WO2023109491A1 - 车载镜头 - Google Patents

车载镜头 Download PDF

Info

Publication number
WO2023109491A1
WO2023109491A1 PCT/CN2022/134740 CN2022134740W WO2023109491A1 WO 2023109491 A1 WO2023109491 A1 WO 2023109491A1 CN 2022134740 W CN2022134740 W CN 2022134740W WO 2023109491 A1 WO2023109491 A1 WO 2023109491A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
vehicle
image
plane
power
Prior art date
Application number
PCT/CN2022/134740
Other languages
English (en)
French (fr)
Inventor
李泽民
张占军
封文轩
张登全
Original Assignee
东莞市宇瞳光学科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞市宇瞳光学科技股份有限公司 filed Critical 东莞市宇瞳光学科技股份有限公司
Publication of WO2023109491A1 publication Critical patent/WO2023109491A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles

Definitions

  • the embodiments of the present application relate to the technical field of optical devices, for example, to a vehicle lens.
  • the wide-angle lens is the most widely used lens in the field of vehicle lenses. It can collect information outside the vehicle to the largest extent and escort autonomous driving.
  • Traditional wide-angle vehicle lenses are generally suitable for small target surface sensors (small imaging surface), and the F/No (F-Number, relative aperture, or aperture factor F) value of the lens is too large, resulting in small luminous flux and affecting lens lighting This makes the imaging image of the lens more noisy in low-light environments, which seriously interferes with the vehicle recognition system and affects driving safety.
  • F/No F-Number, relative aperture, or aperture factor F
  • An embodiment of the present application provides a vehicle lens.
  • An embodiment of the present application provides a vehicle-mounted lens, including a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a seventh lens arranged in sequence along the optical axis from the object plane to the image plane ;
  • the first lens is a negative power lens
  • the second lens is a negative power lens
  • the third lens is a positive power lens
  • the fifth lens is a positive power lens
  • the sixth lens is a negative power lens
  • the seventh lens is a positive power lens.
  • the lens is a positive power lens
  • the fourth lens is a positive power lens or a negative power lens.
  • FIG. 1 is a schematic structural diagram of a vehicle-mounted lens provided in Embodiment 1 of the present application;
  • Fig. 2 is a spherical aberration curve diagram of the vehicle-mounted lens in Embodiment 1 of the present application;
  • FIG. 3 is a field curvature graph of the vehicle-mounted lens in Embodiment 1 of the present application.
  • FIG. 4 is a light aberration diagram of the vehicle-mounted lens in Embodiment 1 of the present application.
  • FIG. 5 is a schematic structural diagram of a vehicle-mounted lens provided in Embodiment 2 of the present application.
  • Fig. 6 is a spherical aberration curve diagram of the vehicle-mounted lens in Embodiment 2 of the present application.
  • FIG. 7 is a field curvature graph of the vehicle-mounted lens in Embodiment 2 of the present application.
  • FIG. 8 is a light aberration diagram of the vehicle-mounted lens in Embodiment 2 of the present application.
  • FIG. 9 is a schematic structural diagram of a vehicle-mounted lens provided in Embodiment 3 of the present application.
  • Fig. 10 is a spherical aberration curve diagram of the vehicle-mounted lens in Embodiment 3 of the present application.
  • Fig. 11 is a field curvature curve diagram of the vehicle-mounted lens in Embodiment 3 of the present application.
  • FIG. 12 is a light aberration diagram of the vehicle-mounted lens in Embodiment 3 of the present application.
  • An embodiment of the present application provides a vehicle-mounted lens to solve the problem of small light transmission and insufficient light input of the traditional vehicle-mounted lens, improve the lighting performance of the vehicle-mounted lens, and ensure driving safety.
  • FIG. 1 is a schematic structural diagram of a vehicle-mounted lens provided in Embodiment 1 of the present application.
  • the vehicle-mounted lens provided in the embodiment of the present application includes a first lens 110 arranged in sequence along the optical axis from the object plane to the image plane, The second lens 120, the third lens 130, the fourth lens 140, the fifth lens 150, the sixth lens 160 and the seventh lens 170;
  • the first lens 110 is a negative power lens
  • the second lens 120 is a negative power lens lens
  • the third lens 130 is a positive power lens
  • the fifth lens 150 is a positive power lens
  • the sixth lens 160 is a negative power lens
  • the seventh lens 170 is a positive power lens;
  • the fourth lens 140 is a positive power lens power lenses or negative power lenses.
  • the focal power is equal to the difference between the image beam convergence and the object beam convergence, which characterizes the ability of the optical system to deflect light.
  • the greater the absolute value of the focal power the stronger the ability to bend light, and the smaller the absolute value of the focal power, the weaker the ability to bend light.
  • the focal power is positive, the refraction of light is converging; when the focal power is negative, the refraction of light is divergent.
  • Optical power can be applied to characterize a certain refraction surface of a lens (that is, a surface of the lens), can be applied to characterize a certain lens, and can also be used to characterize a system formed by multiple lenses (that is, a lens group).
  • each lens can be fixed in a lens barrel (not shown in FIG. 1 ), and the first lens 110 is set as a negative power lens.
  • This lens is mainly used to converge light into the optical lens.
  • the incident angle of the system; the second lens 120 is a negative power lens, which is mainly used to correct off-axis aberration; the third lens 130 is a positive power lens, which is mainly used to correct spherical aberration; the fourth lens 140 It is a positive refractive power lens (or a negative refractive power lens), which is mainly used to increase the clear aperture of the system and improve the luminous flux;
  • the fifth lens 150 is a positive refractive power lens, and the sixth lens 160 is a negative refractive power lens.
  • the fifth lens 150 cooperates with the sixth lens 160 to balance high and low temperature;
  • the seventh lens 170 is a positive power lens, which is mainly used to correct astigmatism.
  • the focal power of the entire vehicle lens is allocated according to a certain ratio, which can ensure the balance of the incident angle of the front and rear lenses, reduce the sensitivity of the lens, and improve the possibility of production.
  • by rationally configuring the focal power of each lens there is It is beneficial to reduce distortion and improve image quality.
  • the vehicle-mounted lens provided by the embodiment of the present application uses seven lenses and reasonably sets the focal power of each lens to ensure the imaging quality, increase the clear aperture of the system, improve the lighting performance of the vehicle-mounted lens, and solve the problem of traditional vehicle-mounted lenses.
  • the lens has a small light transmission and insufficient light input to ensure driving safety.
  • the first lens 110 includes a glass spherical lens
  • the second lens 120, the fourth lens 140, the sixth lens 160 and the seventh lens 170 all include plastic aspheric lenses
  • the third lens 130 includes a glass spherical lens lens or a plastic aspheric lens
  • the fifth lens 150 includes a glass spherical lens or a plastic aspheric lens.
  • the optional third lens 130 is a glass spherical lens, and the fifth lens 150 is a glass spherical lens; in another embodiment, the optional third lens 130 is a glass spherical lens, and the fifth lens 150 is a plastic Aspheric lens; in another embodiment, the optional third lens 130 is a plastic aspheric lens, and the fifth lens 150 is a glass spherical lens; in another embodiment, the optional third lens 130 is a plastic aspheric lens , the fifth lens 150 is a plastic aspheric lens.
  • the characteristic of the aspheric lens is that the curvature changes continuously from the center of the lens to the periphery of the lens.
  • aspherical lenses which have a constant curvature from the center of the lens to the periphery of the lens
  • aspherical lenses have better curvature radius characteristics, which have the advantages of improving distortion and astigmatism.
  • the aberration that occurs during imaging can be eliminated as much as possible, thereby improving the imaging quality of the lens.
  • at least four plastic aspheric lenses are provided to ensure good imaging quality.
  • Spherical lenses are characterized by a constant curvature from the center of the lens to the periphery of the lens, allowing easy lens setup. Furthermore, the thermal expansion coefficient of the lens made of glass is small, and the stability is good; when the ambient temperature used by the vehicle lens changes greatly, it is beneficial to keep the focal length of the vehicle lens stable.
