WO2023109621A1 - 定焦镜头 - Google Patents

定焦镜头 Download PDF

Info

Publication number
WO2023109621A1
WO2023109621A1 PCT/CN2022/137393 CN2022137393W WO2023109621A1 WO 2023109621 A1 WO2023109621 A1 WO 2023109621A1 CN 2022137393 W CN2022137393 W CN 2022137393W WO 2023109621 A1 WO2023109621 A1 WO 2023109621A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
fixed
focus
image
plane
Prior art date
Application number
PCT/CN2022/137393
Other languages
English (en)
French (fr)
Inventor
李泽民
张占军
封文轩
张登全
Original Assignee
东莞市宇瞳光学科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞市宇瞳光学科技股份有限公司 filed Critical 东莞市宇瞳光学科技股份有限公司
Publication of WO2023109621A1 publication Critical patent/WO2023109621A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces

Definitions

  • the embodiments of the present application relate to the technical field of optical devices, for example, to a fixed-focus lens.
  • the fifth generation mobile communication technology (5th Generation Mobile Communication Technology, 5G) ultra-high transmission rate, low network delay, and greater communication capacity have a great impact on the video communication industry.
  • 5G Fifth Generation Mobile Communication Technology
  • the angle of the lens used in the current video is relatively small (usually Diagonal Field of View (DFOV) ⁇ 100°), and the total optical length of the lens is relatively large (Generally greater than 22mm), resulting in a large lens size, which does not take advantage of the promotion and use of the product.
  • DFOV Diagonal Field of View
  • An embodiment of the present application provides a fixed-focus lens.
  • the embodiment of the present application discloses a fixed-focus lens, including a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens arranged in sequence along the optical axis from the object plane to the image plane;
  • the first lens is a negative power lens
  • the second lens is a negative power lens
  • the third lens is a positive power lens
  • the fourth lens is a positive power lens
  • the fifth lens is a negative power lens
  • the sixth lens is a positive power lens.
  • the lens is a positive power lens
  • the first lens, the second lens, the fourth lens and the fifth lens are respectively plastic aspherical lenses;
  • the third lens is a glass spherical lens or a plastic aspherical lens;
  • the sixth lens is a glass spherical lens or a plastic aspheric lens.
  • FIG. 1 is a schematic structural view of a fixed-focus lens provided in Embodiment 1 of the present application;
  • Fig. 2 is a spherical aberration curve diagram of the fixed-focus lens in Embodiment 1 of the present application;
  • FIG. 3 is a field curvature graph of a fixed-focus lens in Embodiment 1 of the present application.
  • FIG. 4 is a distortion curve diagram of a fixed-focus lens in Embodiment 1 of the present application.
  • FIG. 5 is a schematic structural diagram of a fixed-focus lens provided in Embodiment 2 of the present application.
  • FIG. 6 is a graph of spherical aberration of the fixed-focus lens in Embodiment 2 of the present application.
  • FIG. 7 is a field curvature graph of the fixed-focus lens in Embodiment 2 of the present application.
  • FIG. 8 is a distortion curve diagram of a fixed-focus lens in Embodiment 2 of the present application.
  • FIG. 9 is a schematic structural diagram of a fixed-focus lens provided in Embodiment 3 of the present application.
  • FIG. 10 is a graph of spherical aberration of the fixed-focus lens in Embodiment 3 of the present application.
  • FIG. 11 is a field curvature graph of the fixed-focus lens in Embodiment 3 of the present application.
  • FIG. 12 is a distortion curve diagram of the fixed-focus lens in Embodiment 3 of the present application.
  • Fig. 1 is a schematic structural diagram of a fixed-focus lens provided in Embodiment 1 of the present application.
  • the fixed-focus lens provided in Embodiment 1 of the present application includes the first One lens 110, the second lens 120, the third lens 130, the fourth lens 140, the fifth lens 150 and the sixth lens 160;
  • the first lens 110 is a negative power lens
  • the second lens 120 is a negative power lens
  • the third lens 130 is a positive power lens
  • the fourth lens 140 is a positive power lens
  • the fifth lens 150 is a negative power lens
  • the sixth lens 160 is a positive power lens;
  • the first lens 110, the second lens 120 , the fourth lens 140 and the fifth lens 150 are plastic aspheric lenses;
  • the third lens 130 is a glass spherical lens or a plastic aspheric lens;
  • the sixth lens 160 is a glass spherical lens or a plastic aspheric lens.
  • the focal power is equal to the difference between the image beam convergence degree and the object beam convergence degree, which characterizes the ability of the optical system to deflect light.
  • the focal power is positive, the refraction of light is converging; when the focal power is negative, the refraction of light is divergent.
  • Optical power can be applied to characterize a certain refraction surface of a lens (that is, a surface of the lens), can be applied to characterize a certain lens, and can also be used to characterize a system formed by multiple lenses (that is, a lens group).
  • each lens can be fixed in a lens barrel (not shown in FIG.
  • the incident angle of light in the optical system can be controlled;
  • the second lens 120 is a negative power lens, which is mainly used to correct curvature of field;
  • the third lens 130 is a positive power lens, which is mainly used to correct spherical aberration;
  • the fourth lens 140 the fifth
  • the lens 150 is a lens with a positive refractive power and a lens with a negative refractive power, which are mainly used to balance high and low temperatures;
  • the sixth lens 160 is a lens with a positive refractive power, which is mainly used to correct residual aberrations.
  • the focal power of the entire fixed-focus lens is allocated according to a certain ratio, which can ensure the balance of the incident angles of the front and rear groups of lenses, reduce the sensitivity of the lens, and increase the possibility of production.
  • the embodiment of the present application sets that the first lens 110, the second lens 120, the fourth lens 140 and the fifth lens 150 are all plastic aspheric lenses, and the third lens 130 is a glass spherical lens or a plastic aspheric lens , the sixth lens 160 is a glass spherical lens or a plastic aspheric lens.
  • the optional third lens 130 is a glass spherical lens, and the sixth lens 160 is a glass spherical lens; in another embodiment, the optional third lens 130 is a glass spherical lens, and the sixth lens 160 is a plastic Aspheric lens; in another embodiment, the optional third lens 130 is a plastic aspheric lens, and the sixth lens 160 is a glass spherical lens; in another embodiment, the optional third lens 130 is a plastic aspheric lens , the sixth lens 160 is a plastic aspheric lens.
  • the characteristic of the aspheric lens is that the curvature changes continuously from the center of the lens to the periphery of the lens.
  • aspherical lenses which have a constant curvature from the center of the lens to the periphery of the lens
  • aspherical lenses have better curvature radius characteristics, which have the advantages of improving distortion and astigmatism.
  • the aberration that occurs during imaging can be eliminated as much as possible, thereby improving the imaging quality of the lens.
  • at least four plastic aspheric lenses are provided to ensure good imaging quality.
  • Spherical lenses are characterized by a constant curvature from the center of the lens to the periphery of the lens, allowing easy lens setup.
  • the lens made of glass has a small thermal expansion coefficient and good stability; when the ambient temperature of the fixed-focus lens changes greatly, it is beneficial to keep the focal length of the fixed-focus lens stable.
  • the material of the plastic aspheric lens can be various plastics known to those skilled in the art, and the material of the glass spherical lens can be various types of glass known to those skilled in the art, which will not be described in this embodiment of the present application. Nor is it limited. Since the lens cost of plastic material is much lower than the lens cost of glass material, in the fixed-focus lens provided in the embodiment of the present application, a glass lens and a plastic lens are used to mix and match, which can ensure the optical performance of the fixed-focus lens. It can effectively control the cost of the fixed-focus lens; at the same time, each lens material has a mutual compensation effect, which can ensure normal use in high and low temperature environments. In addition, by rationally setting the number of lenses in the fixed-focus lens, the focal power of each lens, and the material and surface shape of each lens, the structure of the fixed-focus lens can be made compact and the lens angle can be effectively improved.
  • the fixed-focus lens provided by the embodiment of the present application uses six lenses and reasonably sets the focal power of each lens, reasonably matches and optimizes the material and surface shape of each lens, so that the lens has the characteristics of low cost and high performance At the same time, it has the advantages of wide angle, low distortion and high pixel, and the total optical length is small, and the structure is compact, which can effectively improve the shortcomings of small angle and large size of the lens used in traditional video conferencing.
