WO2019093566A1 - Optical laminate comprising organic/inorganic hybrid thermochromic layer having excellent adhesion using solution process and method for producing same - Google Patents

Optical laminate comprising organic/inorganic hybrid thermochromic layer having excellent adhesion using solution process and method for producing same Download PDF

Info

Publication number
WO2019093566A1
WO2019093566A1 PCT/KR2017/013275 KR2017013275W WO2019093566A1 WO 2019093566 A1 WO2019093566 A1 WO 2019093566A1 KR 2017013275 W KR2017013275 W KR 2017013275W WO 2019093566 A1 WO2019093566 A1 WO 2019093566A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
thermochromic layer
substrate
layer
formula
Prior art date
Application number
PCT/KR2017/013275
Other languages
French (fr)
Korean (ko)
Inventor
김대업
김광석
정하나
윤지원
손은원
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170148252A external-priority patent/KR101901605B1/en
Priority claimed from KR1020170148251A external-priority patent/KR101901604B1/en
Priority claimed from KR1020170154461A external-priority patent/KR101955207B1/en
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Publication of WO2019093566A1 publication Critical patent/WO2019093566A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides

Definitions

  • the present invention relates to an optical laminate including a thermochromic layer and a method of manufacturing the same.
  • thermochromic glass has been studied in which a thermochromic layer having a thermochromism is coated on a glass to control the inflow of energy through control of infrared transmittance.
  • Thermal discoloration is a phenomenon in which the color of an oxide or a sulphide of a certain transition metal reversibly changes at a transition temperature (or a critical temperature).
  • a transition temperature or a critical temperature
  • a thermally discolored glass in which near infrared rays and infrared rays are blocked and the room temperature is not increased.
  • the use of such heat discoloration glass in the windows of a building can provide a great energy saving effect.
  • thermochromic effect oxides or sulfides of various transition metals are available. Among them, studies on the use of vanadium dioxide (VO 2 ) having a transition temperature of 68 are mainly performed.
  • VO 2 vanadium dioxide
  • Korean Patent No. 10-1286170 discloses a technique of coating vanadium dioxide on a glass plate using a sputtering deposition method
  • Japanese Patent Application Laid-Open No. 2007-22838 discloses a technique of coating vanadium dioxide on a glass plate using a CVD process .
  • conventional methods of coating vanadium dioxide on a glass plate such as a sputtering deposition method or a CVD process, require a subsequent heat treatment step, requiring a long process time and making it difficult to produce a large-area product.
  • Japanese Patent Application Laid-Open No. 2016-188939 discloses a method of dispersing vanadium dioxide-containing fine particles in a binder resin and applying the dispersion onto a polymer substrate to form an optical functional layer.
  • the particles are difficult to uniformly disperse in the polymer resin and the sintering process is not performed, the crystallinity is decreased, the light blocking effect is not sufficient, and the light transmission characteristics are hindered by the polymer resin.
  • An object of the present invention is to provide an optical laminate which can be manufactured in a large area by a simple manufacturing process and has physical properties such as controlled visible light and infrared ray transmission characteristics.
  • W i represents the initial weight of the sample
  • W f represents the weight after heat treatment of the sample at 700 ° C. for 2 hours.
  • thermochromic layer may satisfy the following general formula 2:
  • S represents the area ratio of the voids measured by analyzing the image of the upper surface of the sample taken by the image analyzer.
  • thermochromic layer may satisfy the following general formula (3).
  • C opposite represents the content of carbon atoms measured on the surface
  • C contact represents the content of carbon atoms measured on the contact surface
  • thermochromic layer it is possible to produce a large-sized optical laminate by a simple manufacturing process, and there is no limitation on the material of the substrate on which the thermochromic layer is formed, excellent adhesion between the thermochromic layer and the substrate, An optical laminate having infrared ray transmission characteristics can be provided.
  • FIG. 1 is a graph showing a dispersion degree according to the content of a polymeric dispersant according to an embodiment of the present invention.
  • FIG. 2 is a graph showing the degree of dispersion according to the molecular weight of a polymeric dispersant according to an embodiment of the present invention.
  • FIG 3 is an electron microscope image of an optical laminate manufactured according to an embodiment of the present invention.
  • FIG 5 is an electron microscope image of an optical laminate manufactured according to another embodiment of the present invention.
  • FIG 6 is an electron microscope image of an optical laminate manufactured according to another embodiment of the present invention.
  • FIG. 7 is an electron microscope image obtained by measuring a void area ratio of an optical laminate manufactured according to an embodiment of the present invention.
  • FIG. 8 is an electron microscope image obtained by measuring a void area ratio of an optical laminate manufactured according to a comparative example of the present invention.
  • FIG. 9 is a graph showing the element content along the depth direction of the optical laminate manufactured according to an embodiment of the present invention.
  • FIG 10 is a graph showing an element content along the depth direction of an optical laminate manufactured according to a comparative example of the present invention.
  • the present invention relates to a substrate; And a thermochromic layer formed on the substrate, wherein the adhesive strength between the thermochromic layer and the substrate is 50 N / m or more, the thermochromic layer comprises vanadium oxide and an organic material, and satisfies the following general formula To the optical laminate.
  • the sample may mean an optical laminate or a thermochromic layer.
  • a material which does not cause weight reduction even when the substrate has a temperature of 700 ⁇ ⁇ for example, a glass substrate, may include both the substrate and the thermochromic layer formed on the substrate.
  • the sample may mean all or a part of the thermochromic layer.
  • the weight loss (W loss ) of the general formula (2) may mean the content of vanadium oxide particles in the thermochromic layer.
  • the heat-discoloring layer of the present invention includes a vanadium oxide particle, which is an inorganic substance, and a polymer dispersant and / or a binder, which are organic substances. When heat treatment is performed at a temperature of 700 ° C or higher, most of the organic material is decomposed and disappears, Only.
  • the thermochromic layer of the present invention includes an organic material that provides an adhesive force with a substrate and an inorganic material that exhibits a thermal discoloring effect, and the content of the organic material and the inorganic material is controlled, Can be implemented.
  • the content of the vanadium oxide particles is, for example, not less than 70%, not less than 75%, not less than 80%, not less than 85%, not less than 90%, or not less than 95% 100% or less, 99.9% or less, 99% or less, or 98% or less.
  • the present invention includes an organic substance and vanadium oxide in an amount required for producing a thin film in a solution, Since vanadium oxide is sintered and most organic substances are removed, the content of vanadium oxide contained in the thermochromic thin film layer can be greatly increased.
  • the adhesive strength between the heat-colorable layer and the substrate is 50 N / m or more, for example, 60 N / m or more, 70 N / m or more, 100 N / m or more, 120 N / m or 150 N / .
  • the upper limit value of the adhesive strength is not particularly limited, but is, for example, 250 N / m or less, or 300 N / m or less.
  • the term " adhesive strength" means that the blade is calculated by measuring the resistance value generated when the thermochromic layer and the substrate are separated from each other, and the specific conditions necessary for the measurement can be found in Experimental Examples.
  • thermochromic layer may satisfy the following general formula (2).
  • S represents the area ratio of the voids measured by analyzing an image of the upper surface of the sample taken by the image analyzer.
  • the upper surface means the surface of the substrate described above.
  • the visible light transmittance and the infrared transmittance can be controlled, and the optical characteristics, particularly visible light transmittance, can be controlled even in a film having a thickness of 40 nm to 200 nm or more.
  • the present invention is manufactured by applying a solution composition containing vanadium oxide on a substrate, sintering the vanadium dioxide through light sintering or thermal sintering, and removing most of the organic substances present in the solution composition, Can be controlled.
  • a thermochromic thin film layer is produced by using a conventional vapor phase method such as sputtering or CVD, a desired effect can not be obtained by controlling the S value.
  • the S value can be controlled in the solution through the content of the dispersant and the binder, the average diameter of the particles, the thickness of the thin film, and the specific conditions of the photolithography.
  • the S value is less than 5%, for example, less than 10%, less than 15%, less than 20%, or less than 25%, it is difficult to obtain the visible light transmittance. It is difficult to control the infrared ray blocking rate.
  • the S value can be measured by a known method using an image photographing apparatus such as an electron microscope (SEM) and an image analyzing apparatus (S / W) for analyzing it.
  • the image analyzing apparatus can use software such as Image J, which can calculate the area of the gap by classifying the contrast ratio of the photographed image by using an image photographing apparatus such as an FE-SEM, Apparatus and software are known to those skilled in the art.
  • software such as Image J, which can calculate the area of the gap by classifying the contrast ratio of the photographed image by using an image photographing apparatus such as an FE-SEM, Apparatus and software are known to those skilled in the art.
  • thermochromic layer also satisfies the following general formula (3).
  • C opposite represents the content of carbon atoms measured on the surface
  • C contact represents the content of carbon atoms measured on the contact surface
  • the content of carbon atoms increases from the surface to the contact surface
  • the surface of the light-receiving surface has a low organic matter content and can have a sufficient heat discoloring effect.
  • the content of carbon in each surface can be controlled through the content of the dispersant and the binder in the solution, the average diameter of the particles, the thickness of the thin film, and the conditions of the sintering, for example, specific conditions of the photolithography.
  • the contact surface contains an organic substance within a range necessary for providing an adhesive force with the base material, and is excellent in adhesion to a substrate.
  • the adhesive strength is 50 N / m or less, peeling may occur at the interface during long-term use, and durability may be deteriorated.
  • the present invention is applied by applying a solution composition containing vanadium oxide on a substrate, sintering the vanadium oxide through a sintering process, and removing most of the organic substances present in the solution composition, the content of carbon atoms
  • the desired adhesive strength can be obtained.
  • a heat-discoloring layer using a conventional vapor-phase method such as sputtering or CVD, or in the case of a conventional heat-discoloring layer prepared by curing a polymer after application of a vanadium oxide dispersed solution, the content of carbon atoms in each surface is controlled The desired effect can not be obtained.
  • the substrate is not particularly limited as long as it can support the thermochromic layer.
  • the average transmittance of the visible light region is preferably 80% or more, for example, 95% or more.
  • the kind of the substrate may be selected from glass, quartz or a polymer film.
  • the kind of the polymer film is not particularly limited, but a polyolefin film (for example, cycloolefin, polyethylene, polypropylene and the like), a polyester film (for example, polyethylene terephthalate, polyethylene naphthalate), polyvinyl chloride, Based film (for example, triacetyl cellulose) can be used.
  • the polymer film may, for example, be stretched in more than one axis and have an export rate of less than 3% when exposed at 120 DEG C for 1 hour. When a stretched polymer film is used, excellent mechanical strength can be obtained and shrinkage can be prevented at a high temperature.
  • the polymer film satisfying these conditions can be arbitrarily selected from among known materials.
  • the optical laminate preferably has a maximum transmittance ( Pmax ) of 40% or more, specifically 45% or more, 50% or more, 55% or more, 60% or more, 65% or more, not less than 70%, the minimum value (min OP) of the transmission rate from 2000 to 3000nm at any temperature above the critical temperature may be up to 50% or less, particularly 45% or less, 40% or 35%. If P max value of not less than 40%, and the visible light transmittance can be increased to ensure a clear field of view, when OP min value is equal to or less than 50% it is excellent in UV shielding effect.
  • the laminate may satisfy the condition of the following general formula (4).
  • BP min represents the minimum value of the transmittance at 2000 to 3000 nm at any temperature below the critical temperature
  • OP min represents the minimum value of the transmittance at 2000 to 3000 nm at any temperature above the critical temperature.
  • the temperature below the critical temperature may be, for example, 20 to 30 ⁇ ⁇ , specifically 25 ⁇ ⁇
  • the temperature above the critical temperature may be, for example, 60 to 90 ⁇ ⁇ , specifically 80 ⁇ ⁇ .
  • the ⁇ IR value (%) is 20 or more, specifically 30 or more, 40 or more or 45 or more, the effect on ultraviolet blocking / transmission is excellent.
  • the vanadium oxide particles contained in the heat-coloring layer may include rutile vanadium dioxide having an average diameter of 1 to 500 nm, or 20 to 300 nm. When the average diameter of the vanadium oxide particles is within the above range, it is possible to provide a uniform thin film and control desired optical characteristics such as visible light transmittance.
  • the thickness of the thermochromic layer is not particularly limited, but may be 0.1 to 5 ⁇ , specifically 400 to 1000 nm, or 600 to 900 nm.
  • the optical laminate may further include a protective layer for protecting the thermochromic layer.
  • the protective layer is not particularly limited, but a transparent polymer film can be used.
  • the protective layer may have a function of shielding at least a part of the light wavelength range of 700 to 1000 nm in addition to the function of protecting the thermochromic layer.
  • the near-infrared light shielding layer applicable to the present invention, reference may be made, for example, to Japanese Patent Laid-Open Publication No. 2012-131130.
  • the present invention also relates to a method for producing an optical laminate using a solution containing vanadium oxide.
  • a method for producing an optical laminate includes: applying a solution containing vanadium oxide on a substrate to form a coating layer; Removing solvent from the application layer; And sintering the vanadium oxide contained in the coating layer.
  • the solution composition containing vanadium oxide is at least one selected from the group consisting of vanadium oxide particles; menstruum; Polymer dispersant; And a binder, and the polymer dispersant has a molecular weight of 10,000 to 360,000 and a viscosity of 1 to 100 cP, specifically 5 to 40 cP.
  • the molecular weight of the polymeric dispersant usable in the present invention is 10,000 to 360,000, for example, 11,000 to 200,000, 12,000 to 100,000, or 15,000 to 70,000. When the molecular weight is within the above range, excellent dispersibility and viscosity necessary for applying the solution composition to the substrate can be secured.
  • the viscosity of the solution composition is from 1 to 100, for example from 1 to 40, from 5 to 30, from 10 to 25, or from 15 to 20.
  • the viscosity can also be adjusted to the above range to satisfy the dispersibility of the particles and the conditions of the application process.
  • the content of the polymer dispersant is, for example, 1 to 10% by weight, specifically 2 to 8% by weight and 3 to 7% by weight based on the total weight of the solution composition. It is necessary to control the content of the dispersing agent within the above range in order to control the visible light transmittance of the optical laminate and the crystallization of vanadium oxide.
  • polymer dispersant examples include amine-based polymer dispersants such as polyethyleneimine and polyvinylpyrrolidone; A hydrocarbon-based polymeric dispersant having a carboxylic acid group in a molecule such as polyacrylic acid, carboxymethylcellulose or the like; And a polymer dispersant having a polar group such as polyvinyl alcohol, styrene-maleic acid copolymer, olefin-maleic acid copolymer, or copolymer having a polyethyleneimine moiety and a polyethylene oxide moiety in one molecule .
  • amine-based polymer dispersants such as polyethyleneimine and polyvinylpyrrolidone
  • a hydrocarbon-based polymeric dispersant having a carboxylic acid group in a molecule such as polyacrylic acid, carboxymethylcellulose or the like
  • a polymer dispersant having a polar group such as polyvinyl alcohol, styrene-maleic acid copolymer,
  • the polymer dispersant may be a water-soluble polymer, specifically an amine-based polymer, particularly polyvinylpyrrolidone (PVP).
  • PVP polyvinylpyrrolidone
  • an aqueous solvent can be used. Therefore, environmental pollution can be minimized even when a large-sized optical laminate is manufactured because it is environment-friendly.
  • the kind of the binder is not particularly limited, and examples thereof include a cellulose resin, a polyvinyl chloride resin, a polyvinyl alcohol resin, a polyvinyl pyrrolidone resin, an acrylic resin, a vinyl acetate- An ester resin, an ester copolymer resin, a butyral resin, an alkyd resin, an epoxy resin, a phenol resin, a rosin ester resin, a polyester resin and a silicone resin.
  • a cellulose resin a polyvinyl chloride resin, a polyvinyl alcohol resin, a polyvinyl pyrrolidone resin, an acrylic resin, a vinyl acetate- An ester resin, an ester copolymer resin, a butyral resin, an alkyd resin, an epoxy resin, a phenol resin, a rosin ester resin, a polyester resin and a silicone resin.
  • the content of the binder is, for example, 0.1 to 3% by weight, specifically 0.2 to 2% by weight and 0.5 to 1.5% by weight based on the total weight of the solution composition. If the content of the binder is more than 3% by weight, the binder may not be completely dissolved in the solvent, and the binder may agglomerate with time. If the content is less than 0.1% by weight, the adhesive strength to the substrate may be lowered.
  • the solvent examples include, but are not limited to, water, hydrocarbon solvents, chlorinated hydrocarbon solvents, cyclic ether solvents, ketone solvents, alcohols, polyhydric alcohol solvents, acetate solvents, polyhydric alcohols Of ether-based solvents or terpene-based solvents.
  • the kind of the solvent can be selected according to the polymer binder and the dispersing agent to be used, but it is preferable to use a mixture of water and alcohol in consideration of environmental factors, dispersion characteristics and drying time. Concretely, in consideration of wettability, it is preferable to use alcohol.
  • the alcohol is not particularly limited, but an alcohol having a straight chain alkyl group having 2 to 6 carbon atoms such as ethanol, propanol, or butanol can be used. Considering the drying time, it is preferable to use ethanol having a low boiling point.
  • the weight ratio of water and alcohol may be used in a ratio of, for example, 1: 0.5 to 1.5, specifically 1: 0.7 to 1.3, and 1: 0.8 to 1.2.
  • the weight ratio of water and alcohol is controlled within the above range, the binder and the dispersant can be sufficiently dissolved and an appropriate viscosity can be maintained.
  • the vanadium oxide particles may specifically include rutile vanadium dioxide (VO 2 ) particles.
  • the content of the vanadium dioxide particles is, for example, 1 to 50% by weight, for example, 5 to 40% by weight, 10 to 35% by weight and 15 to 30% by weight based on the total weight of the solution composition.
  • the average diameter of the vanadium dioxide particles may be 1 to 1000 nm, for example, 10 to 500 nm.