  • the material of the plastic aspheric lens can be various plastics known to those skilled in the art, and the material of the glass spherical lens can be various types of glass known to those skilled in the art, which will not be described in this embodiment of the present application. Nor is it limited. Since the lens cost of plastic material is much lower than the lens cost of glass material, in the vehicle-mounted lens provided in the embodiment of the present application, a glass lens and a plastic lens are mixed and matched, which can effectively ensure the optical performance of the vehicle-mounted lens. The cost of the vehicle lens can be effectively controlled; at the same time, each lens material has a mutual compensation effect, which can ensure normal use in high and low temperature environments.
  • the surface of the lens on the side adjacent to the object plane is defined as the object-side surface, and the surface of the lens on the side adjacent to the image plane is the image-side surface, wherein the object-side surface of the first lens 110 is convex toward the object plane, The image side surface of the first lens 110 is concave toward the image plane; the object side surface of the second lens 120 is concave toward the object plane, and the image side surface of the second lens 120 is concave toward the image plane, or the object side surface of the second lens 120 is toward The object plane is convex, and the image side surface of the second lens 120 is concave towards the image plane; the object side surface of the third lens 130 is convex towards the object plane, and the image side surface of the third lens 130 is convex towards the image plane; the fourth lens 140 The object side surface of the fifth lens 150 is convex towards the object plane, and the image side surface of the fourth lens 140 is convex towards the image plane, and the image side surface of the fifth lens
  • FIG. 1 uses the object-side surface of the second lens 120 to be concave toward the object plane, and the image-side surface of the second lens 120 to be concave toward the image plane as an example.
  • the object side surface of the optional second lens 120 is convex toward the object plane
  • the image side surface of the second lens 120 is concave toward the image plane.
  • the focal power of the vehicle lens is The focal power of the second lens 120 is The focal power of the third lens 130 is The focal power of the fourth lens 140 is The focal power of the fifth lens 150 is The focal power of the sixth lens 160 is in:
  • the refractive index of the first lens 110 is Nd1
  • the refractive index of the second lens 120 is Nd2
  • the refractive index of the third lens 130 is Nd3, wherein: Nd1>1.7, 1.4 ⁇ Nd2 ⁇ 1.7,
  • the refractive index is the ratio of the propagation speed of light in vacuum to the propagation speed of light in the medium, which is mainly used to describe the refraction ability of materials for light, and different materials have different refractive indices.
  • the distance from the object side of the first lens 110 to the image plane (that is, the total optical length) is TTL, and the thickness of the first lens 110 is H1, where:
  • the distance from the image side of the seventh lens 170 to the image plane is BFL
  • the thickness of the seventh lens 170 is H7, wherein: H7/BFL ⁇ 0.3 .
  • the aperture factor of the vehicle lens is F, where: F ⁇ 1.65.
  • the aperture factor is a parameter used to characterize the size of the aperture.
  • the aperture factor F is equal to the ratio of the focal length of the lens to the clear aperture.
  • the F value is actually proportional to the reciprocal of the radius of the aperture hole, and the amount of light transmitted by the lens is proportional to the area of the aperture. Therefore, the luminous flux is inversely proportional to the square of the F value. The smaller the F value, the larger the aperture. The greater the luminous flux.
  • the aperture coefficient of this embodiment is very small, and a vehicle-mounted lens with a large aperture can be realized. The vehicle-mounted lens still has good lighting performance under low illumination, thereby helping to ensure driving safety.
  • the diagonal field of view of the vehicle lens is DFOV, wherein: DFOV ⁇ 175°.
  • the vehicle-mounted lens provided in the embodiment of the present application has the characteristics of a large field of view, and can collect images under a larger field of view, which is beneficial to ensure driving safety.
  • the vehicle-mounted lens provided by the embodiment of the present application can make the vehicle-mounted lens with low cost and high performance by using seven lenses and reasonably setting parameters such as the focal power, refractive index, surface shape, material and thickness of each lens. It can meet the conditions of use from -40°C to 90°C. At the same time, it has the advantages of large aperture, large field of view, high pixels, and large target surface. It can match 1/2.7′′ large target surface chips at most, and the total length is less than 17.2 mm, compact structure, which effectively solves the shortcomings of traditional vehicle lenses, such as small light transmission and insufficient light input.
  • curvature radius, thickness, refractive index and fitting conic coefficient K of each lens surface in the vehicle-mounted lens are described below.
  • “surf” represents the surface number, and the surface number is numbered according to the surface order of each lens.
  • “S1" represents the front surface of the first lens 110
  • “S2” represents the rear surface of the first lens 110
  • “S8” Represents the object surface of the fourth lens 140
  • "S9” represents the image surface of the fourth lens 140
  • “STO” represents the aperture of the lens
  • the radius of curvature represents the degree of curvature of the lens surface
  • a positive value represents the The surface is bent to the side of the image plane, and the negative value means that the surface is bent to the side of the object plane
  • "PL” means that the surface is a plane, and the radius of curvature is infinite
  • the thickness represents the central axial distance from the current surface to the next surface, and the curvature
  • the units of radius and thickness are millimeters (mm);
  • the refractive index represents the deflection ability of the material between the current surface and the next surface for light, and a blank space represents that the current
  • the radius of curvature is not "PL"
  • the lens corresponding to the K value is a glass spherical lens.
  • the first lens 110 and the third lens 130 are glass spherical lenses, and the rest of the lenses are plastic aspheric lenses.
  • the aspheric surface of the plastic aspheric lens satisfies:
  • z represents the axial sagittal height of the aspheric surface in the Z direction; r is the height of the aspheric surface, that is, the distance from a point on the aspheric surface to the optical axis; c represents the curvature of the fitted spherical surface, which is the reciprocal of the radius of curvature in value; k represents Fitting conic coefficients; A, B, C, D, E, and F represent the 4th, 6th, 8th, 10th, 12th, and 14th order coefficients of the aspheric polynomial, respectively.
  • FIG. 2 is a spherical aberration curve diagram of the vehicle-mounted lens in Embodiment 1 of the present application. As shown in FIG. ) is within 0.05mm, different wavelengths are marked with 1, 2, 3, 4 and 5 in the figure, where 1, 2, 3, 4 and 5 correspond to 0.436 ⁇ m, 0.487 ⁇ m, Wavelengths of 0.545 ⁇ m, 0.587 ⁇ m and 0.656 ⁇ m. It can be seen from Figure 2 that the curves of different wavelengths are relatively concentrated, indicating that the spherical aberration of the vehicle lens is very small.
  • Fig. 3 is the field curvature curve diagram of the vehicle-mounted lens in the first embodiment of the present application.
  • the horizontal coordinate represents the size of the field curvature, and the unit is mm; the vertical coordinate represents the normalized image height, and there is no unit; wherein T represents the meridian, S represents arc loss; as can be seen from Figure 3, the vehicle-mounted lens provided by this embodiment is effectively controlled on field curvature from light with a wavelength of 436nm to light with a wavelength of 656nm, that is, when imaging, the image quality of the center and the surrounding The difference in image quality is small.
  • Figure 4 is the light aberration diagram of the vehicle-mounted lens in Example 1 of the present application.
  • the curves of the vehicle-mounted lens under different field of view angles are very concentrated, which ensures that the aberrations in different field of view areas are small, which means that the vehicle-mounted lens has better corrected the aberration of the optical system.
  • FIG. 5 is a schematic structural diagram of a vehicle-mounted lens provided in Embodiment 2 of the present application.
