WO2021060788A1 - Graphic cover substrate for solar panel, method for manufacturing same, and solar panel - Google Patents

Graphic cover substrate for solar panel, method for manufacturing same, and solar panel Download PDF

Info

Publication number
WO2021060788A1
WO2021060788A1 PCT/KR2020/012725 KR2020012725W WO2021060788A1 WO 2021060788 A1 WO2021060788 A1 WO 2021060788A1 KR 2020012725 W KR2020012725 W KR 2020012725W WO 2021060788 A1 WO2021060788 A1 WO 2021060788A1
Authority
WO
WIPO (PCT)
Prior art keywords
design
irregularities
unit
solar panel
base member
Prior art date
Application number
PCT/KR2020/012725
Other languages
French (fr)
Korean (ko)
Inventor
김충의
최정훈
김정규
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2021060788A1 publication Critical patent/WO2021060788A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a graphic cover substrate for a solar panel, a method for manufacturing the same, and a solar panel, and in more detail, a graphic cover substrate for a solar panel with improved structure and process and a method for manufacturing the same, and including the same It relates to solar panels.
  • a solar panel In general, when a solar panel is installed in a building, it is installed on a roof or a roof. However, in apartments and high-rise buildings, the size of solar panels that can be installed on the roof or roof is limited, making it difficult to efficiently utilize sunlight. Accordingly, in recent years, research on a solar panel having an integrated building structure that is installed on the exterior wall of a building and the like and integrated with the building has been actively conducted. When a solar panel having a building-integrated structure is applied, photoelectric conversion can be performed in a large area of the outer wall of the building, so that sunlight can be effectively used.
  • a graphic cover substrate having a certain color, design, etc. may be used in the solar panel having such a building-integrated structure.
  • the conventional graphic cover substrate including a glass substrate it has been difficult to reproduce the feeling of building materials or natural objects, for example, stone, wood, and brick, which are generally used in buildings due to high glossiness due to glass.
  • a graphic cover substrate manufactured by attaching a colored film to a glass substrate such as Japanese Patent No. 3717369, has a high gloss and has a different feeling from other building materials, so that aesthetics can be degraded.
  • the colored film may not be uniformly adhered to the glass substrate, or the durability and adhesive properties of the colored film are not excellent, so problems such as peeling or damage may occur if used for a long time.
  • An object of the present invention is to provide a graphic cover substrate for a solar panel, a method of manufacturing the same, and a solar panel including the same, which can improve aesthetics and appearance.
  • a graphic cover substrate for solar panels and a method of manufacturing the same which is suitable for solar panels having an integrated building structure, and that can reduce the sense of heterogeneity with other building materials by lowering the gloss through a simple structure and process, and including the same.
  • the first cover member has a gloss reduction portion having an uneven shape for reducing the gloss of the first base member, and a design portion formed on the first base member and composed of an oxide ceramic composition.
  • the gloss reduction unit serves to reduce gloss and may help to implement a design to be additionally expressed, and the design unit may be a part representing colors, images, etc. for realizing the design to be expressed.
  • the solar panel may further include a solar cell, a sealing material that surrounds and seals the solar cell and has the first cover member positioned on one surface thereof, and a second cover member positioned on the other surface of the sealing material.
  • the gloss reduction unit may have a random structure. There may be a plurality of portions having different arrangement relationships between the design portion and the gloss reduction portion.
  • the design part may have a regular structure in the cover area in which the design part is formed.
  • the gloss reduction unit may be provided in an intaglio or embossed shape formed on the surface of the first base member.
  • the gloss reduction unit may be configured as a non-design irregularity having a shape or a flat shape irrelevant to the design to be expressed by the design unit.
  • the gloss reduction unit may be configured with design irregularities that implement at least a part of a design to be expressed by the design unit.
  • the design irregularities may be formed to be less than 50% of the total area of the first cover member.
  • the gloss reduction unit may be formed of uneven coating formed on the first base member. At least a portion of the coating irregularities may be formed on the design portion, or a portion of the design portion may be formed on the coating irregularities.
  • the coating irregularities may be composed of an oxide ceramic composition having a color, brightness, or saturation different from the design portion, and the thickness of the coating irregularities may be greater than the thickness of the design portion.
  • the gloss reduction part may be located on the outer surface side of the first cover member.
  • a light diffusion unit having a concave or embossed shape having a regular structure may be formed on the inner surface of the first base member.
  • the gloss reduction unit is composed of non-design irregularities having a flat shape or a shape irrelevant to the design to be expressed by the design unit provided in intaglio and relief shapes formed on the surface of the first base member, and the non-design irregularities
  • the surface roughness may be smaller than the maximum size of the light diffuser.
  • the gloss reduction unit is composed of design irregularities that implement at least a part of the design to be expressed by the design unit provided in intaglio and embossed shapes formed on the surface of the first base member, and the number of peaks or valleys of the light diffusion unit The number of design irregularities may be smaller than that.
  • the first base member may include a glass substrate, and the glass substrate may include a low iron content glass substrate having an iron oxide content of less than 150 ppm.
  • the design part may be composed of a glassy oxide ceramic composition.
  • the graphic cover substrate for a solar panel may include a glass substrate, a gloss reduction unit having an uneven shape for reducing the gloss of the glass substrate, and a design unit composed of an oxide ceramic composition.
  • the gloss reduction unit may have an irregular structure.
  • the design part may have a regular structure in the cover area in which the design part is formed.
  • the graphic cover substrate for a solar panel includes: forming a design forming layer composed of an oxide ceramic composition and a gloss reduction unit having an uneven shape for reducing gloss on a non-reinforced glass substrate, a substrate preparation and application step; And a strengthening step of forming a design unit integrated with the glass substrate from the design forming layer while strengthening or semi-strengthening the non-reinforced glass substrate by heat strengthening by heat treatment or annealing.
  • the substrate preparation and application step may include preparing the non-reinforced glass substrate having the gloss reduction unit formed in at least one of an embossed shape and an engraved shape on a surface, a substrate preparation step; And forming the design formation layer on the non-reinforced glass substrate, a coating step.
  • the gloss reduction unit is composed of non-design irregularities having a shape or a flat shape that is not related to the design to be expressed by the design unit, and in the substrate preparation step, the gloss reduction unit performs one of a chemical etching, sand blasting process, and a polishing process. It can be formed by using.
  • the gloss reduction unit may be composed of design irregularities that implement at least a part of the design to be expressed by the design unit, and the gloss reduction unit may be formed by a sand blast process or a roller process in the substrate preparation step.
  • the gloss reduction unit may be formed of uneven coating formed on the non-reinforced glass substrate.
  • the preparing and applying the substrate may include applying a ceramic material layer for forming coating irregularities and the design forming layer for forming the design part on the non-reinforced glass substrate.
  • the coating unevenness and the design portion integrated with the glass substrate may be formed from the ceramic material layer and the design formation layer.
  • the first cover member or the graphic cover substrate which is a graphic cover substrate, is provided with a gloss reduction unit together with a design unit so that the solar panel is recognized as a building material, a building, etc., thereby reducing a sense of heterogeneity.
  • the solar panel can have a shape such as wood, leaves, stone, charcoal, brick, concrete, and building panels. Accordingly, it is possible to have excellent aesthetics and appearance while maintaining excellent output of the solar panel.
  • FIG. 1 is a diagram schematically showing an example of a building to which a solar panel according to an embodiment of the present invention is applied.
  • FIG. 2 is an exploded perspective view schematically showing a solar panel according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view taken along line III-III of FIG. 2.
  • FIG. 4 is a plan view illustrating a first cover member included in the solar panel shown in FIG. 2.
  • FIG. 5 is a schematic cross-sectional view taken along line V-V of FIG. 4.
  • FIG. 6 is a schematic partial cross-sectional view of a part of a first cover member according to a modification of the present invention.
  • FIG. 7 is a flowchart illustrating an example of a method of manufacturing a first cover member according to an embodiment of the present invention.
  • 8A to 8D are cross-sectional views illustrating each step of the method of manufacturing the first cover member shown in FIG. 7.
  • FIG. 9 is a schematic plan view showing a gloss reduction unit and a design unit included in a first cover member according to another embodiment of the present invention.
  • FIG. 10 is a partial cross-sectional view schematically illustrating a first cover member taken along line X-X of FIG. 9.
  • FIG. 11 is a partial cross-sectional view schematically showing a part of a first cover member according to another modified example of the present invention.
  • FIG. 12 is a partial cross-sectional view schematically showing a part of a first cover member according to still another modified example of the present invention.
  • FIG. 13 is a plan view schematically showing a gloss reduction unit and a design unit included in the first cover member according to another embodiment of the present invention.
  • FIG. 14 is a partial cross-sectional view schematically showing the first cover member shown in FIG. 13.
  • 15 is a partial cross-sectional view schematically showing a part of a first cover member according to still another modified example of the present invention.
  • 16 is a partial cross-sectional view schematically showing a part of a first cover member according to still another modified example of the present invention.
  • FIG. 1 is a diagram schematically showing an example of a building 1 to which a solar panel 100 according to an embodiment of the present invention is applied.
  • the solar panel 100 is, for example, a building-integrated structure applied to an outer wall surface (eg, a vertical wall 3, a roof surface, etc.) It may be a solar panel having. However, the present invention is not limited thereto, and the solar panel 100 may be installed on the roof of the building 1 or in a place other than the building 1.
  • the solar panel 100 may generate electric power using sunlight supplied from the sun, including a solar cell (reference numeral 150 in FIG. 2 ).
  • the solar panel 100 is a graphic cover substrate having a certain color, image, pattern, feeling, texture, etc. or provided with a certain figure, character, etc. (for example, a first cover member (reference numeral in FIG. 2 )). 110, hereinafter the same)) may be included.
  • the aesthetics and appearance of the solar panel 100 and the building 1 including the solar panel 100 may be improved by the color of the graphic cover substrate.
  • the solar panel 100 will be described in more detail with reference to FIGS. 2 to 5 together with FIG. 1.
  • FIG. 2 is an exploded perspective view schematically illustrating a solar panel 100 according to an embodiment of the present invention
  • FIG. 3 is a schematic cross-sectional view taken along line III-III of FIG. 2.
  • 4 is a plan view illustrating an example of a first cover member included in the solar panel shown in FIG. 2
  • FIG. 5 is a schematic cross-sectional view taken along line V-V of FIG. 4.
  • FIG. 2 schematically shows the first cover member 110 and the second cover member 120 and does not show the design part 114, the gloss reduction part GR, and the cover part 124,
  • the structure of the solar cell 150 is not shown in detail.
  • the solar panel 100 includes a solar cell 150, a sealing material 130 surrounding and sealing the solar cell 150, and on the sealing material 130.
  • a first cover member (front member) 110 located on one side (for example, the front side) of the solar cell 150 and having a design unit 114 that implements a specific color, image, pattern, feel, or texture, and , It may include a second cover member (rear member) 120 located on the other surface (for example, the rear) side of the solar cell 150 on the sealing material 130.
  • at least one of the first cover member 110 and the second cover member 120 may be a graphic cover substrate having a specific color or the like.
  • At least one of the first cover member 110 and the second cover member 120 constituting the graphic cover substrate (especially, the first cover member 110) has an uneven shape that reduces gloss. It includes a gloss reduction unit GR and a design unit 114 made of an oxide ceramic composition. This will be described in more detail.
  • the solar cell 150 may include a photoelectric conversion unit that converts the solar cell into electrical energy, and an electrode that is electrically connected to the photoelectric conversion unit to collect and transmit current.
  • the solar cell 150 may be a solar cell generating electric energy from light in a wavelength range of at least 90 nm to 1400 nm (eg, 100 nm to 1200 nm).
  • the photoelectric conversion unit may be composed of a crystalline silicon substrate (eg, a silicon wafer), and a conductive type region including a dopant or a conductive type region formed on or on the crystalline silicon substrate. I can.
  • the solar cell 150 based on the crystalline silicon substrate having high crystallinity and low defects has excellent electrical characteristics.
  • an anti-reflection film for preventing the incidence of light may be positioned on the front surface of the solar cell 150, and the solar cell 150 has a certain color (for example, blue, black, etc.) due to constructive interference by the anti-reflection film.
  • the antireflection layer may be formed by vapor deposition or sputtering.
  • an organic dye or an inorganic pigment may be placed on the antireflection film by film formation, printing, spraying, or the like so that the solar cell 150 has a certain color.
  • a plurality of solar cells 150 are provided while being spaced apart from each other, and a plurality of solar cells 150 are electrically connected in series, parallel, or serially parallel by wiring units 142 and 145 to form a solar cell unit.
  • SP can be configured.
  • a plurality of solar cells 150 may be connected in series by a wiring member 142 to form a solar cell string extending long along a first direction (z-axis direction in the drawing).
  • a bus ribbon 145 extending in a second direction crossing the first direction (the x-axis direction in the drawing) may be provided at an end of the solar cell string.
  • the bus ribbon 145 may be connected to both ends of the wiring member 142 of the solar cell string.
  • the bus ribbon 145 may connect adjacent solar cell strings in a second direction in series, parallel, or serially parallel, or connect the solar cell strings to a junction box that prevents reverse current flow.
  • the wiring portions 142 and 145 may have a wide portion having a width of 1 mm or more, and a colored member 160 is provided to prevent such a wide portion from being easily recognized from the outside. Can be.
  • the colored member 160 may have a specific color (for example, black, gray, or the same or similar color as the solar cell 150), and may have a different reflectivity from the wide portion of the wiring parts 142 and 145. have.
  • the colored member 160 may be formed in a film form, a sheet form, or a tape form having a thickness of 1 mm or less, and may be positioned at a desired position in various ways.
  • the colored member 160 may be positioned by being cohesion or adhesion to the solar cell unit SP (in particular, the bus ribbon 145).
  • the colored member 160 may be fixed to the solar cell unit SP by the sealing material 130 in the lamination process while the colored member 160 is placed on the solar cell unit SP (for example, the bus ribbon 145).
  • the colored member 160 may be formed on the solar cell unit SP (for example, the bus ribbon 145) by surface coating or the like.
  • adhesion refers to an adhesive strength that allows two layers to be attached or separated from each other by physical force at room temperature
  • adhesion refers to two layers being attached to each other through heat treatment to separate the two layers. When doing so, it may mean that one of the layers is damaged.
  • the size, shape, and arrangement of the colored member 160 may be variously modified.
  • the present invention is not limited thereto, and structures and methods of the solar cell 150, the wiring portions 142 and 145, and the colored member 160 may be variously modified.
  • the solar cell 150 may have various structures such as a compound semiconductor solar cell, a silicon semiconductor solar cell, a dye-sensitized solar cell, or only one solar cell 150 may be provided.
  • various structures and shapes capable of connecting the solar cells 150 such as ribbons and wires to the wiring material 142 may be applied, and materials, shapes, and connection structures of the bus ribbon 145 may be variously modified.
  • the present embodiment is not limited to the number, structure, shape, etc. of the wiring portions 142 and 145 used in each solar cell 150.
  • the sealing material 130 includes a first sealing material 131 and a solar cell 150 (more specifically, a solar cell unit SP) and a first cover member 110 positioned between the solar cell 150 (more specifically, the solar cell unit SP). As a result, it may include first and second sealing materials 131 and 132 positioned between the solar cell unit SP and the second cover member 120.
  • the first sealing material 131 and the second sealing material 132 prevent the inflow of moisture and oxygen, and chemically couple the elements of the solar panel 100.
  • the first and second sealing materials 131 and 132 may be formed of an insulating material having light-transmitting properties and adhesive properties.
  • first sealing material 131 and the second sealing material 132 ethylene vinyl acetate copolymer resin (EVA), polyvinyl butyral, silicon resin, ester resin, olefin resin (for example, polyolefin), etc. Can be used.
  • the first or second sealing materials 131 and 132 may include one layer or two or more layers.
  • the solar cell unit (SP) including the second cover member 120, the second sealing material 132, the solar cell 150, and the wiring units 142, 145, the colored member 160, and the first by a lamination process, etc.
  • the sealing material 131 and the first cover member 110 may be integrated to constitute the solar panel 100.
  • the first sealing material 131 and the second sealing material 132 are shown to have a certain boundary, but in reality, they are integrated by a lamination process and may be in an integrated state without having a boundary.
  • first and second sealing materials 131 and 132 may include various materials other than those described above, and may have various shapes.
  • the first cover member 110 is positioned on the sealing material 130 (for example, the first sealing material 131) to constitute one surface (for example, the front surface) of the solar panel 100, and the second cover member ( 120) is located on the sealing material 130 (for example, the second sealing material 132) to configure the other surface (for example, the rear surface) of the solar panel 100.
  • Each of the first cover member 110 and the second cover member 120 may be formed of an insulating material capable of protecting the solar cell 150 from external shock, moisture, and ultraviolet rays.
  • the first cover member 110 may have light transmittance through which light may be transmitted so as not to block light incident on the solar cell 150.
  • the second cover member 120 may have various characteristics such as light-transmitting, non-transmitting, semi-transmitting, or reflective properties.
  • the first and second cover members 110 and 120 are graphic cover substrates that allow the solar panel 100 to have a desired appearance such as a specific color, image, pattern, feel, texture, etc., or It may be a colored cover substrate that mainly serves to prevent the battery 150 or the wiring portions 142 and 145 connected thereto from being clearly recognized.
  • the first cover member 110 positioned on the front surface of the solar cell 150 may be a graphic cover substrate
  • the second cover member 120 may be a colored cover substrate.
  • the present invention is not limited thereto, and various modifications are possible.
  • the first cover member 110 which is a graphic cover substrate, includes a gloss reduction unit GR having an uneven shape for reducing gloss, and a design unit consisting of an oxide ceramic composition and expressing a specific color, image, pattern, etc. 114).
  • the design part 114 allows the solar panel 100 to have a desired appearance and additionally prevents the solar cell 150 and the wiring parts 142 and 145 from being easily recognized from the outside.
  • the first cover member 110 may include a first base member 112 having a gloss reduction portion GR formed on a surface thereof, and a design portion 114 positioned on the first base member 112. .
  • the first base member 112 may be made of a material having excellent light transmittance (for example, transparent).
  • the first base member 112 may be a glass substrate, a substrate made of a resin (for example, polycarbonate, etc.), a film, a sheet, etc., and may be composed of a single layer or a plurality of layers. have.
  • the first base member 112 may be made of a reinforced or semi-reinforced glass substrate having excellent transparency, excellent insulating properties, stability, durability, and fire resistance.
  • the first cover member 110 when the solar panel 100 is used as an exterior material of the building 1, the first cover member 110 must have sufficient strength to withstand external impacts such as wind pressure, hail, and snow load.
  • the first cover member 110 or the first base member 112 may have a deflection of 5 mm or less, or a minimum thickness of 2 mm or more, generated in the direction of receiving the force when a force of 2400 Nm2 is applied.
  • the minimum thickness of the first cover member 110 or the first base member 112 is 2mm or more (for example, 2.8mm to 12mm, more specifically, 2.8mm to 8mm), and the area is 0.04 to 10m2
  • These figures take the strength, weight, structural stability, productivity, etc. of the solar panel 100 into consideration, but the present invention is not limited thereto, and the warpage value, thickness, area, etc. may be changed.
  • the first base member 112 has a light transmittance of 80% or more (for example, 85% or more) for light having a wavelength of 380 nm to 1200 nm.
  • Glass substrate may mean a glass substrate having an iron oxide content of less than 150 ppm.
  • the present invention is not limited thereto, and may include a glass substrate recognized as a low iron glass substrate in the technical field to which the present embodiment belongs. In this way, when a low-iron glass substrate is used as the first base member 112, reflection of sunlight can be prevented, the transmittance of sunlight can be increased, and the solar cell 150 can be effectively protected from external impact.
  • the gloss unit is high as 150GU or more (for example, about 200GU) without any other treatment, It can have a different feeling from building materials. Accordingly, even if the design portion 114 is formed on the first base member 112 made of a glass substrate, it may be difficult to recognize the first cover member 110 as a shape such as a building material or a natural object. That is, even if the graphic cover substrate is provided, it may be difficult to recognize the solar panel 100 as a shape of wood, leaves, stone, charcoal, brick, concrete, building panels, etc. due to the high glossiness of the glass substrate. Accordingly, in this embodiment, in addition to the design part 114, the gloss reduction part GR is formed to reduce the glossiness of the first cover member 112, thereby making the first cover member 110 It can be recognized as a shape.
  • the design unit 114 includes achromatic colors such as white, gray, black, etc., or chromatic, transparent or translucent characteristics such as red, yellow, green, blue, etc. so that the solar panel 100 has a desired color, image, pattern, etc., It may have a matte or glossy property, a property different from that of the first base member 112 made of a glass substrate, or the like, alone or in combination.
  • achromatic colors such as white, gray, black, etc.
  • chromatic, transparent or translucent characteristics such as red, yellow, green, blue, etc.
  • the design part 114 may be made of an oxide ceramic composition.
  • the design part 114 is a ceramic frit (glass frit) (reference numeral 1144 in FIG. 8B, the same hereinafter), a dye (reference numeral 1142 in FIG. 8B, the same hereinafter), a resin (reference numeral 1146 in FIG. 8B, the same hereinafter) It may be formed using a design forming layer including the like (reference numeral 1140 in FIG. 8B, hereinafter the same).
  • the design formation layer 1140 diffuses and penetrates into the interior of the first base member 112 in a process of strengthening or semi-strengthening the glass substrate constituting the first base member 112 (hereinafter, the glass strengthening step) to form a glass substrate. It may be formed integrally with the first base member 112 while forming a composition gradient portion that is mixed with the material constituting the material.
  • the glass strengthening step a process of strengthening or semi-strengthening the glass substrate constituting the first base member 112 to form a glass substrate. It may be formed integrally with the first base member 112 while forming a composition gradient portion that is mixed with the material constituting the material.
  • the boundary between the first base member 112 and the design unit 114 is composed of an unclear boundary, but the first base member 112 and the design unit 114 may have an integrated form.
  • the unclear boundary is composed of a mixture of a material included in the first base member 112 (for example, a material constituting a glass substrate) and a material included in the oxide ceramic composition constituting the design unit 114
  • This variable composition gradient portion may mean that there is a certain thickness or more (for example, 50 nm or more).
  • the first base member 112 and the composition gradient portion contain at least one of the same material, the composition is partially different, and the composition gradient portion and the design portion 114 contain at least one of the same material, and the composition is partially different.
  • the first base member 112 and the design portion 114 may have a form integrated with each other by a composition gradient portion.
  • the first cover member 110 may be composed of a first base member 112 composed of a reinforced or semi-reinforced glass substrate in which the design part 114 composed of an oxide ceramic composition is integrated in a portion in the thickness direction. According to this, the design portion 114 is formed integrally with the first base member 112 so that physical durability and chemical durability may be excellent.
  • the design unit 114 may be formed of an oxide ceramic composition having an amorphous glass structure.
  • the design part 114 may be composed of a glassy oxide ceramic composition.
  • the design unit 114 includes a plurality of metal compounds (eg, metal oxides) including a plurality of metals and non-metals (eg, oxygen) included in the ceramic frit 1144 and/or the pigment 1142 It is formed as a result, and may have an oxygen polyhedron having an irregular network structure including a plurality of metals and oxygen, a glass structure, an irregular network structure, and the like.
  • Whether the design part 114 is provided with an oxide ceramic composition can be determined by X-ray photoelectron spectroscopy (XPS) or the like.
  • the above-described oxide ceramic composition may be formed by heat treatment at a temperature lower than a temperature for forming a general oxide ceramic to have an amorphous glass structure.
  • the oxide ceramic composition having a glass structure in an amorphous state may not contain a crystalline portion or may contain only partially.
  • the amorphous portion may be the same as or more than the crystalline portion, and in particular, the amorphous portion may be included more than the crystalline portion.
  • the oxide ceramic composition having an amorphous glass structure may have a crystallinity of 50% or less (more specifically, less than 50%, for example, 20% or less).
  • the conventional oxide ceramic refers to an inorganic non-metallic material produced at high temperature and high pressure as an oxide in which ionic bonds, covalent bonds, or bonds thereof are mixed. These oxide ceramics are heat-treated under a high temperature of 850° C. or higher (eg, around 1400° C.) and high pressure to have most of them crystallized.
  • the design part 114 may include the ceramic frit 1144 as a basic material (eg, a material included most, a material included in an amount of 50 parts by weight or more).
  • the design unit 114 may further include a pigment 1142 and an additive added as necessary.
  • the resin 1146 included in the design forming layer 1140 may be volatilized in the glass reinforcing step, the design portion 114 may or may not include the resin 1146. Even when the dye 1142 is included in the design part 114, the distinction between the ceramic frit 1144 and the dye 1142 of the design part 114 may not be clear.
  • the metal of the material included as the pigment 1142 may exist in a form including metal such as an oxygen polyhedron constituting the ceramic frit 1144, a glass structure, and an irregular network structure.
  • the ceramic frit 1144 included in the design unit 114 may be determined by various component analysis methods (eg, scanning electron microscope-energy dispersive spectroscopy (SEM-EDX), etc.).
  • the design unit 114 is composed of an oxide ceramic composition (especially, an oxide ceramic composition having an amorphous glass structure), and has a specific light transmittance form according to a wavelength, a surface roughness, and the like, so that the design unit 114 ), even if the light transmittance is slightly lowered, it is possible to prevent or minimize the decrease in the output of the solar panel 100.
  • the design unit 114 described above may have a larger refractive index (for example, a refractive index of 1.48 or more) than the first base member 112 or the sealing material 130.
  • the first transmittance which is the average light transmittance for the light in the infrared region
  • the second transmittance which is the average light transmittance for the light in the visible region. Equal to or greater than the transmittance.
  • the first transmittance may be greater than the second transmittance.
  • the design unit 114 which has an amorphous glass structure made of an oxide ceramic composition, has an average light transmittance for light in the ultraviolet region than the first and second transmittances, which are average light transmittances for each of the infrared and visible light.
  • Phosphorus third transmittance may be smaller.
  • light in the ultraviolet region may be defined as light having a wavelength of 100 nm to 380 nm
  • light in the visible region may be defined as light having a wavelength of 380 nm to 760 nm
  • light in the infrared region may be defined as light having a wavelength of 760 nm to 1200 nm.
  • the average light transmittance may be defined as an average of normalized transmittance so as not to reflect the light transmittance of the first base member 112.
  • the tendency of the first transmittance to be equal to or greater than the second transmittance is maintained. This tendency may be realized by the heat treatment temperature and cooling rate in the glass reinforcing step.
  • the first transmittance is equal to or greater than the second transmittance, the amount of light in the infrared region among the light passing through the first cover member 110 and reaching the solar cell 150 even when the design part 114 is provided. It may be equal to or greater than the amount of light in this visible region. Accordingly, even when the light transmittance is slightly lowered by the design unit 114, a large amount of light in the infrared region reaches the solar cell 150 and can be used effectively. Accordingly, even if the light transmittance is slightly lowered by the design unit 114, the photoelectric conversion efficiency of the solar cell 150 or the output of the solar cell panel 100 may be prevented or minimized from being lowered.
  • the first and second transmittances may be greater than the third transmittance, respectively.
  • the design part 114 has a higher refractive index than the first base member 112 composed of a glass substrate including ceramic frit 1144, a pigment 1142, and additives, and a first base member composed of a glass substrate depending on the material. This is because it has an extinction coefficient higher than (112). Light in the ultraviolet region does not have a large contribution to the photoelectric conversion efficiency of the solar cell 150 and the output of the solar panel 100, and has high photon energy, so the solar cell 150 and the sealing material 130 It may cause deformation of the back, change of characteristics, etc.
  • the design unit 114 serves to reduce the transmittance of light in the ultraviolet region by scattering, blocking, or absorbing light in the ultraviolet region. Accordingly, the photoelectric conversion efficiency of the solar cell 150, the deformation of the solar cell 150, the sealing material 130, etc., which may be caused by ultraviolet rays without having a large impact on the output of the solar cell panel 100, change in characteristics, etc. Can be minimized.
  • the design part 114 may have a first transmittance greater than the second transmittance by 2% or more.
  • the first difference between the first transmittance and the second transmittance may be greater than the second difference between the second transmittance and the third transmittance.
  • the solar panel 100 may more effectively use light in the infrared region.
  • the above-described light transmittance may be measured by various methods, and it may be measured by a method capable of measuring both the transmittance of vertical light (normal transmittance) and the transmittance of scattered light (diffused transmittance).
  • the light transmittance can be measured by a standard measurement method such as ISO 9050:2003, BS EN 14500:2008, and the like.
  • the spectral response (ie, short-circuit current density (Isc) or output generated at a specific wavelength of light) and quantum efficiency of the solar cell 150 based on single crystal silicon in light in the infrared region is high.
  • the average light transmittance of light in the infrared region having high spectral response and quantum efficiency is improved, so that even when the light transmittance is slightly decreased by the design unit 114 that implements a specific color, feel, texture, etc.
  • the light in the area can be used effectively. Accordingly, even when the design unit 114 is formed, the photoelectric conversion efficiency of the solar cell 150 or the output of the solar cell panel 100 can be maintained at a high value. Since light in the ultraviolet region has a very low spectral response and quantum efficiency, even if the third transmittance of the design unit 114 is low, the photoelectric conversion efficiency of the solar cell 150 or the output of the solar panel 100 is large. Does not affect
  • the design portion 114 may have a porosity by having a bubble (114V).
  • the resin 1146 or additives provided in the ceramic material layer or the design forming layer 1140 volatilize, leaving air bubbles (114V) in the corresponding part. can do.
  • bubbles 114V are present inside the design unit 114, light incident on the solar panel 100 may be dispersed from the bubbles 114V and diffused widely. More specifically, when the design unit 114 includes the air bubbles 114V, diffused transmittance and diffused transmittance occur together, resulting in hemispherical transmittance.
  • the design unit 114 may be located in a portion corresponding to an area between the solar cells 150.
  • bubbles 114V of the design unit 114 may be provided by scattering light so that the air bubbles 114V of the design unit 114 have a hemispherical transmission shape toward the outside of the solar panel 100.
  • anti-glare characteristics may be improved.
  • bubbles 114V having a size of 0.1 ⁇ m or more may be provided. In the size of the bubbles 114V, the effect of the bubbles 114V can be maximized.
  • the present invention is not limited thereto. If the ceramic material layer constituting the design unit 114 or the material particles constituting the design formation layer 1140 have a small particle diameter, the manufacturing process can be simplified and manufacturing cost can be reduced. To this end, the ceramic material layer or the design formation layer 1140 may not include a specific additive, and in this case, the air bubbles 114V may not be provided in the design portion 114. Other variations are possible.
  • the size, area ratio, presence, etc. of the bubbles 114V are determined by the ceramic material layer, the design forming layer 1140, or the design portion 114 (or the pigment 1142 contained therein, the ceramic frit 1144), and the resin ( 1146), additives, etc.), a ceramic material layer, a design forming layer 1140, or a manufacturing method of the design unit 114, a process condition, and the like.
  • the surface of the design portion 114 (that is, the surface located far from the first base member 112) is a surface larger than the surface of a general glass substrate (for example, the outer surface of the second base member 112) It can have roughness.
  • the design part 114 has pores (114V)
  • the surface roughness of the design part 114 including the pores (114V) has a considerably larger value than that of a general glass substrate, thereby effectively inducing light scattering. can do.
  • the design part 114 can effectively induce light scattering due to the high surface roughness at the interface and/or the surface of the design part 114.
  • the design unit 114 when the design unit 114 is located in a corresponding portion between the solar cells 150 (that is, the non-effective area NA), light caused by scattering from the design unit 114 is transmitted to the solar cell 150 Can be used for photoelectric conversion. Accordingly, the photoelectric conversion efficiency of the solar cell 150 and the output of the solar cell panel 100 can be maintained high.
  • the design part 114 may have a thickness of 20 ⁇ m or less, and may have a thickness of 1 ⁇ m or more.
  • the thickness of the design part 114 may vary according to the manufacturing process of the design part 114. When the thickness of the design part 114 exceeds 20 ⁇ m, the light transmittance may be reduced as a whole, and phenomena such as peeling or cracking of the design part 114 may occur.
  • the design part 114 can play a role of alleviating tensile stress in the glass reinforcing step, when the thickness of the design forming layer 1140 or the design part 114 is increased, the first base member 112 is strengthened. You can make sure it doesn't do what you want.
  • the thickness of the design part 114 is less than 1 ⁇ m, it may be difficult to implement a desired appearance, and when the color 1142 is included, the density of the colorant 1142 decreases, and thus it may be difficult to display a desired color.
  • the thickness of the design unit 114 may be 4 ⁇ m or more so that the effect of the design unit 114 can be sufficiently implemented, and the design unit ( 114) may have a thickness of less than 15 ⁇ m (for example, 10 ⁇ m or less). At this time, if the thickness of the design part 114 is less than 15um, a design part 114 having various shapes, colors, etc.
  • the thickness of the design part 114 can be adjusted according to the color. For example, when the design part 114 has a white color having a relatively low light transmittance, a thickness smaller than that of the design part 114 of another color may be adjusted. I can have it.
  • the conventional layer formed on the first cover member 110 has low light transmittance in the infrared region, so that the amount of light in the infrared region is lower than the light in the visible region in the light reaching the solar cell. As a result, it was difficult to effectively use the light in the infrared region.
  • the antireflection layer for preventing reflection has the greatest light transmittance at a corresponding wavelength so as to prevent reflection of light having a short wavelength of about 600 nm, which has the strongest intensity of sunlight.
  • the antireflection layer has a refractive index of about 1.3, which is smaller than that of the first base member 112 and the sealing material 130, and has a thickness of 500 nm or less (for example, about 200 nm). Accordingly, characteristics are different from that of the cover forming layer 114 of the present embodiment, and it is difficult to effectively use the light in the infrared region.
  • the layer provided on the first cover member 110 is formed by being stacked on the first cover member 112, a layer provided on the first cover member 110 (for example, A composition mixed portion or the like is not provided at the interface of the antireflection layer).
  • the first cover member 110 may implement a desired appearance by the design unit 114.
  • the color, material, area ratio, thickness, etc. of the design part 114, or the material, size, concentration, density, etc. of the ceramic frit 1144 and the pigment 1142 included in the design part 114 By adjusting, the appearance and transmittance of the first cover member 110 may be adjusted.
  • the design part 114 is lower than that of the first base member 112, but has a certain light transmittance, so that a part of sunlight can be transmitted. Then, sunlight can be transmitted through the design unit 114 as well, so that light loss by the design unit 114 can be prevented or minimized.
  • the design unit 114 or the first cover member 110 having the same has a light transmittance of 10% or more for light having a wavelength of 380 nm to 1200 nm (for example, 10% to 95%, more specifically, 20% to 95%).
  • the present invention is not limited thereto. Accordingly, the light transmittance may have various values depending on the color, material, and formation area of the design unit 114.
  • the design unit 114 may have various shapes for implementing a specific shape or the like.
  • the design unit 114 may have a regular structure in the cover area CA in which the design unit 114 is formed.
  • the cover area CA means an area recognized as having the same color, image, pattern, feel, texture, etc. so that a certain color, image, pattern, feel, texture, etc. can be realized.
  • a rule structure Can be seen as having.
  • the design part 114 has a regular structure having a uniform spacing in the entire area of the cover area CA and is located in plural and is formed at a certain area ratio or more, it is separated by a certain distance.
  • the cover area CA in which the plurality of design units 114 are located may be recognized as one area having a uniform shape as a whole.
  • the design unit 114 constituting the cover area CA may have various shapes including a circle, an ellipse, a polygon (triangle, square, etc.), a stripe shape, a checkered shape, an irregular shape, or a combination thereof. According to this, sunlight passes through the first cover member 110 without significant loss through the light transmitting part (LTA) composed of the first base member 112 having high light transmittance located between the plurality of design parts 114 and the solar cell Can be delivered to 150. Accordingly, when the solar panel 100 is viewed from a distance sufficient to view the exterior of the building 1, the design unit 114 improves the appearance of the building 1 by the rule structure, but does not reduce the output significantly. I can.
  • the design part 114 is formed in the first cover member 110 or a part of the cover area CA.
  • the present invention is not limited thereto, and the design part 114 may be formed on the first cover member 110 or the entire area of the cover area CA.
  • the design portion 114 is formed in the first cover member 110 or the entire area of the cover area CA as having a regular structure.
  • the ratio of the total area of the plurality of design units 114 to the total area of the first cover member 110 or the cover area CA may be 5% to 100%.
  • the ratio of the total area of the plurality of design units 114 to the total area of the first cover member 110 or the cover area CA may be 90% or less (for example, 50 to 80%).
  • the design unit 114 Even if the design unit 114 is provided in this range, the uniformity of light incident on the solar panel 100 may be improved.
  • the present invention is not limited thereto. Therefore, the total area ratio of the design unit 114 may have various values in consideration of the appearance and output of the solar panel 100 according to the installation location of the solar panel 100, the color and shape of the design unit 114, etc. have.
  • the design unit 114 has a rule structure within the cover area CA.
  • the present invention is not limited thereto. Accordingly, the design part 114 may have an irregular structure such as being located inside the cover area CA with non-uniform spacing, it is difficult to find a rule of an arrangement form, or does not have a uniform shape.
  • the gloss reduction unit GR has an intaglio shape (concave or groove), a relief shape (protrusion), or both intaglio and embossed shapes formed on the surface of the first base member 112 made of a glass substrate. It can be composed of irregularities. In this way, when the gloss reduction part (GR) is formed in an intaglio shape or an embossed shape, the gloss reduction part (GR) can be formed by a simple process, and since it is not applied with a separate material, it enters the solar panel 100. It is possible to prevent or minimize the loss of light.
  • the gloss reduction unit GR having an uneven shape may have various shapes, arrangements, and structures.
  • the gloss reduction unit GR may have a random structure.
  • having an irregular structure may have an irregular shape, an irregular arrangement, or an asymmetric structure when viewed in a cross-section and/or a plane. That is, when viewed in cross section, the gloss reduction unit GR has a plurality of intaglio-shaped irregularities having different depths, sizes, and/or intervals, or embossed irregularities having different heights, sizes, and/or intervals.
  • a plurality of concave-convex shapes or concave-convex convexities and concave-convex convexities may be provided together, and the plurality of concave-convexities may be formed with different heights, sizes, and/or intervals.
  • the gloss reduction unit (GR) when viewed in a plan view, has a plurality of irregularities having different lengths, widths, and/or shapes, or a plurality of irregularities having different angles that cross each other, or a curve that is not a straight line A portion or a round portion may be provided irregularly, or a plurality of irregularities may be provided at different intervals. Accordingly, the gloss reduction unit GR may have an asymmetric structure when viewed with respect to an arbitrary line in a cross-section and/or a plane, and may not have a symmetric structure when viewed with respect to any line.
  • the gloss reduction portion GR has an irregular structure
  • the effect of reducing the gloss of the glass substrate constituting the first base member 112 is superior compared to having a regular structure.
  • the gloss reduction unit GR having an irregular structure may effectively reduce gloss.
  • the present invention is not limited thereto, and even if the gloss reduction effect is somewhat low, the gloss reduction unit GR may have a regular structure.
  • the gloss reduction unit GR may be a non-design irregularity (NGR) that does not contribute to a specific design because it has a shape or a flat shape that is not related to the design to be expressed by the design unit 114. have.
  • NGR non-design irregularities
  • These non-design irregularities (NGR) may be formed over the entire area of the first base member 112 to reduce gloss.
  • non-design irregularities may be formed by a chemical etching process, a sand blast process, a polishing process, or the like.
  • etching glass As the first base member 112 having non-design irregularities (NGR) as described above (that is, a glass substrate having non-design irregularities (NGR)), etching glass, satin glass, or the like may be used.
  • the non-design irregularities (NGR) may have a surface roughness of 0.1 ⁇ m or more (eg, 0.1 ⁇ m to 5 ⁇ m).
  • the non-design irregularities (NGR) when they are formed by a chemical etching process, they may have a surface roughness of 0.1 um to 1 um (for example, 0.1 um to 0.5 um), and the non-design irregularities (NGR) are sandblasted.
  • it When formed by a process or a polishing process, it may have a surface roughness of 0.1 um to 5 um (eg, 0.5 um to 1 um).
  • the glossiness of the first base member 112 having such non-design irregularities (NGR) is 100GU or less (for example, 80GU or less, for example, 60GU). Or less). This glossiness is very low considering that the glossiness of a glass substrate having a surface roughness of less than 0.1 ⁇ m (eg, 200GU) is not provided with the gloss reduction unit GR.
  • the gloss reduction unit GR may be located on the outer surface of the first cover member 110. That is, in this embodiment, the gloss reduction unit GR may be formed on the outer surface of the first base member 112. If the gloss reduction unit GR is located on the inner surface of the first base member 112, it can be recognized that light is already scattered from the outer surface of the first base member 112 to have high gloss, so the gloss reduction unit GR This is because it is difficult to sufficiently implement the gloss reduction effect by.
  • the design portion 114 may be formed on the outer surface of the first base member 112 on which the gloss reduction portion GR is formed and may be positioned on the outer surface of the first cover member 110. Then, the effect of lowering the glossiness of the first base member 112 may be improved, and contamination of the first cover member 110 may be prevented by placing a contaminant or the like in the gloss reduction unit GR. At this time, the gloss reduction unit GR and/or the design unit 114 may form the outer surface of the first cover member 110, and on the outer surface of the first cover member 110 (that is, the gloss reduction unit GR ) And/or on the outer surface of the design part 114), an antifouling layer (reference numeral 116 in FIG. 6) may be additionally formed.
  • the light diffusion unit LD is located on the inner surface where the design unit 114 is not formed.
  • the light diffusion unit LD diffuses light to prevent recognition of the solar cell 150 as much as possible, and improves uniformity of colors and the like by the design unit 114.
  • the light diffusion unit LD may serve to improve adhesion by increasing an adhesion area with the sealing material 130.
  • the light diffusion unit LD may have a size of 10 to 500 ⁇ m, and may have various shapes such as a rounded shape (eg, a shape corresponding to a part of a sphere), an angled shape, and a pyramid shape.
  • the above-described light diffusion unit LD may have a shape protruding in an embossed shape or may have a concave shape in an intaglio shape.
  • the light diffusion units LD may have a regular structure positioned so as to have substantially the same shape and size with each other and have a repetitive arrangement shape at uniform intervals.
  • the light diffusion unit LD has a large size and a regular structure, so it is difficult to have an effect of reducing gloss.
  • the surface roughness of the non-design irregularities (NGR) may be equal to or less than the maximum size of the light diffusion unit LD (eg, the maximum height difference between the peak and the valley). . Accordingly, it is possible to sufficiently secure the thickness of the first base member 112 by reducing the surface roughness of the non-design irregularities (NGR).
  • the present invention is not limited thereto, and the surface roughness of the non-design irregularities (NGR) may be larger than the maximum size of the light diffusion unit (LD).
  • the size (size or area on the plane) of the design part 114 may be larger than the size (size or area on the plane) of the non-design irregularities (NGR), and accordingly, the design part 114 is a plurality of bins. It may be formed to cover the self-indentation (NGR). Accordingly, a sufficient size of the design unit 114 can be secured, thereby simplifying the process of forming the design unit 114 and stably implementing a desired appearance by the design unit 114.
  • the surface roughness of the non-design irregularities (NGR) may be the same as, greater than, or less than the surface roughness of the design portion 114 without considering the pores 114V.
  • the surface roughness of the non-design unevenness (NGR) may be greater than the surface roughness of the design portion 114 not taking into account the pores 114V.
  • the surface roughness of the non-design irregularities (NGR) may be equal to, greater than, or less than the surface roughness in consideration of the pores 114V in the design portion 114.
  • the surface roughness of the non-design unevenness (NGR) may be smaller than the surface roughness in consideration of the pores 114V in the design part 114.
  • the present invention is not limited thereto, and various modifications are possible.
  • the second cover member 120 may have excellent fire resistance and insulation. More specifically, the second cover member 120 may include a second base member 122 and a cover portion 124 formed on the second base member 122.
  • the cover portion 124 may be a colored cover substrate that prevents the solar cell 150 or the wiring portions 142 and 145 connected thereto from being clearly recognized.
  • the description of the first base member 110 described above may be applied as it is to the second base member 120 except for the gloss reduction unit GR. That is, a description of the material, bending strength, thickness, area, and steel transmittance of the first base member 110 may be applied to the second base member 120 as it is.
  • the second base member 120 may be a glass substrate, for example, a low iron glass substrate, more specifically, a reinforced or semi-reinforced low iron glass substrate.
  • the outer surface of the second base member 120 since the outer surface of the second base member 120 is not separately treated, it may be an untreated surface in which the gloss reduction portion (GR) or non-design unevenness (NGR) is not formed, but may have a surface roughness of less than 0.1 ⁇ m. have.
  • the cover portion 124 may be made of an oxide ceramic composition.
  • the description of the oxide ceramic composition in relation to the design part 114 may be applied as it is to the oxide ceramic composition of the cover part 124 except for color and the like.
  • a boundary between the second base member 122 and the cover portion 124 may be configured as an unclear boundary, but the second base member 122 and the design unit 124 may be integrated.
  • the second cover member 120 may be formed of a second base member 122 formed of a reinforced or semi-reinforced glass substrate in which the cover portion 144 made of an oxide ceramic composition is integrated in a portion in the thickness direction.
  • the cover portion 124 is formed integrally with the second base member 122, so that physical durability and chemical durability may be excellent.
  • the cover portion 124 may be made of an oxide ceramic composition (eg, a glassy oxide ceramic composition) having an amorphous glass structure.
  • the color of the cover part 124 may be the same as or different from the color of the design part 114.
  • the cover portion 124 may not be formed as transparent or translucent, and may have an achromatic color other than white, an opaque color, or a color of the same series as the solar cell 150.
  • the cover portion 124 is black, gray, blue, green, brown, a color of the same series as the solar cell 150 (especially, the anti-reflection layer of the solar cell 150), or a color mixture thereof Can have. Since white is a color having high brightness, it may be difficult to form the cover portion 124 using it.
  • the solar panel 100 has uniformity of color as a whole, so that aesthetics may be further improved.
  • the present invention is not limited thereto. Even in colors other than the above-described colors, various colors may be used as long as they have a lower brightness than the design portion 114 or a light transmittance lower than that of the first base member 112 and/or the second base portion 122.
  • the first and second cover members 110 and 110 are formed by the same or similar manufacturing process. 120) can be formed, thereby simplifying the manufacturing process.
  • the cover portion 124 may be made of a material other than the oxide ceramic composition.
  • the second cover member 120 is formed on the second base member 122 and the second base member 122, and one or more cover layers, cover films, or metal films (for example, black It may include a cover portion 124 made of silver (Ag) or aluminum) coated to have a color.
  • the cover layer or cover film is formed in a number capable of implementing a specific color, and each colored layer, cover film, or metal film may be made of various materials such as a dielectric material, an insulating material, a semiconductor material, a metal material, and the like.
  • the cover portion 124 may implement the same or similar color as the antireflection layer of the solar cell 150.
  • the cover portion 124 includes a silicon layer including silicon constituting the photoelectric conversion unit of the solar cell 150, and a dielectric layer or an insulating layer positioned on the silicon layer and having the same material and stacked structure as the antireflection layer. can do. Then, the cover portion 124 may have the same or similar color as the solar cell 150, and thus the same or similar color as the solar cell 150 may be implemented. Accordingly, it is possible to effectively prevent the solar cell 150 and the wiring portions 142 and 145 from being recognized by a simple structure.
  • the cover portion 124 may include a plurality of cover layers each composed of a metal compound (eg, metal oxide or metal nitride oxide).
  • the plurality of cover layers may have a structure in which a plurality of insulating layers composed of oxides or nitride oxides including silicon, titanium, aluminum, zirconium, zinc, antimony, and copper are stacked.
  • the cover portion 124 further includes a layer containing silicon nitride and/or a layer containing silicon carbide nitride inside or outside the plurality of cover layers. , UV rays, moisture, etc. can prevent problems.
  • the cover portion 124 may have a blue color.
  • the cover portion 124 is a first cover layer composed of zirconium oxide, a second cover layer disposed thereon and composed of silicon oxide, a third cover layer disposed thereon and composed of zirconium oxide, and a silicon oxide disposed thereon Including the fourth cover layer including, the cover portion 124 may have a green color.
  • the cover portion 124 can be formed by a simple manufacturing process such as deposition or attachment, so that the second cover member 120 having a desired color can be manufactured.
  • the cover portion 124 may be located on the inner surface and/or the outer surface of the second cover member 120.
  • the second cover member 120 may be configured as a single member that is integrated without the second base member 122 and the cover portion 124.
  • the second cover member 120 may be formed of a metal plate (eg, a steel plate), a circuit board, a colored glass, or the like.
  • the second cover member 120 or the second base member 122 is a resin (for example, polycarbonate (PC), polyethylene terephthalate (PET)), ethylene tetrafluoroethylene (ethylene). Tetra fluoro ethylene, ETFE), polytetrafluoroethylene (poly tetra fluoro ethylene, PTFE), etc.) can be composed of a sheet containing, fiber reinforced plastic (fiber reinforced plastic), and the like.
  • a separate cover portion 124 may be formed on the second base member 122 made of such a sheet, or a pigment may be included in the second base member 122 to have a certain color.
  • the second base member 122 made of such a sheet or the like may be made of a single layer or a plurality of layers.
  • the second cover member 120 (or the cover portion 124) or the colored member 160 is the International Lighting Commission (CIE) Lab (ie, CIE L*a*b*) color coordinate, D65 standard light source
  • CIE International Lighting Commission
  • the above-described color difference when the ⁇ level is 11 or less, the solar cell 150, the wiring parts 142, 145, etc. can be prevented from being recognized outside a certain distance.
  • CIE) Lab ie, CIE L*a*b*
  • D65 may have a relatively dark color with a luminance (L*) of 50 or less in a standard light source. , 145), etc. may not be effectively recognized from the outside, but the present invention is not limited thereto, and the luminance in the International Lighting Commission (CIE) Lab (ie, CIE L*a*b*) color coordinates, D65 standard light source (L*) may exceed 50 to have a relatively bright color.
  • CIE International Lighting Commission
  • the second cover member 120 is formed of a colored cover member having a predetermined color. In this way, if the second cover member 120 has a certain color and prevents the solar cell 150 from being recognized, it is not necessary to change the color of the sealing material 130. Including a pigment (eg, carbon black) for changing the color of the sealing material 130 may cause problems such as deterioration of the insulating properties of the sealing material 130 undesirably.
  • the present invention is not limited thereto.
  • various modifications are possible, such as a pigment or the like provided on at least a part of the sealing material 130.
  • FIG. 3 it is illustrated that the design part 114 is located on the outer surface side of the first cover member 110 and the cover part 124 is located on the outer surface side of the second cover member 120.
  • the present invention is not limited thereto.
  • the cover portion 114 may be located on the inner surface side of the first cover member 112.
  • 6 is a partial cross-sectional view showing a portion corresponding to FIG. 5.
  • An antifouling layer 116 covering the gloss reduction unit GR is formed on the outer surface of the first cover member 112 on which the gloss reduction unit GR is formed, so that contamination can be prevented and the gloss reduction unit GR can be protected.
  • 6 illustrates that a light diffusion unit (reference numeral LD in FIG. 3, hereinafter the same) is not provided on the inner surface of the first cover member 112 on which the cover unit 114 is formed, but the light diffusion unit LD on the inner surface Is formed and the cover part 114 may be formed on the light diffusion part LD.
  • a light diffusion unit reference numeral LD in FIG. 3, hereinafter the same
  • the cover portion 114 may be positioned on the inner and outer sides of the first cover member 112, respectively.
  • the cover portion 124 may be positioned on at least one of an inner surface and an outer surface of the second cover member 120.
  • the light diffusion part LD may or may not be formed on the cover part 114 or the other surface on which the cover part 124 is not formed. Other variations are possible.
  • the first cover member 110 which is a graphic cover substrate, has a gloss reduction unit GR along with the design unit 114 so that the solar panel 100 is recognized as a building material, a building, etc. You can reduce the sense of heterogeneity. Accordingly, the solar panel 100 may have a shape such as wood, leaves, stone, charcoal, brick, concrete, and building panels. Accordingly, while maintaining excellent output of the solar panel 100, it is possible to have excellent aesthetics and appearance.
  • a design part 114 composed of an oxide ceramic composition having an amorphous glass structure as described above with reference to FIGS. 7 and 8A to 8D together with FIGS. 1 to 5 is a first base member 112.
  • a method of manufacturing the first cover member 110 having the design portion 114 according to the present embodiment or a method of manufacturing a graphic cover substrate according to the present exemplary embodiment will be described in detail.
  • a method of manufacturing the first cover member 110 having the design portion 114 has been described as an example, but the present invention is not limited thereto. That is, the following description may be applied to a method of manufacturing the second cover member 120 having the cover portion 124. Other variations are possible.
  • FIG. 7 is a flowchart showing an example of a method of manufacturing the first cover member 110 according to an embodiment of the present invention
  • FIGS. 8A to 8D are a method of manufacturing the first cover member 110 shown in FIG. 7 These are cross-sectional views showing each step of.
  • the manufacturing method of the first cover member 110 includes a substrate preparation step (S10), an application step (S20), a glass strengthening step (S40), and a finishing step (S50). can do.
  • a first base member 112 comprising a non-reinforced glass substrate and having a gloss reduction portion GR (for example, non-design irregularities (NGR)) is provided.
  • a gloss reduction portion GR for example, non-design irregularities (NGR)
  • NGR non-design irregularities
  • the gloss reduction unit GR may be formed by various methods.
  • the gloss reduction unit GR may be formed on a non-reinforced glass substrate not provided with the gloss reduction unit GR by using at least one of a chemical etching process, a sand blasting process, and a polishing process.
  • a chemical etching process a spray process, a dipping process, or the like may be used, and as an etching material used in the chemical etching process, hydrofluoric acid, hydrochloric acid, sulfuric acid, or a mixture thereof may be used.
  • Various process conditions known as sand blasting or polishing can be applied.
  • a polishing process may be performed to form the gloss reduction unit GR. Since the glass substrate may become somewhat opaque if only the chemical etching process is performed, the transparency is restored by performing an additional polishing process.
  • a chemical etching process e.g, a chemical etching process using a paste
  • a polishing process may be performed to form the gloss reduction unit GR. Since the glass substrate may become somewhat opaque if only the chemical etching process is performed, the transparency is restored by performing an additional polishing process.
  • Other various processes are possible.
  • the non-reinforced glass substrate may have a light transmittance of 80% or more (for example, 85% or more) for light having a wavelength of 380 nm to 1200 nm, a minimum thickness of 2 mm, and a low iron content glass substrate.
  • the non-reinforced glass substrate is an architectural non-reinforced glass substrate, and may be prepared by cutting, chamfering, or surface processing. The prepared non-reinforced glass substrate or the first base member 112 may be cleaned and dried before or after the formation process of the gloss reduction unit GR. As a result, foreign substances or oil films of the non-reinforced glass substrate or the first base member 112 may be removed.
  • a preheating process of preheating the first base member 112 at a temperature lower than the drying step S30 or the glass reinforcing step S50 may be performed.
  • the first base member 112 may be preheated to a temperature of 25 to 150° C. during a process in which the first base member 112 is supplied to the apparatus for the application step S20.
  • the preheating may be performed by directly heating the first base member 112 or may be performed using an infrared heating device or the like. If preliminary heating is performed on the first base member 112, the design forming layer 1140 including the ceramic frit 114 may be uniformly applied in the design forming step S20, and the adhesion of the design forming layer 1140 may be reduced. You can improve. However, depending on the process, for example, when the design formation layer 1140 is formed by a thermal transfer process, the preheating process may not be performed.
  • a design formation layer 1140 is formed on the first base member 112.
  • the design formation layer 1140 may be formed on the surface on which the gloss reduction portion GR is formed in the first base member 112.
  • the design formation layer 1140 may be formed by various methods, including a printing process (eg, a screen printing process, a digital inkjet printing process, a lithographic printing process, a laser printing process, etc.), a thermal transfer process, a spray process, a sol- It can be formed by various processes such as a gel process.
  • the design formation layer 1140 can be stably formed to have a desired thickness through a simple process.
  • the thermal transfer process the design formation layer 1140 may be stably formed on the first base member 112 having various shapes such as a gloss reduction portion GR or other curved shapes.
  • the design formation layer 1140 may be formed of a ceramic material layer (such as ceramic ink, ceramic paste, or ceramic solution) including a ceramic frit 1144, a pigment 1142, and a resin 1146.
  • the ceramic material layer may further include an additive or the like as necessary.
  • Various materials such as oxides and metals may be included as additives in consideration of desired properties.
  • it may further include wax, water, oil, an organic solvent, or a viscosity adjusting diluent for adjusting the viscosity as an additive.
  • the present invention is not limited thereto, and additives may not be included so as to retain small particles for passing through a nozzle for applying a mesh used for forming a ceramic material layer and a ceramic material layer.
  • the ceramic frit 1144 basically serves to stably couple the design part 114 to the first base member 112 (in particular, a glass substrate), and selectively implements a specific color, texture, and feel. Can play a role.
  • the ceramic frit 1144 is a compound including a plurality of metals and a non-metal, and may be formed including a plurality of metal compounds.
  • the ceramic frit 1144 may be composed of a plurality of metals, and an oxygen polyhedron having a glass structure or an irregular network structure including oxygen.
  • an irregular network structure or a glass structure can be easily and stably formed.
  • saying that it may be formed including a plurality of metal compounds means that a ceramic frit ( 1144) may mean that a compound structure including a plurality of metals and a non-metal (for example, oxygen), an irregular network structure, a glass structure, and the like are formed at least in part.
  • the ceramic frit 1144 may be included.
  • the ceramic frit 1144 along with silicon oxide (SiOx, for example, SiO 2 ), aluminum oxide (AlOx, for example, Al 2 O 3 ), sodium oxide (NaOx, for example, Na 2 O), bismuth oxide (BiOx, for example, Bi 2 O 3 ), boron oxide (BOx, for example, B 2 O) and zinc oxide (ZnOx, for example, ZnO) based on at least one of It may be formed by including a material.
  • Ceramic frit 1144 is aluminum oxide, sodium oxide, bismuth oxide, boron oxide, zinc oxide, titanium oxide (TiOx, for example, TiO 2 ), zirconium oxide (ZrOx, for example, ZrO 2 ), potassium Oxide (KOx, for example, K 2 O), lithium oxide (LiOx, for example, Li 2 O), calcium oxide (CaOx, for example, CaO), cobalt oxide (CoOx), iron oxide (FeOx) It may be formed to further include, and the like.
  • the ceramic frit 1144 is a bismuth boro-silicate-based ceramic material (for example, Bi 2 O 3 -Al 2 O) formed by including bismuth oxide, boron oxide, and silicon oxide.
  • the ceramic frit 1144 is composed of a NAOS-based ceramic material (for example, Na 2 O-Al 2 O 3 -SiO 2 -based material) formed including sodium oxide, aluminum oxide, and silicon oxide. Can be.
  • the ceramic frit 1144 may be formed of a ceramic material (eg, a ZnO-SiO 2 -B 2 O 3 based material) formed of zinc oxide, silicon oxide, or boron oxide.
  • the present invention is not limited thereto, and the ceramic frit 1144 may be formed of various other materials.
  • the pigment 1142 is included so that the design part 114 has a desired appearance.
  • a material capable of displaying a unique color by selectively absorbing or reflecting visible light in sunlight with the dye 1142 may be used.
  • the pigment 1142 may be a pigment.
  • the pigment is a pigment composed of an inorganic component that is not dissolved in water and most organic solvents, and shows a color by covering the surface of the first base member 112. Pigments are excellent in chemical resistance, light resistance, weather resistance and hiding power. In other words, the pigment is resistant to bases and acids, does not discolor or fade when exposed to UV rays, and can withstand the climate well.
  • the dye 1142 may not include a dye.
  • the present invention is not limited thereto, and the dye 1142 may include various substances such as dyes.
  • the pigment 1142 may be made of a material that considers the appearance of the desired design part 114.
  • the dye 1142 is shown to be provided separately from the ceramic frit 1144, but the present invention is not limited thereto.
  • a desired appearance of the design portion 114 may be realized by a material constituting the ceramic frit 1144 and thus the pigment 1142 may not be provided separately from the ceramic frit 1144.
  • the distinction between the ceramic frit 1144 and the pigment 1142 may not be clear.
  • the metal of the material included as the pigment 1142 may be included by partially substituting a metal of an irregular network structure or a glass structure (eg, an oxygen polyhedron) constituting the ceramic frit 1144.
  • the metal included in the dye 1142 may be located in an irregular network structure, a glass structure, or an interstitial site of an oxygen polyhedron of the ceramic frit 1144.
  • the design part 114 may have a white color due to a metal compound (eg, metal oxide) included in the ceramic frit 1144.
  • a metal compound eg, metal oxide
  • the ceramic frit 1144 is formed to include at least one of lead oxide (PbOx, for example, PbO), titanium oxide, aluminum oxide, and bismuth oxide
  • the design part 114 is white. I can have it.
  • the design part 114 may further include a material such as boron oxide in addition to the above-described material.
  • the ceramic frit 1144 is formed of a ceramic material (BiOx-SiOx-B 2 O-based material) formed of bismuth oxide, silicon oxide, and boron oxide, lead oxide, and Ceramic material formed including silicon oxide and boron oxide (PbOx-SiOx-B 2 O-based material), ceramic material formed including titanium oxide, silicon oxide, and boron oxide (TiOx-SiOx-B 2 O-based material) , aluminum oxide, ceramic materials (AlOx SiOx-2 B-O-based material) that is formed including the silicon oxide and boron oxide may be of a like.
  • lead oxide may not be included in the design part 114 or the ceramic frit 1144 according to the present embodiment in consideration of environmental issues.
  • various pigments 1142 may be included so that the design unit 114 has a color other than white. That is, in consideration of a desired color, one or two or more substances corresponding thereto may be used as the pigment 1142.
  • the material constituting the dye 1142 may be formed of a metal or an oxide, carbide, nitride, sulfide, chloride, silicate, or the like containing a metal.
  • the pigment 1142 For example, containing at least one of copper (Cu), iron (Fe), nickel (Ni), chromium (Cr), uranium (U), and vanadium (V) to represent a series of red, yellow, etc.
  • a substance or the like can be used as the pigment 1142.
  • a material including at least one of titanium (Ti), magnesium (Mg), and rutile may be used as the pigment 1142 in order to represent a series of green or blue colors.
  • the dye 1142 is cobalt oxide, iron oxide, copper oxide (CuOx), chromium oxide (CrOx), nickel oxide (NiOx), manganese oxide (MnOx), tin oxide (SnOx), antimony oxide (SbOx), vanadium. It may include oxide (VOx) and the like.
  • CoAl 2 O 4 may be used to implement cyan
  • Co 2 SiO 4 may be used to implement blue
  • green may be used.
  • CoCr 2 O 4 etc. can be used for spherical shape
  • Ti(Cr, Sb)O 2 can be used for yellow color
  • CoFe 2 O 4 for black color
  • Co-Cr-Fe-Mn Spinel or the like can be used.
  • the design unit 114 has a certain color.
  • the present invention is not limited thereto.
  • the design unit 114 may have a transparent or translucent color, may be glossy or matte, may be used to express a specific texture, or to prevent glare.
  • the design part 114 may include the pigment 1142 but may not include the pigment 1142.
  • the ceramic frit 1144 may not contain lead oxide, aluminum oxide, etc. that may exhibit white.
  • the ceramic frit 1144 is a ceramic material (NaOx-SiOx-B 2 O-based material) formed of sodium oxide, silicon oxide, and boron oxide. It can be composed of. Titanium oxide and bismuth oxide are materials that can be used to implement white color, but even if some are included, the design part 114 may be kept transparent or translucent. However, even when the design part 114 has a transparent or translucent color, a small amount of a pigment or pigment 1142 may be included for a slight color development (for example, a red color translucent, a green color transparent, etc.).
  • the resin 1146 is a material used to uniformly mix the pigment 1142 and the ceramic frit 1144 to have an appropriate viscosity and fluidity when applying the ceramic material layer, and may be a volatile material that may be volatilized. .
  • the resin 1146 may include various known materials.
  • an organic resin such as an acrylic resin or a cellulose resin may be used, or an inorganic resin such as a silicone resin may be included.
  • the ceramic material layer or design formation layer 1140 contains the ceramic frit 1144 in the largest amount, and even when the pigment 1142 is included, the pigment 1142 may be included in a smaller amount than the ceramic frit 1144.
  • the ceramic frit 1144 is 40 to 90 parts by weight (for example, 50 to 90 parts by weight) based on 100 parts by weight of the ceramic material layer or the design formation layer 1140.
  • the pigment 1142 may be included in an amount of 5 to 50 parts by weight, and the resin 1146 and/or an additive may be included in an amount of 0 to 20 parts by weight.
  • the ceramic frit 1144 is included in an amount of 50 to 100 parts by weight (for example, 60 to 100 parts by weight) based on 100 parts by weight of the ceramic material layer or the design forming layer 1140.
  • the resin 1146 and/or the additive may be included in an amount of 0 to 50 parts by weight (for example, 0 to 40 parts by weight).
  • the present invention is not limited thereto, and the ceramic material layer or the design formation layer 1140 may have various compositions.
  • the drying step (S30) heat is applied to dry the ceramic material layer or the design formation layer 1140 to volatilize the resin 1146.
  • the resin 1146 and the like are first volatilized so that the pigment 1142 and the ceramic frit 1144 can be effectively mixed together with the first base member 112.
  • all of the resin 1146 may be removed, or a part of the resin 1146 may remain.
  • bubbles (pores) reference numeral 114V in FIG. 8D) composed of empty spaces may remain in a portion from which at least a portion of the portion from which the resin 1146 is removed.
  • the ceramic material layer or the design formation layer 1140 is dried at a temperature of 200°C or less (for example, 150°C or less, for example, 50 to 200°C, more specifically 50 to 150°C.
  • the drying step S30 may be performed using an infrared heating device, ultraviolet curing, etc.
  • the present invention is not limited thereto, and the drying temperature and drying method may be variously changed.
  • the non-reinforced glass substrate constituting the first base member 112 is strengthened or semi-strengthened by thermal strengthening by heat treatment or annealing.
  • the ceramic frit 1144, the pigment 1142, etc. included in the design formation layer 1140 are mixed into the reinforced or semi-reinforced glass substrate in order to match the phase equilibrium.
  • a design part 114 is formed that is integrated with the tempered glass substrate.
  • the design formation layer 1140 may have a greater specific gravity than the first base member 112 due to a high mass ratio.
  • the design formation layer 1140 is fused and sticky due to the high temperature in the glass reinforcing step (S40). As it is, it may be more easily incorporated into the inside of the first base member 112 made of a glass substrate.
  • the glass strengthening step (S40) it may be performed at a temperature capable of strengthening or semi-strengthening the non-tempered glass substrate.
  • the heat treatment temperature of the glass reinforcing step (S40) may be 500 to 800°C, for example, 500 to 750°C, for example, 640 to 720°C, and in a state that is not subjected to high pressure (for example, normal pressure or It can be heat treated at a pressure lower than normal pressure).
  • high pressure for example, normal pressure or It can be heat treated at a pressure lower than normal pressure.
  • reinforcement it may be heat-treated at a pressure of 5 to 20 kPa, and in the case of semi-reinforcement, 4 kPa.
  • the heat treatment time may be adjusted according to the pressure. If the pressure is high, the heat treatment time may be relatively short, and if the pressure is low, the heat treatment time may be relatively long.
  • the present invention is not limited to the temperature, pressure, time, etc. of the glass reinforcing step (
  • the non-reinforced glass substrate constituting the first base member 112 may be semi-reinforced.
  • the first base member 112 or the first cover member 110 may be formed of a heat strengthened glass substrate (heat strengthened glass). Accordingly, the transmittance of the first cover member 110 can be maintained high.
  • the first cover member 110 made of semi-tempered glass may have a surface compressive stress of 60 MPa or less (eg, 24 to 52 MPa).
  • the edge stress of the first cover member 110 may be about 30 to 40 MPa. That is, the semi-tempered glass may be formed by slow cooling after heat treatment at a temperature slightly lower than the softening point.
  • the fully tempered glass may be formed by rapid cooling after heat treatment at a temperature higher than the softening point, and the surface compressive stress is 70 to 200 MPa.
  • the light transmittance of the design unit 114 may be maintained high by adjusting the heat treatment temperature and cooling rate in the glass reinforcing step (S40).
  • the design unit 114 has an amorphous glass structure, so that the average light transmittance for light in the infrared region may be relatively high.
  • the heat treatment temperature is not maintained within a certain range and/or the cooling rate or pressure is too high, the infrared region due to a phase change of the amorphous glass structure due to a change in the chemical structure of the oxide ceramic composition, which is a cover part, or a change in the interface bonding between the glass substrates. It may be difficult to have an average light transmittance of light of a higher level than the average light transmittance of the visible light region. And if the heat treatment temperature is less than a certain level (for example, less than 600 °C, for example, less than 640 °C), the possibility that the design part 114 may be peeled off from the base member 112 may increase, and the heat treatment temperature is constant.
  • a certain level for example, less than 600 °C, for example, less than 640 °C
  • the design unit 114 may have the desired characteristics, such as the design unit 114 does not have a desired color or the transmittance tendency changes. .
  • the finishing step (S50) the first cover member 110 on which the glass reinforcing step (S40) has been performed is washed and dried. Then, the manufacturing of the first cover member 110 having the integrated design portion 114 is completed.
  • the content of sodium or potassium in the ceramic material layer, the design formation layer 1140, or the design portion 114 may be similar to or lower than the sodium or potassium content of the first base member 112.
  • the content of sodium and potassium in the ceramic material layer, the design formation layer 1140, or the design portion 114 may be respectively lower than the sodium and potassium content of the first base member 112.
  • the ceramic material layer, the design formation layer 1140, or the design part 114 may contain 10 ⁇ 10 18 pieces/cc or less, respectively, of sodium and potassium.
  • a potential-induced degradation (PID) phenomenon occurs due to leakage current.
  • the ceramic material layer, the design formation layer 1140, or the design portion 114 does not contain lead and/or chromium (for example, lead oxide and/or chromium oxide), environmental problems may not occur.
  • the amount of sodium, potassium, and lead contained in the ceramic material layer, the design formation layer 1140, or the design unit 114 may be measured or determined by secondary ion mass spectrometry (SIMS).
  • the sealing material 130 completely fills the space between the first cover member 110 and the second cover member 120, which is melted and cured at a high temperature of the lamination process and compressed by pressure.
  • the battery part SP can be sealed. Accordingly, the space between the first cover member 110 and the second cover member 120 may be completely filled by the sealing material 130.
  • the solar panel 100 is manufactured. Accordingly, the solar panel 100 including the first cover member 110, which is a graphic cover substrate, can be formed through a simple and stable manufacturing process.
  • the present embodiment it is possible to improve productivity by simplifying the manufacturing process of the first cover member 110 including the design unit 114 and the gloss reduction unit (GR) and the solar panel 100 including the same. .
  • the thickness, transmittance, print density, printing area, etc. of the design forming layer 1140 can be adjusted to improve the aesthetics and aesthetics of the solar panel 100 while maintaining the output above a certain level. .
  • FIG. 9 is a schematic plan view showing a gloss reduction unit and a design unit included in a first cover member according to another embodiment of the present invention
  • FIG. 10 is a cross-sectional view schematically showing the first cover member shown in FIG. 9 to be.
  • FIG. 9(a) shows a gloss reduction part
  • FIG. 9(b) shows a first cover member including a gloss reduction part and a design part formed in part A of FIG. 9(a). .
  • the gloss reduction unit GR serves as an auxiliary design unit for specifying the design to be expressed by the design unit 114 in addition to the role of reducing gloss. It may be a design unevenness (DGR) to be performed. Such design irregularities (DGR) may have a specific shape for realizing a specific design such as building materials and natural objects. For example, wood grain of wood, rings, etc., stem shape of leaves, pattern of stone, pattern of charcoal, Design irregularities (DGR) may be partially formed along at least a portion of the boundary line of the brick.
  • the design unit 114 may be a part that expresses a material, a natural object, etc. to be expressed, such as a color such as wood, leaves, stone, charcoal, and brick. Then, the design to be expressed by the design unit 114 can be implemented more similarly to the actual design while reducing gloss.
  • design irregularities may also have an irregular structure. This is because the above-described construction materials, natural objects, etc., such as wood grains, rings, stems, etc., generally do not have a regular structure. That is, the design irregularities DGR may have an irregular shape, an irregular arrangement, or an asymmetric structure when viewed in a cross-section and/or plan view. More specifically, when viewed in cross section, design irregularities (DGR) are provided with a plurality of intaglio-shaped irregularities having different depths, sizes, and/or intervals, or relief-shaped irregularities having different heights, sizes, and/or intervals. It can be provided with a plurality of. Alternatively, as illustrated in FIG.
  • a plurality of irregularities may be formed while having different heights, sizes, and/or intervals while the concave-convex and the concave-convex are provided together.
  • a plurality of irregularities having different lengths, widths, and/or shapes of the design irregularities GR are provided, or a plurality of irregularities having different angles crossing each other are provided, or a curved portion that is not a straight line Alternatively, round portions may be irregularly provided, or a plurality of irregularities may be provided at different intervals.
  • the design unevenness (DGR) may have an asymmetric structure when viewed with respect to an arbitrary line in a cross-section and/or a plane, and may not have a symmetrical structure when viewed with respect to any line.
  • the design irregularities DGR may have an irregular structure, and the design portion 114 may be provided in plural while having a regular structure.
  • the design unit 114 is a first design unit located in an uneven area NGA in which the design unevenness DGR is not formed (the unevenness area NGA located between adjacent design unevennesses DGR). 114a) and a second design portion 114b formed by overlapping at least a portion of the design irregularities DGR.
  • the uneven area NGA a portion in which the first design portion 114a is formed and a portion in which the first design portion 114a is not formed may be included.
  • the uneven area GA in which the design unevenness DGR is formed a portion where the second design portion 114b covers the entire design unevenness DGR, and a part of the design portion 114b overlaps a part of the design unevenness DGR.
  • Other parts may include all the parts that do not overlap with the design irregularities (DGR).
  • the gloss reduction unit GR for example, the design irregularities DGR
  • the design unit 114 may be positioned while having various arrangement relationships, so that a plurality of parts having different arrangement relationships may exist.
  • the design irregularities (DGR) are partially formed corresponding to specific parts such as building materials and natural objects, they may be formed to be less than 50% of the total area of the first cover member 110.
  • the number of design irregularities DGR may be smaller than the number of peaks or valleys of the light diffusion unit LD in a cross section. Accordingly, problems such as a decrease in strength of the first cover member 110 and an increase in defect rate due to the design irregularities DGR can be prevented.
  • the gloss reduction portion GR has an irregular structure
  • the effect of reducing the gloss of the glass substrate constituting the first base member 112 is superior compared to having a regular structure.
  • the gloss reduction unit GR having an irregular structure may effectively reduce gloss.
  • the present invention is not limited thereto, and even if the gloss reduction effect is somewhat low, the gloss reduction unit GR may have a regular structure.
  • Such design irregularities may be formed by a sand blast process, a roller process, or the like.
  • sand may be locally sprayed on a portion of the first base member 112 where the design irregularities DGR are to be formed, thereby forming the design irregularities DGR having a desired planar shape.
  • the roller process in the process of forming the first base member 112, by forming the first base member 112 using a roller having a protrusion or an uneven portion corresponding to the design unevenness (DGR), Design irregularities (DGR) can be formed.
  • the design irregularities DGR may have various cross-sectional shapes such as a rounded shape, a sharp shape, a U shape, a V shape, a triangular shape, and a square shape.
  • the design irregularities DGR may have a maximum depth or maximum height (eg, a maximum height difference between a ridge and a valley) of 5 ⁇ m or more (eg, 10 ⁇ m to 500 ⁇ m).
  • a maximum depth or maximum height eg, a maximum height difference between a ridge and a valley
  • the design irregularities (DGR) when formed by a sand blasting process, they may have a maximum depth or a maximum height of 5um to 40um (for example, 10um to 40um), and the design irregularities (DGR) are formed by a roller process. When formed, it may have a maximum depth or maximum height of 40um to 500um.
  • the maximum depth or maximum height of the design irregularities DGR may be within 10% of the thickness of the first base member 112 (maximum thickness in the portion where the design irregularities DGR is not formed). Outside of this range, the thickness of the first base member 112 may decrease in the portion where the design irregularities DGR are formed, so that the defective rate may increase.
  • the maximum depth or maximum height of the design irregularities DGR may be equal to, less than, or greater than the maximum height of the light diffusion unit LD (for example, the maximum height difference between the peaks and valleys).
  • the maximum width of the design irregularities DGR may be smaller than the maximum width or the maximum distance of the light diffusion unit LD (eg, a distance between a ridge and a ridge or a distance between a valley and a valley). Accordingly, problems such as a decrease in strength of the first cover member 110 and an increase in defect rate due to the design irregularities DGR can be prevented.
  • the maximum width of the design irregularities DGR may be equal to or greater than the maximum width or maximum interval of the light diffusion unit LD. Then, the effect of reducing the gloss of the design irregularities (DGR) can be improved.
  • the maximum depth or maximum height of the design irregularities DGR may be equal to, greater than, or less than the surface roughness of the design portion 114 without considering the pores 114V.
  • the maximum depth or maximum height of the design irregularities DGR may be greater than the surface roughness of the design portion 114 without considering the pores 114V.
  • the maximum depth or maximum height of the design irregularities DGR may be equal to, greater than, or less than the surface roughness in consideration of the pores 114V in the design portion 114.
  • the maximum width of the design irregularities DGR may be equal to, greater than, or less than the maximum width of the design portion 114.
  • the design portion 114 formed to cover one or more multi-design irregularities DGR may be included. Accordingly, a sufficient size of the design unit 114 can be secured, thereby simplifying the process of forming the design unit 114 and stably implementing a desired appearance by the design unit 114.
  • problems such as a decrease in strength of the first cover member 110 and an increase in defect rate due to the design irregularities DGR can be prevented.
  • the present invention is not limited thereto and may be variously modified according to a desired design.
  • the glossiness of the first base member 112 having such design irregularities (DGR) (that is, the glass substrate having the design irregularities (DGR)) is 100GU or less (for example, 80GU or less, for example, 60GU or less) Can be This glossiness is very low considering that the glossiness of a glass substrate having a surface roughness of less than 0.1um because it does not have design irregularities (DGR) is 150GU or more (for example, 200GU).
  • the design unit 114 includes both the first design unit 114a located in the uneven area NGA and the second design unit 114b located in the uneven area GA.
  • the design portion 114 includes a first design portion 114a located in an uneven area NGA, and includes an uneven area GA or a design unevenness DGR.
  • the overlapping second design portion 114b may not be included.
  • the third design portion 114c may or may not be provided with a portion corresponding to the shape of the design irregularities (DGR) partially removed from a portion adjacent to the irregularities area (GA) or the design irregularities (DGR). have.
  • the design part 114 can be seen as having a regular shape.
  • the design portion 114 is formed in the entire area of the first cover member 110 and only a portion corresponding to the uneven area GA or the design unevenness DGR has been removed, the uneven area ( In the NGA), the design portion 114 is formed as a whole, so it can be considered to have a regular shape.
  • the design unevenness plays a role in reducing gloss and as an auxiliary design unit that embodies the design to be expressed by the design unit 114, thereby reducing gloss and expressing it by the design unit 114.
  • the gloss reduction unit GR and the design unit 114 are located on the outer surface side of the first cover member 110 and the light diffusion unit LD is located on the inner surface side of the first cover member 110.
  • the locations of the gloss reduction unit GR, the design unit 114, and the light diffusion unit LD may be variously modified. In addition, various modifications are possible, such as not including the light diffusion unit LD.
  • FIG. 13 is a plan view schematically showing a gloss reduction unit and a design unit included in a first cover member according to another embodiment of the present invention
  • FIG. 14 is a schematic view of the first cover member shown in FIG. This is a partial cross-sectional view.
  • the gloss reduction unit GR may include a coating irregularity CGR formed to have an irregular shape by printing or the like.
  • the coating unevenness (CGR) may be formed of an oxide ceramic composition. Since the coating unevenness (CGR) including the oxide ceramic composition has a low gloss of 25GU or less, if it is formed to have an irregular shape, the gloss reduction effect may be very excellent. And unlike the above-described non-design irregularities (NCR) or design irregularities (DGR) provided with irregularities formed on the surface of the first base member 112, the bar is formed on the first base member 112, the first base member 112 ) Can be sufficiently secured, and it is possible to minimize unwanted damage or impact to the first base member 112.
  • NCR non-design irregularities
  • DGR design irregularities
  • the coating unevenness (CGR) may have an irregular structure while having a shape irrelevant to the design to be implemented in the design portion 114, like the non-design unevenness (DGR) described above.
  • a plurality of coating irregularities CGR may be irregularly distributed and positioned over the entire area of the first cover member 110 to reduce gloss.
  • the term having an irregular structure may have an irregular shape, an irregular arrangement, or an asymmetric structure when viewed in plan and/or cross-section.
  • a plurality of portions having different lengths, widths, and/or shapes of coating irregularities (CGR) are provided, or a plurality of portions having different angles intersecting each other are provided, or are not straight
  • the curved portion or the round portion may be irregularly provided, or may include a plurality of portions provided at different intervals.
  • a plurality of portions having different thicknesses of the coating unevenness (CGR) may be provided.
  • the present invention is not limited thereto, and a plurality of coating irregularities (CGR) may have substantially the same thickness (for example, a thickness having an error within 10%). Accordingly, the coating unevenness (CGR) may have an asymmetric structure when viewed with respect to an arbitrary line in a cross-section and/or a plane, and may not have a symmetric structure when viewed with respect to any line. That is, when viewed in cross section, a plurality of portions having different thicknesses of the coating unevenness (CGR) may be provided.
  • the coating unevenness (CGR) may have a color, brightness, saturation, etc. different from that of the design part 114.
  • the coating unevenness (CGR) has a color such as transparent, translucent, and the like, so that a decrease in light transmittance due to the coating unevenness (CGR) can be minimized.
  • the present invention is not limited thereto, and the coating unevenness (CGR) may have various other colors.
  • the coating unevenness (CGR) may have an irregular structure while playing a role as an auxiliary design portion that embodies the design to be expressed by the design portion 114, like the design unevenness (DGR) described above.
  • Such coating irregularities (CGR) may have a specific shape for realizing a specific design such as building materials and natural objects. For example, wood grain of wood, rings, etc., stem shape of leaves, pattern of stone, pattern of charcoal, Coating irregularities (CGR) may be partially formed along at least a portion of the boundary line of the brick.
  • the coating unevenness (CGR) may be formed to represent an irregular uneven portion, an irregular solid line portion, a wave pattern portion, etc., such as marble formed by having a color different from other portions of marble or mixed with impurities.
  • the coating unevenness (CGR) when expressed as a part of the design to be suitable for the design, it can be recognized more like a building material or a natural object by the user's visual and tactile sense.
  • the coating irregularities (CGR) contributing to the design may have various relationships with the design unit 114 and are arranged while having a certain shape, color, and the like to assist in realizing a desired design.
  • the color of the coating irregularities (CGR), and the like may be selected.
  • a marble pattern with white dots or solid white lines on a black background is a pattern representing a white dot or solid white line and/or a base part with a color lighter than the base color of the desired marble (for example, gray). It may be formed by forming the design portion 114 including the portion and forming a coating unevenness (CGR) having transparency or white color. At this time, in a portion corresponding to each pattern portion, all or a portion of the coating irregularities (CGR) may be formed to cover the pattern portion of the design portion 114 as a whole. According to this, the effect due to the coating irregularities (CGR) can be maximized.
  • CGR coating unevenness
  • the solar panel 100 can be recognized as black by the solar cell 150, so if the color of the design part 114 is made light in this way, the design part ( 114) through the light transmittance can be improved.
  • a marble pattern having a relatively pale color or a white background color with black dots, etc. forms a design part 114 including a background part having a pale color or a slight white color and/or a pattern part expressing black dots. And, it may be formed by forming the coating irregularities (CGR) having a darker color than the design portion 114. At this time, in a portion corresponding to each pattern portion, all or a portion of the coating irregularities (CGR) may be formed to cover the pattern portion of the design portion 114 as a whole. According to this, the effect due to the coating irregularities (CGR) can be maximized.
  • the background portion may have a relatively light color or a little white color
  • the pattern portion may have a relatively dark color.
  • the design portion 114 including a base portion having a light color or white color as the design portion 114 may be formed, but the design portion 114 may not be formed in a portion corresponding to the pattern portion expressing a black point. have.
  • a dark color, transparent or translucent coating unevenness (CGR) may be formed on a portion corresponding to the pattern portion.
  • the pattern portion may be recognized blacker by the color of the coating unevenness (CGR) and the solar cell 150, and when the coating unevenness (CGR) is transparent or translucent, the solar cell 150 The pattern portion may be recognized as darker by the color.
  • the coating irregularities CGR may have an irregular structure, and the design portion 114 may be provided in plural while having a regular structure.
  • the design unit 114 is a first design unit located in an uneven area NGA (a non-recessed area NGA located between adjacent coated unevenness CGR) in which the coating unevenness (CGR) is not formed. 114a) and a second design portion 114b formed by overlapping at least a portion of the coating irregularities CGR.
  • NGA a portion in which the design portion 114 is formed and a portion in which the design portion 114 is not formed may be included.
  • the coating irregularities (CGR) covering the first base member 112 the coating irregularities (CGR) covering the first base member 112 without overlapping the design portion 114 (for example, covering by contacting), the entire It may include all of the coating irregularities (CGR), etc. located on the design part 114.
  • the coating unevenness (CGR) and the design portion 114 may be positioned while having various arrangement relationships.
  • the coating unevenness (CGR) is partially formed corresponding to a specific portion such as a building material or a natural object, it may be formed to be less than 50% of the total area of the first cover member 110.
  • the number of coating irregularities CGR may be smaller than the number of peaks or valleys of the light diffusion unit LD in a cross section.
  • the present invention is not limited thereto, and the coating irregularities (CGR) are formed to be 50% or more of the total area of the first cover member 110, or the number of coating irregularities (CGR) is the peak of the light diffusion unit (LD) or It may be equal to or greater than the number of valleys.
  • the coating irregularities (CGR) have an irregular structure
  • the effect of reducing the gloss of the glass substrate constituting the first base member 112 is superior compared to having a regular structure.
  • glossiness may be effectively reduced by coating irregularities (CGR) having an irregular structure.
  • the present invention is not limited thereto, and although the gloss reduction effect is somewhat low, the coating irregularities (CGR) may have a regular structure.
  • the coating unevenness (CGR) may be formed by applying a ceramic material layer, drying, and heat treatment. For example, by repeatedly performing the coating step (S20) and the drying step (S30) shown in FIG. 7 and performing the glass reinforcing step (S40), 1
  • the base member 112 may be formed. More specifically, a ceramic material for preparing a non-reinforced glass substrate to be used as the first base member 112, applying a ceramic material layer for forming the design part 114 and drying it, and forming coating irregularities (CGR) After the layer is applied and dried, a process of strengthening or semi-strengthening the glass substrate may be performed.
  • the coating unevenness (CGR) or the ceramic material layer for forming the same may contain a dye (reference numeral 1142 in FIG. 7B, hereinafter the same) or may not contain a dye.
  • the ceramic material layer for the coating unevenness (CGR) and the ceramic material layer for the design part 114 may include the ceramic frit 1144 and the resin 1146 in the same material or content, and the ceramic frit 1144 ), resin 1146, and the like may be included in different materials or contents.
  • the present invention is not limited thereto, and after the ceramic material layer for the design part 114 is applied and a ceramic material layer for coating unevenness (CGR) is applied thereon, they may be dried together.
  • the first base member 112 has a gloss reduction unit GR (for example, non-design irregularities (NGR) or design irregularities (DGR)) provided in an embossed and/or engraved form on the surface. )) may or may not be included.
  • GR gloss reduction unit
  • the first base member 112 and the design portion 114, and the first base member 112 and the coating irregularities (CGR) may have an unclear boundary including a composition gradient portion
  • the design portion ( 114) and the coating unevenness (CGR) may have an unclear boundary in which the design portion 114 includes a composition gradient portion. Accordingly, the first base member 112, the design portion 114, and the coating unevenness (CGR) may be integrally formed with each other.
  • a non-reinforced glass substrate to be used as the first base member 112 is prepared, a ceramic material layer for forming coating irregularities (CGR) is applied and dried, and a ceramic material layer for forming the design part 114 is formed. After coating and drying, a step of strengthening or semi-strengthening the glass substrate may be performed. According to this, as shown in FIG. 15, a coating unevenness (CGR) is formed (for example, contact) on the first base member 112, and a design on the first base member 112 and/or the coating unevenness (CGR) The part 114 may be formed (for example, contact).
  • CGR coating unevenness
  • the part 114 may be formed (for example, contact).
  • the first base member 112 and the coating irregularities (CGR), and the first base member 112 and the design portion 114 may have an unclear boundary including a composition gradient portion, and the coating irregularities (CGR)
  • the and design portion 114 may have an unclear boundary including a composition gradient portion. Accordingly, the first base member 112, the coating unevenness (CGR), and the design portion 114 may be integrally formed with each other.
  • the thickness (for example, the maximum thickness) of the coating unevenness (CGR) may be greater than the thickness (for example, the maximum thickness) of the design portion 114. Accordingly, the gloss reduction effect due to the coating irregularities (CGR) can be sufficiently realized, the texture due to the irregularities can be sufficiently realized, and the decrease in light transmittance by the design unit 114 can be prevented or minimized.
  • the thickness of the coating unevenness (CGR) is 10um or more (for example, 15um or more, 50um or less), and the thickness of the design part 114 is less than 15um (for example, less than 10um, 1um or more). have.
  • the present invention is not limited to the thickness of the coating irregularities (CGR), the thickness of the design portion 114, and the like.
  • the glossiness of the first base member 112 having such coating irregularities (CGR) is 100GU or less (for example, 80GU or less, for example, 60GU or less) Can be This glossiness is very low considering that the glossiness of a glass substrate without coating irregularities (CGR) is 150GU or more (for example, 200GU).
  • the design unit 114 includes both the first design unit 114a located in the uneven area NGA and the second design unit 114b located in the uneven area GA.
  • the design portion 114 includes a first design portion 114a located in an uneven region NGA, and includes an uneven region GA or a coating unevenness (CGR).
  • the overlapping second design portion 114b may not be included.
  • the third design portion 114c may or may not be provided with a portion corresponding to the shape of the coating irregularities (CGR) partially removed from a portion adjacent to the irregularities area GA or the coating irregularities (CGR). have.
  • the design part 114 Even if the third design part 114c has a different shape and area than the first design part 114a, since the plurality of first design parts 114a located in the uneven area NGA are regularly arranged, the design part 114 ) Can be seen as having a regular shape. Similarly, even if the design portion 114 has a shape in which only portions corresponding to the uneven regions GA or the coating unevenness (CGR) are removed while being formed over the entire area of the first cover member 110, the uneven regions ( In the NGA), the design portion 114 is formed as a whole, so it can be considered to have a regular shape.
  • the design to be expressed by the design unit 114 can be realized more similarly to the actual one by effectively recognizing it as a building material, a natural object, etc. even visually and tactilely. Accordingly, the aesthetics and appearance of the solar panel 100 can be effectively improved.
  • the gloss reduction unit GR and the design unit 114 are located on the outer surface side of the first cover member 110 and the light diffusion unit LD is located on the inner surface side of the first cover member 110.
  • the locations of the gloss reduction unit GR, the design unit 114, and the light diffusion unit LD may be variously modified. In addition, various modifications are possible, such as not including the light diffusion unit LD.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A solar panel according to an embodiment of the present invention comprises: a solar cell; a sealing material that surrounds and seals the solar cell; a first cover member positioned on the sealing material on one side of the solar cell; and a second cover member positioned on the sealing material on the other side of the solar cell. The first cover member comprises a first base member, a gloss reducing portion having an uneven shape for reducing the gloss of the first base member, and a design portion that is formed on the first base member and is composed of an oxide ceramic composition.

