텅스텐에서 구리로 교체투입되었다.In Test Example 1, 30% by weight of copper chloride dihydrate (CuCl 2 · 2H 2 O) instead of sodium tungstate dihydrate (Na 2 WO 4 · 2H 2 O) as a starting material during the synthesis process of the oxygen-deficient transition metal oxide powder Test Example 2 was prepared under the same conditions as in Test Example 1 except for inputting. That is, in the composition of the oxygen-deficient tungsten oxide, the transition metal was replaced with copper from the existing tungsten.
3) 시험예 3 3) Test Example 3
시험예 1에 있어서, 산소결핍형 천이금속산화물 분말 합성과정 중에서 출발 원료로 텅스텐산나트륨2수화물(Na2WO4·2H2O) 대신 염화코발트6수화물(CoCl2·2H2O) 30중량%를 투입하는 것 이외에는 시험예 1과 같은 조건에서 시험예 3을 준비하였다. 즉, 산소결핍형 금속산화물 조성에서 천이금속이 기존의 텅스텐에서 코발트로 교체 투입되었다.In Test Example 1, 30% by weight of cobalt hexahydrate (CoCl 2 · 2H 2 O) instead of sodium tungstate dihydrate (Na 2 WO 4 · 2H 2 O) as a starting material during the synthesis process of oxygen-deficient transition metal oxide powder Test Example 3 was prepared under the same conditions as in Test Example 1 except for inputting. That is, in the oxygen-deficient metal oxide composition, the transition metal was replaced with tungsten to cobalt.
4) 시험예 4 4) Test Example 4
시험예 1에 있어서, 산소결핍형 천이금속산화물 분말 합성과정 중에서 출발 원료로 텅스텐산나트륨2수화물(Na2WO4·2H2O) 50중량%와 푸마릭산(Fumaric Acid) 60중량%를 투입하고, 유기산 금속 킬레이트 화합물 합성과정 중에서 염화암모늄아연 30중량% 대신 염화코발트6수화물 30중량% 투입하는 것 이외에는 시험예 1과 같은 조건에서 시험예 4를 준비하였다. 즉, 산소결핍형 천이금속산화물의 조성에서 천이금속원소 중 기존의 텅스텐산나트륨2수화물과 푸마릭산 비율을 다르게 하고, 유기산 금속 킬레이트가 기존의 아연에서 코발트로 교체 투입되었다.In Test Example 1, 50% by weight of sodium tungstate dihydrate (Na 2 WO 4 · 2H 2 O) and 60% by weight of fumaric acid were added as starting materials during the synthesis process of the oxygen-deficient transition metal oxide powder. , In the process of synthesizing the organic acid metal chelate compound, Test Example 4 was prepared under the same conditions as in Test Example 1, except that 30 wt% of cobalt chloride hexahydrate was used instead of 30 wt% of ammonium zinc chloride. That is, in the composition of the oxygen-deficient transition metal oxide, the ratio of the existing sodium tungstate dihydrate and fumaric acid among the transition metal elements is different, and the organic acid metal chelate is replaced with zinc to cobalt.
5) 시험예 5 5) Test Example 5
시험예 1에 있어서, 산소결핍형 천이금속산화물 분말 합성과정 중 환원소성 단계에서 질소 대신 아르곤가스를 투입하고, 유기산 금속킬레이트 분말 합성 과정 중 염화암모늄아연 30중량% 대신 염화구리2수화물 30중량% 투입하는 것 이외에는 시험예 1과 같은 조건에서 시험예 5를 준비하였다. 즉, 산소결핍형 천이금속산화물의 환원소성 단계에서 기존의 질소에서 아르곤 가스로 교체 투입되고 유기산 금속 킬레이트가 기존의 아연에서 구리로 교체 투입되었다.In Test Example 1, argon gas was added instead of nitrogen in the reduction firing step during the synthesis process of the oxygen-deficient transition metal oxide powder, and 30% by weight of copper chloride dihydrate instead of 30% by weight of ammonium zinc chloride during the synthesis of the organic acid metal chelate powder. Test Example 5 was prepared under the same conditions as in Test Example 1, except for doing so. That is, in the reduction and calcination step of the oxygen-deficient transition metal oxide, the existing nitrogen was replaced with argon gas, and the organic acid metal chelate was replaced with zinc from copper.
6) 시험예 6 6) Test Example 6
시험예 1에 있어서, 산소결핍형 텅스텐산화물 분산졸 제조과정 중 환원소성 된 분말 20중량%, 유기산 아연 킬레이트 10중량%, 분산제 1.0중량% 과 유기용매 70중량%로 최종 분산졸 고형분이 30 중량%되게 하는 것 이외에는 시험예 1과 같은 조건에서 시험예 6을 준비하였다. 즉, 유기산 아연킬레이트를 기존의 5중량%에서 10중량%로 고형분을 높게 하였다.In Test Example 1, during the process of preparing the oxygen-deficient tungsten oxide dispersion sol, 20% by weight of the reduced calcined powder, 10% by weight of organic acid chelate, 1.0% by weight of dispersant and 70% by weight of organic solvent, the final dispersion sol solid content is 30% by weight Test Example 6 was prepared under the same conditions as in Test Example 1 except for being used. That is, the solid content of the organic acid zinc chelate was increased from 5% by weight to 10% by weight.
