WO2023109822A1 - 加强部添加位置的设计方法、成型方法及存储介质、系统 - Google Patents

加强部添加位置的设计方法、成型方法及存储介质、系统 Download PDF

Info

Publication number
WO2023109822A1
WO2023109822A1 PCT/CN2022/138728 CN2022138728W WO2023109822A1 WO 2023109822 A1 WO2023109822 A1 WO 2023109822A1 CN 2022138728 W CN2022138728 W CN 2022138728W WO 2023109822 A1 WO2023109822 A1 WO 2023109822A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
reinforcement
reinforcement part
design method
distance
Prior art date
Application number
PCT/CN2022/138728
Other languages
English (en)
French (fr)
Inventor
郑轶刊
侯俊祥
Original Assignee
无锡时代天使生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡时代天使生物科技有限公司 filed Critical 无锡时代天使生物科技有限公司
Publication of WO2023109822A1 publication Critical patent/WO2023109822A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C7/00Orthodontics, i.e. obtaining or maintaining the desired position of teeth, e.g. by straightening, evening, regulating, separating, or by correcting malocclusions

Definitions

  • the invention relates to the technical field of orthodontics, in particular to a design method, a forming method, a storage medium, and a system for adding a reinforcement part.
  • the purpose of the present invention is to provide a design method, a molding method, a storage medium, and a system for adding a reinforcement part, which can greatly simplify the process of adding a reinforcement part to a digital model of a tooth and jaw through a reasonable design method for adding a reinforcement part.
  • the formed dental orthodontic appliance has higher strength to avoid deformation or fracture.
  • an embodiment of the present invention provides a design method for adding a reinforcement part, including steps:
  • the step of "calculating the reference value of the moment of inertia of the target area on the surface of the dental digital model relative to the rotation axis" specifically includes:
  • the step "obtaining N+1 target sections passing through the target point and perpendicular to the target line" specifically includes:
  • the range of the first width is 0.4mm-20mm, and the first offset is greater than 0.2mm, or the first offset is equal to 0.2mm.
  • the step "calculate the reference values of the moments of inertia of the N+1 target sections relative to the rotation axis" specifically includes:
  • the step "calculate the reference values of the moments of inertia of the N+1 target sections relative to the rotation axis" specifically includes:
  • the reference value of the moment of inertia of the target section relative to the rotation axis is calculated according to the coordinates of all points on each target section.
  • the step "judging the size of the reference value and the first threshold value, if less than, record at least part of the target area as the location of the enhancement part, if not less than, then do not record " Specifically include:
  • An area formed by L continuous addition points is defined as a reinforcement addition location to form M reinforcement addition locations, wherein L ⁇ 2, M ⁇ 1.
  • step "defining the area formed by L continuous addition points as one reinforcement part addition position to form M reinforcement part addition positions" also includes:
  • step "defining the area formed by L continuous addition points as one reinforcement part addition position to form M reinforcement part addition positions" also includes:
  • the design method also includes the steps of:
  • the extension direction of the position where the reinforcing part is added is parallel to the mesio-distal direction of the digital model of the jaw, perpendicular to the mesio-distal direction, or the clip formed between the mesio-distal direction.
  • the angle is acute.
  • the adding position of the reinforcing part is located on the buccal, lingual or occlusal surface of the digital model of the jaw.
  • the location where the reinforcing part is added corresponds to the anterior region and/or the posterior region of the digital model of the jaw.
  • the adding position of the reinforcing part is set corresponding to at least one of the tooth surface, the space between adjacent teeth, or the cavity area of the digital model of the tooth.
  • the reinforcing part adding position in the extending direction of the reinforcing part adding position, has a first length, and the range of the first length is 0.5mm-150mm.
  • the digital model of the jaw includes a plurality of reinforcing part addition positions, and the plurality of reinforcing part addition positions are distributed at intervals or connected with each other.
  • the adding position of the reinforcing part is located in the gap between the adjacent teeth of the occlusal surface of the digital model of the jaw, and the gap between the adjacent teeth connects the first occlusal surface and the first occlusal surface of the adjacent first tooth.
  • the location where the reinforcing part is added includes a first end point close to the first occlusal surface and a second end point close to the second occlusal surface in its extending direction.
  • a gum line is formed between the buccal or lingual surface and the gums, and in the direction from the buccal surface of the digitized dental model to the lingual surface, the distance between the first end point and the gum line There is a first maximum distance between the corresponding areas, there is a second maximum distance between the second end point and the corresponding area of the gum line, and the range of the first maximum distance and the second maximum distance is 0.5mm-4mm .
  • a gum line is formed between the buccal or lingual surface and the gums, and on a section that passes through the target line and is perpendicular to the direction from the buccal surface to the lingual surface, the first occlusal surface including a first highest point adjacent to the second occlusal surface, the second occlusal surface including a second highest point adjacent to the first occlusal surface, the first highest point being farther away than the first end point The gum line, the second highest point being farther from the gum line than the second end point.
  • the ratio of the second distance to the first distance is not greater than 95%, and the ratio of the fourth distance to the third distance is not greater than 95%.
  • the second distance is 40%-80% of the first distance
  • the fourth distance is 40%-80% of the third distance
  • an embodiment of the present invention provides a design method for adding a reinforcement part, including steps:
  • the step "calculate the moment of inertia of the target area relative to the rotation axis" specifically includes:
  • an embodiment of the present invention provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the reinforcement part addition position as described in any one of the technical solutions above is realized. steps in the design method.
  • one embodiment of the present invention provides a design system for reinforcement parts.
  • the design system includes a memory and a processor.
  • the memory stores a computer program that can run on the processor.
  • the processor executes the computer program, The steps in the method for designing the location where the reinforcing part is added as described in any one of the technical solutions above are realized.
  • one embodiment of the present invention provides a method for forming a dental orthodontic appliance, comprising steps:
  • the adding position of the reinforcing part is obtained;
  • a dental orthodontic appliance is generated according to the added position of the reinforcement and the structural information of the reinforcement.
  • the step of "generating a dental orthodontic appliance according to the added position of the reinforcement part and the structural information of the reinforcement part" specifically includes:
  • a reinforcement part is formed at the position where the reinforcement part is added according to the structural information of the reinforcement part, and a dental orthodontic appliance with a cavity is generated according to the digital model of the jaw and the reinforcement part.
  • the above reinforcements match each other;
  • the step "generating a dental orthodontic appliance with a solid convex ridge according to the digital model of the jaw and the structural information of the reinforcement" specifically includes:
  • the appliance body with a cavity is generated according to the digital model of the jaw and the reinforcing part.
  • the cavity and the reinforcing part are matched with each other, and a filling part is set in the cavity to form a solid convex ridge.
  • the solid convex The ridge cooperates with the appliance body to form an orthodontic appliance.
  • the step "setting a filling part in the cavity to form a solid convex ridge" specifically includes:
  • Fixing the filling portion to the cavity forms a solid raised ridge.
  • the step "generating a dental orthodontic appliance with a solid convex ridge according to the digital model of the jaw and the structural information of the reinforcement" specifically includes:
  • the appliance body is generated according to the digital model of the teeth and jaws, the appliance body is provided with a mark position indicating the position where the reinforcing part is added, and a solid convex ridge is set at the mark position to obtain a dental orthodontic appliance.
  • the step of "setting a solid convex ridge at the marked position to obtain a dental orthodontic appliance” specifically includes:
  • the structural information includes the size of the reinforcing part and the outer contour of the section.
  • the outer contour of the cross-section of the reinforcement part is rectangle, trapezoid, arc, triangle, polygon or "M" shape.
  • the beneficial effect of an embodiment of the present invention is that: the reference value of the moment of inertia of the surface target area of the digital model of the tooth and jaw relative to the rotation axis according to the embodiment of the present invention can be used to characterize the dental orthodontic treatment after molding
  • the moment of inertia of the corresponding area of the appliance relative to the rotation axis, and the moment of inertia is used to characterize the ability of the area of the dental orthodontic appliance to resist bending.
  • the reference value is small, it is not enough to characterize the ability of the target area to resist bending. Add reinforcements to the area, and subsequently form a convex ridge in the corresponding area of the orthodontic appliance to increase the ability to resist bending.
  • the setting of the convex ridge can improve the local stiffness of the orthodontic appliance, thereby preventing the orthodontic appliance from being deformed or
  • this embodiment directly determines the position of the reinforcement part by calculating the moment of inertia of the target area on the surface of the digital model of the tooth and jaw relative to the rotation axis. Stronger resistance to deformation or breakage.
  • Fig. 1 is a step diagram of a method for designing a reinforcement part addition position according to an embodiment of the present invention
  • Fig. 2 is a schematic diagram of a digital model of a tooth and jaw according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a formed dental orthodontic appliance according to an embodiment of the present invention.
  • Fig. 4 is a step diagram of obtaining a target section and calculating a reference value of the moment of inertia relative to the rotation axis according to an embodiment of the present invention
  • Fig. 5 is a step diagram of obtaining a target section according to an embodiment of the present invention.
  • Fig. 6 is a schematic diagram of obtaining a target section according to an embodiment of the present invention.
  • Fig. 7 is a step diagram of determining the adding position of a reinforcing part according to an embodiment of the present invention.
  • Fig. 8 is a schematic diagram of determining the adding position of a reinforcing part according to an embodiment of the present invention.
  • Fig. 9 is a diagram of processing steps between multiple reinforcing part addition positions in a specific example of the present invention.
  • Fig. 10 is a diagram of processing steps between multiple reinforcing part adding positions in another specific example of the present invention.
  • Fig. 11 is a cross-sectional view of the digital model of the jaw passing through the target line and perpendicular to the buccal surface toward the lingual surface according to an embodiment of the present invention
  • Fig. 12 is a cross-sectional view of the buccal surface of the digital model of the jaw facing the lingual surface according to an embodiment of the present invention, and the view passes through the first endpoint;
