WO2023109354A1 - 一种信息检测方法、基站、存储介质和计算机程序产品 - Google Patents

一种信息检测方法、基站、存储介质和计算机程序产品 Download PDF

Info

Publication number
WO2023109354A1
WO2023109354A1 PCT/CN2022/130061 CN2022130061W WO2023109354A1 WO 2023109354 A1 WO2023109354 A1 WO 2023109354A1 CN 2022130061 W CN2022130061 W CN 2022130061W WO 2023109354 A1 WO2023109354 A1 WO 2023109354A1
Authority
WO
WIPO (PCT)
Prior art keywords
rfid
module
information
signal
electronic tag
Prior art date
Application number
PCT/CN2022/130061
Other languages
English (en)
French (fr)
Inventor
杨卓
Original Assignee
中移(上海)信息通信科技有限公司
中移智行网络科技有限公司
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中移(上海)信息通信科技有限公司, 中移智行网络科技有限公司, 中国移动通信集团有限公司 filed Critical 中移(上海)信息通信科技有限公司
Publication of WO2023109354A1 publication Critical patent/WO2023109354A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K17/00Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations
    • G06K17/0022Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations arrangements or provisious for transferring data to distant stations, e.g. from a sensing device
    • G06K17/0029Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations arrangements or provisious for transferring data to distant stations, e.g. from a sensing device the arrangement being specially adapted for wireless interrogation of grouped or bundled articles tagged with wireless record carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the embodiment of the present disclosure is based on the Chinese patent application with the application number 202111545676.5, the application date is December 17, 2021, and the application name is "Information Detection Method and Base Station", and claims the priority of the Chinese patent application.
  • the Chinese patent application The entire contents of are hereby incorporated by reference into this disclosure.
  • the present disclosure relates to but not limited to the field of wireless communication, and in particular relates to an information detection method, a base station, a storage medium and a computer program product.
  • Radio Frequency Identification technology is widely used in various fields such as manufacturing. Using RFID technology to detect information such as position detection for products in intelligent workshops, warehousing, and industrial production lines is one of the most widely used scenarios at present. one.
  • an additional RFID system needs to be deployed to detect information on electronic tags, and the deployment cost is high.
  • the disclosure provides an information detection method, a base station, a storage medium and a computer program product.
  • the embodiments of the present disclosure provide an information detection method, which is applied to a base station, and the base station includes an RFID function module, an interface module, and a radio remote module, and the RFID function module communicates with the radio remote through the interface module
  • the module communicates, and the radio remote module is used for mobile communication, and the method includes:
  • the signal sent by the electronic tag is received by the radio remote module, and the signal carries the label information of the electronic tag;
  • the base station also includes a baseband processing module, the baseband processing module is integrated with a baseband unit BBU, the target information includes first positioning information for detecting the position of the electronic tag, and the RFID function module parses the signal, after obtaining the target information, the method also includes:
  • the first positioning information is sent to the BBU through the radio remote module, and the BBU is used to upload the second positioning information corresponding to the electronic tag to the cloud platform through the core network, and the second positioning information includes the The first positioning information, or the second positioning information is the position information of the electronic tag calculated based on the first positioning information.
  • embodiments of the present disclosure provide a base station, including an RFID functional module, an interface module, and a remote radio module, the RFID functional module communicates with the remote radio module through the interface module, and the remote radio module The module is used for mobile communication;
  • the remote radio module is configured to receive a signal sent by the electronic tag when the electronic tag is within the signal coverage of the remote radio module, and the signal carries label information of the electronic tag;
  • the interface module is configured to send the signal to the RFID function module
  • the RFID functional module is used to analyze the signal to obtain target information; and send the target information to the RFID server, the target information includes the tag information;
  • the base station also includes a baseband processing module, the baseband processing module is integrated with a baseband unit BBU, and the target information includes first positioning information for detecting the position of the electronic tag;
  • the remote radio module is further configured to send the first positioning information to the BBU;
  • the BBU is configured to upload the second positioning information corresponding to the electronic tag to the cloud platform through the core network, the second positioning information includes the first positioning information, or the second positioning information is based on the The position information of the electronic tag obtained by calculating the first positioning information.
  • an embodiment of the present disclosure provides a base station, including a processor, a memory, and a computer program stored in the memory and operable on the processor, when the computer program is executed by the processor Any one of the methods in the first aspect is implemented.
  • embodiments of the present disclosure provide a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, any one of the methods in the first aspect is implemented .
  • the embodiments of the present disclosure provide a computer program product, the computer program product includes a computer program, and when the computer program runs on a computer device, the computer device executes the above information A step in a detection method.
  • the RFID functional module can communicate with the radio remote module in the communication base station through the interface module to realize the integration, so that when the electronic tag is in the radio remote
  • the signal sent by the electronic tag is received through the radio frequency remote module, and the signal carries the label information of the electronic tag; the signal is sent to the RFID function module through the interface module; through the RFID function module
  • the signal is analyzed to obtain target information, and the target information is sent to the RFID server.
  • the communication base station has the relevant functions of the RFID system, thereby reducing the deployment of the RFID system and reducing the Deployment costs.
  • FIG. 1 is a schematic diagram of the working principle of the RFID system
  • Fig. 2 is a schematic structural diagram of a communication base station in a digital indoor distribution system
  • FIG. 3 is a schematic flowchart of an information detection method provided by an embodiment of the present disclosure.
  • Figure 4 is a schematic structural diagram of pRRU
  • Fig. 5 is a schematic structural diagram of a system for positioning an electronic tag
  • FIG. 6 is one of the schematic structural diagrams of a base station provided by an embodiment of the present disclosure.
  • FIG. 7 is a second structural schematic diagram of a base station provided by an embodiment of the present disclosure.
  • RFID technology is widely used in various fields such as manufacturing. Using RFID technology to detect information such as position detection for products in intelligent workshops, warehouses, and industrial production lines is one of the most widely used scenarios.
  • RFID technology detects information, it has the characteristics of small coverage, high power consumption, susceptible to interference, and unstable positioning accuracy. Based on this, the embodiments of the present disclosure provide a new information detection solution.
  • RFID technology can quickly realize information exchange and storage without contacting electronic tags through radio waves. It can connect to the database system through wireless communication combined with data access technology to achieve non-contact two-way communication, so as to achieve the purpose of identification. , which can be used for data exchange to connect an extremely complex system in series.
  • FIG. 1 is a schematic diagram of the working principle of the RFID system.
  • the RFID system may include three parts: an RFID reader-writer 101 , an electronic tag 102 and a data management system 103 .
  • the RFID reader sends out electromagnetic waves of a certain frequency through its antenna 1011.
  • the electronic tag enters the working range of the RFID reader antenna, it generates an induced current inside and is activated, so the stored information is sent through the internal antenna.
  • the antenna of the RFID reader receives the carrier signal from the electronic tag, and transmits it to the RFID reader, and the RFID reader demodulates and decodes the received signal.
  • the data management system and the RFID reader can communicate through the wireless access point, and the interactive terminal can access the RFID reader and obtain information.
  • the digital indoor sub-system can include a communication base station, which can be a pico base station, which is a distributed base station.
  • the communication base station can include a base band unit (Base Band Unit, BBU) 201, an indoor radio remote unit (Pico Remote Radio Unit, pRRU) 202 and convergence unit 203.
  • BBU Base Band Unit
  • pRRU Indoor Radio Unit
  • the communication base station may be a 4th generation 4G communication base station, a 5th generation communication base station, or a newer generation communication base station, which is not specifically limited here.
  • the main function of the BBU is to centrally manage the entire base station system, including operation and maintenance, signaling processing, and complete the baseband processing function of uplink and downlink user data, provide the interface between the base station and the transmission network, and complete the information interaction.
  • the main function of the aggregation unit is to realize the aggregation connection between multiple pRRUs and BBUs, receive the downlink data sent by the BBU and forward them to each pRRU, forward the uplink data of multiple pRRUs to the BBU, and supply power to the pRRUs.
  • the main function of the pRRU is to modulate the digital signal to the transmission frequency band. After filtering and amplifying, it transmits through the antenna, receives the RF signal from the antenna, and after filtering and amplifying, converts the RF signal into a digital signal and sends it to the BBU for processing.
  • the BBU and the converging unit are connected by optical fiber 204, and the maximum remote distance is about 2-15KM.
  • the converging unit and pRRU are connected by a photoelectric hybrid cable 205, and the maximum remote distance is about 200m.
  • the information detection method provided by the embodiment of the present disclosure relates to the field of wireless communication technology, and can be widely applied in intelligent manufacturing scenarios.
  • the method can be executed by the information detection system of the embodiment of the present disclosure.
  • the information detection system can be a digital indoor subsystem, including a communication base station.
  • the digital indoor subsystem can be a digital indoor subsystem including a 4G communication base station, or a digital indoor subsystem including a 5G communication base station.
  • the base station will be described by taking a 5G base station as an example.
  • FIG. 3 it shows a schematic flowchart of an information detection method provided by an embodiment of the present disclosure.
  • the method is applied to a base station, and the base station includes an RFID functional module, an interface module, and a remote radio module, and the RFID functional module communicates with the remote radio module through the interface module, and the remote radio module is used for mobile Communication, as shown in Figure 3, the method may include the following steps:
  • Step 301 when the electronic tag is within the signal coverage of the radio remote module, the signal sent by the electronic tag is received through the radio remote module, and the signal carries the label information of the electronic tag .
  • the base station may be a communication base station, which may be called a pico base station, and the communication base station may be a distributed base station.
  • the base station may be a base station in a digital indoor distribution system, which is used to evenly distribute the signals of the mobile communication base station in every corner of the room, so as to ensure relatively good signal coverage in the indoor area.
  • the base station may include an RFID functional module, an interface module, and a remote radio module, and the RFID functional module communicates with the remote radio module through the interface module.
  • the base station may include a pRRU, and the RFID function module, interface module and remote radio module may be deployed in the pRRU.
