WO2023112812A1 - 難燃剤組成物、難燃性樹脂組成物および成形品 - Google Patents

難燃剤組成物、難燃性樹脂組成物および成形品 Download PDF

Info

Publication number
WO2023112812A1
WO2023112812A1 PCT/JP2022/045228 JP2022045228W WO2023112812A1 WO 2023112812 A1 WO2023112812 A1 WO 2023112812A1 JP 2022045228 W JP2022045228 W JP 2022045228W WO 2023112812 A1 WO2023112812 A1 WO 2023112812A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame retardant
flame
general formula
component
retardant composition
Prior art date
Application number
PCT/JP2022/045228
Other languages
English (en)
French (fr)
Inventor
ちか子 河西
悦子 青山
総夫 中村
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to JP2023567735A priority Critical patent/JPWO2023112812A1/ja
Priority to CN202280072209.1A priority patent/CN118159625A/zh
Priority to KR1020247021803A priority patent/KR20240121781A/ko
Priority to EP22907339.0A priority patent/EP4450591A1/en
Publication of WO2023112812A1 publication Critical patent/WO2023112812A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/02Inorganic materials
    • C09K21/04Inorganic materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/529Esters containing heterocyclic rings not representing cyclic esters of phosphoric or phosphorous acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • C09K21/10Organic materials containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • C09K21/12Organic materials containing phosphorus

