WO2023112318A1 - 非絶縁変圧器を用いた18相整流回路によるジェットファン駆動用電源回路システム - Google Patents

非絶縁変圧器を用いた18相整流回路によるジェットファン駆動用電源回路システム Download PDF

Info

Publication number
WO2023112318A1
WO2023112318A1 PCT/JP2021/046793 JP2021046793W WO2023112318A1 WO 2023112318 A1 WO2023112318 A1 WO 2023112318A1 JP 2021046793 W JP2021046793 W JP 2021046793W WO 2023112318 A1 WO2023112318 A1 WO 2023112318A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
power supply
transformer
voltage
rectifier circuit
Prior art date
Application number
PCT/JP2021/046793
Other languages
English (en)
French (fr)
Inventor
隆夫 川畑
響 迫
Original Assignee
株式会社創発システム研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社創発システム研究所 filed Critical 株式会社創発システム研究所
Priority to PCT/JP2021/046793 priority Critical patent/WO2023112318A1/ja
Priority to JP2023567487A priority patent/JPWO2023112318A1/ja
Publication of WO2023112318A1 publication Critical patent/WO2023112318A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F1/00Ventilation of mines or tunnels; Distribution of ventilating currents
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode

Definitions

  • This invention is a jet fan that achieves cost reduction, miniaturization, and transformer loss reduction by adopting a power supply that uses a non-isolated transformer as a transformer for the DC power supply of the inverter for driving the jet fan in road tunnels.
  • the present invention relates to a driving power supply circuit system.
  • the present invention relates to a power supply circuit system for driving a jet fan in which three inverters are combined with their rectifying circuits.
  • Longitudinal ventilation system is a ventilation system that uses the entire tunnel cross section as a ventilation duct.
  • the ventilation equipment used includes a jet fan that provides longitudinal air flow along the road tunnel, and a large exhaust fan that draws air from the middle of the tunnel to the top of the mountain. I do.
  • Jet fan motors are usually around 20kW to 50kW, 4 to 8 poles, and 400V induction motors.
  • the exhaust fan has a large capacity of about 100 kw to 500 kw, and an induction motor is often used for this as well.
  • the voltage of the commercial power supply is 400V
  • the step-down transformer used to step down from 6600V to 400V is often prepared at the substation as shared with other electrical equipment such as lighting.
  • 400V system can be used as it is.
  • Car tunnels are equipped with various electronic devices and AM radio broadcasts for environmental measurement and safety, and these delicate electronic devices are vulnerable to noise, so when using inverters, EMI countermeasures are extremely difficult. For this reason, there are only a few manufacturers in the world that have commercialized inverter-driven jet fans.
  • EMI countermeasures for jet fan inverter drive require harmonic countermeasures on the output side of the inverter and harmonic countermeasures on the power supply side.
  • the present invention relates to the latter countermeasure against harmonics on the power supply side.
  • the inverter requires a DC power supply and usually uses a PWM converter or rectifier circuit.
  • PWM converters have been widely used in general applications, but they are complicated, expensive, large in size, and generate a lot of EMI due to high-frequency switching. Also, since the loss is two to three times larger than that of the rectifier circuit, the applicants have adopted the rectifier circuit for driving the ventilation fan which does not require regenerative braking.
  • one 3-phase bridge rectifier circuit When adopting a rectifier circuit, one 3-phase bridge rectifier circuit has many low-order harmonics such as the 5th, 7th, 11th, 13th, 17th, and 19th harmonics. Application is essential. Several to several tens of jet fans are installed in one tunnel, and they are installed in two or three electrical rooms, and the jet fans are connected from the inverter through a long cable of several hundred meters to 1 km. drive. In that case, the inverters in the same electrical room run at the same frequency, so their DC power requirements are the same. Therefore, there is an environment in which a so-called “combined multiphase rectifier circuit" can be constructed and harmonics can be reduced. Therefore, the present applicants have so far proposed a "combined 12-phase rectifier circuit" (Fig.
  • Phase transformers are used to produce power sources U1, V1, W1 that lead 15 degrees in phase and power sources U2, V2, W2 that lag 15 degrees in phase.
  • the rectifying circuit of the inverter 1 is connected to the power sources U1, V1 and W1
  • the rectifying circuit of the inverter 2 is connected to the power sources U2, V2 and W2.
  • FIG. 18(a) shows a combination pattern of the number of inverters and the rectifier circuit system when these systems are adopted.
  • this "single-machine 12-phase rectifier circuit” requires two diode bridges 50, a phase transformer 30, and two three-phase AC reactors 40 in one inverter, and also requires a common-mode reactor 41 to suppress the circulating current.
  • the present inventors have come up with the idea of an 18-phase rectifier circuit using a non-isolated transformer and have made the present invention.
  • Non-Patent Document 1 JEM_TR201:2007, also describes a 12-phase rectifier circuit and a 24-phase rectifier circuit, but does not describe an 18-phase rectifier circuit.
  • the 18-phase rectifier circuit is not well known even in the power electronics industry, and it is thought that there are almost no practical examples.
  • a combined 18-phase rectifier circuit using these insulating transformers has the configuration shown in FIG. In the combined 18-phase rectifier circuit using the isolation transformer shown in FIG. It becomes a small waveform. However, assuming that an 18-phase combination rectifier circuit is constructed using an isolation transformer, an isolation transformer with the full capacity is required, and the weight, size, and loss of this isolation transformer are large, and it is uneconomical. occur.
  • an 18-phase rectifier circuit using a non-isolated transformer as a power supply for a jet fan inverter.
  • the 18-phase rectifier circuit is a circuit system that is not well known, and it is thought that there are no practical examples.
  • An object of the present invention is to provide a DC power supply for an inverter for tunnel ventilation using an economical non-isolated transformer with small self-capacity.
  • a jet fan drive power circuit system using a combined 18-phase rectifier circuit for driving a jet fan in a road tunnel is a non-insulated multi-phase power circuit system that converts three-phase commercial power to six-phase.
  • a non-isolated multi-phase transformer comprising a lead circuit element that advances the phase of the three-phase commercial power supply by approximately 20 degrees and a lag circuit element that delays the phase of the three-phase commercial power supply by approximately 20 degrees.
  • a three-group diode three-phase bridge rectifier circuit for converting AC to DC based on the output of a transformer, wherein the leading-phase three-phase power supply from the non-isolated multi-phase transformer and the non-isolated multi-phase three diode three-phase bridge rectifier circuits each having an AC input of the lagging-phase three-phase power supply from the transformer and the in-phase three-phase power supply from the autogenous step-up transformer for adjusting boost, and the diode three-phase It has three sets of inverter circuits that convert the three DC output powers of the bridge rectifier circuit into three-phase AC with variable frequency and variable voltage.
  • the power supplies U1, W1, and V1 with 20-degree lead phases obtained by the above configuration, the in-phase power supplies U2, V2, and W2 with 0-degree phases, and the power supplies U3, V3, and W3 with 20-degree lag phases are diodes 3, respectively.
  • the three DC power sources obtained by rectification by the phase bridge rectifier circuit can be supplied to three fan drive inverters.
  • the leading circuit element is a transformer winding provided in the direction in which the phase leads the primary phase voltage, and the voltage leads the phase by 20 degrees.
  • the delay circuit element is a transformer winding provided in a direction in which the phase is delayed with respect to the primary phase voltage, and the voltage is configured to delay the phase by 20 degrees.
  • a circuit configuration in which transformer windings are provided in a phase-advancing direction and a phase-retarding direction with respect to the primary phase voltage can be achieved by using a non-isolated transformer configured as shown in FIGS. It can be configured simply, and miniaturization of the device can be achieved.
  • the regulated step-up by the auto-turn step-up transformer for regulated step-up is approximately 6.4% higher than the voltage of the three-phase commercial power supply.
  • 1/cos(20) 1.064.
  • the voltage of the coil is increased by 6.4% with a single turn.
  • two sets of 3-phase power are achieved using a lead circuit element that advances the phase of the 3-phase utility power by approximately 20 degrees and a lag circuit element that delays the phase of the 3-phase utility power by approximately 20 degrees.