  • the vehicle-mounted lens provided in the embodiment of the present application includes first lenses 110 arranged in sequence along the optical axis from the object plane to the image plane , the second lens 120, the third lens 130, the fourth lens 140, the fifth lens 150, the sixth lens 160 and the seventh lens 170;
  • the first lens 110 is a negative power lens
  • the second lens 120 is a negative power lens power lens
  • the third lens 130 is a positive power lens
  • the fifth lens 150 is a positive power lens
  • the sixth lens 160 is a negative power lens
  • the seventh lens 170 is a positive power lens;
  • the fourth lens 140 is a positive light power lens or negative power lens.
  • the setting ranges of parameters such as the focal power, refractive index, and thickness of each lens are the same as those in Embodiment 1, and will not be repeated here.
  • the first lens 110 and the fifth lens 150 are glass spherical lenses, and the rest of the lenses are plastic aspheric lenses.
  • Table 3 illustrates the setting parameters of each lens in the vehicle-mounted lens provided in Embodiment 2 of the present application in another feasible implementation manner, and the vehicle-mounted lens in Table 3 corresponds to the vehicle-mounted lens shown in FIG. 5 .
  • “surf” represents the surface number, and the surface number is numbered according to the surface order of each lens.
  • “S1" represents the object plane surface of the first lens 110
  • “S2” represents the image of the first lens 110
  • “S8” represents the object plane surface of the fourth lens 140
  • “S9” represents the image plane surface of the fourth lens 140
  • “STO” represents the aperture of the lens
  • the radius of curvature represents the curvature of the lens surface
  • Positive value means that the surface is bent to the side of the image plane
  • negative value means that the surface is bent to the side of the object plane
  • “PL” means that the surface is a plane
  • the radius of curvature is infinite
  • the thickness means the distance from the current surface to the next surface
  • the axial distance of the center, the radius of curvature and the thickness are all in millimeters (mm)
  • the refractive index represents the deflection ability of the material between the current surface and the next surface for light
  • a blank space represents the current position is
  • FIG. 6 is a spherical aberration curve diagram of the vehicle-mounted lens in Embodiment 2 of the present application. As shown in FIG. ) is within 0.04mm, different wavelengths are marked with 1, 2, 3, 4 and 5 in the figure, where 1, 2, 3, 4 and 5 correspond to 0.436 ⁇ m, 0.487 ⁇ m, Wavelengths of 0.545 ⁇ m, 0.587 ⁇ m and 0.656 ⁇ m. It can be seen from Figure 6 that the curves of different wavelengths are relatively concentrated, indicating that the spherical aberration of the vehicle lens is very small.
  • Fig. 7 is the field curvature curve diagram of the vehicle-mounted lens in the second embodiment of the present application.
  • the horizontal coordinate represents the size of the field curvature, and the unit is mm; the vertical coordinate represents the normalized image height, and there is no unit; where T represents the meridian, S represents arc loss; as can be seen from Figure 7, the vehicle-mounted lens provided by this embodiment is effectively controlled on field curvature from light with a wavelength of 436nm to light with a wavelength of 656nm, that is, when imaging, the image quality of the center and the surrounding The difference in image quality is small.
  • Figure 8 is a light aberration diagram of the vehicle-mounted lens in Example 2 of the present application.
  • the curves of the lens under different field of view angles are very concentrated, which ensures that the aberrations in different field of view areas are small, which means that the vehicle lens can better correct the aberrations of the optical system.
  • FIG. 9 is a schematic structural diagram of a vehicle-mounted lens provided in Embodiment 3 of the present application.
  • the vehicle-mounted lens provided in the embodiment of the present application includes first lenses 110 arranged in sequence along the optical axis from the object plane to the image plane, The second lens 120, the third lens 130, the fourth lens 140, the fifth lens 150, the sixth lens 160 and the seventh lens 170;
  • the first lens 110 is a negative power lens
  • the second lens 120 is a negative power lens lens
  • the third lens 130 is a positive power lens
  • the fifth lens 150 is a positive power lens
  • the sixth lens 160 is a negative power lens
  • the seventh lens 170 is a positive power lens;
  • the fourth lens 140 is a positive power lens power lenses or negative power lenses.
  • the setting ranges of parameters such as the focal power, refractive index, and thickness of each lens are the same as those in Embodiment 1, and will not be repeated here.
  • the first lens 110 and the fifth lens 150 are glass spherical lenses, and the rest of the lenses are plastic aspheric lenses.
  • the difference from the vehicle-mounted lens in Embodiment 2 lies in that the values of parameters such as radius of curvature and thickness of some lenses are different.
  • Table 5 illustrates the specific setting parameters of each lens in the vehicle-mounted lens provided in Embodiment 3 of the present application in another feasible implementation manner.
  • the vehicle-mounted lens in Table 5 corresponds to the vehicle-mounted lens shown in FIG. 9 .
  • “surf” represents the surface number, and the surface number is numbered according to the surface order of each lens.
  • “S1" represents the object surface of the first lens 110
  • “S2” represents the image surface of the first lens 110
  • “S8” represents the object plane surface of the fourth lens 140
  • “S9” represents the image plane surface of the fourth lens 140
  • “STO” represents the aperture of the lens
  • the radius of curvature represents the degree of curvature of the lens surface
  • a positive value means that the surface is bent to the side of the image plane, and a negative value means that the surface is bent to the side of the object plane
  • "PL” means that the surface is a plane with an infinite radius of curvature
  • the thickness represents the central axis from the current surface to the next surface
  • the units of distance, radius of curvature and thickness are millimeters (mm)
  • the refractive index represents the deflection ability of the material between the current surface and the next surface for light
  • a blank space represents the current position is air
  • FIG. 10 is a spherical aberration curve diagram of the vehicle-mounted lens in Embodiment 3 of the present application. As shown in FIG. ) is within 0.03mm. Different wavelengths are marked with 1, 2, 3, 4 and 5 in the figure, where 1, 2, 3, 4 and 5 correspond to 0.436 ⁇ m, 0.487 ⁇ m, Wavelengths of 0.545 ⁇ m, 0.587 ⁇ m and 0.656 ⁇ m. It can be seen from Figure 10 that the curves of different wavelengths are relatively concentrated, indicating that the spherical aberration of the vehicle lens is very small.
  • Fig. 11 is a field curvature curve diagram of the vehicle-mounted lens in Example 3 of the present application.
  • the horizontal coordinate represents the size of the field curvature, and the unit is mm; the vertical coordinate represents the normalized image height, without a unit; where T represents the meridian, S represents arc loss; as can be seen from Figure 11, the vehicle-mounted lens provided by this embodiment is effectively controlled in terms of field curvature from light with a wavelength of 436nm to light with a wavelength of 656nm, that is, when imaging, the image quality of the center and the surrounding The difference in image quality is small.
  • Figure 12 is the light aberration diagram of the vehicle-mounted lens in the third embodiment of the present application.
  • the curves of the lens under different field of view angles are very concentrated, which ensures that the aberrations in different field of view areas are small, which means that the vehicle lens can better correct the aberrations of the optical system.
  • the vehicle-mounted lens provided by the embodiment of the present application can make the vehicle-mounted lens have the characteristics of low cost and high performance by reasonably setting the number of lenses and parameters such as the focal power, refractive index, surface shape, material, and thickness of each lens. It can meet the use conditions of -40°C ⁇ 90°C, and has the advantages of large aperture, large field of view, high pixels, and large target surface. It can match the chip with a large target surface of 1/2.7′′ at most, and the total length is less than 17.2mm. It is compact and effectively solves the shortcomings of traditional vehicle lenses, such as small light transmission and insufficient light input.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种车载镜头,包括沿光轴从物面到像面依次排列的第一透镜(110)、第二透镜(120)、第三透镜(130)、第四透镜(140)、第五透镜(150)、第六透镜(160)和第七透镜(170);第一透镜(110)为负光焦度透镜,第二透镜(120)为负光焦度透镜,第三透镜(130)为正光焦度透镜,第五透镜(150)为正光焦度透镜,第六透镜(160)为负光焦度透镜,第七透镜(170)为正光焦度透镜;第四透镜(140)为正光焦度透镜或负光焦度透镜。

