WO2023112776A1 - Poly(alkylene oxide) and method for producing same - Google Patents

Poly(alkylene oxide) and method for producing same Download PDF

Info

Publication number
WO2023112776A1
WO2023112776A1 PCT/JP2022/044940 JP2022044940W WO2023112776A1 WO 2023112776 A1 WO2023112776 A1 WO 2023112776A1 JP 2022044940 W JP2022044940 W JP 2022044940W WO 2023112776 A1 WO2023112776 A1 WO 2023112776A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyalkylene oxide
oxide
iminophosphazenium
temperature
cation
Prior art date
Application number
PCT/JP2022/044940
Other languages
French (fr)
Japanese (ja)
Inventor
山本敏秀
井上善彰
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Publication of WO2023112776A1 publication Critical patent/WO2023112776A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/08Saturated oxiranes
    • C08G65/10Saturated oxiranes characterised by the catalysts used

Definitions

  • the present disclosure relates to a polyalkylene oxide with excellent long-term storage stability and a method for producing the same.
  • a polyalkylene oxide is produced, and at least one acid selected from solid acids and organic acids is added to the iminophosphazenium salt 1 in the presence of 3 to 12 parts by weight of water. After mixing at a ratio of more than 1.5 mol to 3.5 mol or less per mol, the iminophosphazenium salt is removed with an adsorbent so that the remaining amount of iminophosphazenium cation is 100 ppm or less, pH 5.5.
  • a method for producing a polyalkylene oxide having a molecular weight of 5 to 8.0 has been reported (see, for example, Patent Document 1).
  • the iminophosphazenium cation is intended to be 100 ppm or less, and regarding the storage stability of the resulting polyalkylene oxide and the volatilization amounts of acetaldehyde and propionaldehyde, is not considered at all.
  • the polyalkylene oxide of Patent Document 2 contains 50 to 200 ppm of a specific iminophosphazenium cation to suppress oxidative deterioration of the polyalkylene oxide and improve storage stability.
  • a specific iminophosphazenium cation to suppress oxidative deterioration of the polyalkylene oxide and improve storage stability.
  • no consideration is given to the influence of propionaldehyde on the iminophosphazenium cation and the volatilization amount of acetaldehyde and propionaldehyde from the polyalkylene oxide before and after storage.
  • VOC volatile organic compounds
  • odors from polyalkylene oxides.
  • the present invention solves these problems, and is a novel polyalkylene oxide that does not discolor even during long-term storage, has a small amount of volatilization of acetaldehyde and propionaldehyde from the polyalkylene oxide, and has excellent storage stability. It provides an oxide.
  • R 1 and R 2 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
  • R 1 and R 2 are bonded to each other to form a ring structure. may be used, or R 1 's or R 2 's may be bonded to each other to form a ring structure.
  • R 1 and R 2 are the same as those described in the above general formula (1).
  • X - represents a hydroxy group.
  • One aspect of the present invention can provide a polyalkylene oxide that does not color even during long-term storage and has high storage stability that can suppress an increase in the amount of volatilization of acetaldehyde and propionaldehyde.
  • Another aspect of the invention can provide a method of making the polyalkylene oxide.
  • Still another aspect of the present invention is that the polyalkylene oxide is suitable for reacting with polyisocyanate to produce isocyanate group-terminated prepolymers and polyurethane resins, and therefore has extremely high industrial value. .
  • the polyalkylene oxide which is one aspect of the present invention, contains the iminophosphazenium cation represented by the general formula (1) in the range of 10 ppm or more and 50 ppm or less.
  • any one belonging to the iminophosphazenium cation represented by the general formula (1) may be used.
  • R 1 and R 2 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
  • R 1 and R 2 may be bonded to each other to form a ring structure, or R 1s or R 2s may be bonded to each other to form a ring structure.
  • hydrocarbon groups having 1 to 20 carbon atoms include methyl group, ethyl group, vinyl group, n-propyl group, isopropyl group, cyclopropyl group, allyl group, n-butyl group, isobutyl group and t-butyl.
  • Examples of ring structures in which R 1 and R 2 are bonded to each other include a pyrrolidinyl group, a pyrrolyl group, a piperidinyl group, an indolyl group, and an isoindolyl group.
  • Examples thereof include a structure in which one substituent is an alkylene group such as an ethylene group, a propylene group, or a butylene group, and is bonded to the other substituent to form a ring structure. Since it is possible to provide a polyalkylene oxide having excellent long-term storage stability, R 1 and R 2 of the iminophosphazenium cation should be a methyl group, an ethyl group, or an isopropyl group. is preferred.
  • the content of the iminophosphazenium cation in the polyalkylene oxide of the present invention is in the range of 10 ppm or more and 50 ppm or less. It is preferably in the range of 15 ppm or more and 40 ppm or less because it is possible to suppress an increase in the amount of aldehyde volatilized from.
  • the iminophosphazenium cation content is less than 10 ppm, the amount of aldehyde volatilized after long-term storage tends to increase.
  • the content of the iminophosphazenium cation exceeds 50 ppm, it not only causes poor molding and deterioration of physical properties of the resin when producing a polyurethane resin, but also causes coloration of the polyalkylene oxide. Sometimes.
  • the polyalkylene oxide of the present invention has a total content of acetaldehyde and propionaldehyde generated during the manufacturing process of 10 to 70 ppm.
  • Acetaldehyde is contained as an impurity in ethylene oxide, but it is also produced in the propylene oxide addition reaction process and the ethylene oxide addition reaction process.
  • propionaldehyde is mainly produced in the propylene oxide reaction step, and by controlling reaction conditions such as reaction temperature and reaction time, the production amounts of acetaldehyde and propionaldehyde can be adjusted to some extent.
  • the amount of acetaldehyde and propionaldehyde produced can be controlled by controlling the temperature and time of purification processes such as adsorption and dehydration to remove catalysts that use adsorbents such as solid acids, and filtration processes.
  • the iminophosphazenium cation becomes unstable and may cause coloration during long-term storage.
  • the total content of acetaldehyde and propionaldehyde exceeds 70 ppm, the amount of aldehyde volatilized from the polyalkylene oxide increases during long-term storage, so the total content of acetaldehyde and propionaldehyde is 12 to 60 ppm. is preferred, and a range of 15 to 45 ppm is more preferred.
  • the ratio of the sum of acetaldehyde and propionaldehyde to the iminophosphazenium cation in the polyalkylene oxide affects the long-term storage stability of the polyalkylene oxide. Since the long-term storage stability is excellent, the molar ratio of the total content of acetaldehyde and propionaldehyde to the iminophosphazenium cation is preferably in the range of 0.2 to 1.5, more preferably 0.3 to 1.4. is in the range of
  • the polyalkylene oxide which is one embodiment of the present invention, is excellent in long-term storage stability, and the index thereof is expressed as discoloration after 6 months and an increase in the volatility of acetaldehyde and propionaldehyde from the beginning of measurement.
  • Especially excellent in long-term storage stability are those which show no discoloration after 6 months and have a ratio of the acetaldehyde and propionaldehyde volatility after 6 months to the initial acetaldehyde and propionaldehyde volatility of 0.5. It is preferably in the range of 8 to 1.5.
  • any method may be used as long as the iminophosphazenium cation is contained in the range of 10 to 50 ppm and the total of acetaldehyde and propionaldehyde is contained in the range of 10 to 70 ppm.
  • a method of ring-opening polymerization of an alkylene oxide may be used. can be mentioned.
  • R 1 and R 2 are the same as those described in the above general formula (1).
  • X - represents a hydroxy group.
  • basic iminophosphazenium salt examples include tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide and tetrakis(1,1,3,3-tetraethylguanidino).
  • tetrakis(1 , 1,3,3-tetramethylguanidino)phosphazenium hydroxide tetrakis(1,1,3,3-tetraethylguanidino)phosphazenium hydroxide
  • tetrakis(1,1,3,3-tetraisopropyl guanidino)phosphazenium hydroxide is preferred.
  • polyether polyol having a hydroxyl group examples of which include polypropylene glycol, polypropylene glycol glycerin ether, etc.
  • the molecular weight of the polyalkylene glycol is not particularly limited.
  • these active hydrogen-containing compounds may be used singly or as a mixture of several kinds.
  • the basic iminophosphazenium salt and the active hydrogen-containing compound are heat-treated, preferably under reduced pressure, to obtain a compound capable of ring-opening polymerization of alkylene oxide, that is, a catalyst.
  • Polyalkylene oxide can be obtained by carrying out ring-opening polymerization of alkylene oxide.
  • the reaction temperature for heat treatment is preferably 80 to 130° C., and the pressure is preferably 0.5 to 5 kPa.
  • alkylene oxides used in producing polyalkylene oxides include alkylene oxides having 2 to 20 carbon atoms, specifically ethylene oxide, propylene oxide, 1,2-butylene oxide and 2,3-butylene. oxide, isobutylene oxide, butadiene monoxide, pentene oxide, styrene oxide, cyclohexene oxide, and the like. Among these, ethylene oxide and propylene oxide are preferred because they are readily available and have high industrial value.
  • Alkylene oxides may be used singly or in combination of two or more. When two or more kinds are mixed and used, for example, the first alkylene oxide may be reacted and then the second alkylene oxide may be reacted, or two or more alkylene oxides may be reacted simultaneously.
  • Alkylene oxide is added to the above catalyst, reacted at the same temperature for 0.5 to 1 hour after the completion of addition, and ring-opening polymerization of alkylene oxide is performed at 110° C. until the pressure decrease disappears to produce a crude polyalkylene oxide.
  • the pressure for ring-opening polymerization of alkylene oxide is, for example, in the range of 0.05 to 1.0 MPa, preferably in the range of 0.1 to 0.5 MPa, more preferably 0.4 MPa or less. If the reaction temperature is too low, the reaction rate will be slow and the reaction time will be long. It is in the range of 90-110°C. Further, when the reaction temperature is 110° C. or lower, the reaction time can be shortened by raising the temperature to 110° C.
  • reaction time varies depending on the amount of catalyst used and the reaction temperature, it is in the range of 1 to 48 hours, preferably in the range of 2 to 24 hours.
  • the catalyst component contained in the crude polyalkylene oxide obtained by the ring-opening polymerization of the alkylene oxide can be obtained by a known method, for example, by contacting the catalyst component with an adsorbent such as water and solid acid in a specific temperature range for a specific time.
  • an adsorbent such as water and solid acid in a specific temperature range for a specific time.
  • the iminophosphazenium cation can be adsorbed on the adsorbent, dehydrated under reduced pressure at a specific temperature, and then removed by filtering and separating the adsorbent from the polyalkylene oxide.
  • the adsorbent is not particularly limited as long as it can adsorb the iminophosphazenium salt, but specific examples include synthetic aluminum silicate, activated clay, zeolite, and acid clay.
  • adsorbents specifically (trade name) KW-600BUP-S (manufactured by Kyowa Chemical Industry Co., Ltd.), (trade name) KW-700PEL (manufactured by Kyowa Chemical Industry Co., Ltd.) ), (trade name) KW-700SL (manufactured by Kyowa Chemical Industry Co., Ltd.), (trade name) KW-700SEN (manufactured by Kyowa Chemical Industry Co., Ltd.), (trade name) KW-700SEN-S (Kyowa Chemical Industry ( Co., Ltd.) and the like.
  • the content of iminophosphazenium cations can also be adjusted according to the type and amount of adsorbent used. If the amount is too large, the iminophosphazenium cation will be less than 10 ppm, and the effect of the iminophosphazenium cation cannot be obtained. It is preferably in the range of 2.5% by weight, more preferably in the range of 0.7 to 1.5% by weight.
  • the polyalkylene oxide of the present invention can contain an antioxidant together with the iminophosphazenium cation within the scope of the present invention.
  • antioxidants amine-based compound antioxidants, phosphite-based compound antioxidants, and the like.
  • the amount of the antioxidant to be added is preferably 100 to 3000 ppm, particularly preferably 300 to 2000 ppm, relative to 100 parts by weight of the polyalkylene oxide.
  • the polyalkylene oxide composition that is one embodiment of the present invention has excellent urethanization reactivity.
  • the polyalkylene oxide composition preferably has a pH of 5.5 or more and 8.0 or less as measured according to the method described in JIS K-1557-5. When the pH is 5.5 or more and 8.0 or less, the polyalkylene oxide composition and the isocyanate compound are mixed to further improve the reactivity when synthesizing the polyurethane-forming composition, which is preferable. .
  • polyalkylene oxide which is one aspect of the present invention, is characterized by a low degree of unsaturation. /g, more preferably 0.005 to 0.03 meq/g.
  • the polyalkylene oxide which is one aspect of the present invention, is suitable for reacting with polyisocyanate to produce isocyanate group-terminated prepolymers and polyurethane resins.
  • the temperature was raised from 80 to 100° C. and the dichloromethane was removed. 58% by weight of the solution (865 g) of solvent was removed. The resulting tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium chloride-2-propanol solution was allowed to cool to an internal temperature of 60° C. while stirring. After cooling, 32 g of potassium hydroxide (1.1 mol equivalent to tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium chloride) was added and reacted at 60° C. for 2 hours. The ion exchange rate after 2 hours was 99.5%.
  • the temperature was cooled to 25° C., and the deposited by-product salt was removed by filtration to obtain 535 g of a tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide-2-propanol solution. .
  • the resulting tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide-2-propanol solution contains the basic iminophosphazenium salt tetrakis(1,1,3,3 - 214 g of tetramethylguanidino)phosphazenium hydroxide is dissolved in a tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide-2-propanol solution with a concentration of 40.0% by weight. got The yield of tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide was 93.0%.
  • Example 1 83 g of polypropylene triol having a molecular weight of 250 and a 2-propanol solution (40%) of tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide obtained in Synthesis Example 1 were placed in a reactor6. 0 g (1.5 mmol) was charged. 2-propanol and water were removed under reduced pressure at 100° C. for 2 hours. After purging the inside of the reactor with nitrogen, propylene oxide was continuously added at 90° C. to carry out addition polymerization. After the supply of propylene oxide was finished, the reaction was carried out at 90° C. for about 1 hour, and then the temperature was raised to 110° C. over about 1 hour.
  • the pressure was reduced to 0.5 kPa, followed by dehydration under reduced pressure at 120° C. for 3 hours, followed by heating a 400 ml SUS filter to 80° C. and filtering under pressure at 0.3 MPa to obtain a polyalkylene oxide.
  • Example 2 83 g of polypropylene triol having a molecular weight of 250 and a 2-propanol solution (40%) of tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide obtained in Synthesis Example 1 were placed in a reactor6. 0 g (1.5 mmol) was charged. 2-propanol and water were removed under reduced pressure at 95° C. for 2 hours. After purging the inside of the reactor with nitrogen, propylene oxide was continuously added at 95° C. to carry out addition polymerization. After the supply of propylene oxide was finished, the reaction was carried out at 95° C. for about 1 hour, and then the temperature was raised to 110° C. over about 1 hour.
  • the obtained polyalkylene oxide had a hydroxyl value of 24.0 mgKOH/g, a degree of unsaturation of 0.024 meq/g, and a pH of 6.1.
  • the same measurements as in Example 1 were performed, and the results are shown in Table 1.
  • Example 3 83 g of polypropylene triol having a molecular weight of 250 and a 2-propanol solution (40%) of tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide obtained in Synthesis Example 1 were placed in a reactor6. 0 g (1.5 mmol) was charged. 2-propanol and water were removed under reduced pressure at 100° C. for 2 hours. After purging the inside of the reactor with nitrogen, propylene oxide was continuously added at 90° C. to carry out addition polymerization. After the supply of propylene oxide was finished, the reaction was carried out at 90° C. for about 1 hour, and then the temperature was raised to 110° C. over about 1 hour.
  • Comparative example 1 83 g of polypropylene triol having a molecular weight of 250 and a 2-propanol solution (40%) of tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide obtained in Synthesis Example 1 were placed in a reactor6. 0 g (1.5 mmol) was charged. 2-propanol and water were removed under reduced pressure at 100° C. for 2 hours. After purging the inside of the reactor with nitrogen, propylene oxide was continuously added at 90° C. to carry out addition polymerization. After the supply of propylene oxide was finished, the reaction was continued at 90° C. until the pressure drop disappeared. Thereafter, unreacted propylene oxide was removed under reduced pressure conditions, and after the temperature was raised to 120° C., ethylene oxide was continuously supplied to carry out an addition reaction. Unreacted ethylene oxide was removed under reduced pressure to obtain crude polyalkylene oxide.
  • the obtained polyalkylene oxide had a hydroxyl value of 23.8 mgKOH/g, a degree of unsaturation of 0.025 meq/g, and a pH of 6.4.
  • the same measurements as in Example 1 were performed, and the results are shown in Table 1.
  • Comparative example 2 83 g of polypropylene triol having a molecular weight of 250 and a 2-propanol solution (40%) of tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide obtained in Synthesis Example 1 were placed in a reactor6. 0 g (1.5 mmol) was charged. 2-propanol and water were removed under reduced pressure at 100° C. for 2 hours. After purging the inside of the reactor with nitrogen, propylene oxide was continuously added at 90° C. to carry out addition polymerization. After the supply of propylene oxide was finished, the reaction was continued at 90° C. until the pressure drop disappeared. Thereafter, unreacted propylene oxide was removed under reduced pressure conditions, and after the temperature was raised to 110° C., ethylene oxide was continuously supplied to carry out an addition reaction. Unreacted ethylene oxide was removed under reduced pressure to obtain crude polyalkylene oxide.
  • the resulting polyalkylene oxide had a hydroxyl value of 24.0 mgKOH/g, a degree of unsaturation of 0.027 meq/g, and a pH of 8.1.
  • the same measurements as in Example 1 were performed, and the results are shown in Table 1.
  • Comparative example 3 Instead of 6.0 g (1.5 mmol%) of 2-propanol solution (40%) of tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide, 50% aqueous solution of potassium hydroxide was added.
  • a polyalkylene oxide was produced in the same manner as in Comparative Example 1 except that 0.34 g (15 mmol %) was used and the temperature for the addition reaction of propylene oxide was changed from 90°C to 110°C.
  • the resulting polyalkylene oxide had a hydroxyl value of 24.3 mgKOH/g, a degree of unsaturation of 0.097 meq/g, and a pH of 7.0.
  • the same measurements as in Example 1 were performed, and the results are shown in Table 1.
  • Example 4 A crude polyalkylene oxide was polymerized by the same polymerization procedure as in Example 3.
  • Example 1 460 g of the resulting crude polyalkylene oxide was taken out into a 1-liter four-necked flask equipped with a stirrer, a nitrogen line and a vacuum line, and used as an adsorbent (trade name) KW700SEN-S (manufactured by Kyowa Chemical Industry Co., Ltd.). ) A polyalkylene oxide was produced in the same manner as in Example 1, except that 6.5 g was used instead of 4.6 g. The resulting polyalkylene oxide had a hydroxyl value of 24.2 mgKOH/g, a degree of unsaturation of 0.025 meq/g, and a pH of 6.7. The same measurements as in Example 1 were performed, and the results are shown in Table 1.
  • Example 5 83 g of polypropylene triol having a molecular weight of 250 and a 2-propanol solution (40%) of tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide obtained in Synthesis Example 1 were placed in a reactor6. 0 g (1.5 mmol) was charged. 2-propanol and water were removed under reduced pressure at 100° C. for 2 hours. After purging the inside of the reactor with nitrogen, addition polymerization was carried out by continuously adding propylene oxide at 105°C. After the supply of propylene oxide was finished, the reaction was carried out at 105°C for about 1 hour, and then the temperature was raised to 110°C over about 0.5 hours.
  • the resulting polyalkylene oxide had a hydroxyl value of 24.0 mgKOH/g, a degree of unsaturation of 0.045 meq/g, and a pH of 5.6.
  • the same measurements as in Example 1 were performed, and the results are shown in Table 1.
  • Example 6 83 g of polypropylene triol having a molecular weight of 250 and a 2-propanol solution (40%) of tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide obtained in Synthesis Example 1 were placed in a reactor6. 0 g (1.5 mmol) was charged. 2-propanol and water were removed under reduced pressure at 100° C. for 2 hours. After purging the inside of the reactor with nitrogen, propylene oxide was continuously added at 90° C. to carry out addition polymerization. After the supply of propylene oxide was finished, the reaction was carried out at 90° C. for about 1 hour, and then the temperature was raised to 110° C. over about 1 hour.
  • the resulting polyalkylene oxide had a hydroxyl value of 24.1 mgKOH/g, a degree of unsaturation of 0.021 meq/g, and a pH of 7.1.
  • the same measurements as in Example 1 were performed, and the results are shown in Table 1.
  • Example 7 83 g of polypropylene triol having a molecular weight of 250 and a 2-propanol solution (40%) of tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide obtained in Synthesis Example 1 were placed in a reactor6. 0 g (1.5 mmol) was charged. 2-propanol and water were removed under reduced pressure at 100° C. for 2 hours. After purging the inside of the reactor with nitrogen, addition polymerization was carried out by continuously adding propylene oxide at 100°C. After the supply of propylene oxide was finished, the reaction was carried out at 100° C. for about 0.5 hours, and then the temperature was raised to 110° C. over about 0.5 hours.
  • the resulting polyalkylene oxide had a hydroxyl value of 24.1 mgKOH/g, a degree of unsaturation of 0.040 meq/g, and a pH of 6.9.
  • the same measurements as in Example 1 were performed, and the results are shown in Table 1.
  • Example 10 83 g of polypropylene triol having a molecular weight of 250 and a 2-propanol solution (40%) of tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide obtained in Synthesis Example 1 were placed in a reactor6. 0 g (1.5 mmol) was charged. 2-propanol and water were removed under reduced pressure at 100° C. for 2 hours. After purging the inside of the reactor with nitrogen, addition polymerization was carried out by continuously adding propylene oxide at 100°C. After the supply of propylene oxide was finished, the reaction was carried out at 100° C. for about 0.5 hours, and then the temperature was raised to 110° C. over about 0.5 hours.
  • Comparative example 4 83 g of polypropylene triol having a molecular weight of 250 and a 2-propanol solution (40%) of tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide obtained in Synthesis Example 1 were placed in a reactor6. 0 g (1.5 mmol) was charged. 2-propanol and water were removed under reduced pressure at 100° C. for 2 hours. After purging the inside of the reactor with nitrogen, propylene oxide was continuously added at 90° C. to carry out addition polymerization. After the supply of propylene oxide was finished, the reaction was continued at 90° C. until the pressure drop disappeared. Thereafter, unreacted propylene oxide was removed under reduced pressure conditions, and ethylene oxide was continuously supplied at 90° C. to carry out an addition reaction. Unreacted ethylene oxide was removed under reduced pressure to obtain crude polyalkylene oxide.
  • the resulting polyalkylene oxide had a hydroxyl value of 24.1 mgKOH/g, a degree of unsaturation of 0.020 meq/g, and a pH of 7.4.
  • the same measurements as in Example 1 were performed, and the results are shown in Table 1.
  • Comparative example 5 83 g of polypropylene triol having a molecular weight of 250 and a 2-propanol solution (40%) of tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide obtained in Synthesis Example 1 were placed in a reactor6. 0 g (1.5 mmol) was charged. 2-propanol and water were removed under reduced pressure at 100° C. for 2 hours. After purging the inside of the reactor with nitrogen, propylene oxide was continuously added at 110° C. to carry out addition polymerization. After the supply of propylene oxide was completed, the reaction was continued at 110° C. until the pressure drop disappeared. Thereafter, unreacted propylene oxide was removed under reduced pressure conditions, and after the temperature was raised to 130° C., ethylene oxide was continuously supplied to carry out an addition reaction. Unreacted ethylene oxide was removed under reduced pressure to obtain crude polyalkylene oxide.
  • the resulting polyalkylene oxide had a hydroxyl value of 24.1 mgKOH/g, a degree of unsaturation of 0.045 meq/g, and a pH of 5.3.
  • the same measurements as in Example 1 were performed, and the results are shown in Table 1.
  • Comparative example 7 175 g of polypropylene triol having a molecular weight of 1000 and the 2-propanol solution (40%) of tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide obtained in Synthesis Example 1 were placed in a reactor6. 0 g (1.5 mmol) was charged. After purging the interior of the reactor with nitrogen, 2-propanol and water were removed at 80° C. for 2 hours under a reduced pressure of 0.2 kPa. After purging the inside of the reactor with nitrogen, propylene oxide was continuously supplied at 90° C. to carry out an addition reaction. After the supply of propylene oxide was finished, the reaction was continued at 90° C. until the pressure drop disappeared. Thereafter, after removing unreacted propylene oxide under reduced pressure, ethylene oxide was continuously supplied at 90° C. to carry out an addition reaction. Thereafter, unreacted ethylene oxide was removed under reduced pressure to obtain crude polyalkylene oxide.
  • Synthetic aluminum silicate (trade name) KW-700PEL as a solid acid together with 2,6-di-tert-butyl-4-methylphenol (antioxidant) corresponding to 750 ppm with respect to polypropylene oxide after neutralization treatment: Kyowa Kagaku Kogyo Co., Ltd.) 0.5 parts by weight and hydrotalcide ((trade name) KW-500SN; Kyowa Kagaku Kogyo Co., Ltd.) 0.1 part by weight as a solid base are added. acid: solid base 5:1; 0.6 parts by weight) and stirred at 85° C. for 1 hour.
  • the obtained polypropylene oxide has a hydroxyl value of 24 mgKOH/g and a degree of unsaturation of 0.025 meq. /g, pH 6.3. Table 1 shows the results.
  • the polyalkylene oxide of the present invention exhibits excellent stability capable of suppressing discoloration and an increase in volatilization of harmful aldehydes such as acetaldehyde and propionaldehyde even during long-term storage. It is useful as a material for polyurethane resins.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyethers (AREA)