  • a self-winding step-up transformer for adjustment boosting that obtains the leading and lagging voltages of the power supply and generates an adjusted boosted in-phase three-phase power supply that boosts the voltage by the adjusted boost while maintaining the phase of the three-phase commercial power supply.
  • the value of the AC reactor connected to the single-winding step-up transformer for adjustment step-up is made larger than the value of the AC reactor connected to the non-insulated multi-phase transformer. Since the self-capacitance of the single-winding step-up transformer for adjustment boosting is smaller than the self-capacitance of the non-isolated multiphase transformer, its leakage inductance is also small. By compensating for the difference in leakage inductance, the harmonic currents of the leading phase three-phase power supply, lagging phase three-phase power supply, and in-phase three-phase power supply are all approximately the same, and the principle of the 18-phase rectifier circuit works effectively. Harmonics can be effectively reduced.
  • the jet fan driving power supply circuit system of the present invention can use a non-isolated transformer, and can be made smaller and less expensive than when an isolated transformer is used.
  • the voltages can be made equal to the imbalance that occurs in the current sharing due to the slight difference in voltage between the leading side and the lagging side of the two sets of three-phase power supplies, which is a problem when using an isolation transformer. . That is, since the configuration of the non-isolated multiphase transformer is the object, the voltages of the 20-degree lead phase power source and the 20-degree lag phase power source are the same in principle.
  • the 0-degree power supply Since the output voltage of the non-isolated multi-phase transformer increases by 6.4%, the 0-degree power supply has a single winding step-up transformer that increases the voltage by 6.4%, thereby aligning the three voltages. In addition, since the difference in leakage inductance is also compensated, it is devised so as not to cause imbalance in current sharing.
  • FIG. 1 is a diagram showing a circuit configuration centering on a non-insulated multi-phase transformer 110 in a jet fan driving power supply circuit system 100 of the present invention
  • FIG. FIG. 4 is a vector diagram focusing on the phase of voltage
  • FIG. 10 is a diagram showing the relationship between the phase voltage leading by approximately 20 degrees and the voltage lagging by approximately 20 degrees with respect to the phase voltage
  • FIG. 3 is a diagram showing a vector relationship diagram of the windings of the non-isolated transformer 110
  • FIG. 2 shows a vector diagram of two sets of three-phase power sources with a phase difference of approximately 20 degrees
  • 1 is a diagram showing a configuration example of a jet fan driving power supply circuit system of the present invention
  • FIG. 3 shows a 2-level inverter in a 3-phase bridge inverter; It is a figure which shows TYPE1 of a 3 level inverter. It is a figure which shows TYPE2 of a 3 level inverter.
  • FIG. 4 is a diagram showing an input power supply current and its frequency components;
  • FIG. 5 is a diagram showing an input power supply current and its frequency components for a rectifier circuit of one jet fan when driven using a combination 12-phase rectifier circuit in the prior art;
  • FIG. 5 is a diagram showing an input power supply current to a rectifier circuit path of one jet fan and its frequency components when driven using the 18-phase rectifier circuit of the present invention; It is a figure which shows the structural example of the general combined 12-phase rectifier circuit using the isolation transformer in a prior art.
  • FIG. 3 is a diagram showing a configuration example of a single-machine 12-phase rectifier circuit using a non-isolated transformer described in Patent Document 2 (Japanese Patent Application Laid-Open No. 2018-087423). It is a diagram showing a DC power supply system of three inverters according to the prior art described in Patent Document 2 (Japanese Patent Application Laid-Open No. 2018-087423).
  • FIG. 1 shows a combined 18-phase rectifier circuit using prior art isolation transformers;
  • FIG. 1 shows a jet fan drive power circuit system 10 using a combination 18-phase rectifier circuit using a prior art isolation transformer.
  • FIG. 1 is a diagram showing a circuit configuration centering on a non-insulated multi-phase transformer 110 in a jet fan driving power supply circuit system 100 of the present invention.
  • a three-phase commercial power supply 200 is used as an input power supply, and three input lines are connected to a U-phase terminal, a V-phase terminal, and a W-phase terminal of a non-insulated multiphase transformer 110, respectively.
  • the non-insulated multiphase transformer 110 is provided with a coil 111 between UV, a coil 112 between VW, and a coil 113 between WU as primary coils.
  • the non-isolated multiphase transformer 110 includes, as secondary coils, a lead circuit element 114U1 for the U phase, a lag circuit element 114U3 for the U phase, a lead circuit element 114V1 for the V phase, a lag circuit element 114V3 for the V phase, and a W phase.
  • a lead circuit element 114W1 for the W phase and a lag circuit element 114W3 for the W phase are provided.
  • the structure of this transformer is such that three legs of a tripod core are provided with delta windings, and windings U1-U3, V1-V3, and W1-W3 having center taps are provided as secondary windings thereof. .
  • the center taps of the windings U1-U3 are connected to the U phase as shown, a 20° leading phase voltage is obtained at the terminal U1 and a 20° lagging phase voltage is obtained at the terminal U3. That is, in FIG.
  • each of the lead circuit element 114U1, the lead circuit element 114V1, and the lead circuit element 114W1 is a secondary coil that leads the phase of each phase of the three-phase commercial power supply 200 by approximately 20 degrees.
  • delay circuit element 114U3, delay circuit element 114V3, and delay circuit element 114W3 are secondary coils that delay the phase of each phase of three-phase commercial power supply 200 by approximately 20 degrees.
  • the conditions for the secondary coil to advance the phase by approximately 20 degrees and the conditions for the secondary coil to delay the phase by approximately 20 degrees with respect to each phase of the three-phase commercial power supply 200 will be described.
  • the U-phase will be described.
  • the V-phase and W-phase may be considered in the same way.
  • FIG. 2 is a vector diagram focusing on voltage phases.
  • FIG. 2(a) is a vector diagram when a three-phase power supply input is passed through a non-isolated transformer (with a phase difference of ⁇ 20 degrees) and no voltage adjustment is performed for 0 degrees.
  • FIG. 2(b) is a vector diagram when a three-phase voltage is obtained by passing a three-phase power input through a non-isolated transformer (with a phase difference of ⁇ 20 degrees) and performing an adjustment step-up to 0 degrees.
  • FIGS. 1 is a vector diagram when a three-phase power supply input is passed through a non-isolated transformer (with a phase difference of ⁇ 20 degrees) and no voltage adjustment is performed for 0 degrees.
  • FIG. 2(b) is a vector diagram when a three-phase voltage is obtained by passing a three-phase power input through a non-isolated transformer (with a phase difference of ⁇ 20 degrees) and performing an adjustment step-up to 0 degrees.
  • a line-to-line voltage of VW of an appropriate magnitude for creating a voltage having a relationship of ⁇ 20 degrees with respect to the phase voltage 1 of the U phase is perpendicular to the U phase voltage.
  • a vector diagram can be created by adding or subtracting.
  • OU2 is a voltage that is approximately 6.4% higher than the U-phase voltage
  • it can be seen that the U-phase voltage imbalance is eliminated.
  • an autotransformer for adjusting and boosting is provided to raise the U-phase voltage by 6.4% to adjust and boost the voltage at phase 0 degree. The same can be said for other V phases and W phases.
  • FIG. 4(a) shows a vector relationship diagram of the windings of the non-insulating transformer 110 by sorting this out. Voltages U, V, and W of 0-degree phase are stepped up by 6.4% with autotransformers to be U2, V2, and W2. A vector diagram of these three sets of three-phase power supplies is shown in FIG. That is, it can be seen that 18-phase vectors with a phase difference of approximately 20 degrees can be obtained.
  • the vector relation diagram of the windings of the non-isolated transformer 110 may be the vector diagram of FIG. 4(b) using a hexagonal transformer with the same function. The operation of the hexagonal transformer is slightly more complicated, but both perform the same function.
  • a jet fan driving power supply circuit system using a combined 18-phase rectifier circuit is configured by creating three sets of three-phase power supplies with phases of approximately 20 degrees. do.
  • FIG. 6 is a circuit configuration example of the jet fan driving power supply circuit system 100 of the present invention.
  • the configuration example of FIG. 6 has a configuration in which three-phase AC reactors 140-1, 140-2, and 140-3 are provided on the AC side of the diode three-phase bridge rectifier circuit .
  • a jet fan driving power supply circuit system 100 of the present invention as shown in FIG. , three-phase AC reactors 140-1, 140-2, 140-3, and an inverter circuit 160.