  • FIG. 4 is a schematic structural diagram of a pRRU.
  • the pRRU may include an RFID function module 401, an interface module 402, and a remote radio module 403.
  • the remote radio module 403 may include a radio frequency module 4031, an antenna 4032, and a signal processing unit 4033.
  • the remote radio module 403 is used for mobile communication.
  • the RFID functional module combined with the remote radio module can realize RFID technology, that is, the reading, writing and communication of electronic tags can be realized through electromagnetic waves.
  • the entire life cycle management of smart products can be realized based on RFID technology. Logistics warehousing and intelligent production workshop management.
  • the RFID function module can include an RFID control module and an RFID application module
  • the RFID control module can include an RFID reader
  • the RFID control module can be responsible for signal encoding and decoding, performing anti-collision algorithms, and controlling the RFID reader and reader.
  • the data transmitted between the electronic tags is encrypted and decrypted, the identity verification between the RFID reader and the electronic tag can be carried out, and the communication with the RFID application module can be carried out.
  • the RFID reader can be responsible for reading and writing electronic tags, and the RFID application module can have functions such as protocol processing, event generation, command processing, and control monitoring.
  • the RFID control module may or may not include an RFID exciter, which is not specifically limited here.
  • the interface module can be a module using a serial communication RS-232 communication interface, or a module using a Transmission Control Protocol (Transmission Control Protocol, TCP) communication interface, or a module using an Internet protocol (The module of the Internet Protocol (IP) communication interface is not specifically limited here.
  • TCP Transmission Control Protocol
  • IP Internet Protocol
  • the RFID functional module can communicate with the remote radio module through the interface module.
  • the RFID functional module such as an RFID reader can be established on a serial communication system such as RS-232 On communication interfaces such as , TCP or IP, the communication with the remote radio module is realized through data exchange protocols and application programs, so that the intercommunication between the RFID functional module and the 5G pRRU can be realized, that is, the integration of the RFID functional module and the pRRU can be realized.
  • the electronic tag can include a coupling element and a chip, each tag has a unique electronic code, and the high-capacity electronic tag can include a writable storage space, and can be attached to an object to identify the object.
  • the electronic tag can be a passive electronic tag, that is, it needs to be stimulated by an RFID excitation source before it can send a signal, or it can be an active electronic tag, that is, it can actively send a signal of a certain frequency, and no specific details will be given here. limited.
  • the RFID functional module may include an RFID excitation source.
  • the RFID excitation source may control the RFID reader to perform magnetic field radiation through the radio frequency remote module.
  • the electronic tag enters the When the magnetic field radiation range of the RFID reader is within the range, it means that the electronic tag is within the signal coverage of the radio remote module.
  • the label information in the chip, the label information may include the identification information of the identified object and related product information, etc.
  • multiple pRRUs in the base station of the disclosed embodiments can be deployed around to achieve relatively good signal coverage in indoor areas, including the intelligent industrial production line in indoor areas .
  • the electronic label can be attached to the products produced in the intelligent industrial production line, so that the identification and positioning of the electronic label can be realized through the base station, so as to carry out the intelligent production management of the product.
  • Step 302 sending the signal to the RFID function module through the interface module.
  • the remote radio module can communicate with the RFID function module through the interface module, and the remote radio module can receive signals through the antenna and the radio frequency module, and after signal processing by the signal processing unit, pass the received signal through The interface module sends to the RFID function module.
  • the RFID functional module can reuse the radio frequency module and antenna in the radio remote module to receive the signal sent by the electronic tag. Since the coverage of the 5G base station is far, when the RFID functional module is integrated with the 5G base station, the signal coverage can be achieved. The range is wide, and the continuous coverage effect is better; moreover, the radio frequency module in the pRRU is multiplexed, because 5G supports multiple-input multiple-output (Multiple-Input Multiple-Output, MIMO) multi-antenna technology, the capacity is higher, and it can meet the needs of intensive application scenarios. Covering the hotspot area, the RFID function module multiplexes the radio frequency module in the pRRU to generate high-frequency transmission energy, modulates the transmission signal, and transmits it to the electronic tag, which can achieve better identification and positioning of the electronic tag.
  • MIMO Multiple-Input Multiple-Output
  • pRRU can adopt MIMO multi-antenna technology, such as the flexible configuration of 4 transmit antennas and 4 receive antennas.
  • MIMO multi-antenna technology such as the flexible configuration of 4 transmit antennas and 4 receive antennas.
  • the load is not high, one of the transmit antennas and 1 receive antenna can be divided.
  • the subsystem built based on the RFID function module to realize the RFID function and save resources.
  • Step 303 analyze the signal through the RFID function module to obtain target information, and send the target information to the RFID server, where the target information includes the tag information.
  • the RFID function module can analyze the signal to obtain target information, and the target information can include the label information of the electronic tag, so as to realize the information identification of the electronic tag.
  • the target information may also include the tag information of the electronic tag and the first positioning information used to detect the position of the electronic tag, the first positioning information may be the distance between the electronic tag and the pRRU receiving the electronic tag signal, the first positioning information One positioning information is used to locate the electronic tag. For example, based on the distance between the electronic tag and multiple pRRUs that receive the electronic tag signal, the electronic tag can be positioned using a three-point positioning method, so as to realize the identification of the electronic tag. Objects are positioned.
  • the first positioning information may be determined by analyzing received signal strength, or may be determined in other ways, which are not specifically limited here.
  • the first positioning information can be obtained by analyzing the received signal, so as to realize the positioning of the electronic tag, so that the positioning of the object identified by the electronic tag can be realized by deploying the base station.
  • the RFID function module can send the target information to the RFID server, specifically, the target information can be sent to the RFID server through the RFID application module.
  • the RFID server may or may not be integrated in the base station, which is not specifically limited here.
  • the RFID server can judge the legitimacy of the electronic tag according to the logical operation, perform corresponding processing and control according to different settings, and perform data processing. At the same time, the RFID server can also locate the electronic tag according to the received first positioning information sent by multiple pRRUs to achieve a positioning effect.
  • the RFID functional module can communicate with the radio remote module in the communication base station through the interface module to realize the integration, so that when the electronic tag is in the radio remote
  • the signal sent by the electronic tag is received through the radio frequency remote module, and the signal carries the label information of the electronic tag; the signal is sent to the RFID function module through the interface module; through the RFID function module
  • the signal is analyzed to obtain target information, and the target information is sent to the RFID server.
  • the communication base station has the relevant functions of the RFID system, thereby reducing the deployment of the RFID system and reducing the Deployment costs.
  • pRRU can be connected to the operator's network management system and supports status monitoring at each level. It is easier to troubleshoot and maintain problems. This is equivalent to monitoring subsystems based on RFID functional modules.
  • 5G It supports MIMO multi-antenna technology, with higher capacity, which can meet the coverage of dense hotspot areas in application scenarios, makes the coverage wider, and can achieve better identification and positioning of electronic tags.
  • the RFID functional module includes an RFID control module and an RFID application module, the RFID control module includes an RFID reader, and the RFID reader receives the The above signal; the step 303 specifically includes:
  • the RFID function module may include an RFID control module and an RFID application module
  • the RFID control module may include an RFID reader
  • the RFID control module may be responsible for signal encoding and decoding, performing an anti-collision algorithm, and controlling the RFID reader and reader.
  • the data transmitted between the electronic tags is encrypted and decrypted, the identity verification between the RFID reader and the electronic tag can be carried out, and the communication with the RFID application module can be carried out, and the RFID reader can be responsible for reading and writing the electronic tag.
  • the RFID application module can be connected with multiple different types of back-end applications, and has functions such as device management, data processing, event integration, and application integration, and can support the development of new application systems and the functions of original application systems.
  • the enhancement and extension of the module is designed with functional modularization, and has functions such as protocol processing, event generation, command processing, and control monitoring.
  • the RFID function module can be docked with the interface module through the RFID application module.
  • the communication with the radio remote module can be realized, so that the RFID functional module can communicate with the 5G pRRU, that is, the integration of the RFID functional module and the pRRU can be realized.
  • the antenna in the radio remote module receives the signal sent by the electronic tag, and transmits it to the RFID reader through the antenna regulator.
  • the RFID reader receives the radio frequency signal by means of the RFID application module and the interface module. The signal of the electronic tag sent by the remote module is analyzed, and the target information is obtained, and then the target information can be sent to the RFID server through the RFID application module.
  • the RFID reader and the RFID application module realize the communication with the radio remote module, so that the RFID function module can communicate with the 5G pRRU, and then through the radio frequency pull in the pRRU
  • the remote module and the RFID functional module integrated in the pRRU realize the RFID function.
  • the RFID control module includes an RFID exciter, and before the step 301, the method also includes:
  • the RFID exciter is used to control the RFID reader to perform magnetic field radiation, so that the electronic tag performs signal transmission under the excitation of the magnetic field radiated by the RFID reader.
  • the RFID control module may also include an RFID excitation source, the RFID reader and the RFID excitation source may be integrated in the pRRU, and the RFID excitation source may control the RFID
  • the reader performs magnetic field radiation, and correspondingly, the RFID reader can send electromagnetic waves through the radio frequency remote module.
  • the electronic tag When the electronic tag enters the magnetic field radiation range of the RFID reader, it means that the electronic tag is within the signal coverage of the radio remote module. At this time, the electronic tag can send signals by virtue of the energy obtained by the induced current. To send out the tag information stored in the chip. In this way, the electronic tag can be made to transmit signals under the excitation of the magnetic field radiated by the RFID reader, so as to realize the information detection of the object marked by the electronic tag.
  • the method also includes:
  • the first channel and the second channel are asynchronous.
  • the protocol processor in the pRRU separately controls the RFID reader to perform magnetic field radiation and signal reception through two channels in an asynchronous manner.