  • the diagonal field of view DFOV of the fixed-focus lens provided in the embodiments of the present application can reach DFOV>120°.
  • the lens angle is significantly increased to achieve large field of view imaging, and the imaging effect is good, which can improve the video experience.
  • the distance TTL that is, the total track length, TTL
  • the total optical length of the fixed-focus lens is significantly reduced, which is beneficial to realize the miniaturization design of the lens, and the assembly process is simple.
  • the surface of the lens on the side adjacent to the object plane is defined as the object-side surface, and the surface of the lens on the side adjacent to the image plane is the image-side surface; wherein the object-side surface of the first lens 110 is convex toward the object plane, The image side surface of the first lens 110 is concave toward the image plane; the object side surface of the second lens 120 is concave toward the object plane, and the image side surface of the second lens 120 is concave toward the image plane, or the object side surface of the second lens 120 is toward The object plane is convex, and the image side surface of the second lens 120 is concave towards the image plane; the object side surface of the third lens 130 is convex towards the object plane, and the image side surface of the third lens 130 is convex towards the image plane; the fourth lens 140 The object side surface of the fifth lens 150 is concave towards the object plane, and the image side surface of the fifth lens 150 is concave towards the image plane, and the image side surface of the fourth lens 140
  • FIG. 1 uses an example in which the object-side surface of the second lens 120 is convex toward the object plane, and the image-side surface of the second lens 120 is concave toward the image plane as an example.
  • the structure is not limited.
  • the object-side surface of the second lens 120 may be concave toward the object plane, and the image-side surface of the second lens 120 may be concave toward the image plane.
  • the focal power of the fixed-focus lens is The focal power of the first lens 110 is The focal power of the second lens 120 is The focal power of the third lens 130 is The focal power of the fourth lens 140 is The focal power of the fifth lens 150 is in:
  • By distributing the focal power of the entire fixed-focus lens according to a certain ratio it can ensure the balance of the incident angle of the front and rear lenses, balance the high and low temperature, reduce the sensitivity of the lens, improve the stability of the lens, and help reduce distortion at the same time.
  • the spherical aberration and field curvature of the imaging system are small at the same time, ensuring the image quality of the on-axis and off-axis fields of view.
  • the total optical length is relatively short, thereby ensuring that the overall size of the lens is small.
  • the refractive index of the first lens 110 is Nd1
  • the refractive index of the second lens 120 is Nd2
  • the refractive index of the third lens 130 is Nd3
  • the refractive index of the sixth lens 160 is Nd6, and the sixth lens 160 has a refractive index of Nd6.
  • the focal power of lens 160 is Among them: Nd1>1.4, 1.4 ⁇ Nd2 ⁇ 1.7, Nd3>1.4,
  • the refractive index is the ratio of the propagation speed of light in vacuum to the propagation speed of light in the medium, which is mainly used to describe the refraction ability of materials for light, and different materials have different refractive indices.
  • the thickness of the first lens 110 is D1, wherein:
  • the thickness of the first lens 110 refers to the central axial distance from the object side to the image side of the first lens 110 .
  • the fixed-focus lens further includes an aperture, which is arranged in the optical path between the third lens 130 and the fourth lens 140 .
  • the fixed-focus lens also includes an aperture, which can adjust the propagation direction of the light beam by setting the aperture, which is beneficial to improve the imaging quality.
  • the diaphragm may be located in the optical path between the third lens 130 and the fourth lens 140 , but the embodiment of the present application does not limit the specific location of the diaphragm.
  • the fixed-focus lens provided by the embodiment of the present application uses six lenses and reasonably sets parameters such as the focal power, refractive index, surface shape, and thickness of each lens, and reasonably matches and optimizes the materials of each lens, so that the lens It has the characteristics of low cost and high performance, and has the advantages of wide angle, low distortion, and high pixel (the pixel can reach the level of 4K pixels). Improve the shortcomings of the small angle and large size of the lens used in traditional video conferencing.
  • Table 1 The design values of the radius of curvature, thickness, refractive index and K factor of the fixed-focus lens
  • “surf” represents the surface number, and the surface number is numbered according to the surface order of each lens, for example, “S1” represents the object surface of the first lens 110, “S2” represents the image surface of the first lens 110, “ “S8” represents the object plane surface of the fourth lens 140, “S9” represents the image plane surface of the fourth lens 140, and so on; “STO” represents the aperture of the lens; the radius of curvature represents the degree of curvature of the lens surface, a positive value It means that the surface is bent to the side of the image plane, and a negative value means that the surface is bent to the side of the object plane, where "PL” means that the surface is a plane, and the radius of curvature is infinite; the thickness represents the central axial distance from the current surface to the next surface , the units of radius of curvature and thickness are millimeters (mm); the refractive index represents the ability of the material between the current surface and the next surface to deflect light.
  • a blank space represents the current position is air, and the refractive index is 1; K value represents the approximate Combined conical coefficient. Among them, the radius of curvature is not "PL", and the lens corresponding to the K value is a glass spherical lens.
  • the third lens 130 is a glass spherical lens, and the rest of the lenses are plastic aspheric lenses.
  • S14 and S15 can represent the two surfaces of the filter, and “S16” can represent the imaging surface.
  • the aspheric surface of the aspheric lens in the fixed-focus lens satisfies:
  • FIG. 2 is a graph of the spherical aberration curve of the fixed-focus lens in Embodiment 1 of the present application.
  • the spherical aberration at 0.656 ⁇ m) is within 0.12mm, and the different wavelengths are marked with 1, 2, 3, 4 and 5 in the figure, where 1, 2, 3, 4 and 5 correspond to 0.436 ⁇ m, 0.487 Wavelengths of ⁇ m, 0.545 ⁇ m, 0.587 ⁇ m and 0.656 ⁇ m. It can be seen from Figure 2 that the curves of different wavelengths are relatively concentrated, indicating that the spherical aberration of the fixed-focus lens is very small.
  • Fig. 3 is the field curvature curve diagram of the fixed-focus lens in the first embodiment of the present application.
  • the horizontal coordinate represents the size of the field curvature, and the unit is mm; the vertical coordinate represents the normalized image height, and there is no unit; wherein T represents meridian , S represents arc loss; as can be seen from Figure 3, the fixed-focus lens provided by this embodiment is effectively controlled on field curvature from light with a wavelength of 436nm to light with a wavelength of 656nm, that is, when imaging, the image quality and The surrounding image quality gap is small.
  • Fig. 4 is the distortion graph of the fixed-focus lens in the first embodiment of the present application.
  • the horizontal coordinate represents the size of the distortion, and the unit is %;
  • the vertical coordinate represents the normalized image height, without unit; as can be seen from Fig. 4 , the distortion of the fixed-focus lens provided by this embodiment is better corrected, and the imaging distortion is small, which meets the requirement of low distortion.
  • Fig. 5 is a schematic structural diagram of a fixed-focus lens provided in Embodiment 2 of the present application.
  • the fixed-focus lens provided in Embodiment 2 of the present application includes the first One lens 110, the second lens 120, the third lens 130, the fourth lens 140, the fifth lens 150 and the sixth lens 160;
  • the first lens 110 is a negative power lens
  • the second lens 120 is a negative power lens
  • the third lens 130 is a positive power lens
  • the fourth lens 140 is a positive power lens
  • the fifth lens 150 is a negative power lens
  • the sixth lens 160 is a positive power lens;
  • the first lens 110, the second lens 120 , the fourth lens 140 and the fifth lens 150 are plastic aspheric lenses;
  • the third lens 130 is a glass spherical lens or a plastic aspheric lens;