Definitions

  • the present invention relates to a flame retardant composition with excellent flame retardancy and water resistance, a flame retardant resin composition containing the flame retardant composition, and a molded article thereof.
  • phosphate compounds such as ammonium polyphosphate, melamine polyphosphate, and piperazine polyphosphate into the resin.
  • phosphate compounds impart excellent flame retardancy to synthetic resins, they have the drawback of being insufficient in terms of water resistance. Insufficient water resistance can cause problems such as reduced flame retardancy and deterioration of the appearance of the resin surface due to the elution of flame retardant components due to contact with moisture or high humidity conditions. had been
  • Patent Literature 1 describes a technique of coating the surface of ammonium polyphosphate with a thermosetting resin.
  • Patent Document 2 describes a flame retardant composition obtained by adding a silicone oil having a specific viscosity to a piperazine salt and a melamine salt of an inorganic phosphorus compound.
  • Patent Document 3 describes a technique of blending a phosphate compound and polycarbodiimide with a thermoplastic resin.
  • Patent Documents 1 to 3 Although a certain effect is obtained in terms of water resistance, it is not sufficient, and a technique for obtaining a flame retardant composition having higher water resistance performance. was desired.
  • an object of the present invention is to provide a flame retardant composition excellent in flame retardancy and water resistance, a flame retardant resin composition containing the flame retardant composition, and a molded article thereof.
  • the flame retardant is powdery, contains (A) a polyphosphate, and (p2) has a particle size of 80 ⁇ m or more and less than 170 ⁇ m in a proportion of 9 to 99.9% by volume.
  • a composition is provided.
  • the flame retardant composition of the present invention is (p1) the proportion of particles having a particle size of less than 80 ⁇ m is 35 to 90.9% by volume; (p2) the proportion of particles having a particle size of 80 ⁇ m or more and less than 170 ⁇ m is 9 to 64.9% by volume, and (p3) It is preferable to have a particle size distribution in which the proportion of particles having a particle size of 170 ⁇ m or more is 0.1 to 50% by volume.
  • the cumulative 50% particle size D50 in the volume-based cumulative particle size distribution is preferably 10 ⁇ m or more and 150 ⁇ m or less.
  • (A) polyphosphate is preferably one or more selected from the following components (a1) and (a2).
  • (a1) component a compound represented by the following general formula (1).
  • (a2) component a compound represented by the following general formula (2).
  • n1 represents a number from 1 to 100
  • X1 represents ammonia or a triazine derivative represented by the following general formula (1-A)
  • p represents a number satisfying 0 ⁇ p ⁇ n1+2. show.
  • Z 1 and Z 2 are each independently —NR 11 R 12 group, hydroxyl group, mercapto group, linear or branched alkyl group having 1 to 10 carbon atoms, number of carbon atoms represents any group selected from the group consisting of 1 to 10 linear or branched alkoxy groups, phenyl groups and vinyl groups, and each of R 11 and R 12 independently represents a hydrogen atom and 1 to 6 represents a linear or branched alkyl group or a methylol group.
  • n2 represents a number from 1 to 100
  • Y 1 represents [R 21 R 22 N(CH 2 ) m NR 23 R 24 ], piperazine, or a diamine containing a piperazine ring
  • R 21 , R 22 , R 23 and R 24 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms
  • m is an integer of 1 to 10
  • q is It represents a number that satisfies 0 ⁇ q ⁇ n2+2.
  • the flame retardant composition of the present invention preferably contains component (a1) in which X1 in general formula ( 1 ) is melamine.
  • the flame retardant composition of the present invention preferably contains component (a2) wherein Y 1 in general formula (2) is piperazine.
  • the flame retardant composition of the present invention comprises a component (a1) in which X 1 in the general formula (1) is melamine, and a component (a2) in which Y 1 in the general formula (2) is piperazine. preferably included.
  • the flame retardant composition of the present invention comprises a component (a1) in which n1 is 2 in the general formula (1) and a component (a2) in which n2 is 2 in the general formula (2). is preferred.
  • the flame retardant composition of the present invention preferably further contains, as component (B), one or more selected from the group consisting of silicone oils and silane coupling agents.
  • a flame-retardant resin composition containing the flame retardant composition and a thermoplastic resin is provided.
  • a flame retardant composition excellent in flame retardancy and water resistance a flame retardant resin composition containing the flame retardant composition, and a molded article thereof.
  • polyphosphoric acid refers to one or more of pyrophosphoric acid with a degree of condensation of 2 and condensed phosphoric acid with a degree of condensation of 3 or more, or a mixture thereof.
  • the polyphosphoric acid may contain orthophosphoric acid with a degree of condensation of one.
  • Polyphosphate refers to a salt compound formed by the above polyphosphoric acid and a base.
  • the particle size and particle size distribution are measured using a laser diffraction particle size distribution analyzer. Specifically, 0.3 g of the sample is put into 120 g of methanol, and the dispersion solution is irradiated with ultrasonic waves for 3 minutes under the conditions of an output of 70 W and a frequency of 42 kHz, and is measured by volume using a laser diffraction particle size distribution analyzer. value.
  • the flame retardant composition of the present invention is in powder form, contains (A) a polyphosphate, and (p2) contains 9 to 99.9% by volume of particles having a particle size of 80 ⁇ m or more and less than 170 ⁇ m.
  • a fuel composition contains (A) a polyphosphate, and (p2) contains 9 to 99.9% by volume of particles having a particle size of 80 ⁇ m or more and less than 170 ⁇ m.
  • the lower limit of the content of (p2) particles having a particle size of 80 ⁇ m or more and less than 170 ⁇ m is 9% by volume or more, preferably 9.2% by volume or more.
  • the upper limit of the content of particles having a particle size of 80 ⁇ m or more and less than 170 ⁇ m is 99.9% by volume or less, preferably 64.9% by volume or less, and more preferably 60% by volume or less. , and more preferably 50% by volume or less.
  • the flame retardant composition of the present invention is (p1) the proportion of particles having a particle size of less than 80 ⁇ m is 35 to 90.9% by volume; (p2) the proportion of particles having a particle size of 80 ⁇ m or more and less than 170 ⁇ m is 9 to 64.9% by volume, and (p3) the proportion of particles having a particle size of 170 ⁇ m or more is 0.1 to 50% by volume; It preferably has a particle size distribution of (p1) the proportion of particles having a particle size of less than 80 ⁇ m is 36 to 90.5% by volume; (p2) the proportion of particles having a particle size of 80 ⁇ m or more and less than 170 ⁇ m is 9 to 60% by volume, and (p3) the proportion of particles having a particle size of 170 ⁇ m or more is 0.5 to 30% by volume; It is more preferable to have a particle size distribution of (p1) the proportion of particles having a particle size of less than 80 ⁇ m is 37 to 89.8% by volume; (p2) the proportion of particles having
  • the cumulative 50% particle size D50 in the volume-based cumulative particle size distribution is preferably 10 ⁇ m or more and 150 ⁇ m or less.
  • the lower limit of D50 is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and even more preferably 30 ⁇ m or more.
  • the upper limit of D50 is preferably 150 ⁇ m or less, more preferably 125 ⁇ m or less, even more preferably 110 ⁇ m or less.
  • the flame retardant composition of the present invention for example, it is possible to control the particle size or particle size distribution by appropriately selecting a preparation method such as pulverization or classification.
  • pulverization conditions such as pulverization method and pulverization time
  • classification conditions such as cutting of coarse particles, blending conditions, etc. are appropriately selected, etc., to make the particle size or particle size distribution within the desired numerical range.
  • Examples of the above grinding means include mortar, ball mill, rod mill, tube mill, conical mill, vibrating ball mill, high swing ball mill, roller mill, pin mill, hammer mill, attrition mill, jet mill, jetmizer, micronizer, nanomizer, Majac mills, micro atomizers, colloid mills, premier colloid mills, micron mills, Shalotte colloid mills, rotary cutters, dry medium agitating mills, impact ultrafine pulverizers, and the like.
  • These crushing means can be used alone or in combination of two or more.
  • classification means examples include dry classification such as sieving classification, inertial classification, and centrifugal classification, and wet classification such as sedimentation classification. Pulverization and classification may be performed simultaneously using a pulverizer with a built-in classification function.
  • each component may be mixed after undergoing preparation steps such as pulverization and classification, and after mixing each component, pulverization and classification.
  • a preparation step may be performed.
  • the (A) polyphosphate according to the present invention is preferably one or more selected from the following components (a1) and (a2).
  • the (a1) component is a compound represented by the following general formula (1).
  • n1 represents a number from 1 to 100
  • X1 represents ammonia or a triazine derivative represented by the following general formula (1-A)
  • p represents a number satisfying 0 ⁇ p ⁇ n1+2. show.
  • Z 1 and Z 2 are each independently —NR 11 R 12 group, hydroxyl group, mercapto group, linear or branched alkyl group having 1 to 10 carbon atoms, number of carbon atoms represents any group selected from the group consisting of 1 to 10 linear or branched alkoxy groups, phenyl groups and vinyl groups, and each of R 11 and R 12 independently represents a hydrogen atom and 1 to 6 represents a linear or branched alkyl group or methylol group.
  • Linear or branched alkyl groups having 1 to 10 carbon atoms represented by Z 1 and Z 2 in general formula (1-A) include methyl, ethyl, propyl, isopropyl, butyl, secondary butyl, tertiary butyl, isobutyl, pentyl, isopentyl, tert-pentyl, neopentyl, hexyl, cyclohexyl, heptyl, isoheptyl, tert-heptyl, n-octyl, isooctyl, tert-octyl, 2-ethylhexyl, nonyl, decyl, etc., carbon atoms
  • Linear or branched alkoxy groups of numbers 1 to 10 include groups derived from these alkyl groups.
  • linear or branched alkyl group having 1 to 6 carbon atoms represented by R 11 and R 12 in the —NR 11 R 12 group that Z 1 and Z 2 can take includes the alkyl groups listed above. Among them, those having 1 to 6 carbon atoms can be mentioned.
  • triazine derivatives represented by general formula (1-A) include melamine, acetoguanamine, benzoguanamine, acrylguanamine, 2,4-diamino-6-nonyl-1,3,5-triazine, 2 ,4-diamino-6-hydroxy-1,3,5-triazine, 2-amino-4,6-dihydroxy-1,3,5-triazine, 2,4-diamino-6-methoxy-1,3, 5-triazine, 2,4-diamino-6-ethoxy-1,3,5-triazine, 2,4-diamino-6-propoxy-1,3,5-triazine, 2,4-diamino-6-isopropoxy -1,3,5-triazine, 2,4-diamino-6-mercapto-1,3,5-triazine, 2-amino-4,6-dimercapto-1,3,5-triazine and the like.
  • the component (a1) may be a single compound or a mixture of two or more different types of condensation degree or salt type.
  • Component (a1) preferably contains a melamine salt compound in which X1 in general formula (1) is melamine.
  • the (a2) component is a compound represented by the following general formula (2).
  • n2 represents a number from 1 to 100
  • Y 1 represents [R 21 R 22 N(CH 2 ) m NR 23 R 24 ], piperazine, or a diamine containing a piperazine ring
  • R 21 , R 22 , R 23 and R 24 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms
  • m is an integer of 1 to 10
  • q is It represents a number that satisfies 0 ⁇ q ⁇ n2+2.
  • examples of the compound represented by Y 1 include [R 21 R 22 N(CH 2 ) m NR 23 R 24 ], piperazine, and diamines containing a piperazine ring.
  • R 21 to R 24 may be the same or different and represent a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms.
  • Examples of the linear or branched alkyl group having 1 to 5 carbon atoms represented by R 21 to R 24 include those listed as specific examples of the alkyl group represented by Z 1 and Z 2 . Examples include those having 1 to 5 carbon atoms.
  • Examples of the diamine containing a piperazine ring include compounds in which one or more of the 2, 3, 5, and 6 positions of piperazine are substituted with an alkyl group (preferably one having 1 to 5 carbon atoms); and/or compounds in which the hydrogen atom of the amino group at the 4-position is substituted with an aminoalkyl group (preferably having 1 to 5 carbon atoms).
  • Specific examples of the compound represented by Y 1 in the general formula (2) include N,N,N',N'-tetramethyldiaminomethane, ethylenediamine, N,N'-dimethylethylenediamine, N,N' -diethylethylenediamine, N,N-dimethylethylenediamine, N,N-diethylethylenediamine, N,N,N',N'-tetramethylethylenediamine, N,N,N',N'-tetraethylethylenediamine, 1,2-propane Diamine, 1,3-propanediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, piperazine , trans-2,5-dimethylpiperazine, 1,4-bis(2-
  • Component (a2) may be a single compound or a mixture of two or more different types of condensation degree or salt type.
  • Component (a2) preferably contains a piperazine salt compound in which Y 1 in general formula (2) is piperazine.
  • a salt of phosphoric acid and melamine such as melamine pyrophosphate is prepared by mixing sodium pyrophosphate and melamine at an arbitrary ratio. After mixing, it can be obtained by adding hydrochloric acid to react and neutralizing with sodium hydroxide. Further, for example, salts of phosphoric acids and piperazine can be easily obtained as sparingly water-soluble precipitates by reacting phosphoric acids and piperazine at an arbitrary ratio in water or an aqueous methanol solution. At this time, the composition of the raw material phosphoric acid is not particularly limited. Further, the phosphate compound in which n1 or n2 is 2 or more in general formula (1) or general formula (2) may be obtained by thermally condensing an orthophosphate in which n1 or n2 is 1.
  • the compounds represented by general formulas (1) and (2) are obtained. These may be used alone or in combination of two or more.
  • a flame retardant composition containing such a compound can impart excellent flame retardancy to a resin material.
  • the (A) component preferably contains both the (a1) component and the (a2) component from the viewpoint of flame retardancy.
  • the component (a1) in which X 1 in the general formula (1) is melamine and the component (a2) in which Y 1 in the general formula (2) is piperazine can be used together. is more preferred.
  • component (A) it is also preferable to use together component (a1) in which n1 is 2 in general formula (1) and component (a2) in which n2 is 2 in general formula (2). .
  • the content ratio of the former to the latter is 10:90 to 90 in terms of flame retardancy. : 10, more preferably 20:80 to 60:40, even more preferably 25:75 to 55:45, particularly preferably 30:70 to 50:50 .
  • the flame retardant composition of the present invention may contain optional components described later in addition to (A) the polyphosphate, if necessary.
  • the flame retardant composition of the present invention preferably further contains, as component (B), one or more selected from the group consisting of silicone oils and silane coupling agents. This makes it possible to prevent agglomeration of the powdery flame retardant composition, improve storage stability, and improve dispersibility in a synthetic resin. Moreover, water resistance can be improved.
  • the silicone oil may be a polymer having a linear polysiloxane skeleton, all of the side chains of the polysiloxane may be methyl groups, some of the side chains may have phenyl groups, and some of the side chains may be It may have hydrogen.
  • silicone oils examples include dimethylsilicone oil in which the side chains and terminals of polysiloxane are all methyl groups, and methylphenyl, in which the side chains and terminals of polysiloxane are methyl groups and part of the side chains are phenyl groups.
  • examples thereof include silicone oil, methylhydrogensilicone oil in which the side chain and end of polysiloxane are methyl groups and part of the side chain is hydrogen, and copolymers thereof.
  • These silicone oils may be partially modified by epoxy modification, amino modification, carboxy modification, or the like. These may be used alone or in combination of two or more.
  • silicone oils dimethyl silicone oil and methyl hydrogen silicone oil are preferable from the viewpoint of preventing aggregation of the powdery flame retardant composition, improving storage stability, and improving dispersibility in synthetic resins. Silicone oil is more preferred.
  • silane coupling agent examples include alkenyl group-containing silane coupling agents such as vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyltris(2-methoxyethoxy)silane, vinylmethyldimethoxysilane, octyl thenyltrimethoxysilane, allyltrimethoxysilane, p-styryltrimethoxysilane, and the like, and silane coupling agents having an acrylic group include 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane, and the like.
  • alkenyl group-containing silane coupling agents such as vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyltris(2-methoxyethoxy)silane, vinylmethyldimethoxysilane, octyl thenyltrimethoxysilane, allyltri
  • silane coupling agents having a methacryl group examples include 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, methacryloxyoctyltrimethoxysilane and the like, and silane coupling agents having an epoxy group include 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycid xypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, glycidoxyoctyltrimethoxysilane and the like.
  • silane coupling agent having an isocyanurate group examples include tris-(trimethoxysilylpropyl)isocyanurate.
  • silane coupling agents having a mercapto group include 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, etc.
  • silane coupling agents having a ureido group include 3 -ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane and the like
  • examples of silane coupling agents having a sulfide group include bis(triethoxysilylpropyl)tetrasulfide, and silane coupling agents having a thioester group.
  • Examples include 3-octanoylthio-1-propyltriethoxysilane, and silane coupling agents having an isocyanate group include 3-isocyanatopropyltriethoxysilane and 3-isocyanatopropyltrimethoxysilane. These may be used alone or in combination of two or more.
  • silane coupling agents a silane coupling agent having an epoxy group is preferable from the viewpoint of flame retardancy, handleability, prevention of aggregation of the flame retardant powder and improvement of storage stability, and 2-(3 ,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxy Silane, glycidoxyoctyltrimethoxysilane is more preferred.
  • the content of the component (B) in the flame retardant composition of the present invention from the viewpoint of enhancing the above effect by containing the component (B)
  • the amount is preferably 0.01 to 5 parts by mass, more preferably 0.01 to 3 parts by mass, per 100 parts by mass of component (A).
  • silicone oil when silicone oil is contained in the flame retardant composition of the present invention, the content of silicone oil is, with respect to 100 parts by mass of component (A), 0.01 to 3 parts by mass is preferable, and 0.1 to 1 part by mass is more preferable.
  • the content of the silane coupling agent is 100 (A) component from the viewpoint of enhancing the above effects due to the inclusion of the silane coupling agent. 0.01 to 3 parts by mass is preferable, and 0.1 to 1 part by mass is more preferable.
  • Examples of the method for adding the component (B) include a method of mixing the component (A) and the component (B), and a method of adding and mixing the component (B) after spray drying. Moreover, you may add to a flame retardant composition by surface-treating all or one part of (A) component with (B) component.
  • the flame retardant composition of the present invention may contain auxiliary agents.
  • Examples of the above aids include flame retardant aids, anti-drip aids, and processing aids.
  • the flame retardant auxiliary can contain metal oxides and polyhydric alcohol compounds. Thereby, the flame retardance of resin can be improved.
  • metal oxides examples include titanium oxide, zinc oxide, calcium oxide, magnesium oxide, zirconium oxide, barium oxide, tin dioxide, lead dioxide, antimony oxide, molybdenum oxide, and cadmium oxide. These may be used alone or in combination of two or more. Thereby, the flame retardance of resin can be improved. In addition, it is possible to suppress the occurrence of agglomeration in the powdery flame retardant composition. In addition, among the above, zinc oxide is preferable from the viewpoint of flame retardancy.
  • the zinc oxide may or may not be surface-treated.
  • Examples of the zinc oxide include zinc oxide type 1 (manufactured by Mitsui Kinzoku Kogyo Co., Ltd.), partially coated zinc oxide (manufactured by Mitsui Kinzoku Kogyo Co., Ltd.), Nanofine 50 (ultrafine particles having an average particle diameter of 0.02 ⁇ m).
  • Zinc oxide manufactured by Sakai Chemical Industry Co., Ltd.
  • Nanofine K superfine zinc oxide coated with zinc silicate with an average particle size of 0.02 ⁇ m: manufactured by Sakai Chemical Industry Co., Ltd.
  • other commercially available products may be used. .
  • the polyhydric alcohol compound is a compound to which a plurality of hydroxyl groups are bonded, and examples thereof include pentaerythritol, dipentaerythritol, tripentaerythritol, polypentaerythritol, neopentyl glycol, trimethylolpropane, ditrimethylolpropane, 1 , 3,5-tris(2-hydroxyethyl) isocyanurate (THEIC), polyethylene glycol, glycerin, diglycerin, mannitol, maltitol, lactitol, sorbitol, erythritol, xylitol, xylose, sucrose (sucrose), trehalose, inositol , fructose, maltose, lactose and the like.
  • pentaerythritol dipentaerythritol, tripentaerythritol, polyp
  • polyhydric alcohol compounds one or more selected from the group of condensates of pentaerythritol and pentaerythritol, such as pentaerythritol, dipentaerythritol, tripentaerythritol, and polypentaerythritol, is preferable, and dipentaerythritol and pentaerythritol. are particularly preferred, dipentaerythritol being most preferred.
  • THEIC and sorbitol can be suitably used. These may be used alone or in combination of two or more.
  • anti-drip aid examples include layered silicates, fluorine-based anti-drip aids, and silicone rubbers. As a result, dripping during combustion of the resin can be suppressed.
  • the layered silicate is a layered silicate mineral, which may be either natural or synthetic, and is not particularly limited.
  • layered silicates examples include smectite clay minerals such as montmorillonite, saponite, hectorite, beidellite, stevensite, and nontronite, vermiculite, halloysite, swelling mica, and talc. These may be used alone or in combination of two or more. Among these, saponite or talc is preferable from the viewpoint of anti-dripping, and talc is particularly preferable from the viewpoint of economy such as price.
  • smectite clay minerals such as montmorillonite, saponite, hectorite, beidellite, stevensite, and nontronite, vermiculite, halloysite, swelling mica, and talc. These may be used alone or in combination of two or more. Among these, saponite or talc is preferable from the viewpoint of anti-dripping, and talc is particularly preferable from the viewpoint of economy such as price.
  • the layered silicate may have cations between layers.
  • the above cations may be metal ions, or part or all of them may be cations other than metal ions, such as organic cations, (quaternary) ammonium cations, and phosphonium cations.
  • metal ions examples include sodium ions, potassium ions, calcium ions, magnesium ions, lithium ions, nickel ions, copper ions, and zinc ions.
  • organic cation or quaternary ammonium cation examples include lauryltrimethylammonium cation, stearyltrimethylammonium cation, trioctylmethylammonium cation, distearyldimethylammonium cation, di-cured beef tallow dimethylammonium cation, distearyldibenzylammonium cation, and the like. mentioned. These may be used alone or in combination of two or more.
  • fluorine-based anti-drip aid examples include fluorine-based resins such as polytetrafluoroethylene, polyvinylidene fluoride, and polyhexafluoropropylene, sodium perfluoromethanesulfonate, and perfluoro-n-butanesulfone.
  • Perfluoroalkanesulfonic acid alkali metal salt compounds such as acid potassium salt, perfluoro-t-butanesulfonic acid potassium salt, perfluorooctanesulfonic acid sodium salt, perfluoro-2-ethylhexanesulfonic acid calcium salt, or perfluoro alkanesulfonic acid alkaline earth metal salts and the like;
  • polytetrafluoroethylene is preferable from the viewpoint of anti-drip property. These may be used alone or in combination of two or more.
  • the processing aid can be appropriately selected from known processing aids, but may include an acrylic processing aid.
  • acrylic processing aid examples include homopolymers or copolymers of alkyl methacrylates such as methyl methacrylate, ethyl methacrylate and butyl methacrylate; and alkyl acrylates such as methyl acrylate, ethyl acrylate and butyl acrylate.
  • Copolymers of the above alkyl methacrylates and aromatic vinyl compounds such as styrene, ⁇ -methylstyrene and vinyltoluene; Copolymers of the above alkyl methacrylates and vinyl cyanide compounds such as acrylonitrile and methacrylonitrile.