  • the protocol processor in the pRRU can control the RFID reader to perform magnetic field radiation through the first channel, and control the RFID reader to receive signals through the second channel.
  • the first channel and the second channel transmit data in an asynchronous manner.
  • the upload data and the download data can be transmitted asynchronously through two channels.
  • the base station further includes a baseband processing module, the baseband processing module is integrated with a baseband unit BBU, the target information includes first positioning information for detecting the position of the electronic tag, and the After the RFID functional module analyzes the signal and obtains the target information, the method also includes:
  • the first positioning information is sent to the BBU through the radio remote module, and the BBU is used to upload the second positioning information corresponding to the electronic tag to the cloud platform through the core network, and the second positioning information includes the The first positioning information, or the second positioning information is the position information of the electronic tag calculated based on the first positioning information.
  • the base station may further include a baseband processing module, the baseband processing module includes a BBU, and the BBU can transmit data to the core network through the transmission network, and then to the cloud platform.
  • the second positioning information may be determined based on the first positioning information.
  • the second positioning information may include the first positioning information sent by different pRRUs, that is, the first positioning information sent to the BBU through the remote radio module.
  • Information in this scenario, the position information of the electronic tag can be obtained by the cloud platform based on the second positioning information sent by the BBU through relevant data processing, so as to realize the positioning function of the electronic tag, such as using a three-point positioning method based on different pRRUs to send Calculate the position of the electronic tag based on the first positioning information.
  • the second positioning information can also be the position information of the electronic tag calculated based on the first positioning information sent by different pRRUs.
  • the position information of the electronic tag can be determined by the BBU based on different
  • the first positioning information sent by the pRRU is obtained by data processing to realize the positioning function of the electronic tag.
  • the position calculation of the electronic tag is performed based on the first positioning information sent by different pRRUs in a three-point positioning method, which is not specifically limited here.
  • the data can be transmitted to the baseband processing module by the converging unit hub through the remote radio module and the optical-electrical hybrid cable, so as to be transmitted to the BBU.
  • the BBU can upload the second positioning information to the 5G core network through the independent frequency band divided by network slicing, and finally send it to the cloud platform for relevant data processing to realize the positioning function of the electronic tag, so as to reuse the digital indoor sub-system to achieve the identification of the electronic tag The positioning effect of the object.
  • the RFID server is integrated in the baseband processing module, that is, the baseband processing module can integrate the BBU and the RFID server, so that the deployment cost of the RFID system can be further reduced.
  • FIG. 5 is a schematic structural diagram of a system for positioning electronic tags. As shown in FIG. Including pRRU5011, convergence unit 5012 and baseband processing module 5013, pRRU5011 is integrated with RFID function module, RFID function module can include RFID reader 50111 and RFID excitation source 50112, baseband processing module 5013 is integrated with RFID server 50131 and BBU50132. Based on this system, the positioning of electronic tags can be realized.
  • the embodiments of the present disclosure have the technical advantages of convenient user operation and high security.
  • 1) the coverage of the 5G base station is far away.
  • the RFID system is combined with the 5G base station, the continuous coverage is wide and the coverage is effective.
  • the 5G base station can be reused without additional deployment of the RFID system;
  • the radio frequency module in the RFID system can reuse the radio frequency module of the pico base station, which can support MIMO multi-antenna technology, and the capacity Higher, which can meet the coverage of dense hotspot areas in application scenarios;
  • the pico base station can be connected to the network management system of the operation, and supports status monitoring at each level, making it easier to troubleshoot problems. That is, RFID systems can also be monitored, while covering a wider area.
  • the antennas of the 4T4R transmission mode (4 transmission (TX) antennas and 4 reception (RX) antennas) in the pRRU are flexibly configured. When the load is not high, 1T1R is allocated to the RFID subsystem to save resources.
  • the base station provided by the embodiments of the present disclosure will be described below.
  • the base station 600 includes: an RFID function module 601, an interface module 602, and a remote radio module 603, the RFID functional module 601 communicates with the remote radio module 603 through the interface module 602, and the remote radio module 603
  • the remote module 603 is used for mobile communication;
  • the radio remote module 603 is configured to receive the signal sent by the electronic tag when the electronic tag is within the signal coverage of the radio remote module 603, and the signal carries the tag of the electronic tag information;
  • the interface module 602 is configured to send the signal to the RFID function module 601;
  • the RFID function module 601 is configured to analyze the signal to obtain target information; and send the target information to an RFID server, the target information including the tag information.
  • the RFID function module 601 includes an RFID control module and an RFID application module, the RFID control module includes an RFID reader, and the RFID reader passes through the interface module 602 and the RFID application module receiving the signal;
  • the RFID reader is used to analyze the signal to obtain target information
  • the RFID application module is configured to send the target information to an RFID server.
  • the RFID control module includes an RFID exciter
  • the RFID exciter is used to control the RFID reader to perform magnetic field radiation, so that the electronic tag performs signal transmission under the excitation of the magnetic field radiated by the RFID reader.
  • a protocol processor configured to control the RFID reader-writer to perform magnetic field radiation through a first channel; control the RFID reader-writer to perform signal reception through a second channel; wherein, the first channel and the second channel are asynchronous .
  • the base station 600 further includes a baseband processing module, the baseband processing module is integrated with a baseband unit BBU, and the target information includes first positioning information for detecting the position of the electronic tag;
  • the remote radio module 603 is further configured to send the first positioning information to the BBU;
  • the BBU is configured to upload the second positioning information corresponding to the electronic tag to the cloud platform through the core network, the second positioning information includes the first positioning information, or the second positioning information is based on the The position information of the electronic tag obtained by calculating the first positioning information.
  • the RFID server is integrated in the baseband processing module.
  • the base station 600 can implement the various processes implemented in the above information detection method embodiments, and can achieve the same technical effect. To avoid repetition, details are not repeated here.
  • a base station 700 includes: a processor 701 , a memory 702 , a user interface 703 and a bus interface 704 .
  • the base station also includes an RFID functional module, an interface module and a remote radio module, the RFID functional module communicates with the remote radio module through the interface module, and the remote radio module is used for mobile communication.
  • the processor 701 is configured to read the program in the memory 702 and perform the following processes:
  • the signal sent by the electronic tag is received by the radio remote module, and the signal carries the label information of the electronic tag;
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 701 and various circuits of memory represented by memory 702 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and therefore will not be further described herein.
  • Bus interface 704 provides the interface.
  • the user interface 703 may also be an interface capable of connecting externally and internally to required equipment, and the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 701 is responsible for managing the bus architecture and general processing, and the memory 702 can store data used by the processor 701 when performing operations.
  • the RFID functional module includes an RFID control module and an RFID application module
  • the RFID control module includes an RFID reader
  • the RFID reader receives the Said signal, processor 701, is also used for:
  • the RFID control module includes an RFID exciter, a processor 701, and is also used for:
  • the RFID exciter is used to control the RFID reader to perform magnetic field radiation, so that the electronic tag performs signal transmission under the excitation of the magnetic field radiated by the RFID reader.
  • the processor 701 is further configured to:
  • the first channel and the second channel are asynchronous.
  • the base station further includes a baseband processing module, the baseband processing module is integrated with a baseband unit BBU, the target information includes first positioning information for detecting the position of the electronic tag, and the processor 701 further Used for:
  • the first positioning information is sent to the BBU through the radio remote module, and the BBU is used to upload the second positioning information corresponding to the electronic tag to the cloud platform through the core network, and the second positioning information includes the The first positioning information, or the second positioning information is the position information of the electronic tag calculated based on the first positioning information.
  • An embodiment of the present disclosure also provides a base station, including a processor 701, a memory 702, and a computer program stored in the memory 702 and operable on the processor 701.
  • a base station including a processor 701, a memory 702, and a computer program stored in the memory 702 and operable on the processor 701.
  • the computer program is executed by the processor 701, the above information detection is realized.
  • Each process of the method embodiment can achieve the same technical effect, and will not be repeated here to avoid repetition.
  • Embodiments of the present disclosure also provide a computer-readable storage medium, on which a computer program is stored.
  • a computer program is stored.
  • the computer program is executed by a processor, each process of the above-mentioned information detection method embodiment is realized, and the same technology can be achieved. Effect, in order to avoid repetition, will not repeat them here.
  • the computer-readable storage medium is, for example, a read-only memory (Read-Only Memory, ROM for short), a random access memory (Random Access Memory, RAM for short), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present disclosure also provides a computer program, including computer readable codes.
  • a processor executes part or all of the steps for implementing the above method.
  • An embodiment of the present disclosure also provides a computer program product
  • the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and when the computer program is read and executed by a computer, it realizes part of the above method or all steps.
  • the computer program product can be specifically realized by means of hardware, software or a combination thereof.
  • the computer program product is embodied as a computer storage medium, and in other embodiments, the computer program product is embodied as a software product, such as a software development kit (Software Development Kit, SDK) and the like.
  • the disclosed system and method can be implemented in other ways.
  • the system embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solutions of the embodiments of the present disclosure.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present disclosure is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage medium includes: various media capable of storing program codes such as U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种信息检测方法、基站、存储介质和计算机程序产品。该方法应用于基站,所述基站包括RFID功能模块、接口模块和射频拉远模块,RFID功能模块通过所述接口模块与所述射频拉远模块进行通信,所述射频拉远模块用于进行移动通信,该方法包括:在电子标签处于所述射频拉远模块的信号覆盖范围内的情况下,通过所述射频拉远模块接收所述电子标签发送的信号,所述信号携带有所述电子标签的标签信息;将所述信号通过所述接口模块发送给所述RFID功能模块;通过所述RFID功能模块解析所述信号,得到目标信息,并将所述目标信息发送给RFID服务器,所述目标信息包括所述标签信息。