  • the commercial power supply 200 is not particularly limited as a power receiving facility, but there are not only the jet fan 400 but also many lighting facilities and disaster prevention facilities in the long-distance road tunnel, which requires a large amount of power. It receives extra-high voltage or high-voltage electricity directly from the facility, transforms it, and supplies it to equipment in the facility. As will be described later, the voltage of the commercial power source 200 has already been stepped down to a so-called 400V system such as 400V, 440V, 460V, etc. at the stage of supplying it to the jet fan driving power circuit system of the present invention, which is a tunnel facility.
  • 400V system such as 400V, 440V, 460V, etc.
  • the non-isolating transformer 110 is displayed using symbols for easy understanding as the non-isolating transformer 110, but is similar to the configuration example detailed in FIG. Description here is omitted.
  • the single-winding step-up transformer 120 for adjustment boosting generates an in-phase three-phase power supply that is stepped up by the adjustment step-up while maintaining the phase of the three-phase commercial power supply. Since the jet fan drive power supply circuit system 100 of the present invention uses an 18-phase rectifier circuit, as shown in FIG. A secondary coil is used to advance the phases of the V phase and the W phase by approximately 20 degrees. Although the secondary coils are each delayed by about 20 degrees, the voltage of each phase is 6.4% higher than the voltage of each phase as obtained above. Boosting for voltage adjustment is performed for the input voltage of 0 degrees. By providing a single winding step-up transformer 120 for adjustment step-up, the input voltage of each phase is stepped up by 6.4%.
  • the diode three-phase bridge rectifier circuit 130 is a rectifier circuit that converts AC voltage to DC voltage.
  • a diode 3 is input with each of an adjusted and boosted input three-phase power supply, a leading phase three-phase power supply, and a lagging phase three-phase power supply. It has a configuration including three phase bridge rectifier circuits.
  • AC reactors 140-1, 140-2 and 140-3 will be described.
  • a three-phase AC reactor 140-1 corresponding to the leading phase is provided between the leading-phase three-phase power output of the non-isolated multi-phase transformer 110 and the diode three-phase bridge rectifier circuit 130.
  • a three-phase AC reactor 140-3 corresponding to the delayed phase is provided between the three-phase power output of the non-isolated multi-phase transformer 110 and the diode three-phase bridge rectifier circuit 130, and the voltage is adjusted and boosted.
  • This configuration is provided with a three-phase AC reactor 140-2 corresponding to the input three-phase voltage.
  • Three-phase AC reactors 140-1, 140-2, and 140-3 suppress harmonics generated in diode three-phase bridge rectifier circuit .
  • the reactance values of the three-phase AC reactors 140-1, 140-2, and 140-3 are not limited, for example, the reactors can be about 3% to 5% in order to improve the power supply current waveform.
  • the leakage inductance of the 0-phase adjustment step-up autotransformer 120 is smaller than the leakage inductance of the non-insulated multiphase transformer 110, so the harmonic current increases. Harmonics can survive if imbalanced. Therefore, the value of AC reactor 140-2 connected to single-winding step-up transformer 120 for adjustment boosting is compared with the value of AC reactor 140-1 and AC reactor 140-3 connected to non-insulated multi-phase transformer 110. to compensate for the leakage inductance of the auto-turning step-up transformer 120 for regulation step-up.
  • AC reactor 140-2 of single-winding step-up transformer 120 for adjustment step-up is made larger than AC reactor 140-1 and AC reactor 140-3 connected to non-isolated multi-phase transformer 110.
  • the inverter circuit 160 is a device that converts the rectified direct current into three-phase alternating current of variable frequency and variable voltage. Some circuit examples of the inverter circuit 160 are shown.
  • FIG. 7 shows the most commonly used three-phase bridge inverter, also called a two-level inverter. If the DC circuit voltage is Ed, the phase voltage has two levels of Ed/2 and -Ed/2. Since IGBTs (Insulated Gate Bipolar Transistors) are suitable for driving a jet fan of about 20 kw to 50 kw, all the inverters below are drawn as examples using IGBTs.
  • FIG. 8 shows TYPE 1 of a three-level inverter (also called NPC inverter).
  • this circuit can handle a DC voltage twice that of a two-level inverter, and the output voltage is also doubled. Since the phase voltage of the inverter has three levels of Ed/2, 0, and -Ed/2, an excellent output voltage waveform with less harmonics can be obtained as compared with a two-level inverter.
  • FIG. 9 shows TYPE2 of a three-level inverter. This circuit has the disadvantage that it can only handle the same DC voltage as the 2-level inverter, so there are almost no examples of practical use, but the output voltage is 3 levels like TYPE1.
  • any one of the inverter circuit 160a in FIG. 7, the inverter circuit 160b in FIG. 8, and the inverter circuit 160c in FIG. 9 can be applied as the inverter circuit 160. can.
  • the excellent technical effects of the jet fan driving power supply circuit system 100 of the present invention will be verified.
  • the 18-phase rectifier circuit shown in FIG. 6 it is applied to three jet fans (60 Hz, 440 v, 50 kw motor, DC power 60 kw, AC rated current of rectifier circuit is 83.6 A).
  • the conventional combined 12-phase rectifier circuit shown in FIG. 13 is applied to the same two jet fans for comparison, and the technical effects of both are compared and examined by simulation.
  • FIG. 10 is a diagram showing the input power supply current and its frequency components. In other words, it shows the power supply current and its frequency components that are directly input when there is no action by a non-isolated transformer in the previous stage of the rectifier circuit of the jet fan.
  • FIG. 10(a) is an input power source current waveform for one jet fan
  • FIG. 10(b) is an FFT image showing frequency components of the input power source current. FFT is the crest value.
  • the fundamental wave is cut in order to expand the harmonics.
  • the fundamental wave has an effective value of 81.4A and a peak value of 105.5A.
  • the harmonics contained in the input current include all of the 5th, 7th, 11th, 13th, 17th, 19th, and so on.
  • FIG. 11 is a diagram showing the input power supply current to the rectifier circuit of the jet fan and its frequency components when driven using the conventional combined 12-phase rectifier circuit.
  • FIG. 11(a) shows the input power supply current waveform for one jet fan obtained through a combination 12-phase rectifier circuit in the prior art
  • FIG. 11(b) shows the frequency component of the power supply current for one jet fan.
  • FFT image shown. FFT is the crest value.
  • the fundamental wave is cut in order to expand the harmonics.
  • the fundamental wave has an effective value of 77.4A and a peak value of 109.1A.
  • Driving with a combination 12-phase rectifier circuit in the prior art improves the distortion of the power supply current waveform as shown in FIG. 11(a). As shown in FIG. 11(b), it can be seen that the 5th, 7th and other harmonics are eliminated.
  • FIG. 12 is a diagram showing the input power supply current and its frequency components to the jet fan rectifier circuit when driven using the 18-phase rectifier circuit of the present invention.
  • FIG. 12(a) shows the waveform of the input power supply current for one jet fan obtained through the 18-phase rectifier circuit of the present invention
  • FIG. 12(b) shows the frequency components of the power supply current for one jet fan.
  • FFT image. FFT is the crest value.
  • the fundamental wave is cut in order to expand the harmonics.
  • the fundamental wave has an effective value of 81.4A and a peak value of 115.1A.
  • the jet fan driving power supply circuit system 100 of the present invention is applied to drive a jet fan in a tunnel.
  • the long cable is not particularly limited, but may be a single-core CV cable, a multi-core CV cable, a CVT obtained by twisting three single-core CV cables, and a shield cable.
  • a jet fan is a device for ventilating the air in a tunnel, and incorporates an induction motor. In the future, PMSM motors using permanent magnets are also possible, but in the present invention, the structure of the jet fan, etc.
  • jet fans can be applied as long as they can be driven by an inverter. Jet fans are placed at appropriate intervals in long-distance road tunnels. If the tunnel is long, a large number of jet fans are installed.
  • the jet fan driving power supply circuit system of the present invention can be applied to a ventilation control system for long-distance road tunnels, particularly a ventilation control system that controls a plurality of jet fans installed in long-distance road tunnels by inverter drive. can be done.
  • jet fan drive power supply circuit system 110 commercial power supply power transformer 110 non-insulated multi-phase transformer 120 single-winding step-up transformer for adjusting step-up 130 diode three-phase bridge rectifier circuit 140 three-phase AC reactor 160 inverter circuit 200 commercial power supply 300 cable 400 jet fan