Description

车载镜头
本申请要求在2021年12月14日提交中国专利局、申请号为202123135943.X的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及光学器件技术领域,例如涉及一种车载镜头。
背景技术
随着自动驾驶技术的进步,越来越多的成像镜头开始搭载在汽车上,并且对车载摄像头的规格要求越来越高。其中,广角镜头属于车载镜头领域使用最广泛的镜头,它能够最大范围采集车外信息,为自动驾驶保驾护航。
传统广角车载镜头普遍适用于小靶面传感器(成像面小),而且镜头的F/No(F-Number,相对孔径,或称之为光圈系数F)数值太大,导致光通量小,影响镜头采光性,使得镜头在低照度环境中成像画面噪点较多,严重干扰车辆识别系统,影响行车安全性。
发明内容
本申请实施例提供一种车载镜头。
本申请实施例提供一种车载镜头,包括沿光轴从物面到像面依次排列的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜;
第一透镜为负光焦度透镜,第二透镜为负光焦度透镜,第三透镜为正光焦度透镜,第五透镜为正光焦度透镜,第六透镜为负光焦度透镜,第七透镜为正光焦度透镜;第四透镜为正光焦度透镜或负光焦度透镜。
附图说明
图1为本申请实施例一提供的一种车载镜头的结构示意图;
图2为本申请实施例一中车载镜头的球差曲线图;
图3为本申请实施例一中车载镜头的场曲曲线图;
图4为本申请实施例一中车载镜头的光线像差图;
图5为本申请实施例二提供的一种车载镜头的结构示意图;
图6为本申请实施例二中车载镜头的球差曲线图;
图7为本申请实施例二中车载镜头的场曲曲线图;
图8为本申请实施例二中车载镜头的光线像差图;
图9为本申请实施例三提供的一种车载镜头的结构示意图;
图10为本申请实施例三中车载镜头的球差曲线图;
图11为本申请实施例三中车载镜头的场曲曲线图;
图12为本申请实施例三中车载镜头的光线像差图。
具体实施方式
下面结合附图和实施例对本申请进行说明。
本申请实施例提供一种车载镜头,以解决传统车载镜头通光小,进光量不足的问题,提高车载镜头的采光性,保证行车安全。
实施例一
图1为本申请实施例一提供的一种车载镜头的结构示意图,如图1所示,本申请实施例提供的车载镜头包括沿光轴从物面到像面依次排列的第一透镜110、第二透镜120、第三透镜130、第四透镜140、第五透镜150、第六透镜160和第七透镜170;第一透镜110为负光焦度透镜,第二透镜120为负光焦度透镜,第三透镜130为正光焦度透镜,第五透镜150为正光焦度透镜,第六透镜160为负光焦度透镜,第七透镜170为正光焦度透镜;第四透镜140为正光焦度透镜或负光焦度透镜。
示例性的,光焦度等于像方光束汇聚度与物方光束汇聚度之差,它表征光学系统偏折光线的能力。光焦度的绝对值越大,对光线的弯折能力越强,光焦度的绝对值越小,对光线的弯折能力越弱。光焦度为正数时,光线的屈折是汇聚性的;光焦度为负数时,光线的屈折是发散性的。光焦度可以适用于表征一个透镜的某一个折射面(即透镜的一个表面),可以适用于表征某一个透镜,也可以适用于表征多个透镜共同形成的系统(即透镜组)。在本实施例提供的车载镜头中,可以将各个透镜固定于一个镜筒(图1中未示出)内,设置第一透镜110为负光焦度透镜,此透镜主要用于收敛光线进入光学系统的入射角;第二透镜120为负光焦度透镜,此透镜主要用于矫正轴外像差;第三透镜130为正光焦度透镜,此透镜主要用于矫正球差;第四透镜140为正光焦度透镜(或者负光焦度透镜),此透镜主要用于增加系统通光孔径,提高光通量;第五透镜150为正光焦度透镜,第六透镜160为负光焦度透镜,第五透镜150和第六透镜160配合,用于平衡高低温;第七透镜170为正光焦度透镜,此透镜主要用于矫正像散。整个车载镜头的光焦度按照一定比例分配,可以保证前后组镜片的入射 角大小的均衡性,降低镜头的敏感性,提高生产的可能性,同时,通过合理配置各个透镜的光焦度,有利于减小畸变,提高成像质量。
综上,本申请实施例提供的车载镜头,通过使用七片透镜,并合理设置各个透镜的光焦度,可以保证成像质量,同时提高系统通光孔径,提高车载镜头的采光性,解决传统车载镜头通光小,进光量不足的问题,保证行车安全。
在上述实施例的基础上,第一透镜110包括玻璃球面镜片,第二透镜120、第四透镜140、第六透镜160和第七透镜170均包括塑胶非球面透镜;第三透镜130包括玻璃球面透镜或塑胶非球面透镜;第五透镜150包括玻璃球面透镜或塑胶非球面透镜。
在一实施例中,可选第三透镜130为玻璃球面透镜,第五透镜150为玻璃球面透镜;在另一实施例中,可选第三透镜130为玻璃球面透镜,第五透镜150为塑胶非球面透镜;在另一实施例中,可选第三透镜130为塑胶非球面透镜,第五透镜150为玻璃球面透镜;在另一实施例中,可选第三透镜130为塑胶非球面透镜,第五透镜150为塑胶非球面透镜。
其中,非球面透镜的特点是从镜片中心到镜片周边,曲率是连续变化的。与从镜片中心到镜片周边具有恒定曲率的球面镜片不同,非球面镜片具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面镜片后,能够尽可能地消除在成像的时候出现的像差,从而提升镜头的成像质量。本申请实施例提供的车载镜头中,通过设置至少4片塑胶非球面镜片,可以保证成像质量好。
球面透镜的特点是从镜片中心到镜片周边具有恒定曲率,保证透镜的设置方式简单。进一步的,玻璃材质的镜片热膨胀系数较小,稳定性良好;当车载镜头所使用的环境温度变化较大时,有利于保持车载镜头的焦距稳定。
在一实施例中,塑胶非球面透镜的材质可为本领域技术人员可知的各种塑胶,玻璃球面透镜的材质为本领域技术人员可知的各种类型的玻璃,本申请实施例对此不赘述也不作限定。由于塑胶材质的透镜成本远低于玻璃材质的透镜成本,本申请实施例提供的车载镜头中,采用了玻璃透镜与塑胶透镜混合搭配的方式,可使得在确保车载镜头的光学性能的同时能够有效地控制车载镜头的成本;同时各透镜材质具有互相补偿作用,可保证在高低温环境下仍可正常使用。