Description

태양 전지 패널용 그래픽 커버 기판 및 이의 제조 방법, 그리고 태양 전지 패널Graphic cover substrate for solar panel, manufacturing method thereof, and solar panel
본 발명은 태양 전지 패널용 그래픽 커버 기판 및 이의 제조 방법, 그리고 태양 전지 패널에 관한 것으로서, 좀더 상세하게는, 구조 및 공정을 개선한 태양 전지 패널용 그래픽 커버 기판 및 이의 제조 방법, 그리고 이를 포함하는 태양 전지 패널에 관한 것이다. The present invention relates to a graphic cover substrate for a solar panel, a method for manufacturing the same, and a solar panel, and in more detail, a graphic cover substrate for a solar panel with improved structure and process and a method for manufacturing the same, and including the same It relates to solar panels.
일반적으로 태양 전지 패널을 건물에 설치하는 경우에는 옥상이나 지붕 등에 설치하였다. 그러나 아파트나 고층 건물 등에서는 옥상이나 지붕에 설치될 수 있는 태양 전지 패널의 크기가 한정되어 태양광을 효율적으로 활용하기 어려웠다. 이에 최근에는 건물 등의 외벽 등에 설치되어 건물 등과 일체화되는 건물 일체형 구조를 가지는 태양 전지 패널에 대한 연구가 활발하게 이루어지고 있다. 건물 일체형 구조를 가지는 태양 전지 패널을 적용하면 건물의 외벽의 넓은 면적에서 광전 변환이 이루어질 수 있어 태양광을 효과적으로 사용할 수 있다.In general, when a solar panel is installed in a building, it is installed on a roof or a roof. However, in apartments and high-rise buildings, the size of solar panels that can be installed on the roof or roof is limited, making it difficult to efficiently utilize sunlight. Accordingly, in recent years, research on a solar panel having an integrated building structure that is installed on the exterior wall of a building and the like and integrated with the building has been actively conducted. When a solar panel having a building-integrated structure is applied, photoelectric conversion can be performed in a large area of the outer wall of the building, so that sunlight can be effectively used.
이러한 건물 일체형 구조를 가지는 태양 전지 패널에서 외관을 향상하기 위하여 일정한 색상, 디자인 등을 가지는 그래픽 커버 기판을 사용할 수 있다. 그런데 종래에 유리 기판을 포함하는 그래픽 커버 기판은 유리에 의한 높은 광택도에 의하여 일반적으로 건물에 사용되는 건축 자재 또는 자연물, 예를 들어, 석재, 나무, 벽돌 등의 느낌을 재현하기 어려웠다. 예를 들어, 일본등록특허 제3717369호와 같이 유리 기판에 착색 필름을 부착하여 제조된 그래픽 커버 기판은 높은 광택도를 가져 다른 건축 자재들과 다른 이질적 느낌을 가져서 심미성이 저하될 수 있었다. 또한, 유리 기판에 착색 필름이 균일하게 부착되지 않거나, 착색 필름의 내구성, 접착 특성이 우수하지 않아 오래 사용하면 쉽게 박리되거나 손상되는 등의 문제가 발생할 수도 있었다. In the solar panel having such a building-integrated structure, in order to improve the appearance, a graphic cover substrate having a certain color, design, etc. may be used. However, in the conventional graphic cover substrate including a glass substrate, it has been difficult to reproduce the feeling of building materials or natural objects, for example, stone, wood, and brick, which are generally used in buildings due to high glossiness due to glass. For example, a graphic cover substrate manufactured by attaching a colored film to a glass substrate, such as Japanese Patent No. 3717369, has a high gloss and has a different feeling from other building materials, so that aesthetics can be degraded. In addition, the colored film may not be uniformly adhered to the glass substrate, or the durability and adhesive properties of the colored film are not excellent, so problems such as peeling or damage may occur if used for a long time.
본 발명은 심미성 및 외관을 향상할 수 있는 태양 전지 패널용 그래픽 커버 기판 및 이의 제조 방법, 그리고 이를 포함하는 태양 전지 패널을 제공하고자 한다. An object of the present invention is to provide a graphic cover substrate for a solar panel, a method of manufacturing the same, and a solar panel including the same, which can improve aesthetics and appearance.
좀더 구체적으로, 건물 일체형 구조를 가지는 태양 전지 패널에 적합하며 간단한 구조 및 공정으로 광택도를 낮춰 다른 건축 자재와의 이질감을 줄일 수 있는 태양 전지 패널용 그래픽 커버 기판 및 이의 제조 방법, 그리고 이를 포함하는 태양 전지 패널을 제공하고자 한다. More specifically, a graphic cover substrate for solar panels and a method of manufacturing the same, which is suitable for solar panels having an integrated building structure, and that can reduce the sense of heterogeneity with other building materials by lowering the gloss through a simple structure and process, and including the same. We want to provide solar panels.
특히, 석재, 나무 등의 자연물, 벽돌 등의 건축 자재 등과 이질감을 줄여 우수한 심미성 및 외관을 가지는 태양 전지 패널용 그래픽 커버 기판 및 이의 제조 방법, 그리고 이를 포함하는 태양 전지 패널을 제공하고자 한다.In particular, it is intended to provide a graphic cover substrate for a solar panel having excellent aesthetics and appearance, and a solar panel including the same, and a solar panel including the same by reducing the sense of heterogeneity with natural objects such as stone and wood, building materials such as brick, and the like.
본 발명의 실시예에 따른 태양 전지 패널은, 제1 커버 부재가 제1 베이스 부재의 광택을 저감하는 요철 형상을 가지는 광택 저감부와, 제1 베이스 부재 위에 형성되며 산화물 세라믹 조성물로 구성되는 디자인부를 포함할 수 있다. 여기서, 광택 저감부는 광택을 저감하는 역할을 하며 추가적으로 표현하고자 하는 디자인을 구현하는데 도움을 줄 수 있고, 디자인부는 표현하고자 하는 디자인을 구현하기 위한 색상, 이미지 등을 나타내는 부분일 수 있다. 그 외에도 태양 전지 패널은, 태양 전지와, 상기 태양 전지를 둘러싸서 밀봉하며 일면 위에 상기 제1 커버 부재가 위치하는 밀봉재와, 상기 밀봉재의 타면 위에 위치하는 제2 커버 부재를 더 포함할 수 있다. In the solar panel according to an embodiment of the present invention, the first cover member has a gloss reduction portion having an uneven shape for reducing the gloss of the first base member, and a design portion formed on the first base member and composed of an oxide ceramic composition. Can include. Here, the gloss reduction unit serves to reduce gloss and may help to implement a design to be additionally expressed, and the design unit may be a part representing colors, images, etc. for realizing the design to be expressed. In addition, the solar panel may further include a solar cell, a sealing material that surrounds and seals the solar cell and has the first cover member positioned on one surface thereof, and a second cover member positioned on the other surface of the sealing material.
상기 광택 저감부가 불규칙 구조(random structure)를 가질 수 있다. 상기 디자인부와 상기 광택 저감부의 배치 관계가 서로 다른 부분이 복수로 존재할 수 있다. 상기 디자인부는 상기 디자인부가 형성된 커버 영역에서 규칙 구조를 가질 수 있다. The gloss reduction unit may have a random structure. There may be a plurality of portions having different arrangement relationships between the design portion and the gloss reduction portion. The design part may have a regular structure in the cover area in which the design part is formed.
상기 광택 저감부가 상기 제1 베이스 부재의 표면에 형성된 음각 및 양각 형태로 구비될 수 있다. 상기 광택 저감부가 상기 디자인부에 의하여 표현하고자 하는 디자인과 무관한 형태 또는 평면 형상을 가지는 비디자인 요철로 구성될 수 있다. 또는, 상기 광택 저감부가 상기 디자인부에 의하여 표현하고자 하는 디자인의 적어도 일부를 구현하는 디자인 요철로 구성될 수 있다. 상기 디자인 요철은 상기 제1 커버 부재의 전체 면적의 50% 미만으로 형성될 수 있다. The gloss reduction unit may be provided in an intaglio or embossed shape formed on the surface of the first base member. The gloss reduction unit may be configured as a non-design irregularity having a shape or a flat shape irrelevant to the design to be expressed by the design unit. Alternatively, the gloss reduction unit may be configured with design irregularities that implement at least a part of a design to be expressed by the design unit. The design irregularities may be formed to be less than 50% of the total area of the first cover member.
또는, 상기 광택 저감부가 상기 제1 베이스 부재 위에 형성되는 코팅 요철로 구성될 수 있다. 상기 코팅 요철의 적어도 일부가 상기 디자인부 위에 형성되거나, 또는 상기 디자인부의 일부가 상기 코팅 요철 위에 형성될 수 있다. 상기 코팅 요철이 상기 디자인부와 다른 색상, 명도, 또는 채도를 가지는 산화물 세라믹 조성물로 구성될 수 있고, 상기 코팅 요철의 두께가 상기 디자인부의 두께보다 클 수 있다. Alternatively, the gloss reduction unit may be formed of uneven coating formed on the first base member. At least a portion of the coating irregularities may be formed on the design portion, or a portion of the design portion may be formed on the coating irregularities. The coating irregularities may be composed of an oxide ceramic composition having a color, brightness, or saturation different from the design portion, and the thickness of the coating irregularities may be greater than the thickness of the design portion.
상기 광택 저감부가 상기 제1 커버 부재의 외면 쪽에 위치할 수 있다. 상기 제1 베이스 부재의 내면에 규칙 구조를 가지는 음각 또는 양각 형상을 가지는 광 확산부가 형성될 수 있다. The gloss reduction part may be located on the outer surface side of the first cover member. A light diffusion unit having a concave or embossed shape having a regular structure may be formed on the inner surface of the first base member.
상기 광택 저감부가 상기 제1 베이스 부재의 표면에 형성된 음각 및 양각 형태로 구비되는 상기 디자인부에 의하여 표현하고자 하는 디자인과 무관한 형태 또는 평면 형상을 가지는 비디자인 요철로 구성되고, 상기 비디자인 요철의 표면 거칠기가 상기 광 확산부의 최대 크기보다 작을 수 있다. The gloss reduction unit is composed of non-design irregularities having a flat shape or a shape irrelevant to the design to be expressed by the design unit provided in intaglio and relief shapes formed on the surface of the first base member, and the non-design irregularities The surface roughness may be smaller than the maximum size of the light diffuser.
상기 광택 저감부가 상기 제1 베이스 부재의 표면에 형성된 음각 및 양각 형태로 구비되는 상기 디자인부에 의하여 표현하고자 하는 디자인의 적어도 일부를 구현하는 디자인 요철로 구성되고, 상기 광 확산부의 산부 또는 골부의 개수보다 상기 디자인 요철의 개수가 작을 수 있다. The gloss reduction unit is composed of design irregularities that implement at least a part of the design to be expressed by the design unit provided in intaglio and embossed shapes formed on the surface of the first base member, and the number of peaks or valleys of the light diffusion unit The number of design irregularities may be smaller than that.
상기 제1 베이스 부재가 유리 기판을 포함하고, 상기 유리 기판이 산화철 함량이 150ppm 미만인 저철분 유리 기판을 포함할 수 있다. The first base member may include a glass substrate, and the glass substrate may include a low iron content glass substrate having an iron oxide content of less than 150 ppm.
상기 디자인부가 유리질 산화물 세라믹 조성물(glassy oxide ceramic composition)로 구성될 수 있다. The design part may be composed of a glassy oxide ceramic composition.
본 실시에에 따른 태양 전지 패널용 그래픽 커버 기판은, 유리 기판, 상기 유리 기판의 광택을 저감하는 요철 형상을 가지는 광택 저감부와, 산화물 세라믹 조성물로 구성되는 디자인부를 포함할 수 있다. 상기 광택 저감부가 불규칙 구조를 가질 수 있다. 상기 디자인부가 상기 디자인부가 형성된 커버 영역에서 규칙 구조를 가질 수 있다.The graphic cover substrate for a solar panel according to the present embodiment may include a glass substrate, a gloss reduction unit having an uneven shape for reducing the gloss of the glass substrate, and a design unit composed of an oxide ceramic composition. The gloss reduction unit may have an irregular structure. The design part may have a regular structure in the cover area in which the design part is formed.
본 실시예에 따른 태양 전지 패널용 그래픽 커버 기판은, 비강화 유리 기판에 광택을 저감하는 요철 형상을 가지는 광택 저감부 및 산화물 세라믹 조성물로 구성되는 디자인 형성층을 형성하는, 기판 준비 및 도포 단계; 및 열처리 또는 어닐링에 의한 열강화에 의하여 상기 비강화 유리 기판을 강화 또는 반강화하면서 상기 디자인 형성층으로부터 상기 유리 기판과 일체화되는 디자인부를 형성하는, 강화 단계를 포함한다. The graphic cover substrate for a solar panel according to the present embodiment includes: forming a design forming layer composed of an oxide ceramic composition and a gloss reduction unit having an uneven shape for reducing gloss on a non-reinforced glass substrate, a substrate preparation and application step; And a strengthening step of forming a design unit integrated with the glass substrate from the design forming layer while strengthening or semi-strengthening the non-reinforced glass substrate by heat strengthening by heat treatment or annealing.
상기 기판 준비 및 도포 단계는, 표면에 양각 형태 및 음각 형태 중 적어도 하나로 형성되는 상기 광택 저감부를 구비한 상기 비강화 유리 기판을 준비하는, 기판 준비 단계; 및 상기 비강화 유리 기판 위에 상기 디자인 형성층을 형성하는, 도포 단계를 포함할 수 있다. The substrate preparation and application step may include preparing the non-reinforced glass substrate having the gloss reduction unit formed in at least one of an embossed shape and an engraved shape on a surface, a substrate preparation step; And forming the design formation layer on the non-reinforced glass substrate, a coating step.
상기 광택 저감부가 상기 디자인부에 의하여 표현하고자 하는 디자인과 무관한 형태 또는 평면 형상을 가지는 비디자인 요철로 구성되고, 상기 기판 준비 단계에서 상기 광택 저감부가 화학적 에칭, 샌드 블라스트 공정 및 연마 공정 중 하나를 이용하여 형성될 수 있다. The gloss reduction unit is composed of non-design irregularities having a shape or a flat shape that is not related to the design to be expressed by the design unit, and in the substrate preparation step, the gloss reduction unit performs one of a chemical etching, sand blasting process, and a polishing process. It can be formed by using.
상기 광택 저감부가 상기 디자인부에 의하여 표현하고자 하는 디자인의 적어도 일부를 구현하는 디자인 요철로 구성되고, 상기 기판 준비 단계에서 상기 광택 저감부가 샌드 블라스트 공정 또는 롤러 공정에 의하여 형성될 수 있다. The gloss reduction unit may be composed of design irregularities that implement at least a part of the design to be expressed by the design unit, and the gloss reduction unit may be formed by a sand blast process or a roller process in the substrate preparation step.
상기 광택 저감부가 상기 비강화 유리 기판 위에 형성되는 코팅 요철로 구성될 수 있다. 여기서, 상기 기판 준비 및 도포 단계는, 상기 비강화 유리 기판 위에 코팅 요철을 형성하기 위한 세라믹 물질층 및 상기 디자인부를 형성하기 위한 상기 디자인 형성층을 도포하는 단계를 포함할 수 있다. 상기 강화 단계에서 상기 세라믹 물질층 및 상기 디자인 형성층으로부터 상기 유리 기판과 일체화되는 상기 코팅 요철 및 상기 디자인부를 형성할 수 있다. The gloss reduction unit may be formed of uneven coating formed on the non-reinforced glass substrate. Here, the preparing and applying the substrate may include applying a ceramic material layer for forming coating irregularities and the design forming layer for forming the design part on the non-reinforced glass substrate. In the reinforcing step, the coating unevenness and the design portion integrated with the glass substrate may be formed from the ceramic material layer and the design formation layer.
본 실시예에 의하면, 그래픽 커버 기판인 제1 커버 부재 또는 그래픽 커버 기판이 디자인부와 함께 광택 저감부를 구비하여 태양 전지 패널을 건축 자재, 건축물 등으로 인식되도록 하여 이질감을 줄일 수 있다. 이에 따라 태양 전지 패널이 목재, 나뭇잎, 석재, 목탄, 벽돌, 콘크리트, 건축 패널 등의 형상을 가지도록 할 수 있다. 이에 의하여 태양 전지 패널의 출력을 우수하게 유지하면서 우수한 심미성 및 외관을 가지도록 할 수 있다.According to the present embodiment, the first cover member or the graphic cover substrate, which is a graphic cover substrate, is provided with a gloss reduction unit together with a design unit so that the solar panel is recognized as a building material, a building, etc., thereby reducing a sense of heterogeneity. Accordingly, the solar panel can have a shape such as wood, leaves, stone, charcoal, brick, concrete, and building panels. Accordingly, it is possible to have excellent aesthetics and appearance while maintaining excellent output of the solar panel.
도 1은 본 발명의 실시예에 따른 태양 전지 패널이 적용된 건물의 일 예를 개략적으로 도시한 도면이다.1 is a diagram schematically showing an example of a building to which a solar panel according to an embodiment of the present invention is applied.
도 2는 본 발명의 일 실시예에 따른 태양 전지 패널을 개략적으로 도시한 분해 사시도이다. 2 is an exploded perspective view schematically showing a solar panel according to an embodiment of the present invention.
도 3은 도 2의 III-III 선을 따라 잘라서 본 개략적인 단면도이다. 3 is a schematic cross-sectional view taken along line III-III of FIG. 2.
도 4는 도 2에 도시한 태양 전지 패널에 포함되는 제1 커버 부재를 도시한 평면도이다. 4 is a plan view illustrating a first cover member included in the solar panel shown in FIG. 2.
도 5는 도 4의 V-V 선을 따라 잘라서 본 개략적인 단면도이다.5 is a schematic cross-sectional view taken along line V-V of FIG. 4.
도 6은 본 발명의 일 변형에에 따른 제1 커버 부재의 일부를 잘라서 본 개략적인 부분 단면도이다. 6 is a schematic partial cross-sectional view of a part of a first cover member according to a modification of the present invention.
도 7은 본 발명의 실시예에 따른 제1 커버 부재의 제조 방법의 일 예를 도시한 흐름도이다. 7 is a flowchart illustrating an example of a method of manufacturing a first cover member according to an embodiment of the present invention.
도 8a 내지 도 8d는 도 7에 도시한 제1 커버 부재의 제조 방법의 각 단계를 도시한 단면도들이다.8A to 8D are cross-sectional views illustrating each step of the method of manufacturing the first cover member shown in FIG. 7.
도 9는 본 발명의 다른 실시에에 따른 제1 커버 부재에 포함되는 광택 저감부 및 디자인부를 도시한 개략적인 평면도이다. 9 is a schematic plan view showing a gloss reduction unit and a design unit included in a first cover member according to another embodiment of the present invention.
도 10은 도 9의 X-X 선에 따른 제1 커버 부재를 모식적으로 도시한 부분 단면도이다.10 is a partial cross-sectional view schematically illustrating a first cover member taken along line X-X of FIG. 9.
도 11은 본 발명의 다른 변형예에 따른 제1 커버 부재의 일부를 모식적으로 도시한 부분 단면도이다.11 is a partial cross-sectional view schematically showing a part of a first cover member according to another modified example of the present invention.
도 12는 본 발명의 또 다른 변형예에 따른 제1 커버 부재의 일부를 모식적으로 도시한 부분 단면도이다.12 is a partial cross-sectional view schematically showing a part of a first cover member according to still another modified example of the present invention.
도 13은 본 발명의 또 다른 실시에에 따른 제1 커버 부재에 포함되는 광택 저감부 및 디자인부를 모식적으로 도시한 평면도이다. 13 is a plan view schematically showing a gloss reduction unit and a design unit included in the first cover member according to another embodiment of the present invention.
도 14는 도 13에 도시한 제1 커버 부재를 모식적으로 도시한 부분 단면도이다.14 is a partial cross-sectional view schematically showing the first cover member shown in FIG. 13.
도 15는 본 발명의 또 다른 변형예에 따른 제1 커버 부재의 일부를 모식적으로 도시한 부분 단면도이다.15 is a partial cross-sectional view schematically showing a part of a first cover member according to still another modified example of the present invention.
도 16은 본 발명의 또 다른 변형예에 따른 제1 커버 부재의 일부를 모식적으로 도시한 부분 단면도이다.16 is a partial cross-sectional view schematically showing a part of a first cover member according to still another modified example of the present invention.
이하에서는 첨부한 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다. 그러나 본 발명이 이러한 실시예에 한정되는 것은 아니며 다양한 형태로 변형될 수 있음은 물론이다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, it goes without saying that the present invention is not limited to these embodiments and may be modified in various forms.
도면에서는 본 발명을 명확하고 간략하게 설명하기 위하여 설명과 관계 없는 부분의 도시를 생략하였으며, 명세서 전체를 통하여 동일 또는 극히 유사한 부분에 대해서는 동일한 도면 참조부호를 사용한다. 그리고 도면에서는 설명을 좀더 명확하게 하기 위하여 두께, 넓이 등을 확대 또는 축소하여 도시하였는바, 본 발명의 두께, 넓이 등은 도면에 도시된 바에 한정되지 않는다.In the drawings, in order to clearly and briefly describe the present invention, illustration of parts irrelevant to the description is omitted, and the same reference numerals are used for identical or extremely similar parts throughout the specification. In addition, in the drawings, the thickness and width are enlarged or reduced in order to clarify the description. However, the thickness and width of the present invention are not limited to those shown in the drawings.
그리고 명세서 전체에서 어떠한 부분이 다른 부분을 "포함"한다고 할 때, 특별히 반대되는 기재가 없는 한 다른 부분을 배제하는 것이 아니며 다른 부분을 더 포함할 수 있다. 또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우 뿐만 아니라 그 중간에 다른 부분이 위치하는 경우도 포함한다. 층, 막, 영역, 판 등의 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 위치하지 않는 것을 의미한다.In addition, when a certain part "includes" another part throughout the specification, the other part is not excluded and other parts may be further included unless otherwise stated. Further, when a part such as a layer, film, region, plate, etc. is said to be "on" another part, this includes not only the case where the other part is "directly above", but also the case where the other part is located in the middle. When a part such as a layer, a film, a region, or a plate is "directly over" another part, it means that no other part is located in the middle.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 따른 태양 전지 패널, 그리고 이에 사용되는 그래픽 커버 기판 및 이의 제조 방법을 상세하게 설명한다. 본 명세서에서 "제1" 또는 "제2"의 표현은 서로 간의 구별을 위하여 사용된 것일 뿐 본 발명이 이에 한정되는 것은 아니다.Hereinafter, a solar panel according to an embodiment of the present invention, a graphic cover substrate used therein, and a manufacturing method thereof will be described in detail with reference to the accompanying drawings. In the present specification, the expressions "first" or "second" are used for distinction from each other, and the present invention is not limited thereto.
도 1은 본 발명의 실시예에 따른 태양 전지 패널(100)이 적용된 건물(1)의 일 예를 개략적으로 도시한 도면이다.1 is a diagram schematically showing an example of a building 1 to which a solar panel 100 according to an embodiment of the present invention is applied.
도 1을 참조하면, 본 실시예에 따른 태양 전지 패널(100)은, 일 예로, 건물(1)의 외벽면(예를 들어, 수직 벽체(3), 지붕면 등)에 적용되는 건물 일체형 구조를 가지는 태양 전지 패널일 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며, 태양 전지 패널(100)이 건물(1)의 옥상, 또는 건물(1)이 아닌 다른 곳 등에 설치될 수도 있다. 이러한 태양 전지 패널(100)은 태양 전지(도 2의 참조부호 150)를 포함하여 태양으로부터 공급되는 태양광을 이용하여 전력을 생산할 수 있다. Referring to FIG. 1, the solar panel 100 according to the present embodiment is, for example, a building-integrated structure applied to an outer wall surface (eg, a vertical wall 3, a roof surface, etc.) It may be a solar panel having. However, the present invention is not limited thereto, and the solar panel 100 may be installed on the roof of the building 1 or in a place other than the building 1. The solar panel 100 may generate electric power using sunlight supplied from the sun, including a solar cell (reference numeral 150 in FIG. 2 ).
본 실시예에서 태양 전지 패널(100)은 일정한 색상, 이미지, 패턴, 느낌, 질감 등을 가지거나 일정한 도형, 글자 등이 구비된 그래픽 커버 기판(일 예로, 제1 커버 부재(도 2의 참조부호 110, 이하 동일))을 포함할 수 있다. 이와 같이 그래픽 커버 기판의 색상 등에 의하여 태양 전지 패널(100) 및 이를 포함하는 건물(1)의 심미성 및 외관을 향상할 수 있다. 그러면서도 그래픽 커버 기판에 의한 태양광의 손실이 크지 않도록 하여 태양 전지 패널(100)의 태양광 변환 효율의 감소를 최소화 또는 방지할 수 있도록 한다. 도 1과 함께 도 2 내지 도 5를 참조하여 태양 전지 패널(100)을 좀더 상세하게 설명한다.In this embodiment, the solar panel 100 is a graphic cover substrate having a certain color, image, pattern, feeling, texture, etc. or provided with a certain figure, character, etc. (for example, a first cover member (reference numeral in FIG. 2 )). 110, hereinafter the same)) may be included. In this way, the aesthetics and appearance of the solar panel 100 and the building 1 including the solar panel 100 may be improved by the color of the graphic cover substrate. At the same time, it is possible to minimize or prevent a decrease in solar light conversion efficiency of the solar panel 100 by preventing a large loss of sunlight due to the graphic cover substrate. The solar panel 100 will be described in more detail with reference to FIGS. 2 to 5 together with FIG. 1.
도 2는 본 발명의 일 실시예에 따른 태양 전지 패널(100)을 개략적으로 도시한 분해 사시도이고, 도 3은 도 2의 III-III 선을 따라 잘라서 본 개략적인 단면도이다. 도 4는 도 2에 도시한 태양 전지 패널에 포함되는 제1 커버 부재의 일 예를 도시한 평면도이고, 도 5는 도 4의 V-V 선을 따라 잘라서 본 개략적인 단면도이다. 간략한 도시를 위하여 도 2에서는 제1 커버 부재(110) 및 제2 커버 부재(120)를 간략하게 도시하여 디자인부(114), 광택 저감부(GR) 및 커버 부분(124)을 도시하지 않았고, 도 3에서는 태양 전지(150)의 구조를 상세하게 도시하지 않았다. FIG. 2 is an exploded perspective view schematically illustrating a solar panel 100 according to an embodiment of the present invention, and FIG. 3 is a schematic cross-sectional view taken along line III-III of FIG. 2. 4 is a plan view illustrating an example of a first cover member included in the solar panel shown in FIG. 2, and FIG. 5 is a schematic cross-sectional view taken along line V-V of FIG. 4. For the sake of simplicity, FIG. 2 schematically shows the first cover member 110 and the second cover member 120 and does not show the design part 114, the gloss reduction part GR, and the cover part 124, In FIG. 3, the structure of the solar cell 150 is not shown in detail.
도 2 내지 도 4를 참조하면, 본 실시예에 따른 태양 전지 패널(100)은, 태양 전지(150)와, 태양 전지(150)를 둘러싸서 밀봉하는 밀봉재(130)와, 밀봉재(130) 위에서 태양 전지(150)의 일면(일 예로, 전면) 쪽에 위치하며 특정한 색상, 이미지, 패턴, 느낌, 또는 질감을 구현하는 디자인부(114)를 구비하는 제1 커버 부재(전면 부재)(110)와, 밀봉재(130) 위에서 태양 전지(150)의 타면(일 예로, 후면) 쪽에 위치하는 제2 커버 부재(후면 부재)(120)를 포함할 수 있다. 여기서, 제1 커버 부재(110) 및 제2 커버 부재(120) 중 적어도 어느 하나(특히, 제1 커버 부재(110))가 특정한 색상 등을 가지는 그래픽 커버 기판일 수 있다. 본 실시예에서 그래픽 커버 기판을 구성하는 제1 커버 부재(110) 및 제2 커버 부재(120) 중 적어도 어느 하나(특히, 제1 커버 부재(110))가, 광택을 저감하는 요철 형상을 가지는 광택 저감부(GR)와, 산화물 세라믹 조성물로 구성되는 디자인부(114)를 포함한다. 이를 좀더 상세하게 설명한다. 2 to 4, the solar panel 100 according to the present embodiment includes a solar cell 150, a sealing material 130 surrounding and sealing the solar cell 150, and on the sealing material 130. A first cover member (front member) 110 located on one side (for example, the front side) of the solar cell 150 and having a design unit 114 that implements a specific color, image, pattern, feel, or texture, and , It may include a second cover member (rear member) 120 located on the other surface (for example, the rear) side of the solar cell 150 on the sealing material 130. Here, at least one of the first cover member 110 and the second cover member 120 (especially, the first cover member 110) may be a graphic cover substrate having a specific color or the like. In this embodiment, at least one of the first cover member 110 and the second cover member 120 constituting the graphic cover substrate (especially, the first cover member 110) has an uneven shape that reduces gloss. It includes a gloss reduction unit GR and a design unit 114 made of an oxide ceramic composition. This will be described in more detail.
이때, 태양 전지(150)는, 태양 전지를 전기 에너지로 변환하는 광전 변환부와, 광전 변환부에 전기적으로 연결되어 전류를 수집하여 전달하는 전극을 포함할 수 있다. 예를 들어, 태양 전지(150)는 적어도 90nm 내지 1400nm(일 예로, 100nm 내지 1200nm)의 파장대의 광으로부터 전기 에너지를 생성하는 태양 전지일 수 있다. 본 실시예에서는 일 예로, 광전 변환부가, 결정질 실리콘 기판(일 예로, 실리콘 웨이퍼)과, 결정질 실리콘 기판에 또는 그 위에 형성되며 도펀트를 포함하는 도전형 영역 또는 산화물을 포함하는 도전형 영역으로 구성될 수 있다. 이와 같이 결정성이 높아 결함이 적은 결정질 실리콘 기판을 기반으로 한 태양 전지(150)는 전기적 특성이 우수하다. 그리고 태양 전지(150)의 전면에는 광의 입사를 방지하기 위한 반사 방지막이 위치할 수 있는데, 반사 방지막에 의한 보강 간섭에 의하여 태양 전지(150)가 일정한 색상(예를 들어, 청색, 검은색 등)을 가질 수 있다. 일 예로, 반사 방지막은 증착 또는 스퍼터링에 의하여 형성될 수 있다. 또는, 반사 방지막 위에 성막, 인쇄, 스프레이 등으로 유기 염료 또는 무기 안료 등을 위치시켜 태양 전지(150)가 일정한 색상을 가지도록 할 수도 있다. In this case, the solar cell 150 may include a photoelectric conversion unit that converts the solar cell into electrical energy, and an electrode that is electrically connected to the photoelectric conversion unit to collect and transmit current. For example, the solar cell 150 may be a solar cell generating electric energy from light in a wavelength range of at least 90 nm to 1400 nm (eg, 100 nm to 1200 nm). In this embodiment, as an example, the photoelectric conversion unit may be composed of a crystalline silicon substrate (eg, a silicon wafer), and a conductive type region including a dopant or a conductive type region formed on or on the crystalline silicon substrate. I can. As such, the solar cell 150 based on the crystalline silicon substrate having high crystallinity and low defects has excellent electrical characteristics. In addition, an anti-reflection film for preventing the incidence of light may be positioned on the front surface of the solar cell 150, and the solar cell 150 has a certain color (for example, blue, black, etc.) due to constructive interference by the anti-reflection film. Can have. For example, the antireflection layer may be formed by vapor deposition or sputtering. Alternatively, an organic dye or an inorganic pigment may be placed on the antireflection film by film formation, printing, spraying, or the like so that the solar cell 150 has a certain color.
그리고 본 실시예에서는 태양 전지(150)가 서로 이격되면서 복수로 구비되며, 복수 개의 태양 전지(150)가 배선부(142, 145)에 의하여 전기적으로 직렬, 병렬 또는 직병렬로 연결되어 태양 전지부(SP)를 구성할 수 있다. 일 예로, 복수의 태양 전지(150)가 배선재(142)에 의하여 직렬로 연결되어 제1 방향(도면의 z축 방향)을 따라 길게 연장되는 태양 전지 스트링을 구성할 수 있다. 그리고 태양 전지 스트링의 단부에 제1 방향과 교차하는 제2 방향(도면의 x축 방향)으로 연장되는 버스 리본(145)이 구비될 수 있다. 일 예로, 버스 리본(145)은 태양 전지 스트링의 배선재(142)의 양쪽 단부에 연결될 수 있다. 이러한 버스 리본(145)은, 제2 방향에서 인접하는 태양 전지 스트링을 직렬, 병결, 또는 직병렬로 연결하거나, 태양 전지 스트링을 전류의 역류를 방지하는 정션 박스에 연결할 수 있다. And in this embodiment, a plurality of solar cells 150 are provided while being spaced apart from each other, and a plurality of solar cells 150 are electrically connected in series, parallel, or serially parallel by wiring units 142 and 145 to form a solar cell unit. (SP) can be configured. For example, a plurality of solar cells 150 may be connected in series by a wiring member 142 to form a solar cell string extending long along a first direction (z-axis direction in the drawing). In addition, a bus ribbon 145 extending in a second direction crossing the first direction (the x-axis direction in the drawing) may be provided at an end of the solar cell string. For example, the bus ribbon 145 may be connected to both ends of the wiring member 142 of the solar cell string. The bus ribbon 145 may connect adjacent solar cell strings in a second direction in series, parallel, or serially parallel, or connect the solar cell strings to a junction box that prevents reverse current flow.
배선부(142, 145)(특히, 버스 리본(145))은 1mm 이상의 폭을 가지는 광폭 부분을 가질 수 있는데, 이러한 광폭 부분이 외부에서 쉽게 인식되는 것을 방지할 수 있도록 착색 부재(160)가 구비될 수 있다. 착색 부재(160)는 특정한 색상(일 예로, 검은색, 회색, 또는 태양 전지(150)와 동일 또는 유사한 색상)을 가질 수 있고, 배선부(142, 145)의 광폭 부분과 다른 반사도를 가질 수 있다. 그리고 착색 부재(160)는 두께가 1mm 이하인 필름 형태, 시트 형태, 또는 테이프 형태로 구성되어 다양한 방법으로 원하는 위치에 위치할 수 있다. 일 예로, 착색 부재(160)가 태양 전지부(SP)(특히, 버스 리본(145))에 점착(cohesion) 또는 접착(adhesion)되어 위치할 수 있다. 또는, 착색 부재(160)가 태양 전지부(SP)(일 예로, 버스 리본(145)) 위에 놓여진 상태에서 라미네이션 공정에서 밀봉재(130)에 의하여 태양 전지부(SP)에 고정될 수 있다. 또는, 표면 코팅 등에 의하여 착색 부재(160)가 태양 전지부(SP)(일 예로, 버스 리본(145)) 위에 형성될 수 있다. 여기서, 점착이라 함은 상온에서 물리적 힘에 의해 두 개의 층이 서로 부착되거나 분리될 수 있는 정도의 접착력을 의미하는 것이며, 접착이라 함은 열처리를 통해 두 개의 층이 서로 부착되어 두 개의 층을 분리할 때 어느 하나의 층이 손상되는 것을 의미할 수 있다. 착색 부재(160)의 크기, 형태, 배치 등은 다양하게 변형될 수 있다.The wiring portions 142 and 145 (in particular, the bus ribbon 145) may have a wide portion having a width of 1 mm or more, and a colored member 160 is provided to prevent such a wide portion from being easily recognized from the outside. Can be. The colored member 160 may have a specific color (for example, black, gray, or the same or similar color as the solar cell 150), and may have a different reflectivity from the wide portion of the wiring parts 142 and 145. have. In addition, the colored member 160 may be formed in a film form, a sheet form, or a tape form having a thickness of 1 mm or less, and may be positioned at a desired position in various ways. For example, the colored member 160 may be positioned by being cohesion or adhesion to the solar cell unit SP (in particular, the bus ribbon 145). Alternatively, the colored member 160 may be fixed to the solar cell unit SP by the sealing material 130 in the lamination process while the colored member 160 is placed on the solar cell unit SP (for example, the bus ribbon 145). Alternatively, the colored member 160 may be formed on the solar cell unit SP (for example, the bus ribbon 145) by surface coating or the like. Here, adhesion refers to an adhesive strength that allows two layers to be attached or separated from each other by physical force at room temperature, and adhesion refers to two layers being attached to each other through heat treatment to separate the two layers. When doing so, it may mean that one of the layers is damaged. The size, shape, and arrangement of the colored member 160 may be variously modified.
그러나 본 발명이 이에 한정되는 것은 아니며 태양 전지(150), 배선부(142, 145), 착색 부재(160) 등의 구조, 방식 등은 다양하게 변형될 수 있다. 일 예로, 태양 전지(150)는 화합물 반도체 태양 전지, 실리콘 반도체 태양 전지, 염료 감응형 태양 전지 등의 다양한 구조를 가지거나, 하나의 태양 전지(150)만이 구비되는 것도 가능하다. 그리고 배선재(142)로 리본, 와이어 등 태양 전지(150)를 연결할 수 있는 다양한 구조, 형상이 적용될 수 있고, 버스 리본(145)의 물질, 형상, 연결 구조 등이 다양하게 변형될 수 있다. 본 실시예는 각 태양 전지(150)에 사용되는 배선부(142, 145)의 개수, 구조, 형상 등에 한정되지 않는다.However, the present invention is not limited thereto, and structures and methods of the solar cell 150, the wiring portions 142 and 145, and the colored member 160 may be variously modified. For example, the solar cell 150 may have various structures such as a compound semiconductor solar cell, a silicon semiconductor solar cell, a dye-sensitized solar cell, or only one solar cell 150 may be provided. In addition, various structures and shapes capable of connecting the solar cells 150 such as ribbons and wires to the wiring material 142 may be applied, and materials, shapes, and connection structures of the bus ribbon 145 may be variously modified. The present embodiment is not limited to the number, structure, shape, etc. of the wiring portions 142 and 145 used in each solar cell 150.
밀봉재(130)는, 태양 전지(150)(좀더 구체적으로, 태양 전지부(SP))와 제1 커버 부재(110) 사이에 위치하는 제1 밀봉재(131) 및 태양 전지(150)(좀더 구체적으로, 태양 전지부(SP))와 제2 커버 부재(120) 사이에 위치하는 제1 및 제2 밀봉재(131, 132)를 포함할 수 있다. 제1 밀봉재(131)와 제2 밀봉재(132)는 수분과 산소의 유입되는 것을 방지하며 태양 전지 패널(100)의 각 요소들을 화학적으로 결합한다. 제1 및 제2 밀봉재(131, 132)는 투광성 및 접착성을 가지는 절연 물질로 구성될 수 있다. 일 예로, 제1 밀봉재(131)와 제2 밀봉재(132)로 에틸렌초산비닐 공중합체 수지(EVA), 폴리비닐부티랄, 규소 수지, 에스테르계 수지, 올레핀계 수지(예를 들어, 폴리올레핀) 등이 사용될 수 있다. 제1 또는 제2 밀봉재(131, 132)는 하나의 층 또는 둘 이상의 층을 포함할 수 있다. The sealing material 130 includes a first sealing material 131 and a solar cell 150 (more specifically, a solar cell unit SP) and a first cover member 110 positioned between the solar cell 150 (more specifically, the solar cell unit SP). As a result, it may include first and second sealing materials 131 and 132 positioned between the solar cell unit SP and the second cover member 120. The first sealing material 131 and the second sealing material 132 prevent the inflow of moisture and oxygen, and chemically couple the elements of the solar panel 100. The first and second sealing materials 131 and 132 may be formed of an insulating material having light-transmitting properties and adhesive properties. For example, as the first sealing material 131 and the second sealing material 132, ethylene vinyl acetate copolymer resin (EVA), polyvinyl butyral, silicon resin, ester resin, olefin resin (for example, polyolefin), etc. Can be used. The first or second sealing materials 131 and 132 may include one layer or two or more layers.
라미네이션 공정 등에 의하여 제2 커버 부재(120), 제2 밀봉재(132), 태양 전지(150) 및 배선부(142, 145)를 포함하는 태양 전지부(SP), 착색 부재(160), 제1 밀봉재(131), 제1 커버 부재(110)가 일체화되어 태양 전지 패널(100)을 구성할 수 있다. 도 2에서 제1 밀봉재(131)와 제2 밀봉재(132)가 일정한 경계를 가지는 것으로 도시하였으나, 실제로는 라미네이션 공정에 의하여 일체화되어 경계를 가지지 않고 일체화된 상태일 수 있다.The solar cell unit (SP) including the second cover member 120, the second sealing material 132, the solar cell 150, and the wiring units 142, 145, the colored member 160, and the first by a lamination process, etc. The sealing material 131 and the first cover member 110 may be integrated to constitute the solar panel 100. In FIG. 2, the first sealing material 131 and the second sealing material 132 are shown to have a certain boundary, but in reality, they are integrated by a lamination process and may be in an integrated state without having a boundary.
그러나 본 발명이 이에 한정되는 것은 아니다. 따라서, 제1 및 제2 밀봉재(131, 132)가 상술한 설명 이외의 다양한 물질을 포함할 수 있으며 다양한 형태를 가질 수 있다.However, the present invention is not limited thereto. Accordingly, the first and second sealing materials 131 and 132 may include various materials other than those described above, and may have various shapes.
제1 커버 부재(110)는 밀봉재(130)(일 예로, 제1 밀봉재(131)) 상에 위치하여 태양 전지 패널(100)의 일면(일 예로, 전면)을 구성하고, 제2 커버 부재(120)는 밀봉재(130)(이 예로, 제2 밀봉재(132)) 상에 위치하여 태양 전지 패널(100)의 타면(일 예로, 후면)을 구성한다. 제1 커버 부재(110) 및 제2 커버 부재(120)는 각기 외부의 충격, 습기, 자외선 등으로부터 태양 전지(150)를 보호할 수 있는 절연 물질로 구성될 수 있다. 제1 커버 부재(110)는 태양 전지(150)로 입사되는 광을 차단하지 않도록 광이 투과할 수 있는 투광성을 가질 수 있다. 제2 커버 부재(120)는 투광성, 비투광성, 반투광성, 또는 반사 특성의 다양한 특성을 가질 수 있다.The first cover member 110 is positioned on the sealing material 130 (for example, the first sealing material 131) to constitute one surface (for example, the front surface) of the solar panel 100, and the second cover member ( 120) is located on the sealing material 130 (for example, the second sealing material 132) to configure the other surface (for example, the rear surface) of the solar panel 100. Each of the first cover member 110 and the second cover member 120 may be formed of an insulating material capable of protecting the solar cell 150 from external shock, moisture, and ultraviolet rays. The first cover member 110 may have light transmittance through which light may be transmitted so as not to block light incident on the solar cell 150. The second cover member 120 may have various characteristics such as light-transmitting, non-transmitting, semi-transmitting, or reflective properties.
본 실시예에서는, 제1 및 제2 커버 부재(110, 120)가, 태양 전지 패널(100)이 특정한 색상, 이미지, 패턴, 느낌, 질감 등의 원하는 외관을 가지도록 하는 그래픽 커버 기판이거나, 태양 전지(150) 또는 이에 연결되는 배선부(142, 145)가 명확하게 인식되는 것을 방지하는 역할을 주로 수행하는 착색 커버 기판일 수 있다. 예를 들어, 본 실시예에서 태양 전지(150)의 전면에 위치하는 제1 커버 부재(110)가 그래픽 커버 기판이고, 제2 커버 부재(120)가 착색 커버 기판이 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 다양한 변형이 가능하다. In this embodiment, the first and second cover members 110 and 120 are graphic cover substrates that allow the solar panel 100 to have a desired appearance such as a specific color, image, pattern, feel, texture, etc., or It may be a colored cover substrate that mainly serves to prevent the battery 150 or the wiring portions 142 and 145 connected thereto from being clearly recognized. For example, in the present embodiment, the first cover member 110 positioned on the front surface of the solar cell 150 may be a graphic cover substrate, and the second cover member 120 may be a colored cover substrate. However, the present invention is not limited thereto, and various modifications are possible.
여기서, 그래픽 커버 기판인 제1 커버 부재(110)는, 광택을 저감하는 요철 형상을 가지는 광택 저감부(GR)와, 산화물 세라믹 조성물로 구성되며 특정한 색상, 이미지, 패턴 등을 표현하는 디자인부(114)를 포함할 수 있다. 디자인부(114)는 태양 전지 패널(100)이 원하는 외관을 가지도록 하며 추가적으로 태양 전지(150) 및 배선부(142, 145)가 외부에서 쉽게 인식되는 것을 방지할 수 있다. Here, the first cover member 110, which is a graphic cover substrate, includes a gloss reduction unit GR having an uneven shape for reducing gloss, and a design unit consisting of an oxide ceramic composition and expressing a specific color, image, pattern, etc. 114). The design part 114 allows the solar panel 100 to have a desired appearance and additionally prevents the solar cell 150 and the wiring parts 142 and 145 from being easily recognized from the outside.
여기서, 제1 커버 부재(110)는, 광택 저감부(GR)가 표면에 형성된 제1 베이스 부재(112)와, 제1 베이스 부재(112) 위에 위치하는 디자인부(114)를 포함할 수 있다. Here, the first cover member 110 may include a first base member 112 having a gloss reduction portion GR formed on a surface thereof, and a design portion 114 positioned on the first base member 112. .
제1 베이스 부재(112)는 우수한 광 투과도를 가지는(일 예로, 투명한) 물질로 구성될 수 있다. 예를 들어, 제1 베이스 부재(112)는 유리 기판, 수지(일 예로, 폴리카보네이트(polycarbonate) 등) 등으로 구성되는 기판, 필름, 시트 등일 수 있고, 단일층 또는 복수의 층으로 구성될 수 있다. 특히, 제1 베이스 부재(112)가 우수한 투명도, 우수한 절연 특성, 안정성, 내구성, 내화성 등을 가지는 강화 또는 반강화 유리 기판으로 이루어질 수 있다. The first base member 112 may be made of a material having excellent light transmittance (for example, transparent). For example, the first base member 112 may be a glass substrate, a substrate made of a resin (for example, polycarbonate, etc.), a film, a sheet, etc., and may be composed of a single layer or a plurality of layers. have. In particular, the first base member 112 may be made of a reinforced or semi-reinforced glass substrate having excellent transparency, excellent insulating properties, stability, durability, and fire resistance.
이때, 태양 전지 패널(100)이 건물(1)의 외장재로 사용될 경우에는, 풍압, 우박, 적설 하중과 같은 외부 충격에도 견딜 수 있도록 제1 커버 부재(110)가 충분한 강도를 가져야 한다. 이를 위하여, 제1 커버 부재(110) 또는 제1 베이스 부재(112)는 2400Nm2의 힘을 가했을 때 힘을 받는 방향으로 발생하는 휨(deflection)이 5mm 이하이거나, 최소 두께가 2mm 이상일 수 있다. 일 예로, 제1 커버 부재(110) 또는 제1 베이스 부재(112)의 최소 두께가 2mm 이상(예를 들어, 2.8mm 내지 12mm, 좀더 구체적으로, 2.8mm 내지 8mm)이고, 면적이 0.04 내지 10m2 일 수 있다. 이러한 수치는 태양 전지 패널(100)의 강도, 무게, 구조적 안정성, 생산성 등을 고려한 것이나, 본 발명이 이에 한정되는 것은 아니며 휨의 값, 두께, 면적 등이 변화될 수 있다. At this time, when the solar panel 100 is used as an exterior material of the building 1, the first cover member 110 must have sufficient strength to withstand external impacts such as wind pressure, hail, and snow load. To this end, the first cover member 110 or the first base member 112 may have a deflection of 5 mm or less, or a minimum thickness of 2 mm or more, generated in the direction of receiving the force when a force of 2400 Nm2 is applied. For example, the minimum thickness of the first cover member 110 or the first base member 112 is 2mm or more (for example, 2.8mm to 12mm, more specifically, 2.8mm to 8mm), and the area is 0.04 to 10m2 Can be These figures take the strength, weight, structural stability, productivity, etc. of the solar panel 100 into consideration, but the present invention is not limited thereto, and the warpage value, thickness, area, etc. may be changed.