  • a copolymer etc. can be mentioned. These may be used alone or in combination of two or more.
  • the flame retardant composition of the present invention may contain a dust suppressant.
  • dust suppressant examples include an aliphatic dicarboxylic acid ether ester compound or the above-mentioned silane coupling agent.
  • the flame retardant composition of the present invention may contain other components within a range that does not impair the effects of the present invention.
  • additives that are usually used to modify thermoplastic resins can be used, such as antioxidants, light stabilizers, ultraviolet absorbers, crystal nucleating agents, clarifying agents, and plasticizers.
  • lubricant, flame retardant other than (A) polyphosphate according to the present invention reinforcing material, cross-linking agent, antistatic agent, metallic soap, filler, anti-fogging agent, plate-out preventing agent, fluorescent agent, anti-mildew agent, Bactericides, foaming agents, metal deactivators, mold release agents, pigments, dyes, and the like. These may be used alone or in combination of two or more.
  • antioxidants examples include phenol-based antioxidants, phosphite-based antioxidants, thioether-based antioxidants, and other antioxidants.
  • Phenolic antioxidants include, for example, 2,6-di-tert-butyl-p-cresol, 2,6-diphenyl-4-octadecyloxyphenol, distearyl (3,5-di-tert-butyl- 4-hydroxybenzyl)phosphonate, 1,6-hexamethylenebis[(3,5-di-tert-butyl-4-hydroxyphenyl)propionamide], 4,4′-thiobis(6-tert-butyl-m -cresol), 2,2'-methylenebis(4-methyl-6-tert-butylphenol), 2,2'-methylenebis(4-ethyl-6-tert-butylphenol), 4,4'-butylidenebis(6-tert-butylphenol) tributyl-m-cresol), 2,2′-ethylidenebis(4,6-di-tert-butylphenol), 2,2′-ethylidenebis(4-sec-buty
  • Phosphite-based antioxidants include, for example, trisnonylphenyl phosphite, tris[2-tert-butyl-4-(3-tert-butyl-4-hydroxy-5-methylphenylthio)-5-methylphenyl] Phosphite, tridecylphosphite, octyldiphenylphosphite, didecylmonophenylphosphite, bis(tridecyl)pentaerythritol diphosphite, bis(nonylphenyl)pentaerythritol diphosphite, bis(2,4-di- 3-butylphenyl)pentaerythritol diphosphite, bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritol diphosphite, bis(2,4,6-tri-tert-butylphenyl)pent
  • Thioether antioxidants include, for example, 3,3′-thiodipropionic acid, alkyl(C 12-14 )thiopropionic acid, di(lauryl)-3,3′-thiodipropionate, 3,3′ -ditridecyl thiobispropionate, di(myristyl)-3,3'-thiodipropionate, di(stearyl)-3,3'-thiodipropionate, di(octadecyl)-3,3'-thiodipropionate lauryl stearyl thiodipropionate, tetrakis[methylene-3-(dodecylthio)propionate]methane, thiobis(2-tert-butyl-5-methyl-4,1-phenylene)bis(3-(dodecylthio)propionate), 2,2'-thiodiethylenebis(3-aminobutenoate), 4,6-bis(o
  • antioxidants include, for example, N-benzyl- ⁇ -phenyl nitrone, N-ethyl- ⁇ -methyl nitrone, N-octyl- ⁇ -heptyl nitrone, N-lauryl- ⁇ -undecyl nitrone, N-tetradecyl - ⁇ -tridecyl nitrone, N-hexadecyl- ⁇ -pentadecyl nitrone, N-octyl- ⁇ -heptadecyl nitrone, N-hexadecyl- ⁇ -heptadecyl nitrone, N-octadecyl- ⁇ -pentadecyl nitrone, N-heptadecyl - nitrone compounds such as ⁇ -heptadecyl nitrone, N-octadecyl- ⁇ -heptadecyl nitrone, 3-arylbenz
  • Light stabilizers include, for example, 2,2,6,6-tetramethyl-4-piperidyl stearate, 1,2,2,6,6-pentamethyl-4-piperidyl stearate, 2,2,6,6 - tetramethyl-4-piperidyl benzoate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, tetrakis ( 2,2,6,6-tetramethyl-4-piperidyl)-1,2,3,4-butanetetracarboxylate, tetrakis(1,2,2,6,6-pentamethyl-4-piperidyl)-1, 2,3,4-butanetetracarboxylate, bis(2,2,6,6-tetramethyl-4-piperidyl) bis(tridecyl)-1,2,3,4-butanetetracarboxylate, bis(1 ,2,2,6,6-pentamethyl-4-pipe
  • UV absorbers include, for example, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 5,5′-methylenebis(2-hydroxy-4-methoxybenzophenone) 2-hydroxybenzophenones such as; 2-(2′-hydroxy-5′-methylphenyl)benzotriazole, 2-(2′-hydroxy-3′,5′-di-tert-butylphenyl)-5-chloro benzotriazole, 2-(2'-hydroxy-3'-tert-butyl-5'-methylphenyl)-5-chlorobenzotriazole, 2-(2'-hydroxy-5'-tert- octylphenyl)benzotriazole, 2-(2'-hydroxy-3',5'-dicumylphenyl)benzotriazole, 2,2'-methylenebis(4-tert-octyl-6-(benzotriazolyl) phenol), 2-(2'-
  • crystal nucleating agents include metal carboxylates such as sodium benzoate, aluminum 4-tert-butylbenzoate, sodium adipate, and disodium bicyclo[2.2.1]heptane-2,3-dicarboxylate. salts, sodium bis(4-tert-butylphenyl) phosphate, sodium-2,2'-methylenebis(4,6-di-tert-butylphenyl) phosphate, lithium-2,2'-methylenebis(4,6-di-tert-butylphenyl) phosphate, Phosphate metal salts such as tributylphenyl)phosphate, dibenzylidene sorbitol, bis(methylbenzylidene) sorbitol, bis(3,4-dimethylbenzylidene) sorbitol, bis(p-ethylbenzylidene) sorbitol, bis(dimethylbenzylidene) sorbitol , 1,2,3
  • plasticizers include epoxy-based plasticizers such as epoxidized soybean oil, epoxidized linseed oil, and epoxidized fatty acid octyl ester; methacrylate-based plasticizers; polycondensates of dicarboxylic acids and polyhydric alcohols; Polyesters such as polycondensates of polyhydric alcohols, polycondensates of dicarboxylic acids, polyhydric alcohols and alkylene glycols, polycondensates of dicarboxylic acids, polyhydric alcohols and arylene glycol, polyhydric carboxylic acids and polyhydric Polyether esters such as polycondensates of alcohol and alkylene glycol, polycondensates of polyhydric carboxylic acid, polyhydric alcohol and arylene glycol, aliphatic esters such as adipates and succinates, and phthalates Aromatic esters such as acid esters, terephthalic acid esters, trimellitic acid esters, pyrom
  • Lubricants include pure hydrocarbon lubricants such as liquid paraffin, natural paraffin, microwax, synthetic paraffin, low molecular weight polyethylene and polyethylene wax; halogenated hydrocarbon lubricants; fatty acid lubricants such as higher fatty acids and oxy fatty acids; , fatty acid amide lubricants such as bis fatty acid amides; lower alcohol esters of fatty acids, polyhydric alcohol esters of fatty acids such as glycerides, polyglycol esters of fatty acids, ester lubricants such as fatty alcohol esters of fatty acids (ester wax); metal soaps , fatty alcohol, polyhydric alcohol, polyglycol, polyglycerol, partial ester of fatty acid and polyhydric alcohol, fatty acid and polyglycol, partial ester lubricant of polyglycerol, silicone oil, mineral oil, and the like.
  • One of these lubricants can be used alone, or two or more of them can be used in combination.
  • Examples of (A) flame retardants other than polyphosphate according to the present invention include triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-dixylenyl phosphate, and resorcinol.
  • ADEKA STAB FP- 500 divinyl phenylphosphonate, diallyl phenylphosphonate, (1-butenyl) phenylphosphonate, etc.
  • phosphinate esters such as phenyl diphenylphosphinate, methyl diphenylphosphinate, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivatives, aluminum diethylphosphinate, zinc diethylphosphinate phosphazene compounds such as bis(2-allylphenoxy)phosphazene and dicresylphosphazene; inorganic phosphorus flame retardants such as red phosphorus; metal hydroxides such as magnesium hydroxide and aluminum hydroxide; Bisphenol A type epoxy resin, brominated phenol novolac type epoxy resin, hexabromobenzene, pentabromotoluene, ethylenebis(pentabromophenyl), ethylenebistetrabromophthalimide, 1,2-dibromo-4-(1,2-dibromo ethyl)cyclohexane, tetrabromocycloooc
  • antistatic agents examples include cationic antistatic agents such as fatty acid quaternary ammonium ion salts and polyamine quaternary salts, higher alcohol phosphate salts, higher alcohol EO adducts, polyethylene glycol fatty acid esters, and anionic antistatic agents.
  • cationic antistatic agents such as fatty acid quaternary ammonium ion salts and polyamine quaternary salts, higher alcohol phosphate salts, higher alcohol EO adducts, polyethylene glycol fatty acid esters, and anionic antistatic agents.
  • Anionic antistatic agents such as alkylsulfonates, higher alcohol sulfates, higher alcohol ethylene oxide adduct sulfates, higher alcohol ethylene oxide adduct phosphates, polyhydric alcohol fatty acid esters, polyglycol phosphates, Examples include nonionic antistatic agents such as polyoxyethylene alkylallyl ether, amphoteric alkylbetaines such as alkyldimethylaminoacetic acid betaine, and amphoteric antistatic agents such as imidazoline type amphoteric surfactants. These antistatic agents can be used individually by 1 type, and can be used in combination of 2 or more types.
  • fillers include talc, mica, calcium carbonate, calcium oxide, calcium hydroxide, magnesium carbonate, magnesium hydroxide, magnesium oxide, magnesium sulfate, aluminum hydroxide, barium sulfate, glass powder, glass fiber, clay, and dolomite. , silica, alumina, potassium titanate whiskers, wollastonite, fibrous magnesium oxysulfate, montmorillonite, etc., and the particle size (in the fibrous form, the fiber diameter, fiber length and aspect ratio) can be appropriately selected and used. can be done. These fillers can be used individually by 1 type, and can be used in combination of 2 or more types. In addition, the filler may be surface-treated as necessary.
  • pigments examples include Pigment Red 1, 2, 3, 9, 10, 17, 22, 23, 31, 38, 41, 48, 49, 88, 90, 97, 112, 119, 122, 123, 144, 149, 166, 168, 169, 170, 171, 177, 179, 180, 184, 185, 192, 200, 202, 209, 215, 216, 217, 220, 223, 224, 226, 227, 228, 240, Pigment Orange 13, 31, 34, 36, 38, 43, 46, 48, 49, 51, 52, 55, 59, 60, 61, 62, 64, 65, 71; Pigment Yellow 1, 3, 12, 13, 14, 16, 17, 20, 24, 55, 60, 73, 81, 83, 86, 93, 95, 97, 98, 100, 109, 110, 113, 114, 117, 120, 125, 126, Pigment Green 7, 10, 36; Pigment Blue 15, 15:1, 15:2, 15:3, 15:4, 15:5, 15:6, 22, 24, 56, 60
  • dyes examples include azo dyes, anthraquinone dyes, indigoid dyes, triarylmethane dyes, xanthene dyes, alizarin dyes, acridine dyes, stilbene dyes, thiazole dyes, naphthol dyes, quinoline dyes, nitro dyes, indamine dyes, oxazine dyes, Examples include phthalocyanine dyes and cyanine dyes. These dyes can be used individually by 1 type, and can be used in combination of 2 or more types.
  • one or more selected from additives consisting of the above-mentioned auxiliary agents, dust suppressants and other components may be blended in the flame retardant composition, and includes the flame retardant composition and the thermoplastic resin. You may mix
  • the flame retardant composition of the present invention is effective in making synthetic resins flame-retardant, and is preferably used as a flame-retardant resin composition by being blended with synthetic resins.
  • the flame-retardant resin composition of the present invention contains the above-described flame retardant composition and a thermoplastic resin.
  • the content of the flame retardant composition is usually 10 to 400 parts by mass, preferably 15 to 200 parts by mass, more preferably 20 to 70 parts by mass, based on 100 parts by mass of the thermoplastic resin. This can sufficiently improve the flame retardancy of the thermoplastic resin.
  • thermoplastic resin examples include synthetic resins such as polyolefin-based resins, styrene-based resins, polyester-based resins, polyether-based resins, polycarbonate-based resins, polyamide-based resins, and halogen-containing resins. These may be used alone or in combination of two or more.
  • thermoplastic resin examples include petroleum resin, coumarone resin, polyvinyl acetate, acrylic resin, polymethyl methacrylate, polyvinyl alcohol, polyvinyl formal, polyvinyl butyral, polyphenylene sulfide, polyurethane, cellulose resin, polyimide.
  • Thermoplastic resins such as resins, polysulfones, liquid crystal polymers, and blends thereof can be used.
  • thermoplastic resins include isoprene rubber, butadiene rubber, ethylene-propylene rubber, ethylene-propylene-diene rubber, acrylonitrile-butadiene copolymer rubber, styrene-butadiene copolymer rubber, olefin elastomer, styrene elastomer, and polyester elastomer. , nitrile-based elastomer, nylon-based elastomer, vinyl chloride-based elastomer, polyamide-based elastomer, polyurethane-based elastomer, or the like, or these thermoplastic elastomers may be used in combination.
  • thermoplastic resin examples include polypropylene, high-density polyethylene, low-density polyethylene, linear low-density polyethylene, polybutene-1, poly-3-methylpentene, poly-4-methylpentene, ethylene.
  • Polyolefin resins such as ⁇ -olefin polymers such as propylene block or random copolymers; thermoplastic linear polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyhexamethylene terephthalate; polysulfide resins such as polyphenylene sulfide; Polylactic acid resins such as polycaprolactone; linear polyamide resins such as polyhexamethylene adipamide; crystalline polystyrene resins such as syndiotactic polystyrene;
  • thermoplastic resins have molecular weight, degree of polymerization, density, softening point, ratio of insolubles in solvents, degree of stereoregularity, presence or absence of catalyst residue, type and blending ratio of raw material monomers, type of polymerization catalyst (eg, Ziegler catalyst, metallocene catalyst, etc.) and the like can be used.
  • type of polymerization catalyst eg, Ziegler catalyst, metallocene catalyst, etc.
  • polyolefin-based resins one or more selected from the group consisting of polyolefin-based resins, polystyrene-based resins and copolymers thereof is preferable, and polyolefin-based resins are more preferable, since they can impart excellent flame retardancy.
  • Polypropylene, high-density polyethylene, low-density polyethylene, and linear low-density polyethylene are even more preferable, and a combination thereof with a thermoplastic elastomer is also preferable.
  • the flame-retardant resin composition of the present invention contains, in addition to the flame retardant composition of the present invention, one or more additives selected from the above-mentioned auxiliaries, dust suppressants and other components, if necessary. may contain. These may be used alone or in combination of two or more.
  • the content of additives (excluding fillers and flame retardants other than (A) polyphosphate according to the present invention) in the flame-retardant resin composition of the present invention is, respectively, based on 100 parts by mass of the thermoplastic resin For example, it is 0.001 to 15 parts by mass, preferably 0.005 to 10 parts by mass, and more preferably 0.01 to 5 parts by mass. By setting it as such a numerical range, the improvement of the effect of an additive is obtained.
  • the content thereof is, for example, 1 to 100 parts by mass, preferably 3 to 80 parts by mass, with respect to 100 parts by mass of the thermoplastic resin. Yes, more preferably 5 to 50 parts by mass.
  • the content thereof is, for example, 1 to 200 with respect to 100 parts by mass of the thermoplastic resin. parts by mass, preferably 3 to 150 parts by mass, more preferably 5 to 80 parts by mass.
  • the flame-retardant resin composition neutralizes catalyst residues in the resin.
  • a neutralizing agent include fatty acid metal salts such as calcium stearate, lithium stearate, sodium stearate and magnesium stearate, ethylenebis(stearic acid amide), ethylenebis(12-hydroxystearic acid amide), and stearic acid amide. or inorganic compounds such as hydrotalcite.
  • fatty acid metal salts such as calcium stearate, lithium stearate, sodium stearate and magnesium stearate
  • inorganic compounds such as hydrotalcite.
  • One of these neutralizing agents can be used alone, or two or more of them can be used in combination.
  • the amount of these neutralizing agents to be used is preferably 0.001 to 3 parts by mass, more preferably 0.01 to 1 part by mass, per 100 parts by mass of the thermoplastic resin
  • the flame-retardant resin composition of the present invention can be obtained by mixing the above-described flame retardant composition and thermoplastic resin. If necessary, the above additives may be mixed. The additive may be mixed into the flame retardant composition or into a mixture of the flame retardant composition and the thermoplastic resin.
  • a method for mixing the flame retardant composition and the thermoplastic resin a generally used known method can be applied as it is.
  • a flame retardant composition, a thermoplastic resin, and, if necessary, an additive a method of mixing with a mixer such as a normal blender or mixer, a method of melt-kneading with an extruder or the like, a solution by mixing with a solvent A casting method and the like can be mentioned.
  • the flame-retardant resin composition of the present invention can be used in various forms, such as pellets, granules, and powder. From the viewpoint of handleability, a pellet form is preferable.
  • a molded article of the present invention is obtained by using the flame-retardant resin composition described above.
  • a molded article can be produced by molding using the flame-retardant resin composition described above.
  • the molding method is not particularly limited, and injection molding, extrusion molding, blow molding, rotational molding, vacuum molding, inflation molding, calendar molding, slush molding, dip molding, A foam molding method, an additive manufacturing method, and the like can be mentioned.
  • injection molding method, the extrusion molding method, and the blow molding method are preferable.
  • molded products of various shapes such as resin plates, sheets, films, and odd-shaped products can be manufactured.
  • Molded articles obtained using the flame-retardant resin composition of the present invention can be used in various applications, such as electrical and electronic parts, mechanical parts, optical equipment, building materials, automobile parts, and daily necessities. It can be used for various purposes. Among these, from the viewpoint of flame retardancy, it can be suitably used for electric/electronic parts and building members.
  • the flame-retardant resin composition of the present invention and molded articles thereof are used, for example, in electrical/electronics/communications, agriculture, forestry and fisheries, mining, construction, food, textiles, clothing, medicine, coal, petroleum, rubber, leather, automobiles, and precision equipment. , wood, building materials, civil engineering, furniture, printing, musical instruments, etc.
  • the flame-retardant resin composition of the present invention and molded articles thereof can be used in printers, personal computers, word processors, keyboards, PDAs (small information terminals), telephones, copiers, facsimiles, ECRs (electronic cash registers).
  • calculators electronic notebooks, cards, holders, office work such as stationery, OA equipment, washing machines, refrigerators, vacuum cleaners, microwave ovens, lighting fixtures, game machines, irons, household appliances such as kotatsu, TVs, VTRs, video cameras , radio-cassette recorders, tape recorders, minidiscs, CD players, speakers, liquid crystal displays and other AV equipment, connectors, relays, capacitors, switches, printed circuit boards, coil bobbins, semiconductor encapsulation materials, LED encapsulation materials, electric wires, cables, transformers, It can be used for electrical/electronic parts such as deflection yokes, distribution boards, clocks, and communication equipment.
  • electrical/electronic parts such as deflection yokes, distribution boards, clocks, and communication equipment.
  • the flame-retardant resin composition of the present invention and molded articles thereof can be used, for example, in seats (filling, outer material, etc.), belts, ceiling coverings, convertible tops, armrests, door trims, rear package trays, carpets, mats, sun visors, Foil covers, mattress covers, airbags, insulating materials, straps, straps, electric wire covering materials, electrical insulating materials, paints, coating materials, upholstery materials, flooring materials, corner walls, carpets, wallpaper, wall covering materials, Exterior materials, interior materials, roofing materials, decking materials, wall materials, pillar materials, floorboards, fence materials, frames and moldings, window and door profiles, shingles, siding, terraces, balconies, soundproof boards, heat insulating boards , window materials, materials for automobiles, vehicles, ships, aircraft, buildings, houses, etc., construction materials and civil engineering materials, clothing, curtains, sheets, plywood, synthetic fiber boards, carpets, entrance mats, sheets, buckets, hoses, It can be used in various fields such
  • Melamine salt 1 obtained above was pulverized using a jet mill pulverizer (Co-Jet system ⁇ -mk IV, manufactured by Seishin Enterprise Co., Ltd.) to obtain melamine salt 2.
  • a jet mill pulverizer Co-Jet system ⁇ -mk IV, manufactured by Seishin Enterprise Co., Ltd.
  • Piperazine salt 1 obtained above was pulverized using a jet mill pulverizer (Co-Jet system ⁇ -mk IV, manufactured by Seishin Enterprise Co., Ltd.) to obtain piperazine salt 2. Further, the piperazine salt 1 was pulverized with a food mixer (BM-RT08, manufactured by Zojirushi Mahobin Co., Ltd.) and sieved with sieves with mesh sizes of 250 ⁇ m, 150 ⁇ m and 75 ⁇ m. Sieving is performed using an ultrasonic sieve (DGS35-50-S, manufactured by Arttech Ultrasonic Systems) and a digital microplate shaker (6780-NP, manufactured by CORNING), ultrasonic output 50 W, ultrasonic frequency 35 kHz, rotation speed 300 rpm. was performed under the conditions of Piperazine salt 3 is 75 ⁇ m pass, piperazine salt 4 is 150 ⁇ m pass and 75 ⁇ m on, and piperazine salt 5 is 250 ⁇ m pass and 150 ⁇ m on.
  • BM-RT08 manufactured by
  • the purities of the melamine salt 1 and the piperazine salt 1 are measured by ion chromatograph ICS-2100 (manufactured by Thermo Fisher Scientific Co., Ltd.), Dionex IonPac AS-19 column (manufactured by Thermo Fisher Scientific Co., Ltd.) and electrical conductivity It was measured using a degree detector.
  • each piperazine salt and each flame retardant composition obtained above 20 mg of a sample and 5 mL of methanol are placed in a 10 mL vial, and ultrasonic irradiation is performed for 3 minutes at an output of 70 W and a frequency of 42 kHz. A dispersion solution of each composition was obtained. The total amount of the obtained dispersion solution was subjected to particle size distribution measurement.
  • Measurement is performed using a laser diffraction particle size distribution analyzer (Microtrac MT3000II) under wet conditions (solvent: methanol, ultrasonic irradiation (30 W, 40 kHz): 3 minutes, degassing: 2 times) on a volume basis. gone.
  • solvent methanol, ultrasonic irradiation (30 W, 40 kHz): 3 minutes, degassing: 2 times
  • Examples 1 to 10 and Comparative Examples 1 to 10 ⁇ Production of flame-retardant resin composition>
  • the flame retardant composition A1 to A4, B1 to B4, C1 to C4, D1 to D4, and E1 to E4 were blended at the mass ratio (parts by mass) shown in each table to obtain flame-retardant resin compositions of Examples 1 to 10 and Comparative Examples 1 to 10.
  • the flame-retardant resin composition obtained above is melt-kneaded with a twin-screw extruder (TEX25 ⁇ III, manufactured by Japan Steel Works, Ltd.) under the conditions of a cylinder temperature of 180 to 230 ° C. and a screw speed of 150 rpm. Pellets of the flammable resin composition were obtained. The obtained pellets were injection molded using an injection molding machine (EC60N II-1.5A, manufactured by Toshiba Machine Co., Ltd.) under the conditions of a resin temperature of 230° C. and a mold temperature of 40° C. to form 127 mm ⁇ 12.7 mm ⁇ 1. A 6 mm specimen was obtained. Water resistance evaluation and flame retardancy evaluation were performed using this test piece.
  • TEX25 ⁇ III manufactured by Japan Steel Works, Ltd.
  • ⁇ Flame retardant evaluation UL-94V> Hold the test piece of length 127 mm, width 12.7 mm, and thickness 1.6 mm vertically, put a burner flame on the lower end for 10 seconds, then remove the flame and extinguish the fire ignited on the test piece. The combustion time t1 up to was measured. Next, as soon as the fire was extinguished, a second flame application was started for 10 seconds, and the combustion time t2 until the ignited flame was extinguished was measured in the same manner as the first time. At the same time, it was also evaluated whether or not the cotton under the test piece was ignited by the falling spark.
  • V-0 is the highest flammability rank, and the flame retardancy decreases as V-1 and V-2 follow. However, those that do not fall under any of the ranks of V-0 to V-2 are rated NR.
  • the burn rank and t2 measurement results are shown in Tables 4-6 below. The value of t2 in the table is the average value of 10 times.
  • test pieces after being immersed in water in the above water resistance test were similarly evaluated for flame retardancy.
  • the test piece after being immersed in water in the above water resistance evaluation was dried in a constant temperature and humidity oven at 23° C. and 50% RH for 334 hours and used.
  • the burn rank and t2 measurement results are shown in Tables 4-6 below.
  • the value of t2 in the table is the average value of 10 times.
  • Phenolic antioxidant tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)methylpropionate]methane, trade name ADEKA STAB AO-60, manufactured by ADEKA Corporation
  • Phosphorus antioxidant Tris (2,4-di-tert-butylphenyl) phosphite, trade name ADEKA STAB 2112, manufactured by ADEKA Corporation
  • Neutralizing agent calcium stearate, trade name calcium
  • Examples 1 and 2 the electrical conductivity of water in the water resistance test was lower than in Comparative Examples 1 and 2, and it was found that the composition using the flame retardant composition of the present invention improved the water resistance. rice field.
  • the results of flame retardancy evaluation show that Examples 1 and 2 have a shorter t2 after immersion in water than Comparative Examples 1 and 2, and are superior in flame retardancy after contact with water.
  • the resin composition containing the flame retardant composition of the present invention has a small degree of deterioration in flame retardancy after contact with water and is excellent in water resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