  • the solution composition can be prepared by mixing vanadium dioxide particles, a polymer dispersant, and a binder in a solvent and uniformly stirring. More particularly, the method comprises mixing a polymeric dispersant with a first solvent to produce a polymeric dispersant solution; Mixing the binder with a second solvent to prepare a binder solution; And mixing the polymer dispersant solution and the binder solution to vanadium dioxide particles to prepare an ink solution, optionally and optionally further mixing the dopant.
  • Ultrasonic waves can be applied to the solution to uniformly disperse the solution prepared in each step.
  • the manufacturing method includes: applying ultrasound to a polymer dispersant solution; Applying ultrasound to the binder solution; And applying ultrasonic waves to the ink solution.
  • Conditions for applying ultrasonic waves are not particularly limited, but they can be applied for 30 minutes to 2 hours at each step.
  • the first solvent and the second solvent are not limited as long as they are capable of dissolving the dispersant and the binder, respectively.
  • water may be used as the first solvent and ethanol may be used as the second solvent.
  • the step of forming the coating layer is preferably performed by spin coating or spray coating.
  • the spin coating can be repeated at least twice at a predetermined rotational speed and for a period of time.
  • the spin coating may include a first step of coating at a first rotational speed; A second step of coating at a second rotational speed; And a third rotational speed, wherein the second rotational speed may be faster than the first and third rotational speeds. More specifically, the first and third rotational speeds are 300 to 700 rpm, and the second rotational speed is 800 to 4000 rpm.
  • the time for each step is 5 seconds to 50 seconds.
  • the step of sintering the vanadium oxide can be performed by thermal sintering or photo-sintering, but photo-sintering is preferable in consideration of advantages in the manufacturing process and adhesive strength.
  • the heat sintering can be conducted at a temperature of 300 to 700 ° C for 30 minutes to 5 hours, but is not limited thereto.
  • Light sintering can control the desired properties by controlling the type of light, the applied voltage, the pulse width, the number of pulses, the pulse interval and the sintering atmosphere.
  • the light may use white light applied from a xenon lamp, the voltage is from 1000 to 3000 V, the number of pulses is from 1 to 500, the pulse interval is from 0.1 to 10 seconds, the pulse width is from 0.1 to 10 ms, Or under an inert atmosphere such as nitrogen or argon.
  • the polymer dispersant and / or binder decompose to expose the surface of the metal oxide.
  • the interval between the metal oxide particles becomes narrower to form a cluster.
  • the amount of polymer remaining on the surface decreases, but it is lower than the voltage.
  • the adhesion strength between the thin film and the substrate increases.
  • the number of pulses is also related to the bonding strength. However, at a low voltage, for example, 1,400 V, the bonding strength increases as the number of pulses increases. At 2,000 V, the bonding strength decreases as the number of pulses increases.
  • the concentration of organic matter (carbon or nitrogen) at the contact surface formed between the thermochromic layer and the substrate increases.
  • concentration of organic matter carbon or nitrogen
  • the concentration of organic matter increases as the number of pulses increases.
  • concentration of organic matter decreases as the number of pulses increases.
  • the present invention also relates to a thermochromic optical film and a thermochromic glass utilizing the above-mentioned optical laminate.
  • thermochromic optical film of the present invention comprises a coating layer; A polymer substrate formed on the coating layer; A thermochromic layer formed on the polymer substrate and comprising vanadium oxide particles; And a protective layer formed on the thermochromic layer, wherein the adhesive strength between the thermochromic layer and the substrate is 50 N / m or more, the thermochromic layer contains vanadium oxide and an organic material, and satisfies the following general formula
  • a thermochromic optical film comprising:
  • W i represents the initial weight of the sample
  • W f represents the weight after heat treatment of the sample at 700 ° C. for 2 hours.
  • thermochromic layer may satisfy the following general formula (2).
  • S represents the area ratio of the voids measured by analyzing the image of the upper surface of the sample taken by the image analyzer.
  • thermochromic layer may further satisfy the following general formula (3).
  • C opposite represents the content of carbon atoms measured on the surface
  • C contact represents the content of carbon atoms measured on the contact surface
  • the details of the polymer substrate, the thermochromic layer and the protective layer are the same as those of the above-mentioned optical laminate, and a detailed description thereof will be omitted.
  • the coating layer can be used without limitation as long as it can adhere the optical film to another substrate, for example, glass or a transparent polymer substrate.
  • the coating layer may be an adhesive or adhesive layer comprising a tackifier or adhesive.
  • the optical film may further include a liner film for protecting the coating layer.
  • the use of the optical film of the present invention can be exemplified by a coating film adhered to glass, and the glass adhered to such a film can be used for automobiles, railway vehicles, aircraft, ships and buildings. Glass bonded with a film can be used in addition to these applications. It is preferable that the glass laminated with the film is used for a building or a vehicle. The glass laminated with the film can be used for windshield glass, side glass, rear glass or roof glass of an automobile.
  • the present invention also relates to a composition
  • a composition comprising: glass; A coating layer formed on the glass phase; A polymer substrate formed on the coating layer; A thermochromic layer formed on the polymer substrate and comprising vanadium oxide particles; And a protective layer formed on the thermochromic layer, wherein the adhesive strength between the thermochromic layer and the substrate is 50 N / m or more,
  • thermochromic layer comprises vanadium oxide and an organic material and satisfies the following general formula 1:
  • W i represents the initial weight of the sample
  • W f represents the weight after heat treatment of the sample at 700 ° C. for 2 hours.
  • thermochromic layer may satisfy the following general formula (2).
  • S represents the area ratio of the voids measured by analyzing an image of the upper surface of the sample taken by the image analyzer.
  • thermochromic layer may further satisfy the following general formula (3).
  • C opposite represents the content of carbon atoms measured on the surface
  • C contact represents the content of carbon atoms measured on the contact surface
  • the glass member examples include inorganic glass and organic glass (resin glazing).
  • the inorganic glass examples include float plate glass, heat ray absorbing plate glass, abrasive plate glass, template glass, and colored glass such as green glass.
  • the organic glass is synthetic resin glass substituted for inorganic glass.
  • the organic glass (resin glazing) examples include a polycarbonate plate and a poly (meth) acrylic resin plate.
  • the poly (meth) acrylic resin plate examples include a polymethyl (meth) acrylate plate and the like.
  • a first solution was prepared by mixing PVP (weight molecular weight: 40,000) in 15 ml of water to 5% by weight based on the total amount of the ink solution. Ethanol was mixed with 19.1 ml of cellulose so as to be 1% by weight based on the total amount of the ink solution to prepare a second solution. Ultrasonic waves were applied to each of the prepared solutions for 1 hour. In a nitrogen atmosphere, VO 2 particles were prepared so as to be 25 wt% based on the total amount of the ink solution. The first solution and the second solution were mixed and then mixed and sonicated for 1 hour to prepare a coating ink solution.
  • PVP weight molecular weight: 40,000
  • a coating ink solution was prepared in the same manner as in Preparation Example 1 except that 3% by weight of PVP was used.
  • a coating ink solution was prepared in the same manner as in Preparation Example 1 except that 6% by weight of PVP was used.
  • a coating ink solution was prepared in the same manner as in Preparation Example 1 except that 5% by weight of PVP (Mw: 10,000) was used.
  • the TSI values of the ink solutions prepared in Comparative Production Example 1 and Production Examples 1 to 5 were measured using a dispersion degree measuring apparatus [TURBISCAN] (sample volume 30 ml, holding time 5 hours, once every 5 minutes, temperature 25 ° C. The results are shown in FIGS. 1 and 2.
  • 1 is a graph showing the degree of dispersion according to the PVP content.
  • Production Examples 1 to 3 using 3 to 6 wt% of PVP than the comparative preparation example (PVP 0 wt%) in which the polymeric dispersant PVP was not used showed better dispersion.
  • Production Example 1 using 5 wt% of PVP showed the most excellent dispersion.
  • 2 is a graph showing the degree of dispersion according to molecular weight of PVP. It was found that Production Example 1 having a molecular weight of 40,000 of PVP showed better dispersion than Production Examples 4 and 5 having 10,000 and 360,000.
  • a coating ink solution was prepared in the same manner as in Preparation Example 1 except that 7.5 ml of water and 28.5 ml of ethanol were used.
  • a coating ink solution was prepared in the same manner as in Preparation Example 1, except that 22.5 ml of water and 9.5 ml of ethanol were used.
  • Production Example 7 in which the weight ratio of water to ethanol was 3: 1, cellulose as a binder was not completely dissolved. Considering the solubility of cellulose and the like, Production Example 1 was judged to be most appropriate.
  • a first solution was prepared by mixing PVP (weight molecular weight: 40,000) in 15 ml of water to 5% by weight based on the total amount of the ink solution. Ethanol was mixed with 19.1 ml of cellulose so as to be 1% by weight based on the total amount of the ink solution to prepare a second solution. Ultrasonic waves were applied to each of the prepared solutions for 1 hour. In a nitrogen atmosphere, VO 2 particles were prepared so as to be 10 wt% based on the total amount of the ink solution. The first solution and the second solution were mixed, and mixed and sonicated for 1 hour to prepare a coating ink solution. 0.2 ml of the prepared coating solution was coated on a glass substrate through a spin coating apparatus (ACE-200).
  • ACE-200 spin coating apparatus
  • the glass surface was surface-treated through an atmospheric pressure plasma apparatus (IDP-1000) under an oxygen atmosphere.
  • the spin coating was carried out by varying the number of revolutions.
  • the ink was dispersed by spinning at 500 rpm for 30 seconds, and the second surface was rotated at 3000 rpm for 30 seconds to remove the residual ink, and the surface was stabilized by rotating the surface at 400 rpm for 30 seconds.
  • the optical sintering apparatus was used to photo-sinter the vanadium dioxide to prepare an optical laminate having a thermochromic layer.
  • the light sintering was performed using a white light applied from a xenon lamp.
  • the applied voltage was 2000 V
  • the number of pulses was 50
  • the pulse width was 4 ms
  • the sintering atmosphere was atmospheric.
  • An optical laminate was prepared in the same manner as in Example 1 except that 30 wt% of VO 2 particles were used.
  • An optical laminate was prepared in the same manner as in Example 2 except that 50 wt% of VO 2 particles were used.
  • thermochromic layer of the optical laminate produced in Examples 1 to 3 Images obtained by electron microscopy of the thermochromic layer of the optical laminate produced in Examples 1 to 3 are shown in Figs. 3 to 5, respectively. 3 through 5, if the VO 2 content is too low, the bonding between powders may be insufficient during sintering, and if the VO 2 content is too high, the transmittance of visible light may decrease.
  • 0.2 ml of the coating solution prepared in Production Example 1 was applied onto a glass substrate through a spin coating apparatus (ACE-200). Before the application, the glass surface was surface-treated through an atmospheric pressure plasma apparatus (IDP-1000) under an oxygen atmosphere. The spin coating was carried out by varying the number of revolutions. First, the ink was dispersed by spinning at 500 rpm for 30 seconds, and the second surface was rotated at 3000 rpm for 30 seconds to remove the residual ink, and the surface was stabilized by rotating the surface at 400 rpm for 30 seconds. After coating, the solvent was removed by drying at room temperature for 24 hours.
  • ACE-200 spin coating apparatus
  • IDP-1000 atmospheric pressure plasma apparatus
  • thermochromic layer The glass with the coating layer formed thereon was inserted into a tubular furnace and heated at 500 DEG C for 1 hour under a nitrogen atmosphere to sinter the vanadium dioxide in the coating layer to prepare an optical laminate having a thermochromic layer.
  • the thickness of the thermochromic layer produced was about 490 nm.
  • thermochromic layer An optical laminate having a thermochromic layer was prepared in the same manner as in Example 4, except that the glass on which the coating layer was formed was heated at 600 ° C for 1 hour to sinter the vanadium dioxide.
  • the thickness of the thermochromic layer produced was about 470 nm.
  • thermochromic layer An optical laminate having a thermochromic layer was prepared in the same manner as in Example 4, except that the glass on which the coating layer was formed was heated at 500 ⁇ for 2 hours to sinter the vanadium dioxide.
  • the thickness of the thermochromic layer produced was about 460 nm.
  • thermochromic layer An optical laminate having a thermochromic layer was prepared in the same manner as in Example 4, except that the glass on which the coating layer was formed was heated at 500 ⁇ for 3 hours to sinter the vanadium dioxide.
  • the thickness of the thermochromic layer produced was about 410 nm.
  • thermochromic layer An optical laminate having a thermochromic layer was prepared in the same manner as in Example 4, except that the glass on which the coating layer was formed was heated at 500 ° C for 4 hours to sinter the vanadium dioxide.
  • the thickness of the thermochromic layer produced was about 350 nm.
  • thermochromic layer An optical laminate having a thermochromic layer was prepared in the same manner as in Example 4, except that vanadium dioxide was photo-sintered using a light sintering apparatus.
  • the light sintering was performed using a white light applied from a xenon lamp.
  • the applied voltage was 2000 V
  • the number of pulses was 50
  • the pulse width was 4 ms
  • the sintering atmosphere was atmospheric.
  • the thickness of the thermochromic layer produced was about 1.9 mu m.
  • thermochromic layer An optical laminate having a thermochromic layer was prepared in the same manner as in Example 10, except that the number of pulses was changed to 100.
  • the thickness of the thermochromic layer produced was about 1.5 ⁇ .
  • thermochromic layer An optical laminate having a thermochromic layer was prepared in the same manner as in Example 10, except that the number of pulses was changed to 150.
  • the thickness of the thermochromic layer was about 800 nm.
  • thermochromic layer An optical laminate having a thermochromic layer was prepared in the same manner as in Example 10, except that the number of pulses was changed to 200.
  • the thickness of the thermochromic layer was about 800 nm.
  • thermochromic layer 0.2 ml of the coating solution prepared in Preparation Example 1 was applied onto a PET substrate through a spin coating apparatus (ACE-200).
  • the spin coating was carried out by varying the number of revolutions.
  • the ink was dispersed by spinning at 500 rpm for 30 seconds, and the second surface was rotated at 3000 rpm for 30 seconds to remove the residual ink, and the surface was stabilized by rotating the surface at 400 rpm for 30 seconds.
  • the solvent was removed by drying at room temperature for 24 hours.
  • the optical sintering was carried out under the same conditions as in Example 9 to prepare an optical laminate having a thermochromic layer. It was confirmed that the thermochromic layer was formed without changing the physical properties of the polymer base material, which is shown in Fig.
  • a vanadium dioxide layer with a thickness of 500 nm was formed on the glass at 500 DEG C using a sputtering apparatus.
  • thermochromic layer The adhesive force of the thermochromic layer was measured at a speed of 400 nm / sec using a 6N load cell and a 0.3 mm wide tip using SAICAS (NN-EX, Japan) Respectively. Specifically, a thermochromic layer sintered in 10 X 10 mm glass was used as a sample. When a blade (rake angle 20 °, clearance angle 10 °) is slanted from the surface of the heat discoloration layer to the contact surface and then touches the interface of the substrate at the contact surface, And the thermochromic layer-substrate was separated. The resistance value generated at this time was converted into N / m to calculate the adhesive strength value. The measurement area was the same and the mean value and deviation were calculated based on at least three measurements.
  • thermochromic layer formed through the heat treatment or photo-sintering by forming the coating layer through the solution process had an excellent adhesive strength even at a thinner thickness than the thermochromic layer formed through the vapor phase process.
  • the porosity of the images obtained from the FE-SEM was calculated using the Image J program. Images taken at 5,000 magnification are shown in FIGS. 7 and 8. FIG. The void area ratio of Example 10 was measured to be 29.66%, and the void area ratio of Example 11 was measured to be 38.35%.
  • thermochromic layer formed by forming a coating layer through a solution process and photo-sintering can control the porosity, and the thickness of the layer formed by the gas phase process such as sputtering It was confirmed that the visible light transmittance can be controlled even if the thickness is thick.
  • the weight of the optical laminate prepared in Examples 11 and 12 was measured, W i of the general formula 2 was measured, the sample was heat-treated at 700 for 2 hours, and the weight was measured to determine W f .
  • the weight reduction rate was calculated accordingly.
  • the weight reduction rates of Examples 11 and 12 were calculated as 79.71% and 86.86%, respectively. This means that the contents of vanadium dioxide particles, which are inorganic substances in the thermochromic layers of Examples 11 and 12, are about 79.71% and 86.86%, respectively.
  • the transmittance of the optical laminate prepared in Example 11 was measured with a UV-VIS light amount measuring system (scan rate 1 nm / sec) and the results are shown in Table 2.
  • the organic layer concentration in the direction of depth of the optical laminate prepared in Examples 4 and 6 was measured using XPS equipped with an AES apparatus. The results are shown in FIGS. 9 and 10, respectively. Specifically, the substrate on which the thermochromic layer was formed was sampled at a size of 5 ⁇ 5 mm, and the Ar gas was collided from the surface to the depth direction to etch the thin film, and the concentration change of the detected elements was analyzed. Using a beam power of 4 keV, a total of 180 times was measured once every 50 seconds under an etch rate of about 0.39 nm / sec, an etch area of 4 X 2 mm, and a detecting area of 400 ⁇ m.
  • the coating layer is formed through a solution process, and the thermochromic layer formed through photo-sintering has a higher carbon content from the surface to the contact surface, so that the organic concentration of the contact surface is higher than the organic concentration of the surface.
  • the organic concentration on the surface and the contact surface is not greatly different in Example 6 which is heat-sintered.
  • thermochromic layer it is possible to produce a large-sized optical laminate by a simple manufacturing process, and there is no limitation on the material of the substrate on which the thermochromic layer is formed, excellent adhesion between the thermochromic layer and the substrate, An optical laminate having infrared ray transmission characteristics can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention relates to an optical laminate comprising: a substrate; and a thermochromic layer formed on the substrate and including vanadium oxide particles, wherein the thermochromic layer is controlled to have a specific pore area ratio, and including an organic material that provides adhesion with the substrate and an inorganic material that realizes a thermochromic effect, wherein the content of the organic material and the inorganic material may be controlled to realize the adhesion and the thermochromic effect of the thermochromic layer, simultaneously.