  • Fig. 13 is a cross-sectional view of the buccal surface of the digital model of the jaw facing the lingual surface according to an embodiment of the present invention, and the view passes through the second endpoint;
  • Fig. 14 is a step diagram of the design method of the reinforcement part addition position according to another embodiment of the present invention.
  • Fig. 15 is a schematic block diagram of a processor of a reinforcement design system according to an embodiment of the present invention.
  • Fig. 16 is a step diagram of a molding method of a dental orthodontic appliance according to an embodiment of the present invention.
  • Fig. 17 is a schematic diagram of a molding method of a dental orthodontic appliance according to an embodiment of the present invention.
  • Fig. 18 is a schematic diagram of a dental orthodontic appliance including a cavity according to an embodiment of the present invention.
  • Fig. 19 is a flowchart of a molding method of a dental orthodontic appliance according to a specific example of the present invention.
  • Fig. 20 is a flow chart of another specific example of a molding method of a dental orthodontic appliance according to the present invention.
  • an embodiment of the present invention provides a method for designing the location of reinforcement, including steps:
  • S104 Determine the magnitude of the reference value T and the first threshold T1. If it is smaller, at least part of the target area E is recorded as the enhancement part addition position E1. If it is not smaller, it is not recorded.
  • “recording at least a part of the target area E as the reinforcement part addition position E1” means that the entire target area E may be recorded as the reinforcement part addition position E1, or a part of the target area E may be recorded as the reinforcement part addition position E1.
  • the reinforcing part adding position E1 is the position corresponding to the subsequent reinforcing part.
  • the subsequent reinforcement part addition positions E1 may not add reinforcement parts.
  • the reference value T of the surface target area E of the dental and jaw digital model 100 relative to the moment of inertia of the rotational axis can be used to characterize the moment of inertia of the corresponding area of the dental orthodontic appliance 200 after molding, and the moment of inertia It is used to characterize the ability of this area of the dental orthodontic appliance 200 to resist bending.
  • the reference value T is small, it indicates that the ability of the target area E to resist bending is not enough, and it is necessary to add a reinforcement part to the target area E, which can be subsequently used in orthodontics.
  • the corresponding area of the orthodontic appliance 200 forms a convex ridge 20 to increase the ability to resist bending.
  • the setting of the convex ridge 20 can improve the local rigidity of the dental orthodontic appliance 200, thereby preventing the dental orthodontic appliance 200 from being deformed or broken.
  • this embodiment directly calculates the moment of inertia of the surface target area E of the dental and jaw digital model 100 relative to the rotation axis to determine the reinforcement part addition position E1.
  • the selection of the reinforcement part addition position E1 is more accurate and reliable, and the final orthodontic dental
  • the appliance 200 has a stronger ability to prevent deformation or fracture.
  • the reinforcement part addition position E1 with different parameters can be obtained on the corresponding dental and jaw digital model 100 , and the parameters include the number, position, shape, etc. of the reinforcement part addition position E1.
  • step S102 specifically includes:
  • S102a Select a target line L1 on the surface of the dental and jaw digital model 100;
  • the target line L1 is a curve that fits the surface of the digital jaw model 100. Taking the target line L1 located in the space C between adjacent teeth on the occlusal surface A1 of the digital jaw model 100 as an example, the target line L1 is along the near side of the digital jaw model 100. Extending in the distal direction, the interdental space C is an area between the first occlusal surface T11 of the adjacent first tooth T1 and the second occlusal surface T21 of the second tooth T2.
  • S102b Divide the target line L1N into equal parts and obtain N+1 target points P.
  • the distribution of the target points P can also be adjusted according to the actual situation.
  • step S102c includes:
  • S1021c Form a reference line L2 passing through any target point P and perpendicular to the target line L1 on the surface of the digital dental model 100, where the reference line L2 has a first width;
  • the reference line L2 perpendicular to the target line L1 means A small segment of the target line L1 and a small segment of the reference line L2 are perpendicular to each other, and the first width is the width of the reference line L2 from the buccal surface A2 toward the lingual surface A3, and the range of the first width is 0.4mm-20mm.
  • S1022c Offset the reference line L2 by a first offset amount L3 in a direction away from the digital jaw model 100 to obtain a termination line L4;
  • S1023c Connect the reference line L2 and the termination line L4 to obtain a target section B perpendicular to the target line L1;
  • the gingival line A4 is formed between the buccal surface A2 or the lingual surface A3 and the gums
  • the "direction away from the digital model 100 of the jaw” refers to the direction of the gum line A4 of the digital model 100 of the jaw towards the occlusal surface A1
  • the end line L4 is The curve consistent with the shape of the reference line L2, and the distance between the end line L4 and the point corresponding to the reference line L2 are the first offset L3.
  • Connecting the reference line L2 and the termination line L4 refers to connecting one end of the reference line L2 to one end of the termination line L4, and connecting the other end of the reference line L2 to the other end of the termination line L4, and the obtained target section B is perpendicular to A short target line L1 connecting the target points P.
  • the first offset L3 is greater than 0.2mm, or the first offset L3 is equal to 0.2mm
  • the first offset L3 roughly corresponds to the thickness of the formed dental orthodontic appliance 200
  • the target The section B roughly corresponds to the longitudinal section of the dental orthodontic appliance 200.
  • the section direction of the longitudinal section is the direction of the gum line A4 towards the occlusal surface A1, and the point passed by the longitudinal section corresponds to the target point P, so the target section B can be used
  • the moment of inertia relative to the axis of rotation characterizes the moment of inertia of the corresponding region of the orthodontic appliance 200 relative to the axis of rotation.
  • the target line L1 is a curve
  • at least part of the target sections B are non-parallel, and different target sections B can be obtained by dividing the target line L1 into N equal parts.
  • the target section B can also be obtained in other ways.
  • step S102d specifically includes:
  • step S102d specifically includes:
  • the reference value T of the moment of inertia of the target section B relative to the rotation axis is calculated according to the coordinates of all points on each target section B.
  • all points on the target section B have corresponding coordinate points (x, y, z) in the global coordinate system.
  • the reference value T of the moment of inertia of the target section B relative to the rotation axis is calculated according to the coordinates of all points on the target section B.
  • step S104 specifically includes:
  • S104b if less than, then define the corresponding target point P as an added point (refer to the circle point in Figure 8), if not less than, then define the corresponding target point P as a non-added point (refer to the triangle point in Figure 8 );
  • S104c Define an area formed by L continuous addition points as one reinforcement part addition position E1 to form M reinforcement part addition positions E1, wherein L ⁇ 2, M ⁇ 1.
  • the area formed by L continuous added points means that the target points P at both ends of the area are non-added points or there is no target point P. It can be understood that, on a target line L1, one or Multiple reinforcements are added at position E1.
  • step S104c it further includes:
  • the K-th reinforcement part addition position E1 and the K+1-th reinforcement part addition position E1 at this time are disconnected from each other.
  • S104e Calculate the separation distance between the Kth reinforcement part addition position E1 and the K+1th reinforcement part addition position E1;
  • the K th reinforcement addition position E1 has an end target point P close to the K+1 th reinforcement addition position E1
  • the K+1 th reinforcement addition position E1 has an end target point P close to the K th reinforcement addition position E1.
  • the starting target point P, the length of the target line L1 between the end target point P and the starting target point P is the distance between the Kth reinforcing part adding position E1 and the K+1 reinforcing part adding position E1.
  • the area length of the non-addition points between the Kth reinforcement part addition position E1 and the K+1th reinforcement part addition position E1 is relatively short, and these non-addition points can be ignored and the Kth reinforcement part addition position E1 can be ignored directly.
  • the first reinforcement part addition position E1 and the K+1th reinforcement part addition position E1 are connected to form a whole reinforcement part addition position E1; if it is larger, it represents the Kth reinforcement part addition position E1 and the K+1th reinforcement part addition position
  • the area length of the non-added points between E1 is relatively long, and the non-added points cannot be ignored. At this time, no processing is performed on the Kth reinforcement part addition position E1 and the K+1th reinforcement part addition position E1.
  • step S104c it further includes:
  • S104e' Calculate the number of non-addition points between the Kth reinforcement part addition position E1 and the K+1th reinforcement part addition position E1;
  • this specific example connects two reinforcements by calculating the number of non-addition points between the Kth reinforcement part addition position E1 and the K+1th reinforcement part addition position E1 Adding the position E1 or keeping the two reinforcement part adding positions E1 disconnected from each other, other descriptions of this specific example can refer to the previous specific example, and will not be repeated here.
  • step S104 it also includes:
  • steps S100 to S104 are repeated to obtain all reinforcement addition positions E1 on the surface of the digital jaw model 100 .
  • the reinforcement part addition position E1 acquired according to the design method of the reinforcement part addition position E1 includes the first end point E11 close to the first occlusal surface T11 and the second end point E1 close to the second The second end point E12 of the occlusal surface T21.
  • the first end point E11 is set close to the buccal surface A2 and the lingual surface A3 of the digital jaw model 100 or set in the middle
  • the second end point E12 is set close to the buccal surface A2 and the lingual surface A3 of the digital jaw model 100 or set in the middle.
  • the reinforcement part is added
  • the extension direction of the position E1 is parallel to the mesio-distal direction, and of course, there may be a small angle with the mesio-distal direction.
  • the reinforcement part addition position E1 is set obliquely , the angle formed between the extension direction of the reinforcement part addition position E1 and the mesial-distal direction is an acute angle.
  • the first occlusal surface T11 includes a first highest point G1 close to the second occlusal surface T21, and the second occlusal surface
  • the surface T21 includes a second highest point G2 close to the first occlusal surface T11, the first highest point G1 is farther away from the gum line A4 than the first end point E11, and the second highest point G2 is farther away from the gum line A4 than the second end point E12 .
  • the height of the convex ridge 20 subsequently formed on the dental orthodontic appliance 200 can be effectively controlled to prevent the opposing jaw from touching the convex ridge 20 when it contacts the dental orthodontic appliance 200, thereby preventing the convex ridge 20 from affecting normal Bite process.
  • the first highest point G1 corresponds to the cusp R1 of the first tooth T1 close to the second tooth T2
  • the second highest point G2 corresponds to What is the cusp R2 of the second tooth T2 close to the first tooth T1.