Description

一种信息检测方法、基站、存储介质和计算机程序产品
相关申请的交叉引用
本公开实施例基于申请号为202111545676.5、申请日为2021年12月17日、申请名称为“信息检测方法及基站”的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。
技术领域
本公开涉及但不限于无线通信领域,尤其涉及一种信息检测方法、基站、存储介质和计算机程序产品。
背景技术
无线射频识别(Radio Frequency Identification,RFID)技术广泛应用于各个领域如制造业,利用RFID技术为智能化车间、仓储、工业产线中的产品进行信息检测如位置检测是当前应用较多的场景之一。
目前,对于一些场景,需要额外部署RFID系统,以针对电子标签进行信息检测,部署成本高昂。
发明内容
本公开提供一种信息检测方法、基站、存储介质和计算机程序产品。
第一方面,本公开的实施例提供一种信息检测方法,应用于基站,所述基站包括RFID功能模块、接口模块和射频拉远模块,RFID功能模块通过所述接口模块与所述射频拉远模块进行通信,所述射频拉远模块用于进行移动通信,所述方法包括:
在电子标签处于所述射频拉远模块的信号覆盖范围内的情况下,通过所述射频拉远模块接收所述电子标签发送的信号,所述信号携带有所述电子标签的标签信息;
将所述信号通过所述接口模块发送给所述RFID功能模块;
通过所述RFID功能模块解析所述信号,得到目标信息,并将所述目标信息发送给RFID服务器,所述目标信息包括所述标签信息;
所述基站还包括基带处理模块,所述基带处理模块集成有基带单元BBU,所述目标信息包括用于检测所述电子标签位置的第一定位信息,所述通过所述RFID功能模块解析所述信号,得到目标信息之后,所述方法还包括:
通过所述射频拉远模块将所述第一定位信息发送给BBU,所述BBU用于将所述电子标签对应的第二定位信息通过核心网上传至云平台,所述第二定位信息包括所述第一定位信息,或者所述第二定位信息为基于所述第一定位信息解算得到的所述电子标签的位置信息。
第二方面,本公开的实施例提供一种基站,包括RFID功能模块、接口模块和射频拉远模块,RFID功能模块通过所述接口模块与所述射频拉远模块进行通信,所述射频 拉远模块用于进行移动通信;
所述射频拉远模块,用于在电子标签处于所述射频拉远模块的信号覆盖范围内的情况下,接收所述电子标签发送的信号,所述信号携带有所述电子标签的标签信息;
所述接口模块,用于将所述信号发送给所述RFID功能模块;
所述RFID功能模块,用于解析所述信号,得到目标信息;并将所述目标信息发送给RFID服务器,所述目标信息包括所述标签信息;
所述基站还包括基带处理模块,所述基带处理模块集成有基带单元BBU,所述目标信息包括用于检测所述电子标签位置的第一定位信息;
所述射频拉远模块,还用于将所述第一定位信息发送给BBU;
所述BBU,用于将所述电子标签对应的第二定位信息通过核心网上传至云平台,所述第二定位信息包括所述第一定位信息,或者所述第二定位信息为基于所述第一定位信息解算得到的所述电子标签的位置信息。
第三方面,本公开的实施例提供一种基站,包括处理器,存储器,存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现第一方面中的任一项方法。
第四方面,本公开的实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现第一方面中的任一项方法。
第五方面,本公开的实施例提供一种计算机程序产品,所述计算机程序产品包括计算机程序,在所述计算机程序在计算机设备上运行的情况下,使得所述计算机设备执行如上所述的信息检测方法中的步骤。
本公开实施例中,通过将RFID功能模块与通信基站进行融合,具体可以将RFID功能模块通过接口模块与通信基站中的射频拉远模块进行通信,来实现融合,这样在电子标签处于射频拉远模块的信号覆盖范围内的情况下,通过射频拉远模块接收电子标签发送的信号,所述信号携带有电子标签的标签信息;将所述信号通过接口模块发送给RFID功能模块;通过RFID功能模块解析所述信号,得到目标信息,并将目标信息发送给RFID服务器。如此,通过将通信基站与RFID功能模块进行融合,并使RFID功能模块复用通信基站的射频拉远模块,从而使通信基站具有了RFID系统的相关功能,从而可以减少对RFID系统的部署,降低部署成本。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获取其他的附图。
图1是RFID系统的工作原理示意图;
图2是数字化室分系统中通信基站的结构示意图;
图3是本公开实施例提供的信息检测方法的流程示意图;
图4是pRRU的结构示意图;
图5是对电子标签进行定位的系统结构示意图;
图6是本公开实施例提供的基站的结构示意图之一;
图7是本公开实施例提供的基站的结构示意图之二。
具体实施方式
目前,RFID技术广泛应用于各个领域如制造业,利用RFID技术为智能化车间、仓储、工业产线中的产品进行信息检测如位置检测是当前应用较多的场景之一。
比如,将单体物料、箱体物料、转运托盘等物品上贴上电子标签,通过RFID技术进行电子标识,通过电子仓储,实现出入库管理的自动化、自动识别并处理物料出入货架、快速拣货和存货、支持整库/分类/分区的快速电子盘存、以及存量预警并支持对货单的管理与补给。
然而,对于一些场景,如大型工业现场,在进行信息检测时需要额外部署RFID系统,如需要额外部署发射器,读写器,编码器及天线等设备,导致部署成本高昂。并且,RFID技术进行信息检测时存在覆盖范围小,功率消耗大,易受干扰,定位精度不稳定的特点。基于此,本公开实施例提供一种新的信息检测方案。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获取的所有其他实施例,都属于本公开保护的范围。
下面首先对相关技术进行说明。
RFID技术可以通过无线电波,在不接触电子标签的情况下快速实现信息交换和存储,其可以通过无线通信结合数据访问技术连接数据库系统,加以实现非接触式的双向通信,从而可以达到识别的目的,其可以用于数据交换,来串联起一个极其复杂的系统。
在识别系统中,可以通过电磁波实现电子标签的读写与通信。图1是RFID系统的工作原理示意图,如图1所示,RFID系统可以包括RFID读写器101、电子标签102和数据管理系统103三部分。RFID读写器通过其天线1011向外发送一定频率的电磁波,当电子标签进入到RFID读写器天线的工作范围内后其内部产生感应电流而被激活,于是将其存储的信息通过内部天线发送出来,RFID读写器的天线接收到来自电子标签的载波信号,将其传送给RFID读写器,RFID读写器对接收到的信号进行解调与解码处理。而数据管理系统与RFID读写器可以通过无线访问接入点进行通信,交互终端可以通过访问RFID读写器并获得信息。
基于RFID技术,可以实现智能产品全生命周期管理,智能化物流仓储以及智能生产车间管理。
数字化室分系统可以包括通信基站,该通信基站可以为皮基站,其为分布式基站, 如图2所示,通信基站可以包括基带单元(Base Band Unit,BBU)201、室内型射频拉远单元(Pico Remote Radio Unit,pRRU)202和汇聚单元203。该通信基站可以为第4代4G通信基站,也可以为第5代通信基站,亦或是更新一代的通信基站,这里不进行具体限定。
BBU的主要作用是集中管理整个基站系统,包括操作维护、信令处理,并完成上、下行用户数据基带处理功能,提供基站与传输网络的接口,完成信息的交互。汇聚单元的主要作用是实现多个pRRU和BBU之间汇聚连接,接收BBU发送的下行数据转发给各pRRU,并将多个pRRU的上行数据转发给BBU,并向pRRU供电。pRRU的主要作用是将数字信号调制到发射频段,经滤波放大后,通过天线发射,从天线接收射频信号,经滤波放大后,将射频信号经模数转换为数字信号后发送给BBU进行处理。
BBU和汇聚单元之间通过光纤204连接,最大拉远距离约为2-15KM之间,汇聚单元与pRRU之间通过光电混合缆205连接,最大拉远距离约为200m。
下面对本公开实施例提供的信息检测方法进行说明。
需要说明的是,本公开实施例提供的信息检测方法涉及无线通信技术领域,其可以广泛应用于智能制造场景中。该方法可以由本公开实施例的信息检测系统执行,信息检测系统可以为数字化室分系统,包括通信基站,该数字化室分系统可以为包括4G通信基站的数字化室分系统,也可以为包括5G通信基站的数字化室分系统,亦或是包括更新一代通信基站的数字化室分系统。以下实施例中,基站将以5G基站为例进行说明。
参见图3,图中示出了本公开实施例提供的信息检测方法的流程示意图。该方法应用于基站,所述基站包括RFID功能模块、接口模块和射频拉远模块,RFID功能模块通过所述接口模块与所述射频拉远模块进行通信,所述射频拉远模块用于进行移动通信,如图3所示,该方法可以包括如下步骤:
步骤301,在电子标签处于所述射频拉远模块的信号覆盖范围内的情况下,通过所述射频拉远模块接收所述电子标签发送的信号,所述信号携带有所述电子标签的标签信息。
本公开实施例中,该基站可以为通信基站,可以称之为皮基站,该通信基站可以为分布式基站。该基站可以为数字化室分系统中的基站,用于将移动通信基站的信号均匀分布在室内每个角落,从而保证室内区域实现比较好的信号覆盖。
在一些实施方式中,该基站可以包括RFID功能模块、接口模块和射频拉远模块,RFID功能模块通过接口模块与射频拉远模块进行通信。该基站可以包括pRRU,RFID功能模块、接口模块和射频拉远模块可以部署在pRRU。
参见图4,图4是pRRU的结构示意图,pRRU中可以包括RFID功能模块401、接口模块402和射频拉远模块403,射频拉远模块403可以包括射频模块4031、天线4032和信号处理单元4033,该射频拉远模块403用于进行移动通信。
也就是说,射频拉远模块403是建立蜂窝网络基础上,其用于进行移动通信,该射频拉远模块403继承了pRRU的原有功能,可以通过射频模块4031和信号处理单元4033 将数字信号调制到发射频段,经滤波放大后,通过天线发射,从天线接收射频信号,通过射频模块4031和信号处理单元4033经滤波放大后,将射频信号经模数转换为数字信号后发送给BBU进行处理。
在一些实施方式中,RFID功能模块结合射频拉远模块可以实现RFID技术,即可以通过电磁波实现电子标签的读写与通信,在实际应用中,基于RFID技术可以实现智能产品全生命周期管理,智能化物流仓储以及智能生产车间管理。