Abstract

Provided is a poly(alkylene oxide) which is useful as a material of an isocyanate group-terminated prepolymer and a polyurethane resin, causes little volatilization of harmful acetaldehyde and propionaldehyde, and is stable even if stored for a long time. This poly(alkylene oxide) contains 10-50 ppm of an iminophosphazenium cation represented by general formula (1) and contains a total of 10-70 ppm of acetaldehyde and propionaldehyde. [Compound 1] (R1 and R2 each independently denote H or a hydrocarbon group having 1-20 carbon atoms; R1 and R2, multiple R1 moieties or multiple R2 moieties may bond to each other to form a ring structure.)

Description

ポリアルキレンオキシド及びその製造方法Polyalkylene oxide and method for producing the same
 本開示は、長期貯蔵安定性に優れるポリアルキレンオキシド及びその製造方法に関する。 The present disclosure relates to a polyalkylene oxide with excellent long-term storage stability and a method for producing the same.
 イミノホスファゼニウム塩を触媒として、ポリアルキレンオキシドを製造し、3~12重量部の水の存在下で、固体酸及び有機酸から選ばれる少なくとも1種の酸をイミノホスファゼニウム塩1モルに対して1.5モルを超え3.5モル以下の割合で混合した後、吸着剤によりイミノホスファゼニウム塩を除去し、イミノホスファゼニウムカチオンの残量が100ppm以下、pH5.5~8.0のポリアルキレンオキシドを製造する方法が報告されている(例えば特許文献1参照)。 Using an iminophosphazenium salt as a catalyst, a polyalkylene oxide is produced, and at least one acid selected from solid acids and organic acids is added to the iminophosphazenium salt 1 in the presence of 3 to 12 parts by weight of water. After mixing at a ratio of more than 1.5 mol to 3.5 mol or less per mol, the iminophosphazenium salt is removed with an adsorbent so that the remaining amount of iminophosphazenium cation is 100 ppm or less, pH 5.5. A method for producing a polyalkylene oxide having a molecular weight of 5 to 8.0 has been reported (see, for example, Patent Document 1).
 また、塩基性イミノホスファゼニウム塩を触媒としてポリアルキレンオキシドを製造して得られるイミノホスファゼニウムカチオンを50~200ppmの範囲で含有することにより、酸化劣化による酸価の上昇を抑制できる保存安定性に優れるポリアルキレンオキシドが報告されている。(特許文献2参照)。 Further, by containing 50 to 200 ppm of the iminophosphazenium cation obtained by producing a polyalkylene oxide using a basic iminophosphazenium salt as a catalyst, an increase in acid value due to oxidative deterioration can be suppressed. Polyalkylene oxides with excellent storage stability have been reported. (See Patent Document 2).
日本国特開2012-131897号公報Japanese Patent Application Laid-Open No. 2012-131897 日本国特開2016-56219号公報Japanese Patent Application Laid-Open No. 2016-56219
 しかしながら、特許文献1に提案の方法においては、イミノホスファゼニウムカチオンが100ppm以下であることを目的とするものであり、得られるポリアルキレンオキシドの貯蔵安定性やアセトアルデヒドとプロピオンアルデヒドの揮発量に関しては何等考慮のなされていないものである。 However, in the method proposed in Patent Document 1, the iminophosphazenium cation is intended to be 100 ppm or less, and regarding the storage stability of the resulting polyalkylene oxide and the volatilization amounts of acetaldehyde and propionaldehyde, is not considered at all.
 また、特許文献2のポリアルキレンオキシドは、特定のイミノホスファゼニウムカチオンを50~200ppm含有することにより、ポリアルキレンオキシドの酸化劣化を抑制し、貯蔵安定性が向上するものであるが、アセトアルデヒドとプロピオンアルデヒドのイミノホスファゼニウムカチオンへの影響や貯蔵前後のポリアルキレンオキシドからのアセトアルデヒドとプロピオンアルデヒド揮発量に関しては何等考慮されていないものである。 In addition, the polyalkylene oxide of Patent Document 2 contains 50 to 200 ppm of a specific iminophosphazenium cation to suppress oxidative deterioration of the polyalkylene oxide and improve storage stability. However, no consideration is given to the influence of propionaldehyde on the iminophosphazenium cation and the volatilization amount of acetaldehyde and propionaldehyde from the polyalkylene oxide before and after storage.
 近年は、ポリアルキレンオキシドからの揮発性有機化合物(VOC)の低減や臭気の低減が強く求められており、ポリアルキレンオキシドを長期貯蔵した後もイミノホスファゼニウムカチオン由来の変色やVOCであるアセトアルデヒドや臭気物質であるプロピオンアルデヒドの揮発量の増加を抑制可能なポリアルキレンオキシドが望まれている。 In recent years, there has been a strong demand for reducing volatile organic compounds (VOC) and odors from polyalkylene oxides. A polyalkylene oxide capable of suppressing an increase in the volatilization amount of acetaldehyde and propionaldehyde, which is an odorant, is desired.
 本発明は、これら課題を解決するものであり、長期貯蔵時においてもポリアルキレンオキシドが変色することなく、ポリアルキレンオキシドからのアセトアルデヒドとプロピオンアルデヒドの揮発量が少ない貯蔵安定性に優れる新規なポリアルキレンオキシドを提供するものである。 The present invention solves these problems, and is a novel polyalkylene oxide that does not discolor even during long-term storage, has a small amount of volatilization of acetaldehyde and propionaldehyde from the polyalkylene oxide, and has excellent storage stability. It provides an oxide.
 すなわち、本発明は以下の[1]乃至[5]に存する。
[1]下記一般式(1)で示されるイミノホスファゼニウムカチオンを10~50ppmの範囲で含有し、アセトアルデヒドとプロピオンアルデヒドを合計10~70ppmの範囲で含有するポリアルキレンオキシド。
That is, the present invention resides in the following [1] to [5].
[1] A polyalkylene oxide containing 10 to 50 ppm of an iminophosphazenium cation represented by the following general formula (1) and a total of 10 to 70 ppm of acetaldehyde and propionaldehyde.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(ここで、R及びRは、各々独立して、水素原子又は炭素数1~20の炭化水素基を表す。なお、RとRが互いに結合して環構造を形成していても良いし、R同士又はR同士が互いに結合して環構造を形成していても良い。) (Here, R 1 and R 2 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms. R 1 and R 2 are bonded to each other to form a ring structure. may be used, or R 1 's or R 2 's may be bonded to each other to form a ring structure.)
[2]イミノホスファゼニウムカチオンに対するアセトアルデヒドとプロピオンアルデヒドの合計の含有量のモル比が0.2~1.5の範囲である[1]に記載のポリアルキレンオキシド。
[3]pHが5.5~8.0の範囲である[1]又は[2]に記載のポリアルキレンオキシド。
[4]6か月経過後のアセトアルデヒドとプロピオンアルデヒドの揮発量と当初の揮発量の比が0.8~1.5の範囲である[1]乃至[3]のいずれかに記載のポリアルキレンオキシド。
[5]下記一般式(2)で示される塩基性イミノホスファゼニウム塩を活性水素化合物1モルに対して1×10-4~5×10-1モルの範囲で混合した後、温度80~130℃、圧力0.5~5kPaの範囲の減圧下で加熱処理した後、温度80~130℃、圧力0.05~1MPaの条件下、アルキレンオキシドを添加し、添加終了後0.5~1時間同じ温度で反応させた後、110℃で圧力減少がなくなるまで重合を行い粗ポリアルキレンオキシドを製造し、次いで、粗ポリアルキレンオキシドに水及び吸着剤を加えた後、温度を80~120℃に昇温してイミノホスファゼニウムカチオンを吸着除去し、0.5~50kPaの減圧下で脱水後、吸着剤をろ過して分離する、[1]乃至[4]のいずれかに記載のポリアルキレンオキシドの製造方法。
[2] The polyalkylene oxide according to [1], wherein the molar ratio of the total content of acetaldehyde and propionaldehyde to the iminophosphazenium cation is in the range of 0.2 to 1.5.
[3] The polyalkylene oxide according to [1] or [2], which has a pH in the range of 5.5 to 8.0.
[4] The polyalkylene according to any one of [1] to [3], wherein the ratio of the volatilization amount of acetaldehyde and propionaldehyde after 6 months to the initial volatilization amount is in the range of 0.8 to 1.5. oxide.
[5] After mixing a basic iminophosphazenium salt represented by the following general formula (2) in the range of 1×10 −4 to 5×10 −1 mol with respect to 1 mol of an active hydrogen compound, the temperature is 80. ~130 ° C., after heat treatment under reduced pressure in the range of 0.5 ~ 5 kPa pressure, alkylene oxide is added under conditions of temperature 80 ~ 130 ° C., pressure 0.05 ~ 1 MPa, after the addition 0.5 ~ After reacting at the same temperature for 1 hour, polymerization is carried out at 110° C. until the pressure is no longer reduced to produce a crude polyalkylene oxide, then water and an adsorbent are added to the crude polyalkylene oxide, and the temperature is increased to 80-120. ° C. to adsorb and remove the iminophosphazenium cation, dehydrated under reduced pressure of 0.5 to 50 kPa, and then separating the adsorbent by filtration. A method for producing a polyalkylene oxide of
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(ここで、R及びRは、上記一般式(1)に記載のものと同様である。Xは、ヒドロキシ基を表す。) (Here, R 1 and R 2 are the same as those described in the above general formula (1). X - represents a hydroxy group.)
 本発明の一態様は、長期の貯蔵時においても着色することなく、アセトアルデヒドとプロピオンアルデヒドの揮発量の増加が抑制できる高い貯蔵安定性を有するポリアルキレンオキシドを提供できる。本発明の他の態様は、該ポリアルキレンオキシドの製造方法を提供できる。本発明のさらに他の態様は、該ポリアルキレンオキシドは、ポリイソシアネートと反応しイソシアネート基末端プレポリマー、さらにはポリウレタン樹脂を製造するのに適しているため、その工業的価値は極めて高いものである。 One aspect of the present invention can provide a polyalkylene oxide that does not color even during long-term storage and has high storage stability that can suppress an increase in the amount of volatilization of acetaldehyde and propionaldehyde. Another aspect of the invention can provide a method of making the polyalkylene oxide. Still another aspect of the present invention is that the polyalkylene oxide is suitable for reacting with polyisocyanate to produce isocyanate group-terminated prepolymers and polyurethane resins, and therefore has extremely high industrial value. .
 以下に本発明を実施するための例示的な態様を詳細に説明する。 Exemplary embodiments for carrying out the present invention are described in detail below.
 本発明の一態様であるポリアルキレンオキシドは、上記一般式(1)で示されるイミノホスファゼニウムカチオンを10ppm以上50ppm以下の範囲で含有するものである。 The polyalkylene oxide, which is one aspect of the present invention, contains the iminophosphazenium cation represented by the general formula (1) in the range of 10 ppm or more and 50 ppm or less.
 ここで、ポリアルキレンオキシドとしては、一般的にポリアルキレンオキシドとして知られている範疇に属するものであれば如何なるものであってもよく、例えばポリエチレンオキシド、ポリプロピレンオキシド、ポリ(1,2-ブチレンオキシド)、ポリ(2,3-ブチレンオキシド)、ポリイソブチレンオキシド、ポリブタジエンオキシド、ポリペンテンオキシド、ポリスチレンオキシド、ポリシクロヘキセンオキシド等及びこれらを共重合成分とする共重合体を挙げることができ、中でもポリエチレンオキシド、ポリプロピレンオキシド、ポリプロピレンオキシド-ポリエチレンオキシドブロック共重合体であることが好ましい。 Here, the polyalkylene oxide may be any one that belongs to the category generally known as polyalkylene oxide, such as polyethylene oxide, polypropylene oxide, poly(1,2-butylene oxide ), poly(2,3-butylene oxide), polyisobutylene oxide, polybutadiene oxide, polypentene oxide, polystyrene oxide, polycyclohexene oxide, etc., and copolymers containing these as copolymer components. , polypropylene oxide, and polypropylene oxide-polyethylene oxide block copolymers.
 また、該イミノホスファゼニウムカチオンとしては、上記一般式(1)で示されるイミノホスファゼニウムカチオンに属するものであれば如何なるものであってもよい。 Further, as the iminophosphazenium cation, any one belonging to the iminophosphazenium cation represented by the general formula (1) may be used.
 ここで、R及びRは、各々独立して、水素原子又は炭素数1~20の炭化水素基を表す。なお、RとRが互いに結合して環構造を形成していても良いし、R同士又はR同士が互いに結合して環構造を形成していても良い。そして、炭素数1~20の炭化水素基としては、例えばメチル基、エチル基、ビニル基、n-プロピル基、イソプロピル基、シクロプロピル基、アリル基、n-ブチル基、イソブチル基、t-ブチル基、シクロブチル基、n-ペンチル基、ネオペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、フェニル基、へプチル基、シクロヘプチル基、オクチル基、シクロオクチル基、ノニル基、シクロノニル基、デシル基、シクロデシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基等を挙げることができる。また、RとRが互いに結合した環構造としては、ピロリジニル基、ピロリル基、ピペリジニル基、インドリル基、イソインドリル基等を挙げることができ、R同士又はR同士が互いに結合した環構造としては、例えば一方の置換基がエチレン基、プロピレン基、ブチレン基等のアルキレン基となって、他方の置換基と互いに結合し環構造を形成している構造を挙げることができる。そして、より長期の保存安定性に優れるポリアルキレンオキシドを提供することが可能となることから、イミノホスファゼニウムカチオンのR、Rとしては、メチル基、エチル基、イソプロピル基であることが好ましい。 Here, R 1 and R 2 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms. R 1 and R 2 may be bonded to each other to form a ring structure, or R 1s or R 2s may be bonded to each other to form a ring structure. Examples of hydrocarbon groups having 1 to 20 carbon atoms include methyl group, ethyl group, vinyl group, n-propyl group, isopropyl group, cyclopropyl group, allyl group, n-butyl group, isobutyl group and t-butyl. group, cyclobutyl group, n-pentyl group, neopentyl group, cyclopentyl group, n-hexyl group, cyclohexyl group, phenyl group, heptyl group, cycloheptyl group, octyl group, cyclooctyl group, nonyl group, cyclononyl group, decyl group , cyclodecyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group and the like. Examples of ring structures in which R 1 and R 2 are bonded to each other include a pyrrolidinyl group, a pyrrolyl group, a piperidinyl group, an indolyl group, and an isoindolyl group. Examples thereof include a structure in which one substituent is an alkylene group such as an ethylene group, a propylene group, or a butylene group, and is bonded to the other substituent to form a ring structure. Since it is possible to provide a polyalkylene oxide having excellent long-term storage stability, R 1 and R 2 of the iminophosphazenium cation should be a methyl group, an ethyl group, or an isopropyl group. is preferred.
 該イミノホスファゼニウムカチオンの具体例としては、テトラキス(1,1,3,3-テトラメチルグアニジノ)ホスファゼニウムカチオン、テトラキス(1,1,3,3-テトラエチルグアニジノ)ホスファゼニウムカチオン、テトラキス(1,1,3,3-テトラ(n-プロピル)グアニジノ)ホスファゼニウムカチオン、テトラキス(1,1,3,3-テトライソプロピルグアニジノ)ホスファゼニウムカチオン、テトラキス(1,1,3,3-テトラ(n-ブチル)グアニジノ)ホスファゼニウムカチオン、テトラキス(1,1,3,3-テトラフェニルグアニジノ)ホスファゼニウムカチオン、テトラキス(1,1,3,3-テトラベンジルグアニジノ)ホスファゼニウムカチオン、テトラキス(1,3-ジメチルイミダゾリジン-2-イミノ)ホスファゼニウムカチオン等を例示でき、中でもテトラキス(1,1,3,3-テトラメチルグアニジノ)ホスファゼニウムカチオン、テトラキス(1,1,3,3-テトラエチルグアニジノ)ホスファゼニウムカチオン、テトラキス(1,1,3,3-テトライソプロピルグアニジノ)ホスファゼニウムカチオンが好ましい。 Specific examples of the iminophosphazenium cation include tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium cation and tetrakis(1,1,3,3-tetraethylguanidino)phosphazenium cation. cation, tetrakis(1,1,3,3-tetra(n-propyl)guanidino)phosphazenium cation, tetrakis(1,1,3,3-tetraisopropylguanidino)phosphazenium cation, tetrakis(1, 1,3,3-tetra(n-butyl)guanidino)phosphazenium cation, tetrakis(1,1,3,3-tetraphenylguanidino)phosphazenium cation, tetrakis(1,1,3,3- Tetrabenzylguanidino)phosphazenium cation, tetrakis(1,3-dimethylimidazolidin-2-imino)phosphazenium cation and the like can be exemplified. Fazenium cation, tetrakis(1,1,3,3-tetraethylguanidino)phosphazenium cation, tetrakis(1,1,3,3-tetraisopropylguanidino)phosphazenium cation are preferred.
 本発明のポリアルキレンオキシドにおける該イミノホスファゼニウムカチオンの含有量は、10ppm以上50ppm以下の範囲であり、特に長期の貯蔵安定性に優れ、ポリウレタンとした際の着色が抑制でき、ポリアルキレンオキシドからのアルデヒド揮発量の増加が抑制できることから15ppm以上40ppm以下の範囲であることが好ましい。ここで、イミノホスファゼニウムカチオンの含有量が10ppm未満である場合、長期貯蔵後のアルデヒド揮発量が増加する傾向にある。一方、イミノホスファゼニウムカチオンの含有量が50ppmを超えると、ポリウレタン樹脂を製造した場合に成形不良や、樹脂物性の低下を招くことがあるばかりではなく、ポリアルキレンオキシドの着色の原因となる場合がある。 The content of the iminophosphazenium cation in the polyalkylene oxide of the present invention is in the range of 10 ppm or more and 50 ppm or less. It is preferably in the range of 15 ppm or more and 40 ppm or less because it is possible to suppress an increase in the amount of aldehyde volatilized from. Here, when the iminophosphazenium cation content is less than 10 ppm, the amount of aldehyde volatilized after long-term storage tends to increase. On the other hand, if the content of the iminophosphazenium cation exceeds 50 ppm, it not only causes poor molding and deterioration of physical properties of the resin when producing a polyurethane resin, but also causes coloration of the polyalkylene oxide. Sometimes.
 また、本発明のポリアルキレンオキシドは製造過程で生成するアセトアルデヒドとプロピオンアルデヒドの合計の含有量は10~70ppmである。 In addition, the polyalkylene oxide of the present invention has a total content of acetaldehyde and propionaldehyde generated during the manufacturing process of 10 to 70 ppm.
 アセトアルデヒドはエチレンオキシド中の不純物として含有されているが、それ以外にもプロピレンオキシド付加反応工程やエチレンオキシド付加反応工程でも生成する。また、プロピオンアルデヒドはプロピレンオキシド反応工程で主に生成し、反応温度や反応時間などの反応条件を制御することにより、アセトアルデヒドとプロピオンアルデヒドの生成量は、ある程度調整することもできる。 Acetaldehyde is contained as an impurity in ethylene oxide, but it is also produced in the propylene oxide addition reaction process and the ethylene oxide addition reaction process. In addition, propionaldehyde is mainly produced in the propylene oxide reaction step, and by controlling reaction conditions such as reaction temperature and reaction time, the production amounts of acetaldehyde and propionaldehyde can be adjusted to some extent.
 更に、アセトアルデヒドやプロピオンアルデヒドは固体酸などの吸着剤を用いる触媒を除去するための吸着や脱水などの精製工程やろ過工程の温度や時間を制御することにより生成量を制御することができる。 Furthermore, the amount of acetaldehyde and propionaldehyde produced can be controlled by controlling the temperature and time of purification processes such as adsorption and dehydration to remove catalysts that use adsorbents such as solid acids, and filtration processes.