  • the sixth lens 160 is a glass spherical lens or a plastic aspheric lens.
  • the setting ranges of parameters such as the focal power, refractive index, and thickness of each lens are the same as those in Embodiment 1, and will not be repeated here.
  • the difference from the arrangement of the fixed-focus lenses in the first embodiment is that in the second embodiment, the six lenses are all plastic aspheric lenses.
  • Table 3 illustrates the specific setting parameters of each lens in the fixed-focus lens provided in Embodiment 2 of the present application in another feasible implementation manner, and the fixed-focus lens in Table 3 corresponds to the fixed-focus lens shown in FIG. 5 .
  • “surf” represents the surface number, and the surface number is numbered according to the surface order of each lens, for example, “S1” represents the object surface of the first lens 110, “S2” represents the image surface of the first lens 110, “ “S8” represents the object plane surface of the fourth lens 140, “S9” represents the image plane surface of the fourth lens 140, and so on; “STO” represents the aperture of the lens; the radius of curvature represents the degree of curvature of the lens surface, a positive value It means that the surface is bent to the side of the image plane, and a negative value means that the surface is bent to the side of the object plane, where "PL” means that the surface is a plane, and the radius of curvature is infinite; the thickness represents the central axial distance from the current surface to the next surface , the units of radius of curvature and thickness are millimeters (mm); the refractive index represents the ability of the material between the current surface and the next surface to deflect light.
  • a blank space represents the current position is air, and the refractive index is 1; K value represents the approximate Combined conical coefficient. It can be seen from Table 3 that in the fixed-focus lens provided in Embodiment 2 of the present application, the six lenses are all plastic aspheric lenses.
  • 3.9046E-03 means that the coefficient A of the plane number S1 is 3.9046*10 -3 , and so on.
  • FIG. 6 is a spherical aberration curve diagram of the fixed-focus lens in Embodiment 2 of the present application.
  • the spherical aberration at 0.656 ⁇ m is all within 0.16mm, and different wavelengths are marked with 1, 2, 3, 4 and 5 in the figure, where 1, 2, 3, 4 and 5 correspond to 0.436 ⁇ m and 0.487 Wavelengths of ⁇ m, 0.545 ⁇ m, 0.587 ⁇ m and 0.656 ⁇ m. It can be seen from Figure 6 that the curves of different wavelengths are relatively concentrated, indicating that the spherical aberration of the fixed-focus lens is very small.
  • Fig. 7 is the field curvature curve diagram of the fixed-focus lens in the second embodiment of the present application.
  • the horizontal coordinate represents the size of the field curvature, and the unit is mm; the vertical coordinate represents the normalized image height, and there is no unit; wherein T represents meridian , S represents arc loss; as can be seen from Figure 7, the fixed-focus lens provided by this embodiment is effectively controlled on field curvature from light with a wavelength of 436nm to light with a wavelength of 656nm, that is, when imaging, the center image quality and The surrounding image quality gap is small.
  • Fig. 8 is the distortion graph of the fixed-focus lens in the second embodiment of the present application.
  • the horizontal coordinate represents the size of the distortion, and the unit is %; the vertical coordinate represents the normalized image height, without unit; as can be seen from Fig. 8 , the distortion of the fixed-focus lens provided by this embodiment is better corrected, and the imaging distortion is small, which meets the requirement of low distortion.
  • Fig. 9 is a schematic structural diagram of a fixed-focus lens provided in Embodiment 3 of the present application.
  • the fixed-focus lens provided in Embodiment 3 of the present application includes a first One lens 110, the second lens 120, the third lens 130, the fourth lens 140, the fifth lens 150 and the sixth lens 160;
  • the first lens 110 is a negative power lens
  • the second lens 120 is a negative power lens
  • the third lens 130 is a positive power lens
  • the fourth lens 140 is a positive power lens
  • the fifth lens 150 is a negative power lens
  • the sixth lens 160 is a positive power lens;
  • the first lens 110, the second lens 120 , the fourth lens 140 and the fifth lens 150 are plastic aspheric lenses;
  • the third lens 130 is a glass spherical lens or a plastic aspheric lens;
  • the sixth lens 160 is a glass spherical lens or a plastic aspheric lens.
  • the setting ranges of parameters such as the focal power, refractive index, and thickness of each lens are the same as those in Embodiment 1, and will not be repeated here.
  • the sixth lens 160 is a glass spherical lens, and the rest of the lenses are plastic aspheric lenses.
  • Table 5 illustrates the specific setting parameters of each lens in the fixed-focus lens provided in Embodiment 3 of the present application in another feasible implementation manner.
  • the fixed-focus lens in Table 5 corresponds to the fixed-focus lens shown in FIG. 9 .
  • “surf” represents the surface number, and the surface number is numbered according to the surface order of each lens, for example, “S1” represents the object surface of the first lens 110, “S2” represents the image surface of the first lens 110, “ “S8” represents the object plane surface of the fourth lens 140, “S9” represents the image plane surface of the fourth lens 140, and so on; “STO” represents the aperture of the lens; the radius of curvature represents the degree of curvature of the lens surface, a positive value It means that the surface is bent to the side of the image plane, and a negative value means that the surface is bent to the side of the object plane, where "PL” means that the surface is a plane, and the radius of curvature is infinite; the thickness represents the central axial distance from the current surface to the next surface , the units of radius of curvature and thickness are millimeters (mm); the refractive index represents the ability of the material between the current surface and the next surface to deflect light.
  • a blank space represents the current position is air, and the refractive index is 1; K value represents the approximate Combined conical coefficient. It can be seen from Table 5 that in the fixed-focus lens provided in Embodiment 3 of the present application, the sixth lens 160 is a glass spherical lens, and the rest of the lenses are plastic aspheric lenses.
  • FIG. 10 is a graph of the spherical aberration curve of the fixed-focus lens in Embodiment 3 of the present application.
  • the axial aberrations at 0.656 ⁇ m) are all within 0.09mm, and different wavelengths are marked with 1, 2, 3, 4 and 5 in the figure, where 1, 2, 3, 4 and 5 correspond to 0.436 ⁇ m respectively , 0.487 ⁇ m, 0.545 ⁇ m, 0.587 ⁇ m and 0.656 ⁇ m wavelengths. It can be seen from Figure 10 that the curves of different wavelengths are relatively concentrated, indicating that the spherical aberration of the fixed-focus lens is very small.
  • Fig. 11 is the field curvature curve diagram of the fixed-focus lens in the third embodiment of the present application.
  • the horizontal coordinate represents the size of the field curvature, and the unit is mm; the vertical coordinate represents the normalized image height, and there is no unit; wherein T represents the meridian , S represents arc loss; as can be seen from Figure 11, the fixed-focus lens provided by this embodiment is effectively controlled on field curvature from light with a wavelength of 436nm to light with a wavelength of 656nm, that is, when imaging, the center image quality and The surrounding image quality gap is small.
  • Fig. 12 is the distortion graph of the fixed-focus lens in the third embodiment of the present application.
  • the horizontal coordinate represents the size of the distortion, and the unit is %;
  • the vertical coordinate represents the normalized image height, without unit; as can be seen from Fig. 12 , the distortion of the fixed-focus lens provided by this embodiment is better corrected, and the imaging distortion is small, which meets the requirement of low distortion.
  • the fixed-focus lens uses glass-plastic mixed lenses to achieve low cost and high performance. It can meet the operating conditions of -30°C to 70°C and has the advantages of wide-angle and low distortion. DFOV>120 °, and the total length is less than 15.1mm, it can match a chip with a maximum of 1/2.7′′ and a pixel of 4K, which can effectively solve the problem of large volume and small angle of lens used in existing video conferencing.
  • the embodiment of the present application provides a fixed-focus lens, so as to increase the angle of the lens and reduce the length of the lens while ensuring the imaging quality.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种定焦镜头,包括沿光轴从物面到像面依次排列的第一透镜(110)、第二透镜(120)、第三透镜(130)、第四透镜(140)、第五透镜(150)和第六透镜(160);第一透镜(110)为负光焦度透镜,第二透镜(120)为负光焦度透镜,第三透镜(130)为正光焦度透镜,第四透镜(140)为正光焦度透镜,第五透镜(150)为负光焦度透镜,第六透镜(160)为正光焦度透镜;第一透镜(110)、第二透镜(120)、第四透镜(140)和第五透镜(150)分别为塑胶非球面透镜;第三透镜(130)为玻璃球面透镜或塑胶非球面透镜;第六透镜(160)为玻璃球面透镜或塑胶非球面透镜。