  • the ratio of the second distance H2 to the first distance H1 is not greater than 95%, and the ratio of the fourth distance H4 to the third distance H3 is not greater than 95%.
  • the second distance H2 is 40%-80% of the first distance H1
  • the fourth distance H4 is 40%-80% of the third distance H3.
  • a gingival line A4 is formed between the buccal surface A2 or the lingual surface A3 and the gums.
  • the first maximum distance W1 and the second maximum distance W2 The range is 0.5mm-4mm.
  • the "area corresponding to the gum line A4" refers to the area of the gum line A4 connecting the teeth to be corrected having the convex ridge 20 .
  • the ranges of the first maximum distance W1 and the second maximum distance W2 are both 1mm-2.5mm.
  • the first distance W1 and the second distance W2 are the distances between the buccal surface A2 and the tongue surface A3.
  • the teeth to be treated by the subsequent orthodontic appliance 200 can be improved. of wrapping.
  • the reinforcing part adding position E1 may be located on the buccal surface A2 or the lingual surface A3 of the digital jaw model 100 in addition to the occlusal surface A1 of the digital jaw model 100 .
  • the position E1 for adding the reinforcement is set corresponding to the anterior region and/or the posterior region of the digital model 100 of the jaw.
  • the reinforcing part adding position E1 is set corresponding to at least one of the tooth surface, the space between adjacent teeth, or the cavity area of the digital model 100 of the jaw.
  • At least one of them means that one reinforcing part addition position E1 can simultaneously cover one or more areas in the tooth surface, adjacent tooth space or cavity area of the jaw digital model 100 .
  • the reinforcement part addition position E1 can have multiple extension directions, for example, the extension direction of the reinforcement part addition position E1 is parallel to the mesio-distal direction, or the extension direction of the reinforcement part addition position E1 is perpendicular to the mesio-distal direction, or, the reinforcement part
  • the included angle formed between the extending direction of the part adding position E1 and the mesial-distal direction is an acute angle, and the reinforcing part adding position E1 is linear or curved.
  • the reinforcing part adding position E1 has a first length, and the range of the first length is 0.5 mm-150 mm.
  • the digital model 100 of the tooth and jaw includes a plurality of reinforcing part adding positions E1, and the multiple reinforcing part adding positions E1 are distributed at intervals or connected with each other.
  • the design method for adding the reinforcement part includes steps:
  • the interdental space C in this embodiment can also be located in the buccal surface A2 or the lingual surface A3 .
  • the function f(x, y) is a function related to the parameters x and y, that is, both x and y have an influence on the reference value T', and the "space between adjacent teeth" is the width of the gap between two teeth .
  • S208 Determine the magnitude of the reference value T' and the fourth threshold T4. If it is less than, the recording target area E is the enhancement part addition position E1. If it is not less than, then it will not be recorded.
  • the reference value T' of this embodiment is the value of the function f(x, y), that is, the reference value T' is not only affected by the moment of inertia, but also by the adjacent
  • the accuracy and reliability of the position E1 of the reinforcement part can be improved, and the final orthodontic appliance can be further improved. 200's ability to resist deformation or breakage.
  • An embodiment of the present invention also provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps in the above-mentioned method for designing a location for adding a reinforcement part are implemented.
  • an embodiment of the present invention also provides a design system 400 for a reinforcement part.
  • the design system 400 includes a memory and a processor 40.
  • the memory stores a computer program that can run on the processor.
  • the processor 40 executes the computer program , realizing the steps in the method for designing the adding position of the reinforcing part as described above.
  • the processor 40 includes the following units:
  • An acquisition unit 41 configured to acquire the digital model 100 of the dental jaw
  • Calculation unit 42 used to calculate the reference value T of the moment of inertia of the surface target area E of the dental digital model 100 relative to the rotation axis;
  • the processing unit 43 is used to determine the magnitude of the reference value T and the first threshold T1. If it is smaller, at least part of the target area E is recorded as the enhancement part addition position E1. If it is not smaller, it is not recorded.
  • each unit in the processor 40 can also be used to perform the following steps:
  • the acquisition unit 41 is used to acquire the digital model 100' of the jaw, and acquire the target area E located on the surface of the digital model 100' of the jaw and passing through the space C between adjacent teeth;
  • the calculation unit 42 is used to calculate the moment of inertia of the target area E relative to the rotation axis and the distance between adjacent teeth, and calculate the reference value T' of the function f(x, y), where x is the moment of inertia and y is the adjacent tooth the distance between
  • the processing unit 43 is used to determine the magnitude of the reference value T' and the fourth threshold T4. If it is smaller, the recording target area E is the enhancement part addition position E1. If it is not smaller, it will not be recorded.
  • each unit of the processor 40 can also be used to execute other steps in the aforementioned design method, for details, reference can be made to the aforementioned description, and details will not be repeated here.
  • An embodiment of the present invention also provides a molding method of a dental orthodontic appliance.
  • the reinforcing part 300 is located on the occlusal surface A1 as an example for illustration.
  • the molding method includes steps:
  • S302 Generate the orthodontic appliance 200 according to the reinforcement part adding position E1 and the structural information of the reinforcement part 300 .
  • the structural information of the reinforcing part 300 includes the size of the reinforcing part 300, the outer contour of the cross section, etc.
  • the cross-sectional outline of the reinforcement part 300 is a rectangle, trapezoid, arc, triangle, polygon or "M" shape.
  • the outer contour refers to the outer contour of a single convex ridge 10
  • the "M" shape means that there are one or more depressions in the outer contour, and the degree of the depression is not limited.
  • step S302 specifically includes:
  • the reinforcement part 300 is formed at the reinforcement part addition position E1 according to the structural information of the reinforcement part 300, and the dental orthodontic appliance 200 with a cavity S is generated according to the dental jaw digital model 100 and the reinforcement part 300.
  • the cavity S and the reinforcing part 300 match each other;
  • the orthodontic appliance 200 with the solid convex ridge 20 is generated according to the structure information of the digital model of the jaw 100 and the reinforcing part 300 , and the solid convex ridge 20 and the reinforcing part 300 match each other.
  • the cavity S can be directly used as the hollow convex ridge 20, and the cavity S is enough to increase the local strength of the orthodontic appliance 200, thereby improving orthodontics.
  • the step "generating a dental orthodontic appliance 200 with a solid convex ridge 20 according to the structural information of the digital model 100 and the reinforcement part 300" specifically includes:
  • the appliance body 201 with a cavity S is generated according to the digital model 100 of the jaw and the reinforcement part 300.
  • the cavity S and the reinforcement part 300 are matched with each other, and a filling part 202 is set in the cavity S to form a solid convex ridge 20.
  • the convex ridge 20 cooperates with the appliance body 201 to form a dental orthodontic appliance 200 .
  • the step "setting the filling part 202 in the cavity S to form the solid convex ridge 20" specifically includes:
  • the filling portion 202 is fixed to the cavity S to form a solid raised ridge 20 .
  • the filling part 202 is a preformed filling part 202 , and the outer contour of the filling part 202 close to the cavity S matches the inner wall of the cavity S.
  • the filling part 202 and the cavity S can cooperate to form the solid convex ridge 20 .
  • the filling part 202 is also directly formed in the cavity S through the filling and curing process.
  • the step "generating the dental orthodontic appliance 200 with the solid convex ridge 20 according to the structure information of the digital model 100 and the reinforcement part 300" specifically includes:
  • the appliance body 201' is generated according to the dental and jaw digital model 100'.
  • the appliance body 201' is provided with a mark position E1' indicating the position E1 of the reinforcement part, and a solid convex ridge 20' is set at the mark position E1' to obtain a dental Orthodontic appliances 200'.
  • the step "setting a solid convex ridge 20' at the marked position E1' to obtain a dental orthodontic appliance 200'" specifically includes:
  • the solid convex ridge 20' is a preformed solid convex ridge 20', and the marking position E1' is located on the outer surface of the appliance body 201'.
  • the solid convex ridge 20' can be directly fixed on the marking position E1' to form a dental Orthodontic appliances 200'.
  • solid raised ridge 20' can also be directly formed at the marking position E1' through coating and curing processes.
  • the convex ridge 20 (including the cavity S, The solid ridges 20, 20') also have a variety of specific designs.
  • the convex ridge 20 is set corresponding to the anterior tooth area and/or the posterior tooth area of the teeth to be corrected.
  • the convex ridge 20 is located on the buccal surface A2, the lingual surface A3 or the occlusal surface A1 of the appliance body 201, and the convex ridge 20 corresponds to the tooth to be treated. At least one of tooth surface, adjacent tooth space or cavity area is provided.
  • tooth surface refers to the surface near the buccal surface, the surface near the lingual surface or the occlusal surface of each tooth to be treated, and "space between adjacent teeth” refers to the area between two adjacent teeth to be treated, " Cavitation area” refers to the tooth extraction area or the area of a large gap, and “at least one of them” means that a convex ridge 20 can cover one or more of the tooth surface of the tooth to be treated, the space between adjacent teeth, or the cavitation area at the same time. area.
  • the space between adjacent teeth specifically refers to the side surface of the first tooth T1 close to the second tooth T2, and the side surface of the second tooth T2 close to the first tooth T1.
  • the interdental space P does not include the gap, and the gap can be defined as a cavity area.
  • the convex ridge 20 can have multiple extending directions, for example, the extending direction of the convex ridge 20 is parallel to the mesial-distal direction, or the extending direction of the convex ridge 20 is perpendicular to the proximal-distal direction, or the extending direction of the convex ridge 20 is parallel to the proximal-distal direction.
  • the angle formed between the mesial and distal directions is an acute angle, and the convex ridge 20 is linear or curved.
  • the orthodontic appliance 200 may include a raised ridge 20 or a plurality of raised ridges 20 on the appliance body 201 .
  • the multiple convex ridges 20 are distributed at intervals, or the multiple convex ridges 20 are connected to each other.
  • the appliance body 201 surrounds and forms a cavity S', and by setting a convex ridge 20 on the appliance body 201 that protrudes away from the cavity S', the entire dental orthodontic appliance 200 can be improved.
  • the moment of inertia relative to the rotation axis can improve the ability of the orthodontic appliance 200 to resist bending in the direction away from the cavity S', and the direction away from the cavity S' is the orthodontic appliance 200
  • the main force application direction during extraction, that is, the setting of the convex ridge 20 can improve the local stiffness of the orthodontic appliance 200 , thereby preventing the dental orthodontic appliance 200 from being deformed or broken.
  • the dental orthodontic appliance 200 of this embodiment directly includes the raised ridge 20, and the patient can directly wear the dental orthodontic appliance 200 to achieve the above effect, which is convenient to use and provides better user experience.