7) 시험예 7 7) Test Example 7
시험예 1에 있어서, 산소결핍 형 텅스텐산화물 분산졸 제조과정 중 환원소성 된 분말 30중량%에 분산제 1.0중량%과 유기용매 70중량%로 최종 분산졸 고형분이 30중량%가 되게 하는 것 이외에는 시험예 1과 같은 조건에서 시험예 7을 준비하였다. 즉, 시험예 1에 있어서 분산 졸에 함유시켰던 유기산 아연 킬레이트를 제외 하였다.In Test Example 1, in the process of preparing the oxygen-deficient tungsten oxide dispersion sol, a test example was performed except that the final dispersion sol solid content was 30% by weight with 30% by weight of the dispersant and 70% by weight of the organic solvent in 30% by weight of the reduced calcined powder. Test Example 7 was prepared under the same conditions as 1. That is, the organic acid zinc chelate contained in the dispersion sol in Test Example 1 was excluded.
(2) 시험 1 - 입자크기의 관찰(2) Test 1-Observation of particle size
- 시험목적: 본 발명에 따른 산소결핍형 천이금속산화물의 입자크기를 측정-Test purpose: to measure the particle size of the oxygen-deficient transition metal oxide according to the present invention
- 시험조건: 입자관찰사진은 HITACHI(JAPAN) S-2400 SEM(Scanning Electron Microscope) 이미지이며, 15kw로 ×50k ~ ×100k배 배율로 촬영한 것이다.-Test conditions: Particle observation pictures are HITACHI (JAPAN) S-2400 SEM (Scanning Electron Microscope) images, taken at a magnification of × 50k to × 100k at 15kw.
- 결과고찰: 도 9는 시험예 1의 액상침전법으로 합성된 산소결핍형 텅스텐산화물 입자의 SEM 사진으로, 도 9를 참고하면 시험예 1은 작은 입자들이 뭉쳐져 있는 상태로 보이지만, 입자단위당 크기를 관찰한 결과 20~30nm이며, 입자모양은 균일한 둥근(Spherical) 형태를 나타내고 있음이 확인되었다. 반면에 도 10은 시험예 3의 액상침전법으로 합성된 산소결핍형 코발트산화물 입자의 SEM 사진으로, 도 10을 참고하면 시험예 3의 입자크기는 약 100~200nm이고, 입자모양은 일정하지 않았다. 즉, 천이금속 중 텅스텐 금속원소를 적용하는 것이 입자크기 및 입자모양에 있어 더 양호한 결과를 가진다는 것을 알 수 있다.-Consideration of Results: FIG. 9 is a SEM photograph of oxygen-deficient tungsten oxide particles synthesized by the liquid precipitation method of Test Example 1. Referring to FIG. 9, Test Example 1 appears to be a group of small particles, but the size per particle unit As a result of observation, it was confirmed that the particle size was 20 to 30 nm, and the particle shape exhibited a uniform spherical shape. On the other hand, FIG. 10 is a SEM photograph of oxygen-deficient cobalt oxide particles synthesized by the liquid precipitation method of Test Example 3. Referring to FIG. 10, the particle size of Test Example 3 is about 100 to 200 nm, and the particle shape is not constant. . That is, it can be seen that the application of the tungsten metal element among the transition metals has better results in particle size and particle shape.
(3) 시험 2 - XRD결정성의 관찰(3) Test 2-Observation of XRD crystallinity
- 시험목적: 본 발명에 따른 산소결핍형 텅스텐산화물의 루타일형 결정성 확인-Test Purpose: Confirmation of rutile-type crystallinity of oxygen-deficient tungsten oxide according to the present invention
- 시험조건: XRD 관찰은 PHILIPS(Netherlands), X'Pert-MPD System을 사용하여 측정하였다. -Test conditions: XRD observation was measured using PHILIPS (Netherlands), X'Pert-MPD System.
- 결과고찰: 도 11은 시험예 1의 액상침전법으로 합성된 산소결핍형 텅스텐산화물의 결정을 나타내는 XRD 그래프로, 도 11을 참고하면, XRD 값은 0.0.2면에서 2θ23.6, 0.2.0면에서 2θ28.12, 1.1.2면에서 2θ33.82, 2.0.2면에서 2θ36.91의 값으로서 산소결핍형 텅스텐산화뭄의 루타일형 결정성으로 잘 합성된 것을 확인할 수 있었다.-Consideration of Results: FIG. 11 is an XRD graph showing crystals of oxygen-deficient tungsten oxide synthesized by the liquid precipitation method of Test Example 1. Referring to FIG. 11, the XRD value is 2θ23.6, 0.2 at 0.0.2 plane. As a value of 2θ28.12 in the 0 plane, 2θ33.82 in the 1.1.2 plane, and 2θ36.91 in the 2.0.2 plane, it was confirmed that the oxygen-deficient tungsten oxide mutant was synthesized well with rutile crystallinity.