合成樹脂を難燃化するために用いられる難燃剤組成物であって、難燃性および耐水性に優れる難燃剤組成物、これを含む難燃性樹脂組成物、および、その成形品を提供する。 粉末状であって、(A)ポリリン酸塩を含有し、(p2)粒径80μm以上170μm未満である粒子の割合が9~99.9体積%である難燃剤組成物、この難燃剤組成物と熱可塑性樹脂とを含む難燃性樹脂組成物、および、この難燃性樹脂組成物を用いてなる成形品である。

Description

難燃剤組成物、難燃性樹脂組成物および成形品
 本発明は、難燃性および耐水性に優れる難燃剤組成物、これを含む難燃性樹脂組成物、および、その成形品に関する。
 合成樹脂を難燃化する技術として、ポリリン酸アンモニウム、ポリリン酸メラミン、ポリリン酸ピペラジン等のリン酸塩化合物を樹脂に配合する技術が知られている。しかし、リン酸塩化合物は、合成樹脂に対し優れた難燃性を付与する一方で、耐水性の点で不十分であるという欠点があった。耐水性が不十分であると、水分との接触や高湿度条件などにより、難燃剤成分の溶出による難燃性の低下や樹脂表面の外観の悪化といった問題が起こりうるため、使用できる用途が限られていた。
 この問題に対し、リン酸塩化合物の耐水性を改良する技術がこれまで開発されてきた。例えば、特許文献1には、ポリリン酸アンモニウムの表面を熱硬化性樹脂で被覆する技術が記載されている。特許文献2には、無機リン化合物のピペラジン塩およびメラミン塩に特定の粘度のシリコーンオイルを添加処理してなる難燃剤組成物が記載されている。特許文献3には、熱可塑性樹脂にリン酸塩化合物およびポリカルボジイミドを配合する技術が記載されている。
特開平9-235407号公報 国際公開第2005/080494号公報 特開2009-292965号公報
 しかしながら、上記特許文献1~3に記載された技術によれば耐水性の点で一定の効果は得られるものの、十分なものではなく、より高い耐水性能を有する難燃剤組成物を得るための技術が望まれていた。
 そこで本発明の目的は、難燃性および耐水性に優れる難燃剤組成物、これを含む難燃性樹脂組成物、および、その成形品を提供することにある。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、特定の粒度分布を有する難燃剤組成物を用いることにより耐水性を向上できることを見出して、本発明を完成するに至った。
 すなわち、本発明によれば、粉末状であって、(A)ポリリン酸塩を含有し、(p2)粒径80μm以上170μm未満である粒子の割合が9~99.9体積%である難燃剤組成物が提供される。
 本発明の難燃剤組成物は、
 (p1)粒径80μm未満である粒子の割合が35~90.9体積%、
 (p2)粒径80μm以上170μm未満である粒子の割合が9~64.9体積%、かつ、
 (p3)粒径170μm以上である粒子の割合が0.1~50体積%である粒度分布を有することが好ましい。
 本発明の難燃剤組成物においては、体積基準の累積粒度分布における累積50%粒径D50が、10μm以上150μm以下であることが好ましい。
 本発明の難燃剤組成物においては、(A)ポリリン酸塩が、下記(a1)成分および(a2)成分から選ばれる1種以上であることが好ましい。
 (a1)成分:下記一般式(1)で表される化合物。
 (a2)成分:下記一般式(2)で表される化合物。 
Figure JPOXMLDOC01-appb-I000004
 一般式(1)中、n1は1~100の数を表し、Xはアンモニアまたは下記一般式(1-A)で表されるトリアジン誘導体を表し、pは0<p≦n1+2を満たす数を表す。 
Figure JPOXMLDOC01-appb-I000005
 一般式(1-A)中、ZおよびZは、それぞれ独立に、-NR1112基、水酸基、メルカプト基、炭素原子数1~10の直鎖若しくは分岐のアルキル基、炭素原子数1~10の直鎖若しくは分岐のアルコキシ基、フェニル基およびビニル基からなる群より選択されるいずれかの基を表し、R11およびR12は、それぞれ独立に、水素原子、炭素原子数1~6の直鎖若しくは分岐のアルキル基、または、メチロール基を表す。 
Figure JPOXMLDOC01-appb-I000006
 一般式(2)中、n2は1~100の数を表し、Yは〔R2122N(CHNR2324〕、ピペラジン、または、ピペラジン環を含むジアミンを表し、R21、R22、R23およびR24は、それぞれ独立に、水素原子、または、炭素原子数1~5の直鎖若しくは分岐のアルキル基を表し、mは1~10の整数であり、qは0<q≦n2+2を満たす数を表す。
 本発明の難燃剤組成物は、前記一般式(1)中のXがメラミンである(a1)成分を含むことが好ましい。
 本発明の難燃剤組成物は、前記一般式(2)中のYがピペラジンである(a2)成分を含むことが好ましい。
 本発明の難燃剤組成物は、前記一般式(1)中のXがメラミンである(a1)成分と、前記一般式(2)中のYがピペラジンである(a2)成分と、を含むことが好ましい。
 本発明の難燃剤組成物は、前記一般式(1)中のn1が2である(a1)成分と、前記一般式(2)中のn2が2である(a2)成分と、を含むことが好ましい。
 本発明の難燃剤組成物は、さらに、(B)成分として、シリコーンオイルおよびシランカップリング剤からなる群から選ばれる1種以上を含むことが好ましい。
 また、本発明によれば、上記難燃剤組成物と、熱可塑性樹脂と、を含む難燃性樹脂組成物が提供される。
 さらに、本発明によれば、上記難燃性樹脂組成物を用いてなる成形品が提供される。
 本発明によれば、難燃性および耐水性に優れる難燃剤組成物、これを含む難燃性樹脂組成物、および、その成形品を提供することができる。
 以下、本発明を、その好ましい実施形態に基づき詳細に説明する。まず、本発明の難燃剤組成物について説明する。
 本明細書において、ポリリン酸とは、縮合度が2のピロリン酸、および、縮合度が3以上の縮合リン酸の1種以上、あるいは、これらの混合物を指す。上記ポリリン酸は、縮合度が1のオルトリン酸を含んでいてもよい。また、ポリリン酸塩とは、上記ポリリン酸と塩基とによって形成される塩化合物を指す。
 また、本明細書において、粒径および粒度分布は、レーザー回折式粒度分布測定装置を用いて測定されるものである。具体的には、サンプル0.3gをメタノール120gに入れ、出力70W、周波数42kHzの条件で超音波を3分間照射した分散溶液について、レーザー回折式粒度分布測定装置を用いて、体積基準にて測定される値を指す。
<難燃剤組成物>
 本発明の難燃剤組成物は、粉末状であって、(A)ポリリン酸塩を含有し、(p2)粒径80μm以上170μm未満である粒子の割合が9~99.9体積%である難燃剤組成物である。
 本発明の難燃剤組成物において、(p2)粒径80μm以上170μm未満である粒子の含有割合の下限は、9体積%以上であり、好ましくは9.2体積%以上である。これにより、耐水性の向上効果が得られる。一方、(p2)粒径80μm以上170μm未満である粒子の含有割合の上限は、99.9体積%以下であり、好ましくは64.9体積%以下であり、より好ましくは60体積%以下であり、さらにより好ましくは50体積%以下である。これにより、難燃剤組成物の難燃性能を十分に安定して発揮することができる。
 本発明の難燃剤組成物は、
 (p1)粒径80μm未満である粒子の割合が35~90.9体積%、
 (p2)粒径80μm以上170μm未満である粒子の割合が9~64.9体積%、かつ、
 (p3)粒径170μm以上である粒子の割合が0.1~50体積%、
である粒度分布を有することが好ましく、
 (p1)粒径80μm未満である粒子の割合が36~90.5体積%、
 (p2)粒径80μm以上170μm未満である粒子の割合が9~60体積%、かつ、
 (p3)粒径170μm以上である粒子の割合が0.5~30体積%、
である粒度分布を有することがより好ましく、
 (p1)粒径80μm未満である粒子の割合が37~89.8体積%、
 (p2)粒径80μm以上170μm未満である粒子の割合が9.2~50体積%、かつ、
 (p3)粒径170μm以上である粒子の割合が1~20体積%、
である粒度分布を有することがさらにより好ましい。
 また、本発明の難燃剤組成物においては、(p3)粒径170μm以上である粒子の割合が、(p1)粒径80μm未満である粒子の割合および(p2)粒径80μm以上170μm未満である粒子の割合よりも、それぞれ小さいことが好ましい。
 本発明の難燃剤組成物においては、体積基準の累積粒度分布における累積50%粒径D50が、10μm以上150μm以下であることが好ましい。D50の下限は、10μm以上であることが好ましく、20μm以上であることがより好ましく、30μm以上であることがさらにより好ましい。これにより、耐水性の向上効果が得られる。一方、D50の上限は、150μm以下であることが好ましく、125μm以下であることがより好ましく、110μm以下であることがさらにより好ましい。これにより、本発明の難燃剤組成物を熱可塑性樹脂に配合した際の分散性が向上し、難燃性能を十分に安定して発揮することができる。
 本発明の難燃剤組成物においては、例えば、粉砕や分級等の調製方法等を適切に選択することにより、粒径または粒度分布を制御することが可能である。これらの中でも、例えば、粉砕方法や粉砕時間等の粉砕条件、粗大粒子のカット等の分級条件、ブレンド条件などを適切に選択すること等が、粒径または粒度分布を所望の数値範囲とするための要素として挙げられる。
 上記の粉砕手段としては、例えば、乳鉢、ボールミル、ロッドミル、チューブミル、コニカルミル、振動ボールミル、ハイスイングボールミル、ローラーミル、ピンミル、ハンマーミル、アトリションミル、ジェットミル、ジェットマイザー、マイクロナイザー、ナノマイザー、マジャックミル、マイクロアトマイザー、コロイドミル、プレミアコロイドミル、ミクロンミル、シャロッテコロイドミル、ロータリーカッター、乾式媒体撹拌ミル、衝撃型超微粉砕機等が挙げられる。これらの粉砕手段は、単独または2種以上を組み合わせて用いることができる。
 上記の分級手段としては、例えば、ふるい分け分級、慣性分級、遠心分級のような乾式分級や、沈降分級のような湿式分級等が挙げられる。分級機能が内蔵された粉砕機を用いて、粉砕と分級とを同時に行ってもよい。
 本発明の難燃剤組成物が複数成分の混合物である場合、各構成成分を、粉砕や分級等の調製工程を経た後に混合してもよく、各構成成分を混合した後に、粉砕や分級等の調製工程を行ってもよい。
 本発明に係る(A)ポリリン酸塩は、下記(a1)成分および(a2)成分から選ばれる1種以上であることが好ましい。
 (a1)成分は、下記一般式(1)で表される化合物である。 
Figure JPOXMLDOC01-appb-I000007
 一般式(1)中、n1は1~100の数を表し、Xはアンモニアまたは下記一般式(1-A)で表されるトリアジン誘導体を表し、pは0<p≦n1+2を満たす数を表す。
Figure JPOXMLDOC01-appb-I000008
 一般式(1-A)中、ZおよびZは、それぞれ独立に、-NR1112基、水酸基、メルカプト基、炭素原子数1~10の直鎖若しくは分岐のアルキル基、炭素原子数1~10の直鎖若しくは分岐のアルコキシ基、フェニル基およびビニル基からなる群より選択されるいずれかの基を表し、R11およびR12は、それぞれ独立に、水素原子、炭素原子数1~6の直鎖若しくは分岐のアルキル基またはメチロール基を表す。
 一般式(1-A)におけるZおよびZで表される炭素原子数1~10の直鎖または分岐のアルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、第二ブチル、第三ブチル、イソブチル、ペンチル、イソペンチル、第三ペンチル、ネオペンチル、ヘキシル、シクロヘキシル、ヘプチル、イソヘプチル、第三ヘプチル、n-オクチル、イソオクチル、第三オクチル、2-エチルヘキシル、ノニル、デシル等が挙げられ、炭素原子数1~10の直鎖または分岐のアルコキシ基としては、これらアルキル基から誘導される基が挙げられる。また、ZおよびZがとり得る-NR1112基におけるR11およびR12で表される炭素原子数1~6の直鎖または分岐のアルキル基としては、上記に挙げたアルキル基のうちの炭素原子数1~6のものが挙げられる。
 一般式(1-A)で表されるトリアジン誘導体の具体的な例としては、メラミン、アセトグアナミン、ベンゾグアナミン、アクリルグアナミン、2,4-ジアミノ-6-ノニル-1,3,5-トリアジン、2,4-ジアミノ-6-ハイドロキシ-1,3,5-トリアジン、2-アミノ-4,6-ジハイドロキシ-1,3,5-トリアジン、2,4-ジアミノ-6-メトキシ-1,3,5-トリアジン、2,4-ジアミノ-6-エトキシ-1,3,5-トリアジン、2,4-ジアミノ-6-プロポキシ-1,3,5-トリアジン、2,4-ジアミノ-6-イソプロポキシ-1,3,5-トリアジン、2,4-ジアミノ-6-メルカプト-1,3,5-トリアジン、2-アミノ-4,6-ジメルカプト-1,3,5-トリアジン等が挙げられる。
 (a1)成分は、単一の化合物でもよく、縮合度または塩の種類が異なる2種以上の混合物でもよい。(a1)成分は、一般式(1)中のXがメラミンであるメラミン塩化合物を含むことが好ましい。また、(a1)成分は、一般式(1)中のn1が2であるピロリン酸塩を含むことが好ましい。混合物で使用する場合は、n1が2であるピロリン酸塩の含有割合が高いほど好ましい。これにより、安定的に耐熱性を向上できる。
 (a2)成分は、下記一般式(2)で表される化合物である。 
Figure JPOXMLDOC01-appb-I000009
 一般式(2)中、n2は1~100の数を表し、Yは〔R2122N(CHNR2324〕、ピペラジン、または、ピペラジン環を含むジアミンを表し、R21、R22、R23およびR24は、それぞれ独立に、水素原子、または、炭素原子数1~5の直鎖若しくは分岐のアルキル基を表し、mは1~10の整数であり、qは0<q≦n2+2を満たす数を表す。
 一般式(2)中、Yで表される化合物としては、〔R2122N(CHNR2324〕、ピペラジンまたはピペラジン環を含むジアミン等が挙げられる。R21~R24は同一でも異なっていてもよく、水素原子、または、炭素原子数1~5の直鎖若しくは分岐のアルキル基を表す。
 上記R21~R24で表される炭素原子数1~5の直鎖若しくは分岐のアルキル基としては、例えば、上記ZおよびZで表されるアルキル基の具体例として挙げたもののうちの炭素原子数1~5のものが挙げられる。
 上記ピペラジン環を含むジアミンとしては、例えば、ピペラジンの2、3、5、6位の1箇所以上をアルキル基(好ましくは炭素原子数1~5のもの)で置換した化合物;ピペラジンの1位および/または4位のアミノ基の水素原子をアミノアルキル基(好ましくは炭素原子数1~5のもの)で置換した化合物が挙げられる。
 一般式(2)におけるYで表される化合物としては、具体的には、N,N,N’,N’-テトラメチルジアミノメタン、エチレンジアミン、N,N’-ジメチルエチレンジアミン、N,N’-ジエチルエチレンジアミン、N,N-ジメチルエチレンジアミン、N,N-ジエチルエチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラエチルエチレンジアミン、1,2-プロパンジアミン、1,3-プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、1、7-ジアミノへプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、ピペラジン、trans-2,5-ジメチルピペラジン、1,4-ビス(2-アミノエチル)ピペラジン、1,4-ビス(3-アミノプロピル)ピペラジン等が挙げられる。
 (a2)成分は、単一の化合物でもよく、縮合度または塩の種類が異なる2種以上の混合物でもよい。(a2)成分は、上記一般式(2)中のYがピペラジンであるピペラジン塩化合物を含むことが好ましい。また、(a2)成分は、上記一般式(2)中のn2が2であるピロリン酸塩を含むことが好ましい。混合物で使用する場合は、n2が2であるピロリン酸塩の含有割合が高いほど好ましい。これにより、安定的に耐熱性を向上できる。
 一般式(1)および一般式(2)で表される化合物の製造方法としては、例えば、ピロリン酸メラミンのようなリン酸類とメラミンとの塩は、ピロリン酸ナトリウムとメラミンとを任意の比率で混合した後、塩酸を加えて反応させ、水酸化ナトリウムで中和することにより得ることができる。また、例えば、リン酸類とピペラジンとの塩は、リン酸類とピペラジンとを任意の比率で水中またはメタノール水溶液中で反応させることにより、水難溶性の沈殿として、容易に得ることができる。このとき、原料のリン酸類の構成は、特に限定されない。また、一般式(1)または一般式(2)中のn1またはn2が2以上のリン酸塩化合物は、n1またはn2が1であるオルトリン酸塩を加熱縮合して得てもよい。
 以上により、一般式(1)および一般式(2)で表される化合物が得られる。これらは、単独で用いても、2種以上を組み合わせて用いてもよい。このような化合物を含有する難燃剤組成物は、樹脂材料に対し優れた難燃性を付与することができる。
 本発明の難燃剤組成物は、難燃性の点から、(A)成分が、(a1)成分および(a2)成分の両方を含有することが好ましい。特に、(A)成分において、一般式(1)中のXがメラミンである(a1)成分と、一般式(2)中のYがピペラジンである(a2)成分とを、併用することがより好ましい。また、(A)成分において、一般式(1)中のn1が2である(a1)成分と、一般式(2)中のn2が2である(a2)成分とを、併用することも好ましい。