 アセトアルデヒドとプロピオンアルデヒドの合計の含有量が10ppm未満の場合には、イミノホスファゼニウムカチオンが不安定となり、長期に貯蔵した場合の着色の原因となる場合がある。また、アセトアルデヒドとプロピオンアルデヒドの合計の含有量が70ppmを超えると、長期に貯蔵した場合にポリアルキレンオキシドからのアルデヒド揮発量が増加するため、アセトアルデヒドとプロピオンアルデヒドの合計の含有量は、12~60ppmの範囲が好ましく、15~45ppmの範囲がより好ましい。 If the total content of acetaldehyde and propionaldehyde is less than 10 ppm, the iminophosphazenium cation becomes unstable and may cause coloration during long-term storage. In addition, if the total content of acetaldehyde and propionaldehyde exceeds 70 ppm, the amount of aldehyde volatilized from the polyalkylene oxide increases during long-term storage, so the total content of acetaldehyde and propionaldehyde is 12 to 60 ppm. is preferred, and a range of 15 to 45 ppm is more preferred.
 本発明の一態様であるポリアルキレンオキシド中のイミノホスファゼニウムカチオンに対するアセトアルデヒドとプロピオンアルデヒドの合計の比は、ポリアルキレンオキシドの長期貯蔵安定性に影響する。長期の貯蔵安定性に優れるためイミノホスファゼニウムカチオンに対するアセトアルデヒドとプロピオンアルデヒドの合計の含有量のモル比は0.2~1.5の範囲が好ましく、更に好ましくは0.3~1.4の範囲である。 The ratio of the sum of acetaldehyde and propionaldehyde to the iminophosphazenium cation in the polyalkylene oxide, which is one embodiment of the present invention, affects the long-term storage stability of the polyalkylene oxide. Since the long-term storage stability is excellent, the molar ratio of the total content of acetaldehyde and propionaldehyde to the iminophosphazenium cation is preferably in the range of 0.2 to 1.5, more preferably 0.3 to 1.4. is in the range of
 本発明の一態様であるポリアルキレンオキシドは、長期の貯蔵安定性に優れるものであり、その指標としては6か月経過後の変色とアセトアルデヒドとプロピオンアルデヒド揮発量の測定当初からの増加として表すことができ、特に長期の貯蔵安定性に優れるものとして、6か月経過後に変色が無く、6か月経過後のアセトアルデヒドとプロピオンアルデヒド揮発量と当初のアセトアルデヒドとプロピオンアルデヒド揮発量との比が0.8~1.5の範囲にあることが好ましい。 The polyalkylene oxide, which is one embodiment of the present invention, is excellent in long-term storage stability, and the index thereof is expressed as discoloration after 6 months and an increase in the volatility of acetaldehyde and propionaldehyde from the beginning of measurement. Especially excellent in long-term storage stability are those which show no discoloration after 6 months and have a ratio of the acetaldehyde and propionaldehyde volatility after 6 months to the initial acetaldehyde and propionaldehyde volatility of 0.5. It is preferably in the range of 8 to 1.5.
 本発明の一態様であるポリアルキレンオキシドの製造方法としては、該イミノホスファゼニウムカチオンを10~50ppmの範囲で含有し、アセトアルデヒドとプロピオンアルデヒドの合計が10~70ppmの範囲で含有すれば如何なる方法により製造されたものであってもよく、例えば下記一般式(2)で示される塩基性イミノホスファゼニウム塩と活性水素含有化合物を加熱処理した後、アルキレンオキシドを開環重合する方法を挙げることができる。 As a method for producing a polyalkylene oxide, which is one aspect of the present invention, any method may be used as long as the iminophosphazenium cation is contained in the range of 10 to 50 ppm and the total of acetaldehyde and propionaldehyde is contained in the range of 10 to 70 ppm. For example, after heat-treating a basic iminophosphazenium salt represented by the following general formula (2) and an active hydrogen-containing compound, a method of ring-opening polymerization of an alkylene oxide may be used. can be mentioned.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(ここで、R及びRは、上記一般式(1)に記載のものと同様である。Xは、ヒドロキシ基を表す。) (Here, R 1 and R 2 are the same as those described in the above general formula (1). X - represents a hydroxy group.)
 該塩基性イミノホスファゼニウム塩としては、如何なる方法により入手したものでも良く、例えば特開2013-112646号公報に記載の方法により製造することができる。 The basic iminophosphazenium salt may be obtained by any method, and can be produced, for example, by the method described in JP-A-2013-112646.
 そして、該塩基性イミノホスファゼニウム塩の具体例としては、テトラキス(1,1,3,3-テトラメチルグアニジノ)ホスファゼニウムヒドロキシド、テトラキス(1,1,3,3-テトラエチルグアニジノ)ホスファゼニウムヒドロキシド、テトラキス(1,1,3,3-テトラ(n-プロピル)グアニジノ)ホスファゼニウムヒドロキシド、テトラキス(1,1,3,3-テトライソプロピルグアニジノ)ホスファゼニウムヒドロキシド、テトラキス(1,1,3,3-テトラ(n-ブチル)グアニジノ)ホスファゼニウムヒドロキシド、テトラキス(1,1,3,3-テトラフェニルグアニジノ)ホスファゼニウムヒドロキシド、テトラキス(1,1,3,3-テトラベンジルグアニジノ)ホスファゼニウムヒドロキシド、テトラキス(1,3-ジメチルイミダゾリジン-2-イミノ)ホスファゼニウムヒドロキシド等を例示でき、中でもテトラキス(1,1,3,3-テトラメチルグアニジノ)ホスファゼニウムヒドロキシド、テトラキス(1,1,3,3-テトラエチルグアニジノ)ホスファゼニウムヒドロキシド、テトラキス(1,1,3,3-テトライソプロピルグアニジノ)ホスファゼニウムヒドロキシドが好ましい。 Specific examples of the basic iminophosphazenium salt include tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide and tetrakis(1,1,3,3-tetraethylguanidino). ) phosphazenium hydroxide, tetrakis(1,1,3,3-tetra(n-propyl)guanidino)phosphazenium hydroxide, tetrakis(1,1,3,3-tetraisopropylguanidino)phosphaze nium hydroxide, tetrakis(1,1,3,3-tetra(n-butyl)guanidino)phosphazenium hydroxide, tetrakis(1,1,3,3-tetraphenylguanidino)phosphazenium hydroxide, Examples include tetrakis(1,1,3,3-tetrabenzylguanidino)phosphazenium hydroxide, tetrakis(1,3-dimethylimidazolidin-2-imino)phosphazenium hydroxide, etc. Among them, tetrakis(1 , 1,3,3-tetramethylguanidino)phosphazenium hydroxide, tetrakis(1,1,3,3-tetraethylguanidino)phosphazenium hydroxide, tetrakis(1,1,3,3-tetraisopropyl guanidino)phosphazenium hydroxide is preferred.
 活性水素含有化合物としては、活性水素を1つ以上有する化合物であれば特に制限はなく、例えばヒドロキシ化合物、アミン化合物、カルボン酸化合物、フェノール化合物、チオール化合物等を挙げることができ、より具体的には、水、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、グリセリン、トリメチロールプロパン、ヘキサントリオール、ペンタエリスリトール、ジグリセリン、ソルビトール、シュークローズ、グルコース等のヒドロキシ化合物;エチレンジアミン、N,N’-ジメチルエチレンジアミン、ピペリジン、ピペラジン等のアミン化合物;アジピン酸等のカルボン酸化合物;ビスフェノール等のフェノール化合物;エタンジチオール、ブタンジチオール等のチオール化合物等を挙げることができる。また、水酸基を有するポリエーテルポリオールを用いることも可能であり、例えばポリプロピレングリコール、ポリプロピレングリコールグリセリンエーテル等を挙げることができ、この際のポリアルキレングリコールの分子量は特に制限はなく、その中でも低粘度で流動性に優れる分子量200~3,000のポリアルキレングリコールが好ましい。また、これら活性水素含有化合物は単独でも数種類の混合物であってもよい。 The active hydrogen-containing compound is not particularly limited as long as it is a compound having one or more active hydrogens, and examples thereof include hydroxy compounds, amine compounds, carboxylic acid compounds, phenol compounds, thiol compounds, etc. is water, ethylene glycol, diethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, glycerin, trimethylolpropane, hexanetriol, penta Hydroxy compounds such as erythritol, diglycerin, sorbitol, sucrose, glucose; amine compounds such as ethylenediamine, N,N'-dimethylethylenediamine, piperidine and piperazine; carboxylic acid compounds such as adipic acid; phenol compounds such as bisphenol; and thiol compounds such as butanedithiol. It is also possible to use a polyether polyol having a hydroxyl group, examples of which include polypropylene glycol, polypropylene glycol glycerin ether, etc. In this case, the molecular weight of the polyalkylene glycol is not particularly limited. A polyalkylene glycol having a molecular weight of 200 to 3,000, which is excellent in fluidity, is preferred. Moreover, these active hydrogen-containing compounds may be used singly or as a mixture of several kinds.
 塩基性イミノホスファゼニウム塩と活性水素含有化合物の割合は任意であり、その中でも効率よくポリアルキレンオキシドを製造することが可能となることから、活性水素含有化合物1モルに対して塩基性イミノホスファゼニウム塩が1×10-4~5×10-1モルとなる範囲、好ましくは5×10-3~1×10-1モルとなる範囲で用いることが好ましい。 The ratio of the basic iminophosphazenium salt and the active hydrogen-containing compound is arbitrary. It is preferable to use the phosphazenium salt in the range of 1×10 −4 to 5×10 −1 mol, preferably 5×10 −3 to 1×10 −1 mol.
 そして、該塩基性イミノホスファゼニウム塩と活性水素含有化合物とを加熱処理、好ましくは減圧下で加熱処理を行なうことにより、アルキレンオキシドの開環重合能を有するもの、つまり触媒となる。そして、アルキレンオキシドの開環重合を行なうことによりポリアルキレンオキシドとすることができる。加熱処理する際の反応温度としては80~130℃が好ましく、圧力としては0.5~5kPaであることが好ましい。 Then, the basic iminophosphazenium salt and the active hydrogen-containing compound are heat-treated, preferably under reduced pressure, to obtain a compound capable of ring-opening polymerization of alkylene oxide, that is, a catalyst. Polyalkylene oxide can be obtained by carrying out ring-opening polymerization of alkylene oxide. The reaction temperature for heat treatment is preferably 80 to 130° C., and the pressure is preferably 0.5 to 5 kPa.
 ポリアルキレンオキシドを製造する際のアルキレンオキシドとしては、例えば炭素数2~20のアルキレンオキシドを挙げることができ、具体的には、エチレンオキシド、プロピレンオキシド、1,2-ブチレンオキシド、2,3-ブチレンオキシド、イソブチレンオキシド、ブタジエンモノオキシド、ペンテンオキシド、スチレンオキシド、シクロヘキセンオキシド等を挙げることができる。これらの中で、入手が容易で工業的価値の高いことから、エチレンオキシド、プロピレンオキシドが好ましい。アルキレンオキシドは、単一で用いても2種以上を混合して用いても良い。2種以上を混合して用いる場合は、例えば第1のアルキレンオキシドを反応させた後、第2のアルキレンオキシドを反応させても良いし、2種以上のアルキレンオキシドを同時に反応させても良い。 Examples of alkylene oxides used in producing polyalkylene oxides include alkylene oxides having 2 to 20 carbon atoms, specifically ethylene oxide, propylene oxide, 1,2-butylene oxide and 2,3-butylene. oxide, isobutylene oxide, butadiene monoxide, pentene oxide, styrene oxide, cyclohexene oxide, and the like. Among these, ethylene oxide and propylene oxide are preferred because they are readily available and have high industrial value. Alkylene oxides may be used singly or in combination of two or more. When two or more kinds are mixed and used, for example, the first alkylene oxide may be reacted and then the second alkylene oxide may be reacted, or two or more alkylene oxides may be reacted simultaneously.
 上記の触媒にアルキレンオキシドを添加し、添加終了後0.5~1時間同じ温度で反応させた後、110℃で圧力減少がなくなるまでアルキレンオキシドの開環重合を行い粗ポリアルキレンオキシドを製造する。アルキレンオキシドの開環重合を行う際の圧力は、例えば0.05~1.0MPaの範囲、好ましくは0.1~0.5MPaの範囲、さらに好ましくは0.4MPa以下である。また、反応温度は、低いと反応速度が遅く反応時間が長くなり、高すぎると不飽和度が大幅に増加し、アルデヒド類の生成量が増加するため、例えば80~130℃の範囲、好ましくは90~110℃の範囲である。また、反応温度が110℃以下の場合には、アルキレンオキシド供給終了後、0.5から1時間かけて110℃まで昇温することで反応時間を短縮することができアルデヒド類の生成を抑制することができる。反応時間は用いる触媒量や反応温度により異なるが1~48時間の範囲であり、好ましくは2~24時間の範囲である。 Alkylene oxide is added to the above catalyst, reacted at the same temperature for 0.5 to 1 hour after the completion of addition, and ring-opening polymerization of alkylene oxide is performed at 110° C. until the pressure decrease disappears to produce a crude polyalkylene oxide. . The pressure for ring-opening polymerization of alkylene oxide is, for example, in the range of 0.05 to 1.0 MPa, preferably in the range of 0.1 to 0.5 MPa, more preferably 0.4 MPa or less. If the reaction temperature is too low, the reaction rate will be slow and the reaction time will be long. It is in the range of 90-110°C. Further, when the reaction temperature is 110° C. or lower, the reaction time can be shortened by raising the temperature to 110° C. over 0.5 to 1 hour after the alkylene oxide is supplied, thereby suppressing the formation of aldehydes. be able to. Although the reaction time varies depending on the amount of catalyst used and the reaction temperature, it is in the range of 1 to 48 hours, preferably in the range of 2 to 24 hours.
 アルキレンオキシドの開環重合により得られた粗ポリアルキレンオキシドに含まれる触媒成分は、既知の方法、例えば特定の温度範囲で触媒成分を水及び固体酸等の吸着剤と特定の時間接触させることにより、吸着剤にイミノホスファゼニウムカチオンを吸着させた後、特定の温度で減圧脱水した後、ポリアルキレンオキシドから吸着剤をろ過して分離することにより除去することができる。 The catalyst component contained in the crude polyalkylene oxide obtained by the ring-opening polymerization of the alkylene oxide can be obtained by a known method, for example, by contacting the catalyst component with an adsorbent such as water and solid acid in a specific temperature range for a specific time. Alternatively, the iminophosphazenium cation can be adsorbed on the adsorbent, dehydrated under reduced pressure at a specific temperature, and then removed by filtering and separating the adsorbent from the polyalkylene oxide.
 温度は高い方がイミノホスファゼニウムカチオンの吸着は進行するが、アルデヒド類も増加するため、例えば80~120℃の範囲が好ましく、90~110℃の範囲がより好ましい。 The higher the temperature, the more the iminophosphazenium cation is adsorbed, but the aldehydes also increase.
 吸着剤としては、イミノホスファゼニウム塩を吸着可能であれば特に限定はされないが、具体的には例えば、合成ケイ酸アルミニウム、活性白土、ゼオライト、酸性白土等が挙げられる。これら吸着剤には多くの市販品があり、具体的には(商品名)KW-600BUP-S(協和化学工業(株)製)、(商品名)KW-700PEL(協和化学工業(株)製)、(商品名)KW-700SL(協和化学工業(株)製)、(商品名)KW-700SEN(協和化学工業(株)製)、(商品名)KW-700SEN-S(協和化学工業(株)製)等を挙げることができる。 The adsorbent is not particularly limited as long as it can adsorb the iminophosphazenium salt, but specific examples include synthetic aluminum silicate, activated clay, zeolite, and acid clay. There are many commercial products for these adsorbents, specifically (trade name) KW-600BUP-S (manufactured by Kyowa Chemical Industry Co., Ltd.), (trade name) KW-700PEL (manufactured by Kyowa Chemical Industry Co., Ltd.) ), (trade name) KW-700SL (manufactured by Kyowa Chemical Industry Co., Ltd.), (trade name) KW-700SEN (manufactured by Kyowa Chemical Industry Co., Ltd.), (trade name) KW-700SEN-S (Kyowa Chemical Industry ( Co., Ltd.) and the like.
 そして、イミノホスファゼニウムカチオンの含有量は、吸着剤の種類や使用量により調整することも可能であり、吸着剤の使用量が少ないと多量のイミノホスファゼニウムカチオンが残留し、使用量が多いとイミノホスファゼニウムカチオンが10ppmより少なくなり、イミノホスファゼニウムカチオンの効果が得られないため、その使用量としては、例えば粗ポリアルキレンオキシドの重量に対して0.5~2.5重量%の範囲であることが好ましく、特に0.7~1.5重量%の範囲であることがさらに好ましい。 The content of iminophosphazenium cations can also be adjusted according to the type and amount of adsorbent used. If the amount is too large, the iminophosphazenium cation will be less than 10 ppm, and the effect of the iminophosphazenium cation cannot be obtained. It is preferably in the range of 2.5% by weight, more preferably in the range of 0.7 to 1.5% by weight.
 本発明のポリアルキレンオキシドは、本発明の目的を逸脱しない範囲において、イミノホスファゼニウムカチオンと共に酸化防止剤を含有することも可能であり、該酸化防止剤としては、例えばフェノール系化合物酸化防止剤、アミン系化合物酸化防止剤、亜リン酸エステル系化合物酸化防止剤等が例示でき、具体的には、フェノール系化合物酸化防止剤としては、酸化防止剤としては、例えば、2,6-ジ-tert-ブチル-4-メチルフェノール、2-tert-ブチル-4-メトキシフェノール、2,6-ジ-tert-ブチルフェノール、6-tert-ブチル-2,4-メチルフェノール、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニルプロピオネート](例えば、BASF製Irganox1010)、3,5-ビス-tert-ブチル-4-ヒドロキシベンゼンプロパン酸オクタデシルエステル(例えば、BASF製Irganox1076)、3,5-ビス-tert-ブチル-4-ヒドロキシベンゼンプロパン酸イソオクチルエステル(例えば、BASF製Irganox1135)等のフェノール系酸化防止剤;n-ブチル-p-アミノフェノール、4,4-ジメチルジアミン、4,4-ジオクチルジフェニルアミン等のアミン系酸化防止剤;が挙げられる。これらの酸化防止剤は単一で用いても2種以上を混合して用いてもよい。 The polyalkylene oxide of the present invention can contain an antioxidant together with the iminophosphazenium cation within the scope of the present invention. antioxidants, amine-based compound antioxidants, phosphite-based compound antioxidants, and the like. -tert-butyl-4-methylphenol, 2-tert-butyl-4-methoxyphenol, 2,6-di-tert-butylphenol, 6-tert-butyl-2,4-methylphenol, pentaerythritol tetrakis[3- (3,5-di-tert-butyl-4-hydroxyphenylpropionate] (eg Irganox 1010 from BASF), 3,5-bis-tert-butyl-4-hydroxybenzenepropanoic acid octadecyl ester (eg Irganox 1076 from BASF) ), phenolic antioxidants such as 3,5-bis-tert-butyl-4-hydroxybenzenepropanoic acid isooctyl ester (eg, Irganox 1135 manufactured by BASF); n-butyl-p-aminophenol, 4,4-dimethyl amine-based antioxidants such as diamine, 4,4-dioctyldiphenylamine, etc. These antioxidants may be used singly or in combination of two or more.
 該酸化防止剤の添加量としては、該ポリアルキレンオキシド100重量部に対して、100~3000ppmであることが好ましく、特に300~2000ppmであることが好ましい。 The amount of the antioxidant to be added is preferably 100 to 3000 ppm, particularly preferably 300 to 2000 ppm, relative to 100 parts by weight of the polyalkylene oxide.
 本発明の一態様であるポリアルキレンオキシド組成物は、ウレタン化反応性に優れる。該ポリアルキレンオキシド組成物は、JIS K-1557-5に記載の方法に従い測定したpHが、5.5以上8.0以下であることが好ましい。pHが5.5以上8.0以下であると、ポリアルキレンオキシド組成物と、イソシアネート化合物と、を混合し、ポリウレタン形成性組成物を合成しようとした際の反応性がさらに良好となるため好ましい。 The polyalkylene oxide composition that is one embodiment of the present invention has excellent urethanization reactivity. The polyalkylene oxide composition preferably has a pH of 5.5 or more and 8.0 or less as measured according to the method described in JIS K-1557-5. When the pH is 5.5 or more and 8.0 or less, the polyalkylene oxide composition and the isocyanate compound are mixed to further improve the reactivity when synthesizing the polyurethane-forming composition, which is preferable. .