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

【課題】 非絶縁変圧器を用いて相互に20度の位相差関係を持つ18相整流回路を構成したジェットファン駆動用電源回路システムを提供する。 【解決手段】 三相商用電源の位相を略20度進ませる進み回路要素と略20度遅らせる遅れ回路要素を備え三相商用電源を6相に変換する非絶縁多相化変圧器110を用い、三相商用電源から略20度の位相差となる進み位相三相電源と遅れ位相三相電源を生成する。さらに、三相商用電源に対して位相0度のまま6.4%昇圧する調整昇圧用の単巻き昇圧変圧器120を備える。それぞれの出力をダイオード3相ブリッジ整流回路130により交流から直流に変換してインバータ回路に入力する。調整昇圧用の単巻き昇圧変圧器120を用いて6.4%昇圧することで18相整流回路間での電圧不均衡を抑制する。交流リアクトル140-1,140-2,140-3の値を調整して漏れインダクタンスを補償することも可能である。

Description

非絶縁変圧器を用いた18相整流回路によるジェットファン駆動用電源回路システム
 この発明は、道路トンネルのジェットファン駆動用のインバータの直流電源に用いる変圧器として非絶縁変圧器を用いた電源を採用することでコスト低減と小形化および変圧器損失の低減を実現したジェットファン駆動用電源回路システムに関するものである。
 特にインバータが3台の場合にそれらの整流回路を組み合わせたジェットファン駆動用電源回路システムに関する。
 道路トンネルにおいて、トンネル内の自動車の排出ガスを排気するには自然換気力や交通換気力だけでは不十分であり、トンネル内に設置されたジェットファンや排風機を用いた強制換気が行われている。
 我が国ではいわゆる「縦流換気方式」による換気が多く採用されている。「縦流換気方式」とは、トンネル断面全体を換気ダクトとして利用する換気方式である。用いる換気装置としては、道路トンネルに沿った縦流方向の空気流を与えるジェットファン、及びトンネルの中間から空気を山頂などに引き出す大形の排風機があり、適切にこれらを組み合わせてトンネルの排気を行う。
 ジェットファンのモータは通常20kWから50kW程度、4極から8極、400V系の誘導電動機が多い。また排風機は100kwから500kw程度と容量が大きく、これも誘導電動機を使う場合が多い。
 なお、道路トンネルでは、商用電源の電圧は400V系であり、6600Vから400Vへの降圧に用いられる降圧用変圧器は、照明などの他の電気設備と共用として変電所で準備される場合が多く、400V系のまま使用することができる環境にある。
 ジェットファンは、短いトンネルであればトンネル入口か出口の1カ所に配設する構成例もあるが、長距離トンネルであれば、複数台のジェットファンを複数個所に配設することとなる。ここで、従来の縦流換気方式のジェットファンを用いた換気制御は、所望する換気量に応じてジェットファンごとにオンオフを切り替えて運転台数を変える台数制御が主流の時期があったが、近年は、インバータを用いた換気制御が注目されている。
 自動車トンネルは環境計測や安全確保のために様々な電子機器やAMラジオ放送などを実装しており、これらデリケートな電子機器はノイズに弱いので、インバータを用いる場合、そのEMI対策が極めて難しい。そのためジェットファンのインバータ駆動を実用化しているメーカは世界的にも少なく、我が国では数年前から本出願人等が数十ヶ所のトンネルに実用しているだけである。
 ジェットファンインバータ駆動のEMI対策には、インバータの出力側の高調波対策と、電源側の高調波対策が必要であるが、前者に関しては本発明者等が特開2013-069183号においてその対策を述べている。本発明は後者の電源側の高調波対策に関するものである。
 インバータは直流電源が必要であり通常PWMコンバータまたは整流回路が使われる。最近一般用途ではPWMコンバータが多用されているが、これは複雑、高価で寸法も大きく、かつ高周波スイッチングによるEMIが多いのでノイズを嫌う自動車トンネルには適していない。また損失も整流回路より2から3倍大きいので、回生制動を必要としない換気扇の駆動では本出願人等は整流回路を採用してきた。
 整流回路を採用する場合、一台の3相ブリッジ整流回路は、低次の第5,7,11,13、17,19次などの高調波が多いので、それを低減する多相整流回路の適用が不可欠である。
 ジェットファンは一つのトンネルに数台から数十台が設置され、それらを2,3の電気室に分けて設置し、そのインバータから数百mから1km程度の長尺ケーブルを介してジェットファンを駆動する。その場合、同じ電気室のインバータは同じ周波数で運転するので、それらの所要直流電力は同じである。従って、いわゆる「組み合わせ多相整流回路」を構成し、高調波を低減することができる環境にある。そこで本出願人等はこれまで特許文献2の特開2018‐87423号にかかる「組み合わせ12相整流回路」(図15)、「単機12相整流回路」(図16)、「組み合わせ12相整流回路」と「単機12相整流回路」とを組み合わせた回路(図17)を採用して高調波を低減してきた。
特開2013-069183号公報 特開2018‐087423号公報 JEM_TR201:2007,10頁図2
 従来技術における一般的な絶縁変圧器を用いた「組み合わせ12相整流回路」では、図13に示すような一次側がΔで二次側がΔYの絶縁変圧器を使い、位相が15°進んだ電源U1,V1,W1と位相が15°遅れた電源U2,V2,W2を作る方法が普通である。しかし、絶縁変圧器は100%の自己容量を有するので大きく、高価となる。
 そこで本発明者等は上記したように、道路トンネルで利用する商用電源の電圧は400V系のまま利用できるという環境条件を生かし、図15で示したように自己容量の少ない非絶縁変圧器による組み合わせ12相整流回路を提案してきた。
 本発明者が特許文献2(特開2018‐087423号)で提案してきた非絶縁変圧器による組み合わせ12相整流回路では、図15に示すように、3相電源U,V,Wから非絶縁の位相変圧器を用いて位相が15°進んだ電源U1,V1,W1と位相が15°遅れた電源U2,V2,W2を作る。そしてインバータ1の整流回路を電源U1,V1,W1に接続し、インバータ2の整流回路を電源U2,V2,W2に接続する。こうすることで整流回路1と整流回路2の第5,第7高調波が消去される(参考文献JEM_TR201:2007、10頁図2)。
 なお、図15に示すシステムは、一般的な従来技術ではなく本出願人等の従来技術であり、非絶縁変圧器を用いた優れたものであるが、改善点があった。それはインバータ台数が奇数の場合に不経済となるという問題である。
 複数台のインバータで「組み合わせ多相整流回路」を構成し、高調波を低減する場合、インバータの台数が偶数2Nの場合はN組の「組み合わせ12相整流回路」を構成することができる。しかしインバータの台数が奇数2N+1の場合は一台余るのでその直流電源をどうするかが問題となる。
 その一つの解決策として本発明者等は、図15に示すような非絶縁変圧器を用いた「組み合わせ12相整流回路」、図16に示すような非絶縁変圧器を用いた「単機12相整流回路」、および、図17に示すような「組み合わせ12相整流回路(図15)」と「単機12相整流回路(図16)」との組み合わせを提案している。これらの方式を採用する場合におけるインバータ台数と整流回路方式の組み合わせパターンを図18(a)に示す。
 しかし、この「単機12相整流回路」は一台のインバータに2個のダイオードブリッジ50、位相変圧器30、2個の三相交流リアクトル40を要し、循環電流を抑える同相リアクトル41も必要となり、複雑なため経済性に問題がある。そのため、インバータ台数が奇数の場合には、さらなる改善の余地があり、より経済的な整流回路方式の開発が必要となっていた。
 ここで、本発明者は、上記問題に鑑み、非絶縁変圧器による18相整流回路について着想を得て本発明を行った。
 非特許文献1のJEM_TR201:2007においても12相整流回路と24相整流回路は書かれているが、18相整流回路は書かれていない。パワーエレクトロニクス業界でも18相整流回路は周知ではない方式であり、実用された例もほぼ無いと考えられる。しかもその18相整流回路を絶縁変圧器ではなく、自己容量が小さくて経済的な非絶縁変圧器を用いて構成する新しい方式をトンネル換気用インバータの直流電源として発明した。
 なお、従来技術にも具体的な実例はないが、絶縁変圧器を用いて組み合わせ18相整流回路を構成すると仮定した場合にも下記の問題が発生する。-20度、 0度、 +20度の位相差を有する三相電源を作成する場合の変圧器の巻線方法の具体的例は知られていないという問題である。発明者が敢えて想定すると、図19(a)に示すような千鳥結線になる。この想定した変圧器の各巻線電圧の比は図19(b)に示すものになる。