在上述实施例的基础上,定义透镜邻近物面一侧的表面为物方表面,透镜邻近像面一侧的表面为像方表面,其中第一透镜110的物方表面朝向物面凸起, 第一透镜110的像方表面朝向像面凹陷;第二透镜120的物方表面朝向物面凹陷,第二透镜120的像方表面朝向像面凹陷,或者,第二透镜120的物方表面朝向物面凸起,第二透镜120的像方表面朝向像面凹陷;第三透镜130的物方表面朝向物面凸起,第三透镜130的像方表面朝向像面凸起;第四透镜140的物方表面朝向物面凹陷,第四透镜140的像方表面朝向像面凸起;第五透镜150的物方表面朝向物面凸起,第五透镜150的像方表面朝向像面凸起;第六透镜160的物方表面朝向物面凹陷,第六透镜160的像方表面朝向像面凹陷;第七透镜170的物方表面朝向物面凸起,第七透镜170的像方表面朝向像面凸起。
示例性的,如图1所示,对于第二透镜120,图1以第二透镜120的物方表面朝向物面凹陷,第二透镜120的像方表面朝向像面凹陷为例进行示意,在其他实施例中,可选第二透镜120的物方表面朝向物面凸起,第二透镜120的像方表面朝向像面凹陷。通过合理设置各个透镜的面型,保证各个透镜的光焦度满足上述实施例中光焦度要求的同时,还可以保证整个车载镜头结构紧凑,车载镜头集成度高,减小镜头的整体体积。
在上述实施例的基础上,车载镜头的光焦度为
Figure PCTCN2022134740-appb-000001
第二透镜120的光焦度为
Figure PCTCN2022134740-appb-000002
第三透镜130的光焦度为
Figure PCTCN2022134740-appb-000003
第四透镜140的光焦度为
Figure PCTCN2022134740-appb-000004
第五透镜150的光焦度为
Figure PCTCN2022134740-appb-000005
第六透镜160的光焦度为
Figure PCTCN2022134740-appb-000006
其中:
Figure PCTCN2022134740-appb-000007
Figure PCTCN2022134740-appb-000008
通过按照一定的比例分配整个车载镜头的光焦度,可以保证前后镜片的入射角大小的均衡性,平衡高低温,降低镜片的敏感性,提高镜头的稳定性,同时有利于减小畸变,使成像系统球差和场曲同时小,保证轴上和离轴视场像质。通过以上镜片组成的光学系统,光学总长较短,从而保证镜头整体的体积小。
在上述实施例的基础上,第一透镜110折射率为Nd1,第二透镜120的折射率为Nd2,第三透镜130的折射率为Nd3,其中:Nd1>1.7,1.4≤Nd2≤1.7,
Figure PCTCN2022134740-appb-000009
其中,折射率是光在真空中的传播速度与光在该介质中的传播速度之比,主要用来描述材料对光的折射能力,不同的材料的折射率不同。通过合理设置车载镜头中各透镜的折射率,有利于实现车载镜头的小型化设计;同时,有利于实现较高的像素分辨率与较大的光圈。
在上述实施例的基础上,沿光轴方向,第一透镜110的物侧面至像面的距离(即光学总长)为TTL,第一透镜110的厚度为H1,其中:|TTL/H1|≥6.5。通过合理设置第一透镜110的厚度和镜头光学总长TTL的比例,可以收敛光线 进入光学系统的入射角,提高进光量,有利于保证行车安全。
在上述实施例的基础上,沿光轴方向,第七透镜170的像侧面至像面的距离(即光学后焦)为BFL,第七透镜170的厚度为H7,其中:H7/BFL≥0.3。通过合理设置第七透镜170的厚度与镜头光学后焦BFL的比例,可以有效矫正像散,提高成像质量。
在上述实施例的基础上,车载镜头的光圈系数为F,其中:F≤1.65。
光圈系数,即F值,是用来表征光圈的大小的参数。光圈系数F等于镜头焦距和通光孔径之比。F数值实际上和光圈孔半径的倒数成正比,而镜头的通光量又和通光孔的面积成正比,因此,光通量与F值的平方成反比关系,F值越小,表示光圈越大,光通量越大。本实施例的光圈系数很小,可实现一种大光圈的车载镜头,该车载镜头在低照度下仍具有很好的采光性,从而有利于保证行车安全。
在上述实施例的基础上,车载镜头的对角视场角为DFOV,其中:DFOV≥175°。本申请实施例提供的车载镜头具有大视场角的特点,可以采集更大视场下的图像,有利于保证行车安全。
综上,本申请实施例提供的车载镜头,通过使用七片透镜,并合理设置各透镜的光焦度、折射率、面型、材质和厚度等参数,可使车载镜头具有低成本、高性能的特点,可以满足-40℃~90℃的使用条件,同时具有大光圈、大视场角、高像素、大靶面的优点,最大可以匹配1/2.7″大靶面芯片,且总长小于17.2mm,结构紧凑,有效解决了传统车载镜头通光小,进光量不足的缺点。
作为一种可行的实施方式,下面对车载镜头中各个透镜表面的曲率半径、厚度、折射率和拟合圆锥系数K进行说明。
表1车载镜头的曲率半径、厚度、折射率和K系数的设计值
Figure PCTCN2022134740-appb-000010
Figure PCTCN2022134740-appb-000011
其中,“surf”代表面序号,面序号根据各个透镜的表面顺序来进行编号,例如,“S1”代表第一透镜110的前表面,“S2”代表第一透镜110的后表面,“S8”代表第四透镜140的物面表面,“S9”代表第四透镜140的像面表面,依次类推;“STO”代表所述镜头的光阑;曲率半径代表透镜表面的弯曲程度,正值代表该表面弯向像面一侧,负值代表该表面弯向物面一侧,其中“PL”代表该表面为平面,曲率半径为无穷大;厚度代表当前表面到下一表面的中心轴向距离,曲率半径和厚度的单位均为毫米(mm);折射率代表当前表面到下一表面之间的材料对光线的偏折能力,空格代表当前位置为空气,折射率为1;K值表示拟合圆锥系数。其中,曲率半径为非“PL”,且K值为空格所对应的透镜为玻璃球面透镜。如表1所示,在实施例一中,第一透镜110和第三透镜130为玻璃球面透镜,其余透镜为塑胶非球面透镜。