Description

용액 공정을 이용하여 우수한 접착력을 가지는 유무기 하이브리드 열변색층을 포함하는 광학 적층체 및 이의 제조방법An optical laminate comprising an organic / inorganic hybrid thermochromic layer having excellent adhesion using a solution process and a method for producing the same
본 발명은 열변색층을 포함하는 광학 적층체 및 이의 제조방법에 관한 것이다.The present invention relates to an optical laminate including a thermochromic layer and a method of manufacturing the same.
종래의 석탄, 석유 또는 원자력 에너지원의 단점이 부각되면서 최근 새로운 대체 에너지원 개발의 필요성이 커지고 있다. 하지만 이에 못지 않게 에너지 소비를 조절하는 것도 중요하다. 실제로 일반 가정의 에너지 소비량 중 60% 이상은 냉·난방비로 사용된다. 특히 일반 주택 및 건물에서 창문을 통해 소비되는 에너지는 24%에 이른다. 따라서 창문을 통해 소비되는 에너지를 줄이기 위하여, 창문의 크기를 조절하는 방법에서부터 고단열 창유리를 설치하는 방법까지 다양한 노력이 이루어지고 있다. As the disadvantages of conventional coal, petroleum or nuclear energy sources are highlighted, there is a growing need to develop new alternative energy sources. But it is equally important to control energy consumption. In fact, more than 60% of household energy consumption is used for heating and cooling. In particular, 24% of the energy consumed by windows in general houses and buildings is consumed. Therefore, in order to reduce the energy consumed through the windows, various efforts have been made from the method of adjusting the window size to the method of installing the high insulating windowpane.
예를 들어, 열변색성(thermochromism)을 가지는 열변색층을 유리에 코팅하여 적외선 투과율 제어를 통한 에너지 유입을 조절하는 열변색 유리(thermochromic glass)가 연구되고 있다.For example, thermochromic glass has been studied in which a thermochromic layer having a thermochromism is coated on a glass to control the inflow of energy through control of infrared transmittance.
열변색성은 어떤 천이 금속(transition metal)의 산화물 또는 황화물의 색이 천이온도(또는 임계온도)에서 가역적으로 변하는 현상으로서, 이러한 열변색성 재료를 유리에 코팅하면 특정 온도 이상에서는 가시광선은 들어오지만 근적외선 및 적외선이 차단되어 실내온도가 상승하지 않게 되는 열변색 유리를 제조할 수 있다. 이 특성을 이용함으로써, 여름 철의 고온에서는 근적외광을 차폐해 실내의 온도 상승을 억제하고, 겨울철의 저온에서는 외부로부터의 빛 에너지를 가져올 수 있게 된다. 이러한 열변색 유리를 건물의 창호에 사용하면 큰 에너지 절약 효과를 기대할 수 있다. Thermal discoloration is a phenomenon in which the color of an oxide or a sulphide of a certain transition metal reversibly changes at a transition temperature (or a critical temperature). When such a heat-discoloring material is coated on a glass, visible light appears at a specific temperature or higher It is possible to produce a thermally discolored glass in which near infrared rays and infrared rays are blocked and the room temperature is not increased. By using this characteristic, it is possible to shield the near-infrared light at the high temperature of the summer iron to suppress the temperature rise in the room, and to bring out the light energy from the outside at the low temperature in winter. The use of such heat discoloration glass in the windows of a building can provide a great energy saving effect.
열변색성 효과를 나타내는 재료로는 다양한 천이 금속의 산화물 또는 황화물이 있는데, 그 중에 서도 천이온도가 68인 이산화바나듐(VO2)의 사용에 대한 연구가 주로 이루어지고 있다.As a material exhibiting a thermochromic effect, oxides or sulfides of various transition metals are available. Among them, studies on the use of vanadium dioxide (VO 2 ) having a transition temperature of 68 are mainly performed.
대한민국 등록특허 제10-1286170호에는 스퍼터링 증착법을 이용하여 유리판에 이산화바나듐을 코팅하는 기술이 기재되어 있으며, 일본 공개특허 특개 2007-22838에는 CVD 공정을 이용하여 유리판에 이산화바나듐을 코팅하는 기술이 기재되어 있다. 그러나 스퍼터링 증착법이나 CVD 공정 등 유리판에 이산화바나듐을 코팅하는 종래의 방법은 모두 후속 열처리 공정을 필요로 하여 긴 공정 시간이 요구되고 대면적의 제품을 생산하기 어렵다는 문제가 있었다. 또한 고온의 열처리 공정으로 인해 이산화 바나듐이 코팅되는 기재의 재료 선택에 큰 제한이 있었다.Korean Patent No. 10-1286170 discloses a technique of coating vanadium dioxide on a glass plate using a sputtering deposition method and Japanese Patent Application Laid-Open No. 2007-22838 discloses a technique of coating vanadium dioxide on a glass plate using a CVD process . However, conventional methods of coating vanadium dioxide on a glass plate, such as a sputtering deposition method or a CVD process, require a subsequent heat treatment step, requiring a long process time and making it difficult to produce a large-area product. In addition, there is a great limitation in the selection of the material of the substrate on which the vanadium dioxide is coated due to the high temperature heat treatment process.
한편 일본 공개특허 특개2016-188939에는 이산화 바나듐 함유 미립자를 바인더 수지에 분산시키고, 이 분산액을 고분자 기재 상에 도포하여 광학 기능층을 형성하는 방법이 개시되어 있다. 그러나 입자가 고분자 수지 내에서 균일하게 분산하기 어렵고, 소결 공정을 거치지 않기 때문에 결정성이 떨어져서, 광 차단 효과가 충분하지 못하며, 고분자 수지에 의해 광 투과 특성이 저해되는 단점이 있었다.Japanese Patent Application Laid-Open No. 2016-188939 discloses a method of dispersing vanadium dioxide-containing fine particles in a binder resin and applying the dispersion onto a polymer substrate to form an optical functional layer. However, since the particles are difficult to uniformly disperse in the polymer resin and the sintering process is not performed, the crystallinity is decreased, the light blocking effect is not sufficient, and the light transmission characteristics are hindered by the polymer resin.
본 발명은 상기와 같은 문제점을 해결하기 위해, 간단한 제조공정으로 대면적으로 제조될 수 있고, 제어된 가시광 및 적외선 투과 특성 등의 물리적 특성을 가지는 광학 적층체를 제공하는데 그 목적이 있다. An object of the present invention is to provide an optical laminate which can be manufactured in a large area by a simple manufacturing process and has physical properties such as controlled visible light and infrared ray transmission characteristics.
상기 과제를 해결하기 위하여, 본 발명은 기재; 및 상기 기재 상에 형성되는 열변색층을 포함하는 적층체이고, 상기 열변색층과 기재의 접착강도는 50N/m 이상이며, 상기 열변색층은 산화바나듐 및 유기물질을 포함하고, 하기 일반식 1을 만족시키는 광학 적층체에 관한 것이다:In order to solve the above problems, the present invention provides a substrate comprising: a substrate; And a thermochromic layer formed on the substrate, wherein the adhesive strength between the thermochromic layer and the substrate is 50 N / m or more, the thermochromic layer contains vanadium oxide and an organic material, Lt; RTI ID = 0.0 > 1: < / RTI >
[일반식 1]  [Formula 1]
Figure PCTKR2017013275-appb-I000001
Figure PCTKR2017013275-appb-I000001
Wi는 시료의 최초 무게를 나타내고, Wf는 시료를 700℃에서 2시간 동안 열처리한 후 무게를 나타낸다.W i represents the initial weight of the sample, and W f represents the weight after heat treatment of the sample at 700 ° C. for 2 hours.
또한 상기 열변색층은 하기 일반식 2를 만족시킬 수 있다:The thermochromic layer may satisfy the following general formula 2:
[일반식 2] [Formula 2]
5≤S(%)≤405? S (%)? 40
상기 식에서 S는 화상해석장치에 의해 시료의 상면을 촬영한 화상을 분석하여 측정한 공극의 면적율을 나타낸다.Where S represents the area ratio of the voids measured by analyzing the image of the upper surface of the sample taken by the image analyzer.
또한, 상기 열변색층은 하기 일반식 3을 만족시킬 수 있다.Further, the thermochromic layer may satisfy the following general formula (3).
[일반식 3] [Formula 3]
Copposite < Ccontact C opposite <C contact
상기 일반식 1에서 Copposite는 상기 표면에서 측정한 탄소 원자의 함량을 나타내고, Ccontact는 상기 접촉면에서 측정한 탄소원자의 함량을 나타낸다.In the general formula 1, C opposite represents the content of carbon atoms measured on the surface, and C contact represents the content of carbon atoms measured on the contact surface.
본 발명에 따르면, 간단한 제조 공정으로 대면적의 광학 적층체를 제조할 수 있고, 열변색 층이 형성되는 기재의 소재에 제한이 없으며, 열변색층과 기재의 접착력이 우수하고, 제어된 가시광 및 적외선 투과 특성을 가지는 광학 적층체를 제공할 수 있다.According to the present invention, it is possible to produce a large-sized optical laminate by a simple manufacturing process, and there is no limitation on the material of the substrate on which the thermochromic layer is formed, excellent adhesion between the thermochromic layer and the substrate, An optical laminate having infrared ray transmission characteristics can be provided.
도 1은 본 발명의 실시예에 따라 고분자 분산제의 함량에 따른 분산도를 측정한 그래프이다.FIG. 1 is a graph showing a dispersion degree according to the content of a polymeric dispersant according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따라 고분자 분산제의 분자량에 따른 분산도를 측정한 그래프이다.FIG. 2 is a graph showing the degree of dispersion according to the molecular weight of a polymeric dispersant according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따라 제조된 광학 적층체의 전자현미경이미지이다.3 is an electron microscope image of an optical laminate manufactured according to an embodiment of the present invention.
도 4는 본 발명의 다른 실시예에 따라 제조된 광학 적층체의 전자현미경이미지이다.4 is an electron microscope image of an optical laminate manufactured according to another embodiment of the present invention.
도 5는 본 발명의 또 다른 실시예에 따라 제조된 광학 적층체의 전자현미경이미지이다.5 is an electron microscope image of an optical laminate manufactured according to another embodiment of the present invention.
도 6는 본 발명의 또 다른 실시예에 따라 제조된 광학 적층체의 전자현미경이미지이다.6 is an electron microscope image of an optical laminate manufactured according to another embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따라 제조된 광학 적층체의 공극 면적율을 측정한 전자현미경이미지이다.FIG. 7 is an electron microscope image obtained by measuring a void area ratio of an optical laminate manufactured according to an embodiment of the present invention.
도 8은 본 발명의 일 비교예에 따라 제조된 광학 적층체의 공극 면적율을 측정한 전자현미경이미지이다.FIG. 8 is an electron microscope image obtained by measuring a void area ratio of an optical laminate manufactured according to a comparative example of the present invention. FIG.
도 9는 본 발명의 일 실시예에 따라 제조된 광학 적층체의 깊이 방향에 따른 원소 함량을 도시한 그래프이다.9 is a graph showing the element content along the depth direction of the optical laminate manufactured according to an embodiment of the present invention.
도 10은 본 발명의 일 비교예에 따라 제조된 광학 적층체의 깊이 방향에 따른 원소 함량을 도시한 그래프이다.10 is a graph showing an element content along the depth direction of an optical laminate manufactured according to a comparative example of the present invention.
본 발명은 기재; 및 상기 기재 상에 형성되는 열변색층을 포함하고, 상기 열변색층과 기재의 접착강도는 50N/m 이상이며, 상기 열변색층은 산화바나듐 및 유기물질을 포함하고, 하기 일반식 1을 만족시키는 광학 적층체에 관한 것이다:The present invention relates to a substrate; And a thermochromic layer formed on the substrate, wherein the adhesive strength between the thermochromic layer and the substrate is 50 N / m or more, the thermochromic layer comprises vanadium oxide and an organic material, and satisfies the following general formula To the optical laminate.
[일반식 1]  [Formula 1]
Figure PCTKR2017013275-appb-I000002
Figure PCTKR2017013275-appb-I000002
상기 일반식 1에서, Wi는 시료의 최초 무게를 나타내고, Wf는 시료를 700℃에서 2시간 동안 열처리한 후 무게를 나타낸다. 구체적으로 시료는 광학 적층체 또는 열변색층을 의미할 수 있다. 기재가 700℃에서도 무게 감소가 일어나지 않는 소재, 예를 들어 유리라면 시료는 기재 및 기재 상에 형성된 열변색층을 모두 포함할 수 있다. 한편 열변색 층 상부 또는 하부에 700℃에서도 무게 감소가 일어나는 소재, 예를 들어 고분자 소재가 적층되어 있는 경우라면 시료는 열변색층의 전부 또는 일부만을 의미할 수 있다.In the general formula 1, W i represents the initial weight of the sample, and W f represents the weight after heat treatment of the sample at 700 ° C. for 2 hours. Specifically, the sample may mean an optical laminate or a thermochromic layer. For example, a material which does not cause weight reduction even when the substrate has a temperature of 700 占 폚, for example, a glass substrate, may include both the substrate and the thermochromic layer formed on the substrate. On the other hand, in the case where a material in which weight reduction occurs even at 700 ° C in the upper or lower part of the thermochromic layer, for example, a polymer material is laminated, the sample may mean all or a part of the thermochromic layer.
일반식 2의 무게 감소율(Wloss)은 열변색층에서 산화 바나듐 입자의 함량을 의미할 수 있다. 본 발명의 열변색 층은 무기물질인 산화 바나듐 입자 및 유기물질인 고분자 분산제 및/또는 바인더를 포함하고 있는데, 700℃ 이상의 온도에서 열처리 할 경우 유기물질의 대부분은 분해되어 사라지고 무기물질인 산화 바나듐 입자만이 남게 된다. 본 발명의 열변색층은 기재와의 접착력을 제공하는 유기물질과 열변색 효과를 구현하는 무기물질을 포함하되, 유기물질과 무기물질의 함량을 제어하여 열변색층의 접착력 및 열변색 효과를 동시에 구현할 수 있다.The weight loss (W loss ) of the general formula (2) may mean the content of vanadium oxide particles in the thermochromic layer. The heat-discoloring layer of the present invention includes a vanadium oxide particle, which is an inorganic substance, and a polymer dispersant and / or a binder, which are organic substances. When heat treatment is performed at a temperature of 700 ° C or higher, most of the organic material is decomposed and disappears, Only. The thermochromic layer of the present invention includes an organic material that provides an adhesive force with a substrate and an inorganic material that exhibits a thermal discoloring effect, and the content of the organic material and the inorganic material is controlled, Can be implemented.
산화 바나듐 입자의 함량은 예를 들어 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상 또는 95% 이상이며, 산화 바나듐 입자의 함량의 상한 값은 특별히 한정되지 않으나, 예를 들어 100% 이하, 99.9% 이하, 99% 이하, 또는 98%이하이다. 고분자 수지에 산화 바나듐을 분산시킨 용액을 도포한 후에 고분자를 경화시켜 제조한 종래의 열변색 박막층과 달리, 본 발명은 용액 중에 박막을 제조하기 위해 필요한 양만큼의 유기물 및 산화 바나듐을 포함시킨 후, 산화 바나듐을 소결시킴과 동시에 대부분의 유기물을 제거하므로 열변색 박막층에 포함되는 산화 바나듐 입자의 함량을 크게 늘릴 수 있다.The content of the vanadium oxide particles is, for example, not less than 70%, not less than 75%, not less than 80%, not less than 85%, not less than 90%, or not less than 95% 100% or less, 99.9% or less, 99% or less, or 98% or less. Unlike the conventional thermochromic thin film layer prepared by applying a solution in which vanadium oxide is dispersed in a polymer resin and then curing the polymer, the present invention includes an organic substance and vanadium oxide in an amount required for producing a thin film in a solution, Since vanadium oxide is sintered and most organic substances are removed, the content of vanadium oxide contained in the thermochromic thin film layer can be greatly increased.
상기 열변색층과 기재의 접착강도는 50N/m 이상, 예를 들어, 60N/m 이상, 70N/m 이상, 100N/m 이상, 120N/m 이상, 또는 150N/m 이상인 광학 적층체에 관한 것이다. 접착강도의 상한 값은 특별히 한정되지 않으나, 예를 들어 250N/m 이하, 또는 300N/m 이하이다. 본 명세서에서 사용한 용어, "접착강도"는 칼날이 열변색층과 기재를 분리시킬 때 발생하는 저항 값을 측정하여 산출한 것을 의미하고, 측정에 필요한 구체적 조건은 실험예를 참조할 수 있다.The adhesive strength between the heat-colorable layer and the substrate is 50 N / m or more, for example, 60 N / m or more, 70 N / m or more, 100 N / m or more, 120 N / m or 150 N / . The upper limit value of the adhesive strength is not particularly limited, but is, for example, 250 N / m or less, or 300 N / m or less. As used herein, the term " adhesive strength " means that the blade is calculated by measuring the resistance value generated when the thermochromic layer and the substrate are separated from each other, and the specific conditions necessary for the measurement can be found in Experimental Examples.
상기 열변색층은 하기 일반식 2를 만족시킬 수 있다.The thermochromic layer may satisfy the following general formula (2).
[일반식 2] [Formula 2]
5≤S(%)≤405? S (%)? 40
상기 일반식 2에서 S는 화상해석장치에 의해 시료의 상면을 촬영한 화상을 분석하여 측정한 공극의 면적율을 나타낸다. 여기서 상면이란 상술한 기재의 표면을 의미한다.In the general formula (2), S represents the area ratio of the voids measured by analyzing an image of the upper surface of the sample taken by the image analyzer. Here, the upper surface means the surface of the substrate described above.
S 값을 상기 범위로 제어하는 경우 가시광 투과율과 적외선 투과율을 제어할 수 있고, 예를 들어 40 nm 내지 200nm 이상의 두께를 가지는 필름에서도 상기 광특성, 특히 가시광 투과율을 제어할 수 있다.When the S value is controlled within the above range, the visible light transmittance and the infrared transmittance can be controlled, and the optical characteristics, particularly visible light transmittance, can be controlled even in a film having a thickness of 40 nm to 200 nm or more.
본 발명은 산화 바나듐을 포함하는 용액 조성물을 기재 상에 도포하고, 광 소결 또는 열소결 과정을 거쳐 이산화바나듐을 소결시킴과 동시에 상기 용액 조성물에 존재하는 유기물의 대부분을 제거하여 제조되기 때문에 S 값을 제어할 수 있다. 스퍼터링 또는 CVD과 같은 종래의 기상법을 사용하여 열변색 박막층을 제조하는 경우 S값을 제어하여 원하는 효과를 얻을 수 없다.Since the present invention is manufactured by applying a solution composition containing vanadium oxide on a substrate, sintering the vanadium dioxide through light sintering or thermal sintering, and removing most of the organic substances present in the solution composition, Can be controlled. When a thermochromic thin film layer is produced by using a conventional vapor phase method such as sputtering or CVD, a desired effect can not be obtained by controlling the S value.
구체적으로 S 값은 용액에서 분산제 및 바인더의 함량, 입자의 평균 직경, 박막의 두께, 광소결의 구체적인 조건 등을 통하여 제어할 수 있다. S 값이 5% 미만, 예를 들어 10% 미만, 15% 미만, 20% 미만, 또는 25% 미만이면, 가시광 투과율을 얻기가 곤란하고, 40%를 초과하는 경우, 예를 들어 35% 초과하는 경우 적외선 차단율을 제어하기가 곤란하다. S 값의 측정은 전자현미경(SEM) 등의 화상 촬영 장치와 이를 해석하는 화상 해석 장치(S/W)를 활용하여 공지의 방법으로 측정할 수 있다. 예를 들어, 화상 해석 장치는 FE-SEM과 같은 화상 촬영 장치를 이용하여 촬영된 영상의 명암비를 구분하여 공극을 특정하고, 이의 면적을 산출할 수 있는 Image J와 같은 소프트웨어를 사용할 수 있으며, 이러한 장치와 소프트웨어는 당업자에게 공지되어 있다.Specifically, the S value can be controlled in the solution through the content of the dispersant and the binder, the average diameter of the particles, the thickness of the thin film, and the specific conditions of the photolithography. When the S value is less than 5%, for example, less than 10%, less than 15%, less than 20%, or less than 25%, it is difficult to obtain the visible light transmittance. It is difficult to control the infrared ray blocking rate. The S value can be measured by a known method using an image photographing apparatus such as an electron microscope (SEM) and an image analyzing apparatus (S / W) for analyzing it. For example, the image analyzing apparatus can use software such as Image J, which can calculate the area of the gap by classifying the contrast ratio of the photographed image by using an image photographing apparatus such as an FE-SEM, Apparatus and software are known to those skilled in the art.