(4) 시험 3 - 광학적 특성 및 내구성 관찰(4) Test 3-Observing optical properties and durability
- 시험목적: 산소결핍형 텅스텐산화물의 제조과정에 따른 가시광선 및 적외선 투과 특성을 비교하고, 내열성 및 내구성을 관찰하여 열 차폐재로써 성능을 평가-Test purpose: Compare the visible and infrared transmission characteristics according to the manufacturing process of oxygen-deficient tungsten oxide, and observe the heat resistance and durability to evaluate the performance as a heat shield
- 시험조건: 가시광선 및 적외선 투과 관찰은 JASCO(JAPAN) 650 UV/VIS Spectrometer로 Baseline을 공기 중에 설정하여 측정하고, 내열 및 내구성 관찰은 열풍건조기(SH-DO-149FG)를 사용하여 온도 120℃에 72시간 동안 방치한 후 광학특성을 재측정하여 변화율을 나타내었다.-Test conditions: Visible light and infrared transmission observation is measured by setting the Baseline in the air with JASCO (JAPAN) 650 UV / VIS Spectrometer, and heat and durability observation is performed using a hot air dryer (SH-DO-149FG), temperature 120 ℃ After standing for 72 hours, the optical properties were measured again to show the rate of change.
- 결과고찰: 시험결과는 아래의 표 1과 같다. (가시광선 투과율은 400~780nm의 투과율을 나타낸 것이고, 적외선 차폐율은 780~2000nm 투과율에서 100을 뺀 값으로 나타내었다)-Result consideration: The test results are shown in Table 1 below. (Visible light transmittance is 400 ~ 780nm transmittance, infrared shielding rate is expressed by subtracting 100 from 780 ~ 2000nm transmittance)
구분division 시험예1Test Example 1 시험예2Test Example 2 시험예3Test Example 3 시험예4Test Example 4 시험예5Test Example 5 시험예6Test Example 6 시험예7Test Example 7
가시광선투과율%(400~780nm)Visible light transmittance% (400 ~ 780nm) 7171 6868 4848 6565 6767 6868 7575
적외선차폐율%(780~2000nm)Infrared shielding rate% (780 ~ 2000nm) 8282 2828 2525 6161 6464 7373 8686
변화율(ΔT%)Rate of change (ΔT%) 3%3% 8%8% 5%5% 7%7% 9%9% 2%2% 21%21%
표 1을 참고하여 상기 시험예 1과 상기 시험예 2를 비교하면, 시험예 1의 경우는 산소결핍형 천이금속산화물에서 천이금속으로 텅스텐이 사용되었고, 시험예 2의 경우는 천이금속으로 구리가 사용된 차이가 있다. 그 결과, 천이금속으로 텅스텐을 사용하였을 때 구리를 사용하였을 때에 비해 가시광선 투과율이 높아지고, 특히 적외선 차폐율이 크게 향상됨을 알 수 있다. 내열성 및 내구성 역시 천이금속으로 텅스텐을 사용했을 때가 천이금속으로 구리를 사용했을 때보다 우수함이 입증되었다.Referring to Table 1, when comparing Test Example 1 and Test Example 2, in Test Example 1, tungsten was used as a transition metal in an oxygen-deficient transition metal oxide, and in Test Example 2, copper was used as a transition metal. There are differences used. As a result, it can be seen that when tungsten is used as the transition metal, the visible light transmittance is increased, and the infrared shielding rate is greatly improved, compared to when copper is used. Heat resistance and durability were also proved to be superior when tungsten was used as the transition metal than when copper was used as the transition metal.
상기 시험예 1과 상기 시험예 3을 비교하면, 시험예 1의 경우는 산소결핍형 천이금속산화물에서 천이금속을 텅스텐으로 하였고, 시험예 3의 경우는 천이금속을 코발트로 구성한 차이가 있다. 그 결과, 표 1에 나타난 바와 같이, 천이금속으로 텅스텐을 사용하는 것이 코발트를 사용하는 것에 비해 광학적 특성을 개선하는 측면에서 유리함이 확인되었다. 내열성 및 내구성은 큰 차이가 없었으나, 이 경우에도 천이금속으로 텅스텐을 사용하는 것이 보다 유리하였다.When comparing Test Example 1 and Test Example 3, in the case of Test Example 1, the transition metal was made of tungsten from the oxygen-deficient transition metal oxide, and in the case of Test Example 3, the transition metal was composed of cobalt. As a result, as shown in Table 1, it was confirmed that the use of tungsten as a transition metal is advantageous in terms of improving optical properties compared to using cobalt. There was no significant difference in heat resistance and durability, but in this case, it was more advantageous to use tungsten as the transition metal.