 また、本発明の一態様であるポリアルキレンオキシドは、不飽和度が低いという特徴を有するものであり、その水酸基価が5~200mgKOH/gにおいては、不飽和度が0.001~0.05meq/gであることが好ましく、特に0.005~0.03meq/gであることが好ましい。 Further, the polyalkylene oxide, which is one aspect of the present invention, is characterized by a low degree of unsaturation. /g, more preferably 0.005 to 0.03 meq/g.
 本発明の一態様であるポリアルキレンオキシドは、ポリイソシアネートと反応しイソシアネート基末端プレポリマー、さらにはポリウレタン樹脂を製造するのに適している。 The polyalkylene oxide, which is one aspect of the present invention, is suitable for reacting with polyisocyanate to produce isocyanate group-terminated prepolymers and polyurethane resins.
 以下、実施例により本発明を説明するが、本実施例は何ら本発明を制限するものではない。 The present invention will be described below with reference to examples, but these examples do not limit the present invention in any way.
 実施例および比較例において用いた評価・測定方法を示す。 The evaluation and measurement methods used in Examples and Comparative Examples are shown.
(1)水酸基価、総不飽和度及びpHの測定
 JIS K 1557-1、JIS K 1557-3及びJIS K 1557-5記載の測定法に従い測定した。
(1) Measurement of hydroxyl value, total unsaturation and pH Measured according to the measurement methods described in JIS K 1557-1, JIS K 1557-3 and JIS K 1557-5.
(2)イミノホスファゼニウムカチオンの含有量の測定
 微量窒素分析装置(三菱化学製、(商品名)TN-100)を用いて測定をおこなった。測定条件は、ヒーター温度T1を800℃、T2を900℃とし、アルゴンガス流量100ml/min、酸素ガス流量600ml/min、オゾンガス流量200ml/minとした。
 ポリアルキレンオキシドのシクロヘキサン溶液を試料とし、絶対検量線法により、窒素量を定量した。
(2) Measurement of iminophosphazenium cation content Measurement was carried out using a trace nitrogen analyzer (manufactured by Mitsubishi Chemical, (trade name) TN-100). The measurement conditions were a heater temperature T1 of 800° C., a heater temperature T2 of 900° C., an argon gas flow rate of 100 ml/min, an oxygen gas flow rate of 600 ml/min, and an ozone gas flow rate of 200 ml/min.
Using a cyclohexane solution of polyalkylene oxide as a sample, the amount of nitrogen was quantified by the absolute calibration curve method.
(3)色数(ハーゼン単位色数)の測定
 JIS-K-0071-1に記載の方法に従い測定した。
(3) Measurement of color number (Hazen unit color number) Measured according to the method described in JIS-K-0071-1.
(4)ポリアルキレンオキシドからのアセトアルデヒドとプロピオンアルデヒド揮発量の測定
 ポリアルキレンオキシド10gをインピンジャー(株式会社末永理化学社製、容量:30ml)に入れ、65℃で2時間加熱しながら、65℃でハイドロカーボントラップ通気済みの窒素ガスを0.5L/minの流速で吹き込んだ。通気後のガスを2,4-ジニトロフェニルヒドラジン(DNPH)カートリッジに捕集し、5mlの溶出液を用いて吸着成分を溶出した。溶出液の高速液体クロマトグラフィー(High Performance Liquid Chromatography;HPLC)測定を行い、ポリアルキレンオキシドからのアルデヒドとプロピオンアルデヒドの揮発量を測定した。
(4) Measurement of acetaldehyde and propionaldehyde volatility from polyalkylene oxide 10 g of polyalkylene oxide was placed in an impinger (manufactured by Suenaga Rikagaku Co., Ltd., capacity: 30 ml) and heated at 65 ° C. for 2 hours at 65 ° C. Nitrogen gas, which had been aerated with a hydrocarbon trap, was blown in at a flow rate of 0.5 L/min. The gas after ventilation was collected on a 2,4-dinitrophenylhydrazine (DNPH) cartridge, and the adsorbed components were eluted using 5 ml of eluent. The eluate was measured by High Performance Liquid Chromatography (HPLC) to measure the volatilization amounts of aldehyde and propionaldehyde from the polyalkylene oxide.
 <合成例1>(テトラキス(テトラメチルグアニジノ)ホスファゼニウムヒドロキシド(((Me2N)2C=N)4P+OH-(一般式(2)におけるR及びRがメチル基、Xがヒドロキシ基である。)-2-プロパノール溶液の製造)
 温度計、滴下ロート、冷却管及びテフロン(登録商標)製撹拌翼を付した2リットルの4つ口フラスコに窒素雰囲気下で五塩化リン(アルドリッチ製)96g(0.46mol)を入れ、以後の操作はすべて窒素雰囲気下で行った。800mlの脱水トルエン(和光純薬製)を加えてスラリー溶液とした。このスラリー溶液を水浴にて15℃に冷却し、内温を20℃とした後、強撹拌下に1,1,3,3-テトラメチルグアニジン345g(2.99mol)を滴下ロートから3時間かけて滴下した。反応液中には多量の白色スラリーが生成した。滴下終了後、水浴をはずして室温まで昇温し、更にこのスラリー溶液を100℃に昇温した後、1,1,3,3-テトラメチルグアニジン107g(0.92mol)を1時間かけて滴下した。その後100℃で14時間加熱撹拌して白色のスラリー溶液を得た。80℃まで冷却した後、反応液にイオン交換水250mlを加え、30分撹拌した。撹拌を止めるとスラリーは全て溶解し、油水分離を行い、水相を回収した。
<Synthesis Example 1> (Tetrakis(tetramethylguanidino)phosphazenium hydroxide (((Me2N)2C=N)4P+OH-(R 1 and R 2 in the general formula (2) are methyl groups and X is a hydroxy group. Yes.)-Production of 2-propanol solution)
Into a 2-liter four-necked flask equipped with a thermometer, a dropping funnel, a condenser and a Teflon (registered trademark) stirring blade, 96 g (0.46 mol) of phosphorus pentachloride (manufactured by Aldrich) was placed under a nitrogen atmosphere. All operations were performed under a nitrogen atmosphere. 800 ml of dehydrated toluene (manufactured by Wako Pure Chemical Industries) was added to prepare a slurry solution. This slurry solution was cooled to 15° C. in a water bath and the internal temperature was adjusted to 20° C. Then, 345 g (2.99 mol) of 1,1,3,3-tetramethylguanidine was added from a dropping funnel for 3 hours while stirring vigorously. dripped. A large amount of white slurry was produced in the reaction solution. After the dropwise addition was completed, the water bath was removed and the temperature was raised to room temperature, and after this slurry solution was further heated to 100°C, 107 g (0.92 mol) of 1,1,3,3-tetramethylguanidine was added dropwise over 1 hour. bottom. After that, the mixture was heated and stirred at 100° C. for 14 hours to obtain a white slurry solution. After cooling to 80° C., 250 ml of ion-exchanged water was added to the reaction solution and stirred for 30 minutes. When the stirring was stopped, the slurry was completely dissolved, oil-water separation was performed, and the aqueous phase was recovered.
 得られた水相にジクロロメタン100mlを加えて攪拌した後、油水分離を行う水洗を2回繰り返し、ジクロロメタンによるテトラキス(1,1,3,3-テトラメチルグアニジノ)ホスファゼニウムクロリドの抽出を行った。さらに、得られたジクロロメタン溶液を100mlのイオン交換水で水洗した。このジクロロメタン溶液を温度計、滴下ロート、冷却管及びテフロン(登録商標)製撹拌翼を付した2リットルの四つ口フラスコに移液し、2-プロパノール900gを加えた後、常圧下で温度を80から100℃に昇温し、ジクロロメタンを除去した。溶液重量の58重量%(865g)の溶媒を除去した。得られたテトラキス(1,1,3,3-テトラメチルグアニジノ)ホスファゼニウムクロリド-2-プロパノール溶液を撹拌しながら内部温度を60℃に放冷した。冷却後、水酸化カリウム32g(テトラキス(1,1,3,3-テトラメチルグアニジノ)ホスファゼニウムクロリドに対して1.1mol当量)を加えて60℃で2時間反応した。2時間後のイオン交換率は99.5%であった。温度を25℃まで冷却し、析出している副生塩を濾過により除去したところテトラキス(1,1,3,3-テトラメチルグアニジノ)ホスファゼニウムヒドロキシド-2-プロパノール溶液535gを得た。 After adding 100 ml of dichloromethane to the obtained aqueous phase and stirring, washing with water for oil-water separation was repeated twice, and tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium chloride was extracted with dichloromethane. rice field. Further, the obtained dichloromethane solution was washed with 100 ml of ion-exchanged water. This dichloromethane solution was transferred to a 2-liter four-necked flask equipped with a thermometer, a dropping funnel, a condenser and a Teflon (registered trademark) stirring blade, and after adding 900 g of 2-propanol, the temperature was adjusted under normal pressure. The temperature was raised from 80 to 100° C. and the dichloromethane was removed. 58% by weight of the solution (865 g) of solvent was removed. The resulting tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium chloride-2-propanol solution was allowed to cool to an internal temperature of 60° C. while stirring. After cooling, 32 g of potassium hydroxide (1.1 mol equivalent to tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium chloride) was added and reacted at 60° C. for 2 hours. The ion exchange rate after 2 hours was 99.5%. The temperature was cooled to 25° C., and the deposited by-product salt was removed by filtration to obtain 535 g of a tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide-2-propanol solution. .
 得られたテトラキス(1,1,3,3-テトラメチルグアニジノ)ホスファゼニウムヒドロキシド-2-プロパノール溶液には、塩基性イミノホスファゼニウム塩であるテトラキス(1,1,3,3-テトラメチルグアニジノ)ホスファゼニウムヒドロキシドが214g溶解しており、濃度40.0重量%のテトラキス(1,1,3,3-テトラメチルグアニジノ)ホスファゼニウムヒドロキシド-2-プロパノール溶液を得た。また、テトラキス(1,1,3,3-テトラメチルグアニジノ)ホスファゼニウムヒドロキシドの収率は93.0%であった。 The resulting tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide-2-propanol solution contains the basic iminophosphazenium salt tetrakis(1,1,3,3 - 214 g of tetramethylguanidino)phosphazenium hydroxide is dissolved in a tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide-2-propanol solution with a concentration of 40.0% by weight. got The yield of tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide was 93.0%.
 生成物は、H-NMR、GC-MSにより同定した。 The product was identified by 1 H-NMR, GC-MS.
 H-NMR(重溶媒:DO):
 化学シフト:2.92ppm(ホスファゼニウム塩由来のメチル基)。
1 H-NMR (heavy solvent: D 2 O):
Chemical shift: 2.92 ppm (methyl group from phosphazenium salt).
 GC-MS(FAB+) 測定結果:
 m/z=487(テトラキス(1,1,3,3-テトラメチルグアニジノ)ホスファゼニウムカチオンの分子量に一致。)。
GC-MS (FAB+) measurement results:
m/z = 487 (consistent with the molecular weight of the tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium cation).
 実施例1
 反応器中に、分子量250のポリプロピレントリオール83gと合成例1で得られたテトラキス(1,1,3,3-テトラメチルグアニジノ)ホスファゼニウムヒドロキシドの2-プロパノール溶液(40%)6.0g(1.5mmol)を投入した。100℃で2時間減圧下、2-プロパノール及び水を除去した。反応器内を窒素置換後、90℃でプロピレンオキシドを連続的に加えて、付加重合を行った。プロピレンオキシドの供給が終了した後、90℃で約1時間反応を行った後110℃まで約1時間かけて昇温した。110℃で圧力低下がなくなるまで反応した後、未反応のプロピレンオキシドを減圧条件下で除去した。110℃から120℃に昇温後、エチレンオキシドを連続的に供給して付加反応を行った。未反応のエチレンオキシドを減圧下で除去し、粗製ポリアルキレンオキシドを得た。
Example 1
83 g of polypropylene triol having a molecular weight of 250 and a 2-propanol solution (40%) of tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide obtained in Synthesis Example 1 were placed in a reactor6. 0 g (1.5 mmol) was charged. 2-propanol and water were removed under reduced pressure at 100° C. for 2 hours. After purging the inside of the reactor with nitrogen, propylene oxide was continuously added at 90° C. to carry out addition polymerization. After the supply of propylene oxide was finished, the reaction was carried out at 90° C. for about 1 hour, and then the temperature was raised to 110° C. over about 1 hour. After reacting at 110° C. until the pressure no longer drops, unreacted propylene oxide was removed under reduced pressure. After the temperature was raised from 110° C. to 120° C., ethylene oxide was continuously supplied to carry out an addition reaction. Unreacted ethylene oxide was removed under reduced pressure to obtain crude polyalkylene oxide.
 得られた粗製ポリアルキレンオキシドの内460gを攪拌機、窒素ライン、減圧ラインを付帯した1リットルの四つ口フラスコに取り出し、内温80℃にて水11.5g、吸着剤として(商品名)KW700SEN-S(協和化学工業(株)製)を4.6g、酸化防止剤としてIrganox1076(BASF製)を0.35g加え、80℃で1時間撹拌を行い、更に120℃に昇温し、120℃で3時間加熱撹拌した。続けて0.5kPaに減圧した後、120℃で3時間減圧脱水した後、400mlSUS製ろ過器を80℃に加熱し、0.3MPaで加圧ろ過してポリアルキレンオキシドを得た。 460 g of the obtained crude polyalkylene oxide was taken out into a 1-liter four-necked flask equipped with a stirrer, nitrogen line, and vacuum line, and 11.5 g of water was added at an internal temperature of 80° C. as an adsorbent (trade name) KW700SEN. -S (manufactured by Kyowa Chemical Industry Co., Ltd.) 4.6 g, 0.35 g of Irganox 1076 (manufactured by BASF) as an antioxidant was added, stirred at 80 ° C. for 1 hour, further heated to 120 ° C., and 120 ° C. and stirred for 3 hours. Subsequently, the pressure was reduced to 0.5 kPa, followed by dehydration under reduced pressure at 120° C. for 3 hours, followed by heating a 400 ml SUS filter to 80° C. and filtering under pressure at 0.3 MPa to obtain a polyalkylene oxide.
 得られたポリアルキレンオキシドの水酸基価は、24.0mgKOH/g、不飽和度は、0.026meq/g、pHは6.8であった。微量窒素の分析によるイミノホスファゼニウムカチオン(表1では単に「カチオン」と示す。)の含有量、アセトアルデヒドとプロピオンアルデヒドの総量、製造直後のアセトアルデヒドとプロピオンアルデヒドの揮発量及びハーゼン色数を測定した結果を表1に示す。次いで、0~40℃の温度範囲で6か月間保管した後のアセトアルデヒドとプロピオンアルデヒドの揮発量を測定し、結果を表1に示す。 The resulting polyalkylene oxide had a hydroxyl value of 24.0 mgKOH/g, a degree of unsaturation of 0.026 meq/g, and a pH of 6.8. Measure the content of iminophosphazenium cation (simply indicated as "cation" in Table 1), the total amount of acetaldehyde and propionaldehyde, the volatilization amount of acetaldehyde and propionaldehyde immediately after production, and the Hazen color number by analysis of trace nitrogen. Table 1 shows the results obtained. Next, after storage in the temperature range of 0 to 40° C. for 6 months, the volatilization amounts of acetaldehyde and propionaldehyde were measured, and the results are shown in Table 1.
 実施例2
 反応器中に、分子量250のポリプロピレントリオール83gと合成例1で得られたテトラキス(1,1,3,3-テトラメチルグアニジノ)ホスファゼニウムヒドロキシドの2-プロパノール溶液(40%)6.0g(1.5mmol)を投入した。95℃で2時間減圧下、2-プロパノール及び水を除去した。反応器内を窒素置換後、95℃でプロピレンオキシドを連続的に加えて、付加重合を行った。プロピレンオキシドの供給が終了した後、95℃で約1時間反応を行った後110℃まで約1時間かけて昇温した。110℃で圧力低下がなくなるまで反応した後、未反応のプロピレンオキシドを減圧条件下で除去し、120℃に昇温後、エチレンオキシドを連続的に供給して付加反応を行った。未反応のエチレンオキシドを減圧下で除去し、粗製ポリアルキレンオキシドを得た。
Example 2
83 g of polypropylene triol having a molecular weight of 250 and a 2-propanol solution (40%) of tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide obtained in Synthesis Example 1 were placed in a reactor6. 0 g (1.5 mmol) was charged. 2-propanol and water were removed under reduced pressure at 95° C. for 2 hours. After purging the inside of the reactor with nitrogen, propylene oxide was continuously added at 95° C. to carry out addition polymerization. After the supply of propylene oxide was finished, the reaction was carried out at 95° C. for about 1 hour, and then the temperature was raised to 110° C. over about 1 hour. After reacting at 110° C. until the pressure drop disappeared, unreacted propylene oxide was removed under reduced pressure conditions, and after the temperature was raised to 120° C., ethylene oxide was continuously supplied to carry out an addition reaction. Unreacted ethylene oxide was removed under reduced pressure to obtain crude polyalkylene oxide.
 得られた粗製ポリアルキレンオキシドの内460gを攪拌機、窒素ライン、減圧ラインを付帯した1リットルの四つ口フラスコに取り出し、吸着剤としての(商品名)KW700SEN-S(協和化学工業(株)製)4.6gの代りに4.0gとした以外は、実施例1と同様の方法により、ポリアルキレンオキシドを製造した。 460 g of the resulting crude polyalkylene oxide was taken out into a 1-liter four-necked flask equipped with a stirrer, a nitrogen line and a vacuum line, and used as an adsorbent (trade name) KW700SEN-S (manufactured by Kyowa Chemical Industry Co., Ltd.). ) A polyalkylene oxide was produced in the same manner as in Example 1, except that 4.0 g was used instead of 4.6 g.
 得られたポリアルキレンオキシドの水酸基価は、24.0mgKOH/g、不飽和度は、0.024meq/g、pHは6.1であった。実施例1と同様の測定を行い、結果を表1に示す。 The obtained polyalkylene oxide had a hydroxyl value of 24.0 mgKOH/g, a degree of unsaturation of 0.024 meq/g, and a pH of 6.1. The same measurements as in Example 1 were performed, and the results are shown in Table 1.
 実施例3
 反応器中に、分子量250のポリプロピレントリオール83gと合成例1で得られたテトラキス(1,1,3,3-テトラメチルグアニジノ)ホスファゼニウムヒドロキシドの2-プロパノール溶液(40%)6.0g(1.5mmol)を投入した。100℃で2時間減圧下、2-プロパノール及び水を除去した。反応器内を窒素置換後、90℃でプロピレンオキシドを連続的に加えて、付加重合を行った。プロピレンオキシドの供給が終了した後、90℃で約1時間反応を行った後、110℃まで約1時間かけて昇温した。110℃で圧力低下がなくなるまで反応した後、未反応のプロピレンオキシドを減圧条件下で除去し、110℃のままエチレンオキシドを連続的に供給して付加反応を行った。未反応のエチレンオキシドを減圧下で除去し、粗製ポリアルキレンオキシドを得た。
Example 3
83 g of polypropylene triol having a molecular weight of 250 and a 2-propanol solution (40%) of tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide obtained in Synthesis Example 1 were placed in a reactor6. 0 g (1.5 mmol) was charged. 2-propanol and water were removed under reduced pressure at 100° C. for 2 hours. After purging the inside of the reactor with nitrogen, propylene oxide was continuously added at 90° C. to carry out addition polymerization. After the supply of propylene oxide was finished, the reaction was carried out at 90° C. for about 1 hour, and then the temperature was raised to 110° C. over about 1 hour. After reacting at 110° C. until the pressure drop disappeared, unreacted propylene oxide was removed under reduced pressure conditions, and ethylene oxide was continuously supplied at 110° C. to carry out an addition reaction. Unreacted ethylene oxide was removed under reduced pressure to obtain crude polyalkylene oxide.