일 예로, 제1 베이스 부재(112)가 380nm 내지 1200nm의 파장을 가지는 광에 대한 광 투과도가 80% 이상(일 예로, 85% 이상)인 저철분 유리 기판(일 예로, 강화 또는 반강화 저철분 유리 기판)일 수 있다. 여기서, 저철분 유리 기판이라 함은 산화철 함량이 150ppm 미만인 유리 기판을 의미할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며, 본 실시예가 속하는 기술분야에서 저철분 유리 기판을 인식되는 유리 기판을 포함할 수 있다. 이와 같이 제1 베이스 부재(112)로 저철분 유리 기판을 사용하면, 태양광의 반사를 방지하고 태양광의 투과율을 높일 수 있으며 외부의 충격 등으로부터 태양 전지(150)를 효과적으로 보호할 수 있다. As an example, the first base member 112 has a light transmittance of 80% or more (for example, 85% or more) for light having a wavelength of 380 nm to 1200 nm. Glass substrate). Here, the low iron content glass substrate may mean a glass substrate having an iron oxide content of less than 150 ppm. However, the present invention is not limited thereto, and may include a glass substrate recognized as a low iron glass substrate in the technical field to which the present embodiment belongs. In this way, when a low-iron glass substrate is used as the first base member 112, reflection of sunlight can be prevented, the transmittance of sunlight can be increased, and the solar cell 150 can be effectively protected from external impact.
다만, 유리 기판(일 예로, 저철분 유리 기판)은 다른 처리가 없는 경우 광택도(gloss unit)가 150GU 이상(일 예로, 200GU 정도)로 높아서 건물 일체형 구조의 태양 전지 패널(100)에 사용되면 건축 자재와 다른 이질적 느낌을 가질 수 있다. 이에 따라 유리 기판으로 구성되는 제1 베이스 부재(112)에 디자인부(114)를 형성하여도 제1 커버 부재(110)가 건축 자재, 자연물 등의 형상으로 인식되기 어려울 수 있다. 즉, 그래픽 커버 기판을 구비하여도 유리 기판의 높은 광택도에 의하여 태양 전지 패널(100)이 목재, 나뭇잎, 석재, 목탄, 벽돌, 콘크리트, 건축 패널 등의 형상으로 인식되기 어려울 수 있다. 이에 본 실시예에서는 디자인부(114) 외에 광택 저감부(GR)를 형성하여 제1 커버 부재(112)의 광택도를 저감하고, 이에 의하여 제1 커버 부재(110)가 건축 자재, 자연물 등의 형상으로 인식되도록 할 수 있다.However, when a glass substrate (for example, a low iron glass substrate) is used in the solar panel 100 of a building-integrated structure, since the gloss unit is high as 150GU or more (for example, about 200GU) without any other treatment, It can have a different feeling from building materials. Accordingly, even if the design portion 114 is formed on the first base member 112 made of a glass substrate, it may be difficult to recognize the first cover member 110 as a shape such as a building material or a natural object. That is, even if the graphic cover substrate is provided, it may be difficult to recognize the solar panel 100 as a shape of wood, leaves, stone, charcoal, brick, concrete, building panels, etc. due to the high glossiness of the glass substrate. Accordingly, in this embodiment, in addition to the design part 114, the gloss reduction part GR is formed to reduce the glossiness of the first cover member 112, thereby making the first cover member 110 It can be recognized as a shape.
이하에서는 디자인부(114)에 대하여 먼저 설명한 후에 광택 저감부(GR)를 설명한다. Hereinafter, the design unit 114 will be first described, and then the gloss reduction unit GR will be described.
디자인부(114)는 태양 전지 패널(100)이 원하는 색상, 이미지, 패턴 등을 가지도록 백색, 회색, 검은색 등의 무채색, 또는 빨간색, 노란색, 초록색, 파란색 등과 같은 유채색, 투명 또는 반투명 특성, 무광택 또는 유광택 특성, 유리 기판 등으로 구성된 제1 베이스 부재(112)와 다른 특성을 단독 또는 조합으로 가질 수 있다. The design unit 114 includes achromatic colors such as white, gray, black, etc., or chromatic, transparent or translucent characteristics such as red, yellow, green, blue, etc. so that the solar panel 100 has a desired color, image, pattern, etc., It may have a matte or glossy property, a property different from that of the first base member 112 made of a glass substrate, or the like, alone or in combination.
본 실시예에서 디자인부(114)는 산화물 세라믹 조성물로 구성될 수 있다. 이러한 디자인부(114)는 세라믹 프릿(유리 프릿)(도 8b의 참조부호 1144, 이하 동일), 색소(도 8b의 참조부호 1142, 이하 동일), 수지(도 8b의 참조부호 1146, 이하 동일) 등을 포함하는 디자인 형성층(도 8b의 참조부호 1140, 이하 동일)을 이용하여 형성될 수 있다. 이러한 디자인 형성층(1140)은 제1 베이스 부재(112)를 구성하는 유리 기판을 강화 또는 반강화하는 공정(이하, 유리 강화 단계)에서 제1 베이스 부재(112)의 내부로 확산 및 침투하여 유리 기판을 구성하는 물질과 혼합되는 조성 구배 부분(composition gradient portion)을 형성하면서 제1 베이스 부재(112)와 일체화되어 형성될 수 있다. 디자인 형성층(1140), 이에 포함되는 세라믹 프릿(1144), 색소(1142) 및 수지(114), 그리고 이를 이용한 디자인부(114)의 제조 공정에 대해서는 추후에 제1 커버 부재(110)의 제조 방법에서 좀더 상세하게 설명한다. In this embodiment, the design part 114 may be made of an oxide ceramic composition. The design part 114 is a ceramic frit (glass frit) (reference numeral 1144 in FIG. 8B, the same hereinafter), a dye (reference numeral 1142 in FIG. 8B, the same hereinafter), a resin (reference numeral 1146 in FIG. 8B, the same hereinafter) It may be formed using a design forming layer including the like (reference numeral 1140 in FIG. 8B, hereinafter the same). The design formation layer 1140 diffuses and penetrates into the interior of the first base member 112 in a process of strengthening or semi-strengthening the glass substrate constituting the first base member 112 (hereinafter, the glass strengthening step) to form a glass substrate. It may be formed integrally with the first base member 112 while forming a composition gradient portion that is mixed with the material constituting the material. For the manufacturing process of the design forming layer 1140, the ceramic frit 1144, the pigment 1142 and the resin 114, and the design part 114 using the same, a method of manufacturing the first cover member 110 later. This is described in more detail in
상술한 제조 공정에 의하면, 제1 베이스 부재(112)와 디자인부(114) 사이의 경계가 불분명한 경계로 구성되되 제1 베이스 부재(112)와 디자인부(114)가 일체화된 형태를 가질 수 있다. 여기서, 불분명한 경계라 함은 제1 베이스 부재(112)(일 예로, 유리 기판을 구성하는 물질)에 포함된 물질과 디자인부(114)를 구성하는 산화물 세라믹 조성물에 포함된 물질이 혼재되어 조성이 변하는 조성 구배 부분(혼재 부분, 중간 부분, 또는 천이 부분)가 일정 두께 이상(일 예로, 50nm 이상) 으로 존재하는 것을 의미할 수 있다. 제1 베이스 부재(112)와 조성 구배 부분이 적어도 하나의 동일한 물질을 포함하면서 조성이 일부 다른 부분이며 조성 구배 부분과 디자인부(114)가 적어도 하나의 동일한 물질을 포함하며 조성이 일부 다른 부분인 바, 제1 베이스 부재(112)와 디자인부(114)가 조성 구배 부분에 의하여 서로 일체화된 형태를 가질 수 있다.According to the above-described manufacturing process, the boundary between the first base member 112 and the design unit 114 is composed of an unclear boundary, but the first base member 112 and the design unit 114 may have an integrated form. have. Here, the unclear boundary is composed of a mixture of a material included in the first base member 112 (for example, a material constituting a glass substrate) and a material included in the oxide ceramic composition constituting the design unit 114 This variable composition gradient portion (mixed portion, intermediate portion, or transition portion) may mean that there is a certain thickness or more (for example, 50 nm or more). The first base member 112 and the composition gradient portion contain at least one of the same material, the composition is partially different, and the composition gradient portion and the design portion 114 contain at least one of the same material, and the composition is partially different. Bar, the first base member 112 and the design portion 114 may have a form integrated with each other by a composition gradient portion.
이에 따라 제1 커버 부재(110)는 두께 방향의 일부분에 산화물 세라믹 조성물로 구성된 디자인부(114)가 일체화된 강화 또는 반강화 유리 기판으로 구성된 제1 베이스 부재(112)로 구성될 수 있다. 이에 의하면, 디자인부(114)가 제1 베이스 부재(112)와 일체화되어 형성되어 물리적 내구성 및 화학적 내구성이 우수할 수 있다. Accordingly, the first cover member 110 may be composed of a first base member 112 composed of a reinforced or semi-reinforced glass substrate in which the design part 114 composed of an oxide ceramic composition is integrated in a portion in the thickness direction. According to this, the design portion 114 is formed integrally with the first base member 112 so that physical durability and chemical durability may be excellent.
좀더 구체적으로, 디자인부(114)는 비정질 상태의 유리 구조를 가지는 산화물 세라믹 조성물로 구성될 수 있다. 예를 들어, 디자인부(114)가 유리질 산화물 세라믹 조성물(glassy oxide ceramic composition)로 구성될 수 있다. 이러한 디자인부(114)는, 세라믹 프릿(1144) 및/또는 색소(1142)에 포함된 복수의 금속과 비금속(일 예로, 산소)를 포함하는 금속 화합물(일 예로, 금속 산화물)을 복수로 포함하여 형성되어, 복수의 금속과 산소를 포함하는 불규칙 망목 구조를 가지는 산소 다면체, 유리 구조, 불규칙 망목 구조 등을 가질 수 있다. 디자인부(114)가 산화물 세라믹 조성물로 구비되었는지 여부는 광전자 분석(X-ray photoelectron spectroscopy, XPS) 등에 의하여 판별할 수 있다. More specifically, the design unit 114 may be formed of an oxide ceramic composition having an amorphous glass structure. For example, the design part 114 may be composed of a glassy oxide ceramic composition. The design unit 114 includes a plurality of metal compounds (eg, metal oxides) including a plurality of metals and non-metals (eg, oxygen) included in the ceramic frit 1144 and/or the pigment 1142 It is formed as a result, and may have an oxygen polyhedron having an irregular network structure including a plurality of metals and oxygen, a glass structure, an irregular network structure, and the like. Whether the design part 114 is provided with an oxide ceramic composition can be determined by X-ray photoelectron spectroscopy (XPS) or the like.
상술한 산화물 세라믹 조성물은 일반적인 산화물 세라믹을 형성하는 온도보다 낮은 온도에서 열처리하여 형성되어 비정질 상태의 유리 구조를 가질 수 있다. 비정질 상태의 유리 구조를 가지는 산화물 세라믹 조성물은 결정질 부분을 포함하지 않거나 부분적으로만 포함할 수 있다. 예를 들어, 비정질 상태의 유리 구조를 가지는 산화물 세라믹 조성물에는, 비정질 부분이 결정질 부분과 같거나 그보다 많이 포함될 수 있고, 특히, 비정질 부분이 결정질 부분보다 많이 포함될 수 있다. 일 예로, 비정질 상태의 유리 구조를 가지는 산화물 세라믹 조성물은 결정화도가 50% 이하(좀더 구체적으로, 50% 미만, 일 예로, 20% 이하)일 수 있다. 참조로, 기존에 사용하던 일반적인 산화물 세라믹이라 함은 이온 결합, 공유 결합, 또는 이들의 결합이 혼재된 산화물로서 고온 및 고압에서 생성된 무기질 비금속 재료를 의미한다. 이러한 산화물 세라믹은 850℃ 이상(예를 들어, 1400℃ 부근)의 높은 온도, 그리고 높은 압력 하에서 열처리되어 대부분이 결정화된 상태를 가진다.The above-described oxide ceramic composition may be formed by heat treatment at a temperature lower than a temperature for forming a general oxide ceramic to have an amorphous glass structure. The oxide ceramic composition having a glass structure in an amorphous state may not contain a crystalline portion or may contain only partially. For example, in the oxide ceramic composition having a glass structure in an amorphous state, the amorphous portion may be the same as or more than the crystalline portion, and in particular, the amorphous portion may be included more than the crystalline portion. For example, the oxide ceramic composition having an amorphous glass structure may have a crystallinity of 50% or less (more specifically, less than 50%, for example, 20% or less). For reference, the conventional oxide ceramic refers to an inorganic non-metallic material produced at high temperature and high pressure as an oxide in which ionic bonds, covalent bonds, or bonds thereof are mixed. These oxide ceramics are heat-treated under a high temperature of 850° C. or higher (eg, around 1400° C.) and high pressure to have most of them crystallized.
이러한 디자인부(114)는 세라믹 프릿(1144)을 기본 물질(일 예로, 가장 많이 포함된 물질, 50 중량부 이상으로 포함된 물질)로 포함할 수 있다. 그리고 디자인부(114)는, 필요에 따라 첨가된 색소(1142), 첨가제 등을 더 포함할 수 있다. 그리고 유리 강화 단계에서 디자인 형성층(1140)에 포함된 수지(1146)가 휘발될 수 있으므로 디자인부(114)는 수지(1146)를 포함하지 않거나 포함하지 않을 수 있다. 디자인부(114)에 색소(1142)가 포함되는 경우에도 디자인부(114)의 세라믹 프릿(1144)과 색소(1142)의 구별이 명확하지 않을 수 있다. 예를 들어, 색소(1142)로 포함된 물질의 금속이 세라믹 프릿(1144)을 구성하는 산소 다면체, 유리 구조, 불규칙 망목 구조 등의 금속으로 포함된 형태로 존재할 수 있다. 이와 같이 디자인부(114)에 포함된 세라믹 프릿(1144) 등은 다양한 성분 분석 방법(예를 들어, 주사전자현미경-에너지 분산형 분광 분석법(SEM-EDX) 등)에 의하여 판별될 수 있다.The design part 114 may include the ceramic frit 1144 as a basic material (eg, a material included most, a material included in an amount of 50 parts by weight or more). In addition, the design unit 114 may further include a pigment 1142 and an additive added as necessary. In addition, since the resin 1146 included in the design forming layer 1140 may be volatilized in the glass reinforcing step, the design portion 114 may or may not include the resin 1146. Even when the dye 1142 is included in the design part 114, the distinction between the ceramic frit 1144 and the dye 1142 of the design part 114 may not be clear. For example, the metal of the material included as the pigment 1142 may exist in a form including metal such as an oxygen polyhedron constituting the ceramic frit 1144, a glass structure, and an irregular network structure. In this way, the ceramic frit 1144 included in the design unit 114 may be determined by various component analysis methods (eg, scanning electron microscope-energy dispersive spectroscopy (SEM-EDX), etc.).
이와 같이 본 실시예에 따른 디자인부(114)는 산화물 세라믹 조성물(특히, 비정질 상태의 유리 구조를 가지는 산화물 세라믹 조성물)로 구성되어 파장에 따른 특정한 광 투과도 형태, 표면 거칠기 등을 가져 디자인부(114)에 의하여 광 투과도가 다소 낮아지더라도 태양 전지 패널(100)의 출력이 저하되는 것을 방지 또는 최소화할 수 있다. 상술한 디자인부(114)는 제1 베이스 부재(112) 또는 밀봉재(130)보다 큰 굴절률(일 예로, 1.48 이상의 굴절률)을 가질 수 있다. As described above, the design unit 114 according to the present embodiment is composed of an oxide ceramic composition (especially, an oxide ceramic composition having an amorphous glass structure), and has a specific light transmittance form according to a wavelength, a surface roughness, and the like, so that the design unit 114 ), even if the light transmittance is slightly lowered, it is possible to prevent or minimize the decrease in the output of the solar panel 100. The design unit 114 described above may have a larger refractive index (for example, a refractive index of 1.48 or more) than the first base member 112 or the sealing material 130.
본 실시예에서 비정질 상태의 유리 구조를 가지는 산화물 세라믹 조성물로 구성된 디자인부(114)에서는, 적외선 영역의 광에 대한 평균 광 투과도인 제1 투과도가 가시광선 영역의 광에 대한 평균 광 투과도인 제2 투과도와 같거나 그보다 더 크다. 특히, 비정질 상태의 유리 구조를 가지는 산화물 세라믹 조성물로 구성된 디자인부(114)는, 제1 투과도가 제2 투과도보다 클 수 있다. 그리고 비정질 상태의 유리 구조를 산화물 세라믹 조성물로 구성된 디자인부(114)는, 적외선 영역 및 가시광선 영역의 광 각각에 대한 평균 광 투과도인 제1 및 제2 투과도보다 자외선 영역의 광에 대한 평균 광 투과도인 제3 투과도가 더 작을 수 있다. 여기서, 자외선 영역의 광은 100nm 내지 380nm의 파장을 가지는 광, 가시광선 영역의 광은 380nm 내지 760nm의 파장을 가지는 광, 적외선 영역의 광은 760nm 내지 1200nm의 파장을 가지는 광으로 정의될 수 있다. 그리고 평균 광 투과도는 제1 베이스 부재(112)의 광 투과도를 반영하지 않도록 정규화된 광 투과도(normalized transmittance)의 평균으로 정의될 수 있다. In this embodiment, in the design unit 114 composed of an oxide ceramic composition having an amorphous glass structure, the first transmittance, which is the average light transmittance for the light in the infrared region, is the second transmittance, which is the average light transmittance for the light in the visible region. Equal to or greater than the transmittance. In particular, in the design part 114 made of an oxide ceramic composition having an amorphous glass structure, the first transmittance may be greater than the second transmittance. In addition, the design unit 114, which has an amorphous glass structure made of an oxide ceramic composition, has an average light transmittance for light in the ultraviolet region than the first and second transmittances, which are average light transmittances for each of the infrared and visible light. Phosphorus third transmittance may be smaller. Here, light in the ultraviolet region may be defined as light having a wavelength of 100 nm to 380 nm, light in the visible region may be defined as light having a wavelength of 380 nm to 760 nm, and light in the infrared region may be defined as light having a wavelength of 760 nm to 1200 nm. In addition, the average light transmittance may be defined as an average of normalized transmittance so as not to reflect the light transmittance of the first base member 112.
색상에 따라 차이가 있으나 제1 투과도가 제2 투과도와 같거나 그보다 큰 경향성은 그대로 유지한다. 이러한 경향성은 유리 강화 단계에서의 열처리 온도, 냉각 속도 등에 의하여 구현될 수 있다. Although there is a difference depending on the color, the tendency of the first transmittance to be equal to or greater than the second transmittance is maintained. This tendency may be realized by the heat treatment temperature and cooling rate in the glass reinforcing step.
상술한 바와 같이 제1 투과도가 제2 투과도와 같거나 그보다 크면, 디자인부(114)가 구비되어도 제1 커버 부재(110)를 통과하여 태양 전지(150)에 도달하는 광 중에서 적외선 영역의 광의 양이 가시광선 영역의 광의 양과 같거나 그보다 클 수 있다. 이에 따라 디자인부(114)에 의하여 광 투과도가 다소 저하되는 경우에도 적외선 영역의 광이 태양 전지(150)에 많이 도달하여 이를 효과적으로 사용할 수 있다. 이에 따라 디자인부(114)에 의하여 광 투과도가 다소 저하되어도 태양 전지(150)의 광전 변환 효율 또는 태양 전지 패널(100)의 출력이 저하되는 것이 방지 또는 최소화될 수 있다. As described above, if the first transmittance is equal to or greater than the second transmittance, the amount of light in the infrared region among the light passing through the first cover member 110 and reaching the solar cell 150 even when the design part 114 is provided. It may be equal to or greater than the amount of light in this visible region. Accordingly, even when the light transmittance is slightly lowered by the design unit 114, a large amount of light in the infrared region reaches the solar cell 150 and can be used effectively. Accordingly, even if the light transmittance is slightly lowered by the design unit 114, the photoelectric conversion efficiency of the solar cell 150 or the output of the solar cell panel 100 may be prevented or minimized from being lowered.
그리고 상술한 바와 같이 제1 및 제2 투과도가 각기 제3 투과도보다 클 수 있다. 이는 디자인부(114)가 세라믹 프릿(1144), 색소(1142), 첨가제 등을 포함하여 유리 기판으로 구성된 제1 베이스 부재(112)보다 높은 굴절률을 가지며 물질에 따라 유리 기판으로 구성된 제1 베이스 부재(112)보다 높은 흡광 계수를 가지기 때문이다. 자외선 영역의 광은 태양 전지(150)의 광전 변환 효율, 그리고 태양 전지 패널(100)의 출력에 기여하는 바가 크지 않고, 높은 광자 에너지(photon energy)를 가져 태양 전지(150), 밀봉재(130) 등의 변형, 특성 변화 등을 일으킬 수 있다. 본 실시예에서는 디자인부(114)가 자외선 영역의 광을 산란, 차단, 또는 흡수하여, 자외선 영역의 광의 광 투과도를 낮추는 역할을 한다. 이에 따라 태양 전지(150)의 광전 변환 효율, 태양 전지 패널(100)의 출력에는 큰 영향을 미치지 않으면서 자외선에 의하여 발생할 수 있는 태양 전지(150), 밀봉재(130) 등의 변형, 특성 변화 등을 최소화할 수 있다. And, as described above, the first and second transmittances may be greater than the third transmittance, respectively. This means that the design part 114 has a higher refractive index than the first base member 112 composed of a glass substrate including ceramic frit 1144, a pigment 1142, and additives, and a first base member composed of a glass substrate depending on the material. This is because it has an extinction coefficient higher than (112). Light in the ultraviolet region does not have a large contribution to the photoelectric conversion efficiency of the solar cell 150 and the output of the solar panel 100, and has high photon energy, so the solar cell 150 and the sealing material 130 It may cause deformation of the back, change of characteristics, etc. In this embodiment, the design unit 114 serves to reduce the transmittance of light in the ultraviolet region by scattering, blocking, or absorbing light in the ultraviolet region. Accordingly, the photoelectric conversion efficiency of the solar cell 150, the deformation of the solar cell 150, the sealing material 130, etc., which may be caused by ultraviolet rays without having a large impact on the output of the solar cell panel 100, change in characteristics, etc. Can be minimized.
예를 들어, 본 실시예에서 디자인부(114)는, 제1 투과도가 제2 투과도보다 2% 이상 더 클 수 있다. 또는, 제1 투과도와 제2 투과도 사이의 제1 차이가 제2 투과도와 제3 투과도 사이의 제2 차이보다 클 수 있다. 이러한 경우에 태양 전지 패널(100)에서 적외선 영역의 광을 좀더 효과적으로 사용할 수 있다. 상술한 광 투과도는 다양한 방법에 의하여 측정될 수 있는데, 수직광의 투과도(정상 투과도)(normal transmittance)와 산란광의 투과도(확산 투과도)(diffused transmittance)를 모두 측정할 수 있는 방법으로 측정될 수 있다. 예를 들어, ISO 9050:2003, BS EN 14500:2008 등과 같은 표준 측정 방법에 의하여 광 투과도를 측정할 수 있다.For example, in this embodiment, the design part 114 may have a first transmittance greater than the second transmittance by 2% or more. Alternatively, the first difference between the first transmittance and the second transmittance may be greater than the second difference between the second transmittance and the third transmittance. In this case, the solar panel 100 may more effectively use light in the infrared region. The above-described light transmittance may be measured by various methods, and it may be measured by a method capable of measuring both the transmittance of vertical light (normal transmittance) and the transmittance of scattered light (diffused transmittance). For example, the light transmittance can be measured by a standard measurement method such as ISO 9050:2003, BS EN 14500:2008, and the like.
적외선 영역의 광에서 단결정 실리콘을 기반으로 하는 태양 전지(150)의 스펙트럼 응답(즉, 광의 특정 파장에서 생성되는 단락 전류 밀도(Isc) 또는 출력) 및 양자 효율이 높다. 본 실시예에서는 높은 스펙트럼 응답 및 양자 효율을 가지는 적외선 영역에서의 광의 평균 광 투과도를 향상하여, 특정한 색상, 느낌, 질감 등을 구현하는 디자인부(114)에 의하여 광 투과도가 다소 저하되는 경우에도 적외선 영역의 광을 효과적으로 사용할 수 있다. 이에 의하여 디자인부(114)가 형성되어도 태양 전지(150)의 광전 변환 효율 또는 태양 전지 패널(100)의 출력이 높은 값을 유지할 수 있다. 자외선 영역의 광은 스펙트럼 응답 및 양자 효율이 매우 낮은 값을 가지므로 디자인부(114)의 제3 투과도가 낮아도 이에 따른 태양 전지(150)의 광전 변환 효율 또는 태양 전지 패널(100)의 출력에는 큰 영향을 미치지 않는다. The spectral response (ie, short-circuit current density (Isc) or output generated at a specific wavelength of light) and quantum efficiency of the solar cell 150 based on single crystal silicon in light in the infrared region is high. In the present embodiment, the average light transmittance of light in the infrared region having high spectral response and quantum efficiency is improved, so that even when the light transmittance is slightly decreased by the design unit 114 that implements a specific color, feel, texture, etc. The light in the area can be used effectively. Accordingly, even when the design unit 114 is formed, the photoelectric conversion efficiency of the solar cell 150 or the output of the solar cell panel 100 can be maintained at a high value. Since light in the ultraviolet region has a very low spectral response and quantum efficiency, even if the third transmittance of the design unit 114 is low, the photoelectric conversion efficiency of the solar cell 150 or the output of the solar panel 100 is large. Does not affect
그리고 본 실시예에서 디자인부(114)는 기포(114V)를 구비하여 다공성을 가질 수 있다. 디자인부(114)를 형성하기 위한 열처리 공정(일 예로, 유리 강화 단계)에서 세라믹 물질층 또는 디자인 형성층(1140)에 구비된 수지(1146) 또는 첨가제가 휘발하여 해당 부분에 기포(114V)가 잔류할 수 있다. 디자인부(114)의 내부에 기포(114V)가 존재하는 경우에는 태양 전지 패널(100)로 입사되는 광이 기포(114V)에서 분산되어 넓게 확산될 수 있다. 좀더 구체적으로, 디자인부(114)가 기포(114V)를 구비하면 정상 투과(diffused transmittance)와 확산 투과(diffused transmittance)가 함께 일어나서 반구형 투과(hemispherical transmittance)가 일어난다. 이에 따라, 디자인부(114)의 기포(114V)가 태양 전지 패널(100)의 내부로 입사되는 반구형 투과 형태를 가지도록 광을 산란시킬 수 있다. 그러면, 태양 전지(150) 사이의 영역으로 향하여 소실될 수 있는 광의 일부를 태양 전지(150)로 향하게 하여 사용하거나, 디자인부(114)와 베이스 부재(112)의 계면에 의한 재사용할 수 있다. 따라서 디자인부(114)가 구비되는 경우에도 광전 변환에 사용되는 광의 양을 최대화하여 태양 전지(150)의 광전 변환 효율 및 태양 전지 패널(100)의 출력을 높게 유지할 수 있다. 일 예로, 디자인부(114)는 태양 전지(150)의 사이 영역에 대응하는 부분에 적어도 일부가 위치할 수 있다. 그리고 디자인부(114)의 기포(114V)가 태양 전지 패널(100)의 외부 쪽으로 반구형 투과 형태를 가지도록 광을 산란시켜 눈부심 방지(anti-glare) 특성을 향상할 수 있다. 일 예로, 0.1um 이상의 크기를 가지는 기포(114V)가 구비될 수 있다. 이러한 기포(114V)의 크기에서 기포(114V)에 의한 효과를 최대화할 수 있다. And in this embodiment, the design portion 114 may have a porosity by having a bubble (114V). In the heat treatment process (for example, the glass reinforcing step) for forming the design part 114, the resin 1146 or additives provided in the ceramic material layer or the design forming layer 1140 volatilize, leaving air bubbles (114V) in the corresponding part. can do. When bubbles 114V are present inside the design unit 114, light incident on the solar panel 100 may be dispersed from the bubbles 114V and diffused widely. More specifically, when the design unit 114 includes the air bubbles 114V, diffused transmittance and diffused transmittance occur together, resulting in hemispherical transmittance. Accordingly, light may be scattered so that the air bubbles 114V of the design unit 114 have a hemispherical transmission shape incident into the interior of the solar panel 100. Then, some of the light that may be lost toward the area between the solar cells 150 may be used by directing it to the solar cell 150 or reused by the interface between the design part 114 and the base member 112. Therefore, even when the design unit 114 is provided, the photoelectric conversion efficiency of the solar cell 150 and the output of the solar cell panel 100 can be maintained high by maximizing the amount of light used for photoelectric conversion. As an example, at least a part of the design unit 114 may be located in a portion corresponding to an area between the solar cells 150. In addition, by scattering light so that the air bubbles 114V of the design unit 114 have a hemispherical transmission shape toward the outside of the solar panel 100, anti-glare characteristics may be improved. For example, bubbles 114V having a size of 0.1 μm or more may be provided. In the size of the bubbles 114V, the effect of the bubbles 114V can be maximized.
그러나 본 발명이 이에 한정되는 것은 아니다. 디자인부(114)를 구성하는 세라믹 물질층 또는 디자인 형성층(1140)을 구성하는 물질의 입자들이 작은 입경을 가지면 제조 공정을 단순화하고 제조 비용을 절감할 수 있다. 이를 위하여 세라믹 물질층 또는 디자인 형성층(1140)이 특정한 첨가제를 구비하지 않을 수 있는데, 이 경우에 디자인부(114)에 기포(114V)가 구비되지 않을 수 있다. 그 외의 다양한 변형이 가능하다. However, the present invention is not limited thereto. If the ceramic material layer constituting the design unit 114 or the material particles constituting the design formation layer 1140 have a small particle diameter, the manufacturing process can be simplified and manufacturing cost can be reduced. To this end, the ceramic material layer or the design formation layer 1140 may not include a specific additive, and in this case, the air bubbles 114V may not be provided in the design portion 114. Other variations are possible.
기포(114V)의 크기, 면적 비율, 존재 여부 등은 세라믹 물질층, 디자인 형성층(1140), 또는 디자인부(114)(또는, 이들에 포함된 색소(1142), 세라믹 프릿(1144), 수지(1146), 첨가제 등)의 물질, 세라믹 물질층, 디자인 형성층(1140), 또는 디자인부(114)의 제조 방법, 공정 조건 등에 달라질 수 있다. The size, area ratio, presence, etc. of the bubbles 114V are determined by the ceramic material layer, the design forming layer 1140, or the design portion 114 (or the pigment 1142 contained therein, the ceramic frit 1144), and the resin ( 1146), additives, etc.), a ceramic material layer, a design forming layer 1140, or a manufacturing method of the design unit 114, a process condition, and the like.
그리고 본 실시예에서는 상술한 바와 같이 디자인부(114)와 제1 베이스 부재(112)가 불분명한 경계를 가지므로 이에 의하여 광의 산란을 유도할 수 있다. 또한, 디자인부(114)의 표면(즉, 제1 베이스 부재(112)로부터 멀리 위치하는 표면)은 일반적인 유리 기판의 표면(예를 들어, 제2 베이스 부재(112)의 외부 표면)보다 큰 표면 거칠기를 가질 수 있다. 특히, 디자인부(114)가 기공(114V)을 구비하면 기공(114V)을 포함한 디자인부(114)의 표면 거칠기가 일반적인 유리 기판의 표면보다 상당히 큰 값을 가지므로, 이에 의하여 광의 산란을 효과적으로 유도할 수 있다. 이와 같은 디자인부(114)의 계면 및/또는 표면에서의 높은 표면 거칠기에 의하여 디자인부(114)가 광의 산란을 효과적으로 유도할 수 있다. 특히, 태양 전지들(150) 사이에 대응하는 부분(즉, 비유효 영역(NA))에 디자인부(114)가 위치하면, 디자인부(114)에서의 산란에 의한 광이 태양 전지(150)로 향하여 광전 변환에 사용될 수 있다. 이에 따라 태양 전지(150)의 광전 변환 효율 및 태양 전지 패널(100)의 출력을 높게 유지할 수 있다.In this embodiment, as described above, since the design unit 114 and the first base member 112 have an unclear boundary, light scattering can be induced by this. In addition, the surface of the design portion 114 (that is, the surface located far from the first base member 112) is a surface larger than the surface of a general glass substrate (for example, the outer surface of the second base member 112) It can have roughness. In particular, when the design part 114 has pores (114V), the surface roughness of the design part 114 including the pores (114V) has a considerably larger value than that of a general glass substrate, thereby effectively inducing light scattering. can do. The design part 114 can effectively induce light scattering due to the high surface roughness at the interface and/or the surface of the design part 114. In particular, when the design unit 114 is located in a corresponding portion between the solar cells 150 (that is, the non-effective area NA), light caused by scattering from the design unit 114 is transmitted to the solar cell 150 Can be used for photoelectric conversion. Accordingly, the photoelectric conversion efficiency of the solar cell 150 and the output of the solar cell panel 100 can be maintained high.
디자인부(114)는 20um 이하의 두께를 가질 수 있고, 1um 이상의 두께를 가질 수 있다. 디자인부(114)의 제조 공정에 따라 디자인부(114)의 두께가 달라질 수 있다. 디자인부(114)의 두께가 20um를 초과하면, 광 투과도가 전체적으로 저하될 수 있으며 디자인부(114)의 박리, 균열 등의 현상이 발생할 수 있다. 또한, 디자인부(114)가 유리 강화 단계에서 인장 응력(tensile stress)를 완화하는 역할을 할 수 있어 디자인 형성층(1140) 또는 디자인부(114)의 두께가 커지면 제1 베이스 부재(112)의 강화가 원하는 대로 이루어지지 않도록 할 수 있다. 디자인부(114)의 두께가 1um 미만이면, 원하는 외관을 구현하는데 어려움이 있을 수 있고 색소(1142)를 포함하는 경우에 색소(1142)의 밀집도가 저하되어 원하는 색상을 나타내기 어려울 수 있다. 일 예로, 디자인부(114)에 의한 효과를 충분하게 구현할 수 있도록 디자인부(114)의 두께가 4um 이상일 수 있고, 디자인부(114)의 제조 공정을 단순화하고 재료 비용을 절감하기 위하여 디자인부(114)의 두께가 15um 미만(일 예로, 10um 이하)일 수 있다. 이때, 디자인부(114)의 두께가 15um 미만이면 디자인부(114)의 유무, 디자인부(114)의 색상 등에 따른 광 투과도 차이를 최소화하여 다양한 형상, 색상 등을 가지는 디자인부(114)를 구비하는 경우에도 전체적으로 균일하게 광이 입사되도록 할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니다. 또한, 색상에 따라 디자인부(114)의 두께를 조절할 수 있는데, 일 예로, 디자인부(114)가 상대적으로 낮은 광 투과도를 가지는 백색을 가지는 경우에는 다른 색상의 디자인부(114)보다 작은 두께를 가질 수 있다.The design part 114 may have a thickness of 20 μm or less, and may have a thickness of 1 μm or more. The thickness of the design part 114 may vary according to the manufacturing process of the design part 114. When the thickness of the design part 114 exceeds 20 μm, the light transmittance may be reduced as a whole, and phenomena such as peeling or cracking of the design part 114 may occur. In addition, since the design part 114 can play a role of alleviating tensile stress in the glass reinforcing step, when the thickness of the design forming layer 1140 or the design part 114 is increased, the first base member 112 is strengthened. You can make sure it doesn't do what you want. If the thickness of the design part 114 is less than 1 μm, it may be difficult to implement a desired appearance, and when the color 1142 is included, the density of the colorant 1142 decreases, and thus it may be difficult to display a desired color. As an example, the thickness of the design unit 114 may be 4 μm or more so that the effect of the design unit 114 can be sufficiently implemented, and the design unit ( 114) may have a thickness of less than 15 μm (for example, 10 μm or less). At this time, if the thickness of the design part 114 is less than 15um, a design part 114 having various shapes, colors, etc. is provided by minimizing the difference in light transmittance according to the presence or absence of the design part 114 and the color of the design part 114 Even in the case of doing so, it is possible to make the light incident uniformly throughout. However, the present invention is not limited thereto. In addition, the thickness of the design part 114 can be adjusted according to the color. For example, when the design part 114 has a white color having a relatively low light transmittance, a thickness smaller than that of the design part 114 of another color may be adjusted. I can have it.
반면, 종래에 제1 커버 부재(110)에 형성되는 층(일 예로, 반사 방지층)은 적외선 영역의 광의 광 투과도가 낮아 태양 전지에 도달하는 광에서 가시광선 영역의 광보다 적외선 영역의 광의 양이 적어 적외선 영역의 광을 효과적으로 이용하는데 어려움이 있었다. 예를 들어, 반사를 방지하기 위한 반사 방지층은 태양광의 세기가 가장 강한 600nm 정도의 단파장을 가지는 광의 반사를 방지할 수 있도록 해당 파장에서 가장 큰 광 투과도를 가진다. 종래에 제1 커버 부재(110)에 구비되는 층(일 예로, 반사 방지층)이 디자인부(114)와 동일 또는 유사한 물질로 구성되는 경우에도 세라믹 형태를 구비하지 않는 경우에는 가시광선 영역의 광에 대한 평균 광 투과도보다 적외선 영역의 광에 대한 평균 광 투과도가 작다. 그리고 반사 방지층은 제1 베이스 부재(112) 및 밀봉재(130)보다 작은 1.3 정도의 굴절률을 가지고 500nm 이하(일 예로, 200nm 내외)의 두께를 가진다. 이에 따라 본 실시예의 커버 형성층(114)과는 특성이 다르며 적외선 영역의 광을 효과적으로 이용하기에는 어려움이 있다. 또한, 대부분의 경우에 제1 커버 부재(110)에 구비되는 층의 형성이 제1 커버 부재(112) 위에 적층되는 것에 의하여 이루어지므로, 제1 커버 부재(110)에 구비되는 층(일 예로, 반사 방지층)의 계면에 조성 혼재 부분 등을 구비하지 않는다. On the other hand, the conventional layer formed on the first cover member 110 (for example, the anti-reflection layer) has low light transmittance in the infrared region, so that the amount of light in the infrared region is lower than the light in the visible region in the light reaching the solar cell. As a result, it was difficult to effectively use the light in the infrared region. For example, the antireflection layer for preventing reflection has the greatest light transmittance at a corresponding wavelength so as to prevent reflection of light having a short wavelength of about 600 nm, which has the strongest intensity of sunlight. Even when a layer (for example, an anti-reflection layer) provided in the conventional first cover member 110 is made of the same or similar material as the design part 114, if it does not have a ceramic shape, it is The average light transmittance for the infrared region is smaller than the average light transmittance for the infrared region. In addition, the antireflection layer has a refractive index of about 1.3, which is smaller than that of the first base member 112 and the sealing material 130, and has a thickness of 500 nm or less (for example, about 200 nm). Accordingly, characteristics are different from that of the cover forming layer 114 of the present embodiment, and it is difficult to effectively use the light in the infrared region. In addition, in most cases, since the layer provided on the first cover member 110 is formed by being stacked on the first cover member 112, a layer provided on the first cover member 110 (for example, A composition mixed portion or the like is not provided at the interface of the antireflection layer).
본 실시예에 따른 제1 커버 부재(110)는 디자인부(114)에 의하여 원하는 외관을 구현할 수 있다. 예를 들어, 디자인부(114)의 색상, 물질, 면적 비율, 두께 등, 또는 디자인부(114)에 포함되는 세라믹 프릿(1144), 색소(1142) 등의 물질, 크기, 농도, 밀집도 등을 조절하여 제1 커버 부재(110)의 외관 및 투과율을 조절할 수 있다. 본 실시예에서는 디자인부(114)는 제1 베이스 부재(112)보다는 낮지만 일정한 광 투과도를 가져 태양광의 일부를 투과시킬 수 있다. 그러면, 디자인부(114)를 통하여서도 태양광이 투과될 수 있어, 디자인부(114)에 의한 광 손실을 방지 또는 최소화할 수 있다. 일 예로, 디자인부(114) 또는 이를 구비하는 제1 커버 부재(110)가 380nm 내지 1200nm의 파장을 가지는 광에 대한 광 투과도가 10% 이상(일 예로, 10% 내지 95%, 좀더 구체적으로, 20% 내지 95%)일 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니다. 따라서 디자인부(114)의 색상, 물질, 형성 면적 등에 따라 광 투과도가 다양한 값을 가질 수 있다.The first cover member 110 according to the present embodiment may implement a desired appearance by the design unit 114. For example, the color, material, area ratio, thickness, etc. of the design part 114, or the material, size, concentration, density, etc. of the ceramic frit 1144 and the pigment 1142 included in the design part 114 By adjusting, the appearance and transmittance of the first cover member 110 may be adjusted. In this embodiment, the design part 114 is lower than that of the first base member 112, but has a certain light transmittance, so that a part of sunlight can be transmitted. Then, sunlight can be transmitted through the design unit 114 as well, so that light loss by the design unit 114 can be prevented or minimized. For example, the design unit 114 or the first cover member 110 having the same has a light transmittance of 10% or more for light having a wavelength of 380 nm to 1200 nm (for example, 10% to 95%, more specifically, 20% to 95%). However, the present invention is not limited thereto. Accordingly, the light transmittance may have various values depending on the color, material, and formation area of the design unit 114.
본 실시예에서 디자인부(114)는 특정한 형상 등을 구현하기 위한 다양한 형상을 가질 수 있다. 일 예로, 디자인부(114)는 디자인부(114)가 형성된 커버 영역(CA)에서 규칙 구조를 가질 수 있다. 여기서, 커버 영역(CA)이라 함은 일정한 색상, 이미지, 패턴, 느낌, 질감 등을 구현할 수 있도록 동일한 색상, 이미지, 패턴, 느낌, 질감 등을 가진다고 인식되는 영역을 의미한다.In this embodiment, the design unit 114 may have various shapes for implementing a specific shape or the like. For example, the design unit 114 may have a regular structure in the cover area CA in which the design unit 114 is formed. Here, the cover area CA means an area recognized as having the same color, image, pattern, feel, texture, etc. so that a certain color, image, pattern, feel, texture, etc. can be realized.
도 4의 (a)에 도시한 바와 같이 커버 영역(CA)에서 복수의 디자인부(114)가 서로 실질적으로 동일한 형상 및 크기를 가지면서 균일한 간격으로 반복적인 배치 형태를 가지도록 위치하면 규칙 구조를 가진 것으로 볼 수 있다. 도 4의 (a)에 도시한 같이 커버 영역(CA)의 전체 영역에서 디자인부(114)가 균일한 간격을 가지는 규칙 구조를 가지면서 복수로 위치하면서 일정 면적 비율 이상 형성되면, 일정한 거리만큼 떨어져서 보면 도 4의 (b)에 도시한 바와 같이 복수의 디자인부(114)가 위치한 커버 영역(CA)이 전체적으로 일정한 형상을 가지는 하나의 영역으로 인식될 수 있다.As shown in (a) of FIG. 4, if a plurality of design units 114 are positioned so that they have substantially the same shape and size with each other and have a repetitive arrangement shape at uniform intervals in the cover area CA, a rule structure Can be seen as having. As shown in (a) of FIG. 4, if the design part 114 has a regular structure having a uniform spacing in the entire area of the cover area CA and is located in plural and is formed at a certain area ratio or more, it is separated by a certain distance. As shown in (b) of FIG. 4, the cover area CA in which the plurality of design units 114 are located may be recognized as one area having a uniform shape as a whole.
디자인부(114)의 크기, 커버 영역(CA)의 총 면적에 대한 디자인부(114)의 총 면적의 비율, 디자인부(114)의 간격 등은 일정 거리(일 예로, 1m)를 두고 복수의 디자인부(114)를 바라보면 하나의 영역으로 인식될 수 있는 다양한 값을 가질 수 있다. 커버 영역(CA)을 구성하는 디자인부(114)는 원형, 타원형, 다각형(삼각형, 사각형 등), 스트라이프 형상, 체크 무늬 형상, 불규칙한 형상, 또는 이들의 조합으로 구성되는 다양한 형상을 가질 수 있다. 이에 의하면 복수의 디자인부(114) 사이에 위치한 높은 광 투과도의 제1 베이스 부재(112)로 구성된 광 투과부(LTA)를 통하여 태양광은 큰 손실 없이 제1 커버 부재(110)를 통과하여 태양 전지(150)에 전달될 수 있다. 이에 따라 건물(1)의 외관을 조망하기에 충분한 거리에서 태양 전지 패널(100)을 본 경우에 디자인부(114)이 규칙 구조에 의하여 건물(1)의 외관을 향상하면서도 출력은 크게 줄지 않도록 할 수 있다. The size of the design unit 114, the ratio of the total area of the design unit 114 to the total area of the cover area CA, the spacing of the design unit 114, etc. When looking at the design unit 114, it may have various values that can be recognized as one area. The design unit 114 constituting the cover area CA may have various shapes including a circle, an ellipse, a polygon (triangle, square, etc.), a stripe shape, a checkered shape, an irregular shape, or a combination thereof. According to this, sunlight passes through the first cover member 110 without significant loss through the light transmitting part (LTA) composed of the first base member 112 having high light transmittance located between the plurality of design parts 114 and the solar cell Can be delivered to 150. Accordingly, when the solar panel 100 is viewed from a distance sufficient to view the exterior of the building 1, the design unit 114 improves the appearance of the building 1 by the rule structure, but does not reduce the output significantly. I can.