상기 시험예 1과 상기 시험예 4를 비교해 보면, 시험예 1의 경우는 텅스텐산나트륨2수화물의 함량이 30중량%이고, 푸마릭산의 함량이 50중량%이며, 유기산 금속킬레이트를 합성하는 과정에서 아연을 사용한 반면에, 시험예 4의 경우는 텅스텐산나트륨2수화물의 함량이 50중량%이고, 푸마릭산의 함량이 60중량%이며, 유기산 금속킬레이트를 합성하는 과정에서 코발트를 사용한 차이가 있다. 그 결과 시험예 1의 경우는 시험예 4에 비해 광학특성이 우수하고, 내열성 및 내구성도 우수한 열 차폐재를 생산함이 확인되었다.When comparing the Test Example 1 and the Test Example 4, in the case of Test Example 1, the content of sodium tungstate dihydrate is 30% by weight, the content of fumaric acid is 50% by weight, and in the process of synthesizing an organic acid metal chelate While zinc was used, in the case of Test Example 4, the content of sodium tungstate dihydrate was 50% by weight, the content of fumaric acid was 60% by weight, and there was a difference using cobalt in the process of synthesizing the organic acid metal chelate. As a result, it was confirmed that in the case of Test Example 1, a heat shielding material having superior optical properties and excellent heat resistance and durability was produced compared to Test Example 4.
상기 시험예 1과 상기 시험예 5를 비교해 보면, 상기 시험예 1은 산소결핍형 천이금속산화물의 환원소성 단계에서 질소 가스를 사용하고 유기산 금속 킬레이트로 아연을 사용하였으며, 상기 시험예 5는 상기 환원소성 단계에서 아르곤 가스를 사용하고 유기산 금속 킬레이트로 구리를 사용한 차이가 있다. 그 결과 시험예 5는 시험예 1에 비해 가시광선 투과율 및 적외선 차폐율이 떨어졌으며, 내열성 및 내구성도 떨어졌다. When the test example 1 and the test example 5 are compared, the test example 1 uses nitrogen gas in the reduction and calcination step of the oxygen-deficient transition metal oxide and uses zinc as an organic acid metal chelate, and the test example 5 is the reduction. The difference is that argon gas is used in the firing step and copper is used as the organic acid metal chelate. As a result, in Test Example 5, the visible light transmittance and the infrared shielding rate were inferior to Test Example 1, and heat resistance and durability were also inferior.
상기 시험예 1과 상기 시험예 6을 비교하면, 시험예 1에서는 유기산 아연 킬레이트의 함량을 5중량%로 한 반면에, 시험예 6에서는 유기산 아연 킬레이트의 함량을 10중량%로 높인 차이가 있다. 그 결과, 유기산 금속 킬레이트의 함량이 높아지게 되면, 광학특성은 다소 떨어지는 경향을 보이나, 내열성 및 내구성은 보다 우수해 지는 것이 입증되었다.When comparing Test Example 1 and Test Example 6, in Test Example 1, the content of the organic acid zinc chelate was 5% by weight, while in Test Example 6, the content of the organic acid zinc chelate was increased to 10% by weight. As a result, when the content of the organic acid metal chelate is increased, the optical properties tend to be slightly lowered, but it has been proved that the heat resistance and durability are better.
상기 시험예 1과 상기 시험예 7을 비교하면, 시험예 1의 경우는 유기산 금속 킬레이트를 포함하고 있고, 시험예 7의 경우는 이러한 유기산 금속 킬레이트를 제외한 것으로, 유기산 금속 킬레이트를 전혀 첨가하지 않은 시험예 7에서 가장 우수한 가시광선 투과율 및 적외선 차폐율이 나타났으나, 내열성 및 내구성에서 큰 문제점이 발생하는 것이 확인되었다. 결국, 우수한 광학특성을 가지는 산소결핍형 천이금속산화물의 내열성 및 내구성을 보완하기 위해서는, 잔류 산소(O,O2) 유입에 의한 반응, 잔류 수산기(-OH)에 의한 반응, 잔류 라디칼(·)에 의한 반응 등을 차단하기 위해 유기산 금속 킬레이트의 첨가 필요하게 된다.When the test example 1 and the test example 7 are compared, in the case of test example 1, the organic acid metal chelate is included, and in the case of test example 7, the organic acid metal chelate is excluded, and the organic acid metal chelate is not added at all. In Example 7, the best visible light transmittance and infrared shielding rate were shown, but it was confirmed that a great problem occurred in heat resistance and durability. After all, in order to supplement the heat resistance and durability of the oxygen-deficient transition metal oxide having excellent optical properties, reaction by inflow of residual oxygen (O, O 2 ), reaction by residual hydroxyl group (-OH), residual radical (·) It is necessary to add an organic acid metal chelate in order to block reaction and the like.
이상의 상세한 설명은 본 발명을 예시하는 것이다. 또한, 전술한 내용은 본 발명의 바람직한 실시 형태를 나타내어 설명하는 것이며, 본 발명은 다양한 다른 조합, 변경 및 환경에서 사용할 수 있다. 즉 본 명세서에 개시된 발명의 개념의 범위, 저술한 개시 내용과 균등한 범위 및/또는 당업계의 기술 또는 지식의 범위내에서 변경 또는 수정이 가능하다. 저술한 실시예는 본 발명의 기술적 사상을 구현하기 위한 최선의 상태를 설명하는 것이며, 본 발명의 구체적인 적용 분야 및 용도에서 요구되는 다양한 변경도 가능하다. 따라서 이상의 발명의 상세한 설명은 개시된 실시 상태로 본 발명을 제한하려는 의도가 아니다. 또한 첨부된 청구범위는 다른 실시 상태도 포함하는 것으로 해석되어야 한다.The above detailed description is to illustrate the present invention. In addition, the foregoing is a description of preferred embodiments of the present invention, and the present invention can be used in various other combinations, modifications and environments. That is, it is possible to change or modify the scope of the concept of the invention disclosed herein, the scope equivalent to the disclosed contents, and / or the scope of the art or knowledge in the art. The embodiments described describe the best conditions for implementing the technical spirit of the present invention, and various changes required in specific application fields and uses of the present invention are possible. Accordingly, the detailed description of the invention is not intended to limit the invention to the disclosed embodiments. In addition, the appended claims should be construed to include other embodiments.