 得られた粗製ポリアルキレンオキシドの内460gを攪拌機、窒素ライン、減圧ラインを付帯した1リットルの四つ口フラスコに取り出し、実施例1と同様の方法により、ポリアルキレンオキシドを製造した。 460 g of the resulting crude polyalkylene oxide was taken out into a 1-liter four-necked flask equipped with a stirrer, nitrogen line, and vacuum line, and the same method as in Example 1 was used to produce polyalkylene oxide.
 得られたポリアルキレンオキシドの水酸基価は、24.1mgKOH/g、不飽和度は、0.026meq/g、pHは7.0であった。実施例1と同様の測定を行い、結果を表1に示す。 The resulting polyalkylene oxide had a hydroxyl value of 24.1 mgKOH/g, a degree of unsaturation of 0.026 meq/g, and a pH of 7.0. The same measurements as in Example 1 were performed, and the results are shown in Table 1.
 比較例1
 反応器中に、分子量250のポリプロピレントリオール83gと合成例1で得られたテトラキス(1,1,3,3-テトラメチルグアニジノ)ホスファゼニウムヒドロキシドの2-プロパノール溶液(40%)6.0g(1.5mmol)を投入した。100℃で2時間減圧下、2-プロパノール及び水を除去した。反応器内を窒素置換後、90℃でプロピレンオキシドを連続的に加えて、付加重合を行った。プロピレンオキシドの供給が終了した後、そのまま90℃で圧力低下がなくなるまで反応を継続した。その後、未反応のプロピレンオキシドを減圧条件下で除去し、120℃に昇温後、エチレンオキシドを連続的に供給して付加反応を行った。未反応のエチレンオキシドを減圧下で除去し、粗製ポリアルキレンオキシドを得た。
Comparative example 1
83 g of polypropylene triol having a molecular weight of 250 and a 2-propanol solution (40%) of tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide obtained in Synthesis Example 1 were placed in a reactor6. 0 g (1.5 mmol) was charged. 2-propanol and water were removed under reduced pressure at 100° C. for 2 hours. After purging the inside of the reactor with nitrogen, propylene oxide was continuously added at 90° C. to carry out addition polymerization. After the supply of propylene oxide was finished, the reaction was continued at 90° C. until the pressure drop disappeared. Thereafter, unreacted propylene oxide was removed under reduced pressure conditions, and after the temperature was raised to 120° C., ethylene oxide was continuously supplied to carry out an addition reaction. Unreacted ethylene oxide was removed under reduced pressure to obtain crude polyalkylene oxide.
 得られた粗製ポリアルキレンオキシドの内460gを攪拌機、窒素ライン、減圧ラインを付帯した1リットルの四つ口フラスコに取り出し、吸着剤としての(商品名)KW700SEN-S(協和化学工業(株)製)4.6gの代りに6.5gにした以外は、実施例1と同様の方法により、ポリアルキレンオキシドを製造した。 460 g of the resulting crude polyalkylene oxide was taken out into a 1-liter four-necked flask equipped with a stirrer, a nitrogen line and a vacuum line, and used as an adsorbent (trade name) KW700SEN-S (manufactured by Kyowa Chemical Industry Co., Ltd.). ) A polyalkylene oxide was produced in the same manner as in Example 1, except that 6.5 g was used instead of 4.6 g.
 得られたポリアルキレンオキシドの水酸基価は、23.8mgKOH/g、不飽和度は0.025meq/g、pHは6.4であった。実施例1と同様の測定を行い、結果を表1に示す。 The obtained polyalkylene oxide had a hydroxyl value of 23.8 mgKOH/g, a degree of unsaturation of 0.025 meq/g, and a pH of 6.4. The same measurements as in Example 1 were performed, and the results are shown in Table 1.
 比較例2
 反応器中に、分子量250のポリプロピレントリオール83gと合成例1で得られたテトラキス(1,1,3,3-テトラメチルグアニジノ)ホスファゼニウムヒドロキシドの2-プロパノール溶液(40%)6.0g(1.5mmol)を投入した。100℃で2時間減圧下、2-プロパノール及び水を除去した。反応器内を窒素置換後、90℃でプロピレンオキシドを連続的に加えて、付加重合を行った。プロピレンオキシドの供給が終了した後、そのまま90℃で圧力低下がなくなるまで反応を継続した。その後、未反応のプロピレンオキシドを減圧条件下で除去し、110℃に昇温後、エチレンオキシドを連続的に供給して付加反応を行った。未反応のエチレンオキシドを減圧下で除去し、粗製ポリアルキレンオキシドを得た。
Comparative example 2
83 g of polypropylene triol having a molecular weight of 250 and a 2-propanol solution (40%) of tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide obtained in Synthesis Example 1 were placed in a reactor6. 0 g (1.5 mmol) was charged. 2-propanol and water were removed under reduced pressure at 100° C. for 2 hours. After purging the inside of the reactor with nitrogen, propylene oxide was continuously added at 90° C. to carry out addition polymerization. After the supply of propylene oxide was finished, the reaction was continued at 90° C. until the pressure drop disappeared. Thereafter, unreacted propylene oxide was removed under reduced pressure conditions, and after the temperature was raised to 110° C., ethylene oxide was continuously supplied to carry out an addition reaction. Unreacted ethylene oxide was removed under reduced pressure to obtain crude polyalkylene oxide.
 得られた粗製ポリアルキレンオキシドの内460gを攪拌機、窒素ライン、減圧ラインを付帯した1リットルの四つ口フラスコに取り出し、吸着剤としての(商品名)KW700SEN-S(協和化学工業(株)製)4.6gの代りに3.0gにした以外は、実施例1と同様の方法により、ポリアルキレンオキシドを製造した。 460 g of the resulting crude polyalkylene oxide was taken out into a 1-liter four-necked flask equipped with a stirrer, a nitrogen line and a vacuum line, and used as an adsorbent (trade name) KW700SEN-S (manufactured by Kyowa Chemical Industry Co., Ltd.). ) A polyalkylene oxide was produced in the same manner as in Example 1, except that 3.0 g was used instead of 4.6 g.
 得られたポリアルキレンオキシドの水酸基価は24.0mgKOH/g、不飽和度は0.027meq/g、pHは8.1であった。実施例1と同様の測定を行い、結果を表1に示す。 The resulting polyalkylene oxide had a hydroxyl value of 24.0 mgKOH/g, a degree of unsaturation of 0.027 meq/g, and a pH of 8.1. The same measurements as in Example 1 were performed, and the results are shown in Table 1.
 比較例3
 テトラキス(1,1,3,3-テトラメチルグアニジノ)ホスファゼニウムヒドロキシドの2-プロパノール溶液(40%)6.0g(1.5mmol%)の代わりに、水酸化カリウム50%水溶液を5.34g(15mmol%)を用い、プロピレンオキシドの付加反応の温度を90℃から110℃とした以外は、比較例1と同様の方法により、ポリアルキレンオキシドを製造した。
Comparative example 3
Instead of 6.0 g (1.5 mmol%) of 2-propanol solution (40%) of tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide, 50% aqueous solution of potassium hydroxide was added. A polyalkylene oxide was produced in the same manner as in Comparative Example 1 except that 0.34 g (15 mmol %) was used and the temperature for the addition reaction of propylene oxide was changed from 90°C to 110°C.
 得られたポリアルキレンオキシドの水酸基価は、24.3mgKOH/g、不飽和度は、0.097meq/g、pHは7.0であった。実施例1と同様の測定を行い、結果を表1に示す。 The resulting polyalkylene oxide had a hydroxyl value of 24.3 mgKOH/g, a degree of unsaturation of 0.097 meq/g, and a pH of 7.0. The same measurements as in Example 1 were performed, and the results are shown in Table 1.
 実施例4
 実施例3と同様の重合操作により粗製ポリアルキレンオキシドの重合を行なった。
Example 4
A crude polyalkylene oxide was polymerized by the same polymerization procedure as in Example 3.
 得られた粗製ポリアルキレンオキシドの内460gを攪拌機、窒素ライン、減圧ラインを付帯した1リットルの四つ口フラスコに取り出し、吸着剤としての(商品名)KW700SEN-S(協和化学工業(株)製)4.6gの代りに6.5gにした以外は、実施例1と同様の方法により、ポリアルキレンオキシドを製造した。得られたポリアルキレンオキシドの水酸基価は24.2mgKOH/g、不飽和度は0.025meq/g、pHは6.7であった。実施例1と同様の測定を行い、結果を表1に示す。 460 g of the resulting crude polyalkylene oxide was taken out into a 1-liter four-necked flask equipped with a stirrer, a nitrogen line and a vacuum line, and used as an adsorbent (trade name) KW700SEN-S (manufactured by Kyowa Chemical Industry Co., Ltd.). ) A polyalkylene oxide was produced in the same manner as in Example 1, except that 6.5 g was used instead of 4.6 g. The resulting polyalkylene oxide had a hydroxyl value of 24.2 mgKOH/g, a degree of unsaturation of 0.025 meq/g, and a pH of 6.7. The same measurements as in Example 1 were performed, and the results are shown in Table 1.
 実施例5
 反応器中に、分子量250のポリプロピレントリオール83gと合成例1で得られたテトラキス(1,1,3,3-テトラメチルグアニジノ)ホスファゼニウムヒドロキシドの2-プロパノール溶液(40%)6.0g(1.5mmol)を投入した。100℃で2時間減圧下、2-プロパノール及び水を除去した。反応器内を窒素置換後、105℃でプロピレンオキシドを連続的に加えて、付加重合を行った。プロピレンオキシドの供給が終了した後、105℃で約1時間反応を行った後、110℃まで約0.5時間かけて昇温した。110℃で圧力低下がなくなるまで反応した後、その後、未反応のプロピレンオキシドを減圧条件下で除去し、130℃に昇温後、エチレンオキシドを連続的に供給して付加反応を行った。未反応のエチレンオキシドを減圧下で除去し、粗製ポリアルキレンオキシドを得た。
Example 5
83 g of polypropylene triol having a molecular weight of 250 and a 2-propanol solution (40%) of tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide obtained in Synthesis Example 1 were placed in a reactor6. 0 g (1.5 mmol) was charged. 2-propanol and water were removed under reduced pressure at 100° C. for 2 hours. After purging the inside of the reactor with nitrogen, addition polymerization was carried out by continuously adding propylene oxide at 105°C. After the supply of propylene oxide was finished, the reaction was carried out at 105°C for about 1 hour, and then the temperature was raised to 110°C over about 0.5 hours. After the reaction was carried out at 110° C. until the pressure drop disappeared, unreacted propylene oxide was removed under reduced pressure conditions, and after the temperature was raised to 130° C., ethylene oxide was continuously supplied to carry out an addition reaction. Unreacted ethylene oxide was removed under reduced pressure to obtain crude polyalkylene oxide.
 得られた粗製ポリアルキレンオキシドの内460gを攪拌機、窒素ライン、減圧ラインを付帯した1リットルの四つ口フラスコに取り出し、吸着剤としての(商品名)KW700SEN-S(協和化学工業(株)製)4.6gの代りに3.9gとした以外は、実施例4と同様の方法により、ポリアルキレンオキシドを製造した。 460 g of the resulting crude polyalkylene oxide was taken out into a 1-liter four-necked flask equipped with a stirrer, a nitrogen line and a vacuum line, and used as an adsorbent (trade name) KW700SEN-S (manufactured by Kyowa Chemical Industry Co., Ltd.). ) A polyalkylene oxide was produced in the same manner as in Example 4, except that 3.9 g was used instead of 4.6 g.
 得られたポリアルキレンオキシドの水酸基価は24.0mgKOH/g、不飽和度は0.045meq/g、pHは5.6であった。実施例1と同様の測定を行い、結果を表1に示す。 The resulting polyalkylene oxide had a hydroxyl value of 24.0 mgKOH/g, a degree of unsaturation of 0.045 meq/g, and a pH of 5.6. The same measurements as in Example 1 were performed, and the results are shown in Table 1.
 実施例6
 反応器中に、分子量250のポリプロピレントリオール83gと合成例1で得られたテトラキス(1,1,3,3-テトラメチルグアニジノ)ホスファゼニウムヒドロキシドの2-プロパノール溶液(40%)6.0g(1.5mmol)を投入した。100℃で2時間減圧下、2-プロパノール及び水を除去した。反応器内を窒素置換後、90℃でプロピレンオキシドを連続的に加えて、付加重合を行った。プロピレンオキシドの供給が終了した後、90℃で約1時間反応を行った後、110℃まで約1時間かけて昇温した。110℃で圧力低下がなくなるまで反応した後、未反応のプロピレンオキシドを減圧条件下で除去し、110℃のままエチレンオキシドを連続的に供給して付加反応を行った。未反応のエチレンオキシドを減圧下で除去し、粗製ポリアルキレンオキシドを得た。
Example 6
83 g of polypropylene triol having a molecular weight of 250 and a 2-propanol solution (40%) of tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide obtained in Synthesis Example 1 were placed in a reactor6. 0 g (1.5 mmol) was charged. 2-propanol and water were removed under reduced pressure at 100° C. for 2 hours. After purging the inside of the reactor with nitrogen, propylene oxide was continuously added at 90° C. to carry out addition polymerization. After the supply of propylene oxide was finished, the reaction was carried out at 90° C. for about 1 hour, and then the temperature was raised to 110° C. over about 1 hour. After reacting at 110° C. until the pressure drop disappeared, unreacted propylene oxide was removed under reduced pressure conditions, and ethylene oxide was continuously supplied at 110° C. to carry out an addition reaction. Unreacted ethylene oxide was removed under reduced pressure to obtain crude polyalkylene oxide.
 得られた粗製ポリアルキレンオキシドの内460gを攪拌機、窒素ライン、減圧ラインを付帯した1リットルの四つ口フラスコに取り出し、吸着剤としての(商品名)KW700SEN-S(協和化学工業(株)製)4.6gの代りに4.4gとした以外は、実施例1と同様の方法により、ポリアルキレンオキシドを製造した。 460 g of the resulting crude polyalkylene oxide was taken out into a 1-liter four-necked flask equipped with a stirrer, a nitrogen line and a vacuum line, and used as an adsorbent (trade name) KW700SEN-S (manufactured by Kyowa Chemical Industry Co., Ltd.). ) A polyalkylene oxide was produced in the same manner as in Example 1, except that 4.4 g was used instead of 4.6 g.
 得られたポリアルキレンオキシドの水酸基価は24.1mgKOH/g、不飽和度は0.021meq/g、pHは7.1であった。実施例1と同様の測定を行い、結果を表1に示す。 The resulting polyalkylene oxide had a hydroxyl value of 24.1 mgKOH/g, a degree of unsaturation of 0.021 meq/g, and a pH of 7.1. The same measurements as in Example 1 were performed, and the results are shown in Table 1.
 実施例7
 反応器中に、分子量250のポリプロピレントリオール83gと合成例1で得られたテトラキス(1,1,3,3-テトラメチルグアニジノ)ホスファゼニウムヒドロキシドの2-プロパノール溶液(40%)6.0g(1.5mmol)を投入した。100℃で2時間減圧下、2-プロパノール及び水を除去した。反応器内を窒素置換後、100℃でプロピレンオキシドを連続的に加えて、付加重合を行った。プロピレンオキシドの供給が終了した後、100℃で約0.5時間反応を行った後、110℃まで約0.5時間かけて昇温した。110℃で圧力低下がなくなるまで反応した後、未反応のプロピレンオキシドを減圧条件下で除去し、120℃に昇温後、エチレンオキシドを連続的に供給して付加反応を行った。未反応のエチレンオキシドを減圧下で除去し、粗製ポリアルキレンオキシドを得た。
Example 7
83 g of polypropylene triol having a molecular weight of 250 and a 2-propanol solution (40%) of tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide obtained in Synthesis Example 1 were placed in a reactor6. 0 g (1.5 mmol) was charged. 2-propanol and water were removed under reduced pressure at 100° C. for 2 hours. After purging the inside of the reactor with nitrogen, addition polymerization was carried out by continuously adding propylene oxide at 100°C. After the supply of propylene oxide was finished, the reaction was carried out at 100° C. for about 0.5 hours, and then the temperature was raised to 110° C. over about 0.5 hours. After reacting at 110° C. until the pressure drop disappeared, unreacted propylene oxide was removed under reduced pressure conditions, and after the temperature was raised to 120° C., ethylene oxide was continuously supplied to carry out an addition reaction. Unreacted ethylene oxide was removed under reduced pressure to obtain crude polyalkylene oxide.
 得られた粗製ポリアルキレンオキシドの内460gを攪拌機、窒素ライン、減圧ラインを付帯した1リットルの四つ口フラスコに取り出し、吸着剤としての(商品名)KW700SEN-S(協和化学工業(株)製)4.6gの代りに4.4gとした以外は、実施例1と同様の方法により、ポリアルキレンオキシドを製造した。 460 g of the resulting crude polyalkylene oxide was taken out into a 1-liter four-necked flask equipped with a stirrer, a nitrogen line and a vacuum line, and used as an adsorbent (trade name) KW700SEN-S (manufactured by Kyowa Chemical Industry Co., Ltd.). ) A polyalkylene oxide was produced in the same manner as in Example 1, except that 4.4 g was used instead of 4.6 g.
 得られたポリアルキレンオキシドの水酸基価は24.1mgKOH/g、不飽和度は0.040meq/g、pHは6.9であった。実施例1と同様の測定を行い、結果を表1に示す。 The resulting polyalkylene oxide had a hydroxyl value of 24.1 mgKOH/g, a degree of unsaturation of 0.040 meq/g, and a pH of 6.9. The same measurements as in Example 1 were performed, and the results are shown in Table 1.
 実施例8
 反応器中に、分子量250のポリプロピレントリオール83gと合成例1で得られたテトラキス(1,1,3,3-テトラメチルグアニジノ)ホスファゼニウムヒドロキシドの2-プロパノール溶液(40%)6.0g(1.5mmol)を投入した。100℃で2時間減圧下、2-プロパノール及び水を除去した。反応器内を窒素置換後、90℃でプロピレンオキシドを連続的に加えて、付加重合を行った。プロピレンオキシドの供給が終了した後、90℃で約1時間反応を行った後、110℃まで約1時間かけて昇温した。110℃で圧力低下がなくなるまで反応した後、未反応のプロピレンオキシドを減圧条件下で除去し、120℃に昇温後、エチレンオキシドを連続的に供給して付加反応を行った。未反応のエチレンオキシドを減圧下で除去し、粗製ポリアルキレンオキシドを得た。
Example 8
83 g of polypropylene triol having a molecular weight of 250 and a 2-propanol solution (40%) of tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide obtained in Synthesis Example 1 were placed in a reactor6. 0 g (1.5 mmol) was charged. 2-propanol and water were removed under reduced pressure at 100° C. for 2 hours. After purging the inside of the reactor with nitrogen, propylene oxide was continuously added at 90° C. to carry out addition polymerization. After the supply of propylene oxide was finished, the reaction was carried out at 90° C. for about 1 hour, and then the temperature was raised to 110° C. over about 1 hour. After reacting at 110° C. until the pressure drop disappeared, unreacted propylene oxide was removed under reduced pressure conditions, and after the temperature was raised to 120° C., ethylene oxide was continuously supplied to carry out an addition reaction. Unreacted ethylene oxide was removed under reduced pressure to obtain crude polyalkylene oxide.
 得られた粗製ポリアルキレンオキシドの内460gを攪拌機、窒素ライン、減圧ラインを付帯した1リットルの四つ口フラスコに取り出し、吸着剤としての(商品名)KW700SEN-S(協和化学工業(株)製)4.6gの代りに4.4gとした以外は、実施例1と同様の方法により、ポリアルキレンオキシドを製造した。 460 g of the resulting crude polyalkylene oxide was taken out into a 1-liter four-necked flask equipped with a stirrer, a nitrogen line and a vacuum line, and used as an adsorbent (trade name) KW700SEN-S (manufactured by Kyowa Chemical Industry Co., Ltd.). ) A polyalkylene oxide was produced in the same manner as in Example 1, except that 4.4 g was used instead of 4.6 g.