상기 열변색층은 또한 하기 일반식 3을 만족시킨다.The thermochromic layer also satisfies the following general formula (3).
[일반식 3][Formula 3]
Copposite < Ccontact C opposite <C contact
상기 일반식 1에서 Copposite는 상기 표면에서 측정한 탄소 원자의 함량을 나타내고, Ccontact는 상기 접촉면에서 측정한 탄소원자의 함량을 나타낸다. In the general formula 1, C opposite represents the content of carbon atoms measured on the surface, and C contact represents the content of carbon atoms measured on the contact surface.
본 발명에 따른 열변색층은 열변색층의 단면을 기준으로 기재와 접촉하는 면을 접촉면, 그 반대편 면을 표면으로 정할 경우 표면으로부터 접촉면으로 갈수록 탄소원자의 함량이 증가하여, 외부의 광을 수광하는 수광면인 표면에는 유기물 함량이 적어 충분한 열변색 효과를 가질 수 있다. 구체적으로 각 면에서 탄소의 함량은 용액에서 분산제 및 바인더의 함량, 입자의 평균 직경, 박막의 두께, 및 소결의 조건, 예를 들어 광소결의 구체적인 조건 등을 통하여 제어할 수 있다. 또한, 접촉면에는 기재와의 접착력을 제공하기에 필요한 범위의 유기물을 포함하고 있어, 기재와의 접착력이 우수하다. 접착강도가 50 N/m 이하인 경우 장기간 사용 시 계면에서 박리가 일어나 내구성이 떨어질 우려가 있다. In the heat-coloring layer according to the present invention, when the surface contacting the substrate is defined as a contact surface with respect to the cross-section of the thermochromic layer, and the surface opposite thereto is defined as the surface, the content of carbon atoms increases from the surface to the contact surface, The surface of the light-receiving surface has a low organic matter content and can have a sufficient heat discoloring effect. Specifically, the content of carbon in each surface can be controlled through the content of the dispersant and the binder in the solution, the average diameter of the particles, the thickness of the thin film, and the conditions of the sintering, for example, specific conditions of the photolithography. Further, the contact surface contains an organic substance within a range necessary for providing an adhesive force with the base material, and is excellent in adhesion to a substrate. When the adhesive strength is 50 N / m or less, peeling may occur at the interface during long-term use, and durability may be deteriorated.
본 발명은 산화바나듐을 포함하는 용액 조성물을 기재 상에 도포하고, 소결 과정을 거쳐 산화바나듐을 소결시킴과 동시에 상기 용액 조성물에 존재하는 유기물의 대부분을 제거하여 제조되기 때문에 각 면에서 탄소원자의 함량을 제어하여 원하는 접착강도를 얻을 수 있다. 스퍼터링 또는 CVD과 같은 종래의 기상법을 사용하여 열변색층을 제조하는 경우 또는 산화 바나듐을 분산시킨 용액을 도포한 후에 고분자를 경화시켜 제조한 종래의 열변색층의 경우 각 면에서 탄소원자의 함량 제어하여 원하는 효과를 얻을 수 없다.Since the present invention is applied by applying a solution composition containing vanadium oxide on a substrate, sintering the vanadium oxide through a sintering process, and removing most of the organic substances present in the solution composition, the content of carbon atoms The desired adhesive strength can be obtained. In the case of producing a heat-discoloring layer using a conventional vapor-phase method such as sputtering or CVD, or in the case of a conventional heat-discoloring layer prepared by curing a polymer after application of a vanadium oxide dispersed solution, the content of carbon atoms in each surface is controlled The desired effect can not be obtained.
상기 기재는 열변색층을 지지할 수 있는 것이면 특별히 제한되지는 않으나, 스마트 윈도우 등의 활용 용도를 고려할 때, 가시광 영역의 평균 투과율이 80% 이상, 예를 들어 95% 이상인 것이 바람직하다.The substrate is not particularly limited as long as it can support the thermochromic layer. However, in consideration of the application such as a smart window, the average transmittance of the visible light region is preferably 80% or more, for example, 95% or more.
기재의 종류는 유리, 석영 또는 고분자 필름으로부터 선택될 수 있다. 특히, 고분자 필름의 종류는 특별히 제한되지 않지만, 폴리올레핀 필름(예를 들면 사이클로올레핀, 폴리에틸렌, 폴리프로필렌 등), 폴리에스테르 필름(예를 들면 폴리에틸렌 테레프탈레이트, 폴리에틸렌나프탈레이트), 폴리염화비닐, 또는 셀룰로오스계 필름(예를 들면 트리아세틸 셀룰로오스)이 사용될 수 있다. 고분자 필름은 예를 들어, 1축 이상으로 연신되고, 120℃에서 1시간 동안 노출시 수출율이 3% 미만인 것을 사용할 수 있다. 연신된 고분자 필름을 사용하는 경우 우수한 기계적 강도를 가질 수 있고, 고온에서 수축을 방지할 수 있다. 이러한 조건을 만족시키는 고분자 필름은 공지된 재료 중에서 임의로 선택하여 사용할 수 있다.The kind of the substrate may be selected from glass, quartz or a polymer film. Particularly, the kind of the polymer film is not particularly limited, but a polyolefin film (for example, cycloolefin, polyethylene, polypropylene and the like), a polyester film (for example, polyethylene terephthalate, polyethylene naphthalate), polyvinyl chloride, Based film (for example, triacetyl cellulose) can be used. The polymer film may, for example, be stretched in more than one axis and have an export rate of less than 3% when exposed at 120 DEG C for 1 hour. When a stretched polymer film is used, excellent mechanical strength can be obtained and shrinkage can be prevented at a high temperature. The polymer film satisfying these conditions can be arbitrarily selected from among known materials.
상기 광학 적층체는, 예를 들어, 200 내지 800nm 영역에서 투과도의 최대값(Pmax)이 40% 이상, 구체적으로 45% 이상, 50% 이상, 55% 이상, 60% 이상, 65% 이상 또는 70%이상이고, 임계온도 이상의 임의의 온도에서 2000 내지 3000nm에서 투과도의 최소값(OPmin)이 50% 이하, 구체적으로 45% 이하, 40% 이하, 또는 35% 이하일 수 있다. Pmax 값이 40% 이상인 경우 가시광 투과도가 높아 투명한 시야를 확보할 수 있고, OPmin 값이 50% 이하일 경우 자외선 차단 효과가 우수하다.The optical laminate preferably has a maximum transmittance ( Pmax ) of 40% or more, specifically 45% or more, 50% or more, 55% or more, 60% or more, 65% or more, not less than 70%, the minimum value (min OP) of the transmission rate from 2000 to 3000nm at any temperature above the critical temperature may be up to 50% or less, particularly 45% or less, 40% or 35%. If P max value of not less than 40%, and the visible light transmittance can be increased to ensure a clear field of view, when OP min value is equal to or less than 50% it is excellent in UV shielding effect.
또한 상기 광학 적층체는 예를 들어 적층체는 하기 일반식 4의 조건을 만족시킬 수 있다.In the optical laminate, for example, the laminate may satisfy the condition of the following general formula (4).
[일반식 4][Formula 4]
ΔIR = (BPmin - OPmin) ≥ 20? IR = (BP min - OP min )? 20
상기 일반식 4에서 BPmin는 임계온도 이하의 임의의 온도에서 2000 내지 3000nm에서 투과도의 최소값을 나타내고, OPmin는 임계온도 이상의 임의의 온도에서 2000 내지 3000nm에서 투과도의 최소값을 나타낸다. 여기서 임계 온도 이하의 온도는 예를 들어 20 내지 30℃, 구체적으로 25℃일 수 있고, 임계 온도 이상의 온도는 예를 들어 60 내지 90℃, 구체적으로 80℃일 수 있다. ΔIR 값(%)이 20 이상, 구체적으로 30 이상, 40 이상 또는 45 이상인 경우 자외선 차단/투과에 관한 효과가 우수하다.In the formula (4), BP min represents the minimum value of the transmittance at 2000 to 3000 nm at any temperature below the critical temperature, and OP min represents the minimum value of the transmittance at 2000 to 3000 nm at any temperature above the critical temperature. The temperature below the critical temperature may be, for example, 20 to 30 占 폚, specifically 25 占 폚, and the temperature above the critical temperature may be, for example, 60 to 90 占 폚, specifically 80 占 폚. When the ΔIR value (%) is 20 or more, specifically 30 or more, 40 or more or 45 or more, the effect on ultraviolet blocking / transmission is excellent.
열변색층에 포함되는 산화 바나듐 입자는 1 내지 500nm, 또는 20 내지 300nm의 평균직경을 가지는 루틸형 이산화바나듐을 포함할 수 있다. 산화 바나듐 입자의 평균직경이 상기 범위 이내에 있는 경우 균일한 박막을 제공할 수 있고, 가시광 투과율 등 원하는 광학 특성을 제어할 수 있다. The vanadium oxide particles contained in the heat-coloring layer may include rutile vanadium dioxide having an average diameter of 1 to 500 nm, or 20 to 300 nm. When the average diameter of the vanadium oxide particles is within the above range, it is possible to provide a uniform thin film and control desired optical characteristics such as visible light transmittance.
열변색층의 두께는 특별히 제한되는 것은 아니나 0.1 내지 5μm, 구체적으로 400 내지 1000nm, 또는 600 내지 900nm일 수 있다. The thickness of the thermochromic layer is not particularly limited, but may be 0.1 to 5 탆, specifically 400 to 1000 nm, or 600 to 900 nm.
광학 적층체는 상기 열변색층을 보호하기 위한 보호층을 추가로 포함할 수 있다. 보호층은 특별히 제한되지 않으나, 투명 고분자 필름을 사용할 수 있다. 상기 보호층은 열변색층을 보호하는 기능 이외에 700~1000 nm의 광 파장 범위 내의 적어도 일부를 차폐하는 기능을 가질 수도 있다. 본 발명에 적용 가능한 근적외광 차폐층의 상세한 것에 대하여는 예를 들면 일본특허 공개 제2012-131130호 등을 참고로 할 수 있다.The optical laminate may further include a protective layer for protecting the thermochromic layer. The protective layer is not particularly limited, but a transparent polymer film can be used. The protective layer may have a function of shielding at least a part of the light wavelength range of 700 to 1000 nm in addition to the function of protecting the thermochromic layer. For details of the near-infrared light shielding layer applicable to the present invention, reference may be made, for example, to Japanese Patent Laid-Open Publication No. 2012-131130.
본 발명은 또한 산화바나듐을 포함하는 용액을 사용하여 광학 적층체를 제조하는 방법에 관한 것이다. 광학 적층체를 제조하는 방법은 산화바나듐을 포함하는 용액을 기재 상에 도포하여 도포층을 형성하는 단계; 도포층으로부터 용매를 제거하는 단계; 및 도포층에 포함되어 있는 산화바나듐을 소결시키는 단계를 포함한다. The present invention also relates to a method for producing an optical laminate using a solution containing vanadium oxide. A method for producing an optical laminate includes: applying a solution containing vanadium oxide on a substrate to form a coating layer; Removing solvent from the application layer; And sintering the vanadium oxide contained in the coating layer.
상기 산화바나듐을 포함하는 용액 조성물은 산화바나듐 입자; 용매; 고분자 분산제; 및 바인더를 포함하고, 상기 고분자 분산제의 분자량은 10,000 내지 360,000이고, 점도는 1 내지 100cP, 구체적으로 5 내지 40cP인 조성물을 사용할 수 있다.Wherein the solution composition containing vanadium oxide is at least one selected from the group consisting of vanadium oxide particles; menstruum; Polymer dispersant; And a binder, and the polymer dispersant has a molecular weight of 10,000 to 360,000 and a viscosity of 1 to 100 cP, specifically 5 to 40 cP.
본 발명에서 사용할 수 있는 고분자 분산제의 분자량은 10,000 내지 360,000, 예를 들어 11,000 내지 200,000, 12,000 내지 100,000, 또는 15,000 내지 70,000이다. 분자량이 상기 범위 내에 있는 경우에 우수한 분산성과 용액 조성물을 기재에 도포하는 데 필요한 점도를 확보할 수 있다. The molecular weight of the polymeric dispersant usable in the present invention is 10,000 to 360,000, for example, 11,000 to 200,000, 12,000 to 100,000, or 15,000 to 70,000. When the molecular weight is within the above range, excellent dispersibility and viscosity necessary for applying the solution composition to the substrate can be secured.
상기 용액 조성물의 점도는 1 내지 100, 예를 들어 1 내지 40, 5 내지 30, 10 내지 25, 또는 15 내지 20이다. 고분자 분산제의 분자량뿐만 아니라 점도 역시 상기 범위로 조정하는 경우 입자의 분산성 및 도포 공정의 조건을 만족시킬 수 있다.The viscosity of the solution composition is from 1 to 100, for example from 1 to 40, from 5 to 30, from 10 to 25, or from 15 to 20. In addition to the molecular weight of the polymer dispersant, the viscosity can also be adjusted to the above range to satisfy the dispersibility of the particles and the conditions of the application process.
상기 용액 조성물에서, 고분자 분산제의 함량은 예를 들어 용액 조성물 총 중량에 대하여 1 내지 10 중량%, 구체적으로 2 내지 8 중량%, 3 내지 7 중량%이다. 광학 적층체의 가시광 투과도 및 산화바나듐의 결정화를 제어하기 위해서 분산제의 함량을 상기 범위로 제어하는 것이 필요하다. In the solution composition, the content of the polymer dispersant is, for example, 1 to 10% by weight, specifically 2 to 8% by weight and 3 to 7% by weight based on the total weight of the solution composition. It is necessary to control the content of the dispersing agent within the above range in order to control the visible light transmittance of the optical laminate and the crystallization of vanadium oxide.
상기 고분자 분산제의 종류는, 예를 들어, 폴리에틸렌 이민, 폴리바이닐피롤리돈 등의 아민계 고분자 분산제; 폴리아크릴산, 카복시메틸셀룰로스 등의 분자 중에 카복실산기를 갖는 탄화수소계 고분자 분산제; 및 폴리비닐알코올, 스타이렌-말레산 공중합체, 올레핀-말레산 공중합체, 또는 1분자 중에 폴리에틸렌 이민 부분과 폴리에틸렌옥사이드 부분을 갖는 공중합체 등의 극성기를 갖는 고분자 분산제로 이루어진 그룹 중에서 선택된 하나 이상이다.Examples of the polymer dispersant include amine-based polymer dispersants such as polyethyleneimine and polyvinylpyrrolidone; A hydrocarbon-based polymeric dispersant having a carboxylic acid group in a molecule such as polyacrylic acid, carboxymethylcellulose or the like; And a polymer dispersant having a polar group such as polyvinyl alcohol, styrene-maleic acid copolymer, olefin-maleic acid copolymer, or copolymer having a polyethyleneimine moiety and a polyethylene oxide moiety in one molecule .
일 구체예에서 상기 고분자 분산제는 수용성 고분자, 구체적으로 아민계 고분자, 특히 폴리바이닐피롤리돈(PVP)을 사용할 수 있다. PVP를 사용하는 경우 수성 용매를 사용할 수 있어, 친환경적이므로 대면적의 광학 적층체를 제조함에 있어서도 환경 오염을 최소화시킬 수 있다.In one embodiment, the polymer dispersant may be a water-soluble polymer, specifically an amine-based polymer, particularly polyvinylpyrrolidone (PVP). When PVP is used, an aqueous solvent can be used. Therefore, environmental pollution can be minimized even when a large-sized optical laminate is manufactured because it is environment-friendly.
상기 용액 조성물에서, 상기 바인더의 종류는, 특별히 제한되는 것은 아니나, 예를 들어, 셀룰로오스계 수지, 폴리염화비닐수지, 폴리비닐알코올계 수지, 폴리비닐피롤리돈계 수지, 아크릴 수지, 아세트산비닐-아크릴산에스테르 공중합 수지, 부티랄 수지, 알키드 수지, 에폭시 수지, 페놀 수지, 로진에스테르 수지, 폴리에스테르 수지 및 실리콘 수지로 이루어진 그룹 중에서 선택된 하나 이상이다. In the solution composition, the kind of the binder is not particularly limited, and examples thereof include a cellulose resin, a polyvinyl chloride resin, a polyvinyl alcohol resin, a polyvinyl pyrrolidone resin, an acrylic resin, a vinyl acetate- An ester resin, an ester copolymer resin, a butyral resin, an alkyd resin, an epoxy resin, a phenol resin, a rosin ester resin, a polyester resin and a silicone resin.
상기 바인더의 함량은 예를 들어, 용액 조성물 총 중량에 대하여 0.1 내지 3 중량%, 구체적으로 0.2 내지 2중량%, 0.5 내지 1.5 중량%이다. 바인더의 함량이 3 중량 %를 초과하는 경우 용매에 완전히 용해되지 않을 우려가 있고, 시간의 경과 따라 응집할 수 있으며, 0.1 중량% 미만이면 기재와의 접착력이 떨어질 우려가 있다.The content of the binder is, for example, 0.1 to 3% by weight, specifically 0.2 to 2% by weight and 0.5 to 1.5% by weight based on the total weight of the solution composition. If the content of the binder is more than 3% by weight, the binder may not be completely dissolved in the solvent, and the binder may agglomerate with time. If the content is less than 0.1% by weight, the adhesive strength to the substrate may be lowered.
상기 용매의 종류는, 특별히 제한되는 것은 아니나, 예를 들어, 물, 탄화수소계 용매, 염소화탄화수소계 용매, 고리형 에테르계 용매, 케톤계 용매, 알코올, 다가알코올계 용매, 아세테이트계 용매, 다가알코올의 에테르계 용매 또는 테르펜계 용매로 이루어진 그룹 중에서 선택된 하나 이상이다. 용매의 종류는 사용하는 고분자 바인더 및 분산제에 따라 적절한 것을 선택할 수 있으나, 환경적 요인, 분산 특성 및 건조 시간을 고려하면 물 및 알코올의 혼합물을 사용하는 것이 바람직하다. 구체적으로 젖음성을 고려할 때, 알코올을 사용하는 것이 바람직하다. 알코올은 특별히 제한되지 않으나 탄소수 2 내지 6의 직쇄 알킬기를 가지는 알코올, 예를 들어, 에탄올, 프로판올, 또는 부탄올 등을 사용할 수 있다. 건조시간을 고려할 때, 끓는점이 낮은 에탄올을 사용하는 것이 바람직하다.Examples of the solvent include, but are not limited to, water, hydrocarbon solvents, chlorinated hydrocarbon solvents, cyclic ether solvents, ketone solvents, alcohols, polyhydric alcohol solvents, acetate solvents, polyhydric alcohols Of ether-based solvents or terpene-based solvents. The kind of the solvent can be selected according to the polymer binder and the dispersing agent to be used, but it is preferable to use a mixture of water and alcohol in consideration of environmental factors, dispersion characteristics and drying time. Concretely, in consideration of wettability, it is preferable to use alcohol. The alcohol is not particularly limited, but an alcohol having a straight chain alkyl group having 2 to 6 carbon atoms such as ethanol, propanol, or butanol can be used. Considering the drying time, it is preferable to use ethanol having a low boiling point.
이 때 물 및 알코올 중량비는 예를 들어 1 : 0.5 내지 1.5, 구체적으로 1 : 0.7 내지 1.3, 1 : 0.8 내지 1.2의 비율로 혼합하여 사용할 수 있다. 물과 알코올 중량비를 상기 범위 내로 제어하는 경우 바인더 및 분산제를 충분히 용해시킬 수 있고, 적정한 점도를 유지할 수 있다.In this case, the weight ratio of water and alcohol may be used in a ratio of, for example, 1: 0.5 to 1.5, specifically 1: 0.7 to 1.3, and 1: 0.8 to 1.2. When the weight ratio of water and alcohol is controlled within the above range, the binder and the dispersant can be sufficiently dissolved and an appropriate viscosity can be maintained.
산화바나듐 입자는 구체적으로 루틸형 이산화 바나듐(VO2) 입자를 포함할 수 있다. 이산화바나듐 입자의 함량은 예를 들어 용액 조성물 총 중량에 대하여 1 내지 50 중량%, 예를 들어 5 내지 40 중량%, 10 내지 35중량%, 15 내지 30 중량%이다. 또한 이산화바나듐 입자의 평균 직경은 1 내지 1000nm, 예를 들어 10 내지 500nm일 수 있으며, 이산화바나듐 입자 함량과 평균 직경을 상기 범위로 제어하는 경우 우수한 박막 형성, 균일한 분산성과 원하는 기능성을 얻을 수 있다.The vanadium oxide particles may specifically include rutile vanadium dioxide (VO 2 ) particles. The content of the vanadium dioxide particles is, for example, 1 to 50% by weight, for example, 5 to 40% by weight, 10 to 35% by weight and 15 to 30% by weight based on the total weight of the solution composition. Further, the average diameter of the vanadium dioxide particles may be 1 to 1000 nm, for example, 10 to 500 nm. When the vanadium dioxide particle content and the average diameter are controlled within the above range, excellent thin film formation, uniform dispersion and desired functionality can be obtained .
상기 용액 조성물은 용매 내에 이산화바나듐 입자, 고분자 분산제 및 바인더를 혼합하여 균일하게 교반하여 제조할 수 있다. 보다 구체적으로 상기 방법은 고분자 분산제를 제1용매와 혼합하여 고분자 분산제 용액을 제조하는 단계; 바인더를 제2용매와 혼합하여 바인더 용액을 제조하는 단계; 및 이산화바나듐 입자에 상기 고분자 분산제 용액과 바인더 용액을 혼합하여 잉크 용액을 제조하는 단계를 포함하고, 임의로 또는 선택적으로 도펀트를 추가로 혼합하는 단계를 포함한다. The solution composition can be prepared by mixing vanadium dioxide particles, a polymer dispersant, and a binder in a solvent and uniformly stirring. More particularly, the method comprises mixing a polymeric dispersant with a first solvent to produce a polymeric dispersant solution; Mixing the binder with a second solvent to prepare a binder solution; And mixing the polymer dispersant solution and the binder solution to vanadium dioxide particles to prepare an ink solution, optionally and optionally further mixing the dopant.