Landscapes

  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)

Abstract

本发明揭示了一种加强部添加位置的设计方法、成型方法及存储介质、系统,设计方法包括步骤:获取牙颌数字化模型;计算牙颌数字化模型表面目标区域相对于转动轴的惯性矩的参考值;判断参考值与第一阈值的大小,若小于,则记录目标区域的至少部分区域为加强部添加位置,若不小于,则不记录。本发明的牙颌数字化模型表面目标区域相对于转动轴的惯性矩的参考值可用于表征成型之后的牙科正畸矫治器对应区域相对于转动轴的惯性矩,而惯性矩用于表征牙科正畸矫治器抵抗弯曲的能力,后续可在牙科正畸矫治器对应区域形成凸嵴而避免产生变形或断裂;另外,本发明直接通过计算目标区域的惯性矩来确定加强部添加位置,加强部添加位置的选取更加精准可靠。

Description

加强部添加位置的设计方法、成型方法及存储介质、系统
本申请要求了申请日为2021年12月13日,申请号为202111521653.0,发明名称为“加强部添加位置的设计方法、成型方法及存储介质、系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及牙齿矫治技术领域,尤其涉及一种加强部添加位置的设计方法、成型方法及存储介质、系统。
背景技术
在牙科正畸矫治器使用过程中,需要施加额外的作用力来实现牙科正畸矫治器的重复佩戴及脱卸,当外部作用力很大时,牙科正畸矫治器可能产生变形或断裂,影响牙科正畸矫治器的使用过程,或使得牙科正畸矫治器无法达成矫治效果。
发明内容
本发明的目的在于提供一种加强部添加位置的设计方法、成型方法及存储介质、系统,其可通过合理的加强部添加位置的设计方法大大简化加强部于牙颌数字化模型处的添加流程,且成型的牙科正畸矫治器具有较高的强度以避免产生变形或断裂。
为实现上述发明目的之一,本发明一实施方式提供一种加强部添加位置的设计方法,包括步骤:
获取牙颌数字化模型;
计算所述牙颌数字化模型表面目标区域相对于转动轴的惯性矩的参考值;
判断所述参考值与第一阈值的大小,若小于,则记录所述目标区域的至少部分区域为加强部添加位置,若不小于,则不记录。
作为本发明一实施方式的进一步改进,步骤“计算所述牙颌数字化模型表面目标区域相对于转动轴的惯性矩的参考值”具体包括:
于所述牙颌数字化模型表面选取目标线;
将所述目标线N等分并获取N+1个目标点;
获取经过所述目标点且垂直于所述目标线的N+1个目标截面;
计算N+1个目标截面相对于转动轴的惯性矩的参考值,其中,N≥1。
作为本发明一实施方式的进一步改进,步骤“获取经过所述目标点且垂直于所述目标线的N+1个目标截面”具体包括:
于所述牙颌数字化模型表面形成经过任一目标点且垂直于所述目标线的基准线,所述基准线具有第一宽度;
将所述基准线朝远离所述牙颌数字化模型的方向偏移第一偏移量而得到终止线;
连接所述基准线及所述终止线而得到垂直于所述目标线的目标截面;
重复上述步骤而得到N+1个目标截面。
作为本发明一实施方式的进一步改进,所述第一宽度的范围为0.4mm-20mm,所述第一偏移量大于0.2mm,或者,所述第一偏移量等于0.2mm。
作为本发明一实施方式的进一步改进,步骤“计算N+1个目标截面相对于转动轴的惯性矩的参考值”具体包括:
根据每一目标截面的所述第一宽度、所述第一偏移量以及第一高度计算所述目标截面相对于转动轴的惯性矩的参考值,其中,所述第一高度为纵截面上牙齿的咬合面朝向牙龈线的最大高度,所述纵截面经过对应的所述目标点且垂直于近远中方向。
作为本发明一实施方式的进一步改进,步骤“计算N+1个目标截面相对于转动轴的惯性矩的参考值”具体包括:
根据每一目标截面上所有点的坐标计算所述目标截面相对于转动轴的惯性矩的参考值。
作为本发明一实施方式的进一步改进,步骤“判断所述参考值与第一阈值的大小,若小于,则记录所述目标区域的至少部分区域为加强部添加位置,若不小于,则不记录”具体包括:
判断每一惯性矩的参考值与第一阈值的大小;
若小于,则将对应的目标点定义为添加点,若不小于,则将对应的目标点定义为非添加点;
将L个连续的添加点形成的区域定义为一个加强部添加位置而形成M个加强部添加位置,其中,L≥2,M≥1。
作为本发明一实施方式的进一步改进,步骤“将L个连续的添加点形成的区域定义为一个加强部添加位置而形成M个加强部添加位置”之后还包括:
当M≥2时,选取相邻的第K个加强部添加位置及第K+1个加强部添加位置;
计算第K个加强部添加位置及第K+1个加强部添加位置之间的间隔距离;
判断所述间隔距离与第二阈值的大小;
若小于,则连接第K个加强部添加位置及第K+1个加强部添加位置,若不小于,则保持第K个加强部添加位置及第K+1个加强部添加位置相互断开,其中,K≥1。
作为本发明一实施方式的进一步改进,步骤“将L个连续的添加点形成的区域定义为一个加强部添加位置而形成M个加强部添加位置”之后还包括:
当M≥2时,选取相邻的第K个加强部添加位置及第K+1个加强部添加位置;
计算第K个加强部添加位置及第K+1个加强部添加位置之间的非添加点的数量;
判断所述非添加点的数量与第三阈值的大小;
若小于,则连接第K个加强部添加位置及第K+1个加强部添加位置,若不小于,则保持第K个加强部添加位置及第K+1个加强部添加位置相互断开,其中,K≥1。
作为本发明一实施方式的进一步改进,所述设计方法还包括步骤:
遍历所述牙颌数字化模型表面的所有目标区域并记录所有的加强部添加位置。
作为本发明一实施方式的进一步改进,所述加强部添加位置的延伸方向平行于所述牙颌数字化模型的近远中方向、垂直于近远中方向或与近远中方向之间形成的夹角为锐角。
作为本发明一实施方式的进一步改进,所述加强部添加位置位于所述牙颌数字化模型的颊面、舌面或咬合面。
作为本发明一实施方式的进一步改进,所述加强部添加位置对应牙颌数字化模型的前牙区和/或后牙区设置。
作为本发明一实施方式的进一步改进,所述加强部添加位置对应牙颌数字化模型的牙齿表面、邻牙间隙或空泡区的至少其中之一设置。
作为本发明一实施方式的进一步改进,于所述加强部添加位置的延伸方向上,所述加强部添加位置具有第一长度,所述第一长度的范围为0.5mm-150mm。
作为本发明一实施方式的进一步改进,所述牙颌数字化模型包括多个加强部添加位置,多个加强部添加位置间隔分布或相互连接。
作为本发明一实施方式的进一步改进,所述加强部添加位置位于所述牙颌数字化模型的咬合面的邻牙间隙,所述邻牙间隙连接相邻的第一牙的第一咬合面及第二牙的第二咬合面,所述加强 部添加位置于其延伸方向上包括靠近所述第一咬合面的第一端点及靠近所述第二咬合面的第二端点。
作为本发明一实施方式的进一步改进,颊面或舌面与牙龈之间形成牙龈线,于所述牙颌数字化模型的颊面朝向舌面的方向上,所述第一端点与牙龈线的对应区域之间具有第一最大间距,所述第二端点与牙龈线的对应区域之间具有第二最大间距,所述第一最大间距及所述第二最大间距的范围均为0.5mm-4mm。
作为本发明一实施方式的进一步改进,颊面或舌面与牙龈之间形成牙龈线,于穿过所述目标线且垂直于颊面朝向舌面的方向的截面上,所述第一咬合面包括靠近所述第二咬合面的第一最高点,所述第二咬合面包括靠近所述第一咬合面的第二最高点,所述第一最高点相较于所述第一端点远离牙龈线,所述第二最高点相较于所述第二端点远离牙龈线。
作为本发明一实施方式的进一步改进,于所述牙颌数字化模型的咬合面朝向牙龈线的方向上,所述第一最高点与牙龈线之间具有第一距离,所述第一端点与牙龈线之间具有第二距离,所述第二最高点与牙龈线之间具有第三距离,所述第二端点与牙龈线之间具有第四距离,所述第二距离与所述第一距离的比值不小于20%,所述第四距离与所述第三距离的比值不小于20%。
作为本发明一实施方式的进一步改进,所述第二距离与所述第一距离的比值不大于95%,所述第四距离与所述第三距离的比值不大于95%。
作为本发明一实施方式的进一步改进,所述第二距离为所述第一距离的40%-80%,所述第四距离为所述第三距离的40%-80%。
为实现上述发明目的之一,本发明一实施方式提供一种加强部添加位置的设计方法,包括步骤:
获取牙颌数字化模型;
获取位于所述牙颌数字化模型表面且经过邻牙间隙的目标区域;
计算所述目标区域相对于转动轴的惯性矩以及邻牙之间的间距;
计算函数f(x,y)的参考值,其中,x为惯性矩,y为邻牙间隙;
判断所述参考值与第四阈值的大小,若小于,则记录所述目标区域为加强部添加位置,若不小于,则不记录。
作为本发明一实施方式的进一步改进,步骤“计算所述目标区域相对于转动轴的惯性矩”具体包括:
于所述牙颌数字化模型表面选取目标线;
将所述目标线N等分并获取N+1个目标点;
获取经过所述目标点且垂直于所述目标线的N+1个目标截面;
计算N+1个目标截面相对于转动轴的惯性矩,其中,N≥1。
为实现上述发明目的之一,本发明一实施方式提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现如上任一项技术方案所述的加强部添加位置的设计方法中的步骤。
为实现上述发明目的之一,本发明一实施方式提供一种加强部的设计系统,设计系统包括存储器和处理器,存储器存储有可在处理器上运行的计算机程序,处理器执行计算机程序时,实现如上任一项技术方案所述的加强部添加位置的设计方法中的步骤。
为实现上述发明目的之一,本发明一实施方式提供一种牙科正畸矫治器的成型方法,包括步骤:
根据如上任意一项技术方案所述的加强部添加位置的设计方法获取加强部添加位置;
根据加强部添加位置及加强部的结构信息生成牙科正畸矫治器。
作为本发明一实施方式的进一步改进,步骤“根据加强部添加位置及加强部的结构信息生成牙科正畸矫治器”具体包括:
判断所述参考值与第五阈值的大小;
若不小于,则根据加强部的结构信息于所述加强部添加位置处形成加强部,并根据牙颌数字化模型及加强部生成带有空腔的牙科正畸矫治器,所述空腔与所述加强部相互匹配;
若小于,则根据牙颌数字化模型及加强部的结构信息生成带有实心凸嵴的牙科正畸矫治器,所述实心凸嵴与所述加强部相互匹配。
作为本发明一实施方式的进一步改进,步骤“根据牙颌数字化模型及加强部的结构信息生成带有实心凸嵴的牙科正畸矫治器”具体包括:
根据加强部的结构信息于所述加强部添加位置处形成加强部;
根据牙颌数字化模型及加强部生成带有空腔的矫治器本体,所述空腔与所述加强部相互匹配,并于所述空腔内设置填充部而形成实心凸嵴,所述实心凸嵴与所述矫治器本体配合形成牙科正畸矫治器。
作为本发明一实施方式的进一步改进,步骤“于所述空腔内设置填充部而形成实心凸嵴”具体包括:
根据添加的加强部生成填充部;
将所述填充部固定于所述空腔而形成实心凸嵴。
作为本发明一实施方式的进一步改进,步骤“根据牙颌数字化模型及加强部的结构信息生成带有实心凸嵴的牙科正畸矫治器”具体包括:
根据牙颌数字化模型生成矫治器本体,所述矫治器本体上设有指示所述加强部添加位置的标记位置,并于所述标记位置处设置实心凸嵴而得到牙科正畸矫治器。
作为本发明一实施方式的进一步改进,步骤“于所述标记位置处设置实心凸嵴而得到牙科正畸矫治器”具体包括:
根据添加的加强部生成实心凸嵴;
将所述实心凸嵴固定于标记位置处而得到牙科正畸矫治器。
作为本发明一实施方式的进一步改进,所述结构信息包括加强部的尺寸、截面的外轮廓。
作为本发明一实施方式的进一步改进,远离所述牙颌数字化模型的方向上,所述加强部的截面的外轮廓为矩形、梯形、弧形、三角形、多边形或“M”形。