在一些实施方式中,RFID功能模块可以包括RFID控制模块和RFID应用模块,RFID控制模块可以包括RFID读写器,RFID控制模块可以负责信号编码和解码、执行防碰撞算法、对RFID读写器和电子标签之间传送的数据进行加密和解密、可以进行RFID读写器与电子标签之间的身份验证、以及与RFID应用模块进行通信。而RFID读写器可以负责对电子标签进行读写,RFID应用模块可以具备协议处理、事件生成、命令处理、控制监听等功能。
在一些实施方式中,RFID控制模块可以包括RFID激励器,也可以不包括RFID激励器,这里不进行具体限定。
在一些实施方式中,接口模块可以为使用串行通信RS-232通信接口的模块,也可以为使用传输控制协议(Transmission Control Protocol,TCP)通信接口的模块,还可以为使用网际互连协议(Internet Protocol,IP)通信接口的模块,这里不进行具体限定。
在一些实施方式中,RFID功能模块可以通过接口模块与射频拉远模块进行通信,在RFID功能模块与接口模块进行对接时,RFID功能模块如RFID读写器可以建立在诸如串行通信RS-232、TCP或IP等通信接口上,通过数据交换协议和应用程序实现与射频拉远模块进行通信,从而可以实现RFID功能模块与5G pRRU互通,即可以实现RFID功能模块与pRRU进行融合。
在一些实施方式中,电子标签可以包括耦合元件及芯片,每个标签具有唯一的电子编码,高容量电子标签可以包括可写入的存储空间,附着在物体上可以用于标识该物体。
在一些实施方式中,该电子标签可以为无源电子标签,即需要受到RFID激励源激励后才能发送信号,也可以为有源电子标签,即可以主动发送某一频率的信号,这里不进行具体限定。
在一些实施方式中,RFID功能模块可以包括RFID激励源,在电子标签为无源电子标签的情况下,RFID激励源可以控制RFID读写器通过射频拉远模块进行磁场辐射,当电子标签进入至RFID读写器的磁场辐射范围内时,即说明电子标签处于所述射频拉远模块的信号覆盖范围内,此时,电子标签可以凭借感应电流所获得的能量进行信号发送,以发送出存储在芯片中的标签信息,该标签信息可以包括所标识物体的标识信息和相关产品信息等。
在电子标签为有源电子标签的情况下,RFID功能模块也可以不包括RFID激励源,电子标签可以主动发送某一频率的信号,当电子标签进入至射频拉远模块的信号覆盖范围内时,可以通过射频拉远模块接收电子标签发送的信号,所述信号携带有所述电子标 签的标签信息。
在实际应用中,如智能化工业生产线上,可以将本公开实施例的基站中的多个pRRU部署于周边,以在室内区域实现比较好的信号覆盖,包括室内区域中的该智能化工业生产线,同时可以将电子标签贴于智能化工业生产线中生产的产品上,这样,可以通过该基站实现对电子标签的识别和定位,以进行产品的智能化生产管理。
步骤302,将所述信号通过所述接口模块发送给所述RFID功能模块。
该步骤中,射频拉远模块可以通过接口模块实现与RFID功能模块的互通,射频拉远模块可以通过天线和射频模块接收信号,并在通过信号处理单元进行信号处理后,将接收到的信号通过该接口模块发送给RFID功能模块。
示例性地,RFID功能模块可以包括RFID应用模块,RFID应用模块可以与接口模块进行对接,当RFID应用模块与接口模块进行对接时,可以将RFID读写器建立在诸如串行通信RS-232、TCP或IP等通信接口上,通过数据交换协议和RFID应用模块中的应用程序实现与射频拉远模块进行通信。相应的,射频拉远模块可以将接收到的信号通过该接口模块和RFID应用模块发送给RFID读写器。
该步骤中,RFID功能模块可以复用射频拉远模块中的射频模块和天线来接收电子标签发送的信号,由于5G基站的覆盖范围远,当RFID功能模块与5G基站融合时,可以使得信号覆盖范围宽,连续覆盖效果更好;并且,复用pRRU中的射频模块,由于5G支持多输入多输出(Multiple-Input Multiple-Output,MIMO)的多天线技术,容量更高,能够满足应用场景密集的热点区域覆盖,RFID功能模块复用pRRU中的射频模块后产生高频发射能量,对发射信号进行调制,并传输给电子标签,可以达到对电子标签更好地识别和定位效果。
在实际应用中,pRRU可以采用MIMO多天线技术,如4根发射天线和4根接收天线的天线灵活配置,在负荷不高的情况下,可以将其中的1根发射天线和1根接收天线划分给基于RFID功能模块所构建的子系统,以实现RFID功能,并可以节省资源。
步骤303,通过所述RFID功能模块解析所述信号,得到目标信息,并将所述目标信息发送给RFID服务器,所述目标信息包括所述标签信息。
该步骤中,可以通过RFID功能模块解析所述信号,得到目标信息,该目标信息可以包括电子标签的标签信息,以实现对电子标签的信息识别。
该目标信息也可以同时包括电子标签的标签信息和用于检测该电子标签位置的第一定位信息,该第一定位信息可以为电子标签与接收电子标签信号的该pRRU之间的距离,该第一定位信息用于对电子标签进行定位,如可以基于电子标签与接收该电子标签信号的多个pRRU之间的距离,采用三点定位方式对电子标签进行定位,从而实现对电子标签所标识的物体进行定位。
该第一定位信息可以通过解析接收到的信号强度来确定,也可以通过其他方式来确定,这里不进行具体限定。总之,可以通过解析接收到的信号,得到第一定位信息,以实现对电子标签的定位,从而可以通过部署该基站实现对电子标签所标识的物体进行定 位。
之后,该RFID功能模块可以将目标信息发送给RFID服务器,具体可以通过RFID应用模块将目标信息发送给RFID服务器。其中,RFID服务器可以集成在基站内,也可以不集成在基站内,这里不进行具体限定。
RFID服务器可以根据逻辑运算判断电子标签的合法性,根据不同的设定进行相应的处理和控制,并进行数据处理。同时,RFID服务器也可以根据接收到的多个pRRU发送的第一定位信息实现对电子标签的定位,达到定位效果。
本公开实施例中,通过将RFID功能模块与通信基站进行融合,具体可以将RFID功能模块通过接口模块与通信基站中的射频拉远模块进行通信,来实现融合,这样在电子标签处于射频拉远模块的信号覆盖范围内的情况下,通过射频拉远模块接收电子标签发送的信号,所述信号携带有电子标签的标签信息;将所述信号通过接口模块发送给RFID功能模块;通过RFID功能模块解析所述信号,得到目标信息,并将目标信息发送给RFID服务器。如此,通过将通信基站与RFID功能模块进行融合,并使RFID功能模块复用通信基站的射频拉远模块,从而使通信基站具有了RFID系统的相关功能,从而可以减少对RFID系统的部署,降低部署成本。
并且,pRRU可以接入运营商的网络管理系统,支持每一级的状态监控,有问题更容易排查,易于维护,这就相当于基于RFID功能模块所构建的子系统也可以被监控,同时5G支持MIMO多天线技术,容量更高,能够满足应用场景密集的热点区域覆盖,使得覆盖范围更广,可以达到对电子标签更好地识别和定位效果。
在一些实施方式中,所述RFID功能模块包括RFID控制模块和RFID应用模块,所述RFID控制模块包括RFID读写器,所述RFID读写器通过所述接口模块和所述RFID应用模块接收所述信号;所述步骤303具体包括:
通过所述RFID读写器解析所述信号,得到目标信息;
将所述目标信息通过所述RFID应用模块发送给RFID服务器。
本公开实施方式中,RFID功能模块可以包括RFID控制模块和RFID应用模块,RFID控制模块可以包括RFID读写器,RFID控制模块可以负责信号编码和解码、执行防碰撞算法、对RFID读写器和电子标签之间传送的数据进行加密和解密、可以进行RFID读写器与电子标签之间的身份验证、以及与RFID应用模块进行通信,而RFID读写器可以负责对电子标签进行读写。
在一些实施方式中,RFID应用模块可以与多个不同类型的后端应用程序衔接,具备设备管理、数据处理、事件集成和应用集成等功能,可以支持新增应用系统开发、原有应用系统功能的增强和延伸,采用了功能模块化进行设计,具备协议处理、事件生成、命令处理、控制监听等功能。
在一些实施方式中,RFID功能模块可以通过该RFID应用模块与接口模块进行对接,当RFID应用模块与接口模块进行对接时,RFID读写器可以建立在诸如串行通信RS-232、TCP或IP等通信接口上,通过数据交换协议和RFID应用模块中的应用程序 实现与射频拉远模块进行通信,从而可以实现RFID功能模块与5G pRRU互通,即可以实现RFID功能模块与pRRU进行融合。
在一些实施方式中,射频拉远模块中的天线接收电子标签发出的信号,经天线的调节器传输给RFID读写器,相应的,RFID读写器借助于RFID应用模块和接口模块接收射频拉远模块发送的电子标签的信号,并解析所述信号,得到目标信息,之后可以将目标信息通过RFID应用模块发送给RFID服务器。
本公开实施方式中,通过RFID读写器和RFID应用模块,并借助于接口模块,来实现与射频拉远模块进行通信,从而可以实现RFID功能模块与5G pRRU互通,进而通过pRRU中的射频拉远模块和融合在pRRU中的RFID功能模块实现RFID功能。
在一些实施方式中,所述RFID控制模块包括RFID激励器,所述步骤301之前,所述方法还包括:
通过所述RFID激励器控制所述RFID读写器进行磁场辐射,以使所述电子标签在所述RFID读写器辐射的磁场激励下进行信号发送。
本公开实施方式中,在电子标签为无源电子标签的情况下,RFID控制模块中还可以包括RFID激励源,RFID读写器和RFID激励源均可以集成在pRRU中,RFID激励源可以控制RFID读写器进行磁场辐射,相应的,RFID读写器可以通过射频拉远模块发送电磁波。
当电子标签进入至RFID读写器的磁场辐射范围内时,即说明电子标签处于所述射频拉远模块的信号覆盖范围内,此时,电子标签可以凭借感应电流所获得的能量进行信号发送,以发送出存储在芯片中的标签信息。如此,可以使电子标签在RFID读写器辐射的磁场激励下进行信号发送,从而实现对电子标签所标识的物体进行信息检测。
在一些实施方式中,所述方法还包括:
通过第一通道控制所述RFID读写器进行磁场辐射;
通过第二通道控制所述RFID读写器进行信号接收;
其中,所述第一通道和所述第二通道异步。
本公开实施方式中,pRRU中的协议处理器是以异步方式通过两个通道分别控制所述RFID读写器进行磁场辐射和信号接收。具体的,pRRU中的协议处理器可以通过第一通道控制RFID读写器进行磁场辐射,通过第二通道控制RFID读写器进行信号接收,第一通道和第二通道以异步方式传输数据,这样可以使上传数据和下发数据能够以两个通道实现异步传送。