각 단계별로 제조된 용액의 균일한 분산을 위하여 용액에 초음파를 인가할 수 있다. 일 예를 들어, 상기 제조방법은 고분자 분산제 용액에 초음파를 인가하는 단계; 바인더 용액에 초음파를 인가하는 단계; 잉크 용액에 초음파를 인가하는 단계로부터 이루어진 그룹 중에서 하나 이상의 단계를 추가로 포함할 수 있다. 초음파 인가 조건은 특별히 제한되지 않으나, 각 단계별로 30분 내지 2시간 동안 인가할 수 있다. Ultrasonic waves can be applied to the solution to uniformly disperse the solution prepared in each step. For example, the manufacturing method includes: applying ultrasound to a polymer dispersant solution; Applying ultrasound to the binder solution; And applying ultrasonic waves to the ink solution. Conditions for applying ultrasonic waves are not particularly limited, but they can be applied for 30 minutes to 2 hours at each step.
상기 단계에서 제1용매와 제2용매는 각각 분산제와 바인더를 용해시킬 수 있는 용매라면 제한 없이 사용할 있으나, 예를 들어 제1 용매는 물, 제2용매는 에탄올을 사용할 수 있다.In the above step, the first solvent and the second solvent are not limited as long as they are capable of dissolving the dispersant and the binder, respectively. For example, water may be used as the first solvent and ethanol may be used as the second solvent.
본 발명에 따른 광학 적층체를 제조하는 방법에 있어서, 상기 도포층을 형성하는 단계는 스핀 코팅 또는 스프레이 코팅에 의해 수행되는 것이 바람직하다. 구체예에서 스핀 코팅은 미리 정해진 회전속도 및 시간 동안 코팅하는 단계를 2회 이상 반복할 수 있다. 예를 들어 스핀 코팅은 제1회전 속도로 코팅하는 제1단계; 제2회전 속도로 코팅하는 제2단계; 및 제3회전 속도로 코팅하는 제3단계를 포함할 수 있고, 여기서 제1 및 제3 회전 속도보다 제2 회전속도가 빠를 수 있다. 보다 구체적으로 제1 및 제3 회전 속도는 300 내지 700 rpm이고, 제2회전 속도는 800 내지 4000rpm이다. 각 단계는 시간은 5 초 내지 50 초이다.In the method for producing the optical laminate according to the present invention, the step of forming the coating layer is preferably performed by spin coating or spray coating. In embodiments, the spin coating can be repeated at least twice at a predetermined rotational speed and for a period of time. For example, the spin coating may include a first step of coating at a first rotational speed; A second step of coating at a second rotational speed; And a third rotational speed, wherein the second rotational speed may be faster than the first and third rotational speeds. More specifically, the first and third rotational speeds are 300 to 700 rpm, and the second rotational speed is 800 to 4000 rpm. The time for each step is 5 seconds to 50 seconds.
산화 바나듐을 소결시키는 단계는 열 소결 또는 광 소결에 의해 수행될 수 있으나 제조 공정 상의 이점 및 접착력 등을 고려할 때 광 소결이 바람직하다. 열 소결은 300 내지 700℃의 온도에서 30 분 내지 5시간 동안 진행될 수 있으나 이에 제한되는 것은 아니다.The step of sintering the vanadium oxide can be performed by thermal sintering or photo-sintering, but photo-sintering is preferable in consideration of advantages in the manufacturing process and adhesive strength. The heat sintering can be conducted at a temperature of 300 to 700 ° C for 30 minutes to 5 hours, but is not limited thereto.
광소결은 광의 종류, 인가되는 전압, 펄스 폭, 펄스 수, 펄스 간격 및 소결 분위기를 제어하여 원하는 물성을 제어할 수 있다. 일 구체에서, 광은 제논 램프에서 인가되는 백색광을 사용할 수 있고, 전압은 1000 내지 3000V, 펄스 수는 1 내지 500 회, 펄스 간격은 0.1 내지 10초, 펄스 폭은 0.1 내지 10ms, 소결 분위기는 대기 분위기 하에서, 또는 질소 또는 아르곤과 같은 비활성 분위기하에서 진행될 수 있다.Light sintering can control the desired properties by controlling the type of light, the applied voltage, the pulse width, the number of pulses, the pulse interval and the sintering atmosphere. In one embodiment, the light may use white light applied from a xenon lamp, the voltage is from 1000 to 3000 V, the number of pulses is from 1 to 500, the pulse interval is from 0.1 to 10 seconds, the pulse width is from 0.1 to 10 ms, Or under an inert atmosphere such as nitrogen or argon.
인가 전압이 증가할수록 고분자 분산제 및/또는 바인더가 분해되어, 금속 산화물 표면이 노출되고, 펄스 수가 증가할수록 금속 산화물 입자간 간격이 좁아져서 클러스터가 일부 구성된다. 펄스 수가 증가할수록 표면에 잔류한 고분자의 감소가 발생하나, 전압에 비하여 미비한 수준에 그친다.As the applied voltage increases, the polymer dispersant and / or binder decompose to expose the surface of the metal oxide. As the number of pulses increases, the interval between the metal oxide particles becomes narrower to form a cluster. As the number of pulses increases, the amount of polymer remaining on the surface decreases, but it is lower than the voltage.
한편 광소결 전압이 증가할수록 박막과 기재 사이의 접착강도는 증가한다. 펄스 수 역시 접착강도와 연관성이 있으나, 낮은 전압, 예를 들어 1,400V에서는 펄스 수가 증가할수록 접착강도가 증가하나, 2,000V에서는 펄스 수가 증가할수록 접착 강도가 떨어진다.On the other hand, as the photo-sintering voltage increases, the adhesion strength between the thin film and the substrate increases. The number of pulses is also related to the bonding strength. However, at a low voltage, for example, 1,400 V, the bonding strength increases as the number of pulses increases. At 2,000 V, the bonding strength decreases as the number of pulses increases.
또한 인가 전압이 증가할수록 열변색층과 기재 사이에 형성된 접촉면에서의 유기물(탄소 또는 질소)의 농도가 증가한다. 펄스 수 파단면의 유기물 농도와 연관성이 있으나, 낮은 전압, 예를 들어 1,400V에서는 펄스 수가 증가할수록 유기물의 농도가 증가하나, 2,000V에서는 펄스 수가 증가할수록 유기물의 농도가 떨어진다.Also, as the applied voltage increases, the concentration of organic matter (carbon or nitrogen) at the contact surface formed between the thermochromic layer and the substrate increases. At low voltage, for example 1,400V, the concentration of organic matter increases as the number of pulses increases. At 2,000V, the concentration of organic matter decreases as the number of pulses increases.
본 발명은 또한 상술한 광학 적층체를 활용한 열변색 광학 필름 및 열변색 유리에 관한 것이다. The present invention also relates to a thermochromic optical film and a thermochromic glass utilizing the above-mentioned optical laminate.
본 발명의 열변색 광학 필름은 코팅층; 상기 코팅층 상에 형성된 고분자 기재; 상기 고분자 기재 상에 형성되고 산화 바나듐 입자를 포함하는 열변색층; 및 상기 열변색층 상에 형성된 보호층을 포함하고, 상기 열변색층과 기재의 접착강도는 50N/m 이상이며, 상기 열변색층은 산화바나듐 및 유기물질을 포함하고, 하기 일반식 1을 만족시키는 열변색 광학 필름에 관한 것이다:The thermochromic optical film of the present invention comprises a coating layer; A polymer substrate formed on the coating layer; A thermochromic layer formed on the polymer substrate and comprising vanadium oxide particles; And a protective layer formed on the thermochromic layer, wherein the adhesive strength between the thermochromic layer and the substrate is 50 N / m or more, the thermochromic layer contains vanadium oxide and an organic material, and satisfies the following general formula To a thermochromic optical film comprising:
[일반식 1]  [Formula 1]
Figure PCTKR2017013275-appb-I000003
Figure PCTKR2017013275-appb-I000003
Wi는 시료의 최초 무게를 나타내고, Wf는 시료를 700℃에서 2시간 동안 열처리한 후 무게를 나타낸다.W i represents the initial weight of the sample, and W f represents the weight after heat treatment of the sample at 700 ° C. for 2 hours.
상기 열변색층은 하기 일반식 2를 만족시킬 수 있다.The thermochromic layer may satisfy the following general formula (2).
[일반식 2] [Formula 2]
5≤S(%)≤405? S (%)? 40
상기 식에서 S는 화상해석장치에 의해 시료의 상면을 촬영한 화상을 분석하여 측정한 공극의 면적율을 나타낸다.Where S represents the area ratio of the voids measured by analyzing the image of the upper surface of the sample taken by the image analyzer.
상기 열변색층은 또한 하기 일반식 3을 만족시킬 수 있다.The thermochromic layer may further satisfy the following general formula (3).
[일반식 3] [Formula 3]
Copposite < Ccontact C opposite <C contact
상기 일반식 3에서 Copposite는 상기 표면에서 측정한 탄소 원자의 함량을 나타내고, Ccontact는 상기 접촉면에서 측정한 탄소원자의 함량을 나타낸다.In the general formula 3, C opposite represents the content of carbon atoms measured on the surface, and C contact represents the content of carbon atoms measured on the contact surface.
고분자 기재, 열변색층 및 보호층의 상세 내용은 상술한 광학 적층체의 내용과 동일하며 이에 대한 상세한 설명은 생략한다. 상기 코팅층은 광학필름을 다른 기재, 예를 들어 유리 또는 투명 고분자 기재에 부착시킬 수 있는 것이라면 제한 없이 사용할 수 있다. 구체예에서 상기 코팅층은 점착제 또는 접착제를 포함하는 점착 또는 접착층일 수 있다. 광학 필름은 상기 코팅층을 보호하기 위한 라이너 필름을 추가로 포함할 수 있다. The details of the polymer substrate, the thermochromic layer and the protective layer are the same as those of the above-mentioned optical laminate, and a detailed description thereof will be omitted. The coating layer can be used without limitation as long as it can adhere the optical film to another substrate, for example, glass or a transparent polymer substrate. In embodiments, the coating layer may be an adhesive or adhesive layer comprising a tackifier or adhesive. The optical film may further include a liner film for protecting the coating layer.
본 발명의 광학 필름의 용도로서는 유리에 붙이는 코팅필름을 예시할 수 있고, 이와 같은 필름을 접합한 유리는 자동차, 철도 차량, 항공기, 선박 및 건축물 등에 사용할 수 있다. 필름을 접합한 유리는 이들의 용도 이외에도 사용할 수 있다. 상기 필름을 접합한 유리는 건축용 또는 차량에 이용하는 것이 바람직하다. 상기 필름을 접합한 유리는 자동차의 앞유리, 사이드글라스, 리어 글래스 또는 루프글라스 등에 사용할 수 있다.The use of the optical film of the present invention can be exemplified by a coating film adhered to glass, and the glass adhered to such a film can be used for automobiles, railway vehicles, aircraft, ships and buildings. Glass bonded with a film can be used in addition to these applications. It is preferable that the glass laminated with the film is used for a building or a vehicle. The glass laminated with the film can be used for windshield glass, side glass, rear glass or roof glass of an automobile.
본 발명은 또한 유리; 상기 유리상에 형성된 코팅층; 상기 코팅층 상에 형성된 고분자 기재; 상기 고분자 기재 상에 형성되고 산화 바나듐 입자를 포함하는 열변색층; 및 상기 열변색층 상에 형성된 보호층을 포함하고, 상기 열변색층과 기재의 접착강도는 50N/m 이상이며,The present invention also relates to a composition comprising: glass; A coating layer formed on the glass phase; A polymer substrate formed on the coating layer; A thermochromic layer formed on the polymer substrate and comprising vanadium oxide particles; And a protective layer formed on the thermochromic layer, wherein the adhesive strength between the thermochromic layer and the substrate is 50 N / m or more,
상기 열변색층은 산화바나듐 및 유기물질을 포함하고, 하기 일반식 1을 만족시키는 열변색 유리에 관한 것이다:Wherein the thermochromic layer comprises vanadium oxide and an organic material and satisfies the following general formula 1:
[일반식 1]  [Formula 1]
Figure PCTKR2017013275-appb-I000004
Figure PCTKR2017013275-appb-I000004
상기 일반식 1에서, Wi는 시료의 최초 무게를 나타내고, Wf는 시료를 700℃에서 2시간 동안 열처리한 후 무게를 나타낸다.In the general formula 1, W i represents the initial weight of the sample, and W f represents the weight after heat treatment of the sample at 700 ° C. for 2 hours.
상기 열변색층은 하기 일반식 2를 만족시킬 수 있다.The thermochromic layer may satisfy the following general formula (2).
[일반식 2] [Formula 2]
5≤S(%)≤405? S (%)? 40
상기 일반식 2에서 S는 화상해석장치에 의해 시료의 상면을 촬영한 화상을 분석하여 측정한 공극의 면적율을 나타낸다.In the general formula (2), S represents the area ratio of the voids measured by analyzing an image of the upper surface of the sample taken by the image analyzer.
상기 열변색층은 또한 하기 일반식 3을 만족시킬 수 있다.The thermochromic layer may further satisfy the following general formula (3).
[일반식 3] [Formula 3]
Copposite < Ccontact C opposite <C contact
상기 일반식 3에서 Copposite는 상기 표면에서 측정한 탄소 원자의 함량을 나타내고, Ccontact는 상기 접촉면에서 측정한 탄소원자의 함량을 나타낸다.In the general formula 3, C opposite represents the content of carbon atoms measured on the surface, and C contact represents the content of carbon atoms measured on the contact surface.
고분자 기재, 코팅층, 열변색층 및 보호층의 상세 내용은 상술한 내용과 동일하며 이에 대한 상세한 설명은 생략한다. 유리부재로서는 무기 유리 및 유기 유리(수지 글레이징)를 들 수 있다. 무기 유리로서는 플로트 판유리, 열선 흡수판 유리, 연마 판유리, 형판 유리, 및 그린 유리 등의 착색유리 등을 들 수 있다. 상기 유기 유리는 무기 유리에 대용되는 합성수지 유리이다. 상기 유기 유리(수지 글레이징)로서는 폴리카보네이트판 및 폴리(메타)아크릴수지판 등을 들 수 있다. 상기 폴리(메타)아크릴 수지판으로서는 폴리메틸(메타)아크릴레이트판 등을 들 수 있다.The details of the polymer substrate, the coating layer, the thermochromic layer and the protective layer are the same as those described above, and a detailed description thereof will be omitted. Examples of the glass member include inorganic glass and organic glass (resin glazing). Examples of the inorganic glass include float plate glass, heat ray absorbing plate glass, abrasive plate glass, template glass, and colored glass such as green glass. The organic glass is synthetic resin glass substituted for inorganic glass. Examples of the organic glass (resin glazing) include a polycarbonate plate and a poly (meth) acrylic resin plate. Examples of the poly (meth) acrylic resin plate include a polymethyl (meth) acrylate plate and the like.
이하, 실시예를 통하여 본 발명을 상세히 설명하나, 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.Hereinafter, the present invention will be described in detail with reference to the embodiments. However, the embodiments described in the specification and the constitutions shown in the drawings are merely the most preferred embodiments of the present invention, and not all of the technical ideas of the present invention are described. It should be understood that there may be various equivalents and variations that may be substituted at the time of filing.
[코팅용액의 제조][Preparation of Coating Solution]
제조예 1Production Example 1
물 15ml에 PVP(중량분자량 40,000)를 잉크 용액 총량에 대하여 5중량%가 되도록 혼합하여 제1용액을 제조하였다. 에탄올 19.1ml에 셀룰로오즈를 잉크 용액 총량에 대하여 1중량%가 되도록 혼합하여 제2용액을 제조하였다. 제조된 각각의 용액에 초음파를 1시간 동안 인가하였다. 질소 분위기 하에서 VO2 입자가 잉크 용액 총량에 대하여 25중량%가 되도록 준비하고, 이를 제1용액과 제2용액을 혼합한 후에 혼합하고 1시간 동안 초음파 처리하여 코팅용 잉크용액을 제조하였다.A first solution was prepared by mixing PVP (weight molecular weight: 40,000) in 15 ml of water to 5% by weight based on the total amount of the ink solution. Ethanol was mixed with 19.1 ml of cellulose so as to be 1% by weight based on the total amount of the ink solution to prepare a second solution. Ultrasonic waves were applied to each of the prepared solutions for 1 hour. In a nitrogen atmosphere, VO 2 particles were prepared so as to be 25 wt% based on the total amount of the ink solution. The first solution and the second solution were mixed and then mixed and sonicated for 1 hour to prepare a coating ink solution.
제조예 2Production Example 2
PVP 3중량%를 사용한 것을 제외하고 제조예 1과 동일한 방법으로 코팅용 잉크용액을 제조하였다.A coating ink solution was prepared in the same manner as in Preparation Example 1 except that 3% by weight of PVP was used.
제조예 3Production Example 3
PVP 6중량%를 사용한 것을 제외하고 제조예 1과 동일한 방법으로 코팅용 잉크용액을 제조하였다.A coating ink solution was prepared in the same manner as in Preparation Example 1 except that 6% by weight of PVP was used.
제조예 4Production Example 4
PVP(Mw:10,000) 5중량%를 사용한 것을 제외하고 제조예 1과 동일한 방법으로 코팅용 잉크용액을 제조하였다.A coating ink solution was prepared in the same manner as in Preparation Example 1 except that 5% by weight of PVP (Mw: 10,000) was used.
제조예 5Production Example 5
PVP(Mw:360,000) 5중량%를 사용한 것을 제외하고 제조예 1과 동일한 방법으로 코팅용 잉크용액을 제조하였다.Except that 5% by weight of PVP (Mw: 360,000) was used as a solvent.
비교제조예 1Comparative Preparation Example 1
물 15ml와 에탄올 19.1ml를 혼합한 후에 VO2 입자 25중량%를 혼합하고 초음파 처리하여 코팅용 잉크용액을 제조하였다.After mixing 15 ml of water and 19.1 ml of ethanol, 25% by weight of VO 2 particles were mixed and ultrasonicated to prepare a coating ink solution.
비교제조예 1과 제조예 1 내지 5에서 제조한 잉크용액을 분산도 측정장비 [TURBISCAN]를 사용하여 TSI값을 측정하고(시료용량 30ml, 유지시간 5시간, 측정횟수 5분당 1회, 온도 25℃) 그 결과를 도 1 및 2에 도시하였다. 도 1은 PVP 함량에 따른 분산도를 도시한 그래프이다. 고분자 분산제인 PVP를 사용하지 않은 비교제조예(PVP 0 wt%)보다 PVP를 3 내지 6 wt%를 사용한 제조예 1 내지 3이 보다 우수한 분산도를 나타내었다. 특히 PVP를 5 wt%를 사용한 제조예 1이 가장 우수한 분산도를 나타내었다. 도 2는 PVP의 분자량에 따른 분산도를 도시한 그래프이다. PVP의 분자량이 40,000인 제조예 1이 10,000과 360,000인 제조예 4 및 5보다 우수한 분산도를 나타내는 것을 알 수 있었다.The TSI values of the ink solutions prepared in Comparative Production Example 1 and Production Examples 1 to 5 were measured using a dispersion degree measuring apparatus [TURBISCAN] (sample volume 30 ml, holding time 5 hours, once every 5 minutes, temperature 25 ° C. The results are shown in FIGS. 1 and 2. 1 is a graph showing the degree of dispersion according to the PVP content. Production Examples 1 to 3 using 3 to 6 wt% of PVP than the comparative preparation example (PVP 0 wt%) in which the polymeric dispersant PVP was not used showed better dispersion. In particular, Production Example 1 using 5 wt% of PVP showed the most excellent dispersion. 2 is a graph showing the degree of dispersion according to molecular weight of PVP. It was found that Production Example 1 having a molecular weight of 40,000 of PVP showed better dispersion than Production Examples 4 and 5 having 10,000 and 360,000.
제조예 6Production Example 6
물 7.5ml와 에탄올 28.5ml를 사용한 것을 제외하고 제조예 1과 동일한 방법으로 코팅용 잉크용액을 제조하였다.A coating ink solution was prepared in the same manner as in Preparation Example 1 except that 7.5 ml of water and 28.5 ml of ethanol were used.
제조예 7Production Example 7
물 22.5ml와 에탄올 9.5ml를 사용한 것을 제외하고 제조예 1과 동일한 방법으로 코팅용 잉크용액을 제조하였다.A coating ink solution was prepared in the same manner as in Preparation Example 1, except that 22.5 ml of water and 9.5 ml of ethanol were used.
물과 에탄올의 중량 비율이 3:1인 제조예 7의 경우 바인더인 셀룰로오즈가 완전히 용해되지 않았다. 셀룰로오즈의 용해도 등을 고려할 때 제조예 1이 가장 적절한 것으로 판단되었다.In the case of Production Example 7 in which the weight ratio of water to ethanol was 3: 1, cellulose as a binder was not completely dissolved. Considering the solubility of cellulose and the like, Production Example 1 was judged to be most appropriate.
[광학 적층체의 제조][Production of optical laminate]
실시예 1Example 1