在一实施例中,塑胶非球面透镜的非球面满足:
Figure PCTCN2022134740-appb-000012
其中,z表示非球面Z向的轴向矢高;r为非球面的高度,即非球面上的点到光轴的距离;c表示拟合球面的曲率,数值上为曲率半径的倒数;k表示拟合圆锥系数;A、B、C、D、E、F分别表示非球面多项式的4阶、6阶、8阶、10阶、12阶、14阶系数。
接下来以一种可行的实施方式,对非球面透镜的非球面中的数据进行说明。下述表2中,“-3.43651E-04”表示面序号为S3的系数A为-3.43651*10 -4,以此类推。
表2 车载镜头中非球面系数的设计值
Figure PCTCN2022134740-appb-000013
Figure PCTCN2022134740-appb-000014
在一实施例中,图2为本申请实施例一中车载镜头的球差曲线图,如图2所示,该车载镜头在不同波长(0.436μm、0.487μm、0.545μm、0.587μm和0.656μm)下的球差均在0.05mm以内,不同波长在图中分别以1、2、3、4和5的方式进行标记,其中1、2、3、4和5分别对应0.436μm、0.487μm、0.545μm、0.587μm和0.656μm的波长。从图2中可以知道,不同波长曲线相对较集中,说明该车载镜头的球差很小。
图3为本申请实施例一中车载镜头的场曲曲线图,图3中,水平坐标表示场曲的大小,单位为mm;垂直坐标表示归一化像高,没有单位;其中T表示子午,S表示弧失;由图3可以看出,本实施例提供的车载镜头从波长为436nm的光到656nm的光,在场曲上被有效地控制,即在成像时,中心的像质和周边的像质差距较小。
图4为本申请实施例一中车载镜头的光线像差图,如图4所示,不同波长光线(0.436μm、0.487μm、0.545μm、0.587μm和0.656μm,图4中未标示)在该车载镜头的不同视场角下的曲线非常集中,保证了不同视场区域的像差较小,也即说明了该车载镜头较好地校正了光学系统的像差。
实施例二
图5为本申请实施例二的提供的一种车载镜头的结构示意图,如图5所示,本申请实施例提供的车载镜头包括沿光轴从物面到像面依次排列的第一透镜110、第二透镜120、第三透镜130、第四透镜140、第五透镜150、第六透镜160和第七透镜170;第一透镜110为负光焦度透镜,第二透镜120为负光焦度透镜,第三透镜130为正光焦度透镜,第五透镜150为正光焦度透镜,第六透镜160为负光焦度透镜,第七透镜170为正光焦度透镜;第四透镜140为正光焦度透镜或负光焦度透镜。
其中,各个透镜的光焦度、折射率以及厚度等参数的设置范围与实施例一相同,在此不再赘述。
与实施例一中车载镜头的设置方式不同的是,实施例二中,第一透镜110和第五透镜150为玻璃球面透镜,其余透镜为塑胶非球面透镜。
表3以另一种可行的实施方式,说明了本申请实施例二提供的车载镜头中各透镜的设置参数,表3中的车载镜头对应图5所示的车载镜头。
下述表3中,“surf”代表面序号,面序号根据各个透镜的表面顺序来进行 编号,例如,“S1”代表第一透镜110的物面表面,“S2”代表第一透镜110的像面表面,“S8”代表第四透镜140的物面表面,“S9”代表第四透镜140的像面表面,依次类推;“STO”代表所述镜头的光阑;曲率半径代表透镜表面的弯曲程度,正值代表该表面弯向像面一侧,负值代表该表面弯向物面一侧,其中“PL”代表该表面为平面,曲率半径为无穷大;厚度代表当前表面到下一表面的中心轴向距离,曲率半径和厚度的单位均为毫米(mm);折射率代表当前表面到下一表面之间的材料对光线的偏折能力,空格代表当前位置为空气,折射率为1;K值表示拟合圆锥系数。从表3可以看出,本申请实施例二提供的车载镜头中,第一透镜110和第五透镜150为玻璃球面透镜,其余透镜为塑胶非球面透镜。
表3 车载镜头的曲率半径、厚度、折射率和K系数的设计值
Surf 曲率半径 厚度 折射率 K值
S1 14.31 0.80 1.69  
S2 3.03 2.00    
S3 -13.77 0.70 1.64 25.10
S4 3.97 0.56   -1.63
S5 5.76 2.06 1.66 0.24
S6 -5.93 0.05   0.57
STO PL 0.51    
S8 -1.69 0.63 1.54 -0.40
S9 -2.34 0.05   -1.53
S10 3.71 2.71 1.59  
S11 -3.13 0.05    
S12 -4.08 0.60 1.64 -1.37
S13 5.69 0.22   1.57
S14 8.67 1.96 1.54 5.13
S15 -3.73 1.54   -0.68
S16 PL 0.56 1.52  
S17 PL 1.94    
接下来以一种可行的实施方式,对非球面透镜的非球面中的数据进行说明。
表4 车载镜头中非球面系数的设计值
Figure PCTCN2022134740-appb-000015
Figure PCTCN2022134740-appb-000016
其中,“-6.39182E-03”表示面序号为S3的系数A为-6.39182*10 -3,以此类推。
在一实施例中,图6为本申请实施例二中车载镜头的球差曲线图,如图6所示,该车载镜头在不同波长(0.436μm、0.487μm、0.545μm、0.587μm和0.656μm)下的球差均在0.04mm以内,不同波长在图中分别以1、2、3、4和5的方式进行标记,其中1、2、3、4和5分别对应0.436μm、0.487μm、0.545μm、0.587μm和0.656μm的波长。从图6中可以知道,不同波长曲线相对较集中,说明该车载镜头的球差很小。