 図19(b)のベクトル図は、U相の進み側U1のベクトル合成を示しており、遅れ側U3の図は省略している。相電圧を1.0 としてa, bを求めると、[数1]に示すようになる。
[数1]
 acos(10)+bcos(50)=1.0
 asin(10)=bsin(50)
 この連立方程式より、a=0.884,b=0.201と求められる。
  これらの絶縁変圧器を用いた組み合わせ18相整流回路は図20に示す構成になる。
 図20に示す絶縁変圧器を用いた組み合わせ18相整流回路において、3台のインバータの負荷がほぼ同じとすると、電源電流は第5,7,11,13次の高調波が消去され、歪みの少ない波形となる。
 しかし、絶縁変圧器を用いて組み合わせ18相整流回路を構成すると仮定した場合、全容量の絶縁変圧器が必要となるので、この絶縁変圧器の重量、寸法、損失が大きく、不経済という欠点が生じてしまう。
 上記問題点に鑑み、発明者は、ジェットファンインバータの電源として、非絶縁変圧器による18相整流回路を提案して上記課題を解決した。
 パワーエレクトロニクス業界では18相整流回路は周知ではない回路方式であり、実用例も無いと考えられるものであるところ、本発明は、その18相整流回路を用いつつ、かつ、絶縁変圧器ではなく、自己容量が小さくて経済的な非絶縁変圧器を用いて、トンネル換気用インバータの直流電源装置を提供することを目的とする。
 上記目的を達成するため、本発明にかかる道路トンネルのジェットファンをインバータ駆動する組み合わせ18相整流回路を用いたジェットファン駆動用電源回路システムは、 三相商用電源を六相に変換する非絶縁多相化変圧器であって、前記三相商用電源の位相を略20度進ませる進み回路要素と、前記三相商用電源の位相を略20度遅らせる遅れ回路要素を備えた非絶縁多相化変圧器と、前記三相商用電源の位相を維持したまま調整昇圧分だけ昇圧する調整昇圧用の単巻き昇圧変圧器と、前記非絶縁多相化変圧器の出力および前記調整昇圧用の単巻き昇圧変圧器の出力をもとに交流から直流に変換する3組のダイオード3相ブリッジ整流回路であって、前記非絶縁多相化変圧器からの前記進み位相三相電源と、前記非絶縁多相化変圧器からの前記遅れ位相三相電源と、前記調整昇圧用の単巻き昇圧変圧器からの同相三相電源をそれぞれの交流入力とする3つのダイオード3相ブリッジ整流回路と、前記ダイオード3相ブリッジ整流回路の3つの直流出力電力を可変周波数・可変電圧の三相交流に変換する3組のインバータ回路を備えたものである。
 上記構成により得られた20度進み位相の電源U1,W1,V1と、位相が0度の同相の電源U2, V2, W2と、位相が20度遅れの電源U3, V3, W3をそれぞれダイオード3相ブリッジ整流回路で整流し、得られた3つの直流電源を3台のファン駆動用インバータに供給することができる。
 なお、上記構成において、進み回路要素としては、1次相電圧に対して位相が進む方向に設けた変圧器巻線であり、その電圧が位相を20度進ませるものがある。同様に、遅れ回路要素としては、1次相電圧に対して位相が遅れる方向に設けた変圧器巻線であり、その電圧が位相を20度遅らせる構成とする。
 このような1次相電圧に対して位相を進める方向および位相を遅らせる方向に変圧器巻線を設ける回路構成は、図4(a)、(b)に示す構成の非絶縁変圧器を用いて簡便に構成することができ、装置の小型化を図ることができる。
 ここで、前記調整昇圧用の単巻き昇圧変圧器による前記調整昇圧分が、前記三相商用電源の電圧よりも略6.4%高いものとすることが好ましい。
 図2に示す変圧器のベクトル図から判るように多相化変圧器で 1/cos(20) = 1.064  即ち、位相が±20度となると同時に電圧が6.4%上がるので、位相差0度の電圧もそれと電圧値を合わせるべく単巻きで6.4%上げるのである。 
 つまり、図13に示す一次Δ、二次ΔYの絶縁変圧器を用いた従来技術において問題であった2組の3相電源の進み側と遅れ側の電圧のわずかな相違により生じる電流分担のアンバランスに対して、本発明によれば、三相商用電源の位相を略20度進ませる進み回路要素と、三相商用電源の位相を略20度遅らせる遅れ回路要素を用いて2組の3相電源の進み側と遅れ側の電圧を得るとともに、三相商用電源の位相を維持したまま調整昇圧分だけ昇圧する調整昇圧済の同相三相電源を生成する調整昇圧用の単巻き昇圧変圧器の電圧を同じ値に合わせることにより、電流分担にアンバランスが発生しないよう考慮されている。
 さらに、前記調整昇圧用の単巻き昇圧変圧器に接続する前記交流リアクトル値を前記非絶縁多相化変圧器に接続される前記交流リアクトル値に比して大きくするよう補償せしめることが好ましい。
 前記調整昇圧用の単巻き昇圧変圧器の自己容量は前記非絶縁多相化変圧器の自己容量より小さいので、その漏れインダクタンスも小さい。その漏れインダクタンスの差を補償することにより、進み位相三相電源、遅れ位相三相電源、同相三相電源の高調波電流が全て略同じとなり、18相化整流回路の原理が有効に作用して高調波を効果的に低減できる。
 上記構成により、本発明のジェットファン駆動用電源回路システムは、非絶縁変圧器を用いることができ、絶縁変圧器を用いた場合に比べて安価で小形化をすることができる。
 絶縁変圧器を用いた場合には問題となる、2組の3相電源の進み側と遅れ側の電圧のわずかな相違により電流分担に生じるアンバランスに対して、本発明では電圧を同じにできる。即ち、非絶縁多相化変圧器は構成が対象であるので20度進み位相電源と20度遅れ位相電源の電圧は原理上同じである。非絶縁多相化変圧器はその出力電圧が6.4%上昇するので、位相0度の電源は6.4%昇圧する単巻き昇圧変圧器により、3つの電圧を揃えている。また、漏れインダクタンスの相違も補償しているので電流分担にアンバランスが発生しないよう工夫している。
本発明のジェットファン駆動用電源回路システム100における非絶縁多相化変圧器110を中心とした回路構成を示す図である。 電圧の位相に注目したベクトル図である。 相電圧に対し位相略20度の進みと位相略20度の遅れの電圧の関係を示した図である。 非絶縁変圧器110の巻線のベクトル関係図を示す図である。 略20度の位相差の2組の3相電源のベクトル図を示す図である。 本発明のジェットファン駆動用電源回路システムの構成例を示す図である。 3相ブリッジインバータにおける2レベルインバータを示す図である。 3レベルインバータのTYPE1を示す図である。 3レベルインバータのTYPE2を示す図である。 入力電源電流とその周波数成分を示す図である。 従来技術おける組み合わせ12相整流回路を用いて駆動した場合におけるジェットファン1台の整流回路に対する入力電源電流とその周波数成分を示す図である。 本発明の18相整流回路を用いて駆動した場合におけるジェットファン1台の整流回路路に対する入力電源電流とその周波数成分を示す図である。 従来技術における絶縁変圧器を用いた一般的な組み合わせ12相整流回路の構成例を示す図である。 従来技術における絶縁変圧器を用いた一般的な単機12相整流回路の構成例を示す図である。 特許文献2(特開2018‐087423号公報)に記載した非絶縁変圧器を用いた組み合わせ12相整流回路の構成例を示す図である。 特許文献2(特開2018‐087423号公報)に記載した非絶縁変圧器を用いた単機12相整流回路の構成例を示す図である。 特許文献2(特開2018‐087423号公報)に記載した従来技術による3台のインバータの直流電源方式を示す図である。 (a)組み合わせ12相整流回路と単機12相整流回路を組み合わせた場合におけるインバータ台数と整流回路方式の組み合わせを示す図である。(b)本発明の組み合わせ18相整流回路と従来の組み合わせ12相整流回路及び単機12相整流回路を用いる場合におけるインバータ台数と整流回路方式の組み合わせを示す図である。 従来技術の絶縁変圧器を用いた組み合わせ18相整流回路を示す図である。 従来技術の絶縁変圧器を用いた組み合わせ組み合わせ18相整流回路を用いたジェットファン駆動用電源回路システム10を示す図である。
 以下、図面を参照しつつ、本発明のジェットファン駆動用電源回路システムの実施例を説明する。ただし、本発明の範囲は以下の実施例に示した具体的な用途、形状、個数などには限定されないことは言うまでもない。
 図1は、本発明のジェットファン駆動用電源回路システム100における非絶縁多相化変圧器110を中心とした回路構成を示す図である。
 図1に示すように、入力電源として三相商用電源200が用いられ、3つの入力線がそれぞれ、非絶縁多相化変圧器110のU相端子,V相端子,W相端子に接続されている。
 ここで、非絶縁多相化変圧器110には、一次コイルとして、UV間のコイル111、VW間のコイル112、WU間のコイル113が設けられている。