与现有技术相比,本发明一实施方式的有益效果在于:本发明一实施方式的牙颌数字化模型表面目标区域相对于转动轴的惯性矩的参考值可用于表征成型之后的牙科正畸矫治器对应区域相对于转动轴的惯性矩,而惯性矩用于表征牙科正畸矫治器的该区域抵抗弯曲的能力,当参考值较小时,表征该目标区域抵抗弯曲的能力不够,需要在该目标区域添加加强部,后续可在牙科正畸矫治器对应区域形成凸嵴以增加抵抗弯曲的能力,凸嵴的设置可提高牙科正畸矫治器的局部刚度,进而避免牙科正畸矫治器产生变形或断裂;另外,本实施方式直接通过计算牙颌数字化模型表面目标区域相对于转动轴的惯性矩来确定加强部添加位置,加强部添加位置的选取更加精准可靠,进而最终成型的牙科正畸矫治器防变形或断裂的能力更强。
附图说明
图1是本发明一实施方式的加强部添加位置的设计方法的步骤图;
图2是本发明一实施方式的牙颌数字化模型的示意图;
图3是本发明一实施方式的成型的牙科正畸矫治器的示意图;
图4是本发明一实施方式的获取目标截面及计算相对于转动轴的惯性矩的参考值的步骤图;
图5是本发明一实施方式的获取目标截面的步骤图;
图6是本发明一实施方式的获取目标截面的示意图;
图7是本发明一实施方式的确定加强部添加位置的步骤图;
图8是本发明一实施方式的确定加强部添加位置的示意图;
图9是本发明一具体示例的多个加强部添加位置之间的处理步骤图;
图10是本发明另一具体示例的多个加强部添加位置之间的处理步骤图;
图11是本发明一实施方式的牙颌数字化模型经过目标线且垂直于颊面朝向舌面方向的剖视图;
图12是本发明一实施方式的牙颌数字化模型颊面朝向舌面方向剖视图,视图经过第一端点;
图13是本发明一实施方式的牙颌数字化模型颊面朝向舌面方向剖视图,视图经过第二端点;
图14是本发明另一实施方式的加强部添加位置的设计方法的步骤图;
图15是本发明一实施方式的加强部的设计系统的处理器示意框图;
图16是本发明一实施方式的牙科正畸矫治器的成型方法的步骤图;
图17是本发明一实施方式的牙科正畸矫治器的成型方法的示意图;
图18是本发明一实施方式的包括空腔的牙科正畸矫治器的示意图;
图19是本发明一具体示例的牙科正畸矫治器的成型方法的流程图;
图20是本发明另一具体示例的牙科正畸矫治器的成型方法的流程图。
具体实施方式
以下将结合附图所示的具体实施方式对本发明进行详细描述。但这些实施方式并不限制本发明,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。
结合图1及图2,本发明一实施方式提供一种加强部添加位置的设计方法,包括步骤:
S100:获取牙颌数字化模型100;
S102:计算牙颌数字化模型100表面目标区域E相对于转动轴的惯性矩的参考值T;
S104:判断参考值T与第一阈值T1的大小,若小于,则记录目标区域E的至少部分区域为加强部添加位置E1,若不小于,则不记录。
这里,“记录目标区域E的至少部分区域为加强部添加位置E1”是指可以是整个目标区域E均记录为加强部添加位置E1,也可以是目标区域E的部分区域记录为加强部添加位置E1。
另外,加强部添加位置E1即为后续对应加强部的位置,当有多个加强部添加位置E1时,后续并非都需要设置加强部,当某些加强部添加位置E1不满足加强部的添加条件(例如,已经无需添加加强部,或者,加强部添加位置E1不适合添加加强部等)时,后续该些加强部添加位置E1可不添加加强部。
在本实施方式中,结合图3,牙颌数字化模型100表面目标区域E相对于转动轴惯性矩的参考值T可用于表征成型之后的牙科正畸矫治器200对应区域的惯性矩,而惯性矩用于表征牙科正畸矫治器200的该区域抵抗弯曲的能力,当参考值T较小时,表征该目标区域E抵抗弯曲的能力不够,需要在该目标区域E添加加强部,后续可在牙科正畸矫治器200对应区域形成凸嵴20以增加抵抗弯曲的能力,凸嵴20的设置可提高牙科正畸矫治器200的局部刚度,进而避免牙科正畸矫治器200产生变形或断裂。
另外,本实施方式直接通过计算牙颌数字化模型100表面目标区域E相对于转动轴的惯性矩来确定加强部添加位置E1,加强部添加位置E1的选取更加精准可靠,进而最终成型的牙科正畸矫治器200防变形或断裂的能力更强。
需要说明的是,在利用牙科正畸矫治器200进行矫治的例子中,通常需要把矫治分成多个逐次的阶段(比如20~40个逐次的阶段),每一个阶段对应一个牙科正畸矫治器200,可根据不同阶段的具体需求在对应的牙颌数字化模型100上获取不同参数的加强部添加位置E1,参数包括加强部添加位置E1的数量、位置、形态等。
在本实施方式中,结合图4至图6,步骤S102具体包括:
S102a:于牙颌数字化模型100表面选取目标线L1;
这里,目标线L1为贴合牙颌数字化模型100表面的曲线,以目标线L1位于牙颌数字化模型100的咬合面A1的邻牙间隙C为例,目标线L1沿牙颌数字化模型100的近远中方向延伸,邻牙间隙C为相邻的第一牙T1的第一咬合面T11及第二牙T2的第二咬合面T21之间的区域。
S102b:将目标线L1N等分并获取N+1个目标点P,当然,也可根据实际情况调整目标点P的分布。
S102c:获取经过目标点P且垂直于目标线L1的N+1个目标截面B;
具体的,步骤S102c包括:
S1021c:于牙颌数字化模型100表面形成经过任一目标点P且垂直于目标线L1的基准线L2,基准线L2具有第一宽度;
这里,考虑到目标线L1及基准线L2均为曲线,难以实现整个目标线L1与整个基准线L2相互垂直,故“垂直于目标线L1的基准线L2”是指在经过目标点P的一小段目标线L1及一小段基准线L2相互垂直,第一宽度即为基准线L2于颊面A2朝向舌面A3方向的宽度,第一宽度的范围为0.4mm-20mm。
S1022c:将基准线L2朝远离牙颌数字化模型100的方向偏移第一偏移量L3而得到终止线L4;
S1023c:连接基准线L2及终止线L4而得到垂直于目标线L1的目标截面B;
这里,颊面A2或舌面A3与牙龈之间形成牙龈线A4,“远离牙颌数字化模型100的方向”是指牙颌数字化模型100的牙龈线A4朝向咬合面A1的方向,终止线L4为与基准线L2形状一致的曲线,且终止线L4与基准线L2对应的点之间的间距均为第一偏移量L3。
“连接基准线L2及终止线L4”是指将基准线L2的一端与终止线L4的一端相连,并将基准线L2的另一端与终止线L4的另一端相连,得到的目标截面B垂直于连接该目标点P的一小段目标线L1。
需要说明的是,第一偏移量L3大于0.2mm,或者,第一偏移量L3等于0.2mm,第一偏移量L3大致对应的是成型的牙科正畸矫治器200的厚度,而目标截面B大致对应的就是牙科正畸矫治器200的纵截面,该纵截面的剖面方向为牙龈线A4朝向咬合面A1的方向,且该纵截面经过的点对应目标点P,故可用目标截面B相对于转动轴的惯性矩表征牙科正畸矫治器200对应区域相对于转动轴的惯性矩。
S1024c:重复上述步骤S1021c至S1023c而得到N+1个目标截面B。
这里,由于目标线L1为曲线,至少部分目标截面B是不平行的,通过N等分目标线L1可获取不同的目标截面B。
当然,在其他实施方式中,目标截面B也可通过其他方式获取。
S102d:计算N+1个目标截面B相对于转动轴的惯性矩的参考值T,其中,N≥1。
在一具体示例中,步骤S102d具体包括:
根据每一目标截面B的第一宽度、第一偏移量L3以及第一高度h计算目标截面B相对于转动轴的惯性矩的参考值T,其中,第一高度h为纵截面上牙齿的咬合面A1朝向牙龈线A4的最大高度,纵截面经过对应的目标点P且垂直于近远中方向。
在另一具体示例中,步骤S102d具体包括:
根据每一目标截面B上所有点的坐标计算目标截面B相对于转动轴的惯性矩的参考值T。
这里,目标截面B上的所有点在全局坐标系下均有对应的坐标点(x,y,z),此时,无需获取目标截面B的第一宽度及第一偏移量L3,可直接根据目标截面B上所有点的坐标计算得到目标截面B相对于转动轴的惯性矩的参考值T。
在本实施方式中,结合图7及图8,步骤S104具体包括:
S104a:判断每一惯性矩的参考值T与第一阈值T1的大小;
S104b:若小于,则将对应的目标点P定义为添加点(参考图8中的圆点),若不小于,则将对应的目标点P定义为非添加点(参考图8中的三角形点);
S104c:将L个连续的添加点形成的区域定义为一个加强部添加位置E1而形成M个加强部添加位置E1,其中,L≥2,M≥1。
这里,“L个连续的添加点形成的区域”是指该区域的两端的目标点P为非添加点或不存在目标点P,可以理解的是,在一条目标线L1上,可以包括一个或多个加强部添加位置E1。
在一具体示例中,结合图9,步骤S104c之后还包括:
S104d:当M≥2时,选取相邻的第K个加强部添加位置E1及第K+1个加强部添加位置E1;
这里,根据前述定义,此时的第K个加强部添加位置E1及第K+1个加强部添加位置E1是相互断开的。
S104e:计算第K个加强部添加位置E1及第K+1个加强部添加位置E1之间的间隔距离;
这里,第K个加强部添加位置E1具有靠近第K+1个加强部添加位置E1的末端目标点P,而第K+1个加强部添加位置E1具有靠近第K个加强部添加位置E1的始端目标点P,目标线L1在末端目标点P及始端目标点P之间的长度即为第K个加强部添加位置E1及第K+1个加强部添加位置E1之间的间隔距离。
S104f:判断间隔距离与第二阈值T2的大小;
S104g:若小于,则连接第K个加强部添加位置E1及第K+1个加强部添加位置E1,若不小于,则保持第K个加强部添加位置E1及第K+1个加强部添加位置E1相互断开,其中,K≥1。
这里,若小于,则表征第K个加强部添加位置E1及第K+1个加强部添加位置E1之间的非添加点的区域长度较短,可忽略该些非添加点而直接将第K个加强部添加位置E1及第K+1个加强部添加位置E1连接形成一整个加强部添加位置E1;若大于,则表征第K个加强部添加位置E1及第K+1个加强部添加位置E1之间的非添加点的区域长度较长,非添加点不可忽略,此时,不对第K个加强部添加位置E1及第K+1个加强部添加位置E1做处理。
在另一具体示例中,结合图10,步骤S104c之后还包括:
S104d’:当M≥2时,选取相邻的第K个加强部添加位置E1及第K+1个加强部添加位置E1;
S104e’:计算第K个加强部添加位置E1及第K+1个加强部添加位置E1之间的非添加点的数量;
S104f’:判断非添加点的数量与第三阈值T3的大小;
S104g’:若小于,则连接第K个加强部添加位置E1及第K+1个加强部添加位置E1,若不小于,则保持第K个加强部添加位置E1及第K+1个加强部添加位置E1相互断开,其中,K≥1。
本具体示例与上一具体示例的区别在于:本具体示例通过计算第K个加强部添加位置E1及第K+1个加强部添加位置E1之间的非添加点的数量来连接两个加强部添加位置E1或保持两个加强部添加位置E1相互断开,本具体示例的其他说明可参考上一具体示例,在此不再赘述。
在本实施方式中,步骤S104之后还包括:
遍历牙颌数字化模型100表面的所有目标区域E并记录所有的加强部添加位置E1。
也就是说,重复步骤S100至S104获取牙颌数字化模型100表面所有的加强部添加位置E1。
在本实施方式中,结合图11,根据前述加强部添加位置E1的设计方法获取到的加强部添加位置E1于其延伸方向上包括靠近第一咬合面T11的第一端点E11及靠近第二咬合面T21的第二端点E12。
第一端点E11靠近牙颌数字化模型100的颊面A2、舌面A3设置或居中设置,第二端点E12靠近牙颌数字化模型100的颊面A2、舌面A3设置或居中设置。
这里,当第一端点E11及第二端点E12同时靠近牙颌数字化模型100的颊面A2设置,或者 同时靠近牙颌数字化模型100的舌面A3设置,又或者同时居中设置时,加强部添加位置E1的延伸方向平行于近远中方向,当然,也可与近远中方向之间存在一个较小的夹角。
当第一端点E11及第二端点E12的其中之一靠近牙颌数字化模型100的颊面A2设置,其中另一靠近牙颌数字化模型100的舌面A3设置时,加强部添加位置E1倾斜设置,加强部添加位置E1的延伸方向与近远中方向之间形成的夹角为锐角。