相对于轮流检测的方式,可以实现RFID读写器的收发分离,实现收发解耦,从而可以提高RFID读写器的抗干扰能力,简化基于RFID功能模块的子系统在pRRU内的融合部署。
在一些实施方式中,所述基站还包括基带处理模块,所述基带处理模块集成有基带单元BBU,所述目标信息包括用于检测所述电子标签位置的第一定位信息,所述通过所述RFID功能模块解析所述信号,得到目标信息之后,所述方法还包括:
通过所述射频拉远模块将所述第一定位信息发送给BBU,所述BBU用于将所述电子标签对应的第二定位信息通过核心网上传至云平台,所述第二定位信息包括所述第一定位信息,或者所述第二定位信息为基于所述第一定位信息解算得到的所述电子标签的位置信息。
本公开实施方式中,基站中还可以包括基带处理模块,基带处理模块包括BBU,BBU可以通过传输网将数据传输至核心网,并到达云平台。
在一些实施方式中,第二定位信息可以基于第一定位信息确定,具体的,第二定位信息可以包括不同pRRU发送的第一定位信息,即包括通过射频拉远模块发送给BBU的第一定位信息,在该种场景下,电子标签的位置信息可以由云平台基于BBU发送的第二定位信息进行有关数据处理得到,以实现对电子标签的定位功能,如采用三点定位方式基于不同pRRU发送的第一定位信息进行电子标签的位置解算。
在一些实施方式中,第二定位信息也可以为基于不同pRRU发送的第一定位信息,所解算出来的电子标签的位置信息,在该种场景下,电子标签的位置信息可以由BBU基于不同pRRU发送的第一定位信息进行数据处理得到,以实现对电子标签的定位功能,如采用三点定位方式基于不同pRRU发送的第一定位信息进行电子标签的位置解算,这里不进行具体限定。
本公开实施方式中,可以通过射频拉远模块并借助于光电混合缆由汇聚单元集线器传输给基带处理模块,以传输给BBU。BBU可以通过网络切片划分的独立频段上传第二定位信息到5G核心网,最后送至云平台进行有关数据处理,以实现对电子标签的定位功能,从而复用数字化室分系统达到电子标签所标识物体的定位效果。
在一些实施方式中,所述RFID服务器集成在所述基带处理模块中,即基带处理模块可以集成BBU和RFID服务器,这样,可以进一步降低RFID系统的部署成本。
参见图5,图5是对电子标签进行定位的系统结构示意图,如图5所示,该系统可以包括数字化室分系统中的通信基站501、电子标签502和云平台503,该通信基站501可以包括pRRU5011、汇聚单元5012和基带处理模块5013,pRRU5011中集成有RFID功能模块,RFID功能模块可以包括RFID读写器50111和RFID激励源50112,基带处理模块5013集成有RFID服务器50131和BBU50132。基于该系统,可以实现对电子标签进行定位。
从以上实施例可以看出,本公开实施例具有用户操作便捷和安全性高的技术优势,例如,1)在5G基站覆盖范围远,当RFID系统与5G基站结合,连续覆盖范围宽,覆盖效果更好;2)在应用场景需要实现定位功能时,可以复用5G基站,无需另外部署RFID系统;3)RFID系统中的射频模块复用皮基站的射频模块,能够支持MIMO多天线技术,容量更高,能够满足应用场景密集的热点区域覆盖;4)皮基站可以接入运营的网络管理系统,支持每一级的状态监控,使得更容易排查问题。也就是说,RFID系统也可以被监控,同时覆盖范围更广。5)pRRU中的4T4R发射模式(4个发射(TX)天线发射4个接收(RX)天线)的天线灵活配置,负荷不高的情况下,其中,1T1R划 分给RFID的子系统,节省资源。
下面对本公开实施例提供的基站进行说明。
参见图6,图中示出了本公开实施例提供的基站的结构示意图之一。如图6所示,基站600包括:RFID功能模块601、接口模块602和射频拉远模块603,RFID功能模块601通过所述接口模块602与所述射频拉远模块603进行通信,所述射频拉远模块603用于进行移动通信;
所述射频拉远模块603,用于在电子标签处于所述射频拉远模块603的信号覆盖范围内的情况下,接收所述电子标签发送的信号,所述信号携带有所述电子标签的标签信息;
所述接口模块602,用于将所述信号发送给所述RFID功能模块601;
所述RFID功能模块601,用于解析所述信号,得到目标信息;并将所述目标信息发送给RFID服务器,所述目标信息包括所述标签信息。
在一些实施方式中,所述RFID功能模块601包括RFID控制模块和RFID应用模块,所述RFID控制模块包括RFID读写器,所述RFID读写器通过所述接口模块602和所述RFID应用模块接收所述信号;
所述RFID读写器,用于解析所述信号,得到目标信息;
所述RFID应用模块,用于将所述目标信息发送给RFID服务器。
在一些实施方式中,所述RFID控制模块包括RFID激励器;
所述RFID激励器,用于控制所述RFID读写器进行磁场辐射,以使所述电子标签在所述RFID读写器辐射的磁场激励下进行信号发送。
在一些实施方式中,基站600还包括:
协议处理器,用于通过第一通道控制所述RFID读写器进行磁场辐射;通过第二通道控制所述RFID读写器进行信号接收;其中,所述第一通道和所述第二通道异步。
在一些实施方式中,所述基站600还包括基带处理模块,所述基带处理模块集成有基带单元BBU,所述目标信息包括用于检测所述电子标签位置的第一定位信息;
所述射频拉远模块603,还用于将所述第一定位信息发送给BBU;
所述BBU,用于将所述电子标签对应的第二定位信息通过核心网上传至云平台,所述第二定位信息包括所述第一定位信息,或者所述第二定位信息为基于所述第一定位信息解算得到的所述电子标签的位置信息。
在一些实施方式中,所述RFID服务器集成在所述基带处理模块中。
基站600能够实现上述信息检测方法实施例中实现的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
参见图7,图中示出了本公开实施例提供的基站的结构示意图之二。如图7所示,基站700包括:处理器701、存储器702、用户接口703和总线接口704。所述基站还包括RFID功能模块、接口模块和射频拉远模块,RFID功能模块通过所述接口模块与所述射频拉远模块进行通信,所述射频拉远模块用于进行移动通信。
在一些实施方式中,处理器701,用于读取存储器702中的程序,执行下列过程:
在电子标签处于所述射频拉远模块的信号覆盖范围内的情况下,通过所述射频拉远模块接收所述电子标签发送的信号,所述信号携带有所述电子标签的标签信息;
将所述信号通过所述接口模块发送给所述RFID功能模块;
通过所述RFID功能模块解析所述信号,得到目标信息,并将所述目标信息发送给RFID服务器,所述目标信息包括所述标签信息。
在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器701代表的一个或多个处理器和存储器702代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口704提供接口。针对不同的用户设备,用户接口703还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器701负责管理总线架构和通常的处理,存储器702可以存储处理器701在执行操作时所使用的数据。
在一些实施方式中,所述RFID功能模块包括RFID控制模块和RFID应用模块,所述RFID控制模块包括RFID读写器,所述RFID读写器通过所述接口模块和所述RFID应用模块接收所述信号,处理器701,还用于:
通过所述RFID读写器解析所述信号,得到目标信息;
将所述目标信息通过所述RFID应用模块发送给RFID服务器。
在一些实施方式中,所述RFID控制模块包括RFID激励器,处理器701,还用于:
通过所述RFID激励器控制所述RFID读写器进行磁场辐射,以使所述电子标签在所述RFID读写器辐射的磁场激励下进行信号发送。
在一些实施方式中,处理器701,还用于:
通过第一通道控制所述RFID读写器进行磁场辐射;
通过第二通道控制所述RFID读写器进行信号接收;
其中,所述第一通道和所述第二通道异步。
在一些实施方式中,所述基站还包括基带处理模块,所述基带处理模块集成有基带单元BBU,所述目标信息包括用于检测所述电子标签位置的第一定位信息,处理器701,还用于:
通过所述射频拉远模块将所述第一定位信息发送给BBU,所述BBU用于将所述电子标签对应的第二定位信息通过核心网上传至云平台,所述第二定位信息包括所述第一定位信息,或者所述第二定位信息为基于所述第一定位信息解算得到的所述电子标签的位置信息。
本公开实施例还提供一种基站,包括处理器701,存储器702,存储在存储器702上并可在所述处理器701上运行的计算机程序,该计算机程序被处理器701执行时实现上述信息检测方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不 再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述信息检测方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
本公开实施例还提供一种计算机程序,包括计算机可读代码,在所述计算机可读代码在信息检测中运行的情况下,处理器执行用于实现上述方法中的部分或全部步骤。
本公开实施例还提供一种计算机程序产品,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序被计算机读取并执行时,实现上述方法中的部分或全部步骤。该计算机程序产品可以具体通过硬件、软件或其结合的方式实现。在一些实施例中,所述计算机程序产品具体体现为计算机存储介质,在另一些实施例中,计算机程序产品具体体现为软件产品,例如软件开发包(Software Development Kit,SDK)等等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的系统和方法,可以通过其它的方式实现。例如,以上所描述的系统实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本公开实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该 计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (13)