Description

定焦镜头
本申请要求在2021年12月14日提交中国专利局、申请号为202111531147.X的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及光学器件技术领域,例如涉及一种定焦镜头。
背景技术
第五代移动通信技术(5th Generation Mobile Communication Technology,5G)超高传输速率,低网络延迟,以及更大的通信容量对视频通信行业有很大影响。在视频直播及会议中,有效地确保文件共享和数据共享期间的高速传输,可以使视频直播更加顺畅。
由于视频直播要求镜头具有无畸变的特点,因此,目前视频中采用的镜头的角度比较小(通常对角视场角(Diagonal Field of View,DFOV)<100°),且镜头的光学总长较大(一般大于22mm),导致镜头体积大,不利用产品的推广使用。
发明内容
本申请实施例提供一种定焦镜头。
本申请实施例公开一种定焦镜头,包括沿光轴从物面到像面依次排列的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜;
第一透镜为负光焦度透镜,第二透镜为负光焦度透镜,第三透镜为正光焦度透镜,第四透镜为正光焦度透镜,第五透镜为负光焦度透镜,第六透镜为正光焦度透镜;
第一透镜、第二透镜、第四透镜和第五透镜分别为塑胶非球面透镜;第三透镜为玻璃球面透镜或塑胶非球面透镜;第六透镜为玻璃球面透镜或塑胶非球面透镜。
附图说明
图1为本申请实施例一的提供的一种定焦镜头的结构示意图;
图2为本申请实施例一中定焦镜头的球差曲线图;
图3为本申请实施例一中定焦镜头的场曲曲线图;
图4为本申请实施例一中定焦镜头的畸变曲线图;
图5为本申请实施例二的提供的一种定焦镜头的结构示意图;
图6为本申请实施例二中定焦镜头的球差曲线图;
图7为本申请实施例二中定焦镜头的场曲曲线图;
图8为本申请实施例二中定焦镜头的畸变曲线图;
图9为本申请实施例三的提供的一种定焦镜头的结构示意图;
图10为本申请实施例三中定焦镜头的球差曲线图;
图11为本申请实施例三中定焦镜头的场曲曲线图;
图12为本申请实施例三中定焦镜头的畸变曲线图。
具体实施方式
下面结合附图和实施例对本申请进行说明。
实施例一
图1为本申请实施例一的提供的一种定焦镜头的结构示意图,如图1所示,本申请实施例一提供的定焦镜头包括沿光轴从物面到像面依次排列的第一透镜110、第二透镜120、第三透镜130、第四透镜140、第五透镜150和第六透镜160;第一透镜110为负光焦度透镜,第二透镜120为负光焦度透镜,第三透镜130为正光焦度透镜,第四透镜140为正光焦度透镜,第五透镜150为负光焦度透镜,第六透镜160为正光焦度透镜;第一透镜110、第二透镜120、第四透镜140和第五透镜150均为塑胶非球面透镜;第三透镜130为玻璃球面透镜或塑胶非球面透镜;第六透镜160为玻璃球面透镜或塑胶非球面透镜。
示例性的,光焦度等于像方光束汇聚度与物方光束汇聚度之差,它表征光学系统偏折光线的能力。光焦度的绝对值越大,对光线的弯折能力越强,光焦度的绝对值越小,对光线的弯折能力越弱。光焦度为正数时,光线的屈折是汇聚性的;光焦度为负数时,光线的屈折是发散性的。光焦度可以适用于表征一个透镜的某一个折射面(即透镜的一个表面),可以适用于表征某一个透镜,也可以适用于表征多个透镜共同形成的系统(即透镜组)。在本实施例提供的定焦镜头中,可以将各个透镜固定于一个镜筒(图1中未示出)内,设置第一透镜110为负光焦度透镜,主要用于矫正畸变,此外还可以控制光学系统光线入射角;第二透镜120为负光焦度透镜,主要用于矫正场曲;第三透镜130为正光焦度透镜,主要用于矫正球差;第四透镜140、第五透镜150分别为正光焦度透镜和负光焦度透镜,主要用于平衡高低温;第六透镜160为正光焦度透镜,主要用 于矫正残余像差。整个定焦镜头的光焦度按照一定比例分配,可以保证前后组镜片的入射角大小的均衡性,降低镜头的敏感性,提高生产的可能性。
在一实施例中,本申请实施例设置第一透镜110、第二透镜120、第四透镜140和第五透镜150均为塑胶非球面透镜,第三透镜130为玻璃球面透镜或塑胶非球面透镜,第六透镜160为玻璃球面透镜或塑胶非球面透镜。在一实施例中,可选第三透镜130为玻璃球面透镜,第六透镜160为玻璃球面透镜;在另一实施例中,可选第三透镜130为玻璃球面透镜,第六透镜160为塑胶非球面透镜;在另一实施例中,可选第三透镜130为塑胶非球面透镜,第六透镜160为玻璃球面透镜;在另一实施例中,可选第三透镜130为塑胶非球面透镜,第六透镜160为塑胶非球面透镜。
其中,非球面透镜的特点是从镜片中心到镜片周边,曲率是连续变化的。与从镜片中心到镜片周边具有恒定曲率的球面镜片不同,非球面镜片具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面镜片后,能够尽可能地消除在成像的时候出现的像差,从而提升镜头的成像质量。本申请实施例提供的定焦镜头中,通过设置至少4片塑胶非球面镜片,可以保证成像质量好。
球面透镜的特点是从镜片中心到镜片周边具有恒定曲率,保证透镜的设置方式简单。在一示例中,玻璃材质的镜片热膨胀系数较小,稳定性良好;当定焦镜头所使用的环境温度变化较大时,有利于保持定焦镜头的焦距稳定。
在一实施例中,塑胶非球面透镜的材质可为本领域技术人员可知的各种塑胶,玻璃球面透镜的材质为本领域技术人员可知的各种类型的玻璃,本申请实施例对此不赘述也不作限定。由于塑胶材质的透镜成本远低于玻璃材质的透镜成本,本申请实施例提供的定焦镜头中,采用了玻璃透镜与塑胶透镜混合搭配的方式,可使得在确保定焦镜头的光学性能的同时能够有效地控制定焦镜头的成本;同时各透镜材质具有互相补偿作用,可保证在高低温环境下仍可正常使用。另外,通过合理设置定焦镜头中的透镜数量、各透镜的光焦度以及各透镜的材质和面型,可使定焦镜头的结构紧凑,有效提升镜头角度。
综上,本申请实施例提供的定焦镜头,通过使用六片透镜并合理设置各透镜的光焦度,合理搭配和优化各透镜的材质和面型,使透镜具有低成本、高性能的特点,同时具有广角低畸变、高像素的优点,且光学总长较小,结构紧凑,能够有效改善传统视频会议所用镜头角度小且体积大的缺点。
在上述实施例的基础上,本申请实施例提供的定焦镜头的对角视场角DFOV 可以达到DFOV>120°。相比于相关技术而言,镜头角度明显增大,实现大视场角成像,成像效果好,可以提升视频体验效果。