在本实施方式中,于穿过目标线L1且垂直于颊面A2朝向舌面A3的方向的截面上,第一咬合面T11包括靠近第二咬合面T21的第一最高点G1,第二咬合面T21包括靠近第一咬合面T11的第二最高点G2,第一最高点G1相较于第一端点E11远离牙龈线A4,第二最高点G2相较于第二端点E12远离牙龈线A4。
此时,可有效控制后续成型在牙科正畸矫治器200上的凸嵴20的高度,避免对颌与该牙科正畸矫治器200接触时接触到凸嵴20,进而避免凸嵴20影响正常的咬合过程。
这里,以截面穿过第一牙T1及第二牙T2的牙尖点为例,第一最高点G1对应的是第一牙T1靠近第二牙T2的牙尖R1,第二最高点G2对应的是第二牙T2靠近第一牙T1的牙尖R2。
具体的,于牙颌数字化模型100的咬合面A1朝向牙龈线A4的方向(即大致竖直方向)上,第一最高点G1与牙龈线A4之间具有第一距离H1,第一端点E11与牙龈线A4之间具有第二距离H2,第二最高点G2与牙龈线A4之间具有第三距离H3,第二端点E12与牙龈线A4之间具有第四距离H4,第二距离H2与第一距离H1的比值不小于20%,第四距离H4与第三距离H3的比值不小于20%。
另外,第二距离H2与第一距离H1的比值不大于95%,第四距离H4与第三距离H3的比值不大于95%。
可选的,第二距离H2为第一距离H1的40%-80%,第四距离H4为第三距离H3的40%-80%。
在本实施方式中,结合图12及图13,颊面A2或舌面A3与牙龈之间形成牙龈线A4,于牙颌数字化模型100的颊面A2朝向舌面A3的方向上,第一端点E11与牙龈线A4的对应区域之间具有第一最大间距W1,第二端点E12与牙龈线A4的对应区域之间具有第二最大间距W2,第一最大间距W1及第二最大间距W2的范围均为0.5mm-4mm。
这里,“牙龈线A4的对应区域”是指连接具有凸嵴20的待矫治牙齿的牙龈线A4区域。
可选的,第一最大间距W1及第二最大间距W2的范围均为1mm-2.5mm。
第一间距W1及第二间距W2为颊面A2朝向舌面A3方向上的间距,通过设置合理的第一间距W1及第二间距W2,可提高后续成型的牙科正畸矫治器200对待矫治牙齿的包裹性。
在其他实施方式中,加强部添加位置E1除了位于牙颌数字化模型100的咬合面A1之外,还可位于牙颌数字化模型100的颊面A2或舌面A3。
加强部添加位置E1对应牙颌数字化模型100的前牙区和/或后牙区设置。
加强部添加位置E1对应牙颌数字化模型100的牙齿表面、邻牙间隙或空泡区的至少其中之一设置。
这里,“至少其中之一”是指一个加强部添加位置E1可同时覆盖颌数字化模型100的牙齿表面、邻牙间隙或空泡区中的一个或多个区域。
加强部添加位置E1可有多种延伸方向,例如,加强部添加位置E1的延伸方向平行于近远中方向,或者,加强部添加位置E1的延伸方向垂直于近远中方向,又或者,加强部添加位置E1的延伸方向与近远中方向之间形成的夹角为锐角,且加强部添加位置E1呈直线型或曲线型。
另外,于加强部添加位置E1的延伸方向上,加强部添加位置E1具有第一长度,第一长度的范围为0.5mm-150mm。
牙颌数字化模型100包括多个加强部添加位置E1,多个加强部添加位置E1间隔分布或相互连接。
在本发明另一实施方式中,结合图14,加强部添加位置的设计方法包括步骤:
S200:获取牙颌数字化模型100’;
S202:获取位于牙颌数字化模型100’表面且经过邻牙间隙C的目标区域E;
这里,以目标区域E位于牙颌数字化模型100’的咬合面A1的邻牙间隙C为例,但不以此为限,本实施方式的邻牙间隙C也可位于颊面A2或舌面A3。
S204:计算目标区域E相对于转动轴的惯性矩以及邻牙之间的间距;
S206:计算函数f(x,y)的参考值T’,其中,x为惯性矩,y为邻牙之间的间距;
这里,函数f(x,y)为与参数x、y相关的函数,即x、y均对参考值T’有影响,“邻牙之间的间距”为两颗牙之间的夹缝的宽度。
S208:判断参考值T’与第四阈值T4的大小,若小于,则记录目标区域E为加强部添加位置E1,若不小于,则不记录。
可以看到,本实施方式与上一实施方式的区别在于:本实施方式的参考值T’为函数f(x,y)的数值,即参考值T’不仅受到惯性矩的影响,还受到邻牙之间的间距的影响,通过考虑多个参数(即惯性矩及邻牙之间的间距)可提高加强部添加位置E1的精准性及可靠性,进而进一步提高最终成型的牙科正畸矫治器200的防变形或断裂的能力。
本实施方式的其他说明可参考上一实施方式,例如惯性矩的获取、加强部添加位置E1的获取等等,在此不再赘述。
本发明一实施方式还提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现如上所述的加强部添加位置的设计方法中的步骤。
结合图15,本发明一实施方式还提供一种加强部的设计系统400,设计系统400包括存储器和处理器40,存储器存储有可在处理器上运行的计算机程序,处理器40执行计算机程序时,实现如上所述的加强部添加位置的设计方法中的步骤。
这里,结合前述一实施方式的加强部添加位置的设计方法的说明,处理器40包括如下单元:
获取单元41,用于获取牙颌数字化模型100;
计算单元42,用于计算牙颌数字化模型100表面目标区域E相对于转动轴的惯性矩的参考值T;
处理单元43,用于判断参考值T与第一阈值T1的大小,若小于,则记录目标区域E的至少部分区域为加强部添加位置E1,若不小于,则不记录。
在其他实施方式中,结合前述另一实施方式的加强部添加位置的设计方法的说明,处理器40中的各个单元还可是用于执行如下步骤:
获取单元41用于获取牙颌数字化模型100’,以及获取位于牙颌数字化模型100’表面且经过邻牙间隙C的目标区域E;
计算单元42用于计算目标区域E相对于转动轴的惯性矩以及邻牙之间的间距,以及计算函数f(x,y)的参考值T’,其中,x为惯性矩,y为邻牙之间的间距;
处理单元43用于判断参考值T’与第四阈值T4的大小,若小于,则记录目标区域E为加强部添加位置E1,若不小于,则不记录。
需要说明的是,处理器40的各个单元还可用于执行前述设计方法中的其他步骤,具体可参考前述说明,在此不再赘述。
本发明一实施方式还提供一种牙科正畸矫治器的成型方法,这里,以加强部300位于咬合面A1为例作说明。
结合图16至图18,成型方法包括步骤:
S300:根据如上所述的加强部添加位置的设计方法获取加强部添加位置E1;
S302:根据加强部添加位置E1及加强部300的结构信息生成牙科正畸矫治器200。
这里,加强部300的结构信息包括加强部300的尺寸、截面的外轮廓等,有了加强部添加位置E1和加强部300的结构信息之后,便可通过合适的工艺方法生产牙科正畸矫治器200。
这里,于牙颌数字化模型的颊面A2朝向舌面A3的方向上,加强部300的截面的外轮廓为矩形、梯形、弧形、三角形、多边形或“M”形。
这里,外轮廓是指单个凸嵴10的外轮廓,“M”形是指外轮廓存在一个或多个凹陷,至于凹陷的程度不作限定。
结合图18至图20,步骤S302具体包括:
判断参考值T(或参考值T’)与第五阈值T5的大小;
若不小于,则根据加强部300的结构信息于加强部添加位置E1处形成加强部300,并根据牙颌数字化模型100及加强部300生成带有空腔S的牙科正畸矫治器200,空腔S与加强部300相互匹配;
若小于,则根据牙颌数字化模型100及加强部300的结构信息生成带有实心凸嵴20的牙科正畸矫治器200,实心凸嵴20与加强部300相互匹配。
这里,当参考值T较大时,结合图18,可直接用空腔S作为空心的凸嵴20,空腔S足够用于增大牙科正畸矫治器200的局部强度,进而提高牙科正畸矫治器200抵抗弯曲的能力。
当参考值T较小时,结合图19及图20,需要通过实心凸嵴20来辅助增大牙科正畸矫治器200的局部强度,进而保证牙科正畸矫治器200具有足够强的抵抗弯曲的能力。
在一具体示例中,结合图19,步骤“根据牙颌数字化模型100及加强部300的结构信息生成带有实心凸嵴20的牙科正畸矫治器200”具体包括:
根据加强部300的结构信息于加强部添加位置E1处形成加强部300;
根据牙颌数字化模型100及加强部300生成带有空腔S的矫治器本体201,空腔S与加强部300相互匹配,并于空腔S内设置填充部202而形成实心凸嵴20,实心凸嵴20与矫治器本体201配合形成牙科正畸矫治器200。
其中,步骤“于空腔S内设置填充部202而形成实心凸嵴20”具体包括:
根据添加的加强部300生成填充部202;
将填充部202固定于空腔S而形成实心凸嵴20。
也就是说,填充部202为预成型的填充部202,且填充部202靠近空腔S的外轮廓与空腔S的内壁相互匹配,填充部202及空腔S可配合形成实心凸嵴20。
当然,填充部202也通过填充及固化工艺直接成型于空腔S内。
在另一具体示例中,结合图20,步骤“根据牙颌数字化模型100及加强部300的结构信息生成带有实心凸嵴20的牙科正畸矫治器200”具体包括:
根据牙颌数字化模型100’生成矫治器本体201’,矫治器本体201’上设有指示加强部添加位置E1的标记位置E1’,并于标记位置E1’处设置实心凸嵴20’而得到牙科正畸矫治器200’。
其中,步骤“于标记位置E1’处设置实心凸嵴20’而得到牙科正畸矫治器200’”具体包括:
根据添加的加强部300’生成实心凸嵴20’;
将实心凸嵴20’固定于标记位置E1’处而得到牙科正畸矫治器200’。
也就是说,实心凸嵴20’为预成型的实心凸嵴20’,标记位置E1’位于矫治器本体201’的外表面,可直接将实心凸嵴20’固定于标记位置E1’而形成牙科正畸矫治器200’。
当然,实心凸嵴20’也可通过涂布及固化工艺直接成型于标记位置E1’处。
在本实施方式中,以最终成型的牙科正畸矫治器200为例,对应前述加强部添加位置的设计方法中的加强部添加位置E1的多种具体设计,凸嵴20(包括空腔S、实心凸嵴20、20’)也具有多种具体设计。
例如,凸嵴20对应待矫治牙齿的前牙区和/或后牙区设置,凸嵴20位于矫治器本体201的颊面A2、舌面A3或咬合面A1,凸嵴20对应待矫治牙齿的牙齿表面、邻牙间隙或空泡区的至少其中之一设置。
这里,“牙齿表面”是指每颗待矫治牙齿的靠近颊面的表面、靠近舌面的表面或咬合面,“邻 牙间隙”是指相邻的两颗待矫治牙齿之间的区域,“空泡区”是指拔牙区域或者是较大缝隙的区域,“至少其中之一”是指一个凸嵴20可同时覆盖待矫治牙齿的牙齿表面、邻牙间隙或空泡区中的一个或多个区域。
需要说明的是,邻牙间隙具体是指第一牙T1靠近第二牙T2的侧面,以及第二牙T2靠近第一牙T1的侧面,当第一牙T1与第二牙T2之间具有较大的缝隙时,邻牙间隙P不包括该缝隙,该缝隙可定义为空泡区。
凸嵴20可有多种延伸方向,例如,凸嵴20的延伸方向平行于近远中方向,或者,凸嵴20的延伸方向垂直于近远中方向,又或者,凸嵴20的延伸方向与近远中方向之间形成的夹角为锐角,且凸嵴20呈直线型或曲线型。
牙科正畸矫治器200可包括位于矫治器本体201的一个凸嵴20或多个凸嵴20。
当有多个凸嵴20时,多个凸嵴20间隔分布,或者,多个凸嵴20相互连接。
在本实施方式中,矫治器本体201围设形成腔体S’,通过在矫治器本体201上设置朝远离空腔S’的方向凸伸的凸嵴20,可提高整个牙科正畸矫治器200的相对于转动轴的惯性矩,该惯性矩可以提高牙科正畸矫治器200在朝远离空腔S’的方向上抵抗弯曲的能力,而远离空腔S’的方向是牙科正畸矫治器200摘取时主要的施力方向,即凸嵴20的设置可提高正畸矫治器200的局部刚度,进而避免牙科正畸矫治器200产生变形或断裂。
另外,本实施方式的牙科正畸矫治器200直接包括凸嵴20,患者直接佩戴牙科正畸矫治器200即可达到上述效果,使用方便,用户体验较佳。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (34)