  1. 一种信息检测方法,应用于基站,所述基站包括无线射频识别RFID功能模块、接口模块和射频拉远模块,RFID功能模块通过所述接口模块与所述射频拉远模块进行通信,所述射频拉远模块用于进行移动通信,所述方法包括:
    在电子标签处于所述射频拉远模块的信号覆盖范围内的情况下,通过所述射频拉远模块接收所述电子标签发送的信号,所述信号携带有所述电子标签的标签信息;
    将所述信号通过所述接口模块发送给所述RFID功能模块;
    通过所述RFID功能模块解析所述信号,得到目标信息,并将所述目标信息发送给RFID服务器,所述目标信息包括所述标签信息;
    所述基站还包括基带处理模块,所述基带处理模块集成有基带单元BBU,所述目标信息包括用于检测所述电子标签位置的第一定位信息,所述通过所述RFID功能模块解析所述信号,得到目标信息之后,所述方法还包括:
    通过所述射频拉远模块将所述第一定位信息发送给BBU,所述BBU用于将所述电子标签对应的第二定位信息通过核心网上传至云平台,所述第二定位信息包括所述第一定位信息,或者所述第二定位信息为基于所述第一定位信息解算得到的所述电子标签的位置信息。
  2. 根据权利要求1所述的方法,其中,所述RFID功能模块包括RFID控制模块和RFID应用模块,所述RFID控制模块包括RFID读写器,所述RFID读写器通过所述接口模块和所述RFID应用模块接收所述信号;所述通过所述RFID功能模块解析所述信号,得到目标信息,并将所述目标信息发送给RFID服务器,所述方法包括:
    通过所述RFID读写器解析所述信号,得到目标信息;
    将所述目标信息通过所述RFID应用模块发送给RFID服务器。
  3. 根据权利要求2所述的方法,其中,所述RFID控制模块包括RFID激励器,所述通过所述射频拉远模块接收所述电子标签发送的信号之前,所述方法还包括:
    通过所述RFID激励器控制所述RFID读写器进行磁场辐射,以使所述电子标签在所述RFID读写器辐射的磁场激励下进行信号发送。
  4. 根据权利要求3所述的方法,其中,所述方法还包括:
    通过第一通道控制所述RFID读写器进行磁场辐射;
    通过第二通道控制所述RFID读写器进行信号接收;
    其中,所述第一通道和所述第二通道异步。
  5. 根据权利要求1至4任一项所述的方法,其中,所述RFID服务器集成在所述基带处理模块中。
  6. 一种基站,所述基站包括无线射频识别RFID功能模块、接口模块和射频拉远模块,RFID功能模块通过所述接口模块与所述射频拉远模块进行通信,所述射频拉远模 块用于进行移动通信;
    所述射频拉远模块,用于在电子标签处于所述射频拉远模块的信号覆盖范围内的情况下,接收所述电子标签发送的信号,所述信号携带有所述电子标签的标签信息;
    所述接口模块,用于将所述信号发送给所述RFID功能模块;
    所述RFID功能模块,用于解析所述信号,得到目标信息;并将所述目标信息发送给RFID服务器,所述目标信息包括所述标签信息;
    所述基站还包括基带处理模块,所述基带处理模块集成有基带单元BBU,所述目标信息包括用于检测所述电子标签位置的第一定位信息;
    所述射频拉远模块,还用于将所述第一定位信息发送给BBU;
    所述BBU,用于将所述电子标签对应的第二定位信息通过核心网上传至云平台,所述第二定位信息包括所述第一定位信息,或者所述第二定位信息为基于所述第一定位信息解算得到的所述电子标签的位置信息。
  7. 根据权利要求6所述的基站,其中,所述RFID功能模块包括RFID控制模块和RFID应用模块,所述RFID控制模块包括RFID读写器,所述RFID读写器通过所述接口模块602和所述RFID应用模块接收所述信号;
    所述RFID读写器,用于解析所述信号,得到目标信息;
    所述RFID应用模块,用于将所述目标信息发送给RFID服务器。
  8. 根据权利要求7所述的基站,其中,所述RFID控制模块包括RFID激励器;
    所述RFID激励器,用于控制所述RFID读写器进行磁场辐射,以使所述电子标签在所述RFID读写器辐射的磁场激励下进行信号发送。
  9. 根据权利要求8所述的基站,其中,所述基站还包括:
    协议处理器,用于通过第一通道控制所述RFID读写器进行磁场辐射;通过第二通道控制所述RFID读写器进行信号接收;其中,所述第一通道和所述第二通道异步。
  10. 根据权利要求6至9任一项所述的基站,其中,所述RFID服务器集成在所述基带处理模块中。
  11. 一种基站,所述基站包括:包括处理器,存储器,存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至5中任一项所述的信息检测方法的步骤。
  12. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至5中任一项所述的信息检测方法的步骤。
  13. 一种计算机程序产品,所述计算机程序产品包括计算机程序,在所述计算机程序在计算机设备上运行的情况下,使得所述计算机设备执行如权利要求1至5任一项所述的信息检测方法。
PCT/CN2022/130061 2021-12-17 2022-11-04 一种信息检测方法、基站、存储介质和计算机程序产品 WO2023109354A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111545676.5 2021-12-17
CN202111545676.5A CN113965919B (zh) 2021-12-17 2021-12-17 信息检测方法及基站