상술한 구조에서는 디자인부(114)가 제1 커버 부재(110) 또는 커버 영역(CA)의 일부에 형성된 것을 예시하였다. 그러나 본 발명이 이에 한정되는 것은 아니며 디자인부(114)가 제1 커버 부재(110) 또는 커버 영역(CA)의 전체 영역에 형성될 수도 있다. 디자인부(114)가 제1 커버 부재(110) 또는 커버 영역(CA)의 전체 영역에 형성된 것도 규칙 구조를 가지는 것으로 볼 수 있다. 제1 커버 부재(110) 또는 커버 영역(CA)의 총 면적에 대한 복수의 디자인부(114)의 총 면적 비율이 5% 내지 100%일 수 있다. 예를 들어, 제1 커버 부재(110) 또는 커버 영역(CA)의 총 면적에 대한 복수의 디자인부(114)의 총 면적 비율이 90% 이하(일 예로, 50 내지 80%)일 수 있다. 이러한 범위에서 디자인부(114)가 구비되어도 태양 전지 패널(100)로 입사되는 광의 균일도를 향상할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니다. 따라서 태양 전지 패널(100)의 설치 장소, 디자인부(114)의 색상, 형상 등에 따른 태양 전지 패널(100)의 외관 및 출력을 고려하여 디자인부(114)의 총 면적 비율이 다양한 값을 가질 수 있다.In the above-described structure, it is illustrated that the design part 114 is formed in the first cover member 110 or a part of the cover area CA. However, the present invention is not limited thereto, and the design part 114 may be formed on the first cover member 110 or the entire area of the cover area CA. It can be seen that the design portion 114 is formed in the first cover member 110 or the entire area of the cover area CA as having a regular structure. The ratio of the total area of the plurality of design units 114 to the total area of the first cover member 110 or the cover area CA may be 5% to 100%. For example, the ratio of the total area of the plurality of design units 114 to the total area of the first cover member 110 or the cover area CA may be 90% or less (for example, 50 to 80%). Even if the design unit 114 is provided in this range, the uniformity of light incident on the solar panel 100 may be improved. However, the present invention is not limited thereto. Therefore, the total area ratio of the design unit 114 may have various values in consideration of the appearance and output of the solar panel 100 according to the installation location of the solar panel 100, the color and shape of the design unit 114, etc. have.
그리고 상술한 설명 및 도 4에서는 디자인부(114)가 커버 영역(CA) 내에서 규칙 구조를 가진 것을 예시하였다. 그러나 본 발명이 이에 한정되는 것은 아니다. 따라서 디자인부(114)가 커버 영역(CA)의 내부에서, 균일하지 않은 간격을 가지면서 위치하거나, 배치 형태의 규칙을 찾기 어렵거나, 균일한 형상을 가지지 않는 등 불규칙 구조를 가질 수도 있다. In addition, the above description and FIG. 4 illustrate that the design unit 114 has a rule structure within the cover area CA. However, the present invention is not limited thereto. Accordingly, the design part 114 may have an irregular structure such as being located inside the cover area CA with non-uniform spacing, it is difficult to find a rule of an arrangement form, or does not have a uniform shape.
본 실시예에서 광택 저감부(GR)는 유리 기판으로 구성된 제1 베이스 부재(112)의 표면에 형성된 음각 형태(오목부 또는 홈), 양각 형태(돌출부), 또는 음각 및 양각 형태를 모두 구비하는 요철로 구성될 수 있다. 이와 같이 광택 저감부(GR)가 음각 형태, 양각 형태 등으로 형성되면, 간단한 공정으로 광택 저감부(GR)를 형성할 수 있으며 별도의 물질을 도포하는 것이 아니므로 태양 전지 패널(100)로 입사되는 광이 손실되는 것을 방지 또는 최소화할 수 있다.In this embodiment, the gloss reduction unit GR has an intaglio shape (concave or groove), a relief shape (protrusion), or both intaglio and embossed shapes formed on the surface of the first base member 112 made of a glass substrate. It can be composed of irregularities. In this way, when the gloss reduction part (GR) is formed in an intaglio shape or an embossed shape, the gloss reduction part (GR) can be formed by a simple process, and since it is not applied with a separate material, it enters the solar panel 100. It is possible to prevent or minimize the loss of light.
여기서, 요철 형상의 광택 저감부(GR)는 다양한 형상, 배치, 구조 등을 가질 수 있다. 예를 들어, 광택 저감부(GR)가 불규칙 구조(random structure)를 가질 수 있다. Here, the gloss reduction unit GR having an uneven shape may have various shapes, arrangements, and structures. For example, the gloss reduction unit GR may have a random structure.
여기서, 불규칙 구조를 가진다 함은, 단면 및/또는 평면에서 볼 때 불규칙한 형상, 불규칙한 배치, 또는 비대칭 구조를 가질 수 있다. 즉, 단면에서 볼 때 광택 저감부(GR)가 서로 다른 깊이, 크기 및/또는 간격을 가지는 음각 형태의 요철을 복수로 구비하거나, 서로 다른 높이, 크기 및/또는 간격을 가지는 양각 형태의 요철을 복수로 구비하거나, 음각 형태의 요철과 양각 형태의 요철이 함께 구비되면서 복수의 요철이 서로 다른 높이, 크기 및/또는 간격을 가지면서 형성될 수 있다. 또는, 평면으로 볼 때 광택 저감부(GR)가 서로 다른 길이, 폭, 및/또는 형상을 가지는 요철을 복수로 구비하거나, 서로 교차하는 각도가 서로 다른 요철을 복수로 구비하거나, 직선이 아닌 곡선부 또는 라운드부를 불규칙하게 구비하거나, 복수의 요철이 서로 다른 간격으로 구비될 수 있다. 이에 따라 단면 및/또는 평면에서 임의의 하나의 선을 기준으로 볼 때 광택 저감부(GR)가 비대칭 구조를 가지며, 어떠한 선을 기준으로 보아도 대칭 구조를 가지지 않을 수 있다. Here, having an irregular structure may have an irregular shape, an irregular arrangement, or an asymmetric structure when viewed in a cross-section and/or a plane. That is, when viewed in cross section, the gloss reduction unit GR has a plurality of intaglio-shaped irregularities having different depths, sizes, and/or intervals, or embossed irregularities having different heights, sizes, and/or intervals. A plurality of concave-convex shapes or concave-convex convexities and concave-convex convexities may be provided together, and the plurality of concave-convexities may be formed with different heights, sizes, and/or intervals. Alternatively, when viewed in a plan view, the gloss reduction unit (GR) has a plurality of irregularities having different lengths, widths, and/or shapes, or a plurality of irregularities having different angles that cross each other, or a curve that is not a straight line A portion or a round portion may be provided irregularly, or a plurality of irregularities may be provided at different intervals. Accordingly, the gloss reduction unit GR may have an asymmetric structure when viewed with respect to an arbitrary line in a cross-section and/or a plane, and may not have a symmetric structure when viewed with respect to any line.
이와 같이 광택 저감부(GR)가 불규칙 구조를 가지면, 규칙 구조를 가지는 것에 비하여 제1 베이스 부재(112)를 구성하는 유리 기판의 광택을 저감하는 효과가 우수하다. 특히, 제1 베이스 부재(112)가 광택도가 높은 저철분 유리 기판으로 구성되는 경우에 불규칙 구조를 가지는 광택 저감부(GR)에 의하여 광택도를 효과적으로 저감할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며, 광택 저감 효과가 다소 낮더라도 광택 저감부(GR)가 규칙 구조를 가질 수도 있다.As described above, when the gloss reduction portion GR has an irregular structure, the effect of reducing the gloss of the glass substrate constituting the first base member 112 is superior compared to having a regular structure. In particular, when the first base member 112 is formed of a low-iron glass substrate having high gloss, the gloss reduction unit GR having an irregular structure may effectively reduce gloss. However, the present invention is not limited thereto, and even if the gloss reduction effect is somewhat low, the gloss reduction unit GR may have a regular structure.
좀더 구체적으로, 본 실시예에서 광택 저감부(GR)는 디자인부(114)에 의하여 표현하고자 하는 디자인과 관련되지 않는 형태 또는 평면 형상을 가져 특정한 디자인에 기여하지 않는 비디자인 요철(NGR)일 수 있다. 이러한 비디자인 요철(NGR)은 제1 베이스 부재(112)의 전체 면적에 걸쳐서 형성되어 광택을 저감하는 역할을 수행할 수 있다. More specifically, in this embodiment, the gloss reduction unit GR may be a non-design irregularity (NGR) that does not contribute to a specific design because it has a shape or a flat shape that is not related to the design to be expressed by the design unit 114. have. These non-design irregularities (NGR) may be formed over the entire area of the first base member 112 to reduce gloss.
이러한 비디자인 요철(NGR)은 화학적 에칭 공정, 샌드 블라스트(sand blast) 공정, 연마 공정 등으로 형성될 수 있다. 이와 같이 비디자인 요철(NGR)을 구비한 제1 베이스 부재(112)(즉, 비디자인 요철(NGR)을 구비한 유리 기판)로는 에칭 유리, 사틴 유리(satin glass) 등을 사용할 수 있다.These non-design irregularities (NGR) may be formed by a chemical etching process, a sand blast process, a polishing process, or the like. As the first base member 112 having non-design irregularities (NGR) as described above (that is, a glass substrate having non-design irregularities (NGR)), etching glass, satin glass, or the like may be used.
비디자인 요철(NGR)은 0.1um 이상(예를 들어, 0.1um 내지 5um)의 표면 거칠기를 가질 수 있다. 예를 들어, 비디자인 요철(NGR)이 화학적 에칭 공정에 의하여 형성되면 0.1um 내지 1um(예를 들어, 0.1um 내지 0.5um)의 표면 거칠기를 가질 수 있고, 비디자인 요철(NGR)이 샌드 블라스트 공정 또는 연마 공정에 의하여 형성되면 0.1um 내지 5um(예를 들어, 0.5um 내지 1um)의 표면 거칠기를 가질 수 있다. The non-design irregularities (NGR) may have a surface roughness of 0.1 μm or more (eg, 0.1 μm to 5 μm). For example, when the non-design irregularities (NGR) are formed by a chemical etching process, they may have a surface roughness of 0.1 um to 1 um (for example, 0.1 um to 0.5 um), and the non-design irregularities (NGR) are sandblasted. When formed by a process or a polishing process, it may have a surface roughness of 0.1 um to 5 um (eg, 0.5 um to 1 um).
이러한 비디자인 요철(NGR)을 구비한 제1 베이스 부재(112)(즉, 비디자인 요철(NGR)을 구비한 유리 기판)의 광택도는 100GU 이하(예를 들어, 80GU 이하, 일 예로, 60GU 이하)일 수 있다. 이러한 광택도는 광택 저감부(GR)를 구비하지 않아 0.1um 미만의 표면 거칠기를 가지는 유리 기판의 광택도가 150GU 이상(일 예로, 200GU)인 것을 고려하면 매우 낮은 수준이다. The glossiness of the first base member 112 having such non-design irregularities (NGR) (that is, a glass substrate having non-design irregularities (NGR)) is 100GU or less (for example, 80GU or less, for example, 60GU). Or less). This glossiness is very low considering that the glossiness of a glass substrate having a surface roughness of less than 0.1 μm (eg, 200GU) is not provided with the gloss reduction unit GR.
이러한 광택 저감부(GR)는 제1 커버 부재(110)의 외면 쪽에 위치할 수 있다. 즉, 본 실시예에서 광택 저감부(GR)는 제1 베이스 부재(112)의 외부측 표면에 형성될 수 있다. 광택 저감부(GR)가 제1 베이스 부재(112)의 내면 쪽에 위치하면 이미 광이 제1 베이스 부재(112)의 외면에서 산란되어 높은 광택을 가지는 것을 인식될 수 있으므로, 광택 저감부(GR)에 의한 광택 저감 효과를 충분하게 구현하기 어렵기 때문이다.The gloss reduction unit GR may be located on the outer surface of the first cover member 110. That is, in this embodiment, the gloss reduction unit GR may be formed on the outer surface of the first base member 112. If the gloss reduction unit GR is located on the inner surface of the first base member 112, it can be recognized that light is already scattered from the outer surface of the first base member 112 to have high gloss, so the gloss reduction unit GR This is because it is difficult to sufficiently implement the gloss reduction effect by.
본 실시예에서는 디자인부(114)는 광택 저감부(GR)가 형성된 제1 베이스 부재(112)의 외부측 표면 위에 형성되어 제1 커버 부재(110)의 외면 쪽에 위치할 수 있다. 그러면, 제1 베이스 부재(112)의 광택도를 낮추는 효과를 향상할 수 있고, 광택 저감부(GR) 등에 오염 물질 등이 위치하여 제1 커버 부재(110)가 오염되는 것을 방지할 수 있다. 이때, 광택 저감부(GR) 및/또는 디자인부(114)가 제1 커버 부재(110)의 외면을 형성할 수도 있고, 제1 커버 부재(110)의 외면 위(즉, 광택 저감부(GR) 및/또는 디자인부(114)의 외면 위)에 방오염층(도 6의 참조부호 116)을 추가로 형성할 수도 있다. In this embodiment, the design portion 114 may be formed on the outer surface of the first base member 112 on which the gloss reduction portion GR is formed and may be positioned on the outer surface of the first cover member 110. Then, the effect of lowering the glossiness of the first base member 112 may be improved, and contamination of the first cover member 110 may be prevented by placing a contaminant or the like in the gloss reduction unit GR. At this time, the gloss reduction unit GR and/or the design unit 114 may form the outer surface of the first cover member 110, and on the outer surface of the first cover member 110 (that is, the gloss reduction unit GR ) And/or on the outer surface of the design part 114), an antifouling layer (reference numeral 116 in FIG. 6) may be additionally formed.
일 예로, 도 3에서는 디자인부(114)가 형성되지 않은 내부측 표면에 광 확산부(LD)가 위치하는 것을 도시하였다. 광 확산부(LD)는 광을 확산시켜 태양 전지(150) 등의 인식을 최대한 방지하고 디자인부(114)에 의한 색상 등의 통일성을 개선할 수 있다. 일 예로, 광 확산부(LD)가 밀봉재(130)에 접하여 형성되면 밀봉재(130)와의 접착 면적의 증가시켜 접착력을 향상하는 역할을 할 수 있다. 예를 들어, 광 확산부(LD)가 10 내지 500um의 크기를 가질 수 있으며, 라운드진 형상(일 예로, 구형의 일부에 대응하는 형상), 각진 형상, 피라미드 형상 등 다양한 형상을 가질 수 있다. 상술한 광 확산부(LD)는 양각 형상으로 돌출된 형상을 가질 수 있고, 음각 형상으로 오목한 형상을 가질 수도 있다. 이러한 광 확산부(LD)는 서로 실질적으로 동일한 형상 및 크기를 가지면서 균일한 간격으로 반복적인 배치 형태를 가지도록 위치한 규칙 구조를 가질 수 있다. 광 확산부(LD)는 큰 크기와 규칙 구조에 의하여 광택을 저감하는 효과를 가지기 어렵다. For example, in FIG. 3, it is illustrated that the light diffusion unit LD is located on the inner surface where the design unit 114 is not formed. The light diffusion unit LD diffuses light to prevent recognition of the solar cell 150 as much as possible, and improves uniformity of colors and the like by the design unit 114. For example, when the light diffusion unit LD is formed in contact with the sealing material 130, it may serve to improve adhesion by increasing an adhesion area with the sealing material 130. For example, the light diffusion unit LD may have a size of 10 to 500 μm, and may have various shapes such as a rounded shape (eg, a shape corresponding to a part of a sphere), an angled shape, and a pyramid shape. The above-described light diffusion unit LD may have a shape protruding in an embossed shape or may have a concave shape in an intaglio shape. The light diffusion units LD may have a regular structure positioned so as to have substantially the same shape and size with each other and have a repetitive arrangement shape at uniform intervals. The light diffusion unit LD has a large size and a regular structure, so it is difficult to have an effect of reducing gloss.
본 실시예에서 비디자인 요철(NGR)의 표면 거칠기는 광 확산부(LD)의 최대 크기(예를 들어, 산부(peak)와 골부(valley) 사이의 최대 높이 차이)와 같거나 그보다 작을 수 있다. 이에 의하면 비디자인 요철(NGR)의 표면 거칠기를 줄여 제1 베이스 부재(112)의 두께를 충분하게 확보할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 비디자인 요철(NGR)의 표면 거칠기가 광 확산부(LD)의 최대 크기보다 클 수도 있다. In this embodiment, the surface roughness of the non-design irregularities (NGR) may be equal to or less than the maximum size of the light diffusion unit LD (eg, the maximum height difference between the peak and the valley). . Accordingly, it is possible to sufficiently secure the thickness of the first base member 112 by reducing the surface roughness of the non-design irregularities (NGR). However, the present invention is not limited thereto, and the surface roughness of the non-design irregularities (NGR) may be larger than the maximum size of the light diffusion unit (LD).
그리고 비디자인 요철(NGR)의 크기(평면 상에서의 크기 또는 면적)보다 디자인부(114)의 크기(평면 상에서의 크기 또는 면적)가 더 클 수 있고, 이에 따라 디자인부(114)가 복수의 비다자인 요철(NGR)을 덮도록 형성될 수 있다. 이에 의하여 디자인부(114)의 크기를 충분하게 확보하여 디자인부(114)의 형성 공정을 단순화하고 디자인부(114)에 의하여 원하는 외관이 안정적으로 구현되도록 할 수 있다. And the size (size or area on the plane) of the design part 114 may be larger than the size (size or area on the plane) of the non-design irregularities (NGR), and accordingly, the design part 114 is a plurality of bins. It may be formed to cover the self-indentation (NGR). Accordingly, a sufficient size of the design unit 114 can be secured, thereby simplifying the process of forming the design unit 114 and stably implementing a desired appearance by the design unit 114.
그리고 비디자인 요철(NGR)의 표면 거칠기는 디자인부(114)에서 기공(114V)을 고려하지 않은 표면 거칠기와 같거나, 그보다 크거나, 그보다 작을 수 있다. 일 예로, 비디자인 요철(NGR)의 표면 거칠기가 디자인부(114)에서 기공(114V)을 고려하지 않은 표면 거칠기보다 클 수 있다. 그리고 비디자인 요철(NGR)의 표면 거칠기가 디자인부(114)에서 기공(114V)을 고려한 표면 거칠기와 같거나, 그보다 크거나, 그보다 작을 수 있다. 일 예로, 일 예로, 비디자인 요철(NGR)의 표면 거칠기가 디자인부(114)에서 기공(114V)을 고려한 표면 거칠기보다 작을 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 다양한 변형이 가능하다. In addition, the surface roughness of the non-design irregularities (NGR) may be the same as, greater than, or less than the surface roughness of the design portion 114 without considering the pores 114V. As an example, the surface roughness of the non-design unevenness (NGR) may be greater than the surface roughness of the design portion 114 not taking into account the pores 114V. In addition, the surface roughness of the non-design irregularities (NGR) may be equal to, greater than, or less than the surface roughness in consideration of the pores 114V in the design portion 114. For example, as an example, the surface roughness of the non-design unevenness (NGR) may be smaller than the surface roughness in consideration of the pores 114V in the design part 114. However, the present invention is not limited thereto, and various modifications are possible.
한편, 제2 커버 부재(120)는 우수한 내화성 및 절연성을 가질 수 있다. 좀더 구체적으로, 제2 커버 부재(120)는, 제2 베이스 부재(122)와, 제2 베이스 부재(122)에 형성되는 커버 부분(124)을 포함할 수 있다. 커버 부분(124)은 태양 전지(150) 또는 이에 연결되는 배선부(142, 145)가 명확하게 인식되는 것을 방지하는 착색 커버 기판일 수 있다. Meanwhile, the second cover member 120 may have excellent fire resistance and insulation. More specifically, the second cover member 120 may include a second base member 122 and a cover portion 124 formed on the second base member 122. The cover portion 124 may be a colored cover substrate that prevents the solar cell 150 or the wiring portions 142 and 145 connected thereto from being clearly recognized.
상술한 제1 베이스 부재(110)에 대한 설명은 광택 저감부(GR)를 제외하고는 제2 베이스 부재(120)에 그대로 적용될 수 있다. 즉, 제1 베이스 부재(110)의 물질, 휨 강도, 두께, 면적, 강 투과도 등에 대한 설명이 제2 베이스 부재(120)에 그대로 적용될 수 있다. 예를 들어, 제2 베이스 부재(120)가 유리 기판, 예를 들어, 저철분 유리 기판, 좀더 구체적으로, 강화 또는 반강화 저철분 유리 기판일 수 있다. 그리고 제2 베이스 부재(120)의 외부측 표면을 별도로 처리되지 않아 광택 저감부(GR) 또는 비디자인 요철(NGR) 등이 형성되지 않은 미처리 표면일 수 있는데, 0.1um 미만의 표면 거칠기를 가질 수 있다. The description of the first base member 110 described above may be applied as it is to the second base member 120 except for the gloss reduction unit GR. That is, a description of the material, bending strength, thickness, area, and steel transmittance of the first base member 110 may be applied to the second base member 120 as it is. For example, the second base member 120 may be a glass substrate, for example, a low iron glass substrate, more specifically, a reinforced or semi-reinforced low iron glass substrate. In addition, since the outer surface of the second base member 120 is not separately treated, it may be an untreated surface in which the gloss reduction portion (GR) or non-design unevenness (NGR) is not formed, but may have a surface roughness of less than 0.1 μm. have.
그리고 커버 부분(124)이 산화물 세라믹 조성물로 구성될 수 있다. 디자인부(114)과 관련한 산화물 세라믹 조성물에 대한 설명은 색상 등을 제외하고는 커버 부분(124)의 산화물 세라믹 조성물에 그대로 적용될 수 있다. 예를 들어, 제2 베이스 부재(122)와 커버 부분(124) 사이의 경계가 불분명한 경계로 구성되되 제2 베이스 부재(122)와 디자인부(124)가 일체화된 형태를 가질 수 있다. 이에 따라 제2 커버 부재(120)는 두께 방향의 일부분에 산화물 세라믹 조성물로 구성된 커버 부분(144)이 일체화된 강화 또는 반강화 유리 기판으로 구성된 제2 베이스 부재(122)로 구성될 수 있다. 이에 의하면, 커버 부분(124)이 제2 베이스 부재(122)와 일체화되어 형성되어 물리적 내구성 및 화학적 내구성이 우수할 수 있다. 좀더 구체적으로, 커버 부분(124)이 비정질 상태의 유리 구조를 가지는 산화물 세라믹 조성물(예를 들어, 유리질 산화물 세라믹 조성물)로 구성될 수 있다.In addition, the cover portion 124 may be made of an oxide ceramic composition. The description of the oxide ceramic composition in relation to the design part 114 may be applied as it is to the oxide ceramic composition of the cover part 124 except for color and the like. For example, a boundary between the second base member 122 and the cover portion 124 may be configured as an unclear boundary, but the second base member 122 and the design unit 124 may be integrated. Accordingly, the second cover member 120 may be formed of a second base member 122 formed of a reinforced or semi-reinforced glass substrate in which the cover portion 144 made of an oxide ceramic composition is integrated in a portion in the thickness direction. According to this, the cover portion 124 is formed integrally with the second base member 122, so that physical durability and chemical durability may be excellent. More specifically, the cover portion 124 may be made of an oxide ceramic composition (eg, a glassy oxide ceramic composition) having an amorphous glass structure.
이때, 커버 부분(124)의 색상은 디자인부(114)의 색상과 동일할 수도 있고 다를 수도 있다. 특히, 커버 부분(124)은 투명, 반투명 등으로는 형성되지 않을 수 있고, 흰색을 제외한 무채색, 불투명한 색상, 또는 태양 전지(150)와 동일한 계열의 색을 가질 수 있다. 예를 들어, 커버 부분(124)이 검은색, 회색, 푸른색, 녹색, 갈색, 태양 전지(150)(특히, 태양 전지(150)의 반사 방지층)와 동일한 계열의 색, 또는 이들을 혼합한 색을 가질 수 있다. 흰색은 명도가 높은 색이므로 이를 이용하여 커버 부분(124)을 형성하기 힘들 수 있다. 일 예로, 커버 부분(124)이 태양 전지(150)와 동일한 계열의 색으로 형성되면 색상의 통일성을 가져 태양 전지 패널(100)이 전체적으로 색상의 통일성을 가지므로 심미성을 좀더 향상할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니다. 상술한 색 이외의 색이라도 디자인부(114)보다 낮은 명도 또는 제1 베이스 부재(112) 및/또는 제2 베이스 부분(122)보다 낮은 광 투과도를 가지는 색이라면 다양한 색을 사용할 수 있다.In this case, the color of the cover part 124 may be the same as or different from the color of the design part 114. In particular, the cover portion 124 may not be formed as transparent or translucent, and may have an achromatic color other than white, an opaque color, or a color of the same series as the solar cell 150. For example, the cover portion 124 is black, gray, blue, green, brown, a color of the same series as the solar cell 150 (especially, the anti-reflection layer of the solar cell 150), or a color mixture thereof Can have. Since white is a color having high brightness, it may be difficult to form the cover portion 124 using it. For example, when the cover part 124 is formed in the same color as the solar cell 150, the solar panel 100 has uniformity of color as a whole, so that aesthetics may be further improved. However, the present invention is not limited thereto. Even in colors other than the above-described colors, various colors may be used as long as they have a lower brightness than the design portion 114 or a light transmittance lower than that of the first base member 112 and/or the second base portion 122.
이와 같이 제2 커버 부재(120)가 제2 베이스 부재(122) 및 산화물 세라믹 조성물로 구성되는 커버 부분(124)을 포함하면, 동일 또는 유사한 제조 공정에 의하여 제1 및 제2 커버 부재(110, 120)를 형성할 수 있어 제조 공정을 단순화할 수 있다. As described above, if the second cover member 120 includes the second base member 122 and the cover portion 124 made of an oxide ceramic composition, the first and second cover members 110 and 110 are formed by the same or similar manufacturing process. 120) can be formed, thereby simplifying the manufacturing process.
그러나 본 발명이 이에 한정되는 것은 아니며 커버 부분(124)이 산화물 세라믹 조성물 이외의 다른 물질로 구성될 수 있다. 예를 들어, 제2 커버 부재(120)가, 제2 베이스 부재(122)와, 제2 베이스 부재(122) 위에 형성되며 하나 또는 복수의 커버층, 커버 필름, 또는 금속막(일 예로, 검은색을 가지도록 코팅된 은(Ag), 또는 알루미늄)으로 구성된 커버 부분(124)을 포함할 수 있다. 커버층 또는 커버 필름은 특정한 색상을 구현할 수 있는 개수로 형성되며 각 착색층, 커버 필름, 또는 금속막은 유전 물질, 절연 물질, 반도체 물질, 금속 물질 등과 같은 다양한 물질로 구성될 수 있다. However, the present invention is not limited thereto, and the cover portion 124 may be made of a material other than the oxide ceramic composition. For example, the second cover member 120 is formed on the second base member 122 and the second base member 122, and one or more cover layers, cover films, or metal films (for example, black It may include a cover portion 124 made of silver (Ag) or aluminum) coated to have a color. The cover layer or cover film is formed in a number capable of implementing a specific color, and each colored layer, cover film, or metal film may be made of various materials such as a dielectric material, an insulating material, a semiconductor material, a metal material, and the like.
일 예로, 커버 부분(124)은, 태양 전지(150)의 반사 방지층과 동일 또는 유사한 색을 구현할 수 있다. 일 예로, 커버 부분(124)이, 태양 전지(150)의 광전 변환부를 구성하는 실리콘을 포함하는 실리콘층과, 실리콘층 위에 위치하며 반사 방지층과 동일한 물질 및 적층 구조를 가지는 유전층 또는 절연층을 포함할 수 있다. 그러면, 커버 부분(124)이 태양 전지(150)와 동일한 동일 또는 유사한 색을 가질 수 있어 태양 전지(150)와 동일 또는 유사한 색을 구현할 수 있다. 이에 의하여 간단한 구조에 의하여 태양 전지(150), 배선부(142, 145) 등이 인식되는 것을 효과적으로 방지할 수 있다. For example, the cover portion 124 may implement the same or similar color as the antireflection layer of the solar cell 150. For example, the cover portion 124 includes a silicon layer including silicon constituting the photoelectric conversion unit of the solar cell 150, and a dielectric layer or an insulating layer positioned on the silicon layer and having the same material and stacked structure as the antireflection layer. can do. Then, the cover portion 124 may have the same or similar color as the solar cell 150, and thus the same or similar color as the solar cell 150 may be implemented. Accordingly, it is possible to effectively prevent the solar cell 150 and the wiring portions 142 and 145 from being recognized by a simple structure.
다른 예로, 커버 부분(124)이 각기 금속 화합물(일 예로, 금속 산화물 또는 금속 질화 산화물)로 구성되는 복수의 커버층을 포함할 수 있다. 예를 들어, 복수의 커버층이 실리콘, 티타늄, 알루미늄, 지르코늄, 아연, 안티몬, 구리를 포함하는 산화물 또는 질화 산화물로 구성되는 절연층을 복수로 적층한 구조를 가질 수 있다. 그리고 복수의 커버층이 산화물 또는 질화 산화물로 구성될 경우에 커버 부분(124)은 복수의 커버층의 내부 또는 외부에 실리콘 질화물을 포함하는 층 및/또는 실리콘 탄화 질화물을 포함하는 층을 더 구비하여, 자외선, 수분 등에 의한 문제를 방지할 수 있다. As another example, the cover portion 124 may include a plurality of cover layers each composed of a metal compound (eg, metal oxide or metal nitride oxide). For example, the plurality of cover layers may have a structure in which a plurality of insulating layers composed of oxides or nitride oxides including silicon, titanium, aluminum, zirconium, zinc, antimony, and copper are stacked. And when the plurality of cover layers are composed of oxide or nitride oxide, the cover portion 124 further includes a layer containing silicon nitride and/or a layer containing silicon carbide nitride inside or outside the plurality of cover layers. , UV rays, moisture, etc. can prevent problems.
예를 들어, 커버 부분(124)이 실리콘 산화물로 구성된 제1 커버층, 그 위에 위치하며 실리콘 질화물로 구성된 제2 커버층, 그리고 그 위에 위치하며 실리콘 탄화 질화물로 구성된 제3 커버층을 포함하면, 커버 부분(124)이 청색을 가질 수 있다. 또는, 커버 부분(124)이 지르코늄 산화물로 구성된 제1 커버층, 그 위에 위치하며 실리콘 산화물로 구성된 제2 커버층, 그 위에 위치하며 지르코늄 산화물로 구성된 제3 커버층, 그리고 그 위에 위치하며 실리콘 산화물을 포함하는 제4 커버층을 포함하면, 커버 부분(124)이 초록색을 가질 수 있다. For example, if the cover portion 124 includes a first cover layer composed of silicon oxide, a second cover layer disposed thereon and composed of silicon nitride, and a third cover layer disposed thereon and composed of silicon carbide nitride, The cover portion 124 may have a blue color. Alternatively, the cover portion 124 is a first cover layer composed of zirconium oxide, a second cover layer disposed thereon and composed of silicon oxide, a third cover layer disposed thereon and composed of zirconium oxide, and a silicon oxide disposed thereon Including the fourth cover layer including, the cover portion 124 may have a green color.
본 실시예에 의하면, 증착, 부착 등에 의한 간단한 제조 공정에 의하여 커버 부분(124)을 형성할 수 있어 원하는 색상을 구비한 제2 커버 부재(120)를 제조할 수 있다. 커버 부분(124)은 제2 커버 부재(120)의 내면 및/또는 외면에 위치할 수 있다.According to the present embodiment, the cover portion 124 can be formed by a simple manufacturing process such as deposition or attachment, so that the second cover member 120 having a desired color can be manufactured. The cover portion 124 may be located on the inner surface and/or the outer surface of the second cover member 120.
또는 제2 커버 부재(120)가 제2 베이스 부재(122)와 커버 부분(124)을 구비하지 않고 일체화된 하나의 부재로 구성될 수 있다. 예를 들어, 제2 커버 부재(120)가 금속 플레이트(일 예로, 강판), 회로 기판, 색상 유리 등으로 구성될 수 있다. 그 외에도 제2 커버 부재(120) 또는 제2 베이스 부재(122)가 수지(일 예로, 폴리카보네이트(poly carbonate, PC), 폴리에틸렌테레프탈레이트(poly ethylene terephthalate, PET), 에틸렌테트라플루오로에틸렌(ethylene tetra fluoro ethylene, ETFE), 폴리테트라플루오로에틸렌(poly tetra fluoro ethylene, PTFE) 등)를 포함하는 시트, 섬유 강화 플라스틱(fiber reinforced plastic) 등으로 구성될 수 있다. 이러한 시트 등으로 구성된 제2 베이스 부재(122) 위에 별도의 커버 부분(124)이 형성되거나, 제2 베이스 부재(122)의 내부에 안료 등이 포함되어 일정한 색상을 가질 수 있다. 이러한 시트 등으로 구성된 제2 베이스 부재(122)는 단일층 또는 복수의 층으로 구성될 수 있다.Alternatively, the second cover member 120 may be configured as a single member that is integrated without the second base member 122 and the cover portion 124. For example, the second cover member 120 may be formed of a metal plate (eg, a steel plate), a circuit board, a colored glass, or the like. In addition, the second cover member 120 or the second base member 122 is a resin (for example, polycarbonate (PC), polyethylene terephthalate (PET)), ethylene tetrafluoroethylene (ethylene). Tetra fluoro ethylene, ETFE), polytetrafluoroethylene (poly tetra fluoro ethylene, PTFE), etc.) can be composed of a sheet containing, fiber reinforced plastic (fiber reinforced plastic), and the like. A separate cover portion 124 may be formed on the second base member 122 made of such a sheet, or a pigment may be included in the second base member 122 to have a certain color. The second base member 122 made of such a sheet or the like may be made of a single layer or a plurality of layers.
본 실시예에서 제2 커버 부재(120)(또는 커버 부분(124)) 또는 착색 부재(160)는, 국제조명위원회(CIE) Lab (즉, CIE L*a*b*) 색좌표, D65 표준 광원(정오 태양광원)에서 태양 전지(150)(특히, 태양 전지(150)의 반사 방지층)와 제2 커버 부재(120) 또는 착색 부분(160)의 색차(β수준이 11 이하가 되도록 하는 색상을 가질 수 있다. 상술한 색차(β수준이 11 이하가 되면, 태양 전지(150), 배선부(142, 145) 등이 일정 거리 이상에서는 외부에서 인식되지 않도록 할 수 있다. 여기서, 국제조명위원회(CIE) Lab (즉, CIE L*a*b*) 색좌표, D65 표준 광원에서 휘도(L*)가 50 이하로 상대적으로 어두운 색상을 가질 수 있다. 그러면, 태양 전지(150), 배선부(142, 145) 등이 외부에서 효과적으로 인식되지 않도록 할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며, 국제조명위원회(CIE) Lab (즉, CIE L*a*b*) 색좌표, D65 표준 광원에서 휘도(L*)가 50를 초과하여 상대적으로 밝은 색상을 가질 수 있다.In this embodiment, the second cover member 120 (or the cover portion 124) or the colored member 160 is the International Lighting Commission (CIE) Lab (ie, CIE L*a*b*) color coordinate, D65 standard light source The color difference (β level of 11 or less) between the solar cell 150 (especially, the antireflection layer of the solar cell 150) and the second cover member 120 or the colored portion 160 in the (noon solar light source) The above-described color difference (when the β level is 11 or less, the solar cell 150, the wiring parts 142, 145, etc. can be prevented from being recognized outside a certain distance. CIE) Lab (ie, CIE L*a*b*) color coordinate, D65 may have a relatively dark color with a luminance (L*) of 50 or less in a standard light source. , 145), etc. may not be effectively recognized from the outside, but the present invention is not limited thereto, and the luminance in the International Lighting Commission (CIE) Lab (ie, CIE L*a*b*) color coordinates, D65 standard light source (L*) may exceed 50 to have a relatively bright color.
그리고 상술한 설명에서는 제2 커버 부재(120)가 일정한 색상을 가지는 착색 커버 부재로 구성된 것을 예시하였다. 이와 같이 제2 커버 부재(120)가 일정한 색상을 가져 태양 전지(150) 등이 인식되는 것을 방지하면 밀봉재(130)의 색상을 변화시키지 않아도 된다. 밀봉재(130)에 색상을 변화시키기 위한 색소(예를 들어, 카본 블랙) 등을 포함시키면 원하지 않게 밀봉재(130)의 절연 특성 등이 저하되는 등의 문제가 발생할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니다. 그리고 밀봉재(130)의 적어도 일부에 색소 등이 구비되는 등 다양한 변형이 가능하다. In addition, in the above description, it is illustrated that the second cover member 120 is formed of a colored cover member having a predetermined color. In this way, if the second cover member 120 has a certain color and prevents the solar cell 150 from being recognized, it is not necessary to change the color of the sealing material 130. Including a pigment (eg, carbon black) for changing the color of the sealing material 130 may cause problems such as deterioration of the insulating properties of the sealing material 130 undesirably. However, the present invention is not limited thereto. In addition, various modifications are possible, such as a pigment or the like provided on at least a part of the sealing material 130.
도 3에서는 디자인부(114)가 제1 커버 부재(110)의 외면 쪽에 위치하고 커버 부분(124)이 제2 커버 부재(120)의 외면 쪽에 위치하는 것을 예시하였다. 그러나 본 발명이 이에 한정되는 것은 아니다. In FIG. 3, it is illustrated that the design part 114 is located on the outer surface side of the first cover member 110 and the cover part 124 is located on the outer surface side of the second cover member 120. However, the present invention is not limited thereto.
일 변형예로, 도 6에 도시한 바와 같이 커버부(114)가 제1 커버 부재(112)의 내면 측에 위치할 수 있다. 도 6은 도 5에 대응하는 부분을 도시한 부분 단면도이다. 광택 저감부(GR)가 형성된 제1 커버 부재(112)의 외면에는 광택 저감부(GR)를 덮는 방오염층(116)이 형성되어, 오염을 방지하고 광택 저감부(GR)를 보호할 수 있다. 도 6에서는 커버부(114)가 형성된 제1 커버 부재(112)의 내면에 광 확산부(도 3의 참조부호 LD, 이하 동일)가 구비되지 않은 것을 예시하였으나, 내면에 광 확산부(LD)가 형성되고 광 확산부(LD) 위에 커버부(114)가 형성될 수 있다. As a modified example, as shown in FIG. 6, the cover portion 114 may be located on the inner surface side of the first cover member 112. 6 is a partial cross-sectional view showing a portion corresponding to FIG. 5. An antifouling layer 116 covering the gloss reduction unit GR is formed on the outer surface of the first cover member 112 on which the gloss reduction unit GR is formed, so that contamination can be prevented and the gloss reduction unit GR can be protected. have. 6 illustrates that a light diffusion unit (reference numeral LD in FIG. 3, hereinafter the same) is not provided on the inner surface of the first cover member 112 on which the cover unit 114 is formed, but the light diffusion unit LD on the inner surface Is formed and the cover part 114 may be formed on the light diffusion part LD.
다른 변형예로, 커버부(114)가 제1 커버 부재(112)의 내면 및 외면 측에 각기 위치할 수도 있다. 그리고 커버 부분(124)이 제2 커버 부재(120)의 내면 및 외면 중 적어도 하나에 위치할 수 있다. 그리고 상술한 바와 같이 커버부(114) 또는 커버 부분(124)이 형성되지 않은 다른 일면에 광 확산부(LD)가 형성되거나 형성되지 않을 수 있다. 그 외의 다양한 변형이 가능하다.As another modification, the cover portion 114 may be positioned on the inner and outer sides of the first cover member 112, respectively. In addition, the cover portion 124 may be positioned on at least one of an inner surface and an outer surface of the second cover member 120. In addition, as described above, the light diffusion part LD may or may not be formed on the cover part 114 or the other surface on which the cover part 124 is not formed. Other variations are possible.
본 실시예에 의하면, 그래픽 커버 기판인 제1 커버 부재(110)가 디자인부(114)와 함께 광택 저감부(GR)를 구비하여 태양 전지 패널(100)을 건축 자재, 건축물 등으로 인식되도록 하여 이질감을 줄일 수 있다. 이에 따라 태양 전지 패널(100)이 목재, 나뭇잎, 석재, 목탄, 벽돌, 콘크리트, 건축 패널 등의 형상을 가지도록 할 수 있다. 이에 의하여 태양 전지 패널(100)의 출력을 우수하게 유지하면서 우수한 심미성 및 외관을 가지도록 할 수 있다. According to this embodiment, the first cover member 110, which is a graphic cover substrate, has a gloss reduction unit GR along with the design unit 114 so that the solar panel 100 is recognized as a building material, a building, etc. You can reduce the sense of heterogeneity. Accordingly, the solar panel 100 may have a shape such as wood, leaves, stone, charcoal, brick, concrete, and building panels. Accordingly, while maintaining excellent output of the solar panel 100, it is possible to have excellent aesthetics and appearance.
이하에서는, 도 1 내지 도 5와 함께, 도 7, 도 8a 내지 도 8d를 참조하여 상술한 바와 같이 비정질 상태의 유리 구조를 가지는 산화물 세라믹 조성물로 구성된 디자인부(114)를 제1 베이스 부재(112)에 형성하는 방법(즉, 본 실시예에 따른 디자인부(114)를 구비하는 제1 커버 부재(110)의 제조 방법 또는 본 실시예에 따른 그래픽 커버 기판의 제조 방법)을 상세하게 설명한다. 이하의 설명에서는 디자인부(114)를 구비하는 제1 커버 부재(110)를 제조하는 방법을 일 예로 하여 설명하였으나 본 발명이 이에 한정되는 것은 아니다. 즉, 이하의 설명은 커버 부분(124)을 구비하는 제2 커버 부재(120)를 제조하는 방법에 적용될 수도 있다. 그 외의 다양한 변형이 가능하다.Hereinafter, a design part 114 composed of an oxide ceramic composition having an amorphous glass structure as described above with reference to FIGS. 7 and 8A to 8D together with FIGS. 1 to 5 is a first base member 112. ) (Ie, a method of manufacturing the first cover member 110 having the design portion 114 according to the present embodiment or a method of manufacturing a graphic cover substrate according to the present exemplary embodiment) will be described in detail. In the following description, a method of manufacturing the first cover member 110 having the design portion 114 has been described as an example, but the present invention is not limited thereto. That is, the following description may be applied to a method of manufacturing the second cover member 120 having the cover portion 124. Other variations are possible.
도 7은 본 발명의 실시예에 따른 제1 커버 부재(110)의 제조 방법의 일 예를 도시한 흐름도이고, 도 8a 내지 도 8d는 도 7에 도시한 제1 커버 부재(110)의 제조 방법의 각 단계를 도시한 단면도들이다.7 is a flowchart showing an example of a method of manufacturing the first cover member 110 according to an embodiment of the present invention, and FIGS. 8A to 8D are a method of manufacturing the first cover member 110 shown in FIG. 7 These are cross-sectional views showing each step of.
도 7을 참조하면, 본 실시예에 따른 제1 커버 부재(110)의 제조 방법은, 기판 준비 단계(S10), 도포 단계(S20), 유리 강화 단계(S40) 및 마무리 단계(S50)를 포함할 수 있다.Referring to FIG. 7, the manufacturing method of the first cover member 110 according to the present embodiment includes a substrate preparation step (S10), an application step (S20), a glass strengthening step (S40), and a finishing step (S50). can do.
도 8a에 도시한 바와 같이, 기판 준비 단계(S10)에서는 비강화 유리 기판으로 구성되며 광택 저감부(GR)(일 예로, 비디자인 요철(NGR))를 구비한 제1 베이스 부재(112)를 준비한다. 일 예로, 광택 저감부(GR)는 불규칙 구조를 가질 수 있다. As shown in FIG. 8A, in the substrate preparation step (S10), a first base member 112 comprising a non-reinforced glass substrate and having a gloss reduction portion GR (for example, non-design irregularities (NGR)) is provided. Prepare. For example, the gloss reduction unit GR may have an irregular structure.
본 실시예에서 광택 저감부(GR)는 다양한 방법에 의하여 형성될 수 있다. 예를 들어, 광택 저감부(GR)를 구비하지 않는 비강화 유리 기판에 화학적 에칭 공정, 샌드 블라스트 공정 및 연마 공정 적어도 하나를 이용하여 광택 저감부(GR)를 형성할 수 있다. 화학적 에칭 공정으로는 스프레이 공정, 디핑 공정 등을 사용할 수 있으며, 화학적 에칭 공정에 사용하는 에칭 물질로는 불산, 염산, 황산, 또는 이들의 혼합 물질을 사용할 수 있다. 샌드 블라스트 또는 연마로는 알려진 다양한 공정 조건 등을 적용할 수 있다. 또는, 화학적 에칭 공정(일 예로, 페이스트를 이용한 화학적 에칭 공정)을 수행한 후에 연마 공정을 수행하여 광택 저감부(GR)를 형성할 수 있다. 화학적 에칭 공정만을 수행하면 유리 기판이 다소 불투명해질 수 있으므로 연마 공정을 추가로 수행하여 투명도를 복원하는 것이다. 그 외의 다양한 공정이 가능하다. In this embodiment, the gloss reduction unit GR may be formed by various methods. For example, the gloss reduction unit GR may be formed on a non-reinforced glass substrate not provided with the gloss reduction unit GR by using at least one of a chemical etching process, a sand blasting process, and a polishing process. As the chemical etching process, a spray process, a dipping process, or the like may be used, and as an etching material used in the chemical etching process, hydrofluoric acid, hydrochloric acid, sulfuric acid, or a mixture thereof may be used. Various process conditions known as sand blasting or polishing can be applied. Alternatively, after performing a chemical etching process (eg, a chemical etching process using a paste), a polishing process may be performed to form the gloss reduction unit GR. Since the glass substrate may become somewhat opaque if only the chemical etching process is performed, the transparency is restored by performing an additional polishing process. Other various processes are possible.
이때, 비강화 유리 기판은 380nm 내지 1200nm의 파장을 가지는 광에 대한 광 투과도가 80% 이상(일 예로, 85% 이상)이고, 최소 두께가 2mm이고, 저철분 유리 기판일 수 있다. 일 예로, 비강화 유리 기판은 건축용 비강화 유리 기판이며, 절삭, 면취, 또는 표면 가공 등에 의하여 준비될 수 있다. 준비된 비강화 유리 기판 또는 제1 베이스 부재(112)는 광택 저감부(GR)의 형성 공정 이전 또는 이후에 세정 및 건조될 수 있다. 이에 의하여 비강화 유리 기판 또는 제1 베이스 부재(112)의 이물질 또는 유막 등이 제거될 수 있다.In this case, the non-reinforced glass substrate may have a light transmittance of 80% or more (for example, 85% or more) for light having a wavelength of 380 nm to 1200 nm, a minimum thickness of 2 mm, and a low iron content glass substrate. For example, the non-reinforced glass substrate is an architectural non-reinforced glass substrate, and may be prepared by cutting, chamfering, or surface processing. The prepared non-reinforced glass substrate or the first base member 112 may be cleaned and dried before or after the formation process of the gloss reduction unit GR. As a result, foreign substances or oil films of the non-reinforced glass substrate or the first base member 112 may be removed.
기판 공정 이후에 건조 단계(S30) 또는 유리 강화 단계(S50)보다 낮은 온도에서 제1 베이스 부재(112)를 예비 가열하는 예비 가열 공정이 수행될 수 있다. 일 예로, 제1 베이스 부재(112)가 도포 단계(S20)를 위한 장치로 공급되는 공정 중에 25 내지 150℃의 온도로 예비 가열될 수 있다. 이때, 예비 가열은, 제1 베이스 부재(112)를 직접 가열하는 것에 의하여 수행될 수도 있고, 적외선 가열 장치 등을 이용하여 수행될 수도 있다. 제1 베이스 부재(112)에 예비 가열을 수행하면, 디자인 형성 단계(S20)에서 세라믹 프릿(114) 등을 포함하는 디자인 형성층(1140)이 균일하게 도포될 수 있으며 디자인 형성층(1140)의 부착력을 향상할 수 있다. 그러나 공정에 따라, 예를 들어, 디자인 형성층(1140)을 열전사 공정으로 형성하는 경우 등에는, 예비 가열 공정을 수행하지 않을 수도 있다. After the substrate process, a preheating process of preheating the first base member 112 at a temperature lower than the drying step S30 or the glass reinforcing step S50 may be performed. As an example, the first base member 112 may be preheated to a temperature of 25 to 150° C. during a process in which the first base member 112 is supplied to the apparatus for the application step S20. In this case, the preheating may be performed by directly heating the first base member 112 or may be performed using an infrared heating device or the like. If preliminary heating is performed on the first base member 112, the design forming layer 1140 including the ceramic frit 114 may be uniformly applied in the design forming step S20, and the adhesion of the design forming layer 1140 may be reduced. You can improve. However, depending on the process, for example, when the design formation layer 1140 is formed by a thermal transfer process, the preheating process may not be performed.