물 15ml에 PVP(중량분자량 40,000)를 잉크 용액 총량에 대하여 5중량%가 되도록 혼합하여 제1용액을 제조하였다. 에탄올 19.1ml에 셀룰로오즈를 잉크 용액 총량에 대하여 1중량%가 되도록 혼합하여 제2용액을 제조하였다. 제조된 각각의 용액에 초음파를 1시간 동안 인가하였다. 질소 분위기 하에서 VO2 입자가 잉크 용액 총량에 대하여 10중량%가 되도록 준비하고, 이를 제1용액과 제2용액을 혼합한 후에 혼합하고 1시간 동안 초음파 처리하여 코팅용 잉크용액을 제조하였다. 제조된 코팅 용액 0.2ml를 유리 기재상에 스핀코팅장치(ACE-200)를 통하여 도포하였다. 도포 전 유리 표면을 대기압 플라즈마 장비(IDP-1000)를 통하여 산소 분위기 하에서 표면 처리하였다. 스핀 코팅은 회전수를 변경시키며 진행하였다. 1차로 500rpm에서 30초 동안 회전시켜 잉크를 분산시키고, 2차로 3000rpm에서 30초 동안 회전시켜 잔여 잉크를 제거하고, 3차로 400rpm에서 30초 동안 회전시켜 코팅 표면을 안정화시켰다. 광소결 장치를 이용하여 이산화바나듐을 광소결시켜 열변색층을 가지는 광학적층체를 제조하였다. 광소결은 제논 램프에서 인가되는 백색광을 사용하였고, 인가 전압은 2000V, 펄스 수는 50 회, 펄스 폭은 4ms, 소결 분위기는 대기 분위기를 사용하였다.A first solution was prepared by mixing PVP (weight molecular weight: 40,000) in 15 ml of water to 5% by weight based on the total amount of the ink solution. Ethanol was mixed with 19.1 ml of cellulose so as to be 1% by weight based on the total amount of the ink solution to prepare a second solution. Ultrasonic waves were applied to each of the prepared solutions for 1 hour. In a nitrogen atmosphere, VO 2 particles were prepared so as to be 10 wt% based on the total amount of the ink solution. The first solution and the second solution were mixed, and mixed and sonicated for 1 hour to prepare a coating ink solution. 0.2 ml of the prepared coating solution was coated on a glass substrate through a spin coating apparatus (ACE-200). Before the application, the glass surface was surface-treated through an atmospheric pressure plasma apparatus (IDP-1000) under an oxygen atmosphere. The spin coating was carried out by varying the number of revolutions. First, the ink was dispersed by spinning at 500 rpm for 30 seconds, and the second surface was rotated at 3000 rpm for 30 seconds to remove the residual ink, and the surface was stabilized by rotating the surface at 400 rpm for 30 seconds. The optical sintering apparatus was used to photo-sinter the vanadium dioxide to prepare an optical laminate having a thermochromic layer. The light sintering was performed using a white light applied from a xenon lamp. The applied voltage was 2000 V, the number of pulses was 50, the pulse width was 4 ms, and the sintering atmosphere was atmospheric.
실시예 2Example 2
VO2 입자 30중량%를 사용한 것을 제외하고 실시예 1과 동일한 방법으로 광학 적층체를 제조하였다.An optical laminate was prepared in the same manner as in Example 1 except that 30 wt% of VO 2 particles were used.
실시예 3Example 3
VO2 입자 50중량%를 사용한 것을 제외하고 실시예 2와 동일한 방법으로 광학 적층체를 제조하였다.An optical laminate was prepared in the same manner as in Example 2 except that 50 wt% of VO 2 particles were used.
실시예 1 내지 3에서 제조한 광학적층체의 열변색층을 전자현미경으로 촬영한 영상을 각각 도 3 내지 5에 도시하였다. 도 3 내지 5을 통하여 VO2 함량이 너무 낮으면 소결 시 분말간의 결합이 부족할 수 있고, VO2 함량이 너무 높으면 가시광의 투과도가 떨어질 우려가 있다는 것을 확인할 수 있었다.Images obtained by electron microscopy of the thermochromic layer of the optical laminate produced in Examples 1 to 3 are shown in Figs. 3 to 5, respectively. 3 through 5, if the VO 2 content is too low, the bonding between powders may be insufficient during sintering, and if the VO 2 content is too high, the transmittance of visible light may decrease.
실시예 4Example 4
제조예 1에서 제조된 코팅 용액 0.2ml를 유리 기재상에 스핀코팅장치(ACE-200)를 통하여 도포하였다. 도포 전 유리 표면을 대기압 플라즈마 장비(IDP-1000)를 통하여 산소 분위기 하에서 표면 처리하였다. 스핀 코팅은 회전수를 변경시키며 진행하였다. 1차로 500rpm에서 30초 동안 회전시켜 잉크를 분산시키고, 2차로 3000rpm에서 30초 동안 회전시켜 잔여 잉크를 제거하고, 3차로 400rpm에서 30초 동안 회전시켜 코팅 표면을 안정화시켰다. 코팅 후 상온에서 24시간 동안 건조시켜 용매를 제거하였다. 코팅층이 형성된 유리를 관형로에 삽입하고, 질소 분위기 하에서 500℃에서 1시간 동안 가열하여 코팅층 내에 있는 이산화바나듐을 소결시켜 열변색층을 가지는 광학적층체를 제조하였다. 제조된 열변색층의 두께는 약 490 nm이었다.0.2 ml of the coating solution prepared in Production Example 1 was applied onto a glass substrate through a spin coating apparatus (ACE-200). Before the application, the glass surface was surface-treated through an atmospheric pressure plasma apparatus (IDP-1000) under an oxygen atmosphere. The spin coating was carried out by varying the number of revolutions. First, the ink was dispersed by spinning at 500 rpm for 30 seconds, and the second surface was rotated at 3000 rpm for 30 seconds to remove the residual ink, and the surface was stabilized by rotating the surface at 400 rpm for 30 seconds. After coating, the solvent was removed by drying at room temperature for 24 hours. The glass with the coating layer formed thereon was inserted into a tubular furnace and heated at 500 DEG C for 1 hour under a nitrogen atmosphere to sinter the vanadium dioxide in the coating layer to prepare an optical laminate having a thermochromic layer. The thickness of the thermochromic layer produced was about 490 nm.
실시예 5Example 5
코팅층이 형성된 유리를 600℃에서 1시간 동안 가열하여 이산화바나듐을 소결시킨 것을 제외하고 실시예 4와 동일한 방법으로 열변색층을 가지는 광학적층체를 제조하였다. 제조된 열변색층의 두께는 약 470 nm 이었다.An optical laminate having a thermochromic layer was prepared in the same manner as in Example 4, except that the glass on which the coating layer was formed was heated at 600 ° C for 1 hour to sinter the vanadium dioxide. The thickness of the thermochromic layer produced was about 470 nm.
실시예 6Example 6
코팅층이 형성된 유리를 500℃에서 2시간 동안 가열하여 이산화바나듐을 소결시킨 것을 제외하고 실시예 4와 동일한 방법으로 열변색층을 가지는 광학적층체를 제조하였다. 제조된 열변색층의 두께는 약 460 nm 이었다.An optical laminate having a thermochromic layer was prepared in the same manner as in Example 4, except that the glass on which the coating layer was formed was heated at 500 캜 for 2 hours to sinter the vanadium dioxide. The thickness of the thermochromic layer produced was about 460 nm.
실시예 7Example 7
코팅층이 형성된 유리를 500℃에서 3시간 동안 가열하여 이산화바나듐을 소결시킨 것을 제외하고 실시예 4와 동일한 방법으로 열변색층을 가지는 광학적층체를 제조하였다. 제조된 열변색층의 두께는 약 410 nm 이었다.An optical laminate having a thermochromic layer was prepared in the same manner as in Example 4, except that the glass on which the coating layer was formed was heated at 500 캜 for 3 hours to sinter the vanadium dioxide. The thickness of the thermochromic layer produced was about 410 nm.
실시예 8Example 8
코팅층이 형성된 유리를 500℃에서 4시간 동안 가열하여 이산화바나듐을 소결시킨 것을 제외하고 실시예 4와 동일한 방법으로 열변색층을 가지는 광학적층체를 제조하였다. 제조된 열변색층의 두께는 약 350 nm 이었다.An optical laminate having a thermochromic layer was prepared in the same manner as in Example 4, except that the glass on which the coating layer was formed was heated at 500 ° C for 4 hours to sinter the vanadium dioxide. The thickness of the thermochromic layer produced was about 350 nm.
실시예 9Example 9
광소결 장치를 이용하여 이산화바나듐을 광소결시킨 것을 제외하고 실시예 4와 동일한 방법으로 열변색층을 가지는 광학적층체를 제조하였다. 광소결은 제논 램프에서 인가되는 백색광을 사용하였고, 인가 전압은 2000V, 펄스 수는 50 회, 펄스 폭은 4ms, 소결 분위기는 대기 분위기를 사용하였다. 제조된 열변색층의 두께는 약 1.9μm 이었다.An optical laminate having a thermochromic layer was prepared in the same manner as in Example 4, except that vanadium dioxide was photo-sintered using a light sintering apparatus. The light sintering was performed using a white light applied from a xenon lamp. The applied voltage was 2000 V, the number of pulses was 50, the pulse width was 4 ms, and the sintering atmosphere was atmospheric. The thickness of the thermochromic layer produced was about 1.9 mu m.
실시예 10Example 10
펄스 수를 100 회로 변경한 것을 제외하고 실시예 10과 동일한 방법으로 열변색층을 가지는 광학적층체를 제조하였다. 제조된 열변색층의 두께는 약 1.5μm 이었다.An optical laminate having a thermochromic layer was prepared in the same manner as in Example 10, except that the number of pulses was changed to 100. The thickness of the thermochromic layer produced was about 1.5 탆.
실시예 11Example 11
펄스 수를 150 회로 변경한 것을 제외하고 실시예 10과 동일한 방법으로 열변색층을 가지는 광학적층체를 제조하였다. 제조된 열변색층의 두께는 약 800 nm 이었다.An optical laminate having a thermochromic layer was prepared in the same manner as in Example 10, except that the number of pulses was changed to 150. The thickness of the thermochromic layer was about 800 nm.
실시예 12Example 12
펄스 수를 200 회로 변경한 것을 제외하고 실시예 10과 동일한 방법으로 열변색층을 가지는 광학적층체를 제조하였다. 제조된 열변색층의 두께는 약 800 nm 이었다.An optical laminate having a thermochromic layer was prepared in the same manner as in Example 10, except that the number of pulses was changed to 200. The thickness of the thermochromic layer was about 800 nm.
실시예 13Example 13
제조예 1에서 제조된 코팅 용액 0.2ml를 PET 기재상에 스핀코팅장치(ACE-200)를 통하여 도포하였다. 스핀 코팅은 회전수를 변경시키며 진행하였다. 1차로 500rpm에서 30초 동안 회전시켜 잉크를 분산시키고, 2차로 3000rpm에서 30초 동안 회전시켜 잔여 잉크를 제거하고, 3차로 400rpm에서 30초 동안 회전시켜 코팅 표면을 안정화시켰다. 코팅 후 상온에서 24시간 동안 건조시켜 용매를 제거하였다. 광소결은 실시예 9와 동일한 조건으로 실시하여 열변색층을 가지는 광학적층체를 제조하였다. 고분자 기재의 큰 물성 변화 없이 열변색층이 형성되는 것을 확인하였고 이를 도 6에 도시하였다.0.2 ml of the coating solution prepared in Preparation Example 1 was applied onto a PET substrate through a spin coating apparatus (ACE-200). The spin coating was carried out by varying the number of revolutions. First, the ink was dispersed by spinning at 500 rpm for 30 seconds, and the second surface was rotated at 3000 rpm for 30 seconds to remove the residual ink, and the surface was stabilized by rotating the surface at 400 rpm for 30 seconds. After coating, the solvent was removed by drying at room temperature for 24 hours. The optical sintering was carried out under the same conditions as in Example 9 to prepare an optical laminate having a thermochromic layer. It was confirmed that the thermochromic layer was formed without changing the physical properties of the polymer base material, which is shown in Fig.
비교실시예 1Comparative Example 1
스퍼터링 장치를 이용하여 500℃에서 유리 상에 두께 500 nm의 이산화바나듐 층을 형성하였다. A vanadium dioxide layer with a thickness of 500 nm was formed on the glass at 500 DEG C using a sputtering apparatus.
실험예 1 [광학 적층체의 접착력]Experimental Example 1 [Adhesive strength of optical laminate]
접착력(접착강도) 측정 장치인 SAICAS(NN-EX, 일본)를 이용하여 6N의 로드셀, 폭 0.3mm의 팁을 사용하여, 400nm/sec의 속도에서 열변색층의 접착력을 측정하고 결과를 표 1에 나타내었다. 구체적으로 10 X 10 mm 유리에 소결된 열변색층을 시료로 사용하였다. 칼날(Diamond cutting blade, rake angle 20도, clearance angle 10도)이 열변색층 표면부터 접촉면까지 사선으로 파고 들어간 후, 접촉면에서 기재의 계면과 닿으면 칼날에 0.3N의 압력을 가하면서 수평으로 칼날을 진행시켜 열변색층-기재를 분리시키며, 이 때 발생하는 저항값을 N/m로 변환하여 접착강도 값을 산출하였다. 측정 구역은 동일하게 진행하였으며, 최소 3회의 측정 값을 토대로 평균값 및 편차를 산출하였다.The adhesive force of the thermochromic layer was measured at a speed of 400 nm / sec using a 6N load cell and a 0.3 mm wide tip using SAICAS (NN-EX, Japan) Respectively. Specifically, a thermochromic layer sintered in 10 X 10 mm glass was used as a sample. When a blade (rake angle 20 °, clearance angle 10 °) is slanted from the surface of the heat discoloration layer to the contact surface and then touches the interface of the substrate at the contact surface, And the thermochromic layer-substrate was separated. The resistance value generated at this time was converted into N / m to calculate the adhesive strength value. The measurement area was the same and the mean value and deviation were calculated based on at least three measurements.
열소결Heat sintering 접착강도Adhesive strength 광소결Light sintering 접착강도Adhesive strength 스퍼터링Sputtering 접착강도Adhesive strength
실시예 4Example 4 67±0.567 ± 0.5 실시예 9Example 9 94±5.594 ± 5.5 비교예 1Comparative Example 1 37±0.537 ± 0.5
실시예 5Example 5 87±087 ± 0 실시예 10Example 10 128±5128 ± 5 -- --
실시예 6Example 6 78±0.578 ± 0.5 실시예 11Example 11 211±3211 ± 3 -- --
실시예 7Example 7 85±185 ± 1 실시예 12Example 12 153±6153 ± 6 -- --
실시예 8Example 8 73±0.573 ± 0.5 -- -- -- --
측정조건Measuring conditions 접착강도(N/m)Press Load [0.3N], Balance Load [0.030N], Interval [0.2 sec]Adhesive strength (N / m) Press Load [0.3N], Balance Load [0.030N], Interval [0.2 sec]
상기 표 1에 나타낸 바와 같이 용액 공정을 통하여 코팅층을 형성하고 열 또는 광소결을 통하여 형성한 열변색층이 기상 공정을 통하여 형성된 열변색층보다 얇은 두께에서도 우수한 접착강도를 가지는 것을 확인할 수 있었다. As shown in Table 1, it was confirmed that the thermochromic layer formed through the heat treatment or photo-sintering by forming the coating layer through the solution process had an excellent adhesive strength even at a thinner thickness than the thermochromic layer formed through the vapor phase process.
실험예 2 [광학 적층체의 기공률(공극의 면적율)의 측정]Experimental Example 2 [Measurement of porosity (area ratio of pores) of optical laminate]
실시예 10 및 11에서 제조한 광학 적층체에 대한 공극의 면적율을 측정하기 위하여 FE-SEM으로부터 얻어진 이미지를 Image J 프로그램을 활용하여 기공율을 산출하였다. 5,000 배율에서 촬영한 이미지를 도 7 및 도 8에 나타내었다. 실시예 10의 공극 면적율은 29.66%로 측정되었고, 실시예 11의 공극 면적율은 38.35%로 측정되었다. In order to measure the area ratio of the voids to the optical stacks prepared in Examples 10 and 11, the porosity of the images obtained from the FE-SEM was calculated using the Image J program. Images taken at 5,000 magnification are shown in FIGS. 7 and 8. FIG. The void area ratio of Example 10 was measured to be 29.66%, and the void area ratio of Example 11 was measured to be 38.35%.
도 7 및 8에 도시된 바와 같이 용액 공정을 통하여 코팅층을 형성하고 광소결을 통하여 형성한 열변색층은 기공율을 제어할 수 있어, 스퍼터링과 같은 기상 공정에 의해 제조되는 200 내지 400nm 수준의 두께보다 두꺼운 두께를 가지더라도 가시광 투과율을 제어할 수 있다는 것을 확인할 수 있었다.As shown in FIGS. 7 and 8, a thermochromic layer formed by forming a coating layer through a solution process and photo-sintering can control the porosity, and the thickness of the layer formed by the gas phase process such as sputtering It was confirmed that the visible light transmittance can be controlled even if the thickness is thick.
실험예 3 [광학 적층체의 무게 감소율(VO2 함량) 측정]Experimental Example 3 [Measurement of Weight Reduction Rate (VO 2 Content) of Optical Laminate]
실시예 11 및 12에서 제조한 광학 적층체의 무게를 측정하여 일반식 2의 Wi를 측정하고, 시료를 700에서 2시간 동안 열처리한 후 무게를 측정하여 Wf를 측정한 후 일반식 2에 따라 무게 감소율을 계산하였다. The weight of the optical laminate prepared in Examples 11 and 12 was measured, W i of the general formula 2 was measured, the sample was heat-treated at 700 for 2 hours, and the weight was measured to determine W f . The weight reduction rate was calculated accordingly.
실시예 11 및 12 각각 무게감소율은 79.71% 및 86.86%로 계산되었다. 이는 실시예 11 및 12의 열변색층에서 무기물질인 이산화바나듐 입자의 함량이 각각 약 79.71% 및 86.86%라는 것을 의미한다.The weight reduction rates of Examples 11 and 12 were calculated as 79.71% and 86.86%, respectively. This means that the contents of vanadium dioxide particles, which are inorganic substances in the thermochromic layers of Examples 11 and 12, are about 79.71% and 86.86%, respectively.
실험예 4 [광학 적층체의 투과도의 측정]Experimental Example 4 [Measurement of transmittance of optical laminate]
실시예 11에서 제조한 광학 적층체에 대한 투과율을 UV-VIS 광량측정시스템 측정하고(scan rate 1nm/sec) 그 결과를 표 2에 나타내었다. The transmittance of the optical laminate prepared in Example 11 was measured with a UV-VIS light amount measuring system (scan rate 1 nm / sec) and the results are shown in Table 2. [
Pmax P max BPmin BP min OPmin OP min ΔIRΔIR
실시예 11Example 11 43.57%43.57% 75.30%75.30% 41.08%41.08% 34.22%34.22%
비고Remarks Pmax: 200 내지 800nm 영역에서 투과도의 최대값BPmin: 25℃에서 2000 내지 3000nm 영역에서 투과도의 최소값OPmin: 80℃에서 2000 내지 3000nm 영역에서 투과도의 최소값ΔIR = (BPmin - OPmin)P max : maximum value of transmittance in the range of 200 to 800 nm BP min : minimum value of transmittance in the range of 2000 to 3000 nm at 25 캜 OP min : minimum value of transmittance in the range of 2000 to 3000 nm at 80 캜 = (BP min - OP min )
실험예 5 [광학 적층체의 유기물 농도 측정]Experimental Example 5 [Measurement of organic substance concentration in optical laminate]
실시예 4 및 실시예 6에서 제조한 광학 적층체에 대한 깊이 방향에 따른 유기물 농도를 AES 장치가 구비된 XPS을 이용하여 측정하였고, 그 결과를 도 9 및 도 10에 각각 나타내었다. 구체적으로 열변색층이 형성된 기판을 5 x 5 mm 크기로 샘플링하여 표면에서부터 깊이 방향으로 Ar 가스를 충돌시켜 박막을 식각하며 검출되는 원소들의 농도변화를 분석하였다. 4KeV의 빔파워(Beam power)를 사용하여, 약 0.39nm/secd의 etch rate, 4 X 2mm의 etch area, 400 ㎛의 detecting area 조건 하에서 50 초당 1회씩 총 180회를 측정하였다.The organic layer concentration in the direction of depth of the optical laminate prepared in Examples 4 and 6 was measured using XPS equipped with an AES apparatus. The results are shown in FIGS. 9 and 10, respectively. Specifically, the substrate on which the thermochromic layer was formed was sampled at a size of 5 × 5 mm, and the Ar gas was collided from the surface to the depth direction to etch the thin film, and the concentration change of the detected elements was analyzed. Using a beam power of 4 keV, a total of 180 times was measured once every 50 seconds under an etch rate of about 0.39 nm / sec, an etch area of 4 X 2 mm, and a detecting area of 400 μm.
도 7에 도시된 바와 같이, 용액 공정을 통하여 코팅층을 형성하고 광소결을 통하여 형성한 열변색층은 표면에서부터 접촉면으로 갈수록 탄소의 비율이 높아져서 접촉면의 유기물 농도가 표면의 유기물 농도보다. 큰 것을 확인할 수 있었다. 이에 비하여 도 8에 도시한 바와 같이 열소결한 실시예 6는 표면과 접촉면의 유기물 농도가 큰 차이가 없는 것을 확인할 수 있었다.As shown in FIG. 7, the coating layer is formed through a solution process, and the thermochromic layer formed through photo-sintering has a higher carbon content from the surface to the contact surface, so that the organic concentration of the contact surface is higher than the organic concentration of the surface. I could confirm the big thing. On the other hand, as shown in FIG. 8, it can be confirmed that the organic substance concentration on the surface and the contact surface is not greatly different in Example 6 which is heat-sintered.
본 발명에 따르면, 간단한 제조 공정으로 대면적의 광학 적층체를 제조할 수 있고, 열변색 층이 형성되는 기재의 소재에 제한이 없으며, 열변색층과 기재의 접착력이 우수하고, 제어된 가시광 및 적외선 투과 특성을 가지는 광학 적층체를 제공할 수 있다.According to the present invention, it is possible to produce a large-sized optical laminate by a simple manufacturing process, and there is no limitation on the material of the substrate on which the thermochromic layer is formed, excellent adhesion between the thermochromic layer and the substrate, An optical laminate having infrared ray transmission characteristics can be provided.