 得られたポリアルキレンオキシドの水酸基価は24.1mgKOH/g、不飽和度は0.037meq/g、pHは6.8であった。実施例1と同様の測定を行い、結果を表1に示す。 The resulting polyalkylene oxide had a hydroxyl value of 24.1 mgKOH/g, a degree of unsaturation of 0.037 meq/g, and a pH of 6.8. The same measurements as in Example 1 were performed, and the results are shown in Table 1.
 実施例9
 反応器中に、分子量250のポリプロピレントリオール83gと合成例1で得られたテトラキス(1,1,3,3-テトラメチルグアニジノ)ホスファゼニウムヒドロキシドの2-プロパノール溶液(40%)6.0g(1.5mmol)を投入した。100℃で2時間減圧下、2-プロパノール及び水を除去した。反応器内を窒素置換後、95℃でプロピレンオキシドを連続的に加えて、付加重合を行った。プロピレンオキシドの供給が終了した後、95℃で約1時間反応を行った後、110℃まで約1時間かけて昇温した。110℃で圧力低下がなくなるまで反応した後、未反応のプロピレンオキシドを減圧条件下で除去し、110℃のままエチレンオキシドを連続的に供給して付加反応を行った。未反応のエチレンオキシドを減圧下で除去し、粗製ポリアルキレンオキシドを得た。
Example 9
83 g of polypropylene triol having a molecular weight of 250 and a 2-propanol solution (40%) of tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide obtained in Synthesis Example 1 were placed in a reactor6. 0 g (1.5 mmol) was charged. 2-propanol and water were removed under reduced pressure at 100° C. for 2 hours. After purging the inside of the reactor with nitrogen, propylene oxide was continuously added at 95° C. to carry out addition polymerization. After the supply of propylene oxide was finished, the reaction was carried out at 95° C. for about 1 hour, and then the temperature was raised to 110° C. over about 1 hour. After reacting at 110° C. until the pressure drop disappeared, unreacted propylene oxide was removed under reduced pressure conditions, and ethylene oxide was continuously supplied at 110° C. to carry out an addition reaction. Unreacted ethylene oxide was removed under reduced pressure to obtain crude polyalkylene oxide.
 得られた粗製ポリアルキレンオキシドの内460gを攪拌機、窒素ライン、減圧ラインを付帯した1リットルの四つ口フラスコに取り出し、吸着剤としての(商品名)KW700SEN-S(協和化学工業(株)製)4.6gの代りに4.3gとした以外は、実施例1と同様の方法により、ポリアルキレンオキシドを製造した。 460 g of the resulting crude polyalkylene oxide was taken out into a 1-liter four-necked flask equipped with a stirrer, a nitrogen line and a vacuum line, and used as an adsorbent (trade name) KW700SEN-S (manufactured by Kyowa Chemical Industry Co., Ltd.). ) A polyalkylene oxide was produced in the same manner as in Example 1, except that 4.3 g was used instead of 4.6 g.
 得られたポリアルキレンオキシドの水酸基価は24.1mgKOH/g、不飽和度は0.027meq/g、pHは6.3であった。実施例1と同様の測定を行い、結果を表1に示す。 The resulting polyalkylene oxide had a hydroxyl value of 24.1 mgKOH/g, a degree of unsaturation of 0.027 meq/g, and a pH of 6.3. The same measurements as in Example 1 were performed, and the results are shown in Table 1.
 実施例10
 反応器中に、分子量250のポリプロピレントリオール83gと合成例1で得られたテトラキス(1,1,3,3-テトラメチルグアニジノ)ホスファゼニウムヒドロキシドの2-プロパノール溶液(40%)6.0g(1.5mmol)を投入した。100℃で2時間減圧下、2-プロパノール及び水を除去した。反応器内を窒素置換後、100℃でプロピレンオキシドを連続的に加えて、付加重合を行った。プロピレンオキシドの供給が終了した後、100℃で約0.5時間反応を行った後、110℃まで約0.5時間かけて昇温した。110℃で圧力低下がなくなるまで反応した後、未反応のプロピレンオキシドを減圧条件下で除去し、110℃でエチレンオキシドを連続的に供給して付加反応を行った。未反応のエチレンオキシドを減圧下で除去し、粗製ポリアルキレンオキシドを得た。
Example 10
83 g of polypropylene triol having a molecular weight of 250 and a 2-propanol solution (40%) of tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide obtained in Synthesis Example 1 were placed in a reactor6. 0 g (1.5 mmol) was charged. 2-propanol and water were removed under reduced pressure at 100° C. for 2 hours. After purging the inside of the reactor with nitrogen, addition polymerization was carried out by continuously adding propylene oxide at 100°C. After the supply of propylene oxide was finished, the reaction was carried out at 100° C. for about 0.5 hours, and then the temperature was raised to 110° C. over about 0.5 hours. After reacting at 110° C. until the pressure drop disappeared, unreacted propylene oxide was removed under reduced pressure conditions, and ethylene oxide was continuously supplied at 110° C. to carry out addition reaction. Unreacted ethylene oxide was removed under reduced pressure to obtain crude polyalkylene oxide.
 得られた粗製ポリアルキレンオキシドの内460gを攪拌機、窒素ライン、減圧ラインを付帯した1リットルの四つ口フラスコに取り出し、吸着剤としての(商品名)KW700SEN-S(協和化学工業(株)製)4.6gの代りに4.4gとした以外は、実施例1と同様の方法により、ポリアルキレンオキシドを製造した。 460 g of the resulting crude polyalkylene oxide was taken out into a 1-liter four-necked flask equipped with a stirrer, a nitrogen line and a vacuum line, and used as an adsorbent (trade name) KW700SEN-S (manufactured by Kyowa Chemical Industry Co., Ltd.). ) A polyalkylene oxide was produced in the same manner as in Example 1, except that 4.4 g was used instead of 4.6 g.
 得られたポリアルキレンオキシドの水酸基価は24.1mgKOH/g、不飽和度は0.035meq/g、pHは6.2であった。実施例1と同様の測定を行い、結果を表1に示す。 The resulting polyalkylene oxide had a hydroxyl value of 24.1 mgKOH/g, a degree of unsaturation of 0.035 meq/g, and a pH of 6.2. The same measurements as in Example 1 were performed, and the results are shown in Table 1.
 比較例4
 反応器中に、分子量250のポリプロピレントリオール83gと合成例1で得られたテトラキス(1,1,3,3-テトラメチルグアニジノ)ホスファゼニウムヒドロキシドの2-プロパノール溶液(40%)6.0g(1.5mmol)を投入した。100℃で2時間減圧下、2-プロパノール及び水を除去した。反応器内を窒素置換後、90℃でプロピレンオキシドを連続的に加えて、付加重合を行った。プロピレンオキシドの供給が終了した後、そのまま90℃で圧力低下がなくなるまで反応を継続した。その後、未反応のプロピレンオキシドを減圧条件下で除去し、90℃でエチレンオキシドを連続的に供給して付加反応を行った。未反応のエチレンオキシドを減圧下で除去し、粗製ポリアルキレンオキシドを得た。
Comparative example 4
83 g of polypropylene triol having a molecular weight of 250 and a 2-propanol solution (40%) of tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide obtained in Synthesis Example 1 were placed in a reactor6. 0 g (1.5 mmol) was charged. 2-propanol and water were removed under reduced pressure at 100° C. for 2 hours. After purging the inside of the reactor with nitrogen, propylene oxide was continuously added at 90° C. to carry out addition polymerization. After the supply of propylene oxide was finished, the reaction was continued at 90° C. until the pressure drop disappeared. Thereafter, unreacted propylene oxide was removed under reduced pressure conditions, and ethylene oxide was continuously supplied at 90° C. to carry out an addition reaction. Unreacted ethylene oxide was removed under reduced pressure to obtain crude polyalkylene oxide.
 得られた粗製ポリアルキレンオキシドの内460gを攪拌機、窒素ライン、減圧ラインを付帯した1リットルの四つ口フラスコに取り出し、吸着剤としての(商品名)KW700SEN-S(協和化学工業(株)製)4.6gの代りに4.4gとした以外は、実施例1と同様の方法により、ポリアルキレンオキシドを製造した。 460 g of the resulting crude polyalkylene oxide was taken out into a 1-liter four-necked flask equipped with a stirrer, a nitrogen line and a vacuum line, and used as an adsorbent (trade name) KW700SEN-S (manufactured by Kyowa Chemical Industry Co., Ltd.). ) A polyalkylene oxide was produced in the same manner as in Example 1, except that 4.4 g was used instead of 4.6 g.
 得られたポリアルキレンオキシドの水酸基価は24.1mgKOH/g、不飽和度は0.020meq/g、pHは7.4であった。実施例1と同様の測定を行い、結果を表1に示す。 The resulting polyalkylene oxide had a hydroxyl value of 24.1 mgKOH/g, a degree of unsaturation of 0.020 meq/g, and a pH of 7.4. The same measurements as in Example 1 were performed, and the results are shown in Table 1.
 比較例5
 反応器中に、分子量250のポリプロピレントリオール83gと合成例1で得られたテトラキス(1,1,3,3-テトラメチルグアニジノ)ホスファゼニウムヒドロキシドの2-プロパノール溶液(40%)6.0g(1.5mmol)を投入した。100℃で2時間減圧下、2-プロパノール及び水を除去した。反応器内を窒素置換後、110℃でプロピレンオキシドを連続的に加えて、付加重合を行った。プロピレンオキシドの供給が終了した後、そのまま110℃で圧力低下がなくなるまで反応を継続した。その後、未反応のプロピレンオキシドを減圧条件下で除去し、130℃に昇温後、エチレンオキシドを連続的に供給して付加反応を行った。未反応のエチレンオキシドを減圧下で除去し、粗製ポリアルキレンオキシドを得た。
Comparative example 5
83 g of polypropylene triol having a molecular weight of 250 and a 2-propanol solution (40%) of tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide obtained in Synthesis Example 1 were placed in a reactor6. 0 g (1.5 mmol) was charged. 2-propanol and water were removed under reduced pressure at 100° C. for 2 hours. After purging the inside of the reactor with nitrogen, propylene oxide was continuously added at 110° C. to carry out addition polymerization. After the supply of propylene oxide was completed, the reaction was continued at 110° C. until the pressure drop disappeared. Thereafter, unreacted propylene oxide was removed under reduced pressure conditions, and after the temperature was raised to 130° C., ethylene oxide was continuously supplied to carry out an addition reaction. Unreacted ethylene oxide was removed under reduced pressure to obtain crude polyalkylene oxide.
 得られた粗製ポリアルキレンオキシドの内460gを攪拌機、窒素ライン、減圧ラインを付帯した1リットルの四つ口フラスコに取り出し、実施例1と同様の方法により、ポリアルキレンオキシドを製造した。 460 g of the resulting crude polyalkylene oxide was taken out into a 1-liter four-necked flask equipped with a stirrer, nitrogen line, and vacuum line, and the same method as in Example 1 was used to produce polyalkylene oxide.
 得られたポリアルキレンオキシドの水酸基価は24.1mgKOH/g、不飽和度は0.045meq/g、pHは5.3であった。実施例1と同様の測定を行い、結果を表1に示す。 The resulting polyalkylene oxide had a hydroxyl value of 24.1 mgKOH/g, a degree of unsaturation of 0.045 meq/g, and a pH of 5.3. The same measurements as in Example 1 were performed, and the results are shown in Table 1.
 比較例6
 反応器中に、分子量250のポリプロピレントリオール83gと合成例1で得られたテトラキス(1,1,3,3-テトラメチルグアニジノ)ホスファゼニウムヒドロキシドの2-プロパノール溶液(40%)6.0g(1.5mmol)を投入した。100℃で2時間減圧下、2-プロパノール及び水を除去した。反応器内を窒素置換後、110℃でプロピレンオキシドを連続的に加えて、付加重合を行った。プロピレンオキシドの供給が終了した後、そのまま110℃で圧力低下がなくなるまで反応を継続した。その後、未反応のプロピレンオキシドを減圧条件下で除去し、130℃に昇温後、エチレンオキシドを連続的に供給して付加反応を行った。未反応のエチレンオキシドを減圧下で除去し、粗製ポリアルキレンオキシドを得た。
Comparative example 6
83 g of polypropylene triol having a molecular weight of 250 and a 2-propanol solution (40%) of tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide obtained in Synthesis Example 1 were placed in a reactor6. 0 g (1.5 mmol) was charged. 2-propanol and water were removed under reduced pressure at 100° C. for 2 hours. After purging the inside of the reactor with nitrogen, propylene oxide was continuously added at 110° C. to carry out addition polymerization. After the supply of propylene oxide was completed, the reaction was continued at 110° C. until the pressure drop disappeared. Thereafter, unreacted propylene oxide was removed under reduced pressure conditions, and after the temperature was raised to 130° C., ethylene oxide was continuously supplied to carry out an addition reaction. Unreacted ethylene oxide was removed under reduced pressure to obtain crude polyalkylene oxide.
 得られた粗製ポリアルキレンオキシドの内460gを攪拌機、窒素ライン、減圧ラインを付帯した1リットルの四つ口フラスコに取り出し、吸着剤としての(商品名)KW700SEN-S(協和化学工業(株)製)4.6gの代りに3.5gとした以外は、実施例1と同様の方法により、ポリアルキレンオキシドを製造した。 460 g of the resulting crude polyalkylene oxide was taken out into a 1-liter four-necked flask equipped with a stirrer, a nitrogen line and a vacuum line, and used as an adsorbent (trade name) KW700SEN-S (manufactured by Kyowa Chemical Industry Co., Ltd.). ) A polyalkylene oxide was produced in the same manner as in Example 1, except that 3.5 g was used instead of 4.6 g.
 得られたポリアルキレンオキシドの水酸基価は24.1mgKOH/g、不飽和度は0.040meq/g、pHは6.8であった。実施例1と同様の測定を行い、結果を表1に示す。 The resulting polyalkylene oxide had a hydroxyl value of 24.1 mgKOH/g, a degree of unsaturation of 0.040 meq/g, and a pH of 6.8. The same measurements as in Example 1 were performed, and the results are shown in Table 1.
 比較例7
 反応器中に、分子量1000のポリプロピレントリオール175gと合成例1で得られたテトラキス(1,1,3,3-テトラメチルグアニジノ)ホスファゼニウムヒドロキシドの2-プロパノール溶液(40%)6.0g(1.5mmol)を投入した。反応器内を窒素置換後、80℃で2時間、0.2kPaの減圧下で2-プロパノール及び水を除去した。反応器内を窒素置換後、90℃でプロピレンオキシドを連続的に供給して付加反応を行った。プロピレンオキシドの供給が終了した後、そのまま90℃で圧力低下がなくなるまで反応を継続した。その後、減圧下で未反応のプロピレンオキシドを除去した後、90℃でエチレンオキシドを連続的に供給して付加反応を行った。その後、減圧下で未反応エチレンオキシドの除去を行い、粗製ポリアルキレンオキシドを得た。
Comparative example 7
175 g of polypropylene triol having a molecular weight of 1000 and the 2-propanol solution (40%) of tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide obtained in Synthesis Example 1 were placed in a reactor6. 0 g (1.5 mmol) was charged. After purging the interior of the reactor with nitrogen, 2-propanol and water were removed at 80° C. for 2 hours under a reduced pressure of 0.2 kPa. After purging the inside of the reactor with nitrogen, propylene oxide was continuously supplied at 90° C. to carry out an addition reaction. After the supply of propylene oxide was finished, the reaction was continued at 90° C. until the pressure drop disappeared. Thereafter, after removing unreacted propylene oxide under reduced pressure, ethylene oxide was continuously supplied at 90° C. to carry out an addition reaction. Thereafter, unreacted ethylene oxide was removed under reduced pressure to obtain crude polyalkylene oxide.
 得られた粗製ポリプロピレンオキシドの内460gを攪拌機、窒素ライン、減圧ラインを付帯した1リットルの四つ口フラスコに取り出し、イオン交換水11.5g、用いたテトラキス(1,1,3,3-テトラメチルグアニジノ)ホスファゼニウムヒドロキシド1molに対して2.5molに相当する硫酸(2重量%の水溶液の形態)を添加し(その際の水分量はポリプロピレンオキシド100重量部に対して5.5重量部であった。)、85℃で3時間の中和反応を行った。 460 g of the obtained crude polypropylene oxide was taken out into a 1-liter four-necked flask equipped with a stirrer, a nitrogen line and a vacuum line, and 11.5 g of ion-exchanged water and the tetrakis(1,1,3,3-tetra Sulfuric acid (in the form of a 2% by weight aqueous solution) corresponding to 2.5 mol per 1 mol of methylguanidino)phosphazenium hydroxide is added (the water content at that time is 5.5 per 100 parts by weight of polypropylene oxide). parts by weight), and a neutralization reaction was carried out at 85°C for 3 hours.
 中和処理後のポリプロピレオキシドに対して750ppmに相当する2,6-ジ-tert-ブチル-4-メチルフェノール(酸化防止剤)と共に、固体酸として合成ケイ酸アルミニウム(商品名)KW-700PEL:協和化学工業(株)製)0.5重量部及び固体塩基としてハイドロタルサイド((商品名)KW-500SN;協和化学工業(株)製)0.1重量部を添加(吸着剤としては固体酸:固体塩基=5:1;0.6重量部)し、85℃で1時間撹拌した。その後、昇温及び減圧をしながら脱水を開始し、最終的に105℃、0.5kPaの条件で3時間減圧脱水操作を行った。そして、ろ過助剤としてケイソウ土を添加し、加圧ろ過器によりろ過した。 Synthetic aluminum silicate (trade name) KW-700PEL as a solid acid together with 2,6-di-tert-butyl-4-methylphenol (antioxidant) corresponding to 750 ppm with respect to polypropylene oxide after neutralization treatment: Kyowa Kagaku Kogyo Co., Ltd.) 0.5 parts by weight and hydrotalcide ((trade name) KW-500SN; Kyowa Kagaku Kogyo Co., Ltd.) 0.1 part by weight as a solid base are added. acid: solid base=5:1; 0.6 parts by weight) and stirred at 85° C. for 1 hour. After that, dehydration was started while increasing the temperature and reducing the pressure, and finally dehydration under reduced pressure was performed for 3 hours under the conditions of 105° C. and 0.5 kPa. Then, diatomaceous earth was added as a filter aid, and filtered with a pressure filter.
 得られたポリプロピレンオキシドは、水酸基価は24mgKOH/g、不飽和度は0.025meq./g、pH6.3を有するものであった。その結果を表1に示す。 The obtained polypropylene oxide has a hydroxyl value of 24 mgKOH/g and a degree of unsaturation of 0.025 meq. /g, pH 6.3. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 本発明のポリアルキレンオキシドは、長期の貯蔵時においても変色や有害なアセトアルデヒドやプロピオンアルデヒドなどのアルデヒド類の揮発量の増加を抑制できる優れた安定性を示すものであり、イソシアネート基末端プレポリマー、ポリウレタン樹脂の材料として有用なものである。 The polyalkylene oxide of the present invention exhibits excellent stability capable of suppressing discoloration and an increase in volatilization of harmful aldehydes such as acetaldehyde and propionaldehyde even during long-term storage. It is useful as a material for polyurethane resins.
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の本質と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
 なお、2021年12月15日に出願された日本特許出願2021-203379号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 In addition, the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2021-203379 filed on December 15, 2021 are cited here, and as a disclosure of the specification of the present invention, It is taken in.