이어서, 도 8b에 도시한 바와 같이, 도포 단계(S20)에서는, 제1 베이스 부재(112) 위에 디자인 형성층(1140)을 형성한다. 일 예로, 디자인 형성층(1140)을 제1 베이스 부재(112)에서 광택 저감부(GR)를 형성한 표면 위에 형성할 수 있다. 디자인 형성층(1140)은 다양한 방법에 의하여 형성될 수 있는데, 인쇄 공정(예를 들어, 스크린 인쇄 공정, 디지털 잉크젯 인쇄 공정, 리소그래피 인쇄 공정, 레이저 인쇄 공정 등), 열전사 공정, 스프레이 공정, 졸-겔 공정 등 다양한 공정에 의하여 형성될 수 있다. 인쇄 공정에 의하면, 디자인 형성층(1140)을 형성하면 간단한 공정에 의하여 디자인 형성층(1140)이 원하는 두께를 가지도록 안정적으로 형성할 수 있다. 열전사 공정에 의하면, 광택 저감부(GR)를 가지거나, 그 외 굴곡 등 다양한 형상을 가진 제1 베이스 부재(112) 위에 안정적으로 디자인 형성층(1140)을 형성할 수 있다. Subsequently, as shown in FIG. 8B, in the application step S20, a design formation layer 1140 is formed on the first base member 112. For example, the design formation layer 1140 may be formed on the surface on which the gloss reduction portion GR is formed in the first base member 112. The design formation layer 1140 may be formed by various methods, including a printing process (eg, a screen printing process, a digital inkjet printing process, a lithographic printing process, a laser printing process, etc.), a thermal transfer process, a spray process, a sol- It can be formed by various processes such as a gel process. According to the printing process, when the design formation layer 1140 is formed, the design formation layer 1140 can be stably formed to have a desired thickness through a simple process. According to the thermal transfer process, the design formation layer 1140 may be stably formed on the first base member 112 having various shapes such as a gloss reduction portion GR or other curved shapes.
디자인 형성층(1140)은 세라믹 프릿(1144), 색소(1142) 및 수지(1146)를 포함하는 세라믹 물질층(세라믹 잉크, 세라믹 페이스트, 또는 세라믹 용액 등)으로 구성될 수 있다. 그리고 세라믹 물질층은 필요에 따라 첨가제 등을 더 포함할 수 있다. 첨가제로는 원하는 특성을 고려하여 산화물, 금속 등 다양한 물질이 포함될 수 있다. 또는 첨가제로 점도를 조절하기 위한 왁스, 물, 오일, 유기 용매, 또는 점도 조절용 희석제 등을 더 포함할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 세라믹 물질층의 형성 시 사용되는 메쉬(mesh), 세라믹 물질층의 도포를 위한 노즐 통과를 위하여 작은 입자를 유지할 수 있도록 첨가제를 포함하지 않을 수도 있다. The design formation layer 1140 may be formed of a ceramic material layer (such as ceramic ink, ceramic paste, or ceramic solution) including a ceramic frit 1144, a pigment 1142, and a resin 1146. In addition, the ceramic material layer may further include an additive or the like as necessary. Various materials such as oxides and metals may be included as additives in consideration of desired properties. Alternatively, it may further include wax, water, oil, an organic solvent, or a viscosity adjusting diluent for adjusting the viscosity as an additive. However, the present invention is not limited thereto, and additives may not be included so as to retain small particles for passing through a nozzle for applying a mesh used for forming a ceramic material layer and a ceramic material layer.
여기서, 세라믹 프릿(1144)은 기본적으로 디자인부(114)를 제1 베이스 부재(112)(특히, 유리 기판)에 안정적으로 결합시키는 역할을 하며, 선택적으로 특정한 색상, 질감, 느낌 등을 구현하는 역할을 할 수 있다. Here, the ceramic frit 1144 basically serves to stably couple the design part 114 to the first base member 112 (in particular, a glass substrate), and selectively implements a specific color, texture, and feel. Can play a role.
세라믹 프릿(1144)이라 함은 복수의 금속, 그리고 비금속을 포함하는 화합물로서, 복수의 금속 화합물을 포함하여 형성될 수 있다. 이러한 세라믹 프릿(1144)은 복수의 금속, 그리고 산소를 포함하는 불규칙 망목 구조(random network structure) 또는 유리 구조를 가지는 산소 다면체로 구성될 수 있다. 복수의 금속 화합물이 각기 금속 산화물로 구성되면 불규칙 망목 구조 또는 유리 구조를 쉽고 안정적으로 형성할 수 있다. 본 명세서에서 복수의 금속 화합물(일 예로, 금속 산화물)을 포함하여 형성될 수 있다고 함은, 복수의 금속 화합물(일 예로, 금속 산화물)을 사용하여 세라밋 프릿(1144)을 제조하여 세라믹 프릿(1144)이 복수의 금속, 그리고 비금속(일 예로, 산소)를 포함하는 화합물 구조, 불규칙 망목 구조, 유리 구조 등을 적어도 일부 구비하여 형성된 것을 의미할 수 있다. The ceramic frit 1144 is a compound including a plurality of metals and a non-metal, and may be formed including a plurality of metal compounds. The ceramic frit 1144 may be composed of a plurality of metals, and an oxygen polyhedron having a glass structure or an irregular network structure including oxygen. When a plurality of metal compounds are each composed of a metal oxide, an irregular network structure or a glass structure can be easily and stably formed. In the present specification, saying that it may be formed including a plurality of metal compounds (eg, metal oxide) means that a ceramic frit ( 1144) may mean that a compound structure including a plurality of metals and a non-metal (for example, oxygen), an irregular network structure, a glass structure, and the like are formed at least in part.
세라믹 프릿(1144)으로는 알려진 다양한 물질을 포함할 수 있다. 예를 들어, 세라믹 프릿(1144)은, 실리콘 산화물(SiOx, 예를 들어, SiO2)과 함께, 알루미늄 산화물(AlOx, 예를 들어, Al2O3), 나트륨 산화물(NaOx, 예를 들어, Na2O), 비스무스 산화물(BiOx, 예를 들어, Bi2O3), 보론 산화물(BOx, 예를 들어, B2O) 및 아연 산화물(ZnOx, 예를 들어, ZnO) 중 적어도 하나를 기본 물질로 포함하여 형성될 수 있다. 그 외 세라믹 프릿(1144)은 알루미늄 산화물, 나트륨 산화물, 비스무스 산화물, 보론 산화물, 아연 산화물, 티타늄 산화물(TiOx, 예를 들어, TiO2), 지르코늄 산화물(ZrOx, 예를 들어, ZrO2), 포타슘 산화물(KOx, 예를 들어, K2O), 리튬 산화물(LiOx, 예를 들어, Li2O), 칼슘 산화물(CaOx, 예를 들어, CaO), 코발트 산화물(CoOx), 철 산화물(FeOx) 등을 더 포함하여 형성될 수 있다. 예를 들어, 세라믹 프릿(1144)이 비스무스 산화물, 보론 산화물, 실리콘 산화물을 포함하여 형성되는 비스무스 보로-실리케이트 계열(bismuth boro-silicate) 계열 세라믹 물질(예를 들어, Bi2O3-Al2O-SiO2 계열 물질)로 구성될 수 있다. 또는, 세라믹 프릿(1144)이 나트륨 산화물, 알루미늄 산화물, 실리콘 산화물을 포함하여 형성되는 나오스(NAOS) 계열 세라믹 물질(예를 들어, Na2O-Al2O3-SiO2 계열 물질)로 구성될 수 있다. 또는, 세라믹 프릿(1144)이 아연 산화물, 실리콘 산화물, 보론 산화물을 포함하여 형성되는 세라믹 물질(예를 들어, ZnO-SiO2-B2O3 계열 물질)로 구성될 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 세라믹 프릿(1144)이 그 외 다양한 물질로 구성될 수 있다. Various materials known as the ceramic frit 1144 may be included. For example, the ceramic frit 1144, along with silicon oxide (SiOx, for example, SiO 2 ), aluminum oxide (AlOx, for example, Al 2 O 3 ), sodium oxide (NaOx, for example, Na 2 O), bismuth oxide (BiOx, for example, Bi 2 O 3 ), boron oxide (BOx, for example, B 2 O) and zinc oxide (ZnOx, for example, ZnO) based on at least one of It may be formed by including a material. Other ceramic frit 1144 is aluminum oxide, sodium oxide, bismuth oxide, boron oxide, zinc oxide, titanium oxide (TiOx, for example, TiO 2 ), zirconium oxide (ZrOx, for example, ZrO 2 ), potassium Oxide (KOx, for example, K 2 O), lithium oxide (LiOx, for example, Li 2 O), calcium oxide (CaOx, for example, CaO), cobalt oxide (CoOx), iron oxide (FeOx) It may be formed to further include, and the like. For example, the ceramic frit 1144 is a bismuth boro-silicate-based ceramic material (for example, Bi 2 O 3 -Al 2 O) formed by including bismuth oxide, boron oxide, and silicon oxide. -SiO 2 series material). Alternatively, the ceramic frit 1144 is composed of a NAOS-based ceramic material (for example, Na 2 O-Al 2 O 3 -SiO 2 -based material) formed including sodium oxide, aluminum oxide, and silicon oxide. Can be. Alternatively, the ceramic frit 1144 may be formed of a ceramic material (eg, a ZnO-SiO 2 -B 2 O 3 based material) formed of zinc oxide, silicon oxide, or boron oxide. However, the present invention is not limited thereto, and the ceramic frit 1144 may be formed of various other materials.
색소(1142)는 디자인부(114)가 원하는 외관을 가지도록 하기 위하여 포함된 것이다. 예를 들어, 디자인부(114)가 일정한 색상을 가지는 경우에는 색소(1142)로 태양광 중의 가시광선을 선택적으로 흡수 또는 반사하여 고유한 색상을 나타낼 수 있는 물질을 사용할 수 있다. 일 예로, 색소(1142)는 안료(pigment)일 수 있다. 안료란 물 및 대부분의 유기 용매에 용해되지 않은 무기 성분으로 구성된 색소로서, 제1 베이스 부재(112)의 표면을 피복하여 색을 나타낸다. 안료는 내화학성, 내광성, 내후성 및 은폐력이 우수하다. 즉, 안료는 염기와 산에 강하고, 자외선에 노출되었을 때 변색, 퇴색이 잘 되지 않고, 기후에 잘 견딜 수 있다. 참조로, 유기 용매에 용해되는 유기 성분으로 구성된 염료(dyestuff)를 색소로 사용하면 태양광에 의하여 분자 구조가 쉽게 깨질 수 있어 안정성이 저하될 수 있으며, 이를 보호하기 위한 보호층 등을 형성하여야 해서 제조 공정이 복잡해질 수 있다. 이에 본 실시예에서 색소(1142)는 염료를 포함하지 않을 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 색소(1142)가 염료 등의 다양한 물질 등을 포함할 수도 있다. The pigment 1142 is included so that the design part 114 has a desired appearance. For example, when the design unit 114 has a certain color, a material capable of displaying a unique color by selectively absorbing or reflecting visible light in sunlight with the dye 1142 may be used. For example, the pigment 1142 may be a pigment. The pigment is a pigment composed of an inorganic component that is not dissolved in water and most organic solvents, and shows a color by covering the surface of the first base member 112. Pigments are excellent in chemical resistance, light resistance, weather resistance and hiding power. In other words, the pigment is resistant to bases and acids, does not discolor or fade when exposed to UV rays, and can withstand the climate well. For reference, if dyestuffs composed of organic components soluble in an organic solvent are used as a dye, the molecular structure may be easily broken by sunlight, which may deteriorate stability. The manufacturing process can be complicated. Accordingly, in this embodiment, the dye 1142 may not include a dye. However, the present invention is not limited thereto, and the dye 1142 may include various substances such as dyes.
색소(1142)는 원하는 디자인부(114)의 외관을 고려하는 물질로 구성될 수 있다. 도면에서는 색소(1142)가 세라믹 프릿(1144)과 별도로 구비된 것으로 도시하였으나, 본 발명이 이에 한정되는 것은 아니다. 예를 들어, 세라믹 프릿(1144)을 구성하는 물질에 의하여 원하는 디자인부(114)의 외관이 구현되어 세라믹 프릿(1144)과 별도로 색소(1142)가 구비되지 않을 수 있다. 또는, 세라믹 프릿(1144)과 색소(1142)의 구별이 명확하지 않을 수 있다. 본 실시예에서 색소(1142)로 포함된 물질의 금속이 세라믹 프릿(1144)을 구성하는 불규칙 망목 구조 또는 유리 구조(일 예로, 산소 다면체)의 금속을 일부 치환하여 이에 포함될 수 있다. 또는, 색소(1142)에 포함된 금속은 세라믹 프릿(1144)의 불규칙 망목 구조, 유리 구조, 또는 산소 다면체의 침입형 자리에 위치할 수 있다.The pigment 1142 may be made of a material that considers the appearance of the desired design part 114. In the drawings, the dye 1142 is shown to be provided separately from the ceramic frit 1144, but the present invention is not limited thereto. For example, a desired appearance of the design portion 114 may be realized by a material constituting the ceramic frit 1144 and thus the pigment 1142 may not be provided separately from the ceramic frit 1144. Alternatively, the distinction between the ceramic frit 1144 and the pigment 1142 may not be clear. In the present embodiment, the metal of the material included as the pigment 1142 may be included by partially substituting a metal of an irregular network structure or a glass structure (eg, an oxygen polyhedron) constituting the ceramic frit 1144. Alternatively, the metal included in the dye 1142 may be located in an irregular network structure, a glass structure, or an interstitial site of an oxygen polyhedron of the ceramic frit 1144.
예를 들어, 세라믹 프릿(1144)에 포함된 금속 화합물(일 예로, 금속 산화물)에 의하여 디자인부(114)가 백색을 가질 수 있다. 일 예로, 세라믹 프릿(1144)이 납 산화물(PbOx, 예를 들어, PbO), 티타늄 산화물, 알루미늄 산화물 및 비스무스 산화물을 포함하는 군에서 적어도 하나 이상을 포함하여 형성되면 디자인부(114)가 백색을 가질 수 있다. 이때, 디자인부(114)가 백색을 가질 때 상술한 물질 외에도 보론 산화물 등의 물질을 더 포함할 수 있다. 일 예로, 디자인부(114)가 백색을 가질 때 세라믹 프릿(1144)이, 비스무스 산화물, 실리콘 산화물 및 보론 산화물을 포함하여 형성되는 세라믹 물질(BiOx-SiOx-B2O 계열 물질), 납 산화물, 실리콘 산화물 및 보론 산화물을 포함하여 형성되는 세라믹 물질(PbOx-SiOx-B2O 계열 물질), 티타늄 산화물, 실리콘 산화물 및 보론 산화물을 포함하여 형성되는 세라믹 물질(TiOx-SiOx-B2O 계열 물질), 알루미늄 산화물, 실리콘 산화물 및 보론 산화물을 포함하여 형성되는 세라믹 물질(AlOx-SiOx-B2O 계열 물질) 등으로 구성될 수 있다. 다만, 납 산화물은 환경 문제 등을 고려하여 본 실시예에 따른 디자인부(114) 또는 세라믹 프릿(1144) 등에 포함되지 않을 수 있다. For example, the design part 114 may have a white color due to a metal compound (eg, metal oxide) included in the ceramic frit 1144. For example, when the ceramic frit 1144 is formed to include at least one of lead oxide (PbOx, for example, PbO), titanium oxide, aluminum oxide, and bismuth oxide, the design part 114 is white. I can have it. In this case, when the design part 114 has a white color, it may further include a material such as boron oxide in addition to the above-described material. For example, when the design part 114 has a white color, the ceramic frit 1144 is formed of a ceramic material (BiOx-SiOx-B 2 O-based material) formed of bismuth oxide, silicon oxide, and boron oxide, lead oxide, and Ceramic material formed including silicon oxide and boron oxide (PbOx-SiOx-B 2 O-based material), ceramic material formed including titanium oxide, silicon oxide, and boron oxide (TiOx-SiOx-B 2 O-based material) , aluminum oxide, ceramic materials (AlOx SiOx-2 B-O-based material) that is formed including the silicon oxide and boron oxide may be of a like. However, lead oxide may not be included in the design part 114 or the ceramic frit 1144 according to the present embodiment in consideration of environmental issues.
다른 예로, 디자인부(114)가 백색 이외의 색상을 가지도록 하기 위하여 다양한 색소(1142)가 포함될 수 있다. 즉, 원하는 색상을 고려하여 이에 대응하는 하나 또는 둘 이상의 물질을 색소(1142)로 사용할 수 있다. 색소(1142)를 구성하는 물질은 금속, 또는 금속을 포함하는 산화물, 탄화물, 질화물, 황화물, 염화물, 실리케이트 등의 형태로 구성될 수 있다. As another example, various pigments 1142 may be included so that the design unit 114 has a color other than white. That is, in consideration of a desired color, one or two or more substances corresponding thereto may be used as the pigment 1142. The material constituting the dye 1142 may be formed of a metal or an oxide, carbide, nitride, sulfide, chloride, silicate, or the like containing a metal.
예를 들어, 붉은 색, 노란색 등의 계열을 나타내기 위하여 구리(Cu), 철(Fe), 니켈(Ni), 크롬(Cr), 우라늄(U), 바나듐(V) 중 적어도 하나를 포함하는 물질 등을 색소(1142)로 사용할 수 있다. 초록 색 또는 푸른 색 등의 계열을 나타내기 위하여 티타늄(Ti), 마그네슘(Mg), 루타일(rutile) 중 적어도 하나를 포함하는 물질을 색소(1142)로 사용할 수 있다. 그 외에도 색소(1142)가 코발트 산화물, 철 산화물, 구리 산화물(CuOx), 크롬 산화물(CrOx), 니켈 산화물(NiOx), 망간 산화물(MnOx), 주석 산화물(SnOx), 안티몬 산화물(SbOx), 바나듐 산화물(VOx) 등을 포함할 수 있다. For example, containing at least one of copper (Cu), iron (Fe), nickel (Ni), chromium (Cr), uranium (U), and vanadium (V) to represent a series of red, yellow, etc. A substance or the like can be used as the pigment 1142. A material including at least one of titanium (Ti), magnesium (Mg), and rutile may be used as the pigment 1142 in order to represent a series of green or blue colors. In addition, the dye 1142 is cobalt oxide, iron oxide, copper oxide (CuOx), chromium oxide (CrOx), nickel oxide (NiOx), manganese oxide (MnOx), tin oxide (SnOx), antimony oxide (SbOx), vanadium. It may include oxide (VOx) and the like.
좀더 구체적인 예로, 색소(1142)로, 청록색(cyan)을 구현하기 위하여 CoAl2O4를 사용할 수 있고, 청색(blue)을 구현하기 위하여 Co2SiO4 등을 사용할 수 있고, 녹색(green)을 구형하기 위하여 CoCr2O4 등을 사용할 수 있고, 노란색을 구현하기 위하여 Ti(Cr, Sb)O2를 사용할 수 있으며, 검은색을 구현하기 위하여 CoFe2O4를, Co-Cr-Fe-Mn 스피넬 등을 사용할 수 있다. 또는, 색소(1142)로, 녹색을 구현하기 위하여 NiO, Cr2O3 등을 사용할 수 있고, 분홍색을 구현하기 위하여 Cr-Al 스피넬, Ca-Sn-Si-Cr 스핀, Zr-Si-Fe 지르콘 등을 사용할 수 있고, 회색을 구현하기 위하여 Sn-Sb-V 루타일, 황색을 구현하기 위하여 Ti-Sb-Ni 루타일, Zr-V 바델라이트 등을 사용할 수 있고, 청색을 구현하기 위하여 Co-Zn-Al 스피넬, 갈색을 구현하기 위하여 Zn-Fe-Cr 스피넬, 녹색을 구현하기 위하여 Ca-Cr-Si 가넷 등을 사용할 수 있고, 어두운 청색을 구현하기 위하여 Co-Zn-Si 윌레마이트, Co-Si 감람석 등을 사용할 수 있으며, 갈색을 구현하기 위하여 Zn-Fe-Cr-Al 스피넬 등을 사용할 수 있으며, 심홍색(magenta)를 구현하기 위하여 Au 등을 사용할 수 있다. 이러한 물질은 일 예로 제시한 것에 불과할 뿐 본 발명이 이에 한정되는 것은 아니다. As a more specific example, as the pigment 1142, CoAl 2 O 4 may be used to implement cyan, and Co 2 SiO 4 may be used to implement blue, and green may be used. CoCr 2 O 4 etc. can be used for spherical shape, Ti(Cr, Sb)O 2 can be used for yellow color, CoFe 2 O 4 for black color, and Co-Cr-Fe-Mn Spinel or the like can be used. Alternatively, as the pigment 1142, NiO, Cr 2 O 3, etc. can be used to implement green, and to implement pink, Cr-Al spinel, Ca-Sn-Si-Cr spin, Zr-Si-Fe zircon And the like, Sn-Sb-V rutile to realize gray, Ti-Sb-Ni rutile, Zr-V badelite, etc. to realize yellow, and Co- Zn-Al spinel, Zn-Fe-Cr spinel for brown color, Ca-Cr-Si garnet for green color can be used, and Co-Zn-Si willemite, Co- for dark blue color. Si olivine, etc. can be used, Zn-Fe-Cr-Al spinel, etc. can be used to implement brown, and Au or the like can be used to implement magenta. These materials are only presented as an example, and the present invention is not limited thereto.
상술한 설명은 디자인부(114)가 일정한 색상을 가지는 것을 예시한 것이다. 그러나 본 발명이 이에 한정되는 것은 아니다. 따라서 디자인부(114)가 투명 또는 반투명 색상을 가지거나, 광택 또는 무광택을 나타내거나, 특정한 질감을 표현하거나, 눈부심을 방지하기 위한 것일 수 있다. 이 경우에는 디자인부(114)이 색소(1142)가 포함될 수도 있으나 색소(1142)가 포함되지 않을 수 있다. 이때, 디자인부(114)가 백색을 가지지 않도록 하기 위하여 세라믹 프릿(1144)은 백색을 나타낼 수 있는 납 산화물, 알루미늄 산화물 등을 포함하지 않을 수 있다. 일 예로, 디자인부(114)가 투명 또는 반투명 색상을 가지는 경우에는 세라믹 프릿(1144)이 나트륨 산화물, 실리콘 산화물 및 보론 산화물을 포함하여 형성되는 세라믹 물질(NaOx-SiOx-B2O 계열 물질) 등으로 구성될 수 있다. 티타늄 산화물, 비스무스 산화물은 백색을 구현하는 데 사용될 수 있는 물질이지만 일부 포함되어도 디자인부(114)가 투명 또는 반투명하게 유지될 수 있다. 다만, 디자인부(114)가 투명 또는 반투명 색상을 가지는 경우에도 약간의 발색 등을 위하여(예를 들어, 적색향 반투명, 녹색향 투명 등)을 위하여 안료 또는 색소(1142)가 소량 포함될 수도 있다.The above description exemplifies that the design unit 114 has a certain color. However, the present invention is not limited thereto. Accordingly, the design unit 114 may have a transparent or translucent color, may be glossy or matte, may be used to express a specific texture, or to prevent glare. In this case, the design part 114 may include the pigment 1142 but may not include the pigment 1142. In this case, in order to prevent the design part 114 from having white, the ceramic frit 1144 may not contain lead oxide, aluminum oxide, etc. that may exhibit white. For example, when the design part 114 has a transparent or translucent color, the ceramic frit 1144 is a ceramic material (NaOx-SiOx-B 2 O-based material) formed of sodium oxide, silicon oxide, and boron oxide. It can be composed of. Titanium oxide and bismuth oxide are materials that can be used to implement white color, but even if some are included, the design part 114 may be kept transparent or translucent. However, even when the design part 114 has a transparent or translucent color, a small amount of a pigment or pigment 1142 may be included for a slight color development (for example, a red color translucent, a green color transparent, etc.).
수지(1146)는 세라믹 물질층을 도포할 때 적절한 점도, 유동성 등을 가지도록 하고 색소(1142)와 세라믹 프릿(1144)을 균일하게 혼합하게 사용되는 물질로서, 휘발될 수 있는 휘발성 물질일 수 있다. 수지(1146)로는 알려진 다양한 물질을 포함할 수 있다. 예를 들어, 수지(1146)로 아크릴계 수지, 셀룰로오스계 수지 등과 같은 유기계 수지를 사용할 수도 있고, 실리콘계 수지와 같이 무기계 수지를 포함할 수도 있다. The resin 1146 is a material used to uniformly mix the pigment 1142 and the ceramic frit 1144 to have an appropriate viscosity and fluidity when applying the ceramic material layer, and may be a volatile material that may be volatilized. . The resin 1146 may include various known materials. For example, as the resin 1146, an organic resin such as an acrylic resin or a cellulose resin may be used, or an inorganic resin such as a silicone resin may be included.
세라믹 물질층 또는 디자인 형성층(1140)은 세라믹 프릿(1144)을 가장 많은 양으로 포함하고, 색소(1142)가 포함되는 경우에도 색소(1142)는 세라믹 프릿(1144)보다 작은 양으로 포함될 수 있다. 예를 들어, 색소(1142)를 포함하는 경우에, 세라믹 물질층 또는 디자인 형성층(1140) 100 중량부에 대하여 세라믹 프릿(1144)를 40 내지 90 중량부(일 예로, 50 내지 90 중량부)로 포함하고, 색소(1142)를 5 내지 50 중량부로 포함하고, 수지(1146) 및/또는 첨가제를 0 내지 20 중량부로 포함할 수 있다. 색소(1142)를 별도로 포함하지 않는 경우에는, 세라믹 물질층 또는 디자인 형성층(1140) 100 중량부에 대하여 세라믹 프릿(1144)이 50 내지 100 중량부(일 예로, 60 내지 100 중량부)로 포함되고, 수지(1146) 및/또는 첨가제가 0 내지 50 중량부(일 예로, 0 내지 40 중량부)로 포함될 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며, 세라믹 물질층 또는 디자인 형성층(1140)이 다양한 조성을 가질 수 있다. The ceramic material layer or design formation layer 1140 contains the ceramic frit 1144 in the largest amount, and even when the pigment 1142 is included, the pigment 1142 may be included in a smaller amount than the ceramic frit 1144. For example, in the case of including the dye 1142, the ceramic frit 1144 is 40 to 90 parts by weight (for example, 50 to 90 parts by weight) based on 100 parts by weight of the ceramic material layer or the design formation layer 1140. Including, the pigment 1142 may be included in an amount of 5 to 50 parts by weight, and the resin 1146 and/or an additive may be included in an amount of 0 to 20 parts by weight. When the pigment 1142 is not separately included, the ceramic frit 1144 is included in an amount of 50 to 100 parts by weight (for example, 60 to 100 parts by weight) based on 100 parts by weight of the ceramic material layer or the design forming layer 1140. , The resin 1146 and/or the additive may be included in an amount of 0 to 50 parts by weight (for example, 0 to 40 parts by weight). However, the present invention is not limited thereto, and the ceramic material layer or the design formation layer 1140 may have various compositions.
이어서, 도 8c에 도시한 바와 같이, 건조 단계(S30)에서는 열을 가하여 세라믹 물질층 또는 디자인 형성층(1140)을 건조하면서 수지(1146)를 휘발시킨다. 수지(1146) 등을 먼저 휘발시켜 색소(1142), 세라밋 프릿(1144) 등이 제1 베이스 부재(112)와 함께 효과적으로 혼합될 수 있도록 한다. 건조 단계(S30)에서 수지(1146)는, 모두 제거될 수도 있고, 일부가 잔류할 수도 있다. 이때, 수지(1146)가 제거된 부분의 적어도 일부가 제거된 부분에 빈 공간으로 구성된 기포(기공)(도 8d의 참조부호 114V)가 잔류할 수 있다. 일 예로, 건조 단계(S30)에서는 200℃ 이하(예를 들어, 150℃ 이하, 일 예로, 50 내지 200℃, 좀더 구체적으로 50 내지 150℃의 온도에서 세라믹 물질층 또는 디자인 형성층(1140)을 건조할 수 있다. 건조 단계(S30)는 적외선 가열 장치, 자외선 경화 등을 이용하여 수행될 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 건조 온도, 건조 방법 등은 다양하게 변화할 수 있다. Subsequently, as shown in FIG. 8C, in the drying step (S30), heat is applied to dry the ceramic material layer or the design formation layer 1140 to volatilize the resin 1146. The resin 1146 and the like are first volatilized so that the pigment 1142 and the ceramic frit 1144 can be effectively mixed together with the first base member 112. In the drying step (S30), all of the resin 1146 may be removed, or a part of the resin 1146 may remain. At this time, bubbles (pores) (reference numeral 114V in FIG. 8D) composed of empty spaces may remain in a portion from which at least a portion of the portion from which the resin 1146 is removed. For example, in the drying step (S30), the ceramic material layer or the design formation layer 1140 is dried at a temperature of 200°C or less (for example, 150°C or less, for example, 50 to 200°C, more specifically 50 to 150°C. The drying step S30 may be performed using an infrared heating device, ultraviolet curing, etc. However, the present invention is not limited thereto, and the drying temperature and drying method may be variously changed.
이어서, 도 8d에 도시한 바와 같이, 유리 강화 단계(S40)에서는 열처리 또는 어닐링(annealing)에 의한 열강화에 의하여 제1 베이스 부재(112)를 구성하는 비강화 유리 기판을 강화 또는 반강화한다. 그때, 상평형을 맞추기 위하여 디자인 형성층(1140)에 포함된 세라믹 프릿(1144), 색소(1142) 등이 강화 또는 반강화 유리 기판 내부로 혼입되면서 제1 베이스 부재(112)를 구성하는 강화 또는 반강화 유리 기판과 일체화되는 디자인부(114)가 형성된다. 여기서, 디자인 형성층(1140)은 질량비가 높아서 제1 베이스 부재(112)보다 큰 비중을 가질 수 있는데, 그러면 유리 강화 단계(S40)에서의 높은 온도에 의하여 디자인 형성층(1140)이 융착되면서 끈적 끈적하게 되면서 유리 기판로 구성된 제1 베이스 부재(112)의 내부로 더 쉽게 혼입될 수 있다. Subsequently, as shown in FIG. 8D, in the glass strengthening step S40, the non-reinforced glass substrate constituting the first base member 112 is strengthened or semi-strengthened by thermal strengthening by heat treatment or annealing. At that time, the ceramic frit 1144, the pigment 1142, etc. included in the design formation layer 1140 are mixed into the reinforced or semi-reinforced glass substrate in order to match the phase equilibrium. A design part 114 is formed that is integrated with the tempered glass substrate. Here, the design formation layer 1140 may have a greater specific gravity than the first base member 112 due to a high mass ratio. Then, the design formation layer 1140 is fused and sticky due to the high temperature in the glass reinforcing step (S40). As it is, it may be more easily incorporated into the inside of the first base member 112 made of a glass substrate.
유리 강화 단계(S40)에서는 비강화 유리 기판을 강화 또는 반강화할 수 있는 온도에서 수행될 수 있다. 일 예로, 유리 강화 단계(S40)의 열처리 온도는 500 내지 800℃, 예를 들어, 500 내지 750℃, 일 예로, 640 내지 720℃일 수 있으며, 고압 처리되지 않은 상태에서(일 예로, 상압 또는 상압보다 낮은 압력에서) 열처리될 수 있다. 예를 들어, 강화의 경우에는 5 내지 20 kPa, 반강화일 경우에는 4 kPa의 압력에서 열처리될 수 있다. 이때, 압력에 따라 열처리 시간을 조절할 수 있는데, 압력이 높으면 열처리 시간을 상대적으로 짧게 하고 압력이 낮으면 상대적으로 열처리 시간을 길게 할 수 있다. 그러나 본 발명이 유리 강화 단계(S40)의 온도, 압력, 시간 등에 한정되는 것은 아니다. In the glass strengthening step (S40), it may be performed at a temperature capable of strengthening or semi-strengthening the non-tempered glass substrate. For example, the heat treatment temperature of the glass reinforcing step (S40) may be 500 to 800°C, for example, 500 to 750°C, for example, 640 to 720°C, and in a state that is not subjected to high pressure (for example, normal pressure or It can be heat treated at a pressure lower than normal pressure). For example, in the case of reinforcement, it may be heat-treated at a pressure of 5 to 20 kPa, and in the case of semi-reinforcement, 4 kPa. At this time, the heat treatment time may be adjusted according to the pressure. If the pressure is high, the heat treatment time may be relatively short, and if the pressure is low, the heat treatment time may be relatively long. However, the present invention is not limited to the temperature, pressure, time, etc. of the glass reinforcing step (S40).
일 예로, 유리 강화 단계(S40)에서 제1 베이스 부재(112)를 구성하는 비강화 유리 기판을 반강화할 수 있다. 이에 따라 제1 베이스 부재(112) 또는 제1 커버 부재(110)가 열강화된 반강화 유리 기판(배강도 유리)(heat strengthened glass)으로 구성될 수 있다. 이에 의하면 제1 커버 부재(110)의 투과율을 높게 유지할 수 있다. 여기서, 반강화 유리로 구성된 제1 커버 부재(110)는 표면 압축 응력이 60MPa 이하(예를 들어, 24 내지 52Mpa)일 수 있다. 일 예로, 제1 커버 부재(110)의 에지 응력이 약 30 내지 40MPa 일 수 있다. 즉, 이러한 반강화 유리는 연화점보다 다소 낮은 온도에서 열처리한 후에 서냉하여 형성될 수 있다. 참조로, 완전 강화 유리는 연화점보다 높은 온도에서 열처리한 후에 급냉하여 형성될 수 있는데, 표면 압축 응력이 70 내지 200MPa이다. For example, in the glass reinforcing step (S40), the non-reinforced glass substrate constituting the first base member 112 may be semi-reinforced. Accordingly, the first base member 112 or the first cover member 110 may be formed of a heat strengthened glass substrate (heat strengthened glass). Accordingly, the transmittance of the first cover member 110 can be maintained high. Here, the first cover member 110 made of semi-tempered glass may have a surface compressive stress of 60 MPa or less (eg, 24 to 52 MPa). For example, the edge stress of the first cover member 110 may be about 30 to 40 MPa. That is, the semi-tempered glass may be formed by slow cooling after heat treatment at a temperature slightly lower than the softening point. For reference, the fully tempered glass may be formed by rapid cooling after heat treatment at a temperature higher than the softening point, and the surface compressive stress is 70 to 200 MPa.
이와 같이 본 실시예에서는 유리 강화 단계(S40)에서 열처리 온도, 냉각 속도 등을 조절하여 디자인부(114)의 광 투과도를 높게 유지할 수 있다. 특히, 열처리 온도를 일정 범위 이내로 유지하면서 냉각 속도를 일정 수준 이하로 하여 디자인부(114)가 비정질 상태의 유리 구조를 가지도록 하여 적외선 영역의 광에 대한 평균 광 투과도를 상대적으로 높게 유지할 수 있다. 이와 달리 열처리 온도가 일정 범위 내로 유지되지 않거나 및/또는 냉각 속도나 압력이 지나치게 큰 경우에는 커버부인 산화물 세라믹 조성물의 화학 구조 변화로 비정질 유리 구조의 상변화 또는 유리 기판 사이의 계면 결합 변화로 적외선 영역의 광에 대한 평균 광 투과도가 가시광선 영역의 평균 광 투과도보다 높은 수준의 값을 가지기 어려울 수 있다. 그리고 열처리 온도가 일정 수준 미만(예를 들어, 600℃ 미만, 일 예로, 640℃ 미만)이면 디자인부(114)가 베이스 부재(112)로부터 박리될 수 있는 가능성이 높아질 수 있고, 열처리 온도가 일정 수준을 초과(예를 들어, 720℃ 초과, 일 예로, 700℃ 초과)하면, 디자인부(114)가 원하는 색상을 가지지 않거나 투과도 경향이 변하는 등 디자인부(114)가 원하는 특성을 가지기 어려울 수 있다. As described above, in this embodiment, the light transmittance of the design unit 114 may be maintained high by adjusting the heat treatment temperature and cooling rate in the glass reinforcing step (S40). In particular, by keeping the heat treatment temperature within a certain range and lowering the cooling rate to a certain level, the design unit 114 has an amorphous glass structure, so that the average light transmittance for light in the infrared region may be relatively high. In contrast, if the heat treatment temperature is not maintained within a certain range and/or the cooling rate or pressure is too high, the infrared region due to a phase change of the amorphous glass structure due to a change in the chemical structure of the oxide ceramic composition, which is a cover part, or a change in the interface bonding between the glass substrates. It may be difficult to have an average light transmittance of light of a higher level than the average light transmittance of the visible light region. And if the heat treatment temperature is less than a certain level (for example, less than 600 ℃, for example, less than 640 ℃), the possibility that the design part 114 may be peeled off from the base member 112 may increase, and the heat treatment temperature is constant. If the level is exceeded (for example, more than 720°C, for example, more than 700°C), it may be difficult for the design unit 114 to have the desired characteristics, such as the design unit 114 does not have a desired color or the transmittance tendency changes. .
이어서, 마무리 단계(S50)에서는 유리 강화 단계(S40)가 수행된 제1 커버 부재(110)를 세정, 건조한다. 그러면, 일체화된 디자인부(114)를 구비하는 제1 커버 부재(110)의 제조가 완료된다.Subsequently, in the finishing step (S50), the first cover member 110 on which the glass reinforcing step (S40) has been performed is washed and dried. Then, the manufacturing of the first cover member 110 having the integrated design portion 114 is completed.
이때, 세라믹 물질층, 디자인 형성층(1140), 또는 디자인부(114)는 나트륨 또는 칼륨의 함량이 제1 베이스 부재(112)의 나트륨 또는 칼륨의 함량과 유사하거나 이보다 낮을 수 있다. 특히, 세라믹 물질층, 디자인 형성층(1140), 또는 디자인부(114)는 나트륨 및 칼륨의 함량이 제1 베이스 부재(112)의 나트륨 및 칼륨의 함량보다 각기 낮을 수 있다. 일 예로, 세라믹 물질층, 디자인 형성층(1140), 또는 디자인부(114)가 나트륨 및 칼륨 각각을 10 X 1018개/cc 이하로 포함할 수 있다. 이와 반대로, 세라믹 물질층, 디자인 형성층(1140), 또는 디자인부(114)가 상술한 범위를 초과하여 나트륨 또는 칼륨을 포함하면, 누설전류에 의한 열화(potential-induced degradation, PID) 현상이 발생하여 태양 전지 패널(100)의 신뢰성이 저하될 수 있다. 그리고 세라믹 물질층, 디자인 형성층(1140), 또는 디자인부(114)가 납 및/또는 크롬(일 예로, 납 산화물 및/또는 크롬 산화물)을 포함하지 않아 환경 문제가 발생하지 않도록 할 수 있다. 일 예로, 세라믹 물질층, 디자인 형성층(1140), 또는 디자인부(114)에 포함된 나트륨, 칼륨, 납의 양은 이차이온질량분석(secondary ion mass spectrometry, SIMS) 등에 의하여 측정 또는 판별될 수 있다.In this case, the content of sodium or potassium in the ceramic material layer, the design formation layer 1140, or the design portion 114 may be similar to or lower than the sodium or potassium content of the first base member 112. In particular, the content of sodium and potassium in the ceramic material layer, the design formation layer 1140, or the design portion 114 may be respectively lower than the sodium and potassium content of the first base member 112. As an example, the ceramic material layer, the design formation layer 1140, or the design part 114 may contain 10×10 18 pieces/cc or less, respectively, of sodium and potassium. Conversely, when the ceramic material layer, the design formation layer 1140, or the design unit 114 contains sodium or potassium in excess of the above-described range, a potential-induced degradation (PID) phenomenon occurs due to leakage current. Reliability of the solar panel 100 may be deteriorated. In addition, since the ceramic material layer, the design formation layer 1140, or the design portion 114 does not contain lead and/or chromium (for example, lead oxide and/or chromium oxide), environmental problems may not occur. For example, the amount of sodium, potassium, and lead contained in the ceramic material layer, the design formation layer 1140, or the design unit 114 may be measured or determined by secondary ion mass spectrometry (SIMS).
상술한 그래픽 커버 기판 또는 제1 커버 부재(110), 제1 밀봉재(131), 태양 전지부(SP), 제1 밀봉재(132), 제2 커버 부재(120) 등을 적층한 후에 열과 압력을 가하는 라미네이션 공정을 수행하여 이들을 일체화한다. 즉, 라미네이션 공정의 높은 온도에서 밀봉재(130)가 용융되어 경화되어 압력에 의하여 압착되는 제1 커버 부재(110)와 제2 커버 부재(120)의 사이 공간을 밀봉재(130)가 완전히 채우면서 태양 전지부(SP)를 밀봉할 수 있다. 이에 의하여 밀봉재(130)에 의하여 제1 커버 부재(110)와 제2 커버 부재(120)의 사이 공간이 완전히 채워질 수 있다. 이에 의하여 태양 전지 패널(100)이 제조된다. 이에 의하면 그래픽 커버 기판인 제1 커버 부재(110)을 포함하는 태양 전지 패널(100)을 간단하고 안정적인 제조 공정으로 형성할 수 있다. After laminating the graphic cover substrate or the first cover member 110, the first sealing material 131, the solar cell part (SP), the first sealing material 132, the second cover member 120, etc. They are integrated by performing a lamination process that is applied. In other words, the sealing material 130 completely fills the space between the first cover member 110 and the second cover member 120, which is melted and cured at a high temperature of the lamination process and compressed by pressure. The battery part SP can be sealed. Accordingly, the space between the first cover member 110 and the second cover member 120 may be completely filled by the sealing material 130. Thereby, the solar panel 100 is manufactured. Accordingly, the solar panel 100 including the first cover member 110, which is a graphic cover substrate, can be formed through a simple and stable manufacturing process.
본 실시예에 의하면, 디자인부(114) 및 광택 저감부(GR)를 구비하는 제1 커버 부재(110) 및 이를 포함하는 태양 전지 패널(100)의 제조 공정을 단순화하여 생산성을 향상할 수 있다. 그리고 디자인 형성층(1140)을 인쇄할 때 디자인 형성층(1140)의 두께, 투과도, 인쇄 밀도, 인쇄 면적 등을 조절하여 태양 전지 패널(100)의 심미성 및 미관을 향상하면서도 출력을 일정 이상으로 유지할 수 있다.According to the present embodiment, it is possible to improve productivity by simplifying the manufacturing process of the first cover member 110 including the design unit 114 and the gloss reduction unit (GR) and the solar panel 100 including the same. . In addition, when printing the design forming layer 1140, the thickness, transmittance, print density, printing area, etc. of the design forming layer 1140 can be adjusted to improve the aesthetics and aesthetics of the solar panel 100 while maintaining the output above a certain level. .
이하에서는 본 발명의 다른 실시예들에 따른 태양 전지 패널, 그리고 이에 사용되는 그래픽 커버 기판 및 이의 제조 방법을 상세하게 설명한다. 상술한 설명과 동일 또는 극히 유사한 부분에 대해서는 상세한 설명을 생략하고 서로 다른 부분에 대해서만 상세하게 설명한다. 그리고 상술한 실시예 또는 이를 변형한 예와 아래의 실시예 또는 이를 변형한 예들을 서로 결합한 것 또한 본 발명의 범위에 속한다.Hereinafter, a solar panel according to other embodiments of the present invention, a graphic cover substrate used therein, and a method of manufacturing the same will be described in detail. Detailed descriptions of parts that are the same or extremely similar to those of the above description will be omitted, and only different parts will be described in detail. In addition, a combination of the above-described embodiment or a modified example thereof and the following embodiment or modified examples thereof also falls within the scope of the present invention.
도 9는 본 발명의 다른 실시에에 따른 제1 커버 부재에 포함되는 광택 저감부 및 디자인부를 도시한 개략적인 평면도이고, 도 10은 도 9에 도시한 제1 커버 부재를 모식적으로 도시한 단면도이다. 참조로, 도 9의 (a)에는 광택 저감부를 도시하였고, 도 9의 (b)에는 도 9의 (a)의 A 부분에 형성되는 광택 저감부 및 디자인부를 포함하는 제1 커버 부재를 도시하였다. 9 is a schematic plan view showing a gloss reduction unit and a design unit included in a first cover member according to another embodiment of the present invention, and FIG. 10 is a cross-sectional view schematically showing the first cover member shown in FIG. 9 to be. For reference, FIG. 9(a) shows a gloss reduction part, and FIG. 9(b) shows a first cover member including a gloss reduction part and a design part formed in part A of FIG. 9(a). .
도 9 및 도 10을 참조하면, 본 실시예에 따른 광택 저감부(GR)는, 광택을 저감하는 역할과 함께, 디자인부(114)에 의하여 표현하고자 하는 디자인을 구체화하는 보조 디자인부로서의 역할을 수행하는 디자인 요철(DGR)일 수 있다. 이러한 디자인 요철(DGR)은 건축 자재, 자연물 등의 특정한 디자인을 구현하기 위한 특정한 형상을 가질 수 있는데, 예를 들어, 목재의 나무결, 나이테 등, 나뭇잎의 줄기 형상, 석재의 무늬, 목탄의 무늬, 벽돌의 경계선 등의 적어도 일부를 따라 부분적으로 디자인 요철(DGR)이 형성될 수 있다. 그리고 디자인부(114)는 표현하고자 하는 건 자재, 자연물 등, 예를 들어, 목재, 나뭇잎, 석재, 목탄, 벽돌 등의 색상 등을 표현하는 부분일 수 있다. 그러면, 광택을 저감하면서 디자인부(114)에 의하여 표현하고자 하는 디자인을 좀더 실제와 유사하게 구현할 수 있다. 9 and 10, the gloss reduction unit GR according to the present embodiment serves as an auxiliary design unit for specifying the design to be expressed by the design unit 114 in addition to the role of reducing gloss. It may be a design unevenness (DGR) to be performed. Such design irregularities (DGR) may have a specific shape for realizing a specific design such as building materials and natural objects. For example, wood grain of wood, rings, etc., stem shape of leaves, pattern of stone, pattern of charcoal, Design irregularities (DGR) may be partially formed along at least a portion of the boundary line of the brick. In addition, the design unit 114 may be a part that expresses a material, a natural object, etc. to be expressed, such as a color such as wood, leaves, stone, charcoal, and brick. Then, the design to be expressed by the design unit 114 can be implemented more similarly to the actual design while reducing gloss.
이러한 디자인 요철(DGR)도 불규칙 구조를 가질 수 있다. 상술한 건축 자재, 자연물 등의 나무결, 나이테, 줄기 형상 등은 규칙 구조를 가지지 않는 것이 일반적이기 때문이다. 즉, 디자인 요철(DGR)은 단면 및/또는 평면에서 볼 때 불규칙한 형상, 불규칙한 배치, 또는 비대칭 구조를 가질 수 있다. 좀더 구체적으로, 단면에서 볼 때 디자인 요철(DGR)이 서로 다른 깊이, 크기 및/또는 간격을 가지는 음각 형태의 요철을 복수로 구비하거나, 서로 다른 높이, 크기 및/또는 간격을 가지는 양각 형태의 요철을 복수로 구비할 수 잇다. 또는, 일 변형예로 도 11에 도시한 바와 같이, 음각 형태의 요철과 양각 형태의 요철이 함께 구비되면서 복수의 요철이 서로 다른 높이, 크기 및/또는 간격을 가지면서 형성될 수 있다. 또는, 평면으로 볼 때 디자인 요철(GR)이 서로 다른 길이, 폭, 및/또는 형상을 가지는 요철을 복수로 구비하거나, 서로 교차하는 각도가 서로 다른 요철을 복수로 구비하거나, 직선이 아닌 곡선부 또는 라운드부를 불규칙하게 구비하거나, 복수의 요철이 서로 다른 간격으로 구비될 수 있다. 이에 따라 단면 및/또는 평면에서 임의의 하나의 선을 기준으로 볼 때 디자인 요철(DGR)이 비대칭 구조를 가지며, 어떠한 선을 기준으로도 보아도 대칭 구조를 가지지 않을 수 있다. Such design irregularities (DGR) may also have an irregular structure. This is because the above-described construction materials, natural objects, etc., such as wood grains, rings, stems, etc., generally do not have a regular structure. That is, the design irregularities DGR may have an irregular shape, an irregular arrangement, or an asymmetric structure when viewed in a cross-section and/or plan view. More specifically, when viewed in cross section, design irregularities (DGR) are provided with a plurality of intaglio-shaped irregularities having different depths, sizes, and/or intervals, or relief-shaped irregularities having different heights, sizes, and/or intervals. It can be provided with a plurality of. Alternatively, as illustrated in FIG. 11 as a modified example, a plurality of irregularities may be formed while having different heights, sizes, and/or intervals while the concave-convex and the concave-convex are provided together. Or, in a plan view, a plurality of irregularities having different lengths, widths, and/or shapes of the design irregularities GR are provided, or a plurality of irregularities having different angles crossing each other are provided, or a curved portion that is not a straight line Alternatively, round portions may be irregularly provided, or a plurality of irregularities may be provided at different intervals. Accordingly, the design unevenness (DGR) may have an asymmetric structure when viewed with respect to an arbitrary line in a cross-section and/or a plane, and may not have a symmetrical structure when viewed with respect to any line.