在上述实施例的基础上,本申请实施例提供的定焦镜头,沿光轴方向,第一透镜110的物侧面至像面的距离TTL(即光学总长(total track length,TTL))可以达到TTL<15.1mm。相比于相关技术而言,定焦镜头的光学总长明显减小,有利于实现镜头的小型化设计,且装配工艺简单。
在上述实施例的基础上,定义透镜邻近物面一侧的表面为物方表面,透镜邻近像面一侧的表面为像方表面;其中第一透镜110的物方表面朝向物面凸起,第一透镜110的像方表面朝向像面凹陷;第二透镜120的物方表面朝向物面凹陷,第二透镜120的像方表面朝向像面凹陷,或者,第二透镜120的物方表面朝向物面凸起,第二透镜120的像方表面朝向像面凹陷;第三透镜130的物方表面朝向物面凸起,第三透镜130的像方表面朝向像面凸起;第四透镜140的物方表面朝向物面凸起,第四透镜140的像方表面朝向像面凸起;第五透镜150的物方表面朝向物面凹陷,第五透镜150的像方表面朝向像面凹陷;第六透镜160的物方表面朝向物面凸起,第六透镜160的像方表面朝向像面凸起。
示例性的,如图1所示,对于第二透镜120,图1以第二透镜120的物方表面朝向物面凸起,第二透镜120的像方表面朝向像面凹陷为例进行示意,该结构并非限定,在其他实施例中,可选第二透镜120的物方表面朝向物面凹陷,第二透镜120的像方表面朝向像面凹陷。通过合理设置各个透镜的面型,可以保证各个透镜的光焦度满足上述实施例中光焦度要求的同时,还可以保证整个定焦镜头结构紧凑,定焦镜头集成度高。
在上述实施例的基础上,定焦镜头的光焦度为
Figure PCTCN2022137393-appb-000001
第一透镜110的光焦度为
Figure PCTCN2022137393-appb-000002
第二透镜120的光焦度为
Figure PCTCN2022137393-appb-000003
第三透镜130的光焦度为
Figure PCTCN2022137393-appb-000004
第四透镜140的光焦度为
Figure PCTCN2022137393-appb-000005
第五透镜150的光焦度为
Figure PCTCN2022137393-appb-000006
其中:
Figure PCTCN2022137393-appb-000007
Figure PCTCN2022137393-appb-000008
通过按照一定的比例分配整个定焦镜头的光焦度,可以保证前后镜片的入射角大小的均衡性,平衡高低温,降低镜片的敏感性,提高镜头的稳定性,同时有利于减小畸变,使成像系统球差和场曲同时小,保证轴上和离轴视场像质。通过以上镜片组成的光学系统,光学总长较短,从而保证镜头整体的体积小。
在上述实施例的基础上,第一透镜110的折射率为Nd1,第二透镜120的折射率为Nd2,第三透镜130的折射率为Nd3,第六透镜160的折射率为Nd6,第六透镜160的光焦度为
Figure PCTCN2022137393-appb-000009
其中:Nd1>1.4,1.4≤Nd2≤1.7,Nd3>1.4,
Figure PCTCN2022137393-appb-000010
其中,折射率是光在真空中的传播速度与光在该介质中的传播速度之比,主要用来描述材料对光的折射能力,不同的材料的折射率不同。通过合理设置定焦镜头中各透镜的折射率,有利于实现定焦镜头的小型化设计;同时,有利于实现较高的像素分辨率与较大的光圈。
在上述实施例的基础上,第一透镜110的厚度为D1,其中:
Figure PCTCN2022137393-appb-000011
其中,第一透镜110的厚度是指第一透镜110的物侧面到像侧面的中心轴向距离。通过合理设置第一透镜110的厚度和光焦度,可以有效矫正畸变,同时有利于定焦镜头的小型化设计。
在上述实施例的基础上,定焦镜头还包括光阑,光阑设置于第三透镜130和第四透镜140之间的光路中。
例如,定焦镜头还包括光阑,通过设置光阑可以调节光束的传播方向,有利于提高成像质量。光阑可以位于第三透镜130与第四透镜140之间的光路中,但本申请实施例对光阑的具体设置位置不进行限定。
综上,本申请实施例提供的定焦镜头,通过使用六片透镜,并合理设置各透镜的光焦度、折射率、面型和厚度等参数,合理搭配和优化各透镜的材料,使透镜具有低成本、高性能的特点,同时具有广角低畸变、高像素(像素可达到4K像素的级别)的优点,最大可以匹配1/2.7″的芯片,且光学总长较小,结构紧凑,能够有效改善传统视频会议所用镜头角度小且体积大的缺点。
作为一种可行的实施方式,下面对定焦镜头中各个透镜表面的曲率半径、厚度、折射率和拟合圆锥系数K进行说明。
表1 定焦镜头的曲率半径、厚度、折射率和K系数的设计值
Figure PCTCN2022137393-appb-000012
Figure PCTCN2022137393-appb-000013
其中,“surf”代表面序号,面序号根据各个透镜的表面顺序来进行编号,例如,“S1”代表第一透镜110的物面表面,“S2”代表第一透镜110的像面表面,“S8”代表第四透镜140的物面表面,“S9”代表第四透镜140的像面表面,依次类推;“STO”代表所述镜头的光阑;曲率半径代表透镜表面的弯曲程度,正值代表该表面弯向像面一侧,负值代表该表面弯向物面一侧,其中“PL”代表该表面为平面,曲率半径为无穷大;厚度代表当前表面到下一表面的中心轴向距离,曲率半径和厚度的单位均为毫米(mm);折射率代表当前表面到下一表面之间的材料对光线的偏折能力,空格代表当前位置为空气,折射率为1;K值表示拟合圆锥系数。其中,曲率半径为非“PL”,且K值为空格所对应的透镜为玻璃球面透镜。如表1所示,在实施例一中,第三透镜130为玻璃球面透镜,其余透镜为塑胶非球面透镜。
“S14”、“S15”可以代表滤光片的两个面,“S16”可以代表成像面。
在上述实施例的基础上,定焦镜头中非球面透镜的非球面满足:
Figure PCTCN2022137393-appb-000014
其中,z为非球面Z向的轴向矢高;r为非球面的高度,即非球面上的点到光轴的距离;c为拟合球面的曲率,数值上为曲率半径的倒数;k为拟合圆锥系数;A、B、C、D、E、F分别为非球面多项式的4阶、6阶、8阶、10阶、12阶、14阶系数。
接下来以一种可行的实施方式,对非球面透镜的非球面中的数据进行说明。
表2 定焦镜头中非球面系数的设计值
Surf A B C D E F
S1 4.0431E-03 -1.5870E-04 1.9809E-06 6.2418E-08 -2.4312E-09 /
S2 5.3292E-03 2.2364E-03 9.3284E-04 -2.3655E-04 3.1882E-05 /