Claims (26)

  1. 기재; 및materials; And
    상기 기재 상에 형성되는 열변색층을 포함하고,And a thermochromic layer formed on the substrate,
    상기 열변색층과 기재의 접착강도는 50N/m 이상이며,The bonding strength between the heat-coloring layer and the substrate is 50 N / m or more,
    상기 열변색층은 산화바나듐 및 유기물질을 포함하고, 하기 일반식 1을 만족시키는 광학 적층체:Wherein the thermochromic layer comprises vanadium oxide and an organic material, and satisfies the following general formula 1:
    [일반식 1]  [Formula 1]
    Figure PCTKR2017013275-appb-I000005
    Figure PCTKR2017013275-appb-I000005
    상기 일반식 1에서 Wi는 시료의 최초 무게를 나타내고, Wf는 시료를 700℃에서 2시간 동안 열처리한 후 무게를 나타낸다.In the general formula 1, W i represents the initial weight of the sample, and W f represents the weight after heat treatment of the sample at 700 ° C. for 2 hours.
  2. 제 1 항에 있어서, The method according to claim 1,
    상기 열변색층은 하기 일반식 2를 만족시키는 광학 적층체:Wherein the thermochromic layer satisfies the following general formula (2): &lt; EMI ID =
    [일반식 2] [Formula 2]
    5≤S(%)≤405? S (%)? 40
    상기 일반식 2에서 S는 화상해석장치에 의해 시료의 상면을 촬영한 화상을 분석하여 측정한 공극의 면적율을 나타낸다.In the general formula (2), S represents the area ratio of the voids measured by analyzing an image of the upper surface of the sample taken by the image analyzer.
  3. 제 1 항에 있어서, The method according to claim 1,
    상기 열변색층은 하기 일반식 3을 만족시키는 광학 적층체:Wherein the thermochromic layer satisfies the following general formula (3): &lt; EMI ID =
    [일반식 3] [Formula 3]
    Copposite < Ccontact C opposite <C contact
    상기 일반식 3에서 Copposite는 상기 표면에서 측정한 탄소 원자의 함량을 나타내고, Ccontact는 상기 접촉면에서 측정한 탄소원자의 함량을 나타낸다.In the general formula 3, C opposite represents the content of carbon atoms measured on the surface, and C contact represents the content of carbon atoms measured on the contact surface.
  4. 제1항에 있어서, The method according to claim 1,
    기재는 가시광 영역의 평균 투과율이 80% 이상인 광학 적층체. Wherein the substrate has an average transmittance of 80% or more in a visible light region.
  5. 제1항에 있어서, The method according to claim 1,
    기재는 유리, 석영 또는 고분자 필름인 광학 적층체.Wherein the substrate is glass, quartz or a polymer film.
  6. 제5항에 있어서,6. The method of claim 5,
    고분자 필름은 폴리올레핀 필름, 폴리에스테르 필름, 폴리염화비닐, 또는 셀룰로오스 필름인 광학 적층체.Wherein the polymer film is a polyolefin film, a polyester film, a polyvinyl chloride film, or a cellulose film.
  7. 제5항에 있어서,6. The method of claim 5,
    고분자 필름은 1축 이상으로 연신되고, 120℃에서 1시간 동안 노출시 수출율이 3% 미만인 광학 적층체.The polymer film is stretched in more than one axis and has an export rate of less than 3% upon exposure to 120 &lt; 0 &gt; C for 1 hour.
  8. 제1항에 있어서,The method according to claim 1,
    적층체는 200 내지 800nm 영역에서 투과도의 최대값이 40% 이상인 광학 적층체.Wherein the laminate has a maximum value of transmittance of 40% or more in the region of 200 to 800 nm.
  9. 제1항에 있어서,The method according to claim 1,
    적층체는 임계온도 이상의 임의의 온도에서 2000 내지 3000nm 영역에서 투과도의 최소값이 50% 이하인 광학 적층체.Wherein the laminate has a minimum value of transmittance of 50% or less in the region of 2000 to 3000 nm at any temperature above the critical temperature.
  10. 제1항에 있어서,The method according to claim 1,
    적층체는 하기 일반식 4의 조건을 만족시키는 광학 적층체:The laminate is an optical laminate satisfying the following general formula (4)
    [일반식 4][Formula 4]
    BPmin - OPmin ≥ 20BP min - OP min ≥ 20
    상기 일반식 4에서 BPmin는 임계온도 이하의 임의의 온도에서 2000 내지 3000nm에서 투과도의 최소값을 나타내고, OPmin는 임계온도 이상의 임의의 온도에서 2000 내지 3000nm에서 투과도의 최소값을 나타낸다.In the formula (4), BP min represents the minimum value of the transmittance at 2000 to 3000 nm at any temperature below the critical temperature, and OP min represents the minimum value of the transmittance at 2000 to 3000 nm at any temperature above the critical temperature.
  11. 제1항에 있어서,The method according to claim 1,
    산화 바나듐 입자는 1 내지 500nm의 평균직경을 가지는 루틸형 이산화바나듐을 포함하는 광학 적층체.Wherein the vanadium oxide particles comprise rutile vanadium dioxide having an average diameter of 1 to 500 nm.
  12. 제1항에 있어서,The method according to claim 1,
    열변색층의 두께는 0.1 내지 5μm인 광학 적층체.Wherein the thickness of the thermochromic layer is 0.1 to 5 占 퐉.
  13. 산화바나듐 입자를 포함하는 용액을 기재 상에 도포하여 도포층을 형성하는 단계;Applying a solution containing vanadium oxide particles on a substrate to form a coating layer;
    도포층으로부터 용매를 제거하는 단계; 및Removing solvent from the application layer; And
    도포층에 포함되어 있는 산화바나듐 입자를 소결시키는 단계를 포함하는 제1항의 광학 적층제의 제조방법.And sintering the vanadium oxide particles contained in the coating layer.
  14. 제13항에 있어서, 14. The method of claim 13,
    산화바나듐 입자를 포함하는 용액은 산화바나듐 입자; 용매; 고분자 분산제; 및 바인더를 포함하고, 상기 고분자 분산제의 분자량은 10,000 내지 360,000이고, 점도는 1 내지 100cP인 광학 적층제의 제조방법. The solution containing the vanadium oxide particles may be a vanadium oxide particle; menstruum; Polymer dispersant; And a binder, wherein the polymer dispersant has a molecular weight of 10,000 to 360,000 and a viscosity of 1 to 100 cP.
  15. 제14항에 있어서, 15. The method of claim 14,
    고분자 분산제의 함량은 조성물 총 중량에 대하여 1 내지 10 중량%인 광학 적층제의 제조방법. Wherein the content of the polymer dispersant is 1 to 10% by weight based on the total weight of the composition.
  16. 제14항에 있어서, 15. The method of claim 14,
    바인더의 함량은 용액 조성물 총 중량에 대하여 0.1 내지 3 중량%인 광학 적층제의 제조방법.Wherein the content of the binder is 0.1 to 3% by weight based on the total weight of the solution composition.
  17. 제14항에 있어서,15. The method of claim 14,
    용매는 물 및 알코올의 혼합물인 광학 적층제의 제조방법.Wherein the solvent is a mixture of water and an alcohol.
  18. 제17항에 있어서,18. The method of claim 17,
    물 및 알코올 중량비는 1 : 0.5 내지 1.5인 광학 적층제의 제조방법.Water and alcohol weight ratio of 1: 0.5 to 1.5.
  19. 제14항에 있어서,15. The method of claim 14,
    산화바나듐 입자의 함량은 용액 조성물 총 중량에 대하여 1 내지 50중량%인 박막 형성용 조성물.Wherein the content of the vanadium oxide particles is 1 to 50% by weight based on the total weight of the solution composition.
  20. 제 13 항에 있어서,14. The method of claim 13,
    도포층을 형성하는 단계는 스핀 코팅 또는 스프레이 코팅에 의해 수행되는 광학 적층제의 제조방법.Wherein the step of forming the coating layer is performed by spin coating or spray coating.
  21. 코팅층;Coating layer;
    상기 코팅층 상에 형성된 고분자 기재; A polymer substrate formed on the coating layer;
    상기 고분자 기재 상에 형성되고 산화 바나듐 입자를 포함하는 열변색층; 및A thermochromic layer formed on the polymer substrate and comprising vanadium oxide particles; And
    상기 열변색층 상에 형성된 보호층을 포함하고,And a protective layer formed on the thermochromic layer,
    상기 열변색층과 기재의 접착강도는 50N/m 이상이며,The bonding strength between the heat-coloring layer and the substrate is 50 N / m or more,
    상기 열변색층은 산화바나듐 및 유기물질을 포함하고, 하기 일반식 1을 만족시키는 열변색 광학 필름:Wherein the thermochromic layer comprises vanadium oxide and an organic material and satisfies the following general formula 1:
    [일반식 1]  [Formula 1]
    Figure PCTKR2017013275-appb-I000006
    Figure PCTKR2017013275-appb-I000006
    Wi는 시료의 최초 무게를 나타내고, Wf는 시료를 700℃에서 2시간 동안 열처리한 후 무게를 나타낸다.W i represents the initial weight of the sample, and W f represents the weight after heat treatment of the sample at 700 ° C. for 2 hours.
  22. 제 21 항에 있어서, 22. The method of claim 21,
    상기 열변색층은 하기 일반식 2를 만족시키는 열변색 광학 필름:Wherein the thermochromic layer satisfies the following general formula 2:
    [일반식 2] [Formula 2]
    5≤S(%)≤405? S (%)? 40
    상기 일반식 2에서 S는 화상해석장치에 의해 시료의 상면을 촬영한 화상을 분석하여 측정한 공극의 면적율을 나타낸다.In the general formula (2), S represents the area ratio of the voids measured by analyzing an image of the upper surface of the sample taken by the image analyzer.
  23. 제 21 항에 있어서, 22. The method of claim 21,
    상기 열변색층은 하기 일반식 3을 만족시키는 열변색 광학 필름:Wherein the thermochromic layer satisfies the following general formula (3): &lt; EMI ID =
    [일반식 3] [Formula 3]
    Copposite < Ccontact C opposite <C contact
    상기 일반식 3에서 Copposite는 상기 표면에서 측정한 탄소 원자의 함량을 나타내고, Ccontact는 상기 접촉면에서 측정한 탄소원자의 함량을 나타낸다.In the general formula 3, C opposite represents the content of carbon atoms measured on the surface, and C contact represents the content of carbon atoms measured on the contact surface.
  24. 유리; Glass;
    상기 유리상에 형성된 코팅층;A coating layer formed on the glass phase;
    상기 코팅층 상에 형성된 고분자 기재; A polymer substrate formed on the coating layer;
    상기 고분자 기재 상에 형성되고 산화 바나듐 입자를 포함하는 열변색층; 및A thermochromic layer formed on the polymer substrate and comprising vanadium oxide particles; And
    상기 열변색층 상에 형성된 보호층을 포함하고,And a protective layer formed on the thermochromic layer,
    상기 열변색층과 기재의 접착강도는 50N/m 이상이며,The bonding strength between the heat-coloring layer and the substrate is 50 N / m or more,
    상기 열변색층은 산화바나듐 및 유기물질을 포함하고, 하기 일반식 1을 만족시키는 열변색 유리:Wherein the thermochromic layer comprises vanadium oxide and an organic material, the thermochromic glass satisfying the following general formula 1:
    [일반식 1]  [Formula 1]
    Figure PCTKR2017013275-appb-I000007
    Figure PCTKR2017013275-appb-I000007
    상기 일반식 1에서, Wi는 시료의 최초 무게를 나타내고, Wf는 시료를 700℃에서 2시간 동안 열처리한 후 무게를 나타낸다.In the general formula 1, W i represents the initial weight of the sample, and W f represents the weight after heat treatment of the sample at 700 ° C. for 2 hours.
  25. 제 24 항에 있어서, 25. The method of claim 24,
    상기 열변색층은 하기 일반식 2를 만족시키는 열변색 유리:Wherein the thermochromic layer satisfies the following general formula 2:
    [일반식 2] [Formula 2]
    5≤S(%)≤405? S (%)? 40
    상기 일반식 2에서 S는 화상해석장치에 의해 시료의 상면을 촬영한 화상을 분석하여 측정한 공극의 면적율을 나타낸다.In the general formula (2), S represents the area ratio of the voids measured by analyzing an image of the upper surface of the sample taken by the image analyzer.
  26. 제 24 항에 있어서, 25. The method of claim 24,
    상기 열변색층은 하기 일반식 3을 만족시키는 열변색 유리:Wherein the thermochromic layer satisfies the following general formula 3:
    [일반식 3] [Formula 3]
    Copposite < Ccontact C opposite <C contact
    상기 일반식 3에서 Copposite는 상기 표면에서 측정한 탄소 원자의 함량을 나타내고, Ccontact는 상기 접촉면에서 측정한 탄소원자의 함량을 나타낸다.In the general formula 3, C opposite represents the content of carbon atoms measured on the surface, and C contact represents the content of carbon atoms measured on the contact surface.
PCT/KR2017/013275 2017-11-08 2017-11-21 Optical laminate comprising organic/inorganic hybrid thermochromic layer having excellent adhesion using solution process and method for producing same WO2019093566A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020170148252A KR101901605B1 (en) 2017-11-08 2017-11-08 Optical layer comprising the thermochromic layer having good adhesive strength and method for preparing the same using solution process
KR10-2017-0148251 2017-11-08
KR1020170148251A KR101901604B1 (en) 2017-11-08 2017-11-08 Optical layer comprising the thermochromic layer having concentration gradient of organic component and method for preparing the same using intense pulsed light sintering process
KR10-2017-0148252 2017-11-08
KR1020170154461A KR101955207B1 (en) 2017-11-20 2017-11-20 Optical layer comprising the hybrid thermochromic layer having organic and inorganic material and method for preparing the same using solution process
KR10-2017-0154461 2017-11-20