도 9 및 도 10에 도시한 바와 같이, 본 실시예에서 디자인 요철(DGR)은 불규칙 구조를 가지고, 디자인부(114)는 규칙 구조를 가지면서 복수로 구비될 수 있다. 본 실시예에서 디자인부(114)는, 디자인 요철(DGR)이 형성되지 않은 미요철 영역(NGA)(인접한 디자인 요철(DGR) 사이에 위치한 미요철 영역(NGA))에 위치한 제1 디자인부(114a)와, 디자인 요철(DGR)과 적어도 일부가 중첩되어 형성되는 제2 디자인부(114b)를 포함할 수 있다. 미요철 영역(NGA)에서는, 제1 디자인부(114a)가 형성된 부분과, 제1 디자인부(114a)가 형성되지 않은 부분을 모두 포함할 수 있다. 디자인 요철(DGR)이 형성된 요철 영역(GA)에서는, 제2 디자인부(114b)가 디자인 요철(DGR) 전체를 덮는 부분, 디자인부(114b)의 일부가 디자인 요철(DGR)의 일부에 중첩되고 다른 일부가 디자인 요철(DGR)에 중첩되지 않는 부분 등을 모두 포함할 수 있다. 그 외에도 광택 저감부(GR)(일 예로, 디자인 요철(DGR))과 디자인부(114)는 다양한 배치 관계를 가지면서 위치하여 배치 관계가 서로 다른 부분이 복수로 존재할 수 있다. 9 and 10, in the present embodiment, the design irregularities DGR may have an irregular structure, and the design portion 114 may be provided in plural while having a regular structure. In the present embodiment, the design unit 114 is a first design unit located in an uneven area NGA in which the design unevenness DGR is not formed (the unevenness area NGA located between adjacent design unevennesses DGR). 114a) and a second design portion 114b formed by overlapping at least a portion of the design irregularities DGR. In the uneven area NGA, a portion in which the first design portion 114a is formed and a portion in which the first design portion 114a is not formed may be included. In the uneven area GA in which the design unevenness DGR is formed, a portion where the second design portion 114b covers the entire design unevenness DGR, and a part of the design portion 114b overlaps a part of the design unevenness DGR. Other parts may include all the parts that do not overlap with the design irregularities (DGR). In addition, the gloss reduction unit GR (for example, the design irregularities DGR) and the design unit 114 may be positioned while having various arrangement relationships, so that a plurality of parts having different arrangement relationships may exist.
이러한 디자인 요철(DGR)은 건축 자재, 자연물 등의 특정 부분에 대응하여 부분적으로 형성되므로 제1 커버 부재(110)의 전체 면적의 50% 미만으로 형성될 수 있다. 일 예로, 광 확산부(LD)가 구비될 경우에 단면에서 광 확산부(LD)의 산부(peak) 또는 골부(valley)의 개수보다 디자인 요철(DGR)의 개수가 작을 수 있다. 이에 의하여 디자인 요철(DGR)에 의한 제1 커버 부재(110)의 강도 저하, 불량률 증가 등의 문제를 방지할 수 있다. Since the design irregularities (DGR) are partially formed corresponding to specific parts such as building materials and natural objects, they may be formed to be less than 50% of the total area of the first cover member 110. For example, when the light diffusion unit LD is provided, the number of design irregularities DGR may be smaller than the number of peaks or valleys of the light diffusion unit LD in a cross section. Accordingly, problems such as a decrease in strength of the first cover member 110 and an increase in defect rate due to the design irregularities DGR can be prevented.
이와 같이 광택 저감부(GR)가 불규칙 구조를 가지면, 규칙 구조를 가지는 것에 비하여 제1 베이스 부재(112)를 구성하는 유리 기판의 광택을 저감하는 효과가 우수하다. 특히, 제1 베이스 부재(112)가 광택도가 높은 저철분 유리 기판으로 구성되는 경우에 불규칙 구조를 가지는 광택 저감부(GR)에 의하여 광택도를 효과적으로 저감할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며, 광택 저감 효과가 다소 낮더라도 광택 저감부(GR)가 규칙 구조를 가질 수도 있다.As described above, when the gloss reduction portion GR has an irregular structure, the effect of reducing the gloss of the glass substrate constituting the first base member 112 is superior compared to having a regular structure. In particular, when the first base member 112 is formed of a low-iron glass substrate having high gloss, the gloss reduction unit GR having an irregular structure may effectively reduce gloss. However, the present invention is not limited thereto, and even if the gloss reduction effect is somewhat low, the gloss reduction unit GR may have a regular structure.
이러한 디자인 요철(DGR)은 샌드 블라스트 공정, 롤러 공정 등에 의하여 형성될 수 있다. 예를 들어, 샌드 블라스트 공정에서는 제1 베이스 부재(112)에서 디자인 요철(DGR)을 형성하고자 하는 부분에 국부적으로 모래를 분사하여 원하는 평면 형상의 디자인 요철(DGR)을 형성할 수 있다. 그리고 롤러 공정에서는 제1 베이스 부재(112)를 형성하는 공정에서 디자인 요철(DGR)에 대응하는 돌출부 또는 요철부를 구비하는 롤러를 이용하여 제1 베이스 부재(112)를 형성하는 것에 의하여 원하는 평면 형상의 디자인 요철(DGR)을 형성할 수 있다. 디자인 요철(DGR)은 라운드진 형상, 뾰족한 형상, U자 형상, V자 형상, 삼각 형상, 사각 형상 등의 다양한 단면 형상을 가질 수 있다. Such design irregularities (DGR) may be formed by a sand blast process, a roller process, or the like. For example, in the sand blasting process, sand may be locally sprayed on a portion of the first base member 112 where the design irregularities DGR are to be formed, thereby forming the design irregularities DGR having a desired planar shape. And in the roller process, in the process of forming the first base member 112, by forming the first base member 112 using a roller having a protrusion or an uneven portion corresponding to the design unevenness (DGR), Design irregularities (DGR) can be formed. The design irregularities DGR may have various cross-sectional shapes such as a rounded shape, a sharp shape, a U shape, a V shape, a triangular shape, and a square shape.
디자인 요철(DGR)은 5um 이상(예를 들어, 10um 내지 500um)의 최대 깊이 또는 최대 높이(예를 들어, 산부와 골부 사이의 최대 높이 차이)를 가질 수 있다. 예를 들어, 디자인 요철(DGR)이 샌드 블라스트 공정에 의하여 형성되면 5um 내지 40um(예를 들어, 10um 내지 40um)의 최대 깊이 또는 최대 높이를 가질 수 있고, 디자인 요철(DGR)이 롤러 공정에 의하여 형성되면 40um 내지 500um의 최대 깊이 또는 최대 높이를 가질 수 있다. 그리고 디자인 요철(DGR)의 최대 깊이 또는 최대 높이는 제1 베이스 부재(112)의 두께(디자인 요철(DGR)이 형성되지 않은 부분에서의 최대 두께)의 10% 이내일 수 있다. 이러한 범위를 벗어나면, 디자인 요철(DGR)이 형성된 부분에서 제1 베이스 부재(112)의 두께가 줄어 불량률이 증가될 수 있다. 그러나 본 발명이 디자인 요철(DGR)의 깊이 또는 높이 차이에 한정되지 않는다. The design irregularities DGR may have a maximum depth or maximum height (eg, a maximum height difference between a ridge and a valley) of 5 μm or more (eg, 10 μm to 500 μm). For example, when design irregularities (DGR) are formed by a sand blasting process, they may have a maximum depth or a maximum height of 5um to 40um (for example, 10um to 40um), and the design irregularities (DGR) are formed by a roller process. When formed, it may have a maximum depth or maximum height of 40um to 500um. In addition, the maximum depth or maximum height of the design irregularities DGR may be within 10% of the thickness of the first base member 112 (maximum thickness in the portion where the design irregularities DGR is not formed). Outside of this range, the thickness of the first base member 112 may decrease in the portion where the design irregularities DGR are formed, so that the defective rate may increase. However, the present invention is not limited to the difference in depth or height of the design irregularities (DGR).
본 실시예에서 디자인 요철(DGR)의 최대 깊이 또는 최대 높이는 광 확산부(LD)의 최대 높이(예를 들어, 산부와 골부 사이의 최대 높이 차이)와 같거나, 그보다 작거나, 그보다 클 수 있다. 그리고 디자인 요철(DGR)의 최대 폭은 광 확산부(LD)의 최대 폭 또는 최대 간격(예를 들어, 산부와 산부 사이의 거리 또는 골부와 골부 사이의 거리)보다 작을 수 있다. 이에 의하면 디자인 요철(DGR)에 의한 제1 커버 부재(110)의 강도 저하, 불량률 증가 등의 문제를 방지할 수 있다. 또는, 디자인을 고려해서 디자인 요철(DGR)의 최대 폭이 광 확산부(LD)의 최대 폭 또는 최대 간격과 같거나 그보다 클 수도 있다. 그러면, 디자인 요철(DGR) 광택 저감 효과를 향상할 수 있다. In this embodiment, the maximum depth or maximum height of the design irregularities DGR may be equal to, less than, or greater than the maximum height of the light diffusion unit LD (for example, the maximum height difference between the peaks and valleys). . In addition, the maximum width of the design irregularities DGR may be smaller than the maximum width or the maximum distance of the light diffusion unit LD (eg, a distance between a ridge and a ridge or a distance between a valley and a valley). Accordingly, problems such as a decrease in strength of the first cover member 110 and an increase in defect rate due to the design irregularities DGR can be prevented. Alternatively, in consideration of the design, the maximum width of the design irregularities DGR may be equal to or greater than the maximum width or maximum interval of the light diffusion unit LD. Then, the effect of reducing the gloss of the design irregularities (DGR) can be improved.
그리고 디자인 요철(DGR)의 최대 깊이 또는 최대 높이는 디자인부(114)에서 기공(114V)을 고려하지 않은 표면 거칠기와 같거나, 그보다 크거나, 그보다 작을 수 있다. 일 예로, 디자인 요철(DGR)의 최대 깊이 또는 최대 높이가 디자인부(114)에서 기공(114V)을 고려하지 않은 표면 거칠기보다 클 수 있다. 그리고 디자인 요철(DGR)의 최대 깊이 또는 최대 높이가 디자인부(114)에서 기공(114V)을 고려한 표면 거칠기와 같거나, 그보다 크거나, 그보다 작을 수 있다. In addition, the maximum depth or maximum height of the design irregularities DGR may be equal to, greater than, or less than the surface roughness of the design portion 114 without considering the pores 114V. For example, the maximum depth or maximum height of the design irregularities DGR may be greater than the surface roughness of the design portion 114 without considering the pores 114V. In addition, the maximum depth or maximum height of the design irregularities DGR may be equal to, greater than, or less than the surface roughness in consideration of the pores 114V in the design portion 114.
그리고 디자인 요철(DGR)의 최대 폭이 디자인부(114)의 최대 폭과 같거나, 그보다 크거나, 그보다 작을 수 있다. 일 예로, 디자인 요철(DGR)의 최대 폭이 디자인부(114)의 최대 폭보다 작으면 하나 또는 복수의 다자인 요철(DGR)을 덮도록 형성되는 디자인부(114)가 포함될 수 있다. 이에 의하여 디자인부(114)의 크기를 충분하게 확보하여 디자인부(114)의 형성 공정을 단순화하고 디자인부(114)에 의하여 원하는 외관이 안정적으로 구현되도록 할 수 있다. 그리고 디자인 요철(DGR)에 의한 제1 커버 부재(110)의 강도 저하, 불량률 증가 등의 문제를 방지할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 원하는 디자인에 따라 다양하게 변형될 수 있다. In addition, the maximum width of the design irregularities DGR may be equal to, greater than, or less than the maximum width of the design portion 114. For example, when the maximum width of the design irregularities DGR is less than the maximum width of the design portion 114, the design portion 114 formed to cover one or more multi-design irregularities DGR may be included. Accordingly, a sufficient size of the design unit 114 can be secured, thereby simplifying the process of forming the design unit 114 and stably implementing a desired appearance by the design unit 114. In addition, problems such as a decrease in strength of the first cover member 110 and an increase in defect rate due to the design irregularities DGR can be prevented. However, the present invention is not limited thereto and may be variously modified according to a desired design.
이러한 디자인 요철(DGR)을 구비한 제1 베이스 부재(112)(즉, 디자인 요철(DGR)을 구비한 유리 기판)의 광택도는 100GU 이하(예를 들어, 80GU 이하, 일 예로, 60GU 이하)일 수 있다. 이러한 광택도는 디자인 요철(DGR)를 구비하지 않아 0.1um 미만의 표면 거칠기를 가지는 유리 기판의 광택도가 150GU 이상(일 예로, 200GU)인 것을 고려하면 매우 낮은 수준이다.The glossiness of the first base member 112 having such design irregularities (DGR) (that is, the glass substrate having the design irregularities (DGR)) is 100GU or less (for example, 80GU or less, for example, 60GU or less) Can be This glossiness is very low considering that the glossiness of a glass substrate having a surface roughness of less than 0.1um because it does not have design irregularities (DGR) is 150GU or more (for example, 200GU).
본 실시예에서는 디자인부(114)가 미요철 영역(NGA)에 위치한 제1 디자인부(114a)와 요철 영역(GA)에 위치한 제2 디자인부(114b)를 모두 포함하는 것을 예시하였다. 일 변형예로, 도 12에 도시한 바와 같이, 디자인부(114)가 미요철 영역(NGA)에 위치한 제1 디자인부(114a)를 포함하고, 요철 영역(GA) 또는 디자인 요철(DGR)과 중첩하는 제2 디자인부(114b)를 포함하지 않을 수 있다. 이 경우에는 요철 영역(GA) 또는 디자인 요철(DGR)에 인접한 부분에서 디자인 요철(DGR)의 형상에 해당하는 부분이 일부 제거된 제3 디자인부(114c)가 구비될 수도 있고, 구비되지 않을 수도 있다. 제3 디자인부(114c)가 제1 디자인부(114a)와 다른 형상, 면적 등을 가지더라도 미요철 영역(NGA)에 위치한 복수의 제1 디자인부(114a)가 규칙적으로 배치되므로 디자인부(114)가 규칙 형상을 가진다고 볼 수 있다. 이와 유사하게, 디자인부(114)가 제1 커버 부재(110)의 전체 영역에 형성되면서 요철 영역(GA) 또는 디자인 요철(DGR)에 대응한 부분만이 제거된 형상을 가져도 미요철 영역(NGA)에서 디자인부(114)가 전체적으로 형성되므로 규칙 형상을 가진다고 볼 수 있다. In this embodiment, it is illustrated that the design unit 114 includes both the first design unit 114a located in the uneven area NGA and the second design unit 114b located in the uneven area GA. As a modified example, as shown in FIG. 12, the design portion 114 includes a first design portion 114a located in an uneven area NGA, and includes an uneven area GA or a design unevenness DGR. The overlapping second design portion 114b may not be included. In this case, the third design portion 114c may or may not be provided with a portion corresponding to the shape of the design irregularities (DGR) partially removed from a portion adjacent to the irregularities area (GA) or the design irregularities (DGR). have. Even if the third design part 114c has a different shape and area than the first design part 114a, since the plurality of first design parts 114a located in the uneven area NGA are regularly arranged, the design part 114 ) Can be seen as having a regular shape. Similarly, even if the design portion 114 is formed in the entire area of the first cover member 110 and only a portion corresponding to the uneven area GA or the design unevenness DGR has been removed, the uneven area ( In the NGA), the design portion 114 is formed as a whole, so it can be considered to have a regular shape.
이와 같이 디자인 요철(DGR)이 광택을 저감하는 역할과 함께, 디자인부(114)에 의하여 표현하고자 하는 디자인을 구체화하는 보조 디자인부로서의 역할을 수행하여 광택을 저감하면서 디자인부(114)에 의하여 표현하고자 하는 디자인을 좀더 실제와 유사하게 구현할 수 있다. 이에 따라 태양 전지 패널(100)의 심미성 및 외관을 효과적으로 향상할 수 있다. In this way, the design unevenness (DGR) plays a role in reducing gloss and as an auxiliary design unit that embodies the design to be expressed by the design unit 114, thereby reducing gloss and expressing it by the design unit 114. You can implement the design you want to be more similar to the actual one. Accordingly, the aesthetics and appearance of the solar panel 100 can be effectively improved.
본 실시예에서는 광택 저감부(GR) 및 디자인부(114)가 제1 커버 부재(110)의 외면 쪽에 위치하고 광 확산부(LD)가 제1 커버 부재(110)의 내면 쪽에 위치하는 것을 예시하였다. 그러나 광택 저감부(GR), 디자인부(114) 및 광 확산부(LD)의 위치는 다양하게 변형될 수 있다. 그리고 광 확산부(LD)가 구비되지 않는 등 다양한 변형이 가능하다.In this embodiment, it is illustrated that the gloss reduction unit GR and the design unit 114 are located on the outer surface side of the first cover member 110 and the light diffusion unit LD is located on the inner surface side of the first cover member 110. . However, the locations of the gloss reduction unit GR, the design unit 114, and the light diffusion unit LD may be variously modified. In addition, various modifications are possible, such as not including the light diffusion unit LD.
도 13은 본 발명의 또 다른 실시에에 따른 제1 커버 부재에 포함되는 광택 저감부 및 디자인부를 모식적으로 도시한 평면도이고, 도 14는 도 13에 도시한 제1 커버 부재를 모식적으로 도시한 부분 단면도이다. 13 is a plan view schematically showing a gloss reduction unit and a design unit included in a first cover member according to another embodiment of the present invention, and FIG. 14 is a schematic view of the first cover member shown in FIG. This is a partial cross-sectional view.
도 13 및 도 14를 참조하면, 본 실시예에 따른 광택 저감부(GR)는, 인쇄 등에 의하여 불규칙한 형상을 가지도록 형성된 코팅 요철(CGR)을 포함할 수 있다. 일 예로, 코팅 요철(CGR)은 산화물 세라믹 조성물로 형성될 수 있다. 산화물 세라믹 조성물을 포함하는 코팅 요철(CGR)은 광택도가 25GU 이하로 낮으므로 불규칙한 형상을 가지도록 형성하면 광택도 저감 효과가 매우 우수할 수 있다. 그리고 제1 베이스 부재(112)의 표면에 형성된 요철로 구비된 상술한 비디자인 요철(NCR) 또는 디자인 요철(DGR)과 달리 제1 베이스 부재(112) 위에 형성되는 바, 제1 베이스 부재(112)의 두께 등을 충분하게 확보할 수 있으며 제1 베이스 부재(112)에 원하지 않는 손상, 충격 등이 가해지는 것을 최소화할 수 있다. 13 and 14, the gloss reduction unit GR according to the present embodiment may include a coating irregularity CGR formed to have an irregular shape by printing or the like. For example, the coating unevenness (CGR) may be formed of an oxide ceramic composition. Since the coating unevenness (CGR) including the oxide ceramic composition has a low gloss of 25GU or less, if it is formed to have an irregular shape, the gloss reduction effect may be very excellent. And unlike the above-described non-design irregularities (NCR) or design irregularities (DGR) provided with irregularities formed on the surface of the first base member 112, the bar is formed on the first base member 112, the first base member 112 ) Can be sufficiently secured, and it is possible to minimize unwanted damage or impact to the first base member 112.
일 예로, 코팅 요철(CGR)은 상술한 비디자인 요철(DGR)과 같이 디자인부(114)에 구현하고자 하는 디자인과 무관한 형상을 가지면서 불규칙 구조를 가질 수 있다. 예를 들어, 복수의 코팅 요철(CGR)이 제1 커버 부재(110)의 전체 영역에 불규칙적으로 분산되어 위치하여 광택을 저감할 수 있다. For example, the coating unevenness (CGR) may have an irregular structure while having a shape irrelevant to the design to be implemented in the design portion 114, like the non-design unevenness (DGR) described above. For example, a plurality of coating irregularities CGR may be irregularly distributed and positioned over the entire area of the first cover member 110 to reduce gloss.
여기서, 불규칙 구조를 가진다 함은, 평면 및/또는 단면에서 볼 때 불규칙한 형상, 불규칙한 배치, 또는 비대칭 구조를 가질 수 있다. 예를 들어, 평면으로 볼 때 코팅 요철(CGR)이 서로 다른 길이, 폭, 및/또는 형상을 가지는 부분을 복수로 구비하거나, 서로 교차하는 각도가 서로 다른 부분을 복수로 구비하거나, 직선이 아닌 곡선부 또는 라운드부를 불규칙하게 구비하거나, 서로 다른 간격으로 구비되는 복수의 부분을 포함할 수 있다. 추가적으로, 단면에서 볼 때 코팅 요철(CGR)이 서로 다른 두께를 가지는 부분을 복수로 구비할 수도 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 복수의 코팅 요철(CGR)이 실질적으로 동일한 두께(일 예로, 10% 이내 오차를 가지는 두께)를 가질 수도 잇다. 이에 따라 단면 및/또는 평면에서 임의의 하나의 선을 기준으로 볼 때 코팅 요철(CGR)이 비대칭 구조를 가지며, 어떠한 선을 기준으로 보아도 대칭 구조를 가지지 않을 수 있다. 즉, 단면에서 볼 때 코팅 요철(CGR)이 서로 다른 두께를 가지는 부분을 복수로 구비할 수 있다.Here, the term having an irregular structure may have an irregular shape, an irregular arrangement, or an asymmetric structure when viewed in plan and/or cross-section. For example, in a plan view, a plurality of portions having different lengths, widths, and/or shapes of coating irregularities (CGR) are provided, or a plurality of portions having different angles intersecting each other are provided, or are not straight The curved portion or the round portion may be irregularly provided, or may include a plurality of portions provided at different intervals. Additionally, when viewed in cross section, a plurality of portions having different thicknesses of the coating unevenness (CGR) may be provided. However, the present invention is not limited thereto, and a plurality of coating irregularities (CGR) may have substantially the same thickness (for example, a thickness having an error within 10%). Accordingly, the coating unevenness (CGR) may have an asymmetric structure when viewed with respect to an arbitrary line in a cross-section and/or a plane, and may not have a symmetric structure when viewed with respect to any line. That is, when viewed in cross section, a plurality of portions having different thicknesses of the coating unevenness (CGR) may be provided.
예를 들어, 코팅 요철(CGR)은 디자인부(114)와 다른 색상, 명도, 채도 등을 가질 수 있다. 이러한 코팅 요철(CGR)은 투명, 반투명 등의 색상을 가져 코팅 요철(CGR)에 의한 광 투과도 저하를 최소화할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 코팅 요철(CGR)이 그 외의 다양한 색상을 가질 수 있다. For example, the coating unevenness (CGR) may have a color, brightness, saturation, etc. different from that of the design part 114. The coating unevenness (CGR) has a color such as transparent, translucent, and the like, so that a decrease in light transmittance due to the coating unevenness (CGR) can be minimized. However, the present invention is not limited thereto, and the coating unevenness (CGR) may have various other colors.
다른 예로, 코팅 요철(CGR)은 상술한 디자인 요철(DGR)과 같이 디자인부(114)에 의하여 표현하고자 하는 디자인을 구체화하는 보조 디자인부로서의 역할을 수행하면서 불규칙한 구조를 가질 수 있다. 이러한 코팅 요철(CGR)은 건축 자재, 자연물 등의 특정한 디자인을 구현하기 위한 특정한 형상을 가질 수 있는데, 예를 들어, 목재의 나무결, 나이테 등, 나뭇잎의 줄기 형상, 석재의 무늬, 목탄의 무늬, 벽돌의 경계선 등의 적어도 일부를 따라 부분적으로 코팅 요철(CGR)이 형성될 수 있다. 일 예로, 코팅 요철(CGR)은 대리석 등에서 다른 부분과 다른 색상을 가지거나 불순물이 혼합되어 형성되는 대리석 등의 불규칙한 얼룩 부분, 불규칙한 실선 부분, 물결 무늬 부분 등을 표현하도록 형성될 수 있다. 이와 같이 코팅 요철(CGR)을 디자인에 적합하도록 디자인의 일부 부분으로 표현하면, 사용자의 시각 및 촉각에 의하여 좀더 건축 자재, 자연물 등과 같이 인식될 수 있다. As another example, the coating unevenness (CGR) may have an irregular structure while playing a role as an auxiliary design portion that embodies the design to be expressed by the design portion 114, like the design unevenness (DGR) described above. Such coating irregularities (CGR) may have a specific shape for realizing a specific design such as building materials and natural objects. For example, wood grain of wood, rings, etc., stem shape of leaves, pattern of stone, pattern of charcoal, Coating irregularities (CGR) may be partially formed along at least a portion of the boundary line of the brick. For example, the coating unevenness (CGR) may be formed to represent an irregular uneven portion, an irregular solid line portion, a wave pattern portion, etc., such as marble formed by having a color different from other portions of marble or mixed with impurities. In this way, when the coating unevenness (CGR) is expressed as a part of the design to be suitable for the design, it can be recognized more like a building material or a natural object by the user's visual and tactile sense.
이와 같이 디자인에 기여하는 코팅 요철(CGR)은 디자인부(114)와 다양한 관계를 가지면서 일정한 형태, 색상 등을 가지면서 배치되어 원하는 디자인을 구현하는 것을 보조할 수 있다. 이때, 태양 전지(150)의 색상 등을 고려하여 디자인부(114)의 색상, 배치 등, 코팅 요철(CGR)의 색상 등을 선택할 수 있다. In this way, the coating irregularities (CGR) contributing to the design may have various relationships with the design unit 114 and are arranged while having a certain shape, color, and the like to assist in realizing a desired design. In this case, in consideration of the color of the solar cell 150, the color of the design unit 114, the arrangement, and the like, the color of the coating irregularities (CGR), and the like may be selected.
예를 들어, 검은 바탕색에 흰색 점 또는 흰색 실선 부분을 가지는 대리석 무늬는, 원하는 대리석의 바탕색보다 옅은 색상(예를 들어, 회색)을 가지는 바탕부 및/또는 흰색 점 또는 흰색 실선 부분을 표현하는 무늬부를 포함하는 디자인부(114)를 형성하고, 투명성 또는 흰색을 가지는 코팅 요철(CGR)을 형성하는 것에 의하여 형성될 수 있다. 이때, 각 무늬부에 대응하는 부분에서 코팅 요철(CGR)의 전부 또는 일부가 디자인부(114)의 무늬부를 전체적으로 덮도록 형성될 수 있다. 이에 의하면, 코팅 요철(CGR)에 의한 효과를 최대화할 수 있다. 옅은 색상을 가지는 디자인부(114)를 형성하여도 태양 전지 패널(100)은 태양 전지(150)에 의하여 검은 색으로 인식될 수 있으므로, 이와 같이 디자인부(114)의 색상을 옅게 하면 디자인부(114)를 통한 광 투과도를 향상할 수 있다. For example, a marble pattern with white dots or solid white lines on a black background is a pattern representing a white dot or solid white line and/or a base part with a color lighter than the base color of the desired marble (for example, gray). It may be formed by forming the design portion 114 including the portion and forming a coating unevenness (CGR) having transparency or white color. At this time, in a portion corresponding to each pattern portion, all or a portion of the coating irregularities (CGR) may be formed to cover the pattern portion of the design portion 114 as a whole. According to this, the effect due to the coating irregularities (CGR) can be maximized. Even if the design part 114 having a light color is formed, the solar panel 100 can be recognized as black by the solar cell 150, so if the color of the design part 114 is made light in this way, the design part ( 114) through the light transmittance can be improved.
다른 예로, 상대적으로 옅은 색상 또는 흰색의 바탕색에 검은 점 등을 가지는 대리석 무늬는, 옅은 색상 또는 약간의 흰색을 가지는 바탕부 및/또는 검은 점을 표현하는 무늬부를 포함하는 디자인부(114)를 형성하고, 디자인부(114)보다 어두운 색상을 가지는 코팅 요철(CGR)을 형성하는 것에 의하여 형성될 수 있다. 이때, 각 무늬부에 대응하는 부분에서 코팅 요철(CGR)의 전부 또는 일부가 디자인부(114)의 무늬부를 전체적으로 덮도록 형성될 수 있다. 이에 의하면, 코팅 요철(CGR)에 의한 효과를 최대화할 수 있다. 태양 전지 패널(100)은 태양 전지(150)에 의하여 더 검게 인식되므로, 바탕부가 상대적으로 옅은 색상 또는 약간의 흰색을 가지고 무늬부가 상대적으로 짙은 색상을 가질 수 있다. 또는, 디자인부(114)를 옅은 색상 또는 흰색을 색상을 가지는 바탕부를 포함하는 디자인부(114)를 형성하되 검은 점을 표현하는 무늬부에 해당하는 부분에서는 디자인부(114)를 형성하지 않을 수 있다. 그리고 무늬부에 해당하는 부분에 어두운 색상, 투명 또는 반투명한 코팅 요철(CGR)을 형성할 수 있다. 코팅 요철(CGR)이 어두운 색상을 가지면 코팅 요철(CGR) 및 태양 전지(150)의 색상에 의하여 무늬부가 더 검게 인식될 수 있고, 코팅 요철(CGR)이 투명 또는 반투명하면 태양 전지(150)의 색상에 의하여 무늬부가 더 검게 인식될 수 있다. As another example, a marble pattern having a relatively pale color or a white background color with black dots, etc., forms a design part 114 including a background part having a pale color or a slight white color and/or a pattern part expressing black dots. And, it may be formed by forming the coating irregularities (CGR) having a darker color than the design portion 114. At this time, in a portion corresponding to each pattern portion, all or a portion of the coating irregularities (CGR) may be formed to cover the pattern portion of the design portion 114 as a whole. According to this, the effect due to the coating irregularities (CGR) can be maximized. Since the solar panel 100 is recognized to be blacker by the solar cell 150, the background portion may have a relatively light color or a little white color, and the pattern portion may have a relatively dark color. Alternatively, the design portion 114 including a base portion having a light color or white color as the design portion 114 may be formed, but the design portion 114 may not be formed in a portion corresponding to the pattern portion expressing a black point. have. In addition, a dark color, transparent or translucent coating unevenness (CGR) may be formed on a portion corresponding to the pattern portion. If the coating unevenness (CGR) has a dark color, the pattern portion may be recognized blacker by the color of the coating unevenness (CGR) and the solar cell 150, and when the coating unevenness (CGR) is transparent or translucent, the solar cell 150 The pattern portion may be recognized as darker by the color.
상술한 예들은 예시에 불과할 뿐 본 발명이 이에 한정되는 것은 아니다. The above-described examples are only examples, and the present invention is not limited thereto.
본 실시예에서 코팅 요철(CGR)은 불규칙 구조를 가지고, 디자인부(114)는 규칙 구조를 가지면서 복수로 구비될 수 있다. 본 실시예에서 디자인부(114)는, 코팅 요철(CGR)이 형성되지 않은 미요철 영역(NGA)(인접한 코팅 요철(CGR) 사이에 위치한 미요철 영역(NGA))에 위치한 제1 디자인부(114a)와, 코팅 요철(CGR)과 적어도 일부가 중첩되어 형성되는 제2 디자인부(114b)를 포함할 수 있다. 미요철 영역(NGA)에서는, 디자인부(114)가 형성된 부분과, 디자인부(114)가 형성되지 않은 부분을 모두 포함할 수 있다. 그리고 적어도 일부가 하나의 디자인부(114)의 일부 또는 전체와 중첩되는 코팅 요철(CGR), 일부가 하나 또는 둘 이상의 디자인부(114)에 중첩되고 다른 일부가 디자인부(114)에 중첩되지 않으면서 제1 베이스 부재(112)를 덮는 코팅 요철(CGR), 디자인부(114)와 중첩되지 않고 제1 베이스 부재(112)를 덮는(일 예로, 접촉하여 덮는) 코팅 요철(CGR), 전체가 디자인부(114) 위에 위치한 코팅 요철(CGR) 등을 모두 포함할 수 있다. 그 외에도 코팅 요철(CGR)과 디자인부(114)는 다양한 배치 관계를 가지면서 위치할 수 있다. In this embodiment, the coating irregularities CGR may have an irregular structure, and the design portion 114 may be provided in plural while having a regular structure. In this embodiment, the design unit 114 is a first design unit located in an uneven area NGA (a non-recessed area NGA located between adjacent coated unevenness CGR) in which the coating unevenness (CGR) is not formed. 114a) and a second design portion 114b formed by overlapping at least a portion of the coating irregularities CGR. In the uneven area NGA, a portion in which the design portion 114 is formed and a portion in which the design portion 114 is not formed may be included. And if at least a portion of the coating irregularities (CGR) overlapping with a part or the whole of one design portion 114, a portion of which overlaps with one or more design portions 114 and the other portion does not overlap with the design portion 114 In this case, the coating irregularities (CGR) covering the first base member 112, the coating irregularities (CGR) covering the first base member 112 without overlapping the design portion 114 (for example, covering by contacting), the entire It may include all of the coating irregularities (CGR), etc. located on the design part 114. In addition, the coating unevenness (CGR) and the design portion 114 may be positioned while having various arrangement relationships.
이러한 코팅 요철(CGR)은 건축 자재, 자연물 등의 특정 부분에 대응하여 부분적으로 형성되므로 제1 커버 부재(110)의 전체 면적의 50% 미만으로 형성될 수 있다. 일 예로, 광 확산부(LD)가 구비될 경우에 단면에서 광 확산부(LD)의 산부(peak) 또는 골부(valley)의 개수보다 코팅 요철(CGR)의 개수가 적을 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 코팅 요철(CGR)이 제1 커버 부재(110)의 전체 면적의 50% 이상으로 형성되거나, 코팅 요철(CGR)의 개수가 광 확산부(LD)의 산부 또는 골부의 개수와 같거나 그보다 클 수 있다.Since the coating unevenness (CGR) is partially formed corresponding to a specific portion such as a building material or a natural object, it may be formed to be less than 50% of the total area of the first cover member 110. For example, when the light diffusion unit LD is provided, the number of coating irregularities CGR may be smaller than the number of peaks or valleys of the light diffusion unit LD in a cross section. However, the present invention is not limited thereto, and the coating irregularities (CGR) are formed to be 50% or more of the total area of the first cover member 110, or the number of coating irregularities (CGR) is the peak of the light diffusion unit (LD) or It may be equal to or greater than the number of valleys.
이와 같이 코팅 요철(CGR)가 불규칙 구조를 가지면, 규칙 구조를 가지는 것에 비하여 제1 베이스 부재(112)를 구성하는 유리 기판의 광택을 저감하는 효과가 우수하다. 특히, 제1 베이스 부재(112)가 광택도가 높은 저철분 유리 기판으로 구성되는 경우에 불규칙 구조를 가지는 코팅 요철(CGR)에 의하여 광택도를 효과적으로 저감할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며, 광택 저감 효과가 다소 낮더라도 코팅 요철(CGR)가 규칙 구조를 가질 수도 있다.In this way, when the coating irregularities (CGR) have an irregular structure, the effect of reducing the gloss of the glass substrate constituting the first base member 112 is superior compared to having a regular structure. In particular, when the first base member 112 is formed of a low-iron glass substrate having high gloss, glossiness may be effectively reduced by coating irregularities (CGR) having an irregular structure. However, the present invention is not limited thereto, and although the gloss reduction effect is somewhat low, the coating irregularities (CGR) may have a regular structure.
본 실시예에 따른 코팅 요철(CGR)은 세라믹 물질층을 도포하여 건조하여 열처리하여 형성될 수 있다. 예를 들어, 도 7에 도시한 도포 단계(S20) 및 건조 단계(S30)를 반복 수행하고 유리 강화 단계(S40)를 수행하는 것에 의하여 코팅 요철(CGR) 및 디자인부(114)를 구비하는 제1 베이스 부재(112)를 형성할 수 있다. 좀더 구체적으로, 제1 베이스 부재(112)로 사용될 비강화 유리 기판을 준비하고, 디자인부(114)를 형성하기 위한 세라믹 물질층을 도포하여 건조하고, 코팅 요철(CGR)을 형성하기 위한 세라믹 물질층을 도포하여 건조한 후에, 유리 기판을 강화 또는 반강화하는 공정을 수행할 수 있다. 여기서, 코팅 요철(CGR) 또는 이를 형성하기 위한 세라믹 물질층은 색소(도 7b의 참조부호 1142, 이하 동일)를 포함하거나 색소를 포함하지 않을 수 있다. 코팅 요철(CGR)을 위한 세라믹 물질층 및 디자인부(114)을 위한 세라믹 물질층은 세라밋 프릿(1144), 수지(1146) 등을 동일한 물질 또는 함량으로 포함할 수도 있고, 세라밋 프릿(1144), 수지(1146) 등을 서로 다른 물질 또는 함량으로 포함할 수도 있다. 그러나 본 발명이 이에 한정되는 것은 아니며, 디자인부(114)를 위한 세라믹 물질층을 도포하고 그 위에 코팅 요철(CGR)을 위한 세라믹 물질층을 도포한 후에 이들을 함께 건조할 수도 있다. 이때, 기판 준비 단계(S10)에서 제1 베이스 부재(112)는 표면에 양각 및/또는 음각 형태로 구비되는 광택 저감부(GR)(예를 들어, 비디자인 요철(NGR) 또는 디자인 요철(DGR))을 포함할 수도 있고 포함하지 않을 수도 있다. The coating unevenness (CGR) according to the present embodiment may be formed by applying a ceramic material layer, drying, and heat treatment. For example, by repeatedly performing the coating step (S20) and the drying step (S30) shown in FIG. 7 and performing the glass reinforcing step (S40), 1 The base member 112 may be formed. More specifically, a ceramic material for preparing a non-reinforced glass substrate to be used as the first base member 112, applying a ceramic material layer for forming the design part 114 and drying it, and forming coating irregularities (CGR) After the layer is applied and dried, a process of strengthening or semi-strengthening the glass substrate may be performed. Here, the coating unevenness (CGR) or the ceramic material layer for forming the same may contain a dye (reference numeral 1142 in FIG. 7B, hereinafter the same) or may not contain a dye. The ceramic material layer for the coating unevenness (CGR) and the ceramic material layer for the design part 114 may include the ceramic frit 1144 and the resin 1146 in the same material or content, and the ceramic frit 1144 ), resin 1146, and the like may be included in different materials or contents. However, the present invention is not limited thereto, and after the ceramic material layer for the design part 114 is applied and a ceramic material layer for coating unevenness (CGR) is applied thereon, they may be dried together. At this time, in the substrate preparation step (S10), the first base member 112 has a gloss reduction unit GR (for example, non-design irregularities (NGR) or design irregularities (DGR)) provided in an embossed and/or engraved form on the surface. )) may or may not be included.
본 실시예에서 제1 베이스 부재(112)와 디자인부(114), 그리고 제1 베이스 부재(112)와 코팅 요철(CGR)이 조성 구배 부분을 포함하는 불분명한 경계를 가질 수 있고, 디자인부(114)와 코팅 요철(CGR)이 디자인부(114)이 조성 구배 부분을 포함하는 불분명한 경계를 가질 수 있다. 이에 의하여 제1 베이스 부재(112), 디자인부(114), 코팅 요철(CGR)이 서로 일체화되어 형성될 수 있다.In this embodiment, the first base member 112 and the design portion 114, and the first base member 112 and the coating irregularities (CGR) may have an unclear boundary including a composition gradient portion, and the design portion ( 114) and the coating unevenness (CGR) may have an unclear boundary in which the design portion 114 includes a composition gradient portion. Accordingly, the first base member 112, the design portion 114, and the coating unevenness (CGR) may be integrally formed with each other.
또는, 제1 베이스 부재(112)로 사용될 비강화 유리 기판을 준비하고, 코팅 요철(CGR)을 형성하기 위한 세라믹 물질층을 도포하여 건조하고, 디자인부(114)를 형성하기 위한 세라믹 물질층을 도포하여 건조한 후에, 유리 기판을 강화 또는 반강화하는 공정을 수행할 수 있다. 이에 의하면 도 15에 도시한 바와 같이, 제1 베이스 부재(112) 위에 코팅 요철(CGR)이 형성(일 예로, 접촉)하고, 제1 베이스 부재(112) 및/또는 코팅 요철(CGR) 위에 디자인부(114)가 형성(일 예로, 접촉)할 수 있다. 이에 의하면 제1 베이스 부재(112)와 코팅 요철(CGR), 그리고 제1 베이스 부재(112)와 디자인부(114)가 조성 구배 부분을 포함하는 불분명한 경계를 가질 수 있고, 코팅 요철(CGR)과 디자인부(114)가 조성 구배 부분을 포함하는 불분명한 경계를 가질 수 있다. 이에 의하여 제1 베이스 부재(112), 코팅 요철(CGR), 디자인부(114)가 서로 일체화되어 형성될 수 있다.Alternatively, a non-reinforced glass substrate to be used as the first base member 112 is prepared, a ceramic material layer for forming coating irregularities (CGR) is applied and dried, and a ceramic material layer for forming the design part 114 is formed. After coating and drying, a step of strengthening or semi-strengthening the glass substrate may be performed. According to this, as shown in FIG. 15, a coating unevenness (CGR) is formed (for example, contact) on the first base member 112, and a design on the first base member 112 and/or the coating unevenness (CGR) The part 114 may be formed (for example, contact). Accordingly, the first base member 112 and the coating irregularities (CGR), and the first base member 112 and the design portion 114 may have an unclear boundary including a composition gradient portion, and the coating irregularities (CGR) The and design portion 114 may have an unclear boundary including a composition gradient portion. Accordingly, the first base member 112, the coating unevenness (CGR), and the design portion 114 may be integrally formed with each other.
본 실시예에서 코팅 요철(CGR)의 두께(일 예로, 최대 두께)가 디자인부(114)의 두께(일 예로, 최대 두께)보다 클 수 있다. 이에 의하여 코팅 요철(CGR)에 의한 광택 저감 효과를 충분하게 구현할 수 있고 요철에 의한 질감을 충분하게 구현할 수 있고, 디자인부(114)에 의한 광 투과도 저하를 방지 또는 최소화할 수 있다. 예를 들어, 코팅 요철(CGR)의 두께가 10um 이상(예를 들어, 15um 이상, 50um 이하)이고, 디자인부(114)의 두께가 15um 미만(예를 들어, 10um 미만, 1um 이상)일 수 있다. 그러나 본 발명이 코팅 요철(CGR)의 두께, 디자인부(114)의 두께 등에 한정되는 것은 아니다. In this embodiment, the thickness (for example, the maximum thickness) of the coating unevenness (CGR) may be greater than the thickness (for example, the maximum thickness) of the design portion 114. Accordingly, the gloss reduction effect due to the coating irregularities (CGR) can be sufficiently realized, the texture due to the irregularities can be sufficiently realized, and the decrease in light transmittance by the design unit 114 can be prevented or minimized. For example, the thickness of the coating unevenness (CGR) is 10um or more (for example, 15um or more, 50um or less), and the thickness of the design part 114 is less than 15um (for example, less than 10um, 1um or more). have. However, the present invention is not limited to the thickness of the coating irregularities (CGR), the thickness of the design portion 114, and the like.
이러한 코팅 요철(CGR)을 구비한 제1 베이스 부재(112)(즉, 코팅 요철(CGR)을 구비한 유리 기판)의 광택도는 100GU 이하(예를 들어, 80GU 이하, 일 예로, 60GU 이하)일 수 있다. 이러한 광택도는 코팅 요철(CGR)를 구비하지 않는 유리 기판의 광택도가 150GU 이상(일 예로, 200GU)인 것을 고려하면 매우 낮은 수준이다.The glossiness of the first base member 112 having such coating irregularities (CGR) (that is, a glass substrate having coating irregularities (CGR)) is 100GU or less (for example, 80GU or less, for example, 60GU or less) Can be This glossiness is very low considering that the glossiness of a glass substrate without coating irregularities (CGR) is 150GU or more (for example, 200GU).
본 실시예에서는 디자인부(114)가 미요철 영역(NGA)에 위치한 제1 디자인부(114a)와 요철 영역(GA)에 위치한 제2 디자인부(114b)를 모두 포함하는 것을 예시하였다. 일 변형예로, 도 16에 도시한 바와 같이, 디자인부(114)가 미요철 영역(NGA)에 위치한 제1 디자인부(114a)를 포함하고, 요철 영역(GA) 또는 코팅 요철(CGR)과 중첩하는 제2 디자인부(114b)를 포함하지 않을 수 있다. 이 경우에는 요철 영역(GA) 또는 코팅 요철(CGR)에 인접한 부분에서 코팅 요철(CGR)의 형상에 해당하는 부분이 일부 제거된 제3 디자인부(114c)가 구비될 수도 있고, 구비되지 않을 수도 있다. 제3 디자인부(114c)가 제1 디자인부(114a)와 다른 형상, 면적 등을 가지더라도 미요철 영역(NGA)에 위치한 복수의 제1 디자인부(114a)가 규칙적으로 배치되므로 디자인부(114)가 규칙 형상을 가진다고 볼 수 있다. 이와 유사하게, 디자인부(114)가 제1 커버 부재(110)의 전체 영역에 형성되면서 요철 영역(GA) 또는 코팅 요철(CGR)에 대응한 부분만이 제거된 형상을 가져도 미요철 영역(NGA)에서 디자인부(114)가 전체적으로 형성되므로 규칙 형상을 가진다고 볼 수 있다. In this embodiment, it is illustrated that the design unit 114 includes both the first design unit 114a located in the uneven area NGA and the second design unit 114b located in the uneven area GA. As a modified example, as shown in FIG. 16, the design portion 114 includes a first design portion 114a located in an uneven region NGA, and includes an uneven region GA or a coating unevenness (CGR). The overlapping second design portion 114b may not be included. In this case, the third design portion 114c may or may not be provided with a portion corresponding to the shape of the coating irregularities (CGR) partially removed from a portion adjacent to the irregularities area GA or the coating irregularities (CGR). have. Even if the third design part 114c has a different shape and area than the first design part 114a, since the plurality of first design parts 114a located in the uneven area NGA are regularly arranged, the design part 114 ) Can be seen as having a regular shape. Similarly, even if the design portion 114 has a shape in which only portions corresponding to the uneven regions GA or the coating unevenness (CGR) are removed while being formed over the entire area of the first cover member 110, the uneven regions ( In the NGA), the design portion 114 is formed as a whole, so it can be considered to have a regular shape.
이와 같이 코팅 요철(CGR)을 형성하면 시각 및 촉각으로도 건축 자재, 자연물 등으로 효과적으로 인식되도록 하여 디자인부(114)에 의하여 표현하고자 하는 디자인을 좀더 실제와 유사하게 구현할 수 있다. 이에 따라 태양 전지 패널(100)의 심미성 및 외관을 효과적으로 향상할 수 있다. When the coating irregularities (CGR) are formed in this way, the design to be expressed by the design unit 114 can be realized more similarly to the actual one by effectively recognizing it as a building material, a natural object, etc. even visually and tactilely. Accordingly, the aesthetics and appearance of the solar panel 100 can be effectively improved.
본 실시예에서는 광택 저감부(GR) 및 디자인부(114)가 제1 커버 부재(110)의 외면 쪽에 위치하고 광 확산부(LD)가 제1 커버 부재(110)의 내면 쪽에 위치하는 것을 예시하였다. 그러나 광택 저감부(GR), 디자인부(114) 및 광 확산부(LD)의 위치는 다양하게 변형될 수 있다. 그리고 광 확산부(LD)가 구비되지 않는 등 다양한 변형이 가능하다.In this embodiment, it is illustrated that the gloss reduction unit GR and the design unit 114 are located on the outer surface side of the first cover member 110 and the light diffusion unit LD is located on the inner surface side of the first cover member 110. . However, the locations of the gloss reduction unit GR, the design unit 114, and the light diffusion unit LD may be variously modified. In addition, various modifications are possible, such as not including the light diffusion unit LD.
상술한 바에 따른 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.Features, structures, effects, and the like according to the above are included in at least one embodiment of the present invention, and are not necessarily limited to only one embodiment. Furthermore, the features, structures, effects, and the like illustrated in each embodiment may be combined or modified for other embodiments by a person having ordinary knowledge in the field to which the embodiments belong. Therefore, contents related to such combinations and modifications should be construed as being included in the scope of the present invention.