S3 4.0006E-03 -1.2798E-03 1.8506E-04 -1.0452E-07 -1.9985E-06 4.5858E-07
S4 1.5947E-02 -1.0671E-02 4.4404E-03 -6.6542E-05 -6.4827E-04 1.7526E-04
S8 2.1263E-02 -7.9600E-03 4.8526E-03 1.0489E-02 -1.8728E-02 7.4359E-03
S9 -1.7516E-03 -2.0986E-03 -6.5706E-04 7.2695E-03 4.5507E-03 -4.8776E-03
S10 -4.2774E-02 -1.0670E-02 5.4561E-03 7.9067E-03 5.9010E-03 -5.0658E-03
S11 2.0035E-03 -5.1851E-03 2.8984E-03 -1.9382E-04 -1.4798E-04 1.9824E-05
S12 1.0969E-02 -3.6946E-03 9.6646E-04 -1.1856E-04 1.4483E-05 -1.9691E-06
S13 -8.7364E-04 8.8188E-05 4.2561E-04 -6.4283E-05 4.1755E-06 5.9610E-07
其中,“4.0431E-03”表示面序号为S1的系数A为4.0431*10 -3,以此类推。
在一实施例中,图2为本申请实施例一中定焦镜头的球差曲线图,如图2所示,该定焦镜头在不同波长(0.436μm、0.487μm、0.545μm、0.587μm和0.656μm)下的球差均在0.12mm以内,不同波长在图中分别以1、2、3、4和5的方式进行标记,其中1、2、3、4和5分别对应0.436μm、0.487μm、0.545μm、0.587μm和0.656μm的波长。从图2中可以知道,不同波长曲线相对较集中,说明该定焦镜头的球差很小。
图3为本申请实施例一中定焦镜头的场曲曲线图,图3中,水平坐标表示场曲的大小,单位为mm;垂直坐标表示归一化像高,没有单位;其中T表示子午,S表示弧失;由图3可以看出,本实施例提供的定焦镜头从波长为436nm的光到656nm的光,在场曲上被有效地控制,即在成像时,中心的像质和周边的像质差距较小。
图4为本申请实施例一中定焦镜头的畸变曲线图,图4中,水平坐标表示畸变的大小,单位为%;垂直坐标表示归一化像高,没有单位;由图4可以看出,本实施例提供的定焦镜头的畸变得到了较好地矫正,成像畸变较小,满足低畸变的要求。
实施例二
图5为本申请实施例二的提供的一种定焦镜头的结构示意图,如图5所示,本申请实施例二提供的定焦镜头包括沿光轴从物面到像面依次排列的第一透镜110、第二透镜120、第三透镜130、第四透镜140、第五透镜150和第六透镜160;第一透镜110为负光焦度透镜,第二透镜120为负光焦度透镜,第三透镜130为正光焦度透镜,第四透镜140为正光焦度透镜,第五透镜150为负光焦度透镜,第六透镜160为正光焦度透镜;第一透镜110、第二透镜120、第四透镜140和第五透镜150均为塑胶非球面透镜;第三透镜130为玻璃球面透镜或塑胶非球面透镜;第六透镜160为玻璃球面透镜或塑胶非球面透镜。
其中,各个透镜的光焦度、折射率以及厚度等参数的设置范围与实施例一相同,在此不再赘述。
与实施例一中定焦镜头的设置方式不同的是,实施例二中,六个透镜均为塑胶非球面透镜。
表3以另一种可行的实施方式,说明了本申请实施例二提供的定焦镜头中各透镜的具体设置参数,表3中的定焦镜头对应图5所示的定焦镜头。
表3 定焦镜头的曲率半径、厚度、折射率和K系数的设计值
Figure PCTCN2022137393-appb-000015
Figure PCTCN2022137393-appb-000016
其中,“surf”代表面序号,面序号根据各个透镜的表面顺序来进行编号,例如,“S1”代表第一透镜110的物面表面,“S2”代表第一透镜110的像面表面,“S8”代表第四透镜140的物面表面,“S9”代表第四透镜140的像面表面,依次类推;“STO”代表所述镜头的光阑;曲率半径代表透镜表面的弯曲程度,正值代表该表面弯向像面一侧,负值代表该表面弯向物面一侧,其中“PL”代表该表面为平面,曲率半径为无穷大;厚度代表当前表面到下一表面的中心轴向距离,曲率半径和厚度的单位均为毫米(mm);折射率代表当前表面到下一表面之间的材料对光线的偏折能力,空格代表当前位置为空气,折射率为1;K值表示拟合圆锥系数。从表3可以看出,本申请实施例二提供的定焦镜头中,六个透镜均为塑胶非球面透镜。
接下来以一种可行的实施方式,对非球面透镜的非球面中的数据进行说明。
表4 定焦镜头中非球面系数的设计值
Surf A B C D E F
S1 3.9046E-03 -1.5952E-04 2.0578E-06 6.9896E-08 -1.8542E-09 /
S2 3.7335E-03 2.5796E-03 7.8496E-04 -3.3090E-04 1.8517E-05 /
S3 3.1703E-03 -1.4834E-03 1.2698E-04 -1.4971E-05 -5.1103E-06 1.0943E-06
S4 1.6780E-02 -1.0226E-02 4.5544E-03 -3.7843E-05 -6.4780E-04 1.6755E-04
S5 6.6578E-04 2.1106E-05 1.6950E-05 3.5680E-05 4.3385E-05 3.8662E-05
S6 2.7092E-04 4.8954E-04 3.9889E-04 3.9159E-04 3.7359E-04 2.3471E-04
S8 2.0546E-02 -7.3093E-03 5.9411E-03 1.1337E-02 -1.8521E-02 6.7600E-03
S9 -1.7484E-03 -2.3772E-03 -6.9299E-04 7.4100E-03 4.7866E-03 -4.6056E-03
S10 -4.1967E-02 -1.0442E-02 5.4854E-03 8.0116E-03 6.0607E-03 -4.9068E-03
S11 1.4656E-03 -5.1866E-03 2.8988E-03 -1.9603E-04 -1.4940E-04 1.9316E-05
S12 1.1253E-02 -3.6611E-03 9.6933E-04 -1.1932E-04 1.4075E-05 -2.0289E-06