Claims (23)

  1. 기재층과, A base layer,
    상기 기재층의 일면에 형성된 열 차폐층을 포함하고,It includes a heat shielding layer formed on one surface of the base layer,
    상기 열 차폐층은, 산소결핍형 천이금속산화물을 포함하여, 헤이즈현상이 없으면서 가시광선투과율과 적외선차단율을 개선한, 열 차폐 필름.The heat shielding layer, including an oxygen-deficient transition metal oxide, has no haze phenomenon, and improves visible light transmittance and infrared blocking rate, a heat shielding film.
  2. 제1항에 있어서,According to claim 1,
    상기 산소결핍형 천이금속산화물은, AO(3-X) 형태의 루틸(Rutile)형 구조를 형성하는 것을 특징으로 하는, 열 차폐 필름.(작은 입자, 헤이즈 차단)The oxygen-deficient transition metal oxide, AO (3-X) characterized in that it forms a rutile (Rutile) type structure, a heat shielding film. (Small particles, haze blocking)
  3. 제2항에 있어서,According to claim 2,
    상기 A는, Cu, Ag, Zn, Ni, W 및 Co 중 어느 하나 이상의 원소를 포함하는 것을 특징으로 하는, 열 차폐 필름.The A, Cu, Ag, Zn, Ni, W, and Co, characterized in that it contains any one or more elements, heat shielding film.
  4. 제3항에 있어서,According to claim 3,
    상기 산소결핍형 천이금속산화물은, 수산기 및 물분자를 제거하고 결정을 형성하기 위해, 300∼600℃ 범위에서 하소가 이루어지는 것을 특징으로 하는, 열 차폐 필름.The oxygen-deficient transition metal oxide, to remove hydroxyl groups and water molecules and form crystals, characterized in that calcination is performed in a range of 300 to 600 ° C., a heat shielding film.
  5. 제4항에 있어서,According to claim 4,
    상기 산소결핍형 천이금속산화물은, 산소결핍을 위해, 불활성 가스의 투입하에 환원소성이 이루어지는 것을 특징으로 하는, 열 차폐 필름.The oxygen-deficient transition metal oxide, for the oxygen deficiency, characterized in that the reduction firing is performed under the inert gas input, heat shielding film.
  6. 제5항에 있어서,The method of claim 5,
    상기 불활성 가스는, N2, Ar, Ne 및 CO3를 포함하는 것을 특징으로 하는, 열 차폐 필름.The inert gas, characterized in that it comprises N 2 , Ar, Ne and CO 3 , heat shielding film.
  7. 제1항에 있어서,According to claim 1,
    상기 열 차폐층은, 부동화 피막을 추가로 포함하여, 상기 산소결핍형 천이금속산화물의 내열성 및 내구성을 향상시키는 것을 특징으로 하는, 열 차폐 필름.The heat shielding layer, further comprising a passivation film, characterized in that to improve the heat resistance and durability of the oxygen-deficient transition metal oxide, heat shielding film.
  8. 제7항에 있어서,The method of claim 7,
    상기 부동화 피막은, 유기산 금속 킬레이트 화합물을 포함하는 것을 특징으로 하는, 열 차폐 필름.The passivation film, characterized in that it comprises an organic acid metal chelate compound, heat shielding film.
  9. 제8항에 있어서,The method of claim 8,
    상기 유기산 금속 킬레이트 화합물은, R1-M-R2 구조를 가지며,The organic acid metal chelate compound has an R1-M-R2 structure,
    상기 M은, Cu, Ag, Zn, Ni, W 및 Co 중 어느 하나의 원소이고,The M is any one of Cu, Ag, Zn, Ni, W and Co,
    상기 R1 및 R2는, 저분자형 글루탐산(Glutamic Acid) 및 고분자형 나트륨 폴리 아스파테이트(Sodium Poly Aspartate) 중 어느 하나인 것을 특징으로 하는, 열 차폐 필름.The R1 and R2 are low molecular weight glutamic acid (Glutamic Acid) and high molecular weight sodium poly aspartate (Sodium Poly Aspartate), characterized in that any one of, heat shielding film.
  10. 제1항에 있어서,According to claim 1,
    상기 기재층은, 폴리에틸렌 테레프탈레이트(Polyethylene Terephthalate)인 것을 특징으로 하는, 열 차폐 필름.The base layer, characterized in that the polyethylene terephthalate (Polyethylene Terephthalate), heat shielding film.