Claims (5)

  1. 下記一般式(1)で示されるイミノホスファゼニウムカチオンを10~50ppmの範囲で含有し、アセトアルデヒドとプロピオンアルデヒドを合計10~70ppmの範囲で含有するポリアルキレンオキシド。
    Figure JPOXMLDOC01-appb-C000001
    (ここで、R及びRは、各々独立して、水素原子又は炭素数1~20の炭化水素基を表す。なお、RとRが互いに結合して環構造を形成していても良いし、R同士又はR同士が互いに結合して環構造を形成していても良い。)
    A polyalkylene oxide containing 10 to 50 ppm of an iminophosphazenium cation represented by the following general formula (1) and a total of 10 to 70 ppm of acetaldehyde and propionaldehyde.
    Figure JPOXMLDOC01-appb-C000001
    (Here, R 1 and R 2 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms. R 1 and R 2 are bonded to each other to form a ring structure. may be used, or R 1 's or R 2 's may be bonded to each other to form a ring structure.)
  2. イミノホスファゼニウムカチオンに対するアセトアルデヒドとプロピオンアルデヒドの合計の含有量のモル比が0.2~1.5の範囲である請求項1に記載のポリアルキレンオキシド。 2. The polyalkylene oxide according to claim 1, wherein the molar ratio of the total content of acetaldehyde and propionaldehyde to the iminophosphazenium cation is in the range of 0.2-1.5.
  3. pHが5.5~8.0の範囲である請求項1又は2に記載のポリアルキレンオキシド。 3. The polyalkylene oxide according to claim 1 or 2, which has a pH in the range of 5.5 to 8.0.
  4. 6か月経過後のアセトアルデヒドとプロピオンアルデヒドの揮発量と当初の揮発量の比が0.8~1.5の範囲である請求項1乃至3のいずれかに記載のポリアルキレンオキシド。 4. The polyalkylene oxide according to any one of claims 1 to 3, wherein the ratio of the volatilization amount of acetaldehyde and propionaldehyde after 6 months to the initial volatilization amount is in the range of 0.8 to 1.5.
  5. 下記一般式(2)で示される塩基性イミノホスファゼニウム塩を活性水素化合物1モルに対して1×10-4~5×10-1モルの範囲で混合した後、温度80~130℃、圧力0.5~5kPaの範囲の減圧下で加熱処理した後、温度80~130℃、圧力0.05~1MPaの条件下、アルキレンオキシドを添加し、添加終了後0.5~1時間同じ温度で反応させた後、110℃で圧力減少がなくなるまで重合を行い粗ポリアルキレンオキシドを製造し、次いで、粗ポリアルキレンオキシドに水及び吸着剤を加えた後、温度を80~120℃に昇温してイミノホスファゼニウムカチオンを吸着除去し、0.5~50kPaの減圧下で脱水後、吸着剤をろ過して分離する、請求項1乃至4のいずれかに記載のポリアルキレンオキシドの製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (ここで、R及びRは、上記一般式(1)に記載のものと同様である。Xは、ヒドロキシ基を表す。)
    After mixing a basic iminophosphazenium salt represented by the following general formula (2) in the range of 1 × 10 -4 to 5 × 10 -1 mol per 1 mol of the active hydrogen compound, the temperature is 80 to 130 ° C. , After heat treatment under reduced pressure in the range of pressure 0.5 to 5 kPa, add alkylene oxide under conditions of temperature 80 to 130 ° C. and pressure 0.05 to 1 MPa, and the same for 0.5 to 1 hour after the addition. After reacting at temperature, polymerization is carried out at 110° C. until the pressure is no longer reduced to produce a crude polyalkylene oxide, then water and an adsorbent are added to the crude polyalkylene oxide, and the temperature is raised to 80 to 120° C. 5. The polyalkylene oxide according to any one of claims 1 to 4, wherein the iminophosphazenium cation is adsorbed and removed by heating, dehydrated under a reduced pressure of 0.5 to 50 kPa, and the adsorbent is filtered and separated. Production method.
    Figure JPOXMLDOC01-appb-C000002
    (Here, R 1 and R 2 are the same as those described in the above general formula (1). X - represents a hydroxy group.)
PCT/JP2022/044940 2021-12-15 2022-12-06 Poly(alkylene oxide) and method for producing same WO2023112776A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021203379A JP2023088567A (en) 2021-12-15 2021-12-15 Polyalkylene oxide and method for producing the same
JP2021-203379 2021-12-15