  1. 一种加强部添加位置的设计方法,其特征在于,包括步骤:
    获取牙颌数字化模型;
    计算所述牙颌数字化模型表面目标区域相对于转动轴的惯性矩的参考值;
    判断所述参考值与第一阈值的大小,若小于,则记录所述目标区域的至少部分区域为加强部添加位置,若不小于,则不记录。
  2. 根据权利要求1所述的设计方法,其特征在于,步骤“计算所述牙颌数字化模型表面目标区域相对于转动轴的惯性矩的参考值”具体包括:
    于所述牙颌数字化模型表面选取目标线;
    将所述目标线N等分并获取N+1个目标点;
    获取经过所述目标点且垂直于所述目标线的N+1个目标截面;
    计算N+1个目标截面相对于转动轴的惯性矩的参考值,其中,N≥1。
  3. 根据权利要求2所述的设计方法,其特征在于,步骤“获取经过所述目标点且垂直于所述目标线的N+1个目标截面”具体包括:
    于所述牙颌数字化模型表面形成经过任一目标点且垂直于所述目标线的基准线,所述基准线具有第一宽度;
    将所述基准线朝远离所述牙颌数字化模型的方向偏移第一偏移量而得到终止线;
    连接所述基准线及所述终止线而得到垂直于所述目标线的目标截面;
    重复上述步骤而得到N+1个目标截面。
  4. 根据权利要求3所述的设计方法,其特征在于,所述第一宽度的范围为0.4mm-20mm,所述第一偏移量大于0.2mm,或者,所述第一偏移量等于0.2mm。
  5. 根据权利要求3所述的设计方法,其特征在于,步骤“计算N+1个目标截面相对于转动轴的惯性矩的参考值”具体包括:
    根据每一目标截面的所述第一宽度、所述第一偏移量以及第一高度计算所述目标截面相对于转动轴的惯性矩的参考值,其中,所述第一高度为纵截面上牙齿的咬合面朝向牙龈线的最大高度,所述纵截面经过对应的所述目标点且垂直于近远中方向。
  6. 根据权利要求3所述的设计方法,其特征在于,步骤“计算N+1个目标截面相对于转动轴的惯性矩的参考值”具体包括:
    根据每一目标截面上所有点的坐标计算所述目标截面相对于转动轴的惯性矩的参考值。
  7. 根据权利要求2所述的设计方法,其特征在于,步骤“判断所述参考值与第一阈值的大小,若小于,则记录所述目标区域的至少部分区域为加强部添加位置,若不小于,则不记录”具体包括:
    判断每一惯性矩的参考值与第一阈值的大小;
    若小于,则将对应的目标点定义为添加点,若不小于,则将对应的目标点定义为非添加点;
    将L个连续的添加点形成的区域定义为一个加强部添加位置而形成M个加强部添加位置,其中,L≥2,M≥1。
  8. 根据权利要求7所述的设计方法,其特征在于,步骤“将L个连续的添加点形成的区域定义为一个加强部添加位置而形成M个加强部添加位置”之后还包括:
    当M≥2时,选取相邻的第K个加强部添加位置及第K+1个加强部添加位置;
    计算第K个加强部添加位置及第K+1个加强部添加位置之间的间隔距离;
    判断所述间隔距离与第二阈值的大小;
    若小于,则连接第K个加强部添加位置及第K+1个加强部添加位置,若不小于,则保持第 K个加强部添加位置及第K+1个加强部添加位置相互断开,其中,K≥1。
  9. 根据权利要求7所述的设计方法,其特征在于,步骤“将L个连续的添加点形成的区域定义为一个加强部添加位置而形成M个加强部添加位置”之后还包括:
    当M≥2时,选取相邻的第K个加强部添加位置及第K+1个加强部添加位置;
    计算第K个加强部添加位置及第K+1个加强部添加位置之间的非添加点的数量;
    判断所述非添加点的数量与第三阈值的大小;
    若小于,则连接第K个加强部添加位置及第K+1个加强部添加位置,若不小于,则保持第K个加强部添加位置及第K+1个加强部添加位置相互断开,其中,K≥1。
  10. 根据权利要求1所述的设计方法,其特征在于,所述设计方法还包括步骤:
    遍历所述牙颌数字化模型表面的所有目标区域并记录所有的加强部添加位置。
  11. 根据权利要求1所述的设计方法,其特征在于,所述加强部添加位置的延伸方向平行于所述牙颌数字化模型的近远中方向、垂直于近远中方向或与近远中方向之间形成的夹角为锐角。
  12. 根据权利要求1所述的设计方法,其特征在于,所述加强部添加位置位于所述牙颌数字化模型的颊面、舌面或咬合面。
  13. 根据权利要求1所述的设计方法,其特征在于,所述加强部添加位置对应牙颌数字化模型的前牙区和/或后牙区设置。
  14. 根据权利要求1所述的设计方法,其特征在于,所述加强部添加位置对应牙颌数字化模型的牙齿表面、邻牙间隙或空泡区的至少其中之一设置。
  15. 根据权利要求1所述的设计方法,其特征在于,于所述加强部添加位置的延伸方向上,所述加强部添加位置具有第一长度,所述第一长度的范围为0.5mm-150mm。
  16. 根据权利要求1所述的设计方法,其特征在于,所述牙颌数字化模型包括多个加强部添加位置,多个加强部添加位置间隔分布或相互连接。
  17. 根据权利要求1所述的设计方法,其特征在于,所述加强部添加位置位于所述牙颌数字化模型的咬合面的邻牙间隙,所述邻牙间隙连接相邻的第一牙的第一咬合面及第二牙的第二咬合面,所述加强部添加位置于其延伸方向上包括靠近所述第一咬合面的第一端点及靠近所述第二咬合面的第二端点。
  18. 根据权利要求17所述的设计方法,其特征在于,颊面或舌面与牙龈之间形成牙龈线,于所述牙颌数字化模型的颊面朝向舌面的方向上,所述第一端点与牙龈线的对应区域之间具有第一最大间距,所述第二端点与牙龈线的对应区域之间具有第二最大间距,所述第一最大间距及所述第二最大间距的范围均为0.5mm-4mm。
  19. 根据权利要求17所述的设计方法,其特征在于,颊面或舌面与牙龈之间形成牙龈线,于穿过所述目标线且垂直于颊面朝向舌面的方向的截面上,所述第一咬合面包括靠近所述第二咬合面的第一最高点,所述第二咬合面包括靠近所述第一咬合面的第二最高点,所述第一最高点相较于所述第一端点远离牙龈线,所述第二最高点相较于所述第二端点远离牙龈线。
  20. 根据权利要求19所述的设计方法,其特征在于,于所述牙颌数字化模型的咬合面朝向牙龈线的方向上,所述第一最高点与牙龈线之间具有第一距离,所述第一端点与牙龈线之间具有第二距离,所述第二最高点与牙龈线之间具有第三距离,所述第二端点与牙龈线之间具有第四距离,所述第二距离与所述第一距离的比值不小于20%,所述第四距离与所述第三距离的比值不小于20%。
  21. 根据权利要求20所述的设计方法,其特征在于,所述第二距离与所述第一距离的比值不大于95%,所述第四距离与所述第三距离的比值不大于95%。
  22. 根据权利要求20所述的设计方法,其特征在于,所述第二距离为所述第一距离的40%-80%,所述第四距离为所述第三距离的40%-80%。
  23. 一种加强部添加位置的设计方法,其特征在于,包括步骤:
    获取牙颌数字化模型;
    获取位于所述牙颌数字化模型表面且经过邻牙间隙的目标区域;
    计算所述目标区域相对于转动轴的惯性矩以及邻牙之间的间距;
    计算函数f(x,y)的参考值,其中,x为惯性矩,y为邻牙间隙;
    判断所述参考值与第四阈值的大小,若小于,则记录所述目标区域为加强部添加位置,若不小于,则不记录。
  24. 根据权利要求23所述的设计方法,其特征在于,步骤“计算所述目标区域相对于转动轴的惯性矩”具体包括:
    于所述牙颌数字化模型表面选取目标线;
    将所述目标线N等分并获取N+1个目标点;
    获取经过所述目标点且垂直于所述目标线的N+1个目标截面;
    计算N+1个目标截面相对于转动轴的惯性矩,其中,N≥1。
  25. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,计算机程序被处理器执行时实现权利要求1-24中任意一项所述的加强部添加位置的设计方法中的步骤。
  26. 一种加强部的设计系统,其特征在于,设计系统包括存储器和处理器,存储器存储有可在处理器上运行的计算机程序,处理器执行计算机程序时,实现权利要求1-24中任意一项所述的加强部添加位置的设计方法中的步骤。
  27. 一种牙科正畸矫治器的成型方法,其特征在于,包括步骤:
    根据权利要求1-24中任意一项所述的加强部添加位置的设计方法获取加强部添加位置;
    根据加强部添加位置及加强部的结构信息生成牙科正畸矫治器。
  28. 根据权利要求27所述的成型方法,其特征在于,步骤“根据加强部添加位置及加强部的结构信息生成牙科正畸矫治器”具体包括:
    判断所述参考值与第五阈值的大小;
    若不小于,则根据加强部的结构信息于所述加强部添加位置处形成加强部,并根据牙颌数字化模型及加强部生成带有空腔的牙科正畸矫治器,所述空腔与所述加强部相互匹配;
    若小于,则根据牙颌数字化模型及加强部的结构信息生成带有实心凸嵴的牙科正畸矫治器,所述实心凸嵴与所述加强部相互匹配。
  29. 根据权利要求28所述的成型方法,其特征在于,步骤“根据牙颌数字化模型及加强部的结构信息生成带有实心凸嵴的牙科正畸矫治器”具体包括:
    根据加强部的结构信息于所述加强部添加位置处形成加强部;
    根据牙颌数字化模型及加强部生成带有空腔的矫治器本体,所述空腔与所述加强部相互匹配,并于所述空腔内设置填充部而形成实心凸嵴,所述实心凸嵴与所述矫治器本体配合形成牙科正畸矫治器。
  30. 根据权利要求29所述的成型方法,其特征在于,步骤“于所述空腔内设置填充部而形成实心凸嵴”具体包括:
    根据添加的加强部生成填充部;
    将所述填充部固定于所述空腔而形成实心凸嵴。
  31. 根据权利要求28所述的成型方法,其特征在于,步骤“根据牙颌数字化模型及加强部的结构信息生成带有实心凸嵴的牙科正畸矫治器”具体包括:
    根据牙颌数字化模型生成矫治器本体,所述矫治器本体上设有指示所述加强部添加位置的标记位置,并于所述标记位置处设置实心凸嵴而得到牙科正畸矫治器。
  32. 根据权利要求31所述的成型方法,其特征在于,步骤“于所述标记位置处设置实心凸嵴而得到牙科正畸矫治器”具体包括:
    根据添加的加强部生成实心凸嵴;
    将所述实心凸嵴固定于标记位置处而得到牙科正畸矫治器。
  33. 根据权利要求27所述的成型方法,其特征在于,所述结构信息包括加强部的尺寸、截面的外轮廓。
  34. 根据权利要求33所述的成型方法,其特征在于,远离所述牙颌数字化模型的方向上,所述加强部的截面的外轮廓为矩形、梯形、弧形、三角形、多边形或“M”形。
PCT/CN2022/138728 2021-12-13 2022-12-13 加强部添加位置的设计方法、成型方法及存储介质、系统 WO2023109822A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111521653.0A CN114305748A (zh) 2021-12-13 2021-12-13 加强部添加位置的设计方法、成型方法及存储介质、系统
CN202111521653.0 2021-12-13

Publications (1)

Publication Number Publication Date
WO2023109822A1 true WO2023109822A1 (zh) 2023-06-22

Family

ID=81051140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138728 WO2023109822A1 (zh) 2021-12-13 2022-12-13 加强部添加位置的设计方法、成型方法及存储介质、系统

Country Status (2)

Country Link
CN (1) CN114305748A (zh)
WO (1) WO2023109822A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114305748A (zh) * 2021-12-13 2022-04-12 无锡时代天使生物科技有限公司 加强部添加位置的设计方法、成型方法及存储介质、系统
CN114305749A (zh) * 2021-12-13 2022-04-12 无锡时代天使生物科技有限公司 带有凸嵴的牙科正畸矫治器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088925A (zh) * 2008-05-13 2011-06-08 矫正技术公司 牙科用具加强
WO2018195859A1 (zh) * 2017-04-27 2018-11-01 深圳爱美适科技有限公司 一种无托槽隐形牙齿矫治器及其制作方法
CN113164230A (zh) * 2018-09-27 2021-07-23 阿莱恩技术有限公司 对准器损坏的预测和缓解
CN114305748A (zh) * 2021-12-13 2022-04-12 无锡时代天使生物科技有限公司 加强部添加位置的设计方法、成型方法及存储介质、系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088925A (zh) * 2008-05-13 2011-06-08 矫正技术公司 牙科用具加强
WO2018195859A1 (zh) * 2017-04-27 2018-11-01 深圳爱美适科技有限公司 一种无托槽隐形牙齿矫治器及其制作方法
CN113164230A (zh) * 2018-09-27 2021-07-23 阿莱恩技术有限公司 对准器损坏的预测和缓解
CN114305748A (zh) * 2021-12-13 2022-04-12 无锡时代天使生物科技有限公司 加强部添加位置的设计方法、成型方法及存储介质、系统

Also Published As

Publication number Publication date
CN114305748A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2023109822A1 (zh) 加强部添加位置的设计方法、成型方法及存储介质、系统
US20220370172A1 (en) Systems for treatment planning with overcorrection
JP7051705B2 (ja) 歯の協調移動を促進する歯科矯正装置
US10595965B2 (en) Interproximal reduction planning
JP4184427B1 (ja) 歯科矯正治療用アライナー
US20160302889A1 (en) Individualized Jig for Orthodontic Braces, Assembly Formed by that Jig, a Base and a Bracket, and its Design Methods
EP2299926B1 (en) Method for making a transfer tray for orthodontic appliances
KR102537650B1 (ko) 치과 교정용 형상 기억 밴드
CN110164558B (zh) 一种牙齿模型参数化的方法
CN110101469B (zh) 一种变厚度的隐形矫治器的设计方法
US20170281314A1 (en) Method for prducing a positioning tray and the device therefor
JP2023511061A (ja) 矯正的歯配列形状の生成方法及び装置
CN110226978A (zh) 一种计算机辅助牙齿隐形矫治模型的生成方法
CN114972184B (zh) 一种基于权值比例法的正畸弓丝误差评价方法
CN113288470B (zh) 压力附件设计方法、矫治器成型方法、系统及存储介质
JP6899393B2 (ja) 歯科矯正用ブラケット及び歯科矯正用ブラケット製造方法
WO2023109821A1 (zh) 带有凸嵴的牙科正畸矫治器
KR101138066B1 (ko) 치아의 3차원 위치 결정 시스템, 그 방법 및 이들의 기록매체
CN114431981B (zh) 一种矫治器参数确定方法及矫治器参数确定装置
CN216675955U (zh) 带有扭转嵴的牙科正畸矫治器
WO2015063897A1 (ja) 舌側矯正用ブラケット
CN111588500B (zh) 一种正畸弓丝弯制顺序规划等角度划分角度确定方法
CN108670451B (zh) 牙齿邻接面修补方法、装置、用户终端及存储介质
WO2024141072A1 (zh) 导板组件及壳状牙科器械组件
CN116262074A (zh) 加强结构添加位置的设计、成型方法及存储介质、系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906567

Country of ref document: EP

Kind code of ref document: A1