 本発明に係る(A)成分が(a1)成分および(a2)成分の両方を含有する場合の含有割合は、難燃性の点から、前者と後者との質量比で、10:90~90:10であることが好ましく、20:80~60:40であることがより好ましく、25:75~55:45であることがさらにより好ましく、30:70~50:50であることが特に好ましい。
 本発明の難燃剤組成物は、必要に応じて、(A)ポリリン酸塩以外に、後述する任意成分を含有していてもよい。
 本発明の難燃剤組成物は、さらに、(B)成分として、シリコーンオイルおよびシランカップリング剤からなる群から選ばれる1種以上を含有することが好ましい。これにより、粉末状の難燃剤組成物の凝集防止、保存安定性の向上、および、合成樹脂への分散性向上を図ることができる。また、耐水性を改善できる。
 上記シリコーンオイルは、ポリシロキサン骨格を有する公知のシリコーンオイルであれば、特に限定なく使用できる。上記シリコーンオイルは、直鎖のポリシロキサン骨格を有するポリマーでもよく、ポリシロキサンの側鎖が全てメチル基でもよく、側鎖の一部がフェニル基を有してもよく、側鎖の一部が水素を有してもよい。
 シリコーンオイルの例としては、ポリシロキサンの側鎖および末端が全てメチル基であるジメチルシリコーンオイル、ポリシロキサンの側鎖および末端がメチル基であり、その側鎖の一部がフェニル基であるメチルフェニルシリコーンオイル、ポリシロキサンの側鎖および末端がメチル基であり、その側鎖の一部が水素であるメチルハイドロジェンシリコーンオイル等や、これらのコポリマーが挙げられる。これらのシリコーンオイルは、エポキシ変性や、アミノ変性、カルボキシ変性などによって、その一部が変性されていてもよい。これらは、単独で用いても2種以上を組み合わせて用いてもよい。
 シリコーンオイルの中でも、粉末状の難燃剤組成物の凝集防止、保存安定性の向上、および、合成樹脂への分散性向上の点から、ジメチルシリコーンオイルおよびメチルハイドロジェンシリコーンオイルが好ましく、メチルハイドロジェンシリコーンオイルがより好ましい。
 上記シランカップリング剤としては、例えば、アルケニル基を有するシランカップリング剤として、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、ビニルメチルジメトキシシラン、オクテニルトリメトキシシラン、アリルトリメトキシシラン、p-スチリルトリメトキシシラン等が挙げられ、アクリル基を有するシランカップリング剤として、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン等が挙げられ、メタクリル基を有するシランカップリング剤として、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、メタクリロキシオクチルトリメトキシシラン等が挙げられ、エポキシ基を有するシランカップリング剤として、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、グリシドキシオクチルトリメトキシシラン等が挙げられ、アミノ基を有するシランカップリング剤として、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N,N’-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランの塩酸塩等が挙げられ、イソシアヌレート基を有するシランカップリング剤として、トリス-(トリメトキシシリルプロピル)イソシアヌレートが挙げられ、メルカプト基を有するシランカップリング剤として、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン等が挙げられ、ウレイド基を有するシランカップリング剤として、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン等が挙げられ、スルフィド基を有するシランカップリング剤として、ビス(トリエトキシシリルプロピル)テトラスルフィドが挙げられ、チオエステル基を有するシランカップリング剤として、3-オクタノイルチオ-1-プロピルトリエトキシシランが挙げられ、イソシアネート基を有するシランカップリング剤として、3-イソシアネートプロピルトリエトキシシラン、3-イソシアネートプロピルトリメトキシシラン等が挙げられる。これらは、単独で用いても、2種以上を組み合わせて用いてもよい。
 これらシランカップリング剤の中でも、難燃性、ハンドリング性、さらには、難燃剤粉末の凝集の防止や保存安定性の向上の点から、エポキシ基を有するシランカップリング剤が好ましく、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、グリシドキシオクチルトリメトキシシランがより好ましい。
 本発明の難燃剤組成物が上記(B)成分を含有する場合、(B)成分を含有することによる上記の効果を高める観点から、本発明の難燃剤組成物中の(B)成分の含有量は、(A)成分100質量部に対して、0.01~5質量部が好ましく、0.01~3質量部がより好ましい。
 特に、本発明の難燃剤組成物にシリコーンオイルを含有させる場合のシリコーンオイルの含有量は、シリコーンオイルを含有することによる上記の効果を高める点から、(A)成分100質量部に対して、0.01~3質量部が好ましく、0.1~1質量部がより好ましい。
 特に、本発明の難燃剤組成物にシランカップリング剤を含有させる場合のシランカップリング剤の含有量は、シランカップリング剤を含有することによる上記の効果を高める点から、(A)成分100質量部に対して、0.01~3質量部が好ましく、0.1~1質量部がより好ましい。
 上記(B)成分の添加方法としては、例えば、(A)成分と(B)成分とを混合する方法、(B)成分を噴霧乾燥して添加・混合する方法等が挙げられる。また、(A)成分の全部または一部を(B)成分で表面処理することにより、難燃剤組成物に添加してもよい。
 本発明の難燃剤組成物は、助剤を含有してもよい。
 上記助剤としては、難燃助剤、ドリップ防止助剤、加工助剤等が挙げられる。
 上記難燃助剤は、金属酸化物や多価アルコール化合物を含むことができる。これにより、樹脂の難燃性を向上できる。
 上記金属酸化物としては、酸化チタン、酸化亜鉛、酸化カルシウム、酸化マグネシウム、酸化ジルコニウム、酸化バリウム、二酸化錫、二酸化鉛、酸化アンチモン、酸化モリブデン、酸化カドミウム等が挙げられる。これらは、単独で用いても、2種以上を組み合わせて用いてもよい。これにより、樹脂の難燃性を向上できる。また、粉粒状の難燃剤組成物中において、凝集が発生することを抑制できる。なお、上記のうちでも、難燃性の観点から、酸化亜鉛が好ましい。
 上記酸化亜鉛は、表面処理されていてもよく、表面処理されていなくてもよい。
 上記酸化亜鉛としては、例えば、酸化亜鉛1種(三井金属工業(株)製)、部分被膜型酸化亜鉛(三井金属工業(株)製)、ナノファイン50(平均粒径0.02μmの超微粒子酸化亜鉛:堺化学工業(株)製)、ナノファインK(平均粒径0.02μmの珪酸亜鉛被膜した超微粒子酸化亜鉛:堺化学工業(株)製)等の市販品を使用してもよい。
 上記多価アルコール化合物は、複数のヒドロキシ基が結合している化合物であり、例えば、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ポリペンタエリスリトール、ネオペンチルグリコール、トリメチロールプロパン、ジトリメチロールプロパン、1,3,5-トリス(2-ヒドロキシエチル)イソシアヌレート(THEIC)、ポリエチレングリコール、グリセリン、ジグリセリン、マンニトール、マルチトール、ラクチトール、ソルビトール、エリスリトール、キシリトール、キシロース、スクロース(シュクロース)、トレハロース、イノシトール、フルクトース、マルトース、ラクトース等が挙げられる。これら多価アルコール化合物のうち、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ポリペンタエリスリトール等の、ペンタエリスリトール、ペンタエリスリトールの縮合物の群から選ばれる1種以上が好ましく、ジペンタエリスリトール、ペンタエリスリトールの縮合物が特に好ましく、ジペンタエリスリトールが最も好ましい。また、THEICおよびソルビトールも好適に使用できる。これらは、単独で用いても、2種以上を組み合わせて用いてもよい。
 上記ドリップ防止助剤としては、層状ケイ酸塩、フッ素系ドリップ防止助剤、および、シリコーンゴム類が挙げられる。これにより、樹脂の燃焼時におけるドリップを抑制できる。
 上記層状ケイ酸塩は、層状のケイ酸塩鉱物であり、天然または合成のいずれでもよく、特に限定されるものではない。
 上記層状ケイ酸塩としては、例えば、モンモリロナイト、サポナイト、ヘクトライト、バイデライト、スティブンサイト、ノントロナイト等のスメクタイト系粘土鉱物や、バーミキュライト、ハロイサイト、膨潤性マイカ、タルク等が挙げられる。これらは、単独で用いても、2種以上を組み合わせて用いてもよい。ドリップ防止の観点から、これらの中でも、サポナイトまたはタルクが好ましく、価格等の経済性の観点から、特にタルクが好ましい。
 上記層状ケイ酸塩は、層間にカチオンを有していてもよい。
 上記カチオンは、金属イオンであってもよいし、その一部または全部が、有機カチオン、(第4級)アンモニウムカチオン、ホスホニウムカチオン等の、金属イオン以外のカチオンであってもよい。
 上記金属イオンとして、例えば、ナトリウムイオン、カリウムイオン、カルシウムイオン、マグネシウムイオン、リチウムイオン、ニッケルイオン、銅イオン、亜鉛イオン等が挙げられる。
 上記有機カチオンまたは第4級アンモニウムカチオンとして、例えば、ラウリルトリメチルアンモニウムカチオン、ステアリルトリメチルアンモニウムカチオン、トリオクチルメチルアンモニウムカチオン、ジステアリルジメチルアンモニウムカチオン、ジ硬化牛脂ジメチルアンモニウムカチオン、ジステアリルジベンジルアンモニウムカチオン等が挙げられる。これらは、単独で用いても、2種以上を組み合わせて用いてもよい。
 上記フッ素系ドリップ防止助剤の具体例としては、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン等のフッ素系樹脂や、パーフルオロメタンスルホン酸ナトリウム塩、パーフルオロ-n-ブタンスルホン酸カリウム塩、パーフルオロ-t-ブタンスルホン酸カリウム塩、パーフルオロオクタンスルホン酸ナトリウム塩、パーフルオロ-2-エチルヘキサンスルホン酸カルシウム塩等のパーフルオロアルカンスルホン酸アルカリ金属塩化合物、または、パーフルオロアルカンスルホン酸アルカリ土類金属塩等が挙げられる。中でも、ドリップ防止性の点から、ポリテトラフルオロエチレンが好ましい。これらは、単独で用いても、2種以上を組み合わせて用いてもよい。
 上記加工助剤としては、公知の加工助剤の中から適宜選択することができるが、アクリル酸系加工助剤を含んでもよい。
 上記アクリル酸系加工助剤としては、例えば、メチルメタクリレート、エチルメタクリレート、ブチルメタクリレート等のアルキルメタクリレートの単独重合体または共重合体;上記アルキルメタクリレートと、メチルアクリレート、エチルアクリレート、ブチルアクリレート等のアルキルアクリレートとの共重合体;上記アルキルメタクリレートと、スチレン、α-メチルスチレン、ビニルトルエン等の芳香族ビニル化合物との共重合体;上記アルキルメタクリレートと、アクリロニトリル、メタクリロニトリル等のビニルシアン化合物等との共重合体等を挙げることができる。これらは、単独で用いても、2種以上を組み合わせて用いてもよい。
 本発明の難燃剤組成物は、粉塵抑制剤を含んでもよい。
 上記粉塵抑制剤としては、脂肪族ジカルボン酸エーテルエステル化合物、または、上述のシランカップリング剤等が挙げられる。
 本発明の難燃剤組成物は、本発明の効果を損なわない範囲で、その他の成分を含んでもよい。その他の成分としては、通常、熱可塑性樹脂を改質するために使用される添加剤が使用でき、例えば、抗酸化剤、光安定剤、紫外線吸収剤、結晶核剤、透明化剤、可塑剤、滑剤、本発明に係る(A)ポリリン酸塩以外の難燃剤、強化材、架橋剤、帯電防止剤、金属石鹸、充填剤、防曇剤、プレートアウト防止剤、蛍光剤、防黴剤、殺菌剤、発泡剤、金属不活性剤、離型剤、顔料、染料等が挙げられる。これらは、単独で用いても、2種以上を組み合わせて用いてもよい。
 抗酸化剤としては、例えば、フェノール系酸化防止剤、ホスファイト系酸化防止剤、チオエーテル系酸化防止剤、その他の酸化防止剤等が挙げられる。
 フェノール系酸化防止剤としては、例えば、2,6-ジ-第三ブチル-p-クレゾール、2,6-ジフェニル-4-オクタデシロキシフェノール、ジステアリル(3,5-ジ-第三ブチル-4-ヒドロキシベンジル)ホスホネート、1,6-ヘキサメチレンビス〔(3,5-ジ-第三ブチル-4-ヒドロキシフェニル)プロピオン酸アミド〕、4,4’-チオビス(6-第三ブチル-m-クレゾール)、2,2’-メチレンビス(4-メチル-6-第三ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-第三ブチルフェノール)、4,4’-ブチリデンビス(6-第三ブチル-m-クレゾール)、2,2’-エチリデンビス(4,6-ジ-第三ブチルフェノール)、2,2’-エチリデンビス(4-第二ブチル-6-第三ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-第三ブチルフェニル)ブタン、1,3,5-トリス(2,6-ジメチル-3-ヒドロキシ-4-第三ブチルベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ-第三ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ-第三ブチル-4-ヒドロキシベンジル)-2,4,6-トリメチルベンゼン、2-第三ブチル-4-メチル-6-(2-アクリロイルオキシ-3-第三ブチル-5-メチルベンジル)フェノール、ステアリル(3,5-ジ-第三ブチル-4-ヒドロキシフェニル)プロピオネート、ペンタエリスリトールテトラキス〔3-(3,5-ジ-第三ブチル-4-ヒドロキシフェニル)プロピオネート〕、チオジエチレングリコールビス〔(3,5-ジ-第三ブチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサメチレンビス〔(3,5-ジ-第三ブチル-4-ヒドロキシフェニル)プロピオネート〕、ビス〔3,3-ビス(4-ヒドロキシ-3-第三ブチルフェニル)ブチリックアシッド〕グリコールエステル、ビス〔2-第三ブチル-4-メチル-6-(2-ヒドロキシ-3-第三ブチル-5-メチルベンジル)フェニル〕テレフタレート、1,3,5-トリス〔(3,5-ジ-第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシエチル〕イソシアヌレート、3,9-ビス〔1,1-ジメチル-2-{(3-第三ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル〕-2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン、トリエチレングリコールビス〔(3-第三ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート〕等が挙げられる。これらフェノール系酸化防止剤は、1種を単独で用いることができ、2種以上を併用して用いることができる。
 ホスファイト系酸化防止剤としては、例えば、トリスノニルフェニルホスファイト、トリス〔2-第三ブチル-4-(3-第三ブチル-4-ヒドロキシ-5-メチルフェニルチオ)-5-メチルフェニル〕ホスファイト、トリデシルホスファイト、オクチルジフェニルホスファイト、ジデシルモノフェニルホスファイト、ビス(トリデシル)ペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ-第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-第三ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4,6-トリ-第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト、テトラキス(トリデシル)イソプロピリデンジフェノールジホスファイト、テトラキス(トリデシル)-4,4’-n-ブチリデンビス(2-第三ブチル-5-メチルフェノール)ジホスファイト、ヘキサキス(トリデシル)-1,1,3-トリス(2-メチル-4-ヒドロキシ-5-第三ブチルフェニル)ブタントリホスファイト、テトラキス(2,4-ジ-第三ブチルフェニル)ビフェニレンジホスホナイト、9,10-ジヒドロ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、2,2’-メチレンビス(4,6-第三ブチルフェニル)-2-エチルヘキシルホスファイト、2,2’-メチレンビス(4,6-第三ブチルフェニル)-オクタデシルホスファイト、2,2’-エチリデンビス(4,6-ジ-第三ブチルフェニル)フルオロホスファイト、トリス(2-〔(2,4,8,10-テトラキス-第三ブチルジベンゾ〔d,f〕〔1,3,2〕ジオキサホスフェピン-6-イル)オキシ〕エチル)アミン、2-エチル-2-ブチルプロピレングリコールと2,4,6-トリ-第三ブチルフェノールのホスファイト等が挙げられる。これらホスファイト系酸化防止剤は、1種を単独で用いることができ、2種以上を併用して用いることができる。