  11. 기재층을 제공하는 기재층제공단계와, A base layer providing step of providing a base layer,
    상기 기재층제공단계 이후에 상기 기재층의 일면에 열 차폐층을 형성하는 열차폐층형성단계를 포함하고,After the step of providing the substrate layer comprises a heat shield layer forming step of forming a heat shield layer on one surface of the substrate layer,
    상기 열차폐층형성단계는, 산소가 결핍된 천이금속산화물을 생성하는 산소결핍형천이금속산화물형성단계와, 상기 산소결핍형천이금속산화물형성단계 이후에 상기 산소결핍형 천이금속산화물에 부동화 피막을 형성하는 부동화피막단계와, 상기 부동화피막단계 이후에 상기 기재층에 코팅막을 형성하는 코팅단계를 포함하는 것을 특징으로 하는, 열 차폐 필름 제조방법.In the thermal barrier layer forming step, an oxygen-deficient transition metal oxide forming step of generating an oxygen-deficient transition metal oxide is formed, and after the oxygen-deficient transition metal oxide forming step, an immobilized film is formed on the oxygen-deficient transition metal oxide. And a passivation coating step, and a coating step of forming a coating layer on the base layer after the passivation coating step.
  12. 제11항에 있어서,The method of claim 11,
    상기 산소결핍형천이금속산화물형성단계는, 액상침전법으로 천이금속산화물을 합성하는 합성단계와, 상기 합성단계 이후에 합성된 천이금속산화물에서 수산기 및 물분자를 제거하고 결정을 형성하기 위해 300∼600℃ 범위에서 하소를 하는 1차하소단계와, 상기 1차하소단계 이후에 천이금속산화물의 산소결핍을 위해 불활성 가스의 투입하에 환원소성을 하는 2차환원소성단계를 포함하는 것을 특징으로 하는, 열 차폐 필름 제조방법.The oxygen-deficient transition metal oxide forming step is a synthesis step of synthesizing transition metal oxides by a liquid phase precipitation method, and 300 to remove hydroxyl groups and water molecules from the transition metal oxides synthesized after the synthesis step and forming crystals. Characterized in that it comprises a primary calcination step for calcination in the range of 600 ℃, and a secondary reduction calcination step for reducing calcination under the inert gas for oxygen deficiency of the transition metal oxide after the first calcination step, Heat shielding film manufacturing method.
  13. 제11항에 있어서,The method of claim 11,
    상기 부동화피막단계는, 유기산 금속 킬레이트 화합물을 제조하는 유기산금속킬레이트화합물제조단계와, 상기 유기산금속킬레이트화합물제조단계 이후에 분산졸을 형성하는 분산졸형성단계를 포함하는 것을 특징으로 하는, 열 차폐 필름 제조방법.The passivation coating step, characterized in that it comprises an organic acid metal chelate compound manufacturing step for producing an organic acid metal chelate compound, and a dispersion sol forming step for forming a dispersion sol after the organic acid metal chelate compound manufacturing step, the heat shielding film Manufacturing method.
  14. 제13항에 있어서,The method of claim 13,
    상기 유기산금속킬레이트화합물제조단계는, 천이금속을 포함하는 전구체를 유기산 용매에 용해시켜, 60∼80℃에서 4∼5시간 동안 교반하여 리플럭스(Reflux) 시키는 것을 특징으로 하는, 열 차폐 필름 제조방법.The organic acid metal chelate compound manufacturing step is characterized in that the precursor containing the transition metal is dissolved in an organic acid solvent, and stirred for 4 to 5 hours at 60 to 80 ° C. to reflux. .
  15. 제13항에 있어서,The method of claim 13,
    상기 분산졸형성단계는, 산소결핍형 천이금속산화물 20~30중량%와, 분산제 1~10중량%와, 유기산 금속 킬레이트 화합물 5~10중량%를 포함하는 분산졸을 형성하는 것을 특징으로 하는, 열 차폐 필름 제조방법.The dispersing sol forming step is characterized by forming a dissolving sol comprising 20 to 30% by weight of an oxygen-deficient transition metal oxide, 1 to 10% by weight of a dispersing agent, and 5 to 10% by weight of an organic acid metal chelate compound. Heat shielding film manufacturing method.
  16. 제11항에 있어서,The method of claim 11,
    상기 코팅단계는, 코팅졸을 형성하는 코팅졸형성단계와, 상기 코팅졸형성단계 이후에 상기 코팅졸을 상기 기재층에 도포하는 코팅졸도포단계와, 상기 코팅졸도포단계 이후에 코팅졸이 도포된 기재층을 열풍 건조 및 자외선 경화시키는 건조경화단계를 포함하는 것을 특징으로 하는, 열 차폐 필름 제조방법.The coating step includes a coating sol forming step of forming a coating sol, a coating sol applying step of applying the coating sol to the substrate layer after the coating sol forming step, and a coating sol applied after the coating sol applying step. Characterized in that it comprises a drying hardening step of drying the base layer and hot air drying and UV curing, heat shielding film manufacturing method.