图7为本申请实施例二中车载镜头的场曲曲线图,图7中,水平坐标表示场曲的大小,单位为mm;垂直坐标表示归一化像高,没有单位;其中T表示子午,S表示弧失;由图7可以看出,本实施例提供的车载镜头从波长为436nm的光到656nm的光,在场曲上被有效地控制,即在成像时,中心的像质和周边的像质差距较小。
图8为本申请实施例二中车载镜头的光线像差图,如图8所示,不同波长光线(0.436μm、0.487μm、0.545μm、0.587μm和0.656μm,图中未标示)在该车载镜头的不同视场角下的曲线非常集中,保证了不同视场区域的像差较小,也即说明了该车载镜头较好地校正了光学系统的像差。
实施例三
图9为本申请实施例三提供的一种车载镜头的结构示意图,如图9所示,本申请实施例提供的车载镜头包括沿光轴从物面到像面依次排列的第一透镜110、第二透镜120、第三透镜130、第四透镜140、第五透镜150、第六透镜160和第七透镜170;第一透镜110为负光焦度透镜,第二透镜120为负光焦度透镜,第三透镜130为正光焦度透镜,第五透镜150为正光焦度透镜,第六透镜160为负光焦度透镜,第七透镜170为正光焦度透镜;第四透镜140为正光焦度透镜或负光焦度透镜。
其中,各个透镜的光焦度、折射率以及厚度等参数的设置范围与实施例一相同,在此不再赘述。
与实施例一中车载镜头的设置方式不同的是,实施例三中,第一透镜110和第五透镜150为玻璃球面透镜,其余透镜为塑胶非球面透镜。与实施例二中车载镜头的区别在于部分透镜的曲率半径和厚度等参数的数值存在差异。
表5以另一种可行的实施方式,说明了本申请实施例三提供的车载镜头中各透镜的具体设置参数,表5中的车载镜头对应图9所示的车载镜头。
表5中,“surf”代表面序号,面序号根据各个透镜的表面顺序来进行编号,例如,“S1”代表第一透镜110的物面表面,“S2”代表第一透镜110的像面表面,“S8”代表第四透镜140的物面表面,“S9”代表第四透镜140的像面表面,依次类推;“STO”代表所述镜头的光阑;曲率半径代表透镜表面的弯曲程度,正值代表该表面弯向像面一侧,负值代表该表面弯向物面一侧,其中“PL”代表该表面为平面,曲率半径为无穷大;厚度代表当前表面到下一表面的中心轴向距离,曲率半径和厚度的单位均为毫米(mm);折射率代表当前表面到下一表面之间的材料对光线的偏折能力,空格代表当前位置为空气,折射率为1;K值表示拟合圆锥系数。从表5可以看出,本申请实施例三提供的车载镜头中,第一透镜110和第五透镜150为玻璃球面透镜,其余透镜为塑胶非球面透镜。
表5 车载镜头的曲率半径、厚度、折射率和K系数的设计值
Surf 曲率半径 厚度 折射率 K值
S1 18.00 0.80 1.69  
S2 3.03 1.89    
S3 111.00 0.70 1.64 100.00
S4 3.69 0.73   -1.27
S5 9.60 2.54 1.66 6.08
S6 -5.40 0.15   1.49
STO PL 0.53    
S8 -1.66 0.63 1.54 -0.41
S9 -2.31 0.05   -1.54
S10 3.70 2.62 1.59  
S11 -3.14 0.07    
S12 -4.12 0.60 1.64 -1.38
S13 5.50 0.18   1.39
S14 8.05 1.70 1.54 4.80
S15 -3.79 1.60   -0.64
S16 PL 0.56 1.52  
S17 PL 1.81    
接下来以一种可行的实施方式,对非球面透镜的非球面中的数据进行说明。
表6 车载镜头中非球面系数的设计值
Figure PCTCN2022134740-appb-000017
Figure PCTCN2022134740-appb-000018
其中,“-9.27266E-03”表示面序号为S3的系数A为-9.27266*10 -3,以此类推。
在一实施例中,图10为本申请实施例三中车载镜头的球差曲线图,如图10所示,该车载镜头在不同波长(0.436μm、0.487μm、0.545μm、0.587μm和0.656μm)下的球差均在0.03mm以内,不同波长在图中分别以1、2、3、4和5的方式进行标记,其中1、2、3、4和5分别对应0.436μm、0.487μm、0.545μm、0.587μm和0.656μm的波长。从图10中可以知道,不同波长曲线相对较集中,说明该车载镜头的球差很小。
图11为本申请实施例三中车载镜头的场曲曲线图,图11中,水平坐标表示场曲的大小,单位为mm;垂直坐标表示归一化像高,没有单位;其中T表示子午,S表示弧失;由图11可以看出,本实施例提供的车载镜头从波长为436nm的光到656nm的光,在场曲上被有效地控制,即在成像时,中心的像质和周边的像质差距较小。
图12为本申请实施例三中车载镜头的光线像差图,如图12所示,不同波长光线(0.436μm、0.487μm、0.545μm、0.587μm和0.656μm,图中未标示)在该车载镜头的不同视场角下的曲线非常集中,保证了不同视场区域的像差较小,也即说明了该车载镜头较好地校正了光学系统的像差。
综上,本申请实施例提供的车载镜头,通过合理设置透镜数量以及各透镜的光焦度、折射率、面型、材质和厚度等参数,可使车载镜头具有低成本、高性能的特点,可以满足-40℃~90℃的使用条件,同时具有大光圈、大视场角、高像素、大靶面的优点,最大可以匹配1/2.7″大靶面芯片,且总长小于17.2mm,结构紧凑,有效解决了传统车载镜头通光小,进光量不足的缺点。
本领域技术人员会理解,本申请不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种变化、重新调整和替代而不会脱离本申请的保护范围。