 チオエーテル系酸化防止剤としては、例えば、3,3’-チオジプロピオン酸、アルキル(C12-14)チオプロピオン酸、ジ(ラウリル)-3,3’-チオジプロピオネート、3,3’-チオビスプロピオン酸ジトリデシル、ジ(ミリスチル)-3,3’-チオジプロピオネート、ジ(ステアリル)-3,3’-チオジプロピオネート、ジ(オクタデシル)-3,3’-チオジプロピオネート、ラウリルステアリルチオジプロピオネート、テトラキス[メチレン-3-(ドデシルチオ)プロピオネート]メタン、チオビス(2-tert-ブチル-5-メチル-4,1-フェニレン)ビス(3-(ドデシルチオ)プロピオナート)、2,2’-チオジエチレンビス(3-アミノブテノエート)、4,6-ビス(オクチルチオメチル)-o-クレゾール、2,2’-チオジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]、2,2’-チオビス(4-メチル-6-tert-ブチルフェノール)、2,2’-チオビス(6-tert-ブチル-p-クレゾール)、2-エチルヘキシル-(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)チオアセテート、4,4’-チオビス(6-tert-ブチル-3-メチルフェノール)、4,4’-チオビス(4-メチル-6-tert-ブチルフェノール)、4,4’-[チオビス(メチレン)]ビス(2-tert-ブチル-6-メチル-1-ヒドロキシベンジル)、ビス(4,6-ジ-tert-ブチルフェノール-2-イル)スルファイド、トリデシル-3,5-ジ-tert-ブチル-4-ヒドロキシベンジルチオアセテート、1,4-ビス(オクチルチオメチル)-6-メチルフェノール、2,4-ビス(ドデシルチオメチル)-6-メチルフェノール、ジステアリル-ジサルファイド、ビス(メチル-4-[3-n-アルキル(C12/C14)チオプロピオニルオキシ]5-tert-ブチルフェニル)スルファイド等が挙げられる。これらチオエーテル系酸化防止剤は、1種を単独で用いることができ、2種以上を併用して用いることができる。
 その他の酸化防止剤としては、例えば、N-ベンジル-α-フェニルニトロン、N-エチル-α-メチルニトロン、N-オクチル-α-ヘプチルニトロン、N-ラウリル-α-ウンデシルニトロン、N-テトラデシル-α-トリデシルニトロン、N-ヘキサデシル-α-ペンタデシルニトロン、N-オクチル-α-ヘプタデシルニトロン、N-ヘキサデシル-α-ヘプタデシルニトロン、N-オクタデシル-α-ペンタデシルニトロン、N-ヘプタデシル-α-ヘプタデシルニトロン、N-オクタデシル-α-ヘプタデシルニトロン等のニトロン化合物、3-アリールベンゾフラン-2(3H)-オン、3-(アルコキシフェニル)ベンゾフラン-2-オン、3-(アシルオキシフェニル)ベンゾフラン-2(3H)-オン、5,7-ジ-tert-ブチル-3-(3,4-ジメチルフェニル)-ベンゾフラン-2(3H)-オン、5,7-ジ-tert-ブチル-3-(4-ヒドロキシフェニル)-ベンゾフラン-2(3H)-オン、5,7-ジ-tert-ブチル-3-{4-(2-ヒドロキシエトキシ)フェニル}-ベンゾフラン-2(3H)-オン、6-(2-(4-(5,7-ジ-tert-2-オキソ-2,3-ジヒドロベンゾフラン-3-イル)フェノキシ)エトキシ)-6-オキソヘキシル-6-((6-ヒドロキシヘキサノイル)オキシ)ヘキサノエート、5-ジ-tert-ブチル-3-(4-((15-ヒドロキシ-3,6,9,13-テトラオキサペンタデシル)オキシ)フェニル)ベンゾフラン-2(3H)オン等のベンゾフラン化合物等が挙げられる。これらその他の酸化防止剤は、1種を単独で用いることができ、2種以上を併用して用いることができる。
 光安定剤としては、例えば、2,2,6,6-テトラメチル-4-ピペリジルステアレート、1,2,2,6,6-ペンタメチル-4-ピペリジルステアレート、2,2,6,6-テトラメチル-4-ピペリジルベンゾエート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)・ビス(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)・ビス(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-ブチル-2-(3,5-ジ-第三ブチル-4-ヒドロキシベンジル)マロネート、1-(2-ヒドロキシエチル)-2,2,6,6-テトラメチル-4-ピペリジノ-ル/コハク酸ジエチル重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-モルホリノ-s-トリアジン重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-第三オクチルアミノ-s-トリアジン重縮合物、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕-1,5,8,12-テトラアザドデカン、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕-1,5,8-12-テトラアザドデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕アミノウンデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕アミノウンデカン、ビス(2,2,6,6-テトラメチル-1-オクチルオキシ-4-ピペリジル)デカンジオアート、ビス(2,2,6,6-テトラメチル-1-ウンデシルオキシピペリジン-4-イル)カーボネート、2,2,6,6-テトラメチル-4-ピペリジルメタクリレート、1,2,3,4-ブタンテトラカルボン酸、2,2-ビス(ヒドロキシメチル)-1,3-プロパンジオールおよび3-ヒドロキシ-2,2-ジメチルプロパナールとのポリマー、1,2,2,6,6-ペンタメチル-4-ピペリジニルエステル、1,3-ビス(2,2,6,6-テトラメチルピペリジン-4-イル)2,4-ジトリデシルベンゼン-1,2,3,4,テトラカルボキシレート、ビス(1-オクチルオキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ポリ[[6-[(1,1,3,3-テトラメチルブチル)アミノ]-1,3,5-トリアジン-2,4-ジイル][(2,2,6,6-テトラメチル-4-ピペリジニル)イミノ]-1,6-ヘキサンジイル[(2,2,6,6-テトラメチル-4-ピペリジニル)イミノ]])、BASF社製TINUVIN NOR 371等が挙げられる。これら光安定剤は、1種を単独で用いることができ、2種以上を併用して用いることができる。
 紫外線吸収剤としては、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、5,5’-メチレンビス(2-ヒドロキシ-4-メトキシベンゾフェノン)等の2-ヒドロキシベンゾフェノン類;2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-第三ブチルフェニル)-5-クロロベンゾトリアゾ-ル、2-(2’-ヒドロキシ-3’-第三ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾ-ル、2-(2’-ヒドロキシ-5’-第三オクチルフェニル)ベンゾトリアゾ-ル、2-(2’-ヒドロキシ-3’,5’-ジクミルフェニル)ベンゾトリアゾ-ル、2,2’-メチレンビス(4-第三オクチル-6-(ベンゾトリアゾリル)フェノール)、2-(2’-ヒドロキシ-3’-第三ブチル-5’-カルボキシフェニル)ベンゾトリアゾール等の2-(2’-ヒドロキシフェニル)ベンゾトリアゾール類;フェニルサリシレート、レゾルシノールモノベンゾエート、2,4-ジ-第三ブチルフェニル-3,5-ジ-第三ブチル-4-ヒドロキシベンゾエート、2,4-ジ-第三アミルフェニル-3,5-ジ-第三ブチル-4-ヒドロキシベンゾエート、ヘキサデシル-3,5-ジ-第三ブチル-4-ヒドロキシベンゾエート等のベンゾエート類;2-エチル-2’-エトキシオキザニリド、2-エトキシ-4’-ドデシルオキザニリド等の置換オキザニリド類;エチル-α-シアノ-β、β-ジフェニルアクリレート、メチル-2-シアノ-3-メチル-3-(p-メトキシフェニル)アクリレート等のシアノアクリレート類;2-(2-ヒドロキシ-4-オクトキシフェニル)-4,6-ビス(2,4-ジ-第三ブチルフェニル)-s-トリアジン、2-(2-ヒドロキシ-4-メトキシフェニル)-4,6-ジフェニル-s-トリアジン、2-(2-ヒドロキシ-4-プロポキシ-5-メチルフェニル)-4,6-ビス(2,4-ジ-第三ブチルフェニル)-s-トリアジン等のトリアリールトリアジン類が挙げられる。これら紫外線吸収剤は、1種を単独で用いることができ、2種以上を併用して用いることができる。
 結晶核剤としては、例えば、安息香酸ナトリウム、4-第三ブチル安息香酸アルミニウム塩、アジピン酸ナトリウム、2ナトリウムビシクロ[2.2.1]ヘプタン-2,3-ジカルボキシレート等のカルボン酸金属塩、ナトリウムビス(4-第三ブチルフェニル)ホスフェート、ナトリウム-2,2’-メチレンビス(4,6-ジ第三ブチルフェニル)ホスフェート、リチウム-2,2’-メチレンビス(4,6-ジ第三ブチルフェニル)ホスフェート等のリン酸エステル金属塩、ジベンジリデンソルビトール、ビス(メチルベンジリデン)ソルビトール、ビス(3,4-ジメチルベンジリデン)ソルビトール、ビス(p-エチルベンジリデン)ソルビトール、ビス(ジメチルベンジリデン)ソルビトール、1,2,3-トリデオキシ-4,6:5,7-ビス-O-((4-プロピルフェニル)メチレン)-ノニトール、1,3:2,4-ビス(p-メチルベンジリデン)ソルビトール、1,3:2,4-ビス-O-ベンジリデン-D-グルシトール(ジベンジリデンソルビトール)等の多価アルコール誘導体、N,N’,N”-トリス[2-メチルシクロヘキシル]-1,2,3-プロパントリカルボキサミド、N,N’,N”-トリシクロヘキシル-1,3,5-ベンゼントリカルボキサミド、N,N’-ジシクロヘキシル-ナフタレンジカルボキサミド、1,3,5-トリ(ジメチルイソプロポイルアミノ)ベンゼン等のアミド化合物等を挙げることができる。これら結晶核剤は、1種を単独で用いることができ、2種以上を併用して用いることができる。
 可塑剤としては、例えば、エポキシ化大豆油、エポキシ化亜麻仁油、エポキシ化脂肪酸オクチルエステル等のエポキシ系や、メタクリレート系や、ジカルボン酸と多価アルコールとの重縮合物、多価カルボン酸と多価アルコールとの重縮合物等のポリエステル系や、ジカルボン酸と多価アルコールとアルキレングリコールとの重縮合物、ジカルボン酸と多価アルコールとアリーレングリコールとの重縮合物、多価カルボン酸と多価アルコールとアルキレングリコールとの重縮合物、多価カルボン酸と多価アルコールとアリーレングリコールとの重縮合物等のポリエーテルエステル系や、アジピン酸エステル、コハク酸エステル等の脂肪族エステル系や、フタル酸エステル、テレフタル酸エステル、トリメリット酸エステル、ピロメリット酸エステル、安息香酸エステル等の芳香族エステル系などが挙げられる。これら可塑剤は、1種を単独で用いることができ、2種以上を併用して用いることができる。
 滑剤としては、流動パラフィン、天然パラフィン、マイクロワックス、合成パラフィン、低分子量ポリエチレン、ポリエチレンワックス等の純炭化水素系滑剤;ハロゲン化炭化水素系滑剤;高級脂肪酸、オキシ脂肪酸等の脂肪酸系滑剤;脂肪酸アミド、ビス脂肪酸アミド等の脂肪酸アミド系滑剤;脂肪酸の低級アルコールエステル、グリセリド等の脂肪酸の多価アルコールエステル、脂肪酸のポリグリコールエステル、脂肪酸の脂肪アルコールエステル(エステルワックス)等のエステル系滑剤;金属石鹸、脂肪アルコール、多価アルコール、ポリグリコール、ポリグリセロール、脂肪酸と多価アルコールの部分エステル、脂肪酸とポリグリコール、ポリグリセロールの部分エステル系の滑剤や、シリコーンオイル、鉱油等が挙げられる。これら滑剤は、1種を単独で用いることができ、2種以上を併用して用いることができる。
 本発明に係る(A)ポリリン酸塩以外の難燃剤としては、例えば、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、クレジル-2,6-ジキシレニルホスフェート、レゾルシノールビス(ジフェニルホスフェート)、(1-メチルエチリデン)-4,1-フェニレンテトラフェニルジホスフェート、1,3-フェニレンテトラキス(2,6-ジメチルフェニル)ホスフェート、株式会社ADEKA製の商品名「アデカスタブFP-500」、「アデカスタブFP-600」、「アデカスタブFP-800」、「アデカスタブFP-900L」等の芳香族リン酸エステル、フェニルホスホン酸ジビニル、フェニルホスホン酸ジアリル、フェニルホスホン酸(1-ブテニル)等のホスホン酸エステル、ジフェニルホスフィン酸フェニル、ジフェニルホスフィン酸メチル、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド誘導体等のホスフィン酸エステル、ジエチルホスフィン酸アルミニウム、ジエチルホスフィン酸亜鉛等のジアルキルホスフィン酸塩、ビス(2-アリルフェノキシ)ホスファゼン、ジクレジルホスファゼン等のホスファゼン化合物、赤リン等の無機リン系難燃剤、水酸化マグネシウム、水酸化アルミニウム等の金属水酸化物、臭素化ビスフェノールA型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂、ヘキサブロモベンゼン、ペンタブロモトルエン、エチレンビス(ペンタブロモフェニル)、エチレンビステトラブロモフタルイミド、1,2-ジブロモ-4-(1,2-ジブロモエチル)シクロヘキサン、テトラブロモシクロオクタン、ヘキサブロモシクロドデカン、ビス(トリブロモフェノキシ)エタン、臭素化ポリフェニレンエーテル、臭素化ポリスチレンおよび2,4,6-トリス(トリブロモフェノキシ)-1,3,5-トリアジン、トリブロモフェニルマレイミド、トリブロモフェニルアクリレート、トリブロモフェニルメタクリレート、テトラブロモビスフェノールA型ジメタクリレート、ペンタブロモベンジルアクリレート、臭素化スチレン等の臭素系難燃剤等が挙げられる。これら難燃剤は1種を単独で用いることができ、2種以上を併用して用いることができる。
 帯電防止剤としては、例えば、脂肪酸第四級アンモニウムイオン塩、ポリアミン四級塩等のカチオン系帯電防止剤や、高級アルコールリン酸エステル塩、高級アルコールEO付加物、ポリエチレングリコール脂肪酸エステル、アニオン型のアルキルスルホン酸塩、高級アルコール硫酸エステル塩、高級アルコールエチレンオキシド付加物硫酸エステル塩、高級アルコールエチレンオキシド付加物リン酸エステル塩等のアニオン系帯電防止剤や、多価アルコール脂肪酸エステル、ポリグリコールリン酸エステル、ポリオキシエチレンアルキルアリルエーテル等のノニオン系帯電防止剤や、アルキルジメチルアミノ酢酸ベタイン等の両性型アルキルベタイン、イミダゾリン型両性界面活性剤等の両性帯電防止剤が挙げられる。これら帯電防止剤は、1種を単独で用いることができ、2種以上を併用して用いることができる。
 充填剤としては、例えば、タルク、マイカ、炭酸カルシウム、酸化カルシウム、水酸化カルシウム、炭酸マグネシウム、水酸化マグネシウム、酸化マグネシウム、硫酸マグネシウム、水酸化アルミニウム、硫酸バリウム、ガラス粉末、ガラス繊維、クレー、ドロマイト、シリカ、アルミナ、チタン酸カリウムウィスカー、ワラステナイト、繊維状マグネシウムオキシサルフェート、モンモリロナイト等を挙げることができ、粒子径(繊維状においては繊維径や繊維長およびアスペクト比)を適宜選択して用いることができる。これら充填剤は、1種を単独で用いることができ、2種以上を併用して用いることができる。また、充填剤は、必要に応じて表面処理したものを用いることができる。
 顔料としては、例えば、ピグメントレッド1、2、3、9、10、17、22、23、31、38、41、48、49、88、90、97、112、119、122、123、144、149、166、168、169、170、171、177、179、180、184、185、192、200、202、209、215、216、217、220、223、224、226、227、228、240、254;ピグメントオレンジ13、31、34、36、38、43、46、48、49、51、52、55、59、60、61、62、64、65、71;ピグメントイエロー1、3、12、13、14、16、17、20、24、55、60、73、81、83、86、93、95、97、98、100、109、110、113、114、117、120、125、126、127、129、137、138、139、147、148、150、151、152、153、154、166、168、175、180、185;ピグメントグリーン7、10、36;ピグメントブルー15、15:1、15:2、15:3、15:4、15:5、15:6、22、24、56、60、61、62、64;ピグメントバイオレット1、19、23、27、29、30、32、37、40、50等が挙げられる。これら顔料は、1種を単独で用いることができ、2種以上を併用して用いることができる。
 染料としては、例えば、アゾ染料、アントラキノン染料、インジゴイド染料、トリアリールメタン染料、キサンテン染料、アリザリン染料、アクリジン染料、スチルベン染料、チアゾール染料、ナフトール染料、キノリン染料、ニトロ染料、インダミン染料、オキサジン染料、フタロシアニン染料、シアニン染料等が挙げられる。これら染料は、1種を単独で用いることができ、2種以上を併用して用いることができる。