Publications (1)

Publication Number Publication Date
WO2019093566A1 true WO2019093566A1 (en) 2019-05-16

Family

ID=66438497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013275 WO2019093566A1 (en) 2017-11-08 2017-11-21 Optical laminate comprising organic/inorganic hybrid thermochromic layer having excellent adhesion using solution process and method for producing same

Country Status (1)

Country Link
WO (1) WO2019093566A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113372900A (en) * 2021-05-26 2021-09-10 重庆禾维科技有限公司 Thermochromic material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120010857A (en) * 2010-07-27 2012-02-06 삼성에스디아이 주식회사 Thermochromic Smart Window and Method of Manufacturing the Same
JP2012226135A (en) * 2011-04-20 2012-11-15 Dainippon Printing Co Ltd Hologram label
KR20140086326A (en) * 2012-12-28 2014-07-08 전자부품연구원 Vo2 laminate with functionalized graphene for active thermo-chromic smart window
WO2016017611A1 (en) * 2014-07-30 2016-02-04 コニカミノルタ株式会社 Method for producing vanadium dioxide-containing particles, vanadium dioxide-containing particles, dispersion, and optical film
KR20160050913A (en) * 2014-10-31 2016-05-11 부경대학교 산학협력단 Flexible thermochromic film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120010857A (en) * 2010-07-27 2012-02-06 삼성에스디아이 주식회사 Thermochromic Smart Window and Method of Manufacturing the Same
JP2012226135A (en) * 2011-04-20 2012-11-15 Dainippon Printing Co Ltd Hologram label
KR20140086326A (en) * 2012-12-28 2014-07-08 전자부품연구원 Vo2 laminate with functionalized graphene for active thermo-chromic smart window
WO2016017611A1 (en) * 2014-07-30 2016-02-04 コニカミノルタ株式会社 Method for producing vanadium dioxide-containing particles, vanadium dioxide-containing particles, dispersion, and optical film
KR20160050913A (en) * 2014-10-31 2016-05-11 부경대학교 산학협력단 Flexible thermochromic film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113372900A (en) * 2021-05-26 2021-09-10 重庆禾维科技有限公司 Thermochromic material

Similar Documents

Publication Publication Date Title
US6533966B1 (en) Method for preparing suspensions and powders based in indium tin oxide and the use thereof
WO2017200169A1 (en) Hollow aluminosilicate particles and method of manufacturing the same
WO2021206474A1 (en) Radiation cooling device using ceramic nanoparticle mixture
WO2010107282A2 (en) Solar cell back sheet including a fluorine-based copolymer, and method for manufacturing same
WO2015152559A1 (en) Low refractive composition, preparation method therefor, and transparent conductive film
WO2020218725A1 (en) Eco-friendly heat-shielding film using non-radioactive stable isotope and manufacturing method therefor
WO2021167377A1 (en) Multilayer film and laminate comprising same
WO2020080844A1 (en) Heat shielding film and method for manufacturing same
WO2016006787A1 (en) Complex light annealing and sintering method for semiconductor oxide, using intense pulsed light, near infrared ray and far ultraviolet ray
WO2013073845A1 (en) Aqueous dispersion composition, back sheet for an eco-friendly photovoltaic module, and method for manufacturing same
WO2019093566A1 (en) Optical laminate comprising organic/inorganic hybrid thermochromic layer having excellent adhesion using solution process and method for producing same
KR20210043547A (en) The manufacturing method of the Optical layer comprising the thermochromic layer having good optical characteristic controlling photonic evaporation and photonic sintering conditions
WO2022270704A1 (en) Antibacterial coating composition, and method for manufacturing optical film including antibacterial nanoparticles
WO2017176038A1 (en) Basno3 thin film and low-temperature preparation method therefor
WO2016052878A1 (en) Metal nanowire and graphene oxide-based transparent electrode using combined light source, and method for manufacturing same
WO2016064188A1 (en) Porous protective layer for gas sensor, method for producing same, and gas sensor comprising same
WO2018182111A1 (en) Carbon nanotube dispersion solution and preparation method therefor
WO2018034422A1 (en) Vacuum chuck composite and preparation method therefor
WO2021167378A1 (en) Multilayer film and laminate comprising same
WO2015167235A1 (en) Polyester film and method for manufacturing same
KR101955207B1 (en) Optical layer comprising the hybrid thermochromic layer having organic and inorganic material and method for preparing the same using solution process
KR101901604B1 (en) Optical layer comprising the thermochromic layer having concentration gradient of organic component and method for preparing the same using intense pulsed light sintering process
WO2022154481A1 (en) Window film and manufacturing method therefor
WO2019225874A1 (en) Infrared reflective film and manufacturing method thereof
WO2019235722A1 (en) Film for laminating glass, method for manufacturing same, and means of transportation comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931402

Country of ref document: EP

Kind code of ref document: A1