S13 -9.4196E-04 9.6909E-05 4.2892E-04 -6.4561E-05 3.8939E-06 5.0658E-07
其中,“3.9046E-03”表示面序号为S1的系数A为3.9046*10 -3,以此类推。
在一实施例中,图6为本申请实施例二中定焦镜头的球差曲线图,如图6所示,该定焦镜头在不同波长(0.436μm、0.487μm、0.545μm、0.587μm和0.656μm)下的球差均在0.16mm以内,不同波长在图中分别以1、2、3、4和5的方式进行标记,其中1、2、3、4和5分别对应0.436μm、0.487μm、0.545μm、0.587μm和0.656μm的波长。从图6中可以知道,不同波长曲线相对较集中,说明该定焦镜头的球差很小。
图7为本申请实施例二中定焦镜头的场曲曲线图,图7中,水平坐标表示场曲的大小,单位为mm;垂直坐标表示归一化像高,没有单位;其中T表示子午,S表示弧失;由图7可以看出,本实施例提供的定焦镜头从波长为436nm的光到656nm的光,在场曲上被有效地控制,即在成像时,中心的像质和周边的像质差距较小。
图8为本申请实施例二中定焦镜头的畸变曲线图,图8中,水平坐标表示畸变的大小,单位为%;垂直坐标表示归一化像高,没有单位;由图8可以看出,本实施例提供的定焦镜头的畸变得到了较好地矫正,成像畸变较小,满足低畸变的要求。
实施例三
图9为本申请实施例三的提供的一种定焦镜头的结构示意图,如图9所示,本申请实施例三提供的定焦镜头包括沿光轴从物面到像面依次排列的第一透镜110、第二透镜120、第三透镜130、第四透镜140、第五透镜150和第六透镜160;第一透镜110为负光焦度透镜,第二透镜120为负光焦度透镜,第三透镜130为正光焦度透镜,第四透镜140为正光焦度透镜,第五透镜150为负光焦度透镜,第六透镜160为正光焦度透镜;第一透镜110、第二透镜120、第四透镜140和第五透镜150均为塑胶非球面透镜;第三透镜130为玻璃球面透镜或塑胶非球面透镜;第六透镜160为玻璃球面透镜或塑胶非球面透镜。
其中,各个透镜的光焦度、折射率以及厚度等参数的设置范围与实施例一相同,在此不再赘述。
与实施例一中定焦镜头的设置方式不同的是,实施例三中,第六透镜160为玻璃球面透镜,其余透镜为塑胶非球面透镜。
表5以另一种可行的实施方式,说明了本申请实施例三提供的定焦镜头中各透镜的具体设置参数,表5中的定焦镜头对应图9所示的定焦镜头。
表5 定焦镜头的曲率半径、厚度、折射率和K系数的设计值
Surf 曲率半径 厚度 折射率 K值
S1 18.43 1.38 1.54 -1.31
S2 1.50 1.91   -0.26
S3 22.36 0.54 1.64 162.82
S4 3.22 0.20   -0.47
S5 4.36 2.44 1.64 -0.13
S6 -7.68 0.05   -3.76
STO PL 0    
S8 4.46 2.61 1.54 -0.26
S9 -2.37 0.07   1.54
S10 -3.28 0.40 1.64 5.28
S11 17.29 0.05   -110.37
S12 8.78 1.79 1.52  
S13 -3.49 0.21    
S14 PL 0.58 1.52  
S15 PL 0.31    
S16 PL 2.51    
其中,“surf”代表面序号,面序号根据各个透镜的表面顺序来进行编号,例如,“S1”代表第一透镜110的物面表面,“S2”代表第一透镜110的像面表面,“S8”代表第四透镜140的物面表面,“S9”代表第四透镜140的像面表面,依次类推;“STO”代表所述镜头的光阑;曲率半径代表透镜表面的弯曲程度,正值代表该表面弯向像面一侧,负值代表该表面弯向物面一侧,其中“PL”代表该表面为平面,曲率半径为无穷大;厚度代表当前表面到下一表面的中心轴向距离,曲率半径和厚度的单位均为毫米(mm);折射率代表当前表面到下一表面之间的材料对光线的偏折能力,空格代表当前位置为空气,折射率为1;K值表示拟合圆锥系数。从表5可以看出,本申请实施例三提供的定焦镜头中,第六透镜160为玻璃球面透镜,其余透镜为塑胶非球面透镜。
接下来以一种可行的实施方式,对非球面透镜的非球面中的数据进行说明。
表6 定焦镜头中非球面系数的设计值
Figure PCTCN2022137393-appb-000017
Figure PCTCN2022137393-appb-000018
其中,“4.4037E-03”表示面序号为S1的系数A为4.4037*10 -3,以此类推。
在一实施例中,图10为本申请实施例三中定焦镜头的球差曲线图,如图10所示,该定焦镜头在不同波长(0.436μm、0.487μm、0.545μm、0.587μm和0.656μm)下的轴向像差均在0.09mm以内,不同波长在图中分别以1、2、3、4和5的方式进行标记,其中1、2、3、4和5分别对应0.436μm、0.487μm、0.545μm、0.587μm和0.656μm的波长。从图10中可以知道,不同波长曲线相对较集中,说明该定焦镜头的球差很小。
图11为本申请实施例三中定焦镜头的场曲曲线图,图11中,水平坐标表示场曲的大小,单位为mm;垂直坐标表示归一化像高,没有单位;其中T表示子午,S表示弧失;由图11可以看出,本实施例提供的定焦镜头从波长为436nm的光到656nm的光,在场曲上被有效地控制,即在成像时,中心的像质和周边的像质差距较小。
图12为本申请实施例三中定焦镜头的畸变曲线图,图12中,水平坐标表示畸变的大小,单位为%;垂直坐标表示归一化像高,没有单位;由图12可以看出,本实施例提供的定焦镜头的畸变得到了较好地矫正,成像畸变较小,满足低畸变的要求。
综上,本申请提供的定焦镜头,采用玻塑混合的镜片搭配实现低成本、高性能的特点,可以满足-30℃~70℃的使用条件,同时拥有广角低畸变的优点,DFOV>120°,且总长小于15.1mm,最大可以匹配1/2.7″、像素达到4K的芯片,可以有效解决现有视频会议所用镜头体积大角度小的问题。
本申请实施例提供一种定焦镜头,以在保证成像质量的同时,增大镜头的角度,减小镜头的长度。
本领域技术人员会理解,本申请不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种变化、重新调整和替代而不会脱离本申请的保护范围。因此,虽然通过以上实施例对本申请进行了说明,但是本申请不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本申请的范围由所附的权利要求范围决定。