Claims (25)

  1. 태양 전지; Solar cells;
    상기 태양 전지를 둘러싸서 밀봉하는 밀봉재; A sealing material surrounding and sealing the solar cell;
    상기 밀봉재 위에서 상기 태양 전지의 일면 쪽에 위치하는 제1 커버 부재; 및A first cover member positioned on one side of the solar cell on the sealing material; And
    상기 밀봉재 위에서 상기 태양 전지의 타면 쪽에 위치하는 제2 커버 부재A second cover member positioned on the sealing material on the other side of the solar cell
    를 포함하고,Including,
    상기 제1 커버 부재가, 제1 베이스 부재와, 상기 제1 베이스 부재의 광택을 저감하는 요철 형상을 가지는 광택 저감부와, 상기 제1 베이스 부재 위에 형성되며 산화물 세라믹 조성물로 구성되는 디자인부를 포함하는 태양 전지 패널. The first cover member includes a first base member, a gloss reduction portion having an uneven shape for reducing the gloss of the first base member, and a design portion formed on the first base member and composed of an oxide ceramic composition. Solar panel.
  2. 제1항에 있어서,The method of claim 1,
    상기 광택 저감부가 불규칙 구조(random structure)를 가지는 태양 전지 패널. The solar cell panel having the gloss reduction portion irregular structure (random structure).
  3. 제1항에 있어서,The method of claim 1,
    상기 디자인부와 상기 광택 저감부의 배치 관계가 서로 다른 부분이 복수로 존재하는 태양 전지 패널. A solar panel in which a plurality of portions having different arrangement relations between the design portion and the gloss reduction portion are present.
  4. 제1항에 있어서,The method of claim 1,
    상기 디자인부는 상기 디자인부가 형성된 커버 영역에서 규칙 구조를 가지는 태양 전지 패널. The design portion is a solar panel having a regular structure in the cover area in which the design portion is formed.
  5. 제1항에 있어서,The method of claim 1,
    상기 광택 저감부가 상기 제1 베이스 부재의 표면에 형성된 음각 및 양각 형태로 구비되는 태양 전지 패널. A solar panel provided with the gloss reduction unit in an intaglio and embossed shape formed on the surface of the first base member.
  6. 제5항에 있어서,The method of claim 5,
    상기 광택 저감부가 상기 디자인부에 의하여 표현하고자 하는 디자인과 무관한 형태 또는 평면 형상을 가지는 비디자인 요철로 구성되는 태양 전지 패널. The solar cell panel consisting of non-design irregularities having a shape or a planar shape irrelevant to the design to be expressed by the design unit.
  7. 제5항에 있어서,The method of claim 5,
    상기 광택 저감부가 상기 디자인부에 의하여 표현하고자 하는 디자인의 적어도 일부를 구현하는 디자인 요철로 구성되는 태양 전지 패널.A solar panel configured with design irregularities for implementing at least a part of the design to be expressed by the design unit for the gloss reduction unit.
  8. 제7항에 있어서,The method of claim 7,
    상기 디자인 요철은 상기 제1 커버 부재의 전체 면적의 50% 미만으로 형성되는 태양 전지 패널. The design irregularities are formed in less than 50% of the total area of the first cover member solar panel.
  9. 제1항에 있어서,The method of claim 1,
    상기 광택 저감부가 상기 제1 베이스 부재 위에 형성되는 코팅 요철로 구성되는 태양 전지 패널.The solar cell panel consisting of a coating irregularity formed on the first base member in the gloss reduction part.
  10. 제9항에 있어서,The method of claim 9,
    상기 코팅 요철의 적어도 일부가 상기 디자인부 위에 형성되거나, 상기 디자인부의 일부가 상기 코팅 요철 위에 형성되는 태양 전지 패널. A solar panel in which at least a portion of the coating irregularities is formed on the design portion, or a portion of the design portion is formed on the coating irregularities.
  11. 제9항에 있어서,The method of claim 9,
    상기 코팅 요철이 상기 디자인부와 다른 색상, 명도, 또는 채도를 가지는 산화물 세라믹 조성물로 구성되고, The coating irregularities are composed of an oxide ceramic composition having a color, brightness, or saturation different from the design portion,
    상기 코팅 요철의 두께가 상기 디자인부의 두께보다 큰 태양 전지 패널.A solar panel in which the thickness of the coating irregularities is greater than the thickness of the design portion.
  12. 제1항에 있어서,The method of claim 1,
    상기 광택 저감부가 상기 제1 커버 부재의 외면 쪽에 위치하는 태양 전지 패널.The solar cell panel in which the gloss reduction part is located on the outer surface side of the first cover member.
  13. 제12항에 있어서,The method of claim 12,
    상기 제1 베이스 부재의 내면에 규칙 구조를 가지는 음각 또는 양각 형상을 가지는 광 확산부가 형성되는 태양 전지 패널.A solar panel in which a light diffusion unit having a concave or embossed shape having a regular structure is formed on an inner surface of the first base member.
  14. 제13항에 있어서,The method of claim 13,
    상기 광택 저감부가 상기 제1 베이스 부재의 표면에 형성된 음각 및 양각 형태로 구비되는 상기 디자인부에 의하여 표현하고자 하는 디자인과 무관한 형태 또는 평면 형상을 가지는 비디자인 요철로 구성되고, The gloss reduction unit is composed of non-design irregularities having a flat shape or a shape irrelevant to the design to be expressed by the design unit provided in intaglio and relief shapes formed on the surface of the first base member,
    상기 비디자인 요철의 표면 거칠기가 상기 광 확산부의 최대 크기보다 작은 태양 전지 패널. A solar panel in which the surface roughness of the non-design irregularities is smaller than the maximum size of the light diffusion unit.
  15. 제13항에 있어서,The method of claim 13,
    상기 광택 저감부가 상기 제1 베이스 부재의 표면에 형성된 음각 및 양각 형태로 구비되는 상기 디자인부에 의하여 표현하고자 하는 디자인의 적어도 일부를 구현하는 디자인 요철로 구성되고, The gloss reduction unit is composed of design irregularities that implement at least a part of the design to be expressed by the design unit provided in an intaglio and embossed form formed on the surface of the first base member,
    상기 광 확산부의 산부 또는 골부의 개수보다 상기 디자인 요철의 개수가 작은 태양 전지 패널. A solar panel having a smaller number of design irregularities than the number of peaks or valleys of the light diffusion unit.
  16. 제1항에 있어서,The method of claim 1,
    상기 제1 베이스 부재가 유리 기판을 포함하고, The first base member comprises a glass substrate,
    상기 유리 기판은 산화철 함량이 150ppm 미만인 저철분 유리 기판을 포함하는 태양 전지 패널. The glass substrate is a solar panel comprising a low iron glass substrate having an iron oxide content of less than 150 ppm.
  17. 제1항에 있어서,The method of claim 1,
    상기 디자인부가 유리질 산화물 세라믹 조성물(glassy oxide ceramic composition)로 구성되는 태양 전지 패널. A solar panel in which the design part is composed of a glassy oxide ceramic composition.
  18. 유리 기판, 상기 유리 기판의 광택을 저감하는 요철 형상을 가지는 광택 저감부와, 산화물 세라믹 조성물로 구성되는 디자인부를 포함하는 태양 전지 패널용 그래픽 커버 기판. A graphic cover substrate for a solar panel comprising a glass substrate, a gloss reduction unit having an uneven shape for reducing the gloss of the glass substrate, and a design unit composed of an oxide ceramic composition.
  19. 제18항에 있어서,The method of claim 18,
    상기 광택 저감부가 불규칙 구조를 가지는 태양 전지 패널용 그래픽 커버 기판. A graphic cover substrate for a solar panel having an irregular structure in the gloss reduction part.
  20. 제18항에 있어서,The method of claim 18,
    상기 디자인부는 상기 디자인부가 형성된 커버 영역에서 규칙 구조를 가지는 태양 전지 패널용 그래픽 커버 기판. The graphic cover substrate for a solar panel having a regular structure in the cover area in which the design part is formed.
  21. 비강화 유리 기판에 광택을 저감하는 요철 형상을 가지는 광택 저감부 및 산화물 세라믹 조성물로 구성되는 디자인 형성층을 형성하는, 기판 준비 및 도포 단계; 및A substrate preparation and application step of forming a design forming layer composed of an oxide ceramic composition and a gloss reduction unit having an uneven shape for reducing gloss on an unreinforced glass substrate; And
    열처리 또는 어닐링에 의한 열강화에 의하여 상기 비강화 유리 기판을 강화 또는 반강화하면서 상기 디자인 형성층으로부터 상기 유리 기판과 일체화되는 디자인부를 형성하는, 강화 단계Reinforcing step of forming a design unit integrated with the glass substrate from the design forming layer while strengthening or semi-strengthening the non-reinforced glass substrate by heat strengthening by heat treatment or annealing
    를 포함하는 태양 전지 패널용 그래픽 커버 기판의 제조 방법. A method of manufacturing a graphic cover substrate for a solar panel comprising a.
  22. 제21항에 있어서, The method of claim 21,
    상기 기판 준비 및 도포 단계는, The substrate preparation and application step,
    표면에 양각 형태 및 음각 형태 중 적어도 하나로 형성되는 상기 광택 저감부를 구비한 상기 비강화 유리 기판을 준비하는, 기판 준비 단계; 및 A substrate preparation step of preparing the non-reinforced glass substrate having the gloss reduction unit formed in at least one of an embossed form and an engraved form on a surface; And
    상기 비강화 유리 기판 위에 상기 디자인 형성층을 형성하는, 도포 단계를 포함하는, 태양 전지 패널용 그래픽 커버 기판의 제조 방법.Forming the design formation layer on the non-reinforced glass substrate, comprising a coating step, a method of manufacturing a graphic cover substrate for a solar panel.
  23. 제22항에 있어서,The method of claim 22,
    상기 광택 저감부가 상기 디자인부에 의하여 표현하고자 하는 디자인과 무관한 형태 또는 평면 형상을 가지는 비디자인 요철로 구성되고, The gloss reduction unit is composed of non-design irregularities having a shape or a flat shape irrelevant to the design to be expressed by the design unit,
    상기 기판 준비 단계에서 상기 광택 저감부가 화학적 에칭, 샌드 블라스트 공정 및 연마 공정 중 하나를 이용하여 형성되는, 태양 전지 패널용 그래픽 커버 기판의 제조 방법.In the substrate preparation step, the gloss reduction portion is formed using one of a chemical etching, a sand blasting process, and a polishing process.
  24. 제22항에 있어서,The method of claim 22,
    상기 광택 저감부가 상기 디자인부에 의하여 표현하고자 하는 디자인의 적어도 일부를 구현하는 디자인 요철로 구성되고,The gloss reduction unit is composed of design irregularities that implement at least a part of the design to be expressed by the design unit,
    상기 기판 준비 단계에서 상기 광택 저감부가 샌드 블라스트 공정 또는 롤러 공정에 의하여 형성되는, 태양 전지 패널용 그래픽 커버 기판의 제조 방법.In the substrate preparation step, the gloss reduction portion is formed by a sand blasting process or a roller process, a method of manufacturing a graphic cover substrate for a solar panel.
  25. 제21항에 있어서,The method of claim 21,
    상기 광택 저감부가 상기 비강화 유리 기판 위에 형성되는 코팅 요철로 구성되며, The gloss reduction unit is composed of uneven coating formed on the non-reinforced glass substrate,
    상기 기판 준비 및 도포 단계는, 상기 비강화 유리 기판 위에 코팅 요철을 형성하기 위한 세라믹 물질층 및 상기 디자인부를 형성하기 위한 상기 디자인 형성층을 도포하는 단계를 포함하고, The substrate preparation and application step includes applying a ceramic material layer for forming coating irregularities and the design formation layer for forming the design part on the non-reinforced glass substrate,
    상기 강화 단계에서 상기 세라믹 물질층 및 상기 디자인 형성층으로부터 상기 유리 기판과 일체화되는 상기 코팅 요철 및 상기 디자인부를 형성하는, 태양 전지 패널용 그래픽 커버 기판의 제조 방법.In the reinforcing step, the ceramic material layer and the design forming layer are used to form the coating irregularities and the design portion that are integrated with the glass substrate.
PCT/KR2020/012725 2019-09-24 2020-09-21 Graphic cover substrate for solar panel, method for manufacturing same, and solar panel WO2021060788A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0117682 2019-09-24
KR1020190117682A KR20210035637A (en) 2019-09-24 2019-09-24 Graphic cover substrate of solar cell panal and method for manufacturing the same, and solar cell panel