  17. 제16항에 있어서,The method of claim 16,
    상기 코팅졸형성단계는, 분산졸 40~50중량%와, 바인더 40~50중량%와, 유기용제 10~20중량%를 포함하는 코팅졸을 형성하는 것을 특징으로 하는, 열 차폐 필름 제조방법.The coating sol forming step, characterized in that to form a coating sol comprising 40 to 50% by weight of a dissolving sol, 40 to 50% by weight of a binder, and 10 to 20% by weight of an organic solvent.
  18. 제17항에 있어서,The method of claim 17,
    상기 바인더는, 광중합체로서 자외선조사에 의해 광중합을 일으키는 올리고머(Oligomer), 모너머(Monomer), 광개시제를 포함하는 것을 특징으로 하는, 열 차폐 필름 제조방법.The binder, as a photopolymer, characterized in that it comprises an oligomer (Oligomer), a monomer (Monomer), a photoinitiator that causes photopolymerization by irradiation with ultraviolet rays, a method for manufacturing a heat shielding film.
  19. 제17항에 있어서,The method of claim 17,
    상기 유기용제는, 메틸 에틸 케톤(Methyl Ethyl Ketone), 톨루엔(Toluene), 에틸 아세테이트(Ethyl Acetate), 이소 프로필 알콜(Iso Propyl Alcohol), 에틸 셀로솔브(Ethyl Cellosolve), 이소 부틸 알콜(Iso butyl Alcohol), 디메틸포름아미드(Dimethylformamide), 에탄올(Ethanol), 부틸셀로솔브(Butyl Cellosolve), 크실렌(Xylene), 1-옥탄올(1-Octanol), 디에틸렌 글리콜(Diethylene Glycol), 니트로벤젠(Nitrobenzene) 중 어느 하나 이상을 포함하는 것을 특징으로 하는, 열 차폐 필름 제조방법.The organic solvent is methyl ethyl ketone, toluene, ethyl acetate, isopropyl alcohol, ethyl cellosolve, iso butyl alcohol ), Dimethylformamide, Ethanol, Butyl Cellosolve, Xylene, 1-Octanol, Diethylene Glycol, Nitrobenzene ) Characterized in that it comprises any one or more of, heat shielding film manufacturing method.
  20. 제16항에 있어서,The method of claim 16,
    상기 코팅졸도포단계는, 마이크로 그라비아(Micro Gravure) 코팅, 나이프(Knife) 코팅 및 롤투롤(Roll to Roll) 코팅 중 어느 하나를 사용하는 것을 특징으로 하는, 열 차폐 필름 제조방법.The coating sol coating step, characterized in that using any one of micro gravure (Micro Gravure) coating, knife (Knife) coating and roll to roll (Roll to Roll) coating, heat shielding film manufacturing method.
  21. 제20항에 있어서,The method of claim 20,
    상기 코팅졸도포단계는, 코팅도막의 두께를 3~4㎛로 하는 것을 특징으로 하는, 열 차폐 필름 제조방법.The coating sol coating step, characterized in that the thickness of the coating film is 3 ~ 4㎛, heat shielding film manufacturing method.
  22. 제11항에 있어서,The method of claim 11,
    상기 열 차폐 필름 제조방법은, 상기 열차폐층형성단계 이후에 상기 열 차폐층의 일면에 점착층을 형성하는 점착층형성단계를 추가로 포함하는 것을 특징으로 하는, 열 차폐 필름 제조방법.The heat shielding film manufacturing method, characterized in that it further comprises an adhesive layer forming step of forming an adhesive layer on one surface of the heat shielding layer after the heat shield layer forming step.
  23. 제22항에 있어서,The method of claim 22,
    상기 열 차폐 필름 제조방법은, 상기 점착층형성단계 이후에 상기 점착층의 일면에 이형지를 부착하는 이형지부착단계를 추가로 포함하는 것을 특징으로 하는, 열 차폐 필름 제조방법.The heat shielding film manufacturing method, characterized in that it further comprises a release paper attaching step of attaching a release paper on one side of the adhesive layer after the adhesive layer forming step.