Publications (1)

Publication Number Publication Date
WO2023112776A1 true WO2023112776A1 (en) 2023-06-22

Family

ID=86774572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044940 WO2023112776A1 (en) 2021-12-15 2022-12-06 Poly(alkylene oxide) and method for producing same

Country Status (2)

Country Link
JP (1) JP2023088567A (en)
WO (1) WO2023112776A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160721A (en) * 1997-08-19 1999-03-05 Mitsui Chem Inc Production of polyoxyalkylene polyol, flexible polyurethane foam and non-foaming polyurethane
JP2004339481A (en) * 2003-04-24 2004-12-02 Sanyo Chem Ind Ltd Method for producing polyurethane resin
JP2012131897A (en) * 2010-12-21 2012-07-12 Tosoh Corp Method for producing polyalkylene glycol
JP2016037560A (en) * 2014-08-08 2016-03-22 東ソー株式会社 Method for producing polyalkylene glycol
JP2016040357A (en) * 2014-08-13 2016-03-24 東ソー株式会社 Polyalkylene glycol production catalyst
JP2016056219A (en) * 2014-09-05 2016-04-21 東ソー株式会社 Polyalkylene oxide with excellent storage stability and method of producing the same
JP2017171708A (en) * 2016-03-18 2017-09-28 東ソー株式会社 Manufacturing method of polyoxyalkylene polyol

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160721A (en) * 1997-08-19 1999-03-05 Mitsui Chem Inc Production of polyoxyalkylene polyol, flexible polyurethane foam and non-foaming polyurethane
JP2004339481A (en) * 2003-04-24 2004-12-02 Sanyo Chem Ind Ltd Method for producing polyurethane resin
JP2012131897A (en) * 2010-12-21 2012-07-12 Tosoh Corp Method for producing polyalkylene glycol
JP2016037560A (en) * 2014-08-08 2016-03-22 東ソー株式会社 Method for producing polyalkylene glycol
JP2016040357A (en) * 2014-08-13 2016-03-24 東ソー株式会社 Polyalkylene glycol production catalyst
JP2016056219A (en) * 2014-09-05 2016-04-21 東ソー株式会社 Polyalkylene oxide with excellent storage stability and method of producing the same
JP2017171708A (en) * 2016-03-18 2017-09-28 東ソー株式会社 Manufacturing method of polyoxyalkylene polyol

Also Published As

Publication number Publication date
JP2023088567A (en) 2023-06-27

Similar Documents

Publication Publication Date Title
JP5716382B2 (en) Process for producing polyalkylene glycol
TWI359806B (en) Polyglycerin monoether and method for producing th
TWI422614B (en) Polyetherpolyol, rigid polyurethane foam and methods for producing them
JP2017171708A (en) Manufacturing method of polyoxyalkylene polyol
JP3154631B2 (en) Method for producing methylene-crosslinked polyphenylenepolyamine
JPS62115024A (en) Production of polycarbonate
KR20060067868A (en) Reactive polyurethane prepolymers with low monomeric diisocyanate content
US3580952A (en) Process for purifying polyether amines
JP5825028B2 (en) Process for producing polyalkylene glycol
JP5717738B2 (en) Process for producing polyetherol from alkylene oxide
JP6834252B2 (en) Method for producing polyalkylene glycol
JP2007284585A (en) Production method of polyether polyol or polyether monool
WO2023112776A1 (en) Poly(alkylene oxide) and method for producing same
JP6492468B2 (en) Polyalkylene oxide having excellent storage stability and process for producing the same
CN110305311B (en) Refining method of allyl alcohol methyl terminated polyether
KR101684640B1 (en) A manufacturing method of glycidol using glycerol and glycidol manufactured by the method
JP2016040345A (en) Alkylene oxide polymerization catalyst and method for producing polyalkylene oxide using the same
JP7119472B2 (en) Polyalkylene oxide composition and method for producing same, and polyurethane-forming composition containing said polyalkylene oxide composition
JP6083283B2 (en) Process for producing polyalkylene glycol
JPS61120830A (en) Production of polyether polyol
JP2001172355A5 (en)
JP2016040346A (en) Alkylene oxide polymerization catalyst and method for producing polyalkylene oxide using the same
JP2006089581A (en) Method for producing polyether polyol
JP7135367B2 (en) Polyalkylene oxide composition and polyurethane-forming composition comprising said polyalkylene oxide composition
JP2019172779A (en) Polyurethane chain extender, polyurethane and method for producing polyurethane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE