WO2023109674A1 - 一种聚氨酯用生物基多元醇、包膜液及其包膜控释肥 - Google Patents

一种聚氨酯用生物基多元醇、包膜液及其包膜控释肥 Download PDF

Info

Publication number
WO2023109674A1
WO2023109674A1 PCT/CN2022/137924 CN2022137924W WO2023109674A1 WO 2023109674 A1 WO2023109674 A1 WO 2023109674A1 CN 2022137924 W CN2022137924 W CN 2022137924W WO 2023109674 A1 WO2023109674 A1 WO 2023109674A1
Authority
WO
WIPO (PCT)
Prior art keywords
bio
fertilizer
reaction
coating liquid
based polyol
Prior art date
Application number
PCT/CN2022/137924
Other languages
English (en)
French (fr)
Inventor
李丽霞
庞敏晖
刘东生
邹国元
赵同科
李鸿雁
董淑祺
梁丽娜
谷佳林
Original Assignee
北京市农林科学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京市农林科学院 filed Critical 北京市农林科学院
Publication of WO2023109674A1 publication Critical patent/WO2023109674A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G3/00Mixtures of one or more fertilisers with additives not having a specially fertilising activity
    • C05G3/40Mixtures of one or more fertilisers with additives not having a specially fertilising activity for affecting fertiliser dosage or release rate; for affecting solubility
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G5/00Fertilisers characterised by their form
    • C05G5/30Layered or coated, e.g. dust-preventing coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/36Hydroxylated esters of higher fatty acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/61Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H6/00Macromolecular compounds derived from lignin, e.g. tannins, humic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Definitions

  • the invention belongs to the field of polyurethane composite materials and controlled-release fertilizers, and in particular relates to a bio-based polyol and a preparation method thereof, a coating solution and a preparation method of coated controlled-release fertilizers.
  • Agricultural practice shows that chemical fertilizers contribute more than 40% to my country's grain production increase.
  • the chemical fertilizer industry is directly related to the country's food security and ecological environment protection.
  • the slow and controlled release fertilizer is coated with various polymer materials on the surface of the quick-acting fertilizer.
  • the surface film serves the purpose of quantitatively controlling nutrient release.
  • the nutrient release rate of the fertilizer can be synchronized with the nutrient absorption of the crop, thus greatly Improve fertilizer utilization, reduce labor costs and increase economic benefits, laying the foundation for the realization of precision fertilization technology and the promotion of sustainable agricultural development.
  • Patent US20120111077 discloses a method for preparing polyurethane-coated controlled-release fertilizer by directly reacting castor oil and isocyanate, or first cross-linking with oxygen or sulfur and then reacting.
  • Biomass is rich in hydroxyl groups, which can be transformed from solid matter to liquid bio-based polyols through catalytic liquefaction at low temperature and atmospheric pressure, which improves the activity of functional groups.
  • the amount of liquefaction agent is mostly more than 3 times of the amount of biomass, resulting in low biomass content in the liquefaction product, the highest is only 25%.
  • the liquefied product contains a large number of hydrophilic groups that are easy to absorb water, and the liquefied biomass product is not dehydrated, so the reaction between isocyanate and water will generate gas.
  • the resulting polyurethane coating contains micropores and poor nutrient release control, so the amount used to replace petroleum-based polyols is very limited.
  • Polyurethane nanocomposites are materials that have developed rapidly in recent years. Zhang Chaoqun et al. used nano-bentonite to modify soybean oil-based polyurethane membrane materials. When the amount of polyethylene glycol intercalation modified bentonite was 5%, the nutrient release period of the controlled-release fertilizer was 74 days. Although schools at home and abroad have done some research on bio-based polyurethane nanocomposite coated controlled-release fertilizers, the difficulty of dispersing nanoparticles in polyurethane nanocomposites has always been one of the key factors affecting the performance.
  • the technical problems to be solved by the invention are: firstly, to solve the problem of dispersion of nanoparticles in the polyurethane nanocomposite material; secondly, to increase the biomass content in the coating of the bio-based coating controlled-release fertilizer. Accordingly, the invention provides a bio-based polyol for polyurethane, a coating solution and a coated controlled-release fertilizer.
  • the bio-based polyol for polyurethane provided by the present invention is obtained by liquefying solid biomass; the bio-based polyol is an organic-inorganic nanocomposite.
  • multiple reactions will occur, mainly alcoholysis reaction, hydroxyalkylation reaction and repolymerization reaction.
  • the specific liquefaction mechanism is that under the action of catalyst, liquefaction agent and co-liquefaction agent, the macromolecules of solid biomass are depolymerized into liquid small molecular substances. These small molecular substances have good thermal fluidity and high reactivity, and react with each other or with solvents to form bio-based polyols.
  • the bio-based polyol can be specifically prepared according to a method comprising the following steps: adding biomass, liquefaction agent, co-liquefaction agent and acidic catalyst to the The reaction is carried out in a reaction kettle, and after the reaction is completed, it is cooled to below 100° C. in an ice-water bath to obtain a bio-based polyol.
  • the mass ratio of the biomass, liquefaction agent, co-liquefaction agent and acidic catalyst is 100:100-500:6-10:2-15; specifically, such as 100:290:10:8 or 100:100:8 :2 or 100:400:6:15 or 100:290:10:8 or 100:500:10:15.
  • the biomass is selected from at least one of corn starch, potato starch, wheat starch, sweet potato starch, mung bean starch, cellulose, lignin, corn straw, corncob, rice straw, wheat straw, peanut shell and cotton straw kind;
  • the liquefying agent is selected from any one of polyethylene glycol, ethylene glycol, ethylene carbonate, glycerin and diethylene glycol.
  • the relative molecular mass of the polyethylene glycol can specifically be 200-600, such as polyethylene glycol 200, polyethylene glycol 400;
  • the co-liquefaction agent is selected from at least one of cage polysilsesquioxane, nanocellulose, and hydroxyapatite; preferably, the co-liquefaction agent is selected from cage polysilsesquioxane; more Preferably, the cage polysilsesquioxane is selected from trisilanol cage polysilsesquioxane, such as trisilanol isobutyl cage polysilsesquioxane POSS-OH (purchased in the U.S. Hybrid Plastics, the brand is SO1450) and trisilanol phenyl cage polysilsesquioxane POSS-OH (purchased from Hybrid Plastics in the United States, the brand is SO1458);
  • trisilanol cage polysilsesquioxane such as trisilanol isobutyl cage polysilsesquioxane POSS-OH (purchased in the U.S. Hybrid Plastics, the brand is
  • the acidic catalyst is at least one selected from inorganic acids, organic acids and heteropolyacids.
  • the inorganic acid can be selected from sulfuric acid, sulfamic acid, hydrochloric acid, phosphoric acid; preferably, the inorganic acid is selected from sulfuric acid or sulfamic acid. More preferably, the inorganic acid is selected from sulfamic acid.
  • the organic acid can be benzenesulfonic acid; the heteropoly acid can be tungsten trioxide.
  • the reaction conditions of the reaction may be: react at 130-180°C (eg 130°C, 150°C) for 30-120min (eg 30min, 60min).
  • biomass corn starch
  • liquefaction agent polyethylene glycol 400
  • co-liquefaction agent trisilanol isobutyl cage polysequivalent
  • the mass ratio of siloxane POSS-OH) and acidic catalyst is 100:290:10:8;
  • biomass corn starch
  • liquefaction agent polyethylene glycol 200
  • co-liquefaction agent trisilanol isobutyl
  • the mass ratio of siloxane (POSS-OH) and acidic catalyst is 100:100:8:2;
  • biomass corn stalks
  • liquefaction agent polyethylene glycol 200
  • co-liquefaction agent trisilanol phenyl cage polysilsesquisil
  • the mass ratio of oxane POSS-OH) and acidic catalyst is 100:400:6:15;
  • biomass corn starch
  • liquefaction agent polyethylene glycol 600
  • co-liquefaction agent trisilanol phenyl cage polysilsesquisil
  • the mass ratio of oxane POSS-OH) and acidic catalyst is 100:290:10:8;
  • the amount of biomass corn stover
  • liquefaction agent polyethylene glycol 400
  • co-liquefaction agent hydroxyapatite
  • acid catalyst sulfuric acid
  • the invention also provides a coating fluid.
  • the raw material composition of the coating liquid includes: the above-mentioned bio-based polyol for polyurethane.
  • the raw material composition of the coating liquid includes: the bio-based polyol, the basic catalyst, other polyols and auxiliary agents.
  • the mass ratio of the bio-based polyol, basic catalyst, other polyols and additives in the coating solution may be 100:0.5-5:50-300:3-30.
  • the preparation method of the coating liquid comprises the following steps: after metering the polyurethane with bio-based polyols, basic catalysts, other polyols and auxiliary agents, stirring it in a mixing tank at 60-80°C to form a uniform coating liquid.
  • the basic catalyst is selected from triethylenediamine, ethylenediamine, triethylenediamine, triethylamine, triethanolamine, dimethylcyclohexylamine, dimethylhexadecylamine, dimethylethanolamine and At least one of tetramethyliminodipropylamine;
  • the auxiliary agent is selected from at least one of paraffin wax, microcrystalline wax, chlorinated paraffin, petroleum resin, ⁇ -olefin, polyethylene wax, EVA wax, asphalt and silicon wax;
  • the other polyols are selected from at least one of polyether polyols, polyester polyols, and vegetable oil polyols.
  • the polyether polyol can specifically be polyether triol, polyether diol, polyether tetraol;
  • the polyester polyol can specifically be phthalic anhydride polyester polyol, polycaprolactone diol, dimer polymer Ester diol, polycarbonate diol;
  • the vegetable oil polyol can specifically be castor oil, soybean oil polyol, palm oil polyol.
  • the raw material of coating liquid is made of bio-based polyol (starch-based polyol), basic catalyst (ethylenediamine), other polyol (polyether tetraol), auxiliary agent (paraffin wax) Composition according to the mass ratio of 100:0.8:100:5;
  • the raw material of coating fluid is made of bio-based polyol (starch-based polyol), basic catalyst (ethylenediamine), other polyol (castor oil), auxiliary agent (paraffin) according to the quality Ratio 100:0.8:200:10 composition;
  • the raw materials of the coating liquid are composed of bio-based polyols (straw-based polyols), basic catalysts (triethanolamine), other polyols (polyether tetraols), and auxiliary agents (paraffin wax) in sequence.
  • the mass ratio is 100:0.5:50:3;
  • the raw materials of the coating liquid are composed of bio-based polyols (straw-based polyols), basic catalysts (ethylenediamine), other polyols (castor oil), and auxiliary agents (chlorinated paraffin) It is composed according to the mass ratio of 100:5:50:3.
  • the invention also provides a coated controlled-release fertilizer.
  • the coated controlled-release fertilizer is composed of a core and a membrane shell; wherein, the core is a fertilizer particle, and the membrane shell is formed by the solvent-free in-situ reaction of the coating liquid and the curing agent to form a film,
  • the mass of the film shell is 2-8% of the mass of the coated controlled-release fertilizer.
  • the fertilizer granule can be a water-soluble elemental fertilizer or a compound fertilizer obtained by mixing at least two of the water-soluble elemental fertilizers.
  • the water-soluble elemental fertilizer can be selected from any one of the following: urea, ammonium sulfate, ammonium chloride, ammonium nitrate, monoammonium phosphate, diammonium phosphate, potassium chloride, potassium sulfate, potassium nitrate, magnesium sulfate , magnesium nitrate, zinc sulfate, copper sulfate and zinc chloride.
  • the average particle size of the fertilizer particles may be 2-6 mm.
  • the curing agent is selected from polymethylene polyphenyl polyisocyanate, toluene diisocyanate, hexamethylene diisocyanate, diphenylmethane diisocyanate (MDI), liquefied MDI, isofor At least one of ketone diisocyanate, 1,6-hexamethylene diisocyanate (HDI), trimer of HDI, trimethylhexamethylene diisocyanate, xylylene diisocyanate and dimethyl biphenyl diisocyanate A sort of.
  • the mass ratio of the coating liquid to the curing agent is 1:0.6-2, specifically 1:0.6, 1:0.68, 1:1, 1:1.11 or 1:1.56.
  • the preparation method of the coated controlled-release fertilizer comprises the following steps:
  • step 2) After mixing the coating solution and curing agent, atomizing it on the surface of the fertilizer particles obtained in step 1) to perform a solvent-free in-situ reaction to form a film to obtain the coated controlled-release fertilizer.
  • step 2) of the above method the reaction temperature of the solvent-free in-situ reaction is 50-70°C, specifically 60°C or 65°C; the reaction time is 3-6 minutes, specifically 3 minutes or 6 minutes.
  • the present invention has the following beneficial effects:
  • biomass content in bio-based polyols for polyurethanes exceeds 25%
  • the nanoparticles are uniformly dispersed in the polyurethane nanocomposite
  • the substitution rate of petroleum-based polyols in the bio-based coated controlled-release fertilizer coating can reach 100%.
  • Fig. 1 is a production flow chart of the bio-based polyol for polyurethane, coating solution and coated controlled-release fertilizer of the present invention.
  • Fig. 2 is the SEM/EDX figure of the membrane material after the starch-based polyol solidification that Fig. 1 prepares;
  • Fig. 3 is the nutrient release curve of the coated controlled-release fertilizer in each embodiment and comparative example.
  • the controlled-release performance of the coated controlled-release fertilizer was tested by water immersion. Weigh 10 g of coated fertilizer and place it in a 100-mesh nylon mesh bag. After sealing, put the bag into a plastic container filled with 250 mL of distilled water. After sealing, put it into a constant temperature incubator at 25°C. , 14, 21, 28, 35, 42, 49, 56, 63 and other days to take samples to determine the nutrient dissolution data. Nitrogen dissolution was determined by spectrophotometry.
  • Nutrient controlled-release period refers to the number of days required for the cumulative release rate of coated controlled-release fertilizer to reach 80% in 25°C water.
  • starch-based polyols 100g cornstarch, 290g polyethylene glycol 400, 10g trisilanol isobutyl cage polysilsesquioxane POSS-OH (purchased from Hybrid Plastics in the United States, brand SO1450), 8g Sulfuric acid, mixed evenly in a reaction kettle equipped with mechanical stirring and a condenser, reacted at 130°C for 30 minutes, and cooled to below about 100°C with an ice-water bath, that is, starch-based polyol. After the polyol was solidified into a film, the nanoparticles in the film were characterized by SEM-EDX. The results are shown in Figure 2, which confirmed the existence of POSS and the distribution was uniform.
  • Preparation of the coating solution Add 20 g of paraffin wax, 3.2 g of ethylenediamine and 400 g of polyether tetraol (purchased from Tianjin Petrochemical Co., Ltd., brand name TAE-470, hydroxyl value of 470) Stir in a mixing tank at 70°C to form a uniform coating solution.
  • Preparation of coated controlled-release fertilizer Weigh 1 kg of urea granules with a particle size of 2 to 4 mm, place it in a coating machine with a copying board, and preheat it to 60 ° C; mix 6.25 g of coating liquid with 4.25 g of multi-substance Methyl polyphenyl polyisocyanate was mixed and sprayed onto the rotating granular fertilizer at 60°C for solvent-free in-situ reaction, and kept for 3 minutes. The spraying process was carried out 5 times, and the coating rate was 5%. After the spraying is completed, the coated controlled-release fertilizer is input into the cooling equipment and cooled to below 50°C. Weigh and pack the cooled coated controlled-release fertilizer. The controlled-release performance was measured by water immersion method, the initial dissolution rate was 0.08%, and the controlled-release period was 180 days.
  • Preparation of the coating solution Add 12 g paraffin wax, 2.0 g triethanolamine and 200 g polyether tetraol (purchased from Tianjin Petrochemical, brand name TAE-470, hydroxyl value 470) to 400 g straw-based polyol. ) in a mixing tank at 80°C to form a uniform coating solution.
  • Preparation of coated controlled-release fertilizer Weigh 1 kg of urea granules with a particle size of 2 to 4 mm, place it in a coating machine with a copying plate, and preheat it to 65 ° C; mix and spray 4.3 g of coating liquid and 6.7 g of MDI Carry out solvent-free in-situ reaction on the rotating granular fertilizer at 65° C., keep warm for 3 minutes. The spraying process is carried out 8 times, and the coating rate is 8%. After the spraying is completed, the coated controlled-release fertilizer is input into the cooling equipment and cooled to below 50°C. Weigh and pack the cooled coated controlled-release fertilizer. The controlled-release performance was measured by water immersion method, the initial dissolution rate was 0.5%, and the controlled-release period was 270 days.
  • Preparation of coated controlled-release fertilizer Weigh 1 kg of urea granules with a particle size of 2 to 4 mm, place them in a coating machine with a copying board, and preheat to 65°C; mix 5 g of coating liquid with 5 g of polymethylene The polyphenyl polyisocyanate is mixed and sprayed onto the rotating granular fertilizer at 65°C for solvent-free in-situ reaction, and kept for 3 minutes. The spraying process is carried out twice, and the coating rate is 2%. After the spraying is completed, the coated controlled-release fertilizer is input into the cooling equipment and cooled to below 50°C. Weigh and pack the cooled coated controlled-release fertilizer. The controlled-release performance was measured by water immersion method, the initial dissolution rate was 0.8%, and the controlled-release period was 60 days.
  • Preparation of coating solution Add 15 g of additives chlorinated paraffin, 25 g of ethylenediamine, and 250 g of castor oil (purchased from Shanghai Aladdin, brand name C110663, hydroxyl value 163) to 500 g of straw-based polyol in a mixing tank for 70 Stir at °C to form a uniform coating solution.
  • Preparation of coated controlled-release fertilizer Weigh 1 kg of urea granules with a particle size of 2 to 4 mm, place it in a coating machine with a copying plate, and preheat it to 65 ° C; mix 4.5 g of coating liquid with 5 g of polymethylene The base polyphenyl polyisocyanate is mixed and sprayed onto the rotating granular fertilizer at 65°C for solvent-free in-situ reaction, and kept for 6 minutes. The spraying process is carried out 4 times, and the coating rate is 4%. After the spraying is completed, the coated controlled-release fertilizer is input into the cooling equipment and cooled to below 50°C. Weigh and pack the cooled coated controlled-release fertilizer. The controlled-release performance was measured by water immersion method, the initial dissolution rate was 0.1%, and the controlled-release period was 120 days.
  • Example 2 It is basically the same as Example 1, except that trisilanol isobutyl cage polysilsesquioxane POSS-OH is not added during the preparation of starch-based polyol.
  • the controlled-release performance was measured by water immersion method, the initial dissolution rate was 3.2%, and the controlled-release period was 30 days.
  • Example 2 It is basically the same as Example 1, except that the co-liquefaction agent added in the preparation process of starch-based polyol is glycerol.
  • the controlled-release performance was measured by water immersion method, the initial dissolution rate was 1.8%, and the controlled-release period was 45 days.
  • Biomass content in bio-based polyol for polyurethane of the invention exceeds 25 percent; nanometer particles are uniformly dispersed in polyurethane nanocomposite material; and the substitution rate of petroleum-based polyol in bio-based coating controlled-release fertilizer coating can reach 100%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Fertilizers (AREA)

Abstract

本发明公开了一种生物基多元醇、包膜液、包膜控释肥以及制备方法。所述生物基多元醇按照下述方法制备得到:将生物质、液化剂、共液化剂和酸性催化剂按照100:100~500:1~10:2~15的质量比加入到反应釜中进行反应,反应完毕后用冰水浴冷却至100℃以下,收集上清液,即得。所述包膜液,其原料组成包括:所述生物基多元醇、碱性催化剂、其他多元醇以及助剂。所述包膜控释肥由核芯和膜壳组成;其中,所述核芯为肥料颗粒,所述膜壳由所述包膜液和固化剂通过无溶剂原位反应成膜,所述膜壳质量为所述包膜控释肥质量的2~8%。

Description

一种聚氨酯用生物基多元醇、包膜液及其包膜控释肥 技术领域
本发明属于聚氨酯复合材料以及控释肥料领域,具体涉及一种生物基多元醇及制备方法、包膜液以及包膜控释肥的制备方法。
背景技术
农业实践表明,化肥对我国粮食增产的贡献率在40%以上。化肥行业作为重要的支农产业,直接关系到国家的粮食安全和生态环境保护。采用各种高分子材料在速效肥料外表进行包膜后的缓控释肥,表面薄膜起定量控制养分释放的目的,在实际应用中能实现肥料的养分释放速率与作物养分吸收相同步,从而大幅提高肥料利用率、降低劳动成本并增加经济效益,为精准施肥技术的实现、农业可持续发展的推动奠定基础。
包膜的构成与性质直接影响养分释放的模式和时间,因此,在包膜控释肥料的研制中,核心之一是包膜材料的筛选与优化。根据介质的不同,聚合物包膜材料可分为有机溶剂型、水型及无溶剂型等三种主要类型。近十年来,国内外越来越多的研究单位将重点放在无溶剂原位反应成膜上,即将小分子单体直接在肥料表面反应成膜制备包膜控释肥,设备简单且易实现连续化。聚氨酯是由多元醇和异氰酸酯反应制成的一种由软链段和硬链段组成的嵌段共聚物,无毒无味。通过调节两相的比例和组成,微观结构发生改变,可使材料宏观的特定性能得到提高。石化原料成本高,资源不可再生。生物基聚氨酯包膜由于其低成本、可再生、环境友好、资源节约等特性得到了迅速发展,植物油基尤其是蓖麻油基聚氨酯是一直以来的主导膜材,纤维基正在兴起,包膜的来源和种类更加丰富。专利US20120111077公开了一种将蓖麻油和异氰酸酯直接反应,或先与氧或硫发生交联后反应制备聚氨酯包膜控释肥的方法。拜耳公司的Markusch等人分别在专利US6364925B1和US6358296B1中描述了蓖麻油-聚醚多元醇基聚氨酯控释肥和油脂多元醇基聚氨酯控释肥。US9090517公开了一种以天然油的甲酯衍生物为原料的包膜肥料。CN201310017918.2、CN201510416904.7、CN201410230859.1等分别公开了淀粉、秸秆、废旧纸的液化产物与固化剂原位反应制备聚氨酯包膜或复合包膜控释肥,该类包膜在土壤中具有良好的降解性。
生物质中含有丰富的羟基,通过低温常压催化液化可将其从固态物质转变为液态生物基多元醇,提高了官能团的活性。为了使生物质液化反应充分,液化剂的用量多 数在生物质用量的3倍以上,导致液化产物中生物质含量较低,最高仅占25%。另外,液化产物中含有大量亲水基团易吸水,且生物质液化产物不经脱水处理,所以异氰酸酯与水反应会有气体生成。这样,生成的聚氨酯包膜含有微孔,养分控释性能差,因此取代石油基多元醇的用量非常有限。为了降低生产成本,提高聚氨酯材料的生物降解能力,需要增加参与液化反应的生物质组分的含量,同时增大取代石油基多元醇的用量。
聚氨酯纳米复合材料是近些年来发展较快的材料。张超群等采用纳米膨润土改性大豆油基聚氨酯膜材,聚乙二醇插层改性膨润土的添加量为5%时控释肥养分释放期为74天。虽然国内外学者已对生物基聚氨酯纳米复合包膜控释肥做了一定的研究,但是纳米粒子在聚氨酯纳米复合材料中分散难一直是影响性能的关键因素之一。
发明公开
本发明要解决的技术问题为:其一,解决纳米粒子在聚氨酯纳米复合材料中分散的问题;其二,提高生物基包膜控释肥包膜中生物质含量。据此,本发明提供了一种聚氨酯用生物基多元醇、包膜液及其包膜控释肥。
本发明所提供的聚氨酯用生物基多元醇,其由固体生物质液化得到;所述生物基多元醇为有机无机纳米复合物。所述生物基多元醇的合成过程中会发生多个反应,主要是醇解反应、羟烷基化反应和再聚合反应。具体液化机理为在催化剂、液化剂、共液化剂的作用下,固体生物质的大分子被解聚成液态小分子物质。这些小分子物质热流动性好,反应活性高,相互间或与溶剂发生反应,生成生物基多元醇。
所述生物基多元醇具体可按照包括下述步骤的方法制备得到:将生物质、液化剂、共液化剂和酸性催化剂按照100:100~500:1~10:2~15的质量比加入到反应釜中进行反应,反应完毕后用冰水浴冷却至100℃以下,即得到生物基多元醇。
进一步的,所述生物质、液化剂、共液化剂和酸性催化剂的质量比为100:100~500:6~10:2~15;具体如100:290:10:8或100:100:8:2或100:400:6:15或100:290:10:8或100:500:10:15。
其中,所述生物质选自玉米淀粉、土豆淀粉、小麦淀粉、红薯淀粉、绿豆淀粉、纤维素、木质素、玉米秸秆、玉米芯、稻草秸秆、小麦秸秆、花生壳和棉花秸秆中的至少一种;
所述液化剂选自聚乙二醇、乙二醇、碳酸乙烯酯、甘油和二甘醇中的任一种。所述聚乙二醇的相对分子质量具体可为200~600,如聚乙二醇200、聚乙二醇400;
所述共液化剂选自笼型聚倍半硅氧烷、纳米纤维素、羟基磷灰石中的至少一种;优选地,所述共液化剂选自笼型聚倍半硅氧烷;更优选地,所述笼型聚倍半硅氧烷选自三硅醇笼型聚倍半硅氧烷,如三硅醇基异丁基笼型聚倍半硅氧烷POSS-OH(购于美国Hybrid Plastics,牌号为SO1450)和三硅醇基苯基笼型聚倍半硅氧烷POSS-OH(购于美国Hybrid Plastics,牌号为SO1458);
所述酸性催化剂选自无机酸、有机酸和杂多酸中的至少一种。
所述无机酸可选自硫酸、氨基磺酸、盐酸、磷酸;优选地,所述无机酸选自硫酸或氨基磺酸。更优选地,所述无机酸选自氨基磺酸。所述有机酸可为苯磺酸;所述杂多酸可为三氧化钨。
所述反应的反应条件可为:在130~180℃(如130℃、150℃)下反应30~120min(如30min、60min)。
根据本发明的一个实施例,制备所述生物基多元醇时,生物质(玉米淀粉)、液化剂(聚乙二醇400)、共液化剂(三硅醇基异丁基笼型聚倍半硅氧烷POSS-OH)和酸性催化剂(硫酸)的质量比为100:290:10:8;
根据本发明的一个实施例,制备所述生物基多元醇时,生物质(玉米淀粉)、液化剂(聚乙二醇200)、共液化剂(三硅醇基异丁基笼型聚倍半硅氧烷POSS-OH)和酸性催化剂(氨基磺酸)的质量比为100:100:8:2;
根据本发明的一个实施例,制备所述生物基多元醇时,生物质(玉米秸秆)、液化剂(聚乙二醇200)、共液化剂(三硅醇基苯基笼型聚倍半硅氧烷POSS-OH)和酸性催化剂(硫酸)的质量比为100:400:6:15;
根据本发明的一个实施例,制备所述生物基多元醇时,生物质(玉米淀粉)、液化剂(聚乙二醇600)、共液化剂(三硅醇基苯基笼型聚倍半硅氧烷POSS-OH)和酸性催化剂(氨基磺酸)的质量比为100:290:10:8;
根据本发明的一个实施例,制备所述生物基多元醇时,生物质(玉米秸秆)、液化剂(聚乙二醇400)、共液化剂(羟基磷灰石)和酸性催化剂(硫酸)的质量比为100:500:10:15。
本发明还提供了一种包膜液。
所述包膜液,其原料组成包括:上述的聚氨酯用生物基多元醇。
进一步的,所述包膜液的原料组成包括:所述生物基多元醇、碱性催化剂、其他多元醇以及助剂。
更进一步的,所述包膜液中所述生物基多元醇、碱性催化剂、其他多元醇和助剂 的质量比可为100:0.5~5:50~300:3~30。
所述包膜液的制备方法,包括下述步骤:将所述聚氨酯用生物基多元醇、碱性催化剂、其他多元醇、助剂计量后在混合罐中60~80℃下搅拌成均一包膜液。
其中,所述碱性催化剂选自三乙烯二胺、乙二胺、三亚乙基二胺、三乙胺、三乙醇胺、二甲基环己胺、二甲基十六胺、二甲基乙醇胺和四甲基亚氨基二丙基胺中的至少一种;
所述助剂选自石蜡、微晶蜡、氯化石蜡、石油树脂、α-烯烃、聚乙烯蜡、EVA蜡、沥青和硅蜡中的至少一种;
所述其他多元醇选自聚醚多元醇、聚酯多元醇、植物油多元醇中的至少一种。
所述聚醚多元醇具体可为聚醚三醇、聚醚二醇、聚醚四醇;所述聚酯多元醇具体可为苯酐聚酯多元醇、聚己内酯二醇、二聚体聚酯二醇、聚碳酸酯二醇;所述植物油多元醇具体可为蓖麻油、大豆油多元醇、棕榈油多元醇。
根据本发明的一个实施例,包膜液的原料由生物基多元醇(淀粉基多元醇)、碱性催化剂(乙二胺)、其他多元醇(聚醚四醇)、助剂(石蜡)依次按照质量比100:0.8:100:5组成;
根据本发明的一个实施例,包膜液的原料由生物基多元醇(淀粉基多元醇)、碱性催化剂(乙二胺)、其他多元醇(蓖麻油)、助剂(石蜡)依次按照质量比100:0.8:200:10组成;
根据本发明的一个实施例,包膜液的原料由生物基多元醇(秸秆基多元醇)、碱性催化剂(三乙醇胺)、其他多元醇(聚醚四醇)、助剂(石蜡)依次按照质量比100:0.5:50:3组成;
根据本发明的一个实施例,包膜液的原料由生物基多元醇(淀粉基多元醇)、碱性催化剂(乙二胺)、其他多元醇(聚醚四醇)、助剂(微晶蜡)依次按照质量比100:0.5:300:30组成;
根据本发明的一个实施例,包膜液的原料由生物基多元醇(秸秆基多元醇)、碱性催化剂(乙二胺)、其他多元醇(蓖麻油)、助剂(氯化石蜡)依次按照质量比100:5:50:3组成。
本发明还提供了一种包膜控释肥。
所述包膜控释肥,由核芯和膜壳组成;其中,所述核芯为肥料颗粒,所述膜壳由所述包膜液和固化剂通过无溶剂原位反应成膜而成,所述膜壳质量为所述包膜控释肥质量的2~8%。
上述包膜控释肥中,所述肥料颗粒可为水溶性单质肥料或由所述水溶性单质肥料中的至少两种混合得到的复混肥。其中,所述水溶性单质肥料具体可选自下述任意一种:尿素、硫酸铵、氯化铵、硝酸铵、磷酸一铵、磷酸二铵、氯化钾、硫酸钾、硝酸钾、硫酸镁、硝酸镁、硫酸锌、硫酸铜和氯化锌。
上述包膜控释肥中,所述肥料颗粒的平均粒径可为2~6mm。
上述包膜控释肥中,所述固化剂选自多亚甲基多苯基多异氰酸酯、甲苯二异氰酸酯、六亚甲基二异氰酸酯、二苯基甲烷二异氰酸酯(MDI)、液化MDI、异佛尔酮二异氰酸酯、1,6-己二异氰酸酯(HDI)、HDI的三聚体、三甲基六亚甲基二异氰酸酯、苯二亚甲基二异氰酸酯和二甲基联苯二异氰酸酯中的至少一种。
上述包膜控释肥中,所述包膜液和所述固化剂的质量比为1:0.6~2,具体如1:0.6、1:0.68、1:1、1:1.11或1:1.56。
所述包膜控释肥的制备方法,包括下述步骤:
1)将肥料颗粒预热;
2)将所述包膜液和固化剂混合后雾化于步骤1)所得肥料颗粒表面进行无溶剂原位反应成膜,得到所述包膜控释肥。
上述方法步骤1)中,所述预热的装置为带有抄板的包膜机;所述预热的温度为50~70℃。
上述方法步骤2)中,所述无溶剂原位反应的反应温度为50~70℃,具体可为60℃或65℃;反应时间为3~6分钟,具体可为3分钟或6分钟。
与现有技术相比,本发明具有如下有益效果:
第一,聚氨酯用生物基多元醇中生物质含量超过了25%;
第二,纳米粒子在聚氨酯纳米复合材料中分散均匀;
第三,生物基包膜控释肥包膜中石油基多元醇的替代率可达到100%。
附图说明
图1为本发明的聚氨酯用生物基多元醇、包膜液及其包膜控释肥生产流程图。
图2为实施例1制备的淀粉基多元醇固化后的膜材的SEM/EDX图;
图3为各实施例及对照例中包膜控释肥的养分释放曲线。
图1中标记如下:
1将生物质、液化剂、共液化剂、酸性催化剂加入反应釜反应制备生物基多元醇,反应温度130~180℃,收集上清液,即为生物基多元醇;2将生物基多元醇、碱性催 化剂、其他多元醇、助剂计量后在混合罐中搅拌成均一包膜液,混合温度60~80℃;3将颗粒肥料输入带有抄板的包膜机中,预热温度为50~70℃;4将包膜液、固化剂计量后混合喷涂到转动的颗粒肥料上进行无溶剂原位反应制得包膜控释肥;5将包膜控释肥输入冷却设备中,将其冷却至50℃以下;6将冷却后的包膜控释肥称量、包装。
实施发明的最佳方式
下面结合具体实施例对本发明作进一步阐述,但本发明并不限于以下实施例。所述方法如无特别说明均为常规方法。所述原材料如无特别说明均能从公开商业途径获得。
包膜控释肥控释性能的测试采用水浸泡法。称取10g包膜肥料置于100目的尼龙网袋中,封口后将袋置入盛有250mL蒸馏水中的塑料容器中,密封后,放入25℃恒温培养箱中,分别于1、3、7、14、21、28、35、42、49、56、63等天取样测定养分溶出数据。氮溶出采用分光光度法测定。
养分控释期指包膜控释肥在25℃水中累积释放率达80%所需的天数。
初期溶出率(%)=第一天累积溶出的养分量/试样中该养分的含量×100%。
实施例1、
淀粉基多元醇的制备:将100g玉米淀粉、290g聚乙二醇400、10g三硅醇基异丁基笼型聚倍半硅氧烷POSS-OH(购于美国Hybrid Plastics,牌号SO1450)、8g硫酸,在装有机械搅拌和冷凝管的反应釜中混合均匀,在130℃下反应30min,用冰水浴冷却至约100℃以下,即为淀粉基多元醇。将该多元醇固化成膜后用SEM-EDX表征膜材中纳米粒子,结果如图2所示,证实了POSS的存在,且分布均匀。
包膜液的制备:向400g淀粉基多元醇中加入20g助剂熔点为60℃的石蜡、3.2g乙二胺和400g聚醚四醇(购于天津石化,牌号为TAE-470,羟值为470)在混合罐中70℃下搅拌成均一包膜液。
包膜控释肥的制备:称取1kg粒径为2~4mm的尿素颗粒,置于带有抄板的包膜机中,预热至65℃;将4.17g包膜液与4.17g多亚甲基多苯基多异氰酸酯混合喷涂到转动的65℃的颗粒肥料上进行无溶剂原位反应,保温3分钟,该喷涂过程进行3次,包膜率为2.5%。喷涂完成后,将包膜控释肥输入冷却设备中,冷却至50℃以下。将冷却后的包膜控释肥称量、包装。采用水浸泡法测定其控释性能,初期溶出率为0.1%,控释期为90天。
实施例2、
淀粉基多元醇的制备:将100g玉米淀粉、100g聚乙二醇200、8g三硅醇基异丁基笼型聚倍半硅氧烷POSS-OH(购于美国Hybrid Plastics,牌号SO1450)、2g氨基磺酸,在装有机械搅拌和冷凝管的反应釜中混合均匀,在150℃下反应60min,用冰水浴冷却至约100℃以下,即为淀粉基多元醇。
包膜液的制备:向200g淀粉基多元醇中加入20g助剂熔点为60℃的石蜡、1.6g乙二胺和400g蓖麻油(购于上海阿拉丁,牌号为C110663,羟值为163)在混合罐中60℃下搅拌成均一包膜液。
包膜控释肥的制备:称取1kg粒径为2~4mm的尿素颗粒,置于带有抄板的包膜机中,预热至60℃;将6.25g包膜液与4.25g多亚甲基多苯基多异氰酸酯混合喷涂到转动的60℃的颗粒肥料上进行无溶剂原位反应,保温3分钟,该喷涂过程进行5次,包膜率为5%。喷涂完成后,将包膜控释肥输入冷却设备中,冷却至50℃以下。将冷却后的包膜控释肥称量、包装。采用水浸泡法测定其控释性能,初期溶出率为0.08%,控释期为180天。
实施例3、
秸秆基多元醇的制备:将100g玉米秸秆、400g聚乙二醇200、6g三硅醇基苯基笼型聚倍半硅氧烷POSS-OH(购于美国Hybrid Plastics,牌号SO1458)、15g硫酸,在装有机械搅拌和冷凝管的反应釜中混合均匀,在180℃下反应90min,用冰水浴冷却至约100℃以下。收集上清液,即为秸秆基多元醇。
包膜液的制备:向400g秸秆基多元醇中加入12g助剂熔点为60℃的石蜡、2.0g三乙醇胺和200g聚醚四醇(购于天津石化,牌号为TAE-470,羟值为470)在混合罐中80℃下搅拌成均一包膜液。
包膜控释肥的制备:称取1kg粒径为2~4mm的尿素颗粒,置于带有抄板的包膜机中,预热至65℃;将4.3g包膜液与6.7gMDI混合喷涂到转动的65℃的颗粒肥料上进行无溶剂原位反应,保温3分钟,该喷涂过程进行8次,包膜率为8%。喷涂完成后,将包膜控释肥输入冷却设备中,冷却至50℃以下。将冷却后的包膜控释肥称量、包装。采用水浸泡法测定其控释性能,初期溶出率为0.5%,控释期为270天。
实施例4、
淀粉基多元醇的制备:将100g玉米淀粉、290g聚乙二醇600、10g三硅醇基苯基 笼型聚倍半硅氧烷POSS-OH(购于美国Hybrid Plastics,牌号SO1458)、8g氨基磺酸,在装有机械搅拌和冷凝管的反应釜中混合均匀,在150℃下反应40min,用冰水浴冷却至约100℃以下,即为淀粉基多元醇。
包膜液的制备:向400g淀粉基多元醇中加入120g助剂微晶蜡、2g乙二胺和1200g聚醚四醇(购于天津石化,牌号为TAE-470,羟值为470)在混合罐中70℃下搅拌成均一包膜液。
包膜控释肥的制备:称取1kg粒径为2~4mm的尿素颗粒,置于带有抄板的包膜机中,预热至65℃;将5g包膜液与5g多亚甲基多苯基多异氰酸酯混合喷涂到转动的65℃的颗粒肥料上进行无溶剂原位反应,保温3分钟,该喷涂过程进行2次,包膜率为2%。喷涂完成后,将包膜控释肥输入冷却设备中,冷却至50℃以下。将冷却后的包膜控释肥称量、包装。采用水浸泡法测定其控释性能,初期溶出率为0.8%,控释期为60天。
实施例5、
秸秆基多元醇的制备:将100g玉米秸秆、500g聚乙二醇400、10g羟基磷灰石(购于上海阿拉丁,牌号H106378)、15g硫酸,在装有机械搅拌和冷凝管的反应釜中混合均匀,在150℃下反应120min,用冰水浴冷却至约100℃以下。收集上清液,即为秸秆基多元醇。
包膜液的制备:向500g秸秆基多元醇中加入15g助剂氯化石蜡、25g乙二胺和250g蓖麻油(购于上海阿拉丁,牌号为C110663,羟值为163)在混合罐中70℃下搅拌成均一包膜液。
包膜控释肥的制备:称取1kg粒径为2~4mm的尿素颗粒,置于带有抄板的包膜机中,预热至65℃;将4.5g包膜液与5g多亚甲基多苯基多异氰酸酯混合喷涂到转动的65℃的颗粒肥料上进行无溶剂原位反应,保温6分钟,该喷涂过程进行4次,包膜率为4%。喷涂完成后,将包膜控释肥输入冷却设备中,冷却至50℃以下。将冷却后的包膜控释肥称量、包装。采用水浸泡法测定其控释性能,初期溶出率为0.1%,控释期为120天。
对照例1、
与实施例1基本相同,不同之处为淀粉基多元醇制备过程中不添加三硅醇基异丁基笼型聚倍半硅氧烷POSS-OH。采用水浸泡法测定其控释性能,初期溶出率为3.2%, 控释期为30天。
对照例2、
与实施例1基本相同,不同之处为淀粉基多元醇制备过程中添加的共液化剂为丙三醇。采用水浸泡法测定其控释性能,初期溶出率为1.8%,控释期为45天。
工业应用
本发明聚氨酯用生物基多元醇中生物质含量超过了25%;纳米粒子在聚氨酯纳米复合材料中分散均匀;生物基包膜控释肥包膜中石油基多元醇的替代率可达到100%。

Claims (12)

  1. 一种生物基多元醇的制备方法,包括下述步骤:将生物质、液化剂、共液化剂和酸性催化剂按照100:100~500:1~10:2~15的质量比加入到反应釜中进行反应,反应完毕后用冰水浴冷却至100℃以下,即得到所述生物基多元醇;所述生物基多元醇为有机无机纳米复合物。
  2. 根据权利要求1所述的制备方法,其特征在于:
    所述生物质选自玉米淀粉、土豆淀粉、小麦淀粉、红薯淀粉、绿豆淀粉、纤维素、木质素、玉米秸秆、玉米芯、稻草秸秆、小麦秸秆、花生壳和棉花秸秆中的至少一种;
    所述液化剂选自聚乙二醇、乙二醇、碳酸乙烯酯、甘油和二甘醇中的任一种;
    所述共液化剂选自笼型聚倍半硅氧烷、纳米纤维素、羟基磷灰石中的至少一种;优选自笼型聚倍半硅氧烷,更优选为三硅醇笼型聚倍半硅氧烷;
    所述酸性催化剂选自无机酸、有机酸和杂多酸中的至少一种;
    所述反应的反应条件为:在130~180℃下反应30~120min。
  3. 根据权利要求2所述的制备方法,其特征在于:所述聚乙二醇的相对分子质量为200~600;
    所述共液化剂选自笼型聚倍半硅氧烷,优选为三硅醇笼型聚倍半硅氧烷。
  4. 权利要求1-3中任一项所述的制备方法制备得到的生物基多元醇。
  5. 一种包膜液,其原料组成包括:权利要求4所述的生物基多元醇。
  6. 根据权利要求5所述的包膜液,其特征在于:所述包膜液的原料组成包括:权利要求4所述生物基多元醇、碱性催化剂、其他多元醇以及助剂;
    其中,所述生物基多元醇、碱性催化剂、其他多元醇和助剂的质量比为100:0.5~5:50~300:3~30。
  7. 根据权利要求6所述的包膜液,其特征在于:
    所述碱性催化剂选自三乙烯二胺、乙二胺、三亚乙基二胺、三乙胺、三乙醇胺、二甲基环己胺、二甲基十六胺、二甲基乙醇胺和四甲基亚氨基二丙基胺中的至少一种;
    所述其他多元醇选自聚醚多元醇、聚酯多元醇、植物油多元醇中的至少一种;
    所述助剂选自石蜡、微晶蜡、氯化石蜡、石油树脂、α-烯烃、聚乙烯蜡、EVA蜡、沥青和硅蜡中的至少一种。
  8. 权利要求5-7中任一项所述的包膜液的制备方法,包括下述步骤:将所述聚氨酯用生物基多元醇、碱性催化剂、其他多元醇、助剂计量后在混合罐中60~80℃下搅拌成均一包膜液。
  9. 一种包膜控释肥,由核芯和膜壳组成;其特征在于:所述核芯为肥料颗粒,所述膜壳由权利要求5-7中任一项所述的包膜液和固化剂通过无溶剂原位反应成膜而成,所述膜壳质量为所述包膜控释肥质量的2~8%。
  10. 根据权利要求9所述的包膜控释肥,其特征在于:所述包膜液和所述固化剂的质量比为1:0.6~2;
    所述肥料颗粒为水溶性单质肥料或由所述水溶性单质肥料中的至少两种混合得到的复混肥;其中,所述水溶性单质肥料具体选自尿素、硫酸铵、氯化铵、硝酸铵、磷酸一铵、磷酸二铵、氯化钾、硫酸钾、硝酸钾、硫酸镁、硝酸镁、硫酸锌、硫酸铜和氯化锌中至少一种;
    所述肥料颗粒的平均粒径为2~6mm;
    所述固化剂选自多亚甲基多苯基多异氰酸酯、甲苯二异氰酸酯、六亚甲基二异氰酸酯、二苯基甲烷二异氰酸酯、液化MDI、异佛尔酮二异氰酸酯、1,6-己二异氰酸酯、HDI的三聚体、三甲基六亚甲基二异氰酸酯,苯二亚甲基二异氰酸酯和二甲基联苯二异氰酸酯中的至少一种。
  11. 权利要求9或10所述包膜控释肥的制备方法,包括下述步骤:
    1)将肥料颗粒预热;
    2)将所述包膜液和固化剂混合后雾化于步骤1)所得肥料颗粒表面进行无溶剂原位反应成膜,得到所述包膜控释肥。
  12. 根据权利要求11所述的制备方法,其特征在于:
    所述步骤1)预热步骤中,预热温度为50~70℃;
    所述步骤2)中,所述包膜液和所述固化剂的质量比为1:0.6~2。
    所述步骤2)中,所述无溶剂原位反应的反应温度为50~70℃,反应时间为3~6分钟。
PCT/CN2022/137924 2021-12-13 2022-12-09 一种聚氨酯用生物基多元醇、包膜液及其包膜控释肥 WO2023109674A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111515600.8A CN115873200A (zh) 2021-12-13 2021-12-13 一种聚氨酯用生物基多元醇、包膜液及其包膜控释肥
CN202111515600.8 2021-12-13

Publications (1)

Publication Number Publication Date
WO2023109674A1 true WO2023109674A1 (zh) 2023-06-22

Family

ID=85756853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137924 WO2023109674A1 (zh) 2021-12-13 2022-12-09 一种聚氨酯用生物基多元醇、包膜液及其包膜控释肥

Country Status (2)

Country Link
CN (1) CN115873200A (zh)
WO (1) WO2023109674A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116715560A (zh) * 2023-08-10 2023-09-08 吉林隆源农业服务有限公司 控释肥料的智能化制备方法及其系统
CN117659349A (zh) * 2023-12-14 2024-03-08 广东华博润材料科技有限公司 一种生物基湿气硬化型聚氨酯及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105646090A (zh) * 2016-03-04 2016-06-08 山东农业大学 农业有机废弃物改性为可降解膜的控释肥料及其制备方法
CN107266689A (zh) * 2017-08-03 2017-10-20 福州大学 一种生物质多元醇及其制备方法
CN108516899A (zh) * 2018-06-25 2018-09-11 山东农业大学 一种基于生物基粘结剂的功能型缓控释肥核芯及其制备方法
CN110590449A (zh) * 2019-09-30 2019-12-20 北京市农林科学院 淀粉基聚合物包膜控释肥及其制备方法
CN113004105A (zh) * 2021-02-18 2021-06-22 沈阳农业大学 仿生型生物基包膜肥料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105646090A (zh) * 2016-03-04 2016-06-08 山东农业大学 农业有机废弃物改性为可降解膜的控释肥料及其制备方法
CN107266689A (zh) * 2017-08-03 2017-10-20 福州大学 一种生物质多元醇及其制备方法
CN108516899A (zh) * 2018-06-25 2018-09-11 山东农业大学 一种基于生物基粘结剂的功能型缓控释肥核芯及其制备方法
CN110590449A (zh) * 2019-09-30 2019-12-20 北京市农林科学院 淀粉基聚合物包膜控释肥及其制备方法
CN113004105A (zh) * 2021-02-18 2021-06-22 沈阳农业大学 仿生型生物基包膜肥料及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116715560A (zh) * 2023-08-10 2023-09-08 吉林隆源农业服务有限公司 控释肥料的智能化制备方法及其系统
CN116715560B (zh) * 2023-08-10 2023-11-14 吉林隆源农业服务有限公司 控释肥料的智能化制备方法及其系统
CN117659349A (zh) * 2023-12-14 2024-03-08 广东华博润材料科技有限公司 一种生物基湿气硬化型聚氨酯及其制备方法和应用

Also Published As

Publication number Publication date
CN115873200A (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
WO2023109674A1 (zh) 一种聚氨酯用生物基多元醇、包膜液及其包膜控释肥
CN101323545B (zh) 可降解型聚合物包膜控释肥料及其制备方法与专用包膜材料
CN108586060B (zh) 一种以聚烯烃蜡为底涂层的功能型复合包膜控释肥及其生产方法
CN102295491B (zh) 天然高分子改性的包膜控释肥料及其制备方法
Naz et al. Attributes of natural and synthetic materials pertaining to slow-release urea coating industry
CN100369871C (zh) 一种肥料的包膜组合物与使用这种组合物生产包膜肥料的方法与所得到的包膜肥料
CA2277513C (en) Symmetrical polyurea-urethane fertilizer encapsulation
CA2275887C (en) A process for the production of polyurea encapsulated fertilizer particles and the encapsulated fertilizer particles produced by this process
CN102320883B (zh) 聚氨酯/环氧树脂复合材料包膜控释肥料及其制备方法
CA2272480C (en) Granular coated fertilizer and method for producing the same
CN113105604B (zh) 一种生物基聚合物包膜材料及其包膜控释肥及其制备方法
CN113200766A (zh) 含预聚体的生物基聚氨酯包膜控释肥料及其制备方法
CN106800472B (zh) 一种复合改性聚氨酯包膜液、控释肥料及其制备方法
CN106045674A (zh) 基于改性蓖麻油包衣材料的制备及在控释肥中的应用
An et al. The dual mechanisms of composite biochar and biofilm towards sustainable nutrient release control of phosphate fertilizer: effect on phosphorus utilization and crop growth
CN110590449B (zh) 淀粉基聚合物包膜控释肥及其制备方法
CN105859398A (zh) 一种生物质基聚合物包膜控释肥料及其生产方法
CN106588359A (zh) 一种动物油基聚氨酯包膜控释肥及其制备方法
CN108558515A (zh) 一种纳米材料改性地沟油包膜控释肥及其制备方法
CN105418884A (zh) 缓控释肥包膜用聚氨酯组合聚醚及其制备方法和应用
CN113264805A (zh) 一种纤维素改性聚氨酯包膜肥料及其制备方法和应用
CN104355824B (zh) 一种包膜控释肥料及其生产方法
CN112358355A (zh) 一种肥料用纳米复合包膜液、包膜控释肥及其制备方法
US20220153654A1 (en) Polyester polyol with high biomass ratio for polyurethane controlled-release fertilizer envelope, preparation method thereof and envelope
CN103964970B (zh) 一种废旧纸改性包膜控释肥料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906422

Country of ref document: EP

Kind code of ref document: A1