PCT/KR2019/013647 2018-10-18 2019-10-17 Heat shielding film and method for manufacturing same WO2020080844A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180124684A KR102125359B1 (en) 2018-10-18 2018-10-18 Heat Shielding Film and Manufacturing Method Thereof
KR10-2018-0124684 2018-10-18

Publications (1)

Publication Number Publication Date
WO2020080844A1 true WO2020080844A1 (en) 2020-04-23

Family

ID=70282978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/013647 WO2020080844A1 (en) 2018-10-18 2019-10-17 Heat shielding film and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR102125359B1 (en)
WO (1) WO2020080844A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113199022A (en) * 2021-04-14 2021-08-03 华南理工大学 Fluorine-doped ammonium tungsten bronze/gold nanorod composite near-infrared shielding material and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102573582B1 (en) * 2020-11-19 2023-09-01 엠에스웨이 주식회사 transparent film with enhanced durabilit
KR102343901B1 (en) * 2021-07-30 2021-12-29 황태경 Heat Shield Sheet To Prevent Scattering

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08253317A (en) * 1994-12-13 1996-10-01 Nippon Shokubai Co Ltd Zinc oxide-based fine particle, its production and use
KR20060024328A (en) * 2003-10-20 2006-03-16 스미토모 긴조쿠 고잔 가부시키가이샤 Infrared shielding material microparticle dispersion, infrared shield, process for producing infrared shielding material microparticle, and infrared shielding material microparticle
KR20070048807A (en) * 2004-08-31 2007-05-09 스미토모 긴조쿠 고잔 가부시키가이샤 Conductive particle, visible light transmissive particle dispersed conductor, method for producing same, transparent conductive thin film, method for producing same, transparent conductive article using same, and infrared shielding article
KR20100031004A (en) * 2008-09-11 2010-03-19 (주) 씨에프씨테라메이트 Insulation film contained tungsten bronze compound and method of manufacturing the same
KR20100112464A (en) * 2009-04-09 2010-10-19 주식회사 마프로 The heat shielding film having heat shieling layer which used a variable chromatic metallic peroxide binder and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101681614B1 (en) 2016-07-05 2016-12-01 호명화학공업 주식회사 Heat blocking shrinkable film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08253317A (en) * 1994-12-13 1996-10-01 Nippon Shokubai Co Ltd Zinc oxide-based fine particle, its production and use
KR20060024328A (en) * 2003-10-20 2006-03-16 스미토모 긴조쿠 고잔 가부시키가이샤 Infrared shielding material microparticle dispersion, infrared shield, process for producing infrared shielding material microparticle, and infrared shielding material microparticle
KR20070048807A (en) * 2004-08-31 2007-05-09 스미토모 긴조쿠 고잔 가부시키가이샤 Conductive particle, visible light transmissive particle dispersed conductor, method for producing same, transparent conductive thin film, method for producing same, transparent conductive article using same, and infrared shielding article
KR20100031004A (en) * 2008-09-11 2010-03-19 (주) 씨에프씨테라메이트 Insulation film contained tungsten bronze compound and method of manufacturing the same
KR20100112464A (en) * 2009-04-09 2010-10-19 주식회사 마프로 The heat shielding film having heat shieling layer which used a variable chromatic metallic peroxide binder and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113199022A (en) * 2021-04-14 2021-08-03 华南理工大学 Fluorine-doped ammonium tungsten bronze/gold nanorod composite near-infrared shielding material and preparation method thereof
CN113199022B (en) * 2021-04-14 2022-06-14 华南理工大学 Fluorine-doped ammonium tungsten bronze/gold nanorod composite near-infrared shielding material and preparation method thereof

Also Published As

Publication number Publication date
KR102125359B1 (en) 2020-06-23
KR20200043824A (en) 2020-04-28

Similar Documents

Publication Publication Date Title
WO2020080844A1 (en) Heat shielding film and method for manufacturing same
WO2020218725A1 (en) Eco-friendly heat-shielding film using non-radioactive stable isotope and manufacturing method therefor
KR100737657B1 (en) Method for preparing suspensions and powders based on indium tin oxide and the use thereof
WO2015122595A1 (en) Optical filter and imaging device comprising same
WO2013009150A9 (en) Inorganic particle scattering film having a good light-extraction performance
WO2010120087A9 (en) Data security screen and a production method for the same
WO2017200169A1 (en) Hollow aluminosilicate particles and method of manufacturing the same
WO2012008780A2 (en) Antireflective and antiglare coating composition, antireflective and antiglare film, and method for producing same
WO2017033960A1 (en) Coloring composition for decorating heating device, transfer material for decorating heating device, heating device and cooker
WO2015152559A1 (en) Low refractive composition, preparation method therefor, and transparent conductive film
WO2015034217A1 (en) Optical filter, and imaging device comprising same
WO2016006787A1 (en) Complex light annealing and sintering method for semiconductor oxide, using intense pulsed light, near infrared ray and far ultraviolet ray
EP4098620A1 (en) Electromagnetic wave absorbing particle dispersion, electromagnetic wave absorbing laminate, and electromagnetic wave absorbing transparent substrate
WO2021256633A1 (en) Eco-friendly heat-shielding composite tungsten composition and method for preparing same
WO2022270704A1 (en) Antibacterial coating composition, and method for manufacturing optical film including antibacterial nanoparticles
WO2016148518A1 (en) Optical filter and imaging device comprising same
WO2021167378A1 (en) Multilayer film and laminate comprising same
WO2017176038A1 (en) Basno3 thin film and low-temperature preparation method therefor
WO2023008961A1 (en) Shatterproof heat shield sheet
WO2013073802A1 (en) Transparent conductive film having superior thermal stability, target for transparent conductive film, and method for manufacturing transparent conductive film
JP2004231708A (en) Infrared-cutting composition, infrared-cutting powder, and coating material and molded article made therefrom
WO2019093566A1 (en) Optical laminate comprising organic/inorganic hybrid thermochromic layer having excellent adhesion using solution process and method for producing same
WO2013002595A2 (en) White film
WO2014196809A1 (en) Method for manufacturing polarizing film
WO2017025943A1 (en) Lead-free thick film resistant composition, lead-free thick film resistor, and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19874707

Country of ref document: EP

Kind code of ref document: A1