 非絶縁多相化変圧器110には、二次コイルとして、U相に対する進み回路要素114U1、U相に対する遅れ回路要素114U3、V相に対する進み回路要素114V1、V相に対する遅れ回路要素114V3、W相に対する進み回路要素114W1、W相に対する遅れ回路要素114W3が設けられている。
 18相整流回路を構成するには、位相が20度遅れのもの、位相差が0度のもの、位相が20度進みのものの3組の3相電源が必要である。
 この変圧器の構造は図1に示すように三脚鉄心の3つの脚にΔ巻線を設け、その二次巻線としてセンタータップを有する巻線U1-U3,V1-V3,W1-W3を設ける。巻線U1-U3のセンタータップを図示のようにU相に接続すると端子U1には20°進み位相の電圧が得られ、端子U3には20°遅れ位相の電圧が得られる。
 つまり、図1において、それぞれの進み回路要素114U1、進み回路要素114V1、進み回路要素114W1は、三相商用電源200のそれぞれの相に対して位相を略20度進ませる二次コイルとなっている。また、それぞれの遅れ回路要素114U3、遅れ回路要素114V3、遅れ回路要素114W3は、三相商用電源200のそれぞれの相に対して位相を略20度遅らせる二次コイルとなっている。
 ここで、三相商用電源200のそれぞれの相に対して位相を略20度進ませる2次コイルの条件、位相を略20度遅らせる2次コイルの条件について述べる。
 一例として、U相のものを取り上げて説明する。V相、W相についても同様に考えれば良い。
 図2は電圧の位相に注目したベクトル図である。
 図2(a)は、三相電源入力を非絶縁変圧器(位相差±20度)に通し、0度に対する電圧調整は特に行わない場合のベクトル図である。
 図2(b)は、三相電源入力を非絶縁変圧器(位相差±20度)に通し、0度に対する調整昇圧を行って三相電圧を得た場合のベクトル図である。
 図2(a)、図2(b)において、U相の相電圧1に対し±20度の関係になる電圧を作るための適切な大きさのVWの線間電圧をU相電圧に直角に加減すればベクトル図が作成できる。
 このベクトル図において、Xは、相電圧1に対してtan(20)=0.364となる。
 U相に対する位相略20度の進みの電圧OU1と、位相略20度の遅れの電圧OU3はともに、1/cos20=1.064と計算される。
 そこで、U相の電圧を約6.4%高した電圧をOU2とすれば、OU2=OU1=OU3となり、U相の電圧不均衡が解消されることが分かる。
 本発明のジェットファン駆動用電源回路システム100では、調整昇圧用の単巻き変圧器を設けてU相電圧を6.4%上げて位相0度の電圧を調整昇圧する。
 他のV相、W相でも同様のことが言える。
 この関係を3相について示すと図3のようになる。これを整理して非絶縁変圧器110の巻線のベクトル関係図を示すと図4(a)のようになる。
 0度位相の電圧U,V,Wは単巻き変圧器で6.4%昇圧し、U2,V2,W2とする。これら3セットの3相電源のベクトル図を図5に示す。即ち、略20度の位相差の18相ベクトルが得られることが判る。なお、非絶縁変圧器110の巻線のベクトル関係図は、同じ機能の六角変圧器を用いた図4(b)のベクトル図であっても良い。六角変圧器の動作はやや複雑であるが両者は同じ機能である。
 このように本発明のジェットファン駆動用電源回路システム100では、位相略20度の3組の3相電源を作成することにより、組み合わせ18相整流回路を用いたジェットファン駆動用電源回路システムを構成する。
 次に、本発明のジェットファン駆動用電源回路システム100の構成全体および各構成要素を詳しく説明する。
 図6は、本発明のジェットファン駆動用電源回路システム100の回路構成例である。図6の構成例はダイオード3相ブリッジ整流回路130の交流側に三相交流リアクトル140-1,140-2,140-3を設けた構成となっている。
 本発明のジェットファン駆動用電源回路システム100は、図6に示すように、3相商用電源200、非絶縁変圧器110、調整昇圧用の単巻き昇圧変圧器120、ダイオード3相ブリッジ整流回路130、三相交流リアクトル140-1,140-2,140-3,インバータ回路160を備えたものとなっている。
 商用電源200は、受電設備としては特に限定されないが、長距離道路トンネル内にはジェットファン400のみならず多数の照明設備や防災設備などがあり大容量の電力を必要とするため、電気事業者から直接、特別高圧ないしは高圧で受電し、施設内の装置向けに変圧して電気を供給するものである。後述するように、商用電源200の電圧は、トンネル設備である本発明のジェットファン駆動用電源回路システムに供給される段階で 既に、400V、440V、460V等のいわゆる400V系に降圧されている。
 次に、非絶縁変圧器110は、非絶縁変圧器110として、分かりやすくシンボルを用いて表示されているが、図2に詳述した構成例と同様のものである。ここでの説明は省略する。
 調整昇圧用の単巻き昇圧変圧器120は、三相商用電源の位相を維持したまま調整昇圧分だけ昇圧した同相三相電源を生成するものである。
 本発明のジェットファン駆動用電源回路システム100では、18相整流回路を用いるため、図1に示したように、進み回路要素114U1、進み回路要素114V1、進み回路要素114W1を設けて、U相、V相、W相の位相をそれぞれ略20度進ませる二次コイルとし、また、遅れ回路要素114U3、遅れ回路要素114V3、遅れ回路要素114W3を設けて、U相、V相、W相の位相をそれぞれ略20度遅らせる二次コイルとするが、各相の電圧に対して、上記で得られたように6.4%高い電圧となってしまうところ、この差違を抑えるために、各相の位相0度の入力電圧について電圧調整用の昇圧を行う。調整昇圧用の単巻き昇圧変圧器120を設けることにより、各相の入力電圧を6.4%昇圧する。
 このように、非絶縁変圧器110とともに、調整昇圧用の単巻き昇圧変圧器120を設けることにより、18相整流回路で得られる電圧が図5のようにバランスの取れたものとなる。
 次に、ダイオード3相ブリッジ整流回路130は、交流電圧を直流電圧に変換する整流回路である。
 この例では、図6に示すように、ダイオード3相ブリッジ整流回路130として、調整昇圧済みの入力三相電源と、進み位相三相電源と、遅れ位相三相電源のそれぞれを入力とするダイオード3相ブリッジ整流回路を3つ備えた構成となっている。
 次に、交流リアクトル140-1,140-2,140-3について述べる。
 図6の構成例では、非絶縁多相化変圧器110の進み位相の三相電源出力とダイオード3相ブリッジ整流回路130の間に進み位相に対応する三相交流リアクトル140-1を設け、同様に、非絶縁多相化変圧器110の遅れ位相の三相電源出力とダイオード3相ブリッジ整流回路130の間に、遅れ位相に対応する三相交流リアクトル140-3を設け、さらに、調整昇圧した入力三相電圧に対応する三相交流リアクトル140-2を設けた構成である。
 三相交流リアクトル140-1,140-2,140-3は、ダイオード3相ブリッジ整流回路130で生じる高調波を抑制するものである。
 なお、三相交流リアクトル140-1,140-2,140-3のリアクタンス値は限定されないが、例えば、電源電流波形を改善するため3%から5%程度のリアクトルとすることができる。
 ここで、漏れインダクタンスの違いを補償する工夫について述べる。
 本発明の組み合わせ18相整流回路では、0位相の調整昇圧用の単巻き変圧器120の漏れインダクタンスが、非絶縁多相化変圧器110の漏れインダクタンスに比べて小さいので高調波電流が多くなり、不均衡となれば高調波は残存し得る。
 そこで、調整昇圧用の単巻き昇圧変圧器120に接続する交流リアクトル140-2の値を非絶縁多相化変圧器110に接続される交流リアクトル140-1および交流リアクトル140-3の値に比して大きくし、調整昇圧用の単巻き昇圧変圧器120の漏れインダクタンスを補償する。
 調整昇圧用の単巻き昇圧変圧器120に接続する交流リアクトル140-2の値をどの程度大きくすれば良いか、以下検討する。
 例えば、60Hz, 440v, 50kw電動機 (直流電力は60kw,整流回路の交流定格電流は83.6A)を用いる場合について検討する。
 非絶縁多相化変圧器110の二次巻線の電圧は、440/1.732のtan(20)=0.364となる。これより巻線電圧は92.47v、電流定格は83.6Aである。
 従って単位インピーダンスZpu=92.47/83.6=1.106である。
 単位インダクタンスLpuは、Zpu/ω=1.106/377=2.93mHとなる。
 従って、非絶縁多相化変圧器110の漏れインダクタンスLaを3%と仮定するとLa=2.93×0.03=88μHとなる。
 次に、調整昇圧用の単巻き昇圧変圧器120の電圧は(440/1.732)×0.064=16.258v、電流定格は83.6Aである。
 従って、単位インピーダンスZpu=16.258/83.6=0.194である。