Claims (10)

  1. 一种车载镜头,包括沿光轴从物面到像面依次排列的第一透镜(110)、第二透镜(120)、第三透镜(130)、第四透镜(140)、第五透镜(150)、第六透镜(160)和第七透镜(170);
    所述第一透镜(110)为负光焦度透镜,所述第二透镜(120)为负光焦度透镜,所述第三透镜(130)为正光焦度透镜,所述第五透镜(150)为正光焦度透镜,所述第六透镜(160)为负光焦度透镜,所述第七透镜(170)为正光焦度透镜;所述第四透镜(140)为正光焦度透镜或负光焦度透镜。
  2. 根据权利要求1所述的车载镜头,其中,透镜邻近所述物面一侧的表面为物方表面,透镜邻近所述像面一侧的表面为像方表面;
    所述第一透镜(110)的物方表面朝向所述物面凸起,所述第一透镜(110)的像方表面朝向所述像面凹陷;
    所述第二透镜(120)的物方表面朝向所述物面凹陷,所述第二透镜(120)的像方表面朝向所述像面凹陷,或者,所述第二透镜(120)的物方表面朝向所述物面凸起,所述第二透镜(120)的像方表面朝向所述像面凹陷;
    所述第三透镜(130)的物方表面朝向所述物面凸起,所述第三透镜(130)的像方表面朝向所述像面凸起;
    所述第四透镜(140)的物方表面朝向所述物面凹陷,所述第四透镜(140)的像方表面朝向所述像面凸起;
    所述第五透镜(150)的物方表面朝向所述物面凸起,所述第五透镜(150)的像方表面朝向所述像面凸起;
    所述第六透镜(160)的物方表面朝向所述物面凹陷,所述第六透镜(160)的像方表面朝向所述像面凹陷;
    所述第七透镜(170)的物方表面朝向所述物面凸起,所述第七透镜(170)的像方表面朝向所述像面凸起。
  3. 根据权利要求1所述的车载镜头,其中,所述车载镜头的光焦度为
    Figure PCTCN2022134740-appb-100001
    所述第二透镜(120)的光焦度为
    Figure PCTCN2022134740-appb-100002
    所述第三透镜(130)的光焦度为
    Figure PCTCN2022134740-appb-100003
    所述第四透镜(140)的光焦度为
    Figure PCTCN2022134740-appb-100004
    所述第五透镜(150)的光焦度为
    Figure PCTCN2022134740-appb-100005
    所述第六透镜(160)的光焦度为
    Figure PCTCN2022134740-appb-100006
    其中:
    Figure PCTCN2022134740-appb-100007
  4. 根据权利要求3所述的车载镜头,其中,所述第一透镜(110)的折射率为Nd1,所述第二透镜(120)的折射率为Nd2,所述第三透镜(130)的折射率为Nd3,其中:
    Nd1>1.7,1.4≤Nd2≤1.7,
    Figure PCTCN2022134740-appb-100008
  5. 根据权利要求1所述的车载镜头,其中,沿光轴方向,所述第一透镜(110)的物侧面至像面的距离为TTL,所述第一透镜(110)的厚度为H1,其中:
    |TTL/H1|≥6.5。
  6. 根据权利要求1所述的车载镜头,其中,沿光轴方向,所述第七透镜(170)的像侧面至像面的距离为BFL,所述第七透镜(170)的厚度为H7,其中:
    H7/BFL≥0.3。
  7. 根据权利要求1所述的车载镜头,其中,所述车载镜头的光圈系数为F,其中:F≤1.65。
  8. 根据权利要求1所述的车载镜头,其中,所述车载镜头的对角视场角为DFOV,其中:DFOV≥175°。
  9. 根据权利要求1所述的车载镜头,其中,所述第一透镜(110)包括玻璃球面镜片,所述第二透镜(120)、所述第四透镜(140)、所述第六透镜(160)和所述第七透镜(170)均包括塑胶非球面透镜;所述第三透镜(130)包括玻璃球面透镜或塑胶非球面透镜;第五透镜(150)包括玻璃球面透镜或塑胶非球面透镜。
  10. 根据权利要求9所述的车载镜头,其中,所述塑胶非球面透镜的非球面满足:
    Figure PCTCN2022134740-appb-100009
    其中,z表示非球面Z向的轴向矢高;r表示非球面上的点到光轴的距离;c表示拟合球面的曲率,数值上为曲率半径的倒数;k表示拟合圆锥系数;A、B、C、D、E、F分别表示非球面多项式的4阶、6阶、8阶、10阶、12阶、14阶系数。
PCT/CN2022/134740 2021-12-14 2022-11-28 车载镜头 WO2023109491A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202123135943.XU CN218497237U (zh) 2021-12-14 2021-12-14 一种车载镜头
CN202123135943.X 2021-12-14

Publications (1)

Publication Number Publication Date
WO2023109491A1 true WO2023109491A1 (zh) 2023-06-22

Family

ID=85182721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134740 WO2023109491A1 (zh) 2021-12-14 2022-11-28 车载镜头

Country Status (2)

Country Link
CN (1) CN218497237U (zh)
WO (1) WO2023109491A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116500761B (zh) * 2023-06-28 2023-11-10 协益电子(苏州)有限公司 一种环视镜头及具有其的摄像装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080218877A1 (en) * 2007-03-06 2008-09-11 Asia Optical Co., Inc. Fixed focal length lens system
CN210534419U (zh) * 2019-08-20 2020-05-15 厦门力鼎光电股份有限公司 一种鱼眼镜头
CN113156627A (zh) * 2021-05-28 2021-07-23 天津欧菲光电有限公司 光学成像系统、成像模组和电子设备
CN113589486A (zh) * 2021-08-13 2021-11-02 天津欧菲光电有限公司 光学成像系统、取像模组以及电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080218877A1 (en) * 2007-03-06 2008-09-11 Asia Optical Co., Inc. Fixed focal length lens system
CN210534419U (zh) * 2019-08-20 2020-05-15 厦门力鼎光电股份有限公司 一种鱼眼镜头
CN113156627A (zh) * 2021-05-28 2021-07-23 天津欧菲光电有限公司 光学成像系统、成像模组和电子设备
CN113589486A (zh) * 2021-08-13 2021-11-02 天津欧菲光电有限公司 光学成像系统、取像模组以及电子设备

Also Published As

Publication number Publication date
CN218497237U (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
KR102442815B1 (ko) 광학 렌즈
CN107065140B (zh) 一种智能车载高像素广角镜头
WO2023109621A1 (zh) 定焦镜头
CN112859299A (zh) 定焦镜头
CN111722369A (zh) 一种超广角镜头
WO2023109491A1 (zh) 车载镜头
CN215264207U (zh) 一种定焦镜头
CN214669834U (zh) 一种光学镜头
CN209746255U (zh) 一种小头式高像素玻塑混合镜头
CN210376840U (zh) 一种低畸变后视光学系统
WO2023001017A1 (zh) 一种定焦镜头
CN113189747A (zh) 一种定焦镜头
CN207704119U (zh) 一种车载流媒体摄像头的镜头
CN111103675A (zh) 一种定焦镜头
CN116859561B (zh) 光学镜头
CN215729060U (zh) 一种车载定焦镜头
CN216901115U (zh) 一种定焦镜头
WO2023160277A1 (zh) 定焦镜头
CN117008303B (zh) 光学镜头
CN218956904U (zh) 光学镜头
CN115616737B (zh) 大孔径高清光学镜头
CN216526498U (zh) 一种用于感知系统的广角镜头
CN218497247U (zh) 一种定焦镜头
CN217467322U (zh) 一种定焦镜头
CN220040855U (zh) 光学成像系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906242

Country of ref document: EP

Kind code of ref document: A1