Publications (1)

Publication Number Publication Date
WO2021060788A1 true WO2021060788A1 (en) 2021-04-01

Family

ID=75165866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/012725 WO2021060788A1 (en) 2019-09-24 2020-09-21 Graphic cover substrate for solar panel, method for manufacturing same, and solar panel

Country Status (2)

Country Link
KR (1) KR20210035637A (en)
WO (1) WO2021060788A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115706180A (en) * 2021-08-03 2023-02-17 海力雅集成股份有限公司 Chromophoric solar module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168365A (en) * 1999-09-27 2001-06-22 Kanegafuchi Chem Ind Co Ltd Solar battery module
JP2005079170A (en) * 2003-08-28 2005-03-24 Kyocera Corp Solar cell module and its manufacturing method
US20140326292A1 (en) * 2013-05-02 2014-11-06 3M Innovative Properties Company Multi-layered solar cell device
JP2016090518A (en) * 2014-11-10 2016-05-23 シチズンホールディングス株式会社 Timepiece with solar cell and method for concealing deformed mark
KR20190106689A (en) * 2018-03-06 2019-09-18 엘지전자 주식회사 Solar cell panel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3717369B2 (en) 2000-04-21 2005-11-16 シャープ株式会社 Solar cell module and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168365A (en) * 1999-09-27 2001-06-22 Kanegafuchi Chem Ind Co Ltd Solar battery module
JP2005079170A (en) * 2003-08-28 2005-03-24 Kyocera Corp Solar cell module and its manufacturing method
US20140326292A1 (en) * 2013-05-02 2014-11-06 3M Innovative Properties Company Multi-layered solar cell device
JP2016090518A (en) * 2014-11-10 2016-05-23 シチズンホールディングス株式会社 Timepiece with solar cell and method for concealing deformed mark
KR20190106689A (en) * 2018-03-06 2019-09-18 엘지전자 주식회사 Solar cell panel

Also Published As

Publication number Publication date
KR20210035637A (en) 2021-04-01

Similar Documents

Publication Publication Date Title
WO2020166999A1 (en) Solar cell panel
JP6986037B2 (en) Solar panel
KR20190106689A (en) Solar cell panel
JP7283877B2 (en) solar panel
WO2021002570A1 (en) Method for manufacturing graphic cover substrate for solar panel, solar panel and manufacturing method therefor
WO2010120087A1 (en) Data security screen and a production method for the same
WO2021010575A1 (en) Solar cell panel
WO2018048034A1 (en) Functional building material for windows and doors
WO2021060788A1 (en) Graphic cover substrate for solar panel, method for manufacturing same, and solar panel
WO2016105027A1 (en) Method for manufacturing light extraction substrate for organic light emitting diode, light extraction substrate for organic light emitting diode, and organic light emitting diode comprising same
WO2013103259A1 (en) Two-sided transparent electrically conductive film of outstanding discernibility and production method therefor
WO2021167378A1 (en) Multilayer film and laminate comprising same
WO2019050193A1 (en) Functional building material for door and window
WO2019225874A1 (en) Infrared reflective film and manufacturing method thereof
KR20220135060A (en) Solar cell panel
WO2020017792A1 (en) Smart window film and method for manufacturing same
US20050003209A1 (en) Glass substrate with colored film fine-particle-containing solution for forming colored film and method for producing glass substrate with colored film
KR20210092034A (en) Solar cell panel
CN109860316B (en) Power generation board adopting optical regulation and control layer and preparation method thereof
WO2019004698A1 (en) Decorative member and method for preparing same
KR102266581B1 (en) Solar cell module and manufacturing method thereof
WO2018048038A1 (en) Low-emissivity coating, and functional building material for windows and doors comprising low-emission coating
US8835754B2 (en) Method of manufacturing see-through thin film solar cells
KR20210092626A (en) Solar cell panel
KR20220129900A (en) Solar cell panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20869243

Country of ref document: EP

Kind code of ref document: A1