 なお、上述の助剤、粉塵抑制剤およびその他の成分からなる添加剤から選ばれる1種以上については、上記難燃剤組成物に配合してもよく、難燃剤組成物と熱可塑性樹脂とを含む難燃性樹脂組成物に配合してもよい。
 本発明の難燃剤組成物は、合成樹脂の難燃化に効果があり、合成樹脂に配合して、難燃性樹脂組成物として好ましく用いられる。
 次に、本発明の難燃性樹脂組成物について説明する。
<難燃性樹脂組成物>
 本発明の難燃性樹脂組成物は、上述の難燃剤組成物と熱可塑性樹脂とを含む。
 上記難燃剤組成物の含有量は、熱可塑性樹脂100質量部に対して、通常10~400質量部であり、好ましくは15~200質量部であり、より好ましくは20~70質量部である。これにより、熱可塑性樹脂の難燃性を十分に向上させることができる。
 上記熱可塑性樹脂としては、ポリオレフィン系樹脂、スチレン系樹脂、ポリエステル系樹脂、ポリエーテル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、含ハロゲン樹脂等の合成樹脂が挙げられる。これらは、単独で用いても、2種以上を組み合わせて用いてもよい。
 さらに上記熱可塑性樹脂の例を挙げると、例えば、石油樹脂、クマロン樹脂、ポリ酢酸ビニル、アクリル樹脂、ポリメチルメタクリレート、ポリビニルアルコール、ポリビニルホルマール、ポリビニルブチラール、ポリフェニレンサルファイド、ポリウレタン、繊維素系樹脂、ポリイミド樹脂、ポリサルフォン、液晶ポリマー等の熱可塑性樹脂およびこれらのブレンド物を用いることができる。
 また、上記熱可塑性樹脂は、イソプレンゴム、ブタジエンゴム、エチレン-プロピレンゴム、エチレン-プロピレン-ジエンゴム、アクリロニトリル-ブタジエン共重合ゴム、スチレン-ブタジエン共重合ゴム、オレフィン系エラストマー、スチレン系エラストマー、ポリエステル系エラストマー、ニトリル系エラストマー、ナイロン系エラストマー、塩化ビニル系エラストマー、ポリアミド系エラストマー、ポリウレタン系エラストマー等の熱可塑性エラストマーであってもよく、これら熱可塑性エラストマーを併用してもよい。
 上記熱可塑性樹脂の具体例としては、特に限定されないが、例えば、ポリプロピレン、高密度ポリエチレン、低密度ポリエチレン、直鎖低密度ポリエチレン、ポリブテン-1、ポリ3-メチルペンテン、ポリ4-メチルペンテン、エチレン/プロピレンブロックまたはランダム共重合体などのα-オレフィン重合体等のポリオレフィン系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリヘキサメチレンテレフタレート等の熱可塑性直鎖ポリエステル系樹脂;ポリフェニレンスルフィド等のポリスルフィド系樹脂;ポリカプロラクトン等のポリ乳酸系樹脂;ポリヘキサメチレンアジパミド等の直鎖ポリアミド系樹脂;シンジオタクチックポリスチレン等の結晶性のポリスチレン系樹脂等が挙げられる。
 これらの熱可塑性樹脂は、分子量、重合度、密度、軟化点、溶媒への不溶分の割合、立体規則性の程度、触媒残渣の有無、原料となるモノマーの種類や配合比率、重合触媒の種類(例えば、チーグラー触媒、メタロセン触媒等)等に関わらず使用することができる。これら熱可塑性樹脂の中でも、優れた難燃性を付与できる点から、ポリオレフィン系樹脂、ポリスチレン系樹脂およびそれらの共重合体からなる群から選ばれる1種以上が好ましく、ポリオレフィン系樹脂がより好ましく、ポリプロピレン、高密度ポリエチレン、低密度ポリエチレン、直鎖低密度ポリエチレンがさらにより好ましく、それらと熱可塑性エラストマーを併用する場合も好ましい。
 本発明の難燃性樹脂組成物は、本発明の難燃剤組成物に加えて、必要に応じて、上述の助剤、粉塵抑制剤およびその他の成分からなる添加剤から選ばれる1種以上を含んでもよい。これらは、単独で用いても、2種以上を組み合わせて用いてもよい。
 本発明の難燃性樹脂組成物における添加剤(充填剤、および、本発明に係る(A)ポリリン酸塩以外の難燃剤を除く)の含有量は、それぞれ、熱可塑性樹脂100質量部に対して、例えば、0.001~15質量部であり、好ましくは0.005~10質量部であり、より好ましくは0.01~5質量部である。このような数値範囲とすることにより、添加剤の効果の向上が得られる。
 本発明の難燃性樹脂組成物に充填剤を配合する場合のその含有量は、熱可塑性樹脂100質量部に対して、例えば、1~100質量部であり、好ましくは3~80質量部であり、より好ましくは5~50質量部である。
 本発明の難燃性樹脂組成物に、本発明に係る(A)ポリリン酸塩以外の難燃剤を配合する場合のその含有量は、熱可塑性樹脂100質量部に対して、例えば、1~200質量部であり、好ましくは3~150質量部であり、より好ましくは5~80質量部である。
 上記難燃性樹脂組成物は、熱可塑性樹脂としてポリオレフィン系樹脂やオレフィン系エラストマーを使用する場合には、樹脂中の触媒残渣を中和するために、本発明の効果を損なわない範囲で、公知の中和剤を含有することが好ましい。中和剤としては、例えば、ステアリン酸カルシウム、ステアリン酸リチウム、ステアリン酸ナトリウム、ステアリン酸マグネシウム等の脂肪酸金属塩、エチレンビス(ステアリン酸アミド)、エチレンビス(12-ヒドロキシステアリン酸アミド)、ステアリン酸アミド等の脂肪酸アミド化合物、または、ハイドロタルサイト等の無機化合物が挙げられる。これら中和剤は1種を単独で用いることができ、2種以上を併用して用いることができる。これら中和剤の使用量は、熱可塑性樹脂100質量部に対して、0.001~3質量部となる量が好ましく、0.01~1質量部となる量がより好ましい。
 次に、上記難燃性樹脂組成物の製造方法について説明する。
 本発明の難燃性樹脂組成物は、上述の難燃剤組成物と熱可塑性樹脂とを混合することにより、得ることができる。必要に応じて、上記添加剤を混合してもよい。添加剤は、難燃剤組成物中に混合してもよく、難燃剤組成物と熱可塑性樹脂との混合物中に混合してもよい。
 上述の難燃剤組成物と熱可塑性樹脂とを混合する方法としては、一般に用いられる公知の方法をそのまま適用することができる。例えば、難燃剤組成物、熱可塑性樹脂、および、必要に応じて添加剤を、通常のブレンダー、ミキサー等の混合機で混合する方法、押出し機等で溶融混練する方法、溶媒と共に混合して溶液流延する方法等が挙げられる。
 本発明の難燃性樹脂組成物は、各種形態で使用することができ、例えば、ペレット状、顆粒状、粉末状等が挙げられる。取り扱い性の観点からは、ペレット状が好ましい。
<成形品>
 本発明の成形品は、上述の難燃性樹脂組成物を用いてなるものである。上述の難燃性樹脂組成物を用いて成形することで、成形品を製造することができる。
 上記成形方法としては、特に限定されるものではなく、射出成形法、押出成形法、ブロー成形法、回転成形法、真空成形法、インフレーション成形法、カレンダー成形法、スラッシュ成形法、ディップ成形法、発泡成形法、付加製造法等が挙げられる。この中でも、射出成形法、押出成形法、ブロー成形法が好ましい。
 これにより、樹脂板、シート、フィルム、異形品等の種々の形状の成形品が製造できる。
 本発明の難燃性樹脂組成物を用いてなる成形品は、各種の用途に用いることができ、例えば、電気・電子部品、機械部品、光学機器、建築部材、自動車部品および日用品等、各種の用途に利用することができる。この中でも、難燃性の観点から、電気・電子部品、建築部材に好適に用いることができる。
 本発明の難燃性樹脂組成物およびその成形品は、例えば、電気・電子・通信、農林水産、鉱業、建設、食品、繊維、衣類、医療、石炭、石油、ゴム、皮革、自動車、精密機器、木材、建材、土木、家具、印刷、楽器等の幅広い産業分野に使用することができる。具体的には、本発明の難燃性樹脂組成物およびその成形品は、プリンター、パソコン、ワープロ、キーボード、PDA(小型情報端末機)、電話機、複写機、ファクシミリ、ECR(電子式金銭登録機)、電卓、電子手帳、カード、ホルダー、文具等の事務、OA機器、洗濯機、冷蔵庫、掃除機、電子レンジ、照明器具、ゲーム機、アイロン、コタツ等の家電機器、TV、VTR、ビデオカメラ、ラジカセ、テープレコーダー、ミニディスク、CDプレーヤー、スピーカー、液晶ディスプレー等のAV機器、コネクター、リレー、コンデンサー、スイッチ、プリント基板、コイルボビン、半導体封止材料、LED封止材料、電線、ケーブル、トランス、偏向ヨーク、分電盤、時計等の電気・電子部品および通信機器等に用いることができる。
 また、本発明の難燃性樹脂組成物およびその成形品は、例えば、座席(詰物、表地等)、ベルト、天井張り、コンパーチブルトップ、アームレスト、ドアトリム、リアパッケージトレイ、カーペット、マット、サンバイザー、ホイルカバー、マットレスカバー、エアバック、絶縁材、吊り手、吊り手帯、電線被覆材、電気絶縁材、塗料、コーティング材、上張り材、床材、隅壁、カーペット、壁紙、壁装材、外装材、内装材、屋根材、デッキ材、壁材、柱材、敷板、塀の材料、骨組および繰形、窓およびドア形材、こけら板、羽目、テラス、バルコニー、防音板、断熱板、窓材等の、自動車、車両、船舶、航空機、建物、住宅等の材料、建築用材料や土木材料、衣料、カーテン、シーツ、合板、合繊板、絨毯、玄関マット、シート、バケツ、ホース、容器、眼鏡、鞄、ケース、ゴーグル、スキー板、ラケット、テント、楽器等の、生活用品、スポーツ用品等の各分野において使用することができる。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 以下、本発明について実施例を参照して詳細に説明するが、本発明は、これらの実施例の記載により、何ら限定されるものではない。
<製造例1>
(a1)成分(メラミン塩1~2)の製造
 オルトリン酸メラミンを220℃で6時間、固相状態で加熱縮合反応させて、ピロリン酸メラミンを主成分とするメラミン塩1を製造した。メラミン塩1は精製せずにそのまま用いた。メラミン塩1中のピロリン酸メラミンの純度は、98.5%であった。
 上記で得られたメラミン塩1をジェットミル粉砕機(Co-Jet system α-mk IV、株式会社セイシン企業製)を用いて粉砕し、メラミン塩2を得た。
<製造例2>
(a2)成分(ピペラジン塩1~5)の製造
 二リン酸ピペラジンを250℃で1時間、固相状態で加熱縮合反応させて、ピロリン酸ピペラジンを主成分とするピペラジン塩1を製造した。ピペラジン塩1は精製せずにそのまま用いた。ピペラジン塩1中のピロリン酸ピペラジンの純度は、99.0%であった。
 上記で得られたピペラジン塩1をジェットミル粉砕機(Co-Jet system α-mk IV、株式会社セイシン企業製)を用いて粉砕し、ピペラジン塩2を得た。また、ピペラジン塩1をフードミキサー(BM-RT08、象印マホービン株式会社製)で粉砕し、目開き250μm、150μm、75μmの篩でふるい分けを行った。ふるい分けは、超音波ふるい(DGS35-50-S、Artech Ultrasonic Systems社製)およびデジタルマイクロプレートシェーカー(6780-NP、CORNING社製)を使用し、超音波出力50W、超音波周波数35kHz、回転速度300rpmの条件で行った。75μmパスのものをピペラジン塩3、150μmパスかつ75μmオンのものをピペラジン塩4、250μmパスかつ150μmオンのものをピペラジン塩5とした。
 上記メラミン塩1およびピペラジン塩1の純度は、イオンクロマトグラフ測定装置ICS-2100(サーモフィッシャーサイエンティフィック株式会社製)、Dionex IonPac AS-19カラム(サーモフィッシャーサイエンティフィック株式会社製)および電気伝導度検出器を用いて測定した。
<難燃剤組成物A1~A4、B1~B4、C1~C4、D1~D4およびE1~E4の製造>
 下記の表2~3に記載の割合で各成分を計量し、ヘンシェルミキサー(FM100、三井鉱山(株)製)を用いて、回転速度850rpm、槽内温度150℃で10分間混合して、難燃剤組成物A1~A4、B1~B4、C1~C4、D1~D4およびE1~E4を得た。
(粒度分布の測定)
 上記で得られた各メラミン塩、各ピペラジン塩および各難燃剤組成物のそれぞれについて、サンプル20mgおよびメタノール5mLを10mLのバイアルに入れ、出力70W、周波数42kHzの条件で超音波照射を3分間行い、各組成物の分散溶液を得た。得られた分散溶液の全量を粒度分布測定に供した。測定は、レーザー回折式粒度分布測定器(Microtrac MT3000II)を用いて、湿式条件下(溶媒:メタノール、超音波照射(30W、40kHz):3分間、脱気:2回)で、体積基準にて行った。
 上記で測定した粒度分布における積算値から、各メラミン塩、各ピペラジン塩および各難燃剤組成物の累積50%粒径D50、並びに、(p1)粒径80μm未満である粒子、(p2)粒径80μm以上170μm未満である粒子、および、(p3)粒径170μm以上である粒子の割合を求めた。結果を、下記の表1~3に示す。
〔実施例1~10および比較例1~10〕
<難燃性樹脂組成物の製造>
 下記の表4~6に記載の組成のうち上記難燃剤組成物以外の各成分を配合して得られたポリプロピレン樹脂組成物に対し、上記難燃剤組成物A1~A4、B1~B4、C1~C4、D1~D4、E1~E4を各表に記載の質量比(質量部)で配合して、実施例1~10および比較例1~10の難燃性樹脂組成物を得た。
<評価試験用試験片の作製>
 上記で得られた難燃性樹脂組成物を、二軸押出機(TEX25α III、(株)日本製鋼所製)にて、シリンダー温度180~230℃、スクリュー速度150rpmの条件で溶融混練し、難燃性樹脂組成物のペレットを得た。得られたペレットを射出成形機(EC60N II-1.5A、東芝機械(株)製)により、樹脂温度230℃、金型温度40℃の条件で射出成形し、127mm×12.7mm×1.6mmの試験片を得た。この試験片を用いて、耐水性評価および難燃性評価を行った。
<耐水性評価>
 上記で作製した試験片10本を、800mLの超純水中に浸漬し、70℃で168時間静置した後、試験片を取り出した。浸漬後の水の電気伝導度(μS/cm)を、Hanna社製のECテスター/HI98303N(DiST3)を用いて測定した。試験片浸漬後の水の電気伝導度が小さいほど、水溶性成分の溶出量が抑制され、耐水性が高いことを意味する。結果を下記の表4~6に示す。
<難燃性評価:UL-94V>
 上述の長さ127mm、幅12.7mm、厚さ1.6mmの試験片を垂直に保ち、下端にバーナーの火を10秒間接炎させた後で炎を取り除き、試験片に着火した火が消えるまでの燃焼時間t1を測定した。次に、火が消えると同時に2回目の接炎を10秒間開始し、1回目と同様にして着火した火が消えるまでの燃焼時間t2を測定した。また、落下する火種により試験片の下の綿が着火するか否かについても、同時に評価した。
 燃焼時間t1、t2および綿着火の有無などから、上述のUL-94規格にしたがって燃焼ランクをつけた。燃焼ランクはV-0が最高のものであり、以下、V-1、V-2となるにしたがって難燃性は低下する。但し、V-0~V-2のランクのいずれにも該当しないものはNRとする。燃焼ランクおよびt2の測定結果を、下記の表4~6に示す。なお、表中のt2の値は、10回の平均値である。
 また、上記耐水性試験で水に浸漬した後の試験片10本についても、同様に難燃性評価を行った。燃焼試験には、上記耐水性評価にて水に浸漬した後の試験片を23℃、50%RHの恒温恒湿オーブンにて334時間乾燥させたものを使用した。燃焼ランクおよびt2の測定結果を、下記の表4~6に示す。なお、表中のt2の値は、10回の平均値である。
 下記の表1~6中の各成分の詳細を、以下に示す。
(a1)メラミン塩1~2:上記製造例1で製造したもの
(a2)ピペラジン塩2~5:上記製造例2で製造したもの
(B)シリコーンオイル1:ジメチルシリコーンオイル、商品名KF96、信越化学工業(株)製
(B)シリコーンオイル2:メチルハイドロジェンシリコーンオイル、商品名KF99、信越化学工業(株)製
(B)シランカップリング剤:2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、商品名サイラエースS530、JNC社製
酸化亜鉛:商品名 酸化亜鉛1種、三井金属鉱業(株)製
ポリプロピレン:インパクトコポリマーポリプロピレン、商品名プライムポリプロJ-754HP、プライムポリマー社製、メルトフローレート(JIS K7210に準拠、荷重2.16kg、温度230℃)=14g/10min
フェノール系酸化防止剤:テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオン酸メチル]メタン、商品名アデカスタブAO-60、(株)ADEKA製
リン系酸化防止剤:トリス(2,4-ジ第三ブチルフェニル)ホスファイト、商品名アデカスタブ2112、(株)ADEKA製
中和剤:ステアリン酸カルシウム、商品名カルシウムステアレート、淡南化学工業(株)製
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 実施例1,2においては、耐水性試験における水の電気伝導度が比較例1,2より低く、本発明の難燃剤組成物を用いた組成にすることで、耐水性が向上したことがわかった。また、難燃性評価の結果を見ると、実施例1,2は比較例1,2より水浸漬後のt2が短く、水に接触した後の難燃性に優れることがわかった。
 実施例3,4と比較例3,4との比較、実施例5,6と比較例5,6との比較、実施例7,8と比較例7,8との比較、実施例9,10と比較例9,10との比較においても、同様の傾向が見られた。特に、実施例9,10と比較例9,10との比較においては、比較例9,10の水浸漬後の燃焼ランクがV-2に低下していた。
 これらのことから、本発明の難燃剤組成物を配合した樹脂組成物は、水に接触した後の難燃性能の低下の度合いが小さく、耐水性に優れることが示された。