Publications (1)

Publication Number Publication Date
WO2023109354A1 true WO2023109354A1 (zh) 2023-06-22

Family

ID=79473350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130061 WO2023109354A1 (zh) 2021-12-17 2022-11-04 一种信息检测方法、基站、存储介质和计算机程序产品

Country Status (2)

Country Link
CN (1) CN113965919B (zh)
WO (1) WO2023109354A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117062037A (zh) * 2023-10-11 2023-11-14 长沙盈芯半导体科技有限公司 Rfid标签数据处理方法、装置、基站、计算机设备和介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113965919B (zh) * 2021-12-17 2022-04-15 中移(上海)信息通信科技有限公司 信息检测方法及基站

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108112021A (zh) * 2016-11-24 2018-06-01 大唐移动通信设备有限公司 一种射频通道检测数据的回传方法及设备
CN108133163A (zh) * 2018-01-15 2018-06-08 南京华苏科技有限公司 快速识别无源室分天线标签工作状态的管理系统
WO2019149341A1 (en) * 2018-01-30 2019-08-08 Huawei Technologies Co., Ltd. Techniques for location estimation using rfid tags
CN110176959A (zh) * 2019-05-20 2019-08-27 武汉虹信通信技术有限责任公司 天馈监控方法和系统
CN110324068A (zh) * 2018-03-28 2019-10-11 上海华为技术有限公司 射频识别系统、组建中继网络的方法和阅读器、中继器
CN113965919A (zh) * 2021-12-17 2022-01-21 中移(上海)信息通信科技有限公司 信息检测方法及基站

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120235799A1 (en) * 2011-03-15 2012-09-20 Omron Corporation Rfid reader/writer, rfid system, and communication method
CN202331511U (zh) * 2011-11-12 2012-07-11 成都雷电微力科技有限公司 一种uhf rfid读写器芯片
CN102869045B (zh) * 2012-09-04 2015-08-19 大唐移动通信设备有限公司 一种数据传输方法和系统
CN104217235B (zh) * 2014-09-15 2017-06-20 陈振峰 Rfid读写器、电子标签及读写方法
CN106326944A (zh) * 2015-06-23 2017-01-11 上海华虹集成电路有限责任公司 射频拉远rfid读写器系统及光纤射频拉远的方法
CN107786255A (zh) * 2016-08-30 2018-03-09 华为技术有限公司 一种与射频设备通信的方法、装置及系统
CN107145811B (zh) * 2017-05-26 2023-11-03 上海赋拓物联网技术有限公司 基于基准标签的rfid边界确定方法及系统
CN111224722B (zh) * 2018-11-27 2021-10-26 华为技术有限公司 天线头端的检测方法及装置
CN109819465A (zh) * 2019-01-18 2019-05-28 珠海市联电科技有限公司 一种基于无源rfid标签的室内rru定位诊断方法、装置及系统
CN111695366B (zh) * 2019-03-14 2024-03-01 北京京东乾石科技有限公司 一种用于结算通道的电子标签读取方法和装置
US11568456B2 (en) * 2020-04-17 2023-01-31 At&T Intellectual Property I, L.P. Facilitation of valuation of objects

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108112021A (zh) * 2016-11-24 2018-06-01 大唐移动通信设备有限公司 一种射频通道检测数据的回传方法及设备
CN108133163A (zh) * 2018-01-15 2018-06-08 南京华苏科技有限公司 快速识别无源室分天线标签工作状态的管理系统
WO2019149341A1 (en) * 2018-01-30 2019-08-08 Huawei Technologies Co., Ltd. Techniques for location estimation using rfid tags
CN110324068A (zh) * 2018-03-28 2019-10-11 上海华为技术有限公司 射频识别系统、组建中继网络的方法和阅读器、中继器
CN110176959A (zh) * 2019-05-20 2019-08-27 武汉虹信通信技术有限责任公司 天馈监控方法和系统
CN113965919A (zh) * 2021-12-17 2022-01-21 中移(上海)信息通信科技有限公司 信息检测方法及基站

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117062037A (zh) * 2023-10-11 2023-11-14 长沙盈芯半导体科技有限公司 Rfid标签数据处理方法、装置、基站、计算机设备和介质
CN117062037B (zh) * 2023-10-11 2023-12-29 长沙盈芯半导体科技有限公司 Rfid标签数据处理方法、装置、基站、计算机设备和介质

Also Published As

Publication number Publication date
CN113965919A (zh) 2022-01-21
CN113965919B (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
WO2023109354A1 (zh) 一种信息检测方法、基站、存储介质和计算机程序产品
Zhang et al. Real-time locating systems using active RFID for Internet of Things
US7696875B2 (en) Antenna interfaces for mobile RFID readers
CN101576964B (zh) 变频工作的射频识别读写器、无线射频识别系统及方法
CN201057561Y (zh) 固定式射频读写器
US20060103533A1 (en) Radio frequency tag and reader with asymmetric communication bandwidth
US20070176748A1 (en) Method and Device for Radiofrequency Communication
CN105488446A (zh) 一种密闭金属环境下rfid多标签识别系统和方法
CN103053118B (zh) 用于射频识别与分组无线电通信的混合体系结构
CN102870004A (zh) 用于无线传感器网络的网络节点
CN102143548A (zh) 一种rfid自组网系统及数据传输方法
CN103632122A (zh) 一种智能管理系统及智能管理方法
US8174363B2 (en) Multi-transceiver RFID reader system with centralized control and frequency source
CN107659341B (zh) 近场通信-类型b设备
EP3326125A1 (en) Smart wireless asset tracking
CN101776744A (zh) 无线射频识别系统
Jameel et al. Time slot management in backscatter systems for large-scale IoT networks
US20230214620A1 (en) Method and device for positioning, and storage medium
WO2012102600A1 (en) Portable radio frequency identification reader for real time location systems
CN211124112U (zh) 一种双模标签装置
US20090160611A1 (en) Enhanced Communication Via RFID Interrogator
CN112418377B (zh) 电子价签及其工作方法
US20100073187A1 (en) Methods and apparatus for no-touch initial product deployment
US20190362108A1 (en) Protocol Layer Coordination Of Wireless Energy Transfer Systems
KR100765097B1 (ko) Rfid 송수신 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906106

Country of ref document: EP

Kind code of ref document: A1