Claims (9)

  1. 一种定焦镜头,包括沿光轴从物面到像面依次排列的第一透镜(110)、第二透镜(120)、第三透镜(130)、第四透镜(140)、第五透镜(150)和第六透镜(160);
    所述第一透镜(110)为负光焦度透镜,所述第二透镜(120)为负光焦度透镜,所述第三透镜(130)为正光焦度透镜,所述第四透镜(140)为正光焦度透镜,所述第五透镜(150)为负光焦度透镜,所述第六透镜(160)为正光焦度透镜;
    所述第一透镜(110)、所述第二透镜(120)、所述第四透镜(140)和所述第五透镜(150)分别为塑胶非球面透镜;所述第三透镜(130)为玻璃球面透镜或塑胶非球面透镜;所述第六透镜(160)为玻璃球面透镜或塑胶非球面透镜。
  2. 根据权利要求1所述的定焦镜头,其中,透镜邻近所述物面一侧的表面为物方表面,透镜邻近所述像面一侧的表面为像方表面;
    所述第一透镜(110)的物方表面朝向所述物面凸起,所述第一透镜(110)的像方表面朝向所述像面凹陷;
    所述第二透镜(120)的物方表面朝向所述物面凹陷,所述第二透镜(120)的像方表面朝向所述像面凹陷,或者,所述第二透镜(120)的物方表面朝向所述物面凸起,所述第二透镜(120)的像方表面朝向所述像面凹陷;
    所述第三透镜(130)的物方表面朝向所述物面凸起,所述第三透镜(130)的像方表面朝向所述像面凸起;
    所述第四透镜(140)的物方表面朝向所述物面凸起,所述第四透镜(140)的像方表面朝向所述像面凸起;
    所述第五透镜(150)的物方表面朝向所述物面凹陷,所述第五透镜(150)的像方表面朝向所述像面凹陷;
    所述第六透镜(160)的物方表面朝向所述物面凸起,所述第六透镜(160)的像方表面朝向所述像面凸起。
  3. 根据权利要求1所述的定焦镜头,其中,所述定焦镜头的光焦度为
    Figure PCTCN2022137393-appb-100001
    所述第一透镜(110)的光焦度为
    Figure PCTCN2022137393-appb-100002
    所述第二透镜(120)的光焦度为
    Figure PCTCN2022137393-appb-100003
    所述第三透镜(130)的光焦度为
    Figure PCTCN2022137393-appb-100004
    所述第四透镜(140)的光焦度为
    Figure PCTCN2022137393-appb-100005
    所述第五透镜(150)的光焦度为
    Figure PCTCN2022137393-appb-100006
    其中:
    Figure PCTCN2022137393-appb-100007
  4. 根据权利要求3所述的定焦镜头,其中,所述第一透镜(110)的折射 率为Nd1,所述第二透镜(120)的折射率为Nd2,所述第三透镜(130)的折射率为Nd3,所述第六透镜(160)的折射率为Nd6,所述第六透镜(160)的光焦度为
    Figure PCTCN2022137393-appb-100008
    其中:
    Nd1>1.4,1.4≤Nd2≤1.7,Nd3>1.4,
    Figure PCTCN2022137393-appb-100009
  5. 根据权利要求3所述的定焦镜头,其中,所述第一透镜(110)的厚度为D1,其中:
    Figure PCTCN2022137393-appb-100010
  6. 根据权利要求1所述的定焦镜头,其中,所述定焦镜头的对角视场角为DFOV,其中:DFOV>120°。
  7. 根据权利要求1所述的定焦镜头,其中,沿光轴方向,所述第一透镜(110)的物侧面至像面的距离为TTL,其中:TTL<15.1mm。
  8. 根据权利要求1所述的定焦镜头,所述定焦镜头还包括光阑,所述光阑设置于所述第三透镜(130)和所述第四透镜(140)之间的光路中。
  9. 根据权利要求1所述的定焦镜头,其中,所述塑胶非球面透镜的非球面满足:
    Figure PCTCN2022137393-appb-100011
    其中,z表示非球面Z向的轴向矢高;r表示非球面上的点到光轴的距离;c表示拟合球面的曲率,数值上为曲率半径的倒数;k表示拟合圆锥系数;A、B、C、D、E、F分别表示非球面多项式的4阶、6阶、8阶、10阶、12阶、14阶系数。
PCT/CN2022/137393 2021-12-14 2022-12-08 定焦镜头 WO2023109621A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111531147.XA CN114153058A (zh) 2021-12-14 2021-12-14 一种定焦镜头
CN202111531147.X 2021-12-14

Publications (1)

Publication Number Publication Date
WO2023109621A1 true WO2023109621A1 (zh) 2023-06-22

Family

ID=80450839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137393 WO2023109621A1 (zh) 2021-12-14 2022-12-08 定焦镜头

Country Status (2)

Country Link
CN (1) CN114153058A (zh)
WO (1) WO2023109621A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114153058A (zh) * 2021-12-14 2022-03-08 东莞市宇瞳光学科技股份有限公司 一种定焦镜头
TWI805283B (zh) * 2022-03-22 2023-06-11 紘立光電股份有限公司 光學攝像透鏡組、成像裝置及電子裝置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105204140A (zh) * 2015-10-28 2015-12-30 东莞市宇瞳光学科技有限公司 一种高清超广角定焦镜头
CN106842500A (zh) * 2016-12-27 2017-06-13 东莞市宇瞳光学科技股份有限公司 高清鱼眼镜头
JP2018116076A (ja) * 2017-01-16 2018-07-26 富士フイルム株式会社 撮像レンズおよび撮像装置
CN110727087A (zh) * 2019-12-17 2020-01-24 江西联创电子有限公司 广角镜头
CN112433345A (zh) * 2020-12-07 2021-03-02 天津欧菲光电有限公司 光学镜头、摄像头模组、电子装置和车辆
CN113589480A (zh) * 2021-07-22 2021-11-02 东莞市长益光电有限公司 一种可耐高低温的高性价比玻塑混合鱼眼镜头
CN114153058A (zh) * 2021-12-14 2022-03-08 东莞市宇瞳光学科技股份有限公司 一种定焦镜头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105204140A (zh) * 2015-10-28 2015-12-30 东莞市宇瞳光学科技有限公司 一种高清超广角定焦镜头
CN106842500A (zh) * 2016-12-27 2017-06-13 东莞市宇瞳光学科技股份有限公司 高清鱼眼镜头
JP2018116076A (ja) * 2017-01-16 2018-07-26 富士フイルム株式会社 撮像レンズおよび撮像装置
CN110727087A (zh) * 2019-12-17 2020-01-24 江西联创电子有限公司 广角镜头
CN112433345A (zh) * 2020-12-07 2021-03-02 天津欧菲光电有限公司 光学镜头、摄像头模组、电子装置和车辆
CN113589480A (zh) * 2021-07-22 2021-11-02 东莞市长益光电有限公司 一种可耐高低温的高性价比玻塑混合鱼眼镜头
CN114153058A (zh) * 2021-12-14 2022-03-08 东莞市宇瞳光学科技股份有限公司 一种定焦镜头

Also Published As

Publication number Publication date
CN114153058A (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
WO2020093725A1 (zh) 摄像光学系统
CN105527694B (zh) 光学镜头
WO2023109621A1 (zh) 定焦镜头
TWI720901B (zh) 光學鏡頭
WO2020134026A1 (zh) 光学成像系统
CN110007447B (zh) 一种定焦镜头
WO2021012771A1 (zh) 光学成像镜头
WO2019137055A1 (zh) 摄像透镜系统
WO2021042954A1 (zh) 摄像镜头组
WO2020134128A1 (zh) 成像镜头
WO2019233159A1 (zh) 光学成像镜头
WO2019192160A1 (zh) 光学成像镜头
WO2020177310A1 (zh) 光学成像镜头
WO2021189644A1 (zh) 定焦镜头
CN111983789A (zh) 一种鱼眼镜头
CN111722369A (zh) 一种超广角镜头
CN214669834U (zh) 一种光学镜头
WO2023109491A1 (zh) 车载镜头
CN112305718A (zh) 一种定焦镜头
CN112327452B (zh) 一种超短4k黑光定焦镜头
CN209895076U (zh) 一种定焦镜头
CN218497247U (zh) 一种定焦镜头
CN112305717A (zh) 一种定焦镜头
CN112904537A (zh) 一种光学摄像镜头
TWI801980B (zh) 廣角鏡頭

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906369

Country of ref document: EP

Kind code of ref document: A1