 単位インダクタンスは、Lpu=Zpu/ω=0.194/377=0.000516H=516μHとなる。
 従って、調整昇圧用の単巻き昇圧変圧器120の漏れインダクタンスLbを3%と仮定するとLb=16μHとなる。
 このように、非絶縁多相化変圧器110の漏れインダクタンスLaと調整昇圧用の単巻き昇圧変圧器120の漏れインダクタンスLbとの間には72μHの差がある。
 例えば、整流回路に必要な交流インダクタンスLsを260μHとすることを想定すると、非絶縁多相化変圧器110に接続する交流リアクトル140-1および交流リアクトル140-3はLs=260-88= 172μHでよいが、調整昇圧用の単巻き昇圧変圧器120の交流リアクトル140-2は Ls=260-16=244μHとなるように72μH高くなるよう補償すれば良い。
 このように、非絶縁多相化変圧器110に接続する交流リアクトル140-1および交流リアクトル140-3に対して、調整昇圧用の単巻き昇圧変圧器120の交流リアクトル140-2を大きくなるよう補償することにより、3つの整流回路の交流インダクタンスを揃えると高調波が同じになり高調波を効率良く低減できる。
 次に、インバータ回路160を説明する。
 インバータ回路160は、整流された直流を、可変周波数・可変電圧の三相交流に変換する装置である。
 インバータ回路160の回路例を幾つか示す。
 図7は最もよく使われる3相ブリッジインバータで、2レベルインバータとも言われる。
直流回路電圧をEdとした場合、相電圧はEd/2、-Ed/2の2レベルである。20kwから50kw程度のジェットファン駆動にはIGBT(絶縁ゲート型バイポーラトランジスタ)が適しているので、以下全てのインバータはIGBTを用いた例で描いている。
 図8は3レベルインバータ(NPCインバータとも言う)のTYPE1である。この回路は同じ定格のIGBTを用いた場合、2レベルインバータに比べて2倍の直流電圧に対応でき、出力電圧も2倍になる。インバータの相電圧は、Ed/2、0、-Ed/2の3レベルとなるので、2レベルインバータに比し、高調波の少ない優れた出力電圧波形が得られる。
 図9は3レベルインバータのTYPE2である。この回路は2レベルインバータと同じ直流電圧にしか対応できないという欠点のため、ほとんど実用された例がないが、出力電圧はTYPE1と同様の3レベルとなる。
 本発明のジェットファン駆動用電源回路システム100では、インバータ回路160として、図7のインバータ回路160a、図8のインバータ回路160b、図9のインバータ回路160cのいずれのものであっても適用することができる。
 次に、本発明のジェットファン駆動用電源回路システム100の優れた技術的効果を検証しておく。
 図6に示した18相整流回路を用いて、ジェットファン3台(60Hz, 440v, 50kw電動機、直流電力60kw, 整流回路の交流定格電流は83.6A)に適用する。また、従来技術として図13に示した従来の組み合わせ12相整流回路を用いて同じジェットファン2台に適用したものを比較対象として取り上げて、シミュレーションにより両者の技術的効果を比較検討する。
 図10は、入力電源電流とその周波数成分を示す図である。つまり、ジェットファンの整流回路の前段に非絶縁変圧器による作用がない場合にダイレクトに入力される電源電流とその周波数成分を示している。
 図10(a)はジェットファン1台に対する入力電源電流波形であり、図10(b)はその入力電源電流の周波数成分を示すFFT画像である。FFTは波高値である。図10(b)のFFT画像では高調波を拡大するため基本波をカットしている。基本波は実効値で81.4A、ピーク値で105.5Aである。
 図10(b)のFFT画像に示すように、入力電流に含まれる高調波には、第5,7,11、13、17,19次、‥‥‥の全てのものが含まれている。
 次に、図11は、従来技術おける組み合わせ12相整流回路を用いて駆動した場合におけるジェットファンの整流回路路に対する入力電源電流とその周波数成分を示す図である。
 図11(a)は従来技術おける組み合わせ12相整流回路を経て得られるジェットファン1台分の入力電源電流波形であり、図11(b)はジェットファン1台分についての電源電流の周波数成分を示すFFT画像である。FFTは波高値である。図11(b)のFFT画像でも高調波を拡大するため基本波をカットしている。基本波は実効値で77.4A、ピーク値で109.1Aである。
 従来技術における組み合わせ12相整流回路を用いて駆動すると、図11(a)に示すように電源電流波形の歪みが改善される。図11(b)に示すように、第5次,7次等の高調波が消去されていることが判る。
 次に、図12は、本発明の18相整流回路を用いて駆動した場合におけるジェットファンの整流回路に対する入力電源電流とその周波数成分を示す図である。
 図12(a)は本発明の18相整流回路を経て得られるジェットファン1台分の入力電源電流波形であり、図12(b)はジェットファン1台分についての電源電流の周波数成分を示すFFT画像である。FFTは波高値である。図12(b)のFFT画像でも高調波を拡大するため基本波をカットしている。基本波は実効値で81.4A、ピーク値で115.1Aである。
 本発明の18相整流回路を用いて駆動すると、図12(a)に示すように電源電流波形が一段と良好な低歪の電流となっていることが判る。図12(b)に示すように、第5次,7次だけでなく第11次、第13次等の高調波も消去されていることが判る。
 なお、本発明のジェットファン駆動用電源回路システム100は、トンネルのジェットファンを駆動する用途が適用されるが、多くの場合100mから1000mを超える長尺ケーブルを介してジェットファンに供給される。
 長尺ケーブルは特に限定されないが、単芯CVケーブル、多芯CVケーブル、単芯CVケーブルを3本撚りあわせたCVT、さらに、シールドケーブルもあり得る。
 ジェットファンは、トンネル内の空気を換気する機器であり、誘導モータが組み込まれたものであり、将来的には永久磁石を用いたPMSMモータもあり得るが、本発明ではジェットファンの構造などは特に限定されず、インバータ駆動により運転できるものであれば多様なジェットファンを適用することができる。ジェットファンは、長距離道路トンネル内に適切な間隔で配設されている。トンネルが長距離になれば多数のジェットファンが配設される。
 本発明のジェットファン駆動用電源回路システム100を導入するメリットとしては、以下にまとめることができる。
 (1)パワーエレクトロニクス業界で注目されなかった18相整流回路に関し、非絶縁変圧器と調整昇圧用の単巻き昇圧変圧器を用いた「組み合わせ18相整流回路」を提供することにより、整流回路の高調波問題を経済的に解決した。
 (2)組み合わせ18相整流回路では、必要な二つの変圧器の自己容量の和が通過容量の約21%と小さいので、小型・経済的となり、また変圧器における損失も小さくなる。
 (3)ジェットファン駆動ではケーブルの長さが1000mを超える場合も少なくないが、その場合、全負荷時のケーブル電圧降下は15vから20vにもなり、電動機の端子電圧が低下して電流が増大すると云う不具合が生ずる。本発明の非絶縁変圧器では電圧が電源電圧より6.4%高いので、インバータの直流電圧が高くなり、その結果出力電圧も6.4%高く出来るので電動機の端子電圧低下を補償するようにインバータ出力電圧を高めることが出来て都合が良い。
 (4)ジェットファンの台数が3,5,7,9台などの奇数の場合、その内の3台を18相整流回路にすると、残りは0,2,4,6台となり、それ等は組み合わせ12相整流回路にすれば良いので、不経済な図16に示した「非絶縁変圧器を用いた単機12相整流回路」を使うのは、図18(b)に示すようにインバータ台数が1台の場合だけとなり、全システムを経済的に設計できる。
 (5)6台や9台の場合は、組み合わせ12相整流回路を使うことも出来るが、全てを18相整流回路とすれば、高調波が少なくなるだけ有利となる。
 以上、本発明のジェットファン駆動用電源回路システムの構成例における好ましい実施例を図示して説明してきたが、本発明の技術的範囲を逸脱することなく種々の変更が可能であることは理解されるであろう。
 本発明のジェットファン駆動用電源回路システムは、長距離道路トンネル用の換気制御システム、特に、長距離道路トンネル内に設置した複数のジェットファンをインバータ駆動で制御する換気制御システムなどに適用することができる。
 100 ジェットファン駆動用電源回路システム
 110 商用電源 電源変圧器
 110 非絶縁多相化変圧器
 120 調整昇圧用の単巻き昇圧変圧器
 130 ダイオード3相ブリッジ整流回路
 140 3相交流リアクトル
 160 インバータ回路
 200 商用電源
 300 ケーブル
 400 ジェットファン
 