Claims (11)

  1.  粉末状であって、
     (A)ポリリン酸塩を含有し、
     (p2)粒径80μm以上170μm未満である粒子の割合が9~99.9体積%であることを特徴とする難燃剤組成物。
  2.  (p1)粒径80μm未満である粒子の割合が35~90.9体積%、
     (p2)粒径80μm以上170μm未満である粒子の割合が9~64.9体積%、かつ、
     (p3)粒径170μm以上である粒子の割合が0.1~50体積%である粒度分布を有する請求項1記載の難燃剤組成物。
  3.  体積基準の累積粒度分布における累積50%粒径D50が、10μm以上150μm以下である請求項1または2記載の難燃剤組成物。
  4.  (A)ポリリン酸塩が下記(a1)成分および(a2)成分から選ばれる1種以上である請求項1~3のうちいずれか一項記載の難燃剤組成物。
     (a1)成分:下記一般式(1)で表される化合物。
     (a2)成分:下記一般式(2)で表される化合物。 
    Figure JPOXMLDOC01-appb-I000001
     一般式(1)中、n1は1~100の数を表し、Xはアンモニアまたは下記一般式(1-A)で表されるトリアジン誘導体を表し、pは0<p≦n1+2を満たす数を表す。
    Figure JPOXMLDOC01-appb-I000002
     一般式(1-A)中、ZおよびZは、それぞれ独立に、-NR1112基、水酸基、メルカプト基、炭素原子数1~10の直鎖若しくは分岐のアルキル基、炭素原子数1~10の直鎖若しくは分岐のアルコキシ基、フェニル基およびビニル基からなる群より選択されるいずれかの基を表し、R11およびR12は、それぞれ独立に、水素原子、炭素原子数1~6の直鎖若しくは分岐のアルキル基、または、メチロール基を表す。 
    Figure JPOXMLDOC01-appb-I000003
     一般式(2)中、n2は1~100の数を表し、Yは〔R2122N(CHNR2324〕、ピペラジン、または、ピペラジン環を含むジアミンを表し、R21、R22、R23およびR24は、それぞれ独立に、水素原子、または、炭素原子数1~5の直鎖若しくは分岐のアルキル基を表し、mは1~10の整数であり、qは0<q≦n2+2を満たす数を表す。
  5.  前記一般式(1)中のXがメラミンである(a1)成分を含む請求項4記載の難燃剤組成物。
  6.  前記一般式(2)中のYがピペラジンである(a2)成分を含む請求項4記載の難燃剤組成物。
  7.  前記一般式(1)中のXがメラミンである(a1)成分と、
     前記一般式(2)中のYがピペラジンである(a2)成分と、
    を含む請求項4記載の難燃剤組成物。
  8.  前記一般式(1)中のn1が2である(a1)成分と、
     前記一般式(2)中のn2が2である(a2)成分と、
    を含む請求項7記載の難燃剤組成物。
  9.  さらに、(B)成分として、シリコーンオイルおよびシランカップリング剤からなる群から選ばれる1種以上を含む請求項1~8のうちいずれか一項記載の難燃剤組成物。
  10.  請求項1~9のうちいずれか一項記載の難燃剤組成物と、
     熱可塑性樹脂と、
    を含むことを特徴とする難燃性樹脂組成物。
  11.  請求項10記載の難燃性樹脂組成物を用いてなることを特徴とする成形品。
PCT/JP2022/045228 2021-12-16 2022-12-08 難燃剤組成物、難燃性樹脂組成物および成形品 WO2023112812A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023567735A JPWO2023112812A1 (ja) 2021-12-16 2022-12-08
CN202280072209.1A CN118159625A (zh) 2021-12-16 2022-12-08 阻燃剂组合物、阻燃性树脂组合物和成型品
KR1020247021803A KR20240121781A (ko) 2021-12-16 2022-12-08 난연제 조성물, 난연성 수지 조성물 및 성형품
EP22907339.0A EP4450591A1 (en) 2021-12-16 2022-12-08 Flame retarding composition, flame-retardant resin composition, and molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-204630 2021-12-16
JP2021204630 2021-12-16

Publications (1)

Publication Number Publication Date
WO2023112812A1 true WO2023112812A1 (ja) 2023-06-22

Family

ID=86774652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045228 WO2023112812A1 (ja) 2021-12-16 2022-12-08 難燃剤組成物、難燃性樹脂組成物および成形品

Country Status (6)

Country Link
EP (1) EP4450591A1 (ja)
JP (1) JPWO2023112812A1 (ja)
KR (1) KR20240121781A (ja)
CN (1) CN118159625A (ja)
TW (1) TW202336163A (ja)
WO (1) WO2023112812A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08277102A (ja) * 1995-04-03 1996-10-22 Chisso Corp 不溶性ポリリン酸アンモニウム粒子及びその製造方法
JPH09235407A (ja) 1996-02-28 1997-09-09 Chisso Corp 難燃性熱可塑性樹脂組成物
JPH11246861A (ja) * 1998-02-27 1999-09-14 Toagosei Co Ltd 耐水性難燃剤および難燃性エポキシ樹脂組成物
WO2005080494A1 (ja) 2004-02-24 2005-09-01 Adeka Corporation 流動性の改善された難燃剤組成物、難燃性樹脂組成物及びその成形品
JP2009292965A (ja) 2008-06-06 2009-12-17 Adeka Corp 難燃性熱可塑性樹脂組成物
JP2018090757A (ja) * 2016-02-02 2018-06-14 積水化学工業株式会社 耐火性樹脂組成物
WO2019093204A1 (ja) * 2017-11-10 2019-05-16 株式会社Adeka 組成物及び難燃性樹脂組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08277102A (ja) * 1995-04-03 1996-10-22 Chisso Corp 不溶性ポリリン酸アンモニウム粒子及びその製造方法
JPH09235407A (ja) 1996-02-28 1997-09-09 Chisso Corp 難燃性熱可塑性樹脂組成物
JPH11246861A (ja) * 1998-02-27 1999-09-14 Toagosei Co Ltd 耐水性難燃剤および難燃性エポキシ樹脂組成物
WO2005080494A1 (ja) 2004-02-24 2005-09-01 Adeka Corporation 流動性の改善された難燃剤組成物、難燃性樹脂組成物及びその成形品
JP2009292965A (ja) 2008-06-06 2009-12-17 Adeka Corp 難燃性熱可塑性樹脂組成物
JP2018090757A (ja) * 2016-02-02 2018-06-14 積水化学工業株式会社 耐火性樹脂組成物
WO2019093204A1 (ja) * 2017-11-10 2019-05-16 株式会社Adeka 組成物及び難燃性樹脂組成物

Also Published As

Publication number Publication date
EP4450591A1 (en) 2024-10-23
KR20240121781A (ko) 2024-08-09
CN118159625A (zh) 2024-06-07
TW202336163A (zh) 2023-09-16
JPWO2023112812A1 (ja) 2023-06-22

Similar Documents

Publication Publication Date Title
JP6328564B2 (ja) 難燃剤組成物及び難燃性合成樹脂組成物
JP7158384B2 (ja) 組成物及び難燃性樹脂組成物
KR102573160B1 (ko) 조성물 및 난연성 수지 조성물
WO2016125591A1 (ja) 難燃性ポリプロピレン組成物
US20240026224A1 (en) Flame retardant agent composition, flame-retardant resin composition, and molded body
CN110785474B (zh) 阻燃剂组合物及含有该阻燃剂组合物的阻燃性树脂组合物
JP7345463B2 (ja) ポリリン酸アミン塩組成物、ポリリン酸アミン塩難燃剤組成物、これを含有する難燃性合成樹脂組成物およびその成形体
JP7158389B2 (ja) 組成物及び難燃性樹脂組成物
WO2021149732A1 (ja) 難燃剤組成物、難燃性樹脂組成物および成形体
JP7109455B2 (ja) 組成物及び難燃性樹脂組成物
US20210246374A1 (en) Phosphate amine salt composition, phosphate amine salt flame retardant composition, flame retardant synthetic resin composition containing same, and molded article of flame retardant synthetic resin composition
JPWO2019188953A1 (ja) 粒状紫外線吸収剤および樹脂組成物
CN110582553B (zh) 阻燃剂组合物及含有其的阻燃性树脂组合物
WO2023112812A1 (ja) 難燃剤組成物、難燃性樹脂組成物および成形品
WO2022224809A1 (ja) 難燃剤組成物、難燃性樹脂組成物、およびその成形品
WO2024122297A1 (ja) 難燃剤組成物、難燃性樹脂組成物および成形品
WO2023199865A1 (ja) 難燃剤組成物、難燃性樹脂組成物および成形品
US20220275171A1 (en) Additive composition
WO2021201085A1 (ja) 難燃剤組成物、難燃性合成樹脂組成物および成形体
WO2019117049A1 (ja) 組成物及び難燃性樹脂組成物
JPWO2019188958A1 (ja) 粒状紫外線吸収剤および樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907339

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023567735

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280072209.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247021803

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022907339

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022907339

Country of ref document: EP

Effective date: 20240716