Claims (4)

  1.  インバータにより道路トンネルのジェットファンを駆動するジェットファン駆動用電源回路システムであって、
     三相商用電源を六相に変換する非絶縁多相化変圧器であって、前記三相商用電源の位相を略20度進ませる進み回路要素と、前記三相商用電源の位相を略20度遅らせる遅れ回路要素を備えた非絶縁多相化変圧器と、
     前記三相商用電源の位相を維持したまま調整昇圧分だけ昇圧する調整昇圧用の単巻き昇圧変圧器と、
     前記非絶縁多相化変圧器の出力および前記調整昇圧用の単巻き昇圧変圧器の出力をもとに交流から直流に変換する3組のダイオード3相ブリッジ整流回路であって、前記非絶縁多相化変圧器からの前記進み位相三相電源と、前記非絶縁多相化変圧器からの前記遅れ位相三相電源と、前記調整昇圧用の単巻き昇圧変圧器からの同相三相電源をそれぞれの交流入力とする3つのダイオード3相ブリッジ整流回路と、
     前記ダイオード3相ブリッジ整流回路の3つの直流出力電力を可変周波数・可変電圧の三相交流に変換する3組のインバータ回路を備えたものであることを特徴とする組み合わせ18相整流回路を用いたジェットファン駆動用電源回路システム。
  2.  前記非絶縁多相化変圧器の前記進み回路要素が電源の相電圧に対して位相が進む方向に電圧を直角に加えるように設けた変圧器巻線であり、その巻線電圧が位相を20度進ませるものであり、
     前記非絶縁多相化変圧器の前記遅れ回路要素が電源の相電圧に対して位相が遅れる方向に電圧を直角に加えるように設けた変圧器巻線であり、その巻線電圧が位相を20度遅らせるものであり、
     上記により得られる位相が電源に対して±20度の二組の三相電源を用いて18相整流を構成したことを特徴とする請求項1に記載のジェットファン駆動用電源回路システム。
  3.  前記調整昇圧用の単巻き昇圧変圧器による前記調整昇圧分が、前記三相商用電源の電圧よりも略6.4%高いものとしたことを特徴とする請求項1または2に記載の組み合わせ18相整流回路を用いたジェットファン駆動用電源回路システム。
  4.  前記調整昇圧用の単巻き昇圧変圧器に接続する交流リアクトル値を、前記非絶縁多相化変圧器に接続される交流リアクトル値に比して大きくし、前記進み位相三相電源と前記遅れ位相三相電源と前記同相三相電源の高調波電流が略同じになるように補償せしめたことを特徴とする請求項1から3のいずれかに記載の組み合わせ18相整流回路を用いたジェットファン駆動用電源回路システム。


     
PCT/JP2021/046793 2021-12-17 2021-12-17 非絶縁変圧器を用いた18相整流回路によるジェットファン駆動用電源回路システム WO2023112318A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/046793 WO2023112318A1 (ja) 2021-12-17 2021-12-17 非絶縁変圧器を用いた18相整流回路によるジェットファン駆動用電源回路システム
JP2023567487A JPWO2023112318A1 (ja) 2021-12-17 2021-12-17

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/046793 WO2023112318A1 (ja) 2021-12-17 2021-12-17 非絶縁変圧器を用いた18相整流回路によるジェットファン駆動用電源回路システム

Publications (1)

Publication Number Publication Date
WO2023112318A1 true WO2023112318A1 (ja) 2023-06-22

Family

ID=86773947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046793 WO2023112318A1 (ja) 2021-12-17 2021-12-17 非絶縁変圧器を用いた18相整流回路によるジェットファン駆動用電源回路システム

Country Status (2)

Country Link
JP (1) JPWO2023112318A1 (ja)
WO (1) WO2023112318A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10323045A (ja) * 1997-05-20 1998-12-04 Yaskawa Electric Corp 整流装置
JP2011208442A (ja) * 2010-03-30 2011-10-20 Sohatsu System Kenkyusho:Kk 長尺ケーブルを介して駆動する道路トンネルのジェットファン用誘導電動機の可変速駆動装置
JP2012130210A (ja) * 2010-12-17 2012-07-05 Toshiba Mitsubishi-Electric Industrial System Corp 電力変換装置
JP2018087423A (ja) * 2016-11-28 2018-06-07 株式会社創発システム研究所 非絶縁変圧器を用いたジェットファン駆動用電源回路システム
JP2019050685A (ja) * 2017-09-11 2019-03-28 株式会社創発システム研究所 改良型非絶縁変圧器を用いたトンネル内のファン駆動用電源回路システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10323045A (ja) * 1997-05-20 1998-12-04 Yaskawa Electric Corp 整流装置
JP2011208442A (ja) * 2010-03-30 2011-10-20 Sohatsu System Kenkyusho:Kk 長尺ケーブルを介して駆動する道路トンネルのジェットファン用誘導電動機の可変速駆動装置
JP2012130210A (ja) * 2010-12-17 2012-07-05 Toshiba Mitsubishi-Electric Industrial System Corp 電力変換装置
JP2018087423A (ja) * 2016-11-28 2018-06-07 株式会社創発システム研究所 非絶縁変圧器を用いたジェットファン駆動用電源回路システム
JP2019050685A (ja) * 2017-09-11 2019-03-28 株式会社創発システム研究所 改良型非絶縁変圧器を用いたトンネル内のファン駆動用電源回路システム

Also Published As

Publication number Publication date
JPWO2023112318A1 (ja) 2023-06-22

Similar Documents

Publication Publication Date Title
US7576443B2 (en) Method and apparatus for generating electric power
EP2524422B1 (en) Ac/dc converter circuit
Abolhassani Modular multipulse rectifier transformers in symmetrical cascaded H-bridge medium voltage drives
Rodríguez et al. Technical evaluation and practical experience of high-power grinding mill drives in mining applications
US9065377B2 (en) Load commutated inverter drive systems for high power drive applications
JP2001196244A (ja) マルチレベル電力変圧器に使用するモジュラー変圧器装置
US8982595B2 (en) T-connected autotransformer-based 40-pulse AC-DC converter for power quality improvement
Fukuda et al. An auxiliary-supply-assisted harmonic reduction scheme for 12-pulse diode rectifiers
Boby et al. Multilevel dodecagonal voltage space vector structure generation for open-end winding IM using a single DC source
KR20130047564A (ko) 직렬 다중 전력 변환 장치
JP6555594B2 (ja) 非絶縁変圧器を用いたジェットファン駆動用電源回路システム
Abdollahi Pulse doubling in zigzag–connected autotransformer–based 12–pulse ac–dc converter for power quality improvement
CN102568799B (zh) 移相变压器以及带有该移相变压器的电能传输装置
JP5047210B2 (ja) 電力変換装置
Abdollahi et al. Application of pulse doubling in star-connected autotransformer based 12-pulse AC-DC converter for power quality improvement
WO2023112318A1 (ja) 非絶縁変圧器を用いた18相整流回路によるジェットファン駆動用電源回路システム
Abdollahi et al. Application of pulse doubling in hexagon-connected transformer-based 20-pulse AC-DC converter for power quality improvement
US11201558B2 (en) Operating circuit for coupling a synchronous machine with a voltage network and method for operating it
Abdollahi A novel t-connected autotransformer based 30-pulse acdc converter for power quality improvement
Masoud Fully controlled 5-phase, 10-pulse, line commutated rectifier
JP6516170B2 (ja) 改良型非絶縁変圧器を用いたトンネル内のファン駆動用電源回路システム
US20170141696A1 (en) T-connected autotransformer based converter providing reduced rating for retrofit applications
US20130258729A1 (en) Medium voltage power apparatus
JP2003061360A (ja) 整流回路
US9667163B1 (en) Five phase power distribution system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968231

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023567487

